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Abstract

Recently a new class of composite Higgs models have been developed which
give rise to naturally light Higgs bosons without supersymmetry. Based on
the chiral symmetries of “theory space,” involving replicated gauge groups and
appropriate gauge symmetry breaking patterns, these models allow the scale
of the underlying strong dynamics giving rise to the composite particles to be
as large as of order 10 TeV, without any fine tuning to prevent large correc-
tions to Higgs boson mass(es) of order 100 GeV. In this note we show that the
size of flavor violating interactions arising generically from underlying flavor
dynamics constrain the scale of the Higgs boson compositeness to be greater
than of order 75 TeV, implying that significant fine-tuning is required. With-
out fine-tuning, the low-energy structure of the composite Higgs model alone
is not sufficient to eliminate potential problems with flavor-changing neutral
currents or excessive CP violation; solving those problems requires additional
information or assumptions about the symmetries of the underlying flavor or
strong dynamics. We also consider the weaker, but more model-independent,
bounds which arise from limits on weak isospin violation.
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1 Introduction

Recently a new class [1, 2] of composite Higgs models [3] has been developed which
give rise to naturally light Higgs bosons without supersymmetry. Inspired by dis-
cretized versions of higher-dimensional gauge theory [4, 5], these models are based
on the chiral symmetries of “theory space”[4] . The models involve replicated gauge
groups and corresponding gauge symmetry breaking patterns. They allow the scale
(Λ) of the underlying strong dynamics giving rise to the composite particles to be
as large as 10 TeV, without causing large corrections to the Higgs boson mass(es)
of order 100 GeV.

Various possibilities exist for the underlying physics (the “high-energy com-
pletion”) which gives rise to the chiral-symmetry breaking pattern required, and
produces the “pion” which becomes the composite Higgs. However, regardless of
the precise nature of the underlying strongly-interacting physics, there must be fla-
vor dynamics at a scale of order Λ or greater that gives rise to the different Yukawa
couplings of the Higgs boson to ordinary fermions. As in extended technicolor the-
ories [6, 7], if this flavor dynamics arises from gauge-interactions it will generically
cause flavor-changing neutral currents [7].

In this note we review and update the lower bound on Λ arising from the ex-
perimental constraints on extra contributions to the neutral meson mass differences
[8]. We find that in composite Higgs models the size of flavor-violating interactions
arising from the high-energy theory constrain the scale Λ to be greater than of order
75 TeV. We then consider the “theory space” models, argue why this flavor bound
applies to such models, and review the upper limit on Λ of order 10 TeV necessary
to avoid fine-tuning [1, 2]. Raising the scale Λ to 75 TeV to be consistent with
the flavor bounds mentioned above, then, necessitates fine tuning of order 2%. We
compare these bounds to those arising from limits on the amount of CP violation
and isospin violation in the composite Higgs theory.

The implication of our findings is that the low-energy structure of the com-
posite Higgs model alone is not sufficient to eliminate potential problems with
flavor-changing neutral current or excessive CP violation; solving those problems
requires additional information or assumptions about the symmetries of the under-
lying strong dynamics1.

2 Flavor and Composite Higgs Bosons2

We begin by considering what the observed masses of the ordinary fermions imply
about the underlying flavor physics. Providing the different masses of the fermions
requires flavor physics (analogous to extended-technicolor interactions (ETC) [6, 7])

1See also [9], which emphasizes that the properties of the underlying strong-dynamics may affect
the details of the low-energy phenomenology.

2This section reviews and updates material from [8].
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which couples the left-handed quark doublets ψL and right-handed singlets qR to the
strongly-interacting constituents of the composite Higgs doublet. At low energies,
these interactions produce the quark Yukawa couplings.

To estimate the sizes of various effects of the underlying physics, we rely on di-
mensional analysis [10]. As noted by Georgi [11], a theory with light scalar particles
belonging to a single symmetry-group representation depends on two parameters:
Λ, the scale of the underlying physics, and f (the analog of fπ in QCD), which
measures the amplitude for producing the scalar particles from the vacuum. Our
estimates of the sizes of the low-energy effects of the underlying physics will de-
pend on the ratio κ ≡ Λ/f , which determines the sizes of coupling constants in the
low-energy theory. Naive dimensional analysis corresponds to κ = 4π [10].

Assuming that these new flavor interactions are gauge interactions with gauge
coupling g and gauge boson massM , dimensional analysis [10] allows us to estimate
that the size of the resulting Yukawa coupling is [3] of order (g2/M2)(Λ2/κ), i.e.

φ

R
qψ

L

⇒ g2

M2

Λ2

κ
q̄RφψL . (1)

In order to give rise to a quark mass mq, the Yukawa coupling must be equal to

√
2mq

v
(2)

where v ≈ 246 GeV. This implies

Λ ≈ M

g

√√
2κ
mq

v
. (3)

Thus, if we set a lower limit on M/g from low-energy flavor physics, eqn.(3) will
give a lower bound on Λ.

The high-energy flavor physics responsible for the generation of the Yukawa
couplings must distinguish between different flavors so as to give rise to the different
masses of the corresponding fermions. In addition, the flavor physics will give rise
to flavor-specific couplings among ordinary fermions [6, 7]. These will generically
give rise to flavor-changing neutral currents (as previously noted in [7] for the case
of ETC theories) that affect Kaon, D-meson, and B-meson physics.

Consider the interactions responsible for the c-quark mass. Through Cabibbo
mixing, these interactions must couple to the u-quark as well. Neglecting mixing
with the top-quark, this will generally give rise to the interactions

Leff = − (cos θcL sin θcL)
2 g

2

M2
(cLγ

µuL)(cLγµuL)

2



− (cos θcR sin θcR)
2 g

2

M2
(cRγ

µuR)(cRγµuR)

− 2 cos θcL sin θcL cos θcR sin θcR
g2

M2
(cLγ

µuL)(cRγµuR) , (4)

where the coupling g and mass M are of the same order as those in the interactions
which ultimately give rise to the c-quark Yukawa coupling in eqn. (1), and the
angles θcL and θcR represent the relation between the gauge eigenstates and the mass
eigenstates. The operators in eqn. (4) will clearly affect neutral D-meson physics.
Similarly, the interactions responsible for other quarks’ masses will give rise to
operators that contribute to mixing and decays of the corresponding mesons.

The color-singlet products of currents in eqn. (4) will contribute directly to D-
meson mixing. In the vacuum-insertion approximation, the purely left-handed or
right-handed current-current operators yield

(

M

g

)

LL,RR

>∼ fD

(

2mDBD

3∆mD

)1/2

cos θcL,R sin θcL,R ≈ 225TeV , (5)

where we have used the limit on the neutral D-meson mass difference, ∆mD
<∼

4.6 × 10−11 MeV [12], and fD
√
BD = 0.2 GeV [13], θcL,R ≈ θC . The bound on the

scale of the underlying strongly-interacting dynamics follows from eqn. (3):

Λ
>∼ 21TeV

√

κ

(

mc

1.5GeV

)

, (6)

so that Λ
>∼ 75 TeV for κ ≈ 4π.

The ∆C = 2, LR product of color-singlet currents gives a weaker bound than
eqn. (6), but the LR product of color-octet currents,

Leff = − 2 cos θcL sin θcL cos θcR sin θcR
g2

M2
(cLγ

µT auL)(cRγµT
auR) , (7)

where T a are the generators of SU(3)C , gives a stronger bound:

(

M

g

)

LR

>∼ 4fD
3(mc +mu)

(

m3
DB

′
D

∆mD

)1/2

(2 cos θcL sin θcL cos θcR sin θcR)
1/2 (8)

≈ 590TeV

(

1.5GeV

mc

)

, (9)

corresponding to

Λ
>∼ 53TeV

√

κ

(

1.5GeV

mc

)

. (10)
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There are also contributions toK-meson mixing from the color-singlet and color-
octet products of currents analogous to those in eqns. (4) and (7). The lower bound
on Λ derived from the measured value of the KLKS mass difference [8]

Λ
>∼ 6.8TeV

√

κ

(

ms

200MeV

)

. (11)

is weaker than (6) because the s-quark is lighter than the c-quark, while the d − s
and u−c mixings are expected to be of comparable size [8]. However, in the absence
of additional superweak interactions to give rise to CP-violation in K-mixing (ε),
the flavor interactions responsible for the s-quark Yukawa couplings must violate
CP at some level. In this case the the bounds on the scale Λ are much stronger.
Recalling that

Re ε ≈ ImM12

2∆M
<∼ 1.65 × 10−3 , (12)

and assuming that there are phases of order 1 in the ∆S = 2 operators analogous
to those shown in eqn. (4), we find the bound

Λ
>∼ 120TeV

√

κ

(

ms

200MeV

)

. (13)

3 Composite Higgs Bosons from Theory Space

A set of “theory space” composite Higgs models [1, 2] is illustrated in Figure 1,
using “moose” or “quiver” notation [14]. In this diagram, each site except (1, 1)
represents a gauged SU(3) group, while the links represent non-linear sigma fields
transforming as (3, 3̄)’s under the adjacent groups:

Uij → WijUijW
†
i j+1 , Vij → WijVijW

†
i+1 j . (14)

The “toroidal” geometry of theory space implies that the indices i, j are periodic
mod N . At the site (1, 1), only the SU(2) × U(1) subgroup of an SU(3) global
symmetry is gauged. The kinetic energy terms in the Lagrangian then read

Lkin = −
∑

ij

1

2g2ij
TrF 2

ij +
f2

4

∑

ij

Tr|DµUij|2 +
f2

4

∑

ij

Tr|DµVij |2 , (15)

where gij are the gauge couplings and f is the “pion-decay constant” of the chiral
symmetry breaking dynamics. For simplicity, in what follows we will assume that
the gauge couplings gij = g are the same for every site except for (1, 1). The rules
of naive dimensional analysis [10] then imply that the scale Λ of the underlying
high-energy dynamics which gives rise to this theory is bounded by of order 4πf .
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1, 1 2, 1 3, 1 N, 1

1, 2 2, 2 3, 2 N, 2

1, 3 2, 3 3, 3 N, 3

1, N 2, N 3, N N, N

V11 V21

V12 V22

V13 V23

V1N V2N

VN−1,1

VN−1,2

VN−1,3

VN−1,N

VN1

VN2

VN3

VNN

U11

U12

U1,N−1

U21

U22

U2,N−1

U31

U32

U3,N−1

UN1

UN2

UN,N−1

U1N U2N U3N UNN

Figure 1: A composite Higgs model based on an N × N toroidal lattice “theory
space.” SU(3) gauge groups live at every site except (1, 1), while the links represent
non-linear sigma fields transforming as (3, 3̄)’s under the adjacent gauge symmetries.
Only an SU(2) × U(1) subgroup of an SU(3) global symmetry group is gauged at
site (1, 1). As described in the text, N2−1 sets of Goldstone bosons are eaten, N2−1
get mass from “plaquette operators” which explicitly break the chiral symmetries,
and two sets remain in the very low-energy theory. This illustration comes from [9].

The 2N2 Goldstone bosons of the chiral symmetry breaking dynamics are in-
corporated into the sigma-model fields

Uij = exp 2iπu,ij/f , Vij = exp 2iπv,ij/f . (16)

The gauge symmetry breaking pattern implied is SU(3)N
2−1 × SU(2) × U(1) →

SU(2)×U(1), resulting in N2−1 sets of “eaten” Goldstone bosons. The remaining
N2 + 1 sets of Goldstone bosons in the physical spectrum interact via the gauge
interactions, which explicitly violate the chiral symmetries. However, because of
the “topology” of theory space, the lowest-order interaction in the effective theory
which breaks the chiral-symmetries in the same way as the gauge interactions only
occurs at high order [1]. Therefore, the leading contribution to the masses of these
remaining scalars from the low-energy gauge interactions is finite, and arises at
O(g4) from the Coleman-Weinberg potential [15] .
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An important ingredient in these models is a set of nonderivative chiral-symmetry
breaking operators of the form of “plaquette” interactions3

Lpl = λf4
∑

ij

Tr
(

UijVi j+1U
†
i+1 jV

†
ij

)

+ h.c. , (17)

where (again, for simplicity) we have assumed that the dimensionless coupling con-
stants λ are the same for every plaquette. Expanding these operators in terms of
the Goldstone bosons fields, we find

Lpl = −4λf2
∑

ij

Tr(πu,ij + πv,i j+1 − πu,i+1 j − πv,ij)
2 +O(π4) + . . . (18)

These operators have the extraordinary feature that they give rise to masses to
N2 − 1 of the remaining scalars, but leave massless the two combinations

πu,ij ≡
U

N
πv,ij ≡

V

N
(19)

which are uniform in either the “u” or “v” directions. The factors of N arise so as to
normalize the U and V fields correctly. Both the U and V fields contain SU(2)×U(1)
doublet scalars φu and φv with the quantum numbers of the Higgs boson. The theory
gives rise to two light (so far in this discussion, massless) composite Higgs bosons
with nonderivative interaction of the form [1, 2]

Lpl ⊃
4λ

N2
Tr(φuφ

†
u − φvφ

†
v)

2 +
4λ

N2
(φ†uφu − φ†vφv)

2 . (20)

Additionally, a negative mass-squared for one or both Higgs bosons may be
introduced either through a symmetry-breaking plaquette operator at the site (1, 1)
[1] or through the effect of coupling the Higgs bosons to the top-quark [2]. In either
case, the resulting mass-squared of the Higgs is of order

|mh|2 ≃
λv2

N2
. (21)

The left- and right-handed quarks and leptons transform under the SU(2)×U(1)
gauge interactions at the site (1, 1) [1, 2]. For the light fermions, Yukawa couplings
between the fermions and the composite Higgs bosons are introduced. Such interac-
tions violate the chiral symmetries protecting the Higgs bosons masses, but the size
of the resulting corrections is small since mq ≪ v. This choice preserves a (U(2))5

flavor symmetry, broken only by the Yukawa couplings to the composite Higgs, sup-
pressing flavor-changing neutral currents from the SU(2) × U(1) and SU(3)N

2−1

gauge bosons. Because the light quarks obtain mass from Yukawa couplings to the

3Because of the reduced symmetry at site (1, 1), additional operators are present there which
play an important role in the detailed phenomenology of the composite scalar particles.[1, 2]
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composite scalars, the bounds on the compositeness scale derived in Section 2 apply
to this model. As noted above, however, the light Higgs boson is “delocalized” in
theory space, eqn. (19), and therefore has only an amplitude of order 1/N of being
at site (1, 1). Consequently, we would say that Λ must satisfy

Λ
>∼ 21TeV

√

κN

(

mc

1.5GeV

)

, (22)

and be at least of order
√
N · 75 TeV for κ = 4π.

The top-quark presents a more difficult problem. In this case, no direct Yukawa
coupling is introduced [1]. Instead, the top-quark is “spread out” in theory space:
a family of massive SU(3) vector fermions on the sites (1, nv) and (nu, 1) is added
(here 1 ≤ nu,v ≤ N), along with local interactions between the the vector fermions
at adjacent sites and the gauge-eigenstate top-quark (which has SU(2)×U(1) gauge
interactions at site (1, 1)) [1, 2]. Upon diagonalizing the resulting mass matrix, the
expected order-one Yukawa coupling, yt, of the Higgs to the top-quark is generated
so long as the nearest neighbor couplings are of order one and the lightest vector-
fermion mass m satisfies m/f ≃ yt.

One might imagine that the bounds of Section 2 could be evaded in a different
class of models in which the light fermions are also spread out in theory space,
perhaps with “families” of SU(3) vector fermions. Even in this case, however, the
crucial flavor-violating couplings are still Yukawa couplings between an ordinary
fermion at the site (1, 1) and the appropriate component of a vector fermion at
an adjacent site. The bounds described in Section 2 apply to these couplings and
constrain the corresponding models.

4 Flavor and Fine-Tuning in Theory Space

In order to understand the implications of the lower bound from flavor physics, we
will examine an upper bound imposed by the wish to avoid fine-tuning in the Higgs
boson masses. As noted before, the chiral symmetries of theory space imply that the
leading contributions to the Higgs boson masses are finite contributions arising from
the Coleman-Weinberg potential. The rules of power-counting are easily modified in
this case [1, 2] in order to estimate the size of these finite contributions to parameters
in the low-energy theory. In particular, the size of these contribution is the same as
that in a standard scalar Higgs model with a cutoff equal to the mass of the lowest
appropriate resonance.

For example, gauge boson loop corrections to the Higgs boson masses are of
order [1, 2]

δm2
H ≃ e2

16π2 sin2 θW

(

gf

N

)2

≃
(

α

4π sin2 θW

)2

Λ2 , (23)

where the mass of the first vector resonance (of order gf/N) plays the role of the
cutoff of the low-energy theory, and we have assumed that g = O(Ne/ sin θW ) in

7



order to yield the appropriate low-energy weak coupling constant. Here, and in the
rest of this paper, we take Λ ≃ 4πf which corresponds to κ = 4π above. The size
of these finite corrections to the Higgs boson mass must be compared to the desired
low-energy mass-squared given in eqn. (21). To avoid fine-tuning, we require that

∣

∣

∣

∣

∣

δm2
H

m2
H

∣

∣

∣

∣

∣

<∼ 1 , (24)

which yields

Λ
<∼
(

4π sin2 θW
α

) √
λ v

N
≈ 108TeV

√
λ

N
. (25)

If gauge-boson loop corrections were the only issue, the cutoff could be taken to be
of order 100 TeV without any fine-tuning.

However, the most important corrections to the Higgs boson masses arise from
the interactions added to give rise to the top-quark mass. The fermion loop Coleman-
Weinberg contribution to the Higgs mass-squared is of order

|δm2
H | ≃ Ncy

2
tm

2

16π2
≈ Ncy

4
t

(16π2)2
Λ2 , (26)

whereNc = 3 accounts for color. In this case, the absence of fine-tuning (δm2
H/m

2
H

<∼
1) implies

Λ
<∼ 16π2

√
λv√

Ncy2tN
≈ 22TeV

√
λ

N
. (27)

Comparing eqns. (27) and (22) we see that for N = 2 fine-tuning on the order
of 1% is required if the bound from ∆C = 2 mixing is to be satisfied. If the bound
from CP violation (13) must also be satisfied, the fine-tuning required is of order
.04% .

5 Isospin Violation

A crucial issue in all composite Higgs models is the size of weak-isospin violation
[16, 8, 17, 18]. Recall that the standard one-doublet Higgs model has an accidental
custodial isospin symmetry [19], which naturally implies that the weak-interaction
ρ-parameter is approximately one. While all SU(2) × U(1) invariant operators
made of a single scalar-doublet field that have dimension less than or equal to four
automatically respect custodial symmetry, terms of higher dimension that arise from
the underlying physics at scale Λ in general will not. Furthermore, the interaction
given in eqn. (20) does not respect custodial symmetry. However, the effect of
these interactions is to introduce custodial violation in the spectrum of Higgs boson
masses and therefore only affects the weak interaction ρ parameter at one-loop.

8



The embedding of SU(2)×U(1) in a global SU(3) interaction is identical to the
symmetry structure of the “Banks model”, which is known to give rise to isospin
violation [3]. This violation is most directly understood by expanding the kinetic
energy terms in eqn. (15) to fourth-order in the pion fields. Keeping only the terms
involving φu and φv , we find the isospin violating interactions

Lkin ⊃ − 1

6Nf2

[

(∂µφ
†
uφu)

2 − (∂µφ
†
uφu)(φ

†
u∂

µφu) + (φ†u∂
µφu)

2
]

+ u↔ v . (28)

Writing the vevs of the Higgs fields as

〈φu〉 =
(

0
v cos β√

2

)

〈φv〉 =
(

0
v sinβ√

2

)

, (29)

we find the contribution

∆ρ⋆ = α∆T =
v2

4N2f2

(

1− sin2 2β

2

)

. (30)

Current limits derived from precision electroweak observables [18] require that ∆T
<∼

0.5 at 95% confidence level for a Higgs mass less than 500 GeV. The bound in eqn.
30 implies that

Λ ≃ 4πf
>∼ 25TeV

N

(

1− sin2 2β

2

)1/2

. (31)

Comparing this with eqn.(27), we see that the underlying strong dynamics cannot
be at energies much less than 10 TeV, even if the high-energy theory contains
approximate flavor and CP symmetries that nullifies the limits of (6) and (13).

6 Discussion

In this paper, we have shown that the size of flavor violating interactions arising
generically from underlying flavor dynamics in composite Higgs models constrain the
compositeness scale to be at least 75 TeV. This bound applies not only to the original
composite higgs models [3], but also to the recently developed “theory space” models
[1, 2]. For theory space models based on an N ×N toroidal lattice, the lower limit

is Λ
>∼ 75TeV

√
N , so that the bound is 105 TeV for N = 2. On the other hand, if

fine-tuning of the higgs mass is to be avoided in such models, Λ
<∼ 22TeV

√
λ/N ;

preventing flavor-changing neutral currents then leads to fine-tuning at the level of
10/N3 %. We have also seen that the lower limit on Λ derived from considering
weak isospin violation are somewhat weaker than those from FCNC, while those
from CP-violation in the neutral Kaon system are potentially much stronger.

It is also interesting to note how one might construct models that are not con-
strained by the bounds discussed in this paper. In order to produce the appropriate
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Yukawa couplings without potentially large effects in neutral-meson mixing, the
underlying flavor or strong dynamics must incorporate additional structure. First,
it may be possible to construct a theory in which the charm mass-eigenstates are
eigenstates of the corresponding flavor gauge-interactions. In this case, no ∆C = 2
interactions arise at the scale relevant for producing the charm-quark yukawa cou-
plings. Since Cabibbo mixing exists, however, such interactions will necessarily
arise at the scale relevant for strange-quark mass generation, yielding the result of
eqn. (11). Second, the underlying strong dynamics could potentially be arranged
to have a different scaling behavior, analogous to “walking technicolor” [20]. In this
case one might have Yukawa couplings of order Λ/M rather than the square of that
ratio. Or third, the underlying flavor dynamics could incorporate an approximate
GIM symmetry [21, 22]. Similarly, if the underlying dynamical theory incorporated
an approximate CP symmetry, then the low-energy theory would not necessarily
make the dangerously large contributions to ε discussed here.

In summary, we have seen that the low-energy structure of the composite Higgs
model alone is not sufficient to eliminate potential problems with flavor-changing
neutral current or excessive CP violation; solving those problems requires addi-
tional information or assumptions about the symmetries of the underlying strong
dynamics.

Note Added: After the completion of this manuscript, two minimal composite
Higgs models have recently been proposed [23, 24]. As noted by those authors, the
constraints discussed in this note are relevant to the new models as well.

Acknowledgments

We thank Andrew Cohen, Nima Arkani-Hamed, Hong-Jian He, Ken Lane, and
Martin Schmaltz for helpful discussions. This work was supported in part by the De-
partment of Energy under grant DE-FG02-91ER40676 and by the National Science
Foundation under grant PHY-0074274.

References

[1] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B 513 (2001) 232
[arXiv:hep-ph/0105239].

[2] N. Arkani-Hamed, A. G. Cohen, T. Gregoire and J. G. Wacker, arXiv:hep-
ph/0202089.

[3] D. B. Kaplan and H. Georgi, Phys. Lett. B136 (1984) 183; Phys. Lett. B145

(1984) 216;
T. Banks, Nucl. Phys. B 243 (1984) 123;
D. B. Kaplan, H. Georgi, and S. Dimopoulos, Phys. Lett. B136 (1984) 187;
M. J. Dugan, H. Georgi, and D. B. Kaplan, Nucl. Phys. B 254 (1985) 299.

10

http://arxiv.org/abs/hep-ph/0105239
http://arxiv.org/abs/hep-ph/0202089
http://arxiv.org/abs/hep-ph/0202089


[4] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Rev. Lett. 86 (2001)
4757 [arXiv:hep-th/0104005].

[5] H. C. Cheng, C. T. Hill and J. Wang, Phys. Rev. D 64 (2001) 095003
[arXiv:hep-ph/0105323].

[6] S. Dimopoulos and L. Susskind, Nucl. Phys. B155 (1979) 237.

[7] E. Eichten and K. Lane, Phys. Lett. B90 (1980) 125.

[8] R. S. Chivukula, B. A. Dobrescu and E. H. Simmons, Phys. Lett. B 401 (1997)
74 [arXiv:hep-ph/9702416].

[9] K. Lane, arXiv:hep-ph/0202093.

[10] A. Manohar and H. Georgi, Nucl. Phys. B234 (1984) 189; H. Georgi and
L. Randall, Nucl. Phys. B276 (1986) 241; T. Appelquist, Scottish Summer
School (1980) 385.

[11] H. Georgi, Phys. Lett. B298 (1993) 187, hep-ph/9207278.

[12] D.E. Groom et al, The European Physical Journal C15 (2000) 1, and 2001
off-year partial update for the 2002 edition available on the PDG WWW pages
(URL: http://pdg.lbl.gov/)

[13] See, for example, A. Ali Khan et al. [CP-PACS Collaboration], Phys. Rev. D
64, 034505 (2001) [arXiv:hep-lat/0010009].

[14] H. Georgi, Nucl. Phys. B 266, 274 (1986); M. R. Douglas and G. W. Moore,
arXiv:hep-th/9603167.

[15] S. R. Coleman and E. Weinberg, Phys. Rev. D 7 (1973) 1888.

[16] R. S. Chivukula and E. H. Simmons, Phys. Lett. B 388 (1996) 788 [arXiv:hep-
ph/9608320].

[17] R. S. Chivukula, E. H. Simmons and B. A. Dobrescu, arXiv:hep-ph/9703206.

[18] R. S. Chivukula and N. Evans, Phys. Lett. B 464 (1999) 244 [arXiv:hep-
ph/9907414]. ; R. S. Chivukula, C. Hoelbling and N. Evans, Phys. Rev. Lett. 85
(2000) 511 [arXiv:hep-ph/0002022]. ; R. S. Chivukula, arXiv:hep-ph/0005168.
; R. S. Chivukula and C. Hoelbling, in Proc. of the APS/DPF/DPB Summer
Study on the Future of Particle Physics (Snowmass 2001) ed. R. Davidson and
C. Quigg, arXiv:hep-ph/0110214.

[19] S. Weinberg, Phys. Rev. D19 (1979) 1277; L. Susskind, Phys. Rev. D20 (1979)
2619; P. Sikivie, et. al., Nucl. Phys. B173 (1980) 189.

11

http://arxiv.org/abs/hep-th/0104005
http://arxiv.org/abs/hep-ph/0105323
http://arxiv.org/abs/hep-ph/9702416
http://arxiv.org/abs/hep-ph/0202093
http://arxiv.org/abs/hep-ph/9207278
http://pdg.lbl.gov/
http://arxiv.org/abs/hep-lat/0010009
http://arxiv.org/abs/hep-th/9603167
http://arxiv.org/abs/hep-ph/9608320
http://arxiv.org/abs/hep-ph/9608320
http://arxiv.org/abs/hep-ph/9703206
http://arxiv.org/abs/hep-ph/9907414
http://arxiv.org/abs/hep-ph/9907414
http://arxiv.org/abs/hep-ph/0002022
http://arxiv.org/abs/hep-ph/0005168
http://arxiv.org/abs/hep-ph/0110214


[20] B. Holdom, Phys. Lett. B105 (1985) 301; K. Yamawaki, M. Bando and K.
Matumoto, Phys. Rev. Lett. 56 (1986) 1335; V.A. Miransky, Nuovo Cim. 90A
(1985); T. Appelquist, D. Karabali, and L.C.R. Wijewardhana, Phys. Rev.
D35(1987) 389; 149; T. Appelquist and L.C.R Wijewardhana, Phys. Rev. D35

(1987) 774; Phys. Rev. D36 (1987) 568.

[21] S. Dimopoulos, H. Georgi, and S. Raby, Phys. Lett. B127 (1983) 101;
S.-C. Chao and K. Lane, Phys. Lett. B159 (1985) 135; L. Randall Nucl.Phys.
B403 (1993) 122, hep-ph/9210231.

[22] R. S. Chivukula and H. Georgi, Phys.Lett. 188B (1987) 99 and Phys.Rev. D36

(1987) 2102; R. S. Chivukula, H. Georgi, and L. Randall, Nucl. Phys. B292

(1987) 93.

[23] N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, arXiv:hep-
ph/0206021.

[24] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire and
J. G. Wacker, arXiv:hep-ph/0206020.

12

http://arxiv.org/abs/hep-ph/9210231
http://arxiv.org/abs/hep-ph/0206021
http://arxiv.org/abs/hep-ph/0206021
http://arxiv.org/abs/hep-ph/0206020



