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ABSTRACT 43 

To improve the efficiency of high-density genotype data storage and imputation in bread wheat 44 

(Triticum aestivum L.), we applied the Practical Haplotype Graph (PHG) tool. The wheat PHG 45 

database was built using whole-exome capture sequencing data from a diverse set of 65 wheat 46 

accessions. Population haplotypes were inferred for the reference genome intervals defined by 47 

the boundaries of the high-quality gene models. Missing genotypes in the inference panels, 48 

composed of wheat cultivars or recombinant inbred lines genotyped by exome capture, 49 

genotyping-by-sequencing (GBS), or whole-genome skim-seq sequencing approaches, were 50 

imputed using the wheat PHG database. Though imputation accuracy varied depending on the 51 

method of sequencing and coverage depth, we found 92% imputation accuracy with 0.01x 52 

sequence coverage, which was slightly lower than the accuracy obtained using the 0.5x sequence 53 

coverage (96.6%). Compared to Beagle, on average, PHG imputation was ~3.5% (p-value < 2 x 54 

10-14) more accurate, and showed 27% higher accuracy at imputing a rare haplotype introgressed 55 

from a wild relative into wheat. We found reduced accuracy of imputation with independent 2x 56 

GBS data (88.6%), which increases to 89.2% with the inclusion of parental haplotypes in the 57 

database. The accuracy reduction with GBS is likely associated with the small overlap between 58 

GBS markers and the exome capture dataset, which was used for constructing PHG. The highest 59 

imputation accuracy was obtained with exome capture for the wheat D genome, which also 60 

showed the highest levels of linkage disequlibrium and proportion of identity-by-descent regions 61 

among accessions in the PHG database. We demonstrate that genetic mapping based on 62 

genotypes imputed using PHG identifies SNPs with a broader range of effect sizes that together 63 
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 3 

explain a higher proportion of genetic variance for heading date and meiotic crossover rate 64 

compared to previous studies.  65 

INTRODUCTION 66 

For the last 10,000 years, intensive selection of bread wheat, Triticum aestivum, created 67 

varieties adapted to diverse environments and cultivation practices (Balfourier et al. 2019; He et 68 

al. 2019; Walkowiak et al. 2020). Recent advances in crop genomics and the availability of 69 

reference genomes have accelerated the adoption of sequence-based genotyping technologies for 70 

studying the genetics of agronomic traits (Nyine et al. 2019) and local adaptation (He et al. 2019; 71 

Juliana et al. 2019, 2020) and facilitated the introduction of genomics-assisted breeding 72 

strategies into wheat improvement pipelines (Poland and Rife 2012; Isidro et al. 2014). 73 

However, the limited genome coverage provided by these genotyping technologies does not 74 

support the exploration of the entire range of genetic effects conferred by all variants, limiting 75 

the utility of the developed genomic diversity and functional genomics resources for 76 

understanding genome-to-phenome connections. 77 

The large size (17 Gb) and complexity of the wheat genome present a substantial 78 

challenge for sequence-based analysis of genetic diversity. Alignment of short sequence reads to 79 

the wheat genome is complicated by high levels of sequence redundancy resulting from two 80 

rounds of recent whole genome duplication (IWGSC, 2018), and the recent propagation of 81 

transposable elements (TEs) comprising nearly 90% of the genome (Wicker et al. 2018). 82 

Therefore, the efforts of the wheat research community were focused primarily on sequencing 83 

complexity-reduced genomic libraries produced by either enzymatic digests or by targeted 84 

sequence capture. These efforts have resulted in a detailed description of the population-scale 85 

haplotypic diversity in the low-copy genomic regions in large sets of genetically and 86 
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 4 

geographically diverse wheat lines and breeding populations (He et al. 2019; Juliana et al. 2019; 87 

Pont et al. 2019). While these resources have been useful for genotype imputation in populations 88 

genotyped using either SNP-based arrays or genotyping-by-sequencing (GBS) methods (Jordan 89 

et al. 2015; Shi et al. 2017; Juliana et al. 2019; Nyine et al. 2019), the relatively small number of 90 

shared markers between the reference and inference populations limits the number of imputed 91 

genotypes, thus diminishing the utility of genotype imputation in wheat genetic studies and 92 

breeding. 93 

High-quality reference genomes and a reduction in the cost of sequencing presented 94 

opportunities for the characterization of genetic diversity by direct sequencing of either whole 95 

genomes or genomic regions targeted by sequence capture (Malmberg et al. 2018; He et al. 96 

2019; Walkowiak et al. 2020). While these sequence-based genotyping approaches generate 97 

unbiased information about the genetic variants of various frequency classes and genomic 98 

locations, large-scale population sequencing of species with large genomes, including many 99 

important agricultural crops, remains costly. This issue has been addressed by combining low-100 

coverage sequencing of whole genomes with the prediction of missing genotypes using 101 

imputation tools, thereby increasing the power of association mapping and facilitating the 102 

detection of causal variants (Davies et al. 2016; Das et al. 2018; Rubinacci et al. 2021).  103 

Recently, a novel strategy referred to as Practical Haplotype Graph (PHG), was proposed 104 

to improve the efficiency of sequence-based genotyping data storage and imputing genotypes in 105 

low-coverage sequencing datasets (Jensen et al. 2020; Valdes Franco et al. 2020). The PHG is 106 

capable of storing sequencing data generated using diverse genotyping technologies as a graph of 107 

haplotypes of founder lines and is used for predicting missing genotypes in populations 108 

characterized by various sequence- or array-based genotyping strategies. By reducing the 109 
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 5 

constraints associated with large-scale sequencing data storage, processing, and utilization, this 110 

tool is another step towards leveraging the existing community-generated genomic diversity 111 

resources in breeding and research applications. We used skim-seq, whole-exome capture, 112 

genotyping-by-sequencing, and array-based genotyping datasets generated by the USDA-NIFA 113 

WheatCAP to develop a wheat PHG database and evaluate its performance for genotype 114 

imputation in wheat lines of different levels of relatedness and different depths of genome 115 

coverage.  116 

 117 

MATERIALS AND METHODS 118 

The purpose of this paper is to assess the practicality and effectiveness of imputation using the 119 

Practical Haploytpe Graph (PHG) database tool in allohexaploid wheat with the complex 120 

genome. Our study combines five datasets that were created using different sequencing 121 

approaches. A summary table describing the datasets and their usage is provided in Table S1.  122 

Datasets 123 

WC65: The primary dataset used in this study includes 65 wheat accessions and breeding lines 124 

that were subjected to whole exome capture as part of the WheatCAP, henceforth referred to as 125 

WC65. Many of these lines are used as parents in the United States university/academia-126 

associated wheat breeding programs, and information about these lines is found in Table S2.  127 

Sequencing Library prep for WC65: DNA was extracted from the leaves of two-week 128 

seedlings grown under greenhouse conditions. DNA was extracted using Qiagen DNeasy kit 129 

following the manufacturer’s protocol. DNA was quantified with Picogreen (Sage Scientific) and 130 

wheat exome capture was performed on each sample targeting the non-redundant low-copy 131 
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 6 

portion of the genome. Briefly, wheat exome captures designed in collaboration with Nimblegen 132 

targeted 170 Mb of sequence covering about 80,000 transcripts (Krasileva et al. 2017). The 133 

barcoded genomic libraries were pooled at 12- or 96-plex levels, and sequenced on NextSeq 134 

(Kansas State University Integrated Genomics Facility) and/or NovaSeq (Kansas University 135 

Medical Center) instrumentation using 2 x 150 bp read runs to produce sequence data providing 136 

about 30x coverage of the exome capture target space. 137 

Data processing of WC65: The quality of sequence reads was assessed using NGSQC 138 

toolkit v.2.3.3 (Patel and Jain 2012). The sequence reads were aligned to the wheat reference 139 

genome RefSeq v.1.1 ( IWGSC, 2018) using HISAT2 (Kim et al. 2015) retaining only uniquely 140 

mapped reads. The resulting alignments were processed using the GATK pipeline (McKenna et 141 

al. 2010) to generate a genome variant call file (g.vcf format) for each accession. These g.vcf 142 

files were used to populate the PHG database (see below). The PHG pipeline exported a variant 143 

call file (.vcf format), containing 1,473,670 variable sites, which was subsequently used for 144 

diversity analyses, and to assess the accuracy of imputation using both the PHG and Beagle5.0 145 

(see below). 146 

 Diversity analysis on WC65: Diversity statistics (π and Tajima’s D) were calculated 147 

using TASSEL v5.2.65 (Bradbury et al. 2007) in sliding windows of 2,000 SNPs per window 148 

stepping 1,000 SNPs at a time. The identity-by-descent (IBD) segments were identified using 149 

Beagle v.4.1 with the default parameters (Browning and Browning 2013), and considered to be 150 

significant at LOD > 3.0. Overlap between the IBD segments was determined using the 151 

MultiIntersectBed tool of the Bedtools suite v.2.26.0 (Quinlan and Hall 2010). Linkage 152 

disequilibrium (LD) was determined using PLINK v.1.90b3.45 (Purcell et al. 2007) by 153 
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 7 

calculating the squared correlation coefficient r2 for all possible pairwise combinations of SNP 154 

sites from the same chromosomes.   155 

DS75: The second dataset used in our study includes another set of US breeding lines subjected 156 

to exome capture at KSU Intergrated Genomics Facility. Information about these lines is found 157 

in Table S2. This dataset was used to test the imputation efficiency and accuracy of the PHG 158 

database at reduced genome coverage depths.  159 

Sequencing Library prep for DS75: DNA was extracted from leaf tissue as stated above 160 

for the WC65. The samples were subjected to whole exome capture and sequenced on the 161 

NovaSeq (Kansas University Medical Center) platform using 2 x 150 bp read runs, generating 162 

~30x depth of coverage.  163 

Data processing of DS75: To assess the effect of genome coverage depth on imputation 164 

accuracy, we used seqtk (Li 2012) to generate three distinct down-sampled datasets from the 170 165 

Mb wheat exome capture data to mimic 0.01x (5,667 paired-end (PE) reads per accession), 0.1x 166 

(56,667 PE per accession), and 0.5x (283,333 PE reads per accession) depth of coverage for the 167 

DS75 breeding lines (Table S2). This set of DS75 breeding lines included four lines (Duster, 168 

Overley, NuPlains, and Zenda), which were also used to build the PHG database, and were part 169 

of the WC65 dataset. For each low-coverage level, fastq files of the DS75 accessions were run 170 

through the PHG imputation pipeline step (see PHG imputation below).  171 

To impute using Beagle5.0 (Browning and Browning 2013) at low-coverage levels (0.1x 172 

and 0.01x), fastq files of the DS75 accessions were aligned to the wheat reference genome 173 

RefSeq v.1.1 (IWGSC, 2018) using HISAT2 (Kim et al. 2015) retaining only uniquely mapped 174 

reads. The resulting alignments were processed using the GATK pipeline (McKenna et al. 2010) 175 
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 8 

and combined to produce a vcf file at each coverage level, which were used as the target files for 176 

Beagle imputation. Imputation of the DS75 target panel was run using Beagle 5.0 (Browning and 177 

Browning 2013) with a window size of 75 Mb and overlap size of 5 Mb, and the WC65 variant 178 

data was used as the reference panel. The imputed genotypes in the DS75 data generated using 179 

Beagle 5.0 and PHG were compared at each coverage level. 180 

Imputation Accuracy of DS75: To test the accuracy of imputation in the low-coverage 181 

datasets from DS75, high coverage exome capture data generated for DS75 accessions was used 182 

to select a HQ-SNP dataset. The ~30x exome capture sequenced reads were aligned to RefSeq 183 

v.1.1 ( IWGSC, 2018) and variants called using the approaches described above for the WC65 184 

dataset. The raw GATK pipeline SNPs were filtered using bcftools (Danecek et al. 2021) retain 185 

variants with minor allele frequency > 0.015 and missing data < 10%. Filtered GATK variants 186 

were combined with the 90K genotyping data (Wang et al. 2014), producing high quality filtered 187 

variants (henceforth, HQ-SNPs) that were used for assessing the accuracy of the imputation for 188 

each accession. 189 

The concordance of imputed genotypes was assessed in relation to the HQ-SNPs using a 190 

custom Perl script. The script compares the SNP positions and alleles between the imputed and 191 

HQ-SNP datasets for each accession, and divides the number of matching genotype calls by the 192 

total number of overlapped genotype calls. On average, the estimates of accuracy were based on 193 

nearly 550,000 genotype calls per accession for DS75. The imputation accuracy in DS75 194 

between the Beagle v5.0 and PHG imputation methods for 0.01x and 0.1x coverage levels was 195 

compared using a paired t-test. At each coverage level, PHG imputation was more accurate 196 

(0.01x: t = 9.59, p-value = 1.9 x 10-14; 0.1x: t = 19.06, p-value = 2.0x 10-16) than Beagle 197 
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 9 

imputation. Imputation accuracy comparisons between genomes and SNPs with different MAF 198 

were performed using ANOVA from car and lme4 R packages.  199 

GBS70: A GBS sequencing dataset using MspI-PstI digested DNA of 70 wheat accessions were 200 

sequenced using GBS and whole exome capture, to check imputation accuracy on an 201 

independent GBS dataset (Table S2). These lines were not included into the PHG database 202 

construction. An in silico digestion of wheat genome RefSeq v.1.0 detected nearly 3 million PstI 203 

recognition sites, of which 1.96 million are located within 250 bp of an MspI recognition site 204 

(Bernardo et al. 2019), and given GBS sequencing read lengths are 100 bp, we estimate the 205 

target size of GBS sequencing is 196 Mb. The majority (52 accessions) of these accessions were 206 

sequenced at 2.5x coverage, while 18 accessions were sequenced at a slightly lower coverage 207 

depth (~1x target space), providing a chance to compare PHG imputation using GBS sequencing 208 

data providing different coverage depths of targeted sites. 209 

Data processing of GBS70: Raw fastq files (1x100bp) were quality filtered, separated by 210 

barcode, and barcodes trimmed from reads, as described (Jordan et al. 2018). Trimmed fastq files 211 

were processed using the PHG imputation pipeline (see PHG imputation below). 212 

Imputation Accuracy of GBS70: The accuracy of PHG imputation was assessed by 213 

calculting concordance beween imputed genotypes and genotypes from the HQ-SNP dataset. On 214 

average, the estimates of accuracy were based on nearly 550,000 genotype calls per accession for 215 

GBS70.    216 

NAMgbs: Previously generated GBS data (Jordan et al. 2018) based on MseI-PstI digested DNA 217 

(Saintenac et al. 2013) from the wheat nested association mapping (NAM) population were used 218 

to test the imputation accuracy of the wheat PHG. This dataset includes 2,100 RILs that 219 
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 10 

represent a population of 28 families of 75 RILs each. The common parent, Berkut, and three 220 

other NAM parental lines, including Dharwar Dry, PBW343, and PI382150 (Table S2), were 221 

used in the PHG construction. 222 

Data processing of NAMgbs: Fastq files (1 x 100 bp) were processed as previously 223 

described (Jordan et al. 2018). On average, our dataset included 1.85 million reads per accession, 224 

corresponding to ~1x coverage of the PstI-MseI sites in the reference wheat genome. The fastq 225 

files were processed using the PHG imputation pipeline (see below).  226 

Imputation Accuracy of NAMgbs: The concordance of imputed genotypes from the PHG 227 

pipeline was assessed by comparing with the previously reported, high-quality 90K iSelect 228 

genotyping data (Wang et al. 2014) generated for the NAM population, and high-quality SNPs 229 

identified in the NAM population. These high-quality SNPs were identified using the same 230 

procedures applied for the DS75 lines, except for including a post-GATK filtering step that 231 

retained only those SNPs that segregate among the NAM parents, and have MAF >0.015 232 

(henceforth, HQ-NAM SNPs). On average, the estimates of accuracy in the NAMgbs dataset 233 

were based on nearly 5,000 genotype calls per accession. The comparisons of the imputation 234 

accuracy between families where both parents were used to construct the PHG database and 235 

families with only one parent represented in the PHG database were performed using ANOVA. 236 

NAMskim: Genomic libraries of low-coverage whole-genome skim sequencing (Malmberg et 237 

al. 2018) were prepared for 24 samples (Table S2) from one of the NAM families (Jordan et al. 238 

2018) using Illumina DNA Prep Kit along with the Illumina’s Nextera CD adapters. Sequencing 239 

(2x150bp) was performed on the Illumina NextSeq platform (Kansas State University, Integrated 240 

Genomics Facility) for an average of 6.1 million paired-end reads per accession, which 241 

represents ~0.1x genome coverage. 242 
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 11 

Data processing of NAMskim: Demultiplexed fastq files were quality trimmed and used 243 

for PHG imputation (see PHG imputation below). The accuracy of PHG imputation was assessed 244 

by calculating the concordance of imputed genotypes and genotypes from the HQ-NAM dataset. 245 

On average, the estimates of accuracy were based on nearly 5,000 genotype calls per accession. 246 

Paired t-tests were used to compare the imputation accuracy between NAMgbs and NAMskim 247 

for matching accessions.  248 

Wheat PHG database construction 249 

The Wheat PHG database was built using PHG version 0.017. Instructions for creating the PHG 250 

along with source code are located with the PHG wiki: 251 

https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home. The approaches and 252 

parameters for constructing the Wheat PHG were discussed and developed during two PHG 253 

workshops organized at Cornell University. The first step of the PHG database construction is to 254 

create reference ranges for data storage and variant imputation (Figure S1). In this case, 255 

“informative” reference ranges were chosen by extending the high confidence gene model 256 

coordinates from Chinese Spring RefSeq v.1.1 (IWGSC, 2018) 500 bp in each direction. 257 

Adjacent ranges were merged if the boundaries lie within 500 bp from each other. This resulted 258 

in a final set of 106,484 informative reference ranges across the RefSeq v.1.1, while the 259 

remaining intergenic ranges were considered less informative due to abundance of repetitive 260 

sequences (Figure S1).  261 

The second PHG construction step populates the database with sequence data from 262 

diverse accessions across the reference ranges (Figure S1). Pre-processed exome capture g.vcf 263 

files for the WC65 accessions, including 58 Tricitum aestivum accessions, three Aegilops 264 

tauschii accessions, three Triticum turgidum subsp. durum wheat cultivars, and one Triticum 265 
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 12 

turgidum subsp. dicoccum accession (Table S2) generated by GATK (McKenna et al. 2010) 266 

were loaded into the PHG, creating a database of 6,705,472 haplotypes. This set of haplotypes 267 

should be representative of the haplotypic diversity in the wheat breeding programs within the 268 

US.   269 

The third PHG construction step creates consensus haplotypes for the reference ranges, 270 

using the diversity data from the WC65 accessions (Figure S1). This step collapses the raw 271 

haplotypes into consensus haplotypes using a user-defined maximum divergence (mxDiv) 272 

parameter, which was set to 0.0001 for wheat. This parameter results in the clustering of raw 273 

haplotypes that contain less than 1 variant within 10,000 bp into a common haplotype. The value 274 

of the mxDiv parameter was based on prior diversity estimates in wheat (Akhunov et al. 2010; 275 

Jordan et al. 2015), and aimed at retaining a manageable number of haplotypes per reference 276 

range as described in Jensen et al. (2020). In addition to the mxDiv parameter, we set minTaxa = 277 

1, which retains haplotypes present in only one accession and facilitates the imputation of rare 278 

haplotypes. Using these parameters, a total of 712,733 consensus haplotypes were detected, 279 

which is approximately 6.7 haplotypes per informative reference range, similar to ~5 haplotypes 280 

per reference range reported in the sorghum PHG (Jensen et al. 2020).  281 

Imputation Using the Wheat PHG 282 

For imputation using PHG, low coverage sequence data (fastq) was aligned to the 283 

consensus haplotypes stored in the PHG database (Figure S1) using minmap2 (Li, 2018) 284 

program. A Hidden Markov model was used to infer the paths through the practical haplotype 285 

graph that match the mapped reads while determining the missing haplotypes. The variants were 286 

imputed using the haplotype structure stored in the database, and exported as a vcf file. By using 287 

minReads = 0 parameter, variant calls were imputed for all variable positions in the wheat PHG 288 
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 13 

database. The resulting vcf file for the imputed genotypes were compared to high quality variant 289 

information for imputation accuracy as described above for each dataset. 290 

Phenotypic Regression of Imputed Genotypes 291 

We used a family of 75 recombinant inbred lines (RILs) from the spring wheat NAM panel 292 

(Jordan et al. 2018), where both parents were included into the Wheat PHG database, to assess 293 

the effect of imputation on QTL mapping applications. We filtered the 1.457 million genotypes 294 

from PHG imputation of the GBS data generated for these 75 RILs to retain variants that 295 

segregate between the parental lines, and selected allele with frequencies ranging between 0.35-296 

0.65 in the RIL population. These variants were subsequently thinned using PLINK (Purcell et 297 

al. 2007) to remove markers that had an r2 > 0.6 within a 50 SNP window, stepping 10 SNPs at a 298 

time. The resulting set of 9,806 markers with no missing data was used for stepwise regression 299 

mapping performed with the ICIM software v.4.1.0.0 (Meng et al. 2015) with markers entering 300 

and exiting the model with p-value < 0.0001. The estimates of the Total number of CrossOvers 301 

(TCO) and the distal CrossOvers (dCO) were taken from the previous analyses of the spring 302 

wheat NAM population for family NAM1 (Jordan et al. 2018). Heading dates were measured at 303 

three locations for two growing seasons (Montana, South Dakota, Washington) for the 75 RILs 304 

and three checks. Best linear unbiased predictions (BLUPs) for each line were estimated using 305 

the following linear mixed model with lmer package in R: 306 

HD = year + location + line + year(location) + line*year 307 

where location, year, and location nested within year are fixed variables, and the line and line-308 

by-year interaction terms are random variables.   309 

 310 
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 14 

RESULTS 311 

The Wheat PHG database development 312 

A wheat PHG database was created using whole-exome capture data from a set of 65 313 

wheat accessions, WC65, (Table S2) contributed by the major U.S. wheat breeding programs and 314 

the parental lines used for the genetic analyses of the yield component traits in WheatCAP 315 

(www.triticeaecap.org). This set of accessions was selected from a larger panel of nearly 250 316 

wheat cultivars assembled in coordination with the U.S. wheat breeding programs to build a 317 

genomic resource to be used as a reference panel for genotype imputation. This diverse set of 65 318 

accessions is comprised of mostly spring and winter bread wheat cultivars, but it also included 319 

three accessions of the diploid ancestor of the wheat D genome, Aegilops tauschii (accessions 320 

TA1615, TA1718, and TA1662/PI603230), and four accessions of tetraploid wheat (three 321 

Triticum turgidum subsp. durum wheat cultivars Langdon, Ben, and Mountrail and one 322 

domesticated emmer, Triticum turgidum subsp. dicoccum, accession PI41025).  323 

For constructing the PHG, the wheat genome was split into a set of informative reference 324 

ranges that represent the high confidence gene models in the IWGSC RefSeq v.1.1 (IWGSC, 325 

2018). By using the predicted gene models to define reference ranges, we aimed to reduce the 326 

impact of erroneous genotype calling associated with the misalignments of sequence reads to the 327 

repetitive portion of the wheat genome (Wicker et al. 2018) on the estimation of linkage 328 

disequilibrium (LD) and detecting haplotype blocks. A total of 106,484 reference ranges 329 

spanning all 21 chromosomes were defined (Figure S1; Table S3), with an average of 5,070 330 

reference ranges per chromosome; chromosome 4D contains the lowest (3,612 ranges) and 331 

chromosome 2B harbors the highest (6,221 ranges) number of reference ranges.  332 
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Using the WC65 accessions to populate the wheat PHG database, we discovered 333 

1,473,670 SNPs and small-scale indels across the 106,484 reference ranges, of which 1,457,321 334 

are high quality, bi-allelic SNPs (Table S3). The inclusion of three diploid Ae. tauschii 335 

accessions into the panel increased the number of variable sites detected in the D genome 336 

lineage, which is the least polymorphic genome in bread wheat (Wang et al. 2013; Jordan et al. 337 

2015; He et al. 2019). Excluding the variants from Ae. tauschii, we found that 161,226 (31%) 338 

sites in the D genome were monomorphic among the bread wheat cultivars. Similarly, we found 339 

that 31,486 SNPs (7%) in the A genome and 32,228 SNPs (6%) in the B genome are contributed 340 

by the domesticated emmer and durum lines, and are monomorphic in hexaploid wheat. These 341 

private SNPs explain the high levels of divergence between the domesticated emmer and Ae. 342 

tauschii accessions from the hexaploid wheat lines (Figure 1a). The patterns of genetic diversity 343 

and allele frequency distribution in the D genome compared to those in the A and B genomes 344 

were consistent with the known population bottleneck cased by polyploidization (Table 1): 1) 345 

diversity mean estimates for the D genome were less than 2.3-fold that of the A and B genomes, 346 

(πD = 0.076, πA = 0.175, and πB = 0.182; Table 1), 2) the estimates of Tajima’s D were lower in 347 

the D genome than in the A and B genomes (Tajima’s DD= -2.19, Tajima’s DA= -0.67, and  348 

Tajima’s DB = -0.55, Table 1), 3) the mean minor allele frequencies (MAF) were greater in the A 349 

and B genomes than in the D genome (MAFA= 0.12, MAFB= 0.12, and MAFD= 0.05), and 4) LD 350 

drops to half of its initial value (r2  0.33) at 20 Mb in the D genome, whereas in the A and B 351 

genomes LD drops to the same level at 12 and 10 Mb, respectively (Table 1, Figure 1b).   352 

The accuracy and the rate of genotype imputation are affected by the proportion of shared 353 

genetic ancestry among individuals in a population (Browning and Browning 2013). For each 354 

WheatCAP parental line included in the Wheat PHG, we estimated the length of genomic 355 
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segments sharing identity-by-descent (IBD) with other lines in the panel. On average, the pairs of 356 

parents had 451 Mb (~3%) of IBD segments (Table S4), suggesting distant relationships among 357 

the WheatCAP parental lines. This result was consistent with the high correlation (r = 0.64) 358 

observed between the genetic distance and IBD. However, the estimates of the total length of 359 

IBD segments among cultivars were quite variable (Figure 1c). For example, in cultivars Prosper 360 

from North Dakota and Shelly from Minnesota, the length of shared IBD segments was nearly 361 

1.29 Gb (8.6%), whereas hard winter wheat cultivars Lyman (South Dakota) and Overley 362 

(Kansas) shared only 128 Mb (0.85%) of IBD segments. The average length of IBD segments 363 

shared by the distantly related durum wheat and domesticated emmer parents was only 57.6 Mb. 364 

Across all breeding programs, we detected 556 regions sharing IBD, with an average IBD 365 

segment length of 12.2 Mb. Over half (53%) of the IBD segments overlapped with a segment 366 

from at least one other breeding program, translating to more than 1.68 Gb of the genome shared 367 

between any two wheat breeding programs. This estimate includes 1.49 Gb of shared IBD in the 368 

D genome (89%), while only 86.4 Mb and 105.7 Mb of IBD with other breeding programs were 369 

detected in the A and B genomes, respectively. The genomic segments sharing IBD with most of 370 

the wheat lines were located on chromosomes 7D (568 Mb - 571 Mb) and 3D (496.6 Mb - 505 371 

Mb), which were common to seven breeding programs. 372 

The WC65 dataset included 21 hard red winter wheat cultivars from the U.S. Great Plains 373 

region (Table S2). Pairwise comparisons among these lines showed that, on average, they share 374 

416 Mb of IBD segments, with an average IBD segment length of 13 Mb, and nearly 83% of all 375 

shared IBD regions are located in the D genome (Table S5). This finding is consistent with the 376 

lack of diversity among breeding lines in the D genome (Chao et al. 2010) and the high levels of 377 

shared ancestry among the lines from the U.S. Great Plains’ breeding programs.  378 
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Genotype imputation using the Wheat PHG  379 

We used several low-coverage sequencing datasets to assess the imputation performance 380 

of the wheat PHG (Table S2). First, we used a set of 75 spring and winter wheat lines, DS75,  381 

from the U.S. wheat breeding programs sequenced using the whole-exome capture approach 382 

(Krasileva et al. 2017; He et al. 2019) to mimic a low-coverage sequencing experiment. We 383 

down-sampled the raw unmapped Illumina paired-end reads generated for each accession to 384 

create datasets with three levels of sequence coverage depths (0.01x, 0.1x, and 0.5x) for the 385 

regions targeted by the exome capture assay. The accuracy of imputation achieved using the 386 

Wheat PHG was estimated by comparing the concordance of imputed genotype calls with the 387 

genotype calls from the HQ-SNP set generated using the 90K iSelect array (Wang et al. 2014) 388 

and the high-coverage (20-30x coverage) exome sequencing.  389 

On average, using 0.5x coverage of DS75, we achieved 96.6% imputation accuracy, 390 

ranging from 95% to 98% among lines (Figure 2a, Table 2). Five- and fifty-fold reduction in the 391 

depth of read coverage for DS75 did not result in a substantial reduction in the accuracy of 392 

imputation. The mean accuracy of PHG imputation was 95.7% (93-98% range) with 0.1x 393 

coverage depth, and 91.7% (87-98% range) with as little as 0.01x coverage depth (Figure 2a, 394 

Table 2). These results suggest that the imputation method in the PHG could effectively use 395 

0.01x exome coverage data to adequately capture the haplotypic diversity of the DS75 panel to 396 

achieve ~92% imputation accuracy. The imputation accuracy of DS75 varied among the wheat 397 

genomes, likely due to genome-specific differences in the extent of LD and haplotypic diversity 398 

(Jordan et al. 2015). At 0.01x coverage depth, the accuracy of genotype imputation in the D 399 

genome was 95.3%, which was 5% and 5.4% more accurate (p-value (ANOVA)<  2x10-16) than 400 

imputation in the A (90.3%), and the B genomes (89.9%), respectively (Table 3; Figure 2b).  401 
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 402 

We compared the performance of the wheat PHG to one of the commonly used low-403 

coverage imputation methods implemented in Beagle v5.0 (Browning and Browning 2013). For 404 

this purpose, the WC65 panel of accessions included into the wheat PHG database was used as 405 

the reference panel, and an independent set of DS75 wheat cultivars from the U.S. wheat 406 

breeding programs was used as the inference panel. Overall, Beagle imputed missing genotypes 407 

with 88.3% accuracy for DS75 at 0.01x coverage (ranging from 76% to 94%), and 92.1 % 408 

(ranging from 84% to 95%) at 0.1x coverage (Figure 2a, Table 2). Direct comparisons of 409 

imputation methods show PHG imputation statistically outperformed Beagle imputation by > 410 

3.4% at both coverage levels (p-value 0.1x (t-test) = 2.0x10-16; p-value 0.01x (t-test) = 1.9x10-14).  411 

Similar to the imputation of DS75 with PHG, Beagle imputed the D genome with higher 412 

accuracy (94.6%; p-value (ANOVA)<  2x10-16) than both the A (85.4%) and B (85.5%) genomes 413 

(Table 3). The higher extent of LD in the D genome appears to contribute to more accurate 414 

genotype imputation compared to that in the A and B genomes using exome capture data, which 415 

show faster rates of LD decay and lower proportions of the genome sharing IBD segments in the 416 

panel used to build the PHG database. 417 

We compared PHG imputation performance for four cultivars (Duster, Overley, 418 

NuPlains, and Zenda) in the DS75 panel that were included in PHG database construction, with 419 

respect to the other 71 accessions not included in the database construction, and found the four 420 

cultivar’s imputation accuracy was statistically higher (ANOVA for different levels of sequence 421 

coverage: p-value 0.5x = 0.0008; p-value 0.1x = 9.2 x 10-5; p-value 0.1x = 3.8 x 10-6) than for other 422 

cultivars at all levels of sequence coverage (Figure S2a). No similar relationship between the 423 

presence of specific haplotypes in the reference panel and imputation accuracy was observed for 424 
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Beagle. We further explored this relationship by analyzing genotype imputation results in the 425 

cultivar Jagger, which showed a substantial reduction in imputation accuracy in the low sequence 426 

coverage datasets (0.1x and 0.01x coverage) imputed using Beagle (Figure S2a). We assumed 427 

that one of the likely factors contributing to the decreased imputation performance of Beagle in 428 

the cultivar Jagger was the presence of the wild-relative introgression from Ae. ventricosa on 429 

chromosome 2A (Cruz et al. 2016). Because cultivar Overley, which was used to build the PHG 430 

database, also carries this Ae. ventricosa introgression (Cruz et al. 2016), we could evaluate the 431 

impact of the presence of the rare introgressed haplotype in both the PHG database and the 432 

Beagle’s reference panel on imputation accuracy. The chromosome-by-chromosome assessment 433 

of imputation accuracy for cv. Jagger in the 0.01x coverage dataset showed modest accuracy 434 

(90%) for chromosome 2A using PHG. However, for the same chromosome, the imputation 435 

accuracy of Beagle reached only 63% (Figure S2b). The accuracy of Beagle imputation was also 436 

low for other chromosomes (2D, 6A, 7A) (Figure S2b), which suggests that cv. Jagger likely 437 

carries other regions with unique haplotypes (Kippes et al. 2018; Walkowiak et al. 2020) poorly 438 

represented in the reference set used for Beagle imputation. For the same three chromosomes, the 439 

accuracy of PHG imputation was higher than that obtained using Beagle.  440 

Imputation accuracy with reduced coverage sequencing data 441 

To this point, we tested the imputation accuracy using the same type of genomic data 442 

(whole-exome capture) as was used to populate the PHG database. We also evaluated the utility 443 

of the developed PHG database for imputing genotypes using two cost-effective complexity-444 

reduced sequencing approaches, genotyping-by-sequencing (GBS) (Elshire et al. 2011; 445 

Saintenac et al. 2013) and whole-genome skim-seq (Malmberg et al. 2018). We imputed a 446 

population of 70 independent accessions (GBS70) that were sequenced with GBS technology, to 447 
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check imputation accuracy using sequencing reads derived from part of the genome that are not 448 

necessarily representative of the reference ranges in the database. Within the GBS70 accessions 449 

are 18 accessions that were sequenced at ~1x the GBS target space and 52 sequenced 2.5x GBS 450 

target space. As anticipated, an increase in coverage increased imputation accuracy by 1.7% 451 

using GBS sequencing, (Figure 2b, p-value (ANOVA) <  4.2x10-09). However, the imputation 452 

accuracy of 2.5x coverage GBS reads, which represents nearly 500x more sequencing reads per 453 

sample than DS75 at 0.01x was still reduced by 3.1% (Table 4), suggesting that matching 454 

sequencing reads derived from the reference ranges significantly increases imputation accuracy, 455 

even at substantially lower coverage depth.  456 

In addition to the 70 independent accessions characterized by GBS that were not used for 457 

PHG database construction, we utilized GBS reads generated for a set of 2,100 NAMgbs 458 

recombinant inbred lines (RILs) from the spring wheat NAM panel (Jordan et al. 2018), and 459 

performed genotype imputation at 1.4 million variable sites. The common parent of these NAM 460 

RILs, cv. Berkut, was included into the wheat PHG, and therefore this population does not 461 

necessarily represent an independent dataset for imputation as the GBS70 population did. 462 

However, for three families comprising the wheat NAM population, both parents were 463 

represented in the wheat PHG, which allows us to investigate imputation accuracy for a set of 464 

RILs, which had either both or only a single parental haplotype being represented in the PHG 465 

database.  466 

The mean accuracy of imputation across the 2,100 RILs was 89.2%, ranging from 78 - 467 

92% across individual lines (Figure 2b). Average imputation accuracies by families ranges from 468 

88.3%-90.4%, and the three families with both parents represented in the PHG database were 469 

among the top four most accurately imputed families (Table S6). Even though there is only a 470 
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0.9% reduction (90.1% both parents; 89.2% single parent in database; p-value (ANOVA) <  2x10-16) 471 

in mean imputation accuracy for lines with both parents in the database, versus those with one 472 

parent, all lines having one or two parents represented in the database were imputed more 473 

accurately (3.2% and 2.3%, respectively) than the 18 independent lines from GBS70 with the 474 

same depth of coverage, whose accuracy was 86.9% (Table 4). These estimates of imputation 475 

accuracy for the semi-dependent (representation of parents in the PHG database) NAMgbs RILs 476 

were slightly lower (2.5%) than those observed for the imputed genotypes in the 0.01x DS75 477 

exome capture data, and likely explained by the relatively small overlap (~5%) between the sites 478 

in the GBS and exome capture datasets (Jordan et al. 2015). Overall, these results indicate that a 479 

PHG database created by a panel of independent wheat lines re-sequenced by exome capture 480 

assay provides accurate imputation (~87%) on the inference populations created by complexity 481 

reduced sequencing using GBS, as long as the coverage is ~1x GBS target size, and imputation is 482 

even more accurate for lines that share haplotypes represented in the PHG database.  483 

We also evaluated the wheat PHG imputation for a set of 24 NAM RILs genotyped using 484 

the whole-genome skim-seq approach, (NAMskim). The genomic libraries generated for this set 485 

of RILs from the spring wheat NAM population (Jordan et al. 2018; Blake et al. 2019) were 486 

sequenced on an Illumina sequencer (2 x 150 bp run) to provide ~0.1x genome coverage. The 487 

accuracy of PHG-imputed genotypes in the NAMskim dataset (85.3%) was lower than that 488 

obtained for genotypes in either the DS75 or 1x NAMgbs datasets (Table 4). In fact, this estimate 489 

was 3.9% lower for the same set of RILs (p-value (t-test) <  2.7x10-13) imputed from the NAMgbs 490 

dataset. This lower accuracy likely is associated with a lower proportion of skim-seq reads, 491 

mostly represented by reads from the repetitive regions, uniquely mapped to the wheat genome 492 

compared to the proportion of uniquely mapped reads from the exome capture and GBS datasets, 493 
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which are enriched for the low-copy genomic regions (Saintenac et al. 2013; Jordan et al. 2015). 494 

The accuracy of imputation varied across different SNP frequency classes. For SNPs with MAF 495 

> 0.1, the accuracy of imputation improved by 4% for all NAMgbs RILs, and by 7.5% for 496 

NAMskim genotypes (Table 5). The accuracy reached nearly 90% for NAMskim and 92.5% for 497 

NAMgbs datasets when the MAF were  > 0.2 (Table 5, Figure 2c).    498 

 499 

Genetic analyses of trait variation using the imputed genotypes 500 

The ability to accurately impute genotypes across the genome in low-coverage 501 

sequencing datasets provides a cost-effective means for advancing the genetic dissection of trait 502 

variation. We used the imputed PHG genotypes to assess the genetic contribution to heading date 503 

(HD) variation in a NAM family previously used for studying the genetics of recombination rate 504 

variation in wheat (Jordan et al. 2018). The NAM1 family was chosen as both parents were 505 

included into the PHG database, and imputation accuracy was the highest among all NAM 506 

families at 90.4% (Table S6). A stepwise regression (SR) was applied to identify variants 507 

associated with phenotypic variation. Before mapping, co-segregating redundant markers were 508 

removed, resulting in nearly 10,000 markers with no missing data. The SR method identified 11 509 

SNPs together explaining 90% of the variance in heading date, which was measured over two 510 

years at three locations (Figure 3, Table S7). Among these SNPs are loci with modest effect sizes 511 

located on the long arms of chromosomes 5A and 5D, within 10 Mb from the Vrn-A1 and Vrn-512 

D1 loci, which play a major role in the regulation of flowering in wheat (Distelfeld et al. 2009). 513 

In addition, significant SNPs on chromosomes 1B and 1D were mapped to the regions within 50 514 

Mb of the Elf-3 gene, which is associated with the transition from vegetative to reproductive 515 

growth in wheat (Alvarez et al. 2016; Zikhali et al. 2016). 516 
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We also used the imputed genotypes to revisit the genetic analysis of meiotic crossover 517 

rate variation in the wheat NAM population (Jordan et al. 2018; Blake et al. 2019). In the 518 

previous study, using a limited number of SNPs genotyped using the 90K iSelect array and GBS, 519 

we performed SR analysis and identified 15 and 12 SNPs associated with variation in the total 520 

number of crossovers (TCO) and the number of distal crossovers (dCO), respectively (Jordan et 521 

al. 2018). The identified SNPs explained 48.6% of the variation for TCO and 41% of the 522 

variation for dCO. Using the PHG imputed genotypes, we mapped 16 SNPs that together 523 

explained 91% of the variance for TCO per line and 12 SNPs explaining 80% of the variance for 524 

dCO (Figure 3, Table S7). Compared to the previous study, SR analyses based on the PHG 525 

imputed SNPs detected additional loci with smaller effects on crossover rate (Jordan et al. 2018). 526 

As a result, the average effect size estimates for TCO and dCO were 2.5 COs and 1.5 COs, 527 

respectively. These estimates were lower than the previously reported average effect sizes of 528 

3.36 COs for TCO and 2.3 COs for dCO (Jordan et al. 2018). Taken together, these results 529 

indicate that the increase in marker density after imputation using the wheat PHG helped to 530 

identify new loci with a broader range of effect sizes that together explain a higher proportion of 531 

genetic variance compared to the previous study (Jordan et al. 2018).  532 

Discussion: 533 

We constructed a wheat PHG database using wheat lines from the major U.S. breeding 534 

programs and demonstrated that PHG combined with inexpensive low-coverage genome 535 

sequencing could be used to impute genotypes with high accuracy, sufficient to identify variants 536 

with smaller effects and support high-resolution mapping studies. Our analyses suggest that the 537 

wheat PHG has the potential to effectively utilize community-generated whole-exome capture 538 

datasets, currently including thousands of diverse wheat accessions from different geographic 539 
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regions (Molero et al. 2018; He et al. 2019; Pont et al. 2019; Scott et al. 2021), to create a global 540 

resource for imputing genotypes. The imputation accuracy provided by the PHG in populations 541 

genotyped using skim-seq, GBS, as well as low-coverage exome sequencing approaches varied, 542 

but overall were comparable, indicating that the marker density in the large populations of wheat 543 

lines previously genotyped using these methods could be substantially increased by imputation 544 

with this newly developed wheat PHG tool. In addition to improved imputation accuracy, 545 

another attractive feature of the wheat PHG for imputation is its ability to directly use sequence 546 

data in the fastq format, which signifcatly simplifies and reduces time required for data 547 

processing.    548 

The accuracy of PHG imputation compared favorably with the commonly used 549 

imputation tool Beagle v.5.0 (Browning and Browning 2013), which imputed genotypes with 550 

3.3% and 3.6% lower accuracy at 0.01x and 0.1x genome coverage levels, respectively. The 551 

wheat PHG showed a substantial improvement in accuracy (10-15%) compared to Beagle for the 552 

cultivar Jagger that carries introgression from a wild relative that was represented in only one 553 

accession in the PHG database, indicating that PHG is more effective at utilizing the rare 554 

haplotypes in the reference panel than Beagle.  In previous studies, imputation of exome capture 555 

data with Beagle in populations genotyped using the 90K SNP array and GBS was 93-97% 556 

(Jordan et al. 2015) and 98% (Nyine et al. 2019), respectively. These estimates of accuracy are 557 

slightly higher than those obtained in our current study, but overall are comparable, and likely 558 

associated with filtering applied to reduce the proportion of missing data in the imputed datasets 559 

(Nyine et al. 2019), and with the inclusion of more common variants from the array-based 560 

genotyping methods.   561 
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Compared to the imputation accuracy of sorghum (94.1%) and maize (92-95%) PHGs 562 

(Jensen et al. 2020; Valdes Franco et al. 2020), our estimates of accuracy were slightly lower 563 

and are likely caused by genotyping errors associated with the misalignment of short reads to the 564 

more complex, highly repetitive, allopolyploid wheat genome. The higher imputation accuracy in 565 

the low-coverage DS75 datasets from the whole exome capture compared to the accuracy of 566 

whole genome skim-seq datasets, which are mostly composed of reads from the repetitive 567 

regions of the wheat genome, supports this explanation.  568 

Our results show a reduction in the accuracy of imputation in the regions preferentially 569 

located outside of the reference ranges, for example in the regions around the PstI sites 570 

sequenced by GBS. We show that imputation accuracy within the reference ranges with lower 571 

depth of coverage, for example in the DS75 dataset providing at 0.01x coverage of the exome 572 

capture regions, is higher (92%) compared to PstI sites with higher sequence coverage, ~1x in 573 

the GBS datase (89%), even for accessions that are included into the PHG database. One 574 

possible approach to improve imputation accuracy for GBS datasets could be to create reference 575 

ranges around the GBS-associated PstI sites. However, this may also increase the proportion of 576 

ranges located within the repetitive portion of the wheat genome and increase the chance of read 577 

misalignment, reducing imputation accuracy. 578 

The imputation accuracy among different allele frequency classes improves with an 579 

increase in the allele frequency and is higher for a reference allele than for an alternative allele. 580 

Consistent with these expectations, the accuracy of imputation in the GBS dataset improved from 581 

87.1% for SNPs with MAF < 0.1 to 91.3% for SNPs with MAF > 0.4, and in the skim-seq 582 

dataset from 80.2% for SNPs with MAF < 0.1 to 89.0% for SNPs with MAF >0.4. Previous 583 

studies showed that an increase in the reference population size also increases the probability of 584 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkab390/6423995 by Serials R

ecords Section user on 10 N
ovem

ber 2021



 26 

capturing rare alleles and substantially improves the imputation accuracy of rare variants (Shi et 585 

al. 2017; Das et al. 2018). Our results suggest that the wheat PHG appears to be more effective 586 

at utilizing rare haplotypes included into the reference panel for genotype imputation than the 587 

commonly used low-coverage imputation method from Beagle. This was demonstarated by 588 

imputing genotypes on chromosome 2A, which carries an introgression from Ae. ventricosa in 589 

cultivar Jagger (Cruz et al. 2016). The inclusion of genotyping data from the cultivar Overley, 590 

which also carries this Ae. ventricosa introgression, into the PHG database was sufficient for 591 

accurate imputation in Jagger. In spite of including genotyping data from cultivar Overley into 592 

the reference panel, Beagle imputation of chromosome 2A genotypes in Jagger was lower 593 

compared to PHG. Further efforts aimed at broadening the diversity of accessions in the wheat 594 

PHG, including wheat lines carrying known introgressions from wild reatives, will be needed to 595 

improve the utility PHG tool for genotype imputation in wheat germplasm. 596 

The application of imputed genotypes to the genetic analyses of trait variation in the 597 

wheat NAM population showed that an increase in marker density increases the number of loci 598 

associated with trait variation and detects alleles that have smaller effects on phenotypes (e.g., 599 

recombination rate) than those previously detected using lower density marker sets. The increase 600 

in the number of significant loci also resulted in a higher proportion of genetic variance (80-601 

91%) in recombination rate and heading date being explained, suggesting that the imputed 602 

genotypes are better at capturing the genetic architecture of these traits, and have the potential to 603 

identify more adaptive and beneficial genetic targets in breeding programs. 604 

 605 

Data availability 606 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkab390/6423995 by Serials R

ecords Section user on 10 N
ovem

ber 2021



 27 

The raw sequence data for previously published accessions can be accessed from the NCBI 607 

Short-Read Archive database (BioProject SUB2540330 and PRJNA381058). Newly generated 608 

exome capture data can be accessed from NCBI Short-Read Archive database (BioProject 609 

PRJNA732645). Genotypic datasets used in this study are available from the website: 610 

http://wheatgenomics.plantpath.ksu.edu/phg/  Phenotypic datasets for NAM family 1 associated 611 

with the paper can be downloaded from the wheat NAM project website: 612 

http://wheatgenomics.plantpath.ksu.edu/nam/. Supplemental Material available at figshare: 613 

https://doi.org/10.25387/g3.14770974.  614 
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 744 

 745 

Table 1. Estimates of genetic diversity (π), minor allele frequency (MAF), Tajima’s D and 746 

linkage disequilibrium in the WC65 population used for constructing the Wheat PHG. 747 

Diversity statistic A genome B genome D genome 

No. SNPs 430,050 504,260 523,011 

MAF 0.116 0.122 0.050 

π (per bp) 0.175 0.182 0.076 

Tajima’s D -0.673 -0.552 -2.192 

LD* (r2  0.33) 12.2 Mb 9.8 Mb 20.0 Mb 

*distance at which LD drops to half of its initial value (r2  0.33). 748 

Table 2. Comparison of imputation accuracy between PHG and Beagle using exome 749 

capture data. 750 

DS75  

Accession  

PHG 

0.5x 

PHG 

0.1x 

PHG 

0.01x 

Beagle 

0.1x 

Beagle 

0.01x 

Arthur 95.4% 93.8% 88.5% 90.4% 86.4% 

Alice 96.7% 95.8% 91.5% 92.3% 88.9% 

Antero 97.1% 96.4% 91.9% 93.6% 89.5% 

Bess 96.0% 94.5% 89.2% 91.1% 86.6% 

Branson 96.0% 94.4% 87.7% 91.3% 87.5% 

Bolles 96.8% 95.4% 90.1% 88.6% 93.3% 

BrawlCLPlus 96.3% 94.9% 91.3% 92.5% 88.6% 

Byrd 96.8% 96.0% 92.7% 93.4% 88.9% 

Camelot 98.0% 98.2% 97.5% 92.4% 88.0% 
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Danby 96.6% 95.8% 92.2% 93.4% 88.5% 

Decade 96.3% 95.3% 91.1% 92.5% 88.7% 

Denali 96.4% 95.5% 92.0% 92.2% 88.2% 

DoubleCLPlus 96.9% 95.8% 90.6% 93.1% 89.0% 

Duster* 97.7% 97.7% 97.1% 89.3% 93.0% 

Expedition 97.0% 96.1% 92.7% 93.5% 89.0% 

Forefront 96.3% 95.0% 89.6% 88.0% 91.7% 

Freeman 96.4% 95.6% 91.4% 92.8% 87.5% 

Glacier 96.4% 94.6% 88.2% 91.7% 87.4% 

Gallagher 96.4% 95.2% 89.9% 91.3% 86.7% 

Goodstreak 97.2% 96.0% 91.1% 93.7% 88.9% 

Hilliard 95.9% 94.3% 89.0% 91.2% 86.9% 

Hunter 95.2% 93.9% 87.8% 89.7% 85.7% 

Hatcher 96.0% 95.4% 90.3% 92.4% 88.2% 

Ideal 96.1% 95.7% 91.2% 91.6% 87.7% 

Jamestown 96.1% 93.2% 89.7% 91.2% 86.0% 

Jagger 95.9% 94.4% 90.6% 84.2% 75.6% 

Jagalene 97.6% 98.0% 98.1% 93.0% 87.8% 

Jerry 96.8% 95.8% 91.5% 93.3% 88.8% 

KS061193K-2 97.5% 97.8% 97.9% 93.6% 88.5% 

KS090387K-20 97.6% 97.9% 96.2% 92.1% 87.3% 

KS13H-9 96.9% 96.0% 90.7% 93.1% 88.7% 

KS14H-180-4 97.0% 96.2% 91.1% 93.0% 88.8% 

KanMark 98.1% 98.2% 97.1% 93.3% 89.5% 

Kharkof 96.2% 94.5% 90.4% 92.6% 88.6% 

LCSChrome 96.3% 95.5% 90.1% 91.9% 86.9% 

Linkert 97.0% 96.0% 91.5% 90.1% 93.8% 

Lonerider 97.6% 95.9% 91.0% 92.6% 87.7% 

Mace 96.7% 95.6% 90.2% 93.1% 88.7% 

Mattern 96.6% 95.4% 91.9% 92.5% 87.9% 

McGill 96.7% 95.6% 90.9% 93.0% 89.0% 

Millenium 96.8% 95.8% 91.6% 92.8% 88.7% 

Mott 96.4% 95.4% 90.4% 93.2% 89.6% 

NE10589 96.8% 96.4% 91.9% 93.1% 88.1% 

NUPlains* 97.9% 98.0% 96.7% 93.7% 89.7% 

NW13493 96.6% 95.6% 90.7% 92.6% 87.4% 

OK11D25056 96.8% 95.4% 91.2% 92.9% 88.9% 

OK12716Red 96.5% 95.5% 90.9% 92.5% 87.4% 

OK13209 96.9% 95.7% 91.0% 93.0% 88.7% 

OK13621 96.9% 95.9% 91.5% 92.2% 87.3% 

OK11709W-139122 96.7% 95.8% 91.9% 92.8% 89.2% 

Oahe 96.4% 95.4% 91.1% 92.6% 88.9% 

Overley* 97.2% 97.3% 97.2% 89.4% 92.9% 
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Pembroke 95.1% 93.3% 87.7% 89.4% 85.3% 

Panhandle 96.2% 95.1% 90.4% 92.2% 87.4% 

Prevail 96.5% 95.4% 89.8% 91.8% 89.7% 

Redfield 96.5% 95.6% 90.8% 92.9% 88.5% 

Robidoux 96.9% 95.9% 91.5% 93.2% 89.6% 

SD08080 96.7% 95.7% 90.7% 92.7% 88.5% 

Scout66 96.9% 95.9% 92.4% 93.7% 89.6% 

Snowmass 96.6% 95.7% 91.0% 93.0% 88.3% 

TAM114 96.7% 95.8% 92.0% 92.8% 89.3% 

TAM203 96.1% 95.2% 91.1% 91.5% 86.9% 

TAM204 95.8% 94.9% 90.9% 92.1% 87.7% 

TAM303 96.0% 94.9% 91.6% 90.9% 87.1% 

TAM304 96.7% 95.2% 90.1% 92.3% 88.6% 

TAM305 96.4% 95.6% 90.9% 91.9% 87.1% 

Traverse 96.7% 95.1% 90.3% 90.5% 86.6% 

Tribute 95.6% 94.1% 87.0% 89.6% 85.0% 

TX11A001295 96.9% 96.2% 93.8% 92.4% 87.4% 

TX12M4068 96.5% 95.2% 91.6% 92.0% 87.4% 

WB-Redhawk 97.7% 97.6% 98.1% 93.0% 88.6% 

Wesley 97.0% 95.9% 91.9% 93.9% 89.9% 

Yellowstone 95.8% 94.7% 91.1% 94.7% 93.2% 

Zenda* 97.7% 97.7% 97.5% 93.1% 88.4% 

Average 96.6% 95.7% 91.7% 92.1% 88.3% 

* represents cultivars used in PHG database construction 751 

Table 3. The accuracy of  DS75 imputation in different wheat genomes 752 

Wheat genome PHG (0.1x) Beagle (0.1x) PHG (0.01x) Beagle (0.01x) 

Total 95.7% 92.1% 91.7% 88.3% 

A 95.1% 91.2% 90.3% 85.4% 

B 94.9% 90.4% 89.9% 85.5% 

D 97.4% 96.6% 95.3% 94.6% 

*Accuracies by approach are comprised of matching germplasm, EC: n=75, Beagle: n=75 753 

Table 4. Comparison of Imputation Using Complexity Reduced Sequencing Technologies 754 

Dataset GBS70 NAMgbs NAMskim 

Coverage 1x 2.5x 1x 1x 0.1x 

Avg. Reads/Sample 1.85 million 5 million 1.85 million 1.85 million 6.1 million* 

Database Status Independent Independent Semi-dep. Dependent Semi-dep. 

Imputation Accuracy  86.9% 88.6% 89.2% 90.1% 85.3% 

* paired-end sequencing 755 
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Table 5. Relationship between minor allele frequency and the accuracy of imputation for 756 

reduced complexity semi-dependent datasets. 757 

 
Minor Allele Frequency (MAF)  

 
0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 > 0.1** 

No. Sites* 1,029,330 156,251 97,013 73,001 66,296 392,561 

NAMgbs 

Accuracy 0.8707 0.9226 0.9168 0.9078 0.9126 0.9134 

NAMskim 

Accuracy 0.8015 0.8560 0.8782 0.8789 0.8900 0.8760 

Matched *** 

NAMgbs Acc. 0.8763 0.9172 0.9102 0.8994 0.8992 0.9084 

* The sites within each MAF frequency bin were determined by frequency in the PHG database 758 

** Summary of all groups where MAF > 0.1 759 

*** Data from NAMgbs for the same 24 lines sequenced for NAMskim  760 

 761 

Figure Legends: 762 

Figure 1. Genetic diversity of WC65 accessions of wheat and its diploid and tetraploid 763 

relatives used for developing the Wheat PHG. a. Neighbor-joining tree of WC65 accessions 764 

used for constructing the Wheat PHG. b. The rate of LD decay in the A, B and D genomes of 765 

wheat. c. The length of pair-wise IBD between the parental lines from different breeding 766 

programs used in WheatCAP. 767 

Figure 2. The accuracy of imputation using the wheat PHG. a. The impact of sequence 768 

coverage and the method of imputation on accuracy for DS75 b. Accuracy of imputation using 769 

GBS sequencing at different coverage levels and different database haplotype representation. c. 770 

Accuracy of imputation for alleles with different minor allele frequency for matched samples 771 

using GBS and skim-sequencing, n=24.  772 
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Figure 3. Relationship between the true and predicted phenotypes. Significant markers were 773 

identified by stepwise regression on heading date, total numer of crossovers per line (TCO), and 774 

total number of distal crossovers per line (dCO) phenotypes.  775 
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