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ABSTRACT 

We present an automatic segmentation method for delineation and quantitative thickness measurement of multiple layers 
in endoscopic airway optical coherence tomography (OCT) images. The boundaries of the mucosa and the sub-mucosa 
layers were extracted using a graph-theory-based dynamic programming algorithm. The algorithm was tested with pig 
airway OCT images acquired with a custom built long range endoscopic OCT system. The performance of the algorithm 
was demonstrated by cross-validation between auto and manual segmentation experiments. Quantitative thicknesses 
changes in the mucosal layers are obtained automatically for smoke inhalation injury experiments.  
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1. INTRODUCTION
Imaging the sub-surface structure of the airway wall is of great significance to detect abnormalities during airway 
injuries. Smoke exposure and inhalation risks, including thermal, toxic, and chemical injuries, result in airway 
hyperemia, edema, sloughing and necrosis [1, 2].  Pathophysiological information of the injured airway wall, such as the 
thickness of the mucosal, the gathering of mucosal layer, and the deformation of the airway lumen, could provide better 
diagnosis of respiratory decreases [3-5]. As a nonionizing, non-invasive medical imaging modality, optical coherence 
tomography (OCT) has been used to perform high resolution, cross-sectional imaging of biological tissues. Previous 
studies [6-11] such as the Fourier domain long-range swept source OCT (LR-SSOCT) have demonstrated the flexibility 
to image the airways of different animals in vivo. Figure 1 shows the OCT images of one cross-section in a sheep airway 
acquired by our recently reported improved LR-SSOCT system [10, 11]. As shown in Fig. 1 (d), the enlarged detail 
clearly depicts multiple structures of the airway wall, which include the cartilage, the mucosa, the submucosa, and the 
mucus. 

The identification of different structures in the OCT images is of great importance for quantitative evaluation of airway 
injury. However, although we have already obtained high resolution airway wall OCT images, the classification of the 
airway wall structures are mainly based on manual labeling of the boundaries [13], which is time-consuming and 
subjected to inter-observer errors. A clustering algorithm is used to segment the airway structure from the background 
[14], but the airway layers are not detected. A morphological and thresholding method is used to identify these layers 
[15]; however, the method is not robust enough to handle speckle noise and missing features in quality degraded images. 
No other method has been reported on the auto-segmentation of airway wall structures on OCT images other than this 
method 

In order to robustly segment different airway wall structures and provide quantitative information of these structures 
automatically, we present a graph-theory-based segmentation algorithm using Cartesian airway OCT images as input. 
The quantification of the average layer thicknesses can be obtained after the precise localization of different layer 
boundaries. This algorithm was tested with pig airway images acquired by our LR-SSOCT system [11]. The results show 
that our algorithm can achieve accurate, robust, and fully automatic delineation of multiple structures in airway OCT 
images. 
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Figure 1. Sample image acquired by the long range SS-OCT system: (a) circumferential image, (b) Cartesian image, and (c) 
enlarged airway regions in (b). 

2. METHOD
As shown in Fig. 2, the proposed algorithm works in three steps: 1) the pre-processing step, which localizes the potential 
airway wall regions by using a number of denoising and morphological operations；2) the edge delineation step, which 
detects the exact locations of the airway lumen, the mucosa/submucosa boundary, and the submucosa/cartilage boundary 
using the dynamic programming algorithm; and 3) layer thicknesses measurement step, where the average thickness of 
two mucosal layers are calculated.  

Figure 2. The workflow of the proposed automatic detection algorithm. 

The OCT images are generally distorted by multiple defects, such as the speckle noise, the mirror image/objects induced 
by the Fourier transformation, and the ghost objects produced by internal interference of the optics. To filter out these 
obstructions, the pre-processing step performs the following operations. After median filtering, the image is transformed 
to a black and white image by a pre-defined intensity threshold. Then the connected BW regions that could be 
potentially considered as the airway structure are picked out given two criteria: minimum area and maximum number of 
regions. In this way, the major component in the image (the airway structure) could be identified from the background. 

In the second step, we used the dynamic programming (DP) algorithm [16] to localize the precise edge position. The 
major feature of the DP algorithm, when applied to edge detection, is that it can preserve the continuity of the boundary, 
which means that it is less affected by outliers. Using this algorithm, each pixel in the image is considered a node in a 
graph and thus the edge detection process is transformed to a shortest-path finding problem. For each edge, a single 
graph is first constructed from the gradient of the original OCT image after flattening using a previously delineated 
airway region; then the solution of the graph is found recursively by finding the optimal path that has a minimum total 
cost. The final edge is refined by averaging neighboring edge pixels. Figure 3 shows the intermediate and the final 
results of the proposed algorithm on a sample image. Finally, after the delineation of the whole airway structure, only the 
regions that are penetrated by the OCT beam with an orthogonal direction are selected to quantify the airway layer 
thickness.  
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Figure 3. (a) The original OCT image; (b) the segmented airway structure after pre-processing; (c), (d) and (e) the graph 
constructed from the gradient images of the airway lumen, the mucosa and the submucosa layers, respectively; the color 
lines depict the localized shortest path; (f) the final edge detection result. 

3. RESULTS
3.1 OCT system setup and animal preparation 

To verify the flexibility of our algorithm, the images acquired by the LR-SSOCT system reported by our group 
previously [10, 11] were used as the test set. The LR-SSOCT system utilizes a customized imaging probe that rotates at 
1500 rpm with a pullback speed of 12.5mm/s. In order to achieve long range imaging, the probe is designed to have an 
extended working distance of 20 mm, and the axial resolution is 10 μm in tissue. Imaging of airways with a maximum 
diameter of 50 mm and 20 cm length can be achieved with this system. 

Specifically, OCT image data sets of a pig airway acquired by this LR-SSOCT system were used. These images were 
taken on a convenience sample from an ongoing study which involves a clinically relevant model of lung failure due to 
inhalation of wood bark smoke and cutaneous burn. Uninjured baseline airway OCT images were acquired after 
induction of anesthesia to the animals. Additionally, for monitoring the conditions and progression of smoke inhalation 
injury, OCT images were acquired after smoke inhalation injury was induced [17]. 

3.2 Auto-manual segmentation comparison 

To verify the flexibility of our algorithm, cross validation between auto- and manual-segmentation was performed on the 
OCT airway images acquired in pig upper airway with a maximum diameter of 30mm. Specifically, the manual 
segmentation was done by clicking 30-50 points on an edge and then spline-fitting these points to determine the actual 
edge. The spline-fitting curve could be modified by adding or removing specific control points until the annotator was 
satisfied with the result. In a total of 50 frames (image size: 2000×2000 pixels) of the healthy pig airway OCT images 
picked randomly from a dataset of 200 images were manually annotated. Among the results, all three edges of interest 
were detected. Figure 4 illustrates the edge detection results in different frames in baseline data sets of the pig samples. 
As can be seen, even when some of the airway wall was not in the OCT imaging zone with the highest sensitivity, the 
airway wall was detected accurately. Also, the algorithm could effectively deal with the bifurcation of the airway; the 
layers in the disconnected areas were extracted successfully. 
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Figure 4. Illustration of the edge detection results in different OCT airway images taken from the pig data set. From top 
down: the original images, the Cartesian coordinate images with edge detected, the circumferential images. 

To quantify the measurement accuracy of the proposed segmentation algorithm against manual segmentation, two 
validation metrics are used: the root mean square error (RMSE) and the mean absolute deviation (MAD), which are 
given by: 
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where A is the auto-segmentation result, M is the manual-segmentation result, and n is the total number of pixels. We 
compared the auto-manual segmentation accuracy in the airway regions with clear layer structures, and the results are 
listed in Table.1. Compared to the penetration depth of the LR-SSOCT system, which is about 2mm, the deviation of the 
auto and manual segmentation results is less than 1% of the total tissue depth. The localization of the airway lumen and 
the mucosa/submucosa edge are more accurate than that of the submucosa/cartilage edge; this is believed to be caused 
by the signal degradation in deeper tissue.   
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Table 1. Comparison of manual and automatic segmentation results. 

Item 
RMSE MAD

Pixels Microns Pixels Microns 

Airway wall lumen 0.8789 10.5462 0.7781 10.8117 

Mucosa/submucosa edge 1.9323 23.1876 1.1823 14.1876 

Submucosa/cartilage edge 2.1231 25.4770 1.5482 18.5777 

3.3 Airway thickness changes during smoke inhalation measured by the proposed algorithm 

The diagnosis of inhalation injury is a primary, unresolved problem in modern burn care. Using the purposed 
segmentation algorithm, comparable quantitative measurements of the airway layers postinjury could be obtained 
automatically. For the pig data set, the OCT images acquired at baseline and 1-hr post smoke injury were analyzed using 
our algorithm. For each time point, 10 images were used for layer thickness measurement. These images were all 
acquired at the same landmark, which was the right mainstem bronchus near the proximal secondary bronchus branch. 
As stated previously, only the orthogonally laser penetrating areas of the airway were selected for thickness 
measurement.  

The detection results for the pig airway images in the same location at baseline and post-smoke are shown in Fig. 8. The 
magnified regions display the automatically selected regions for thickness quantification. The circumferential images 
(transformed from the Cartesian images below) in the right column of Fig. 5 provide better views of the airway 
substructures and the segmentation results. 

Figure 5. Thickness measurement comparison between baseline and post-smoke images of the pig data set. From left to 
right: original images, edge extracted images (thickness measured regions enlarged), and circumferential images.  
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To verify the thickness measured by the automatic algorithm, manual results were obtained on all the images with the 
same protocol described in Section 3.2. Here, we use three quality metrics for comparison, including Average Thickness 
(AVGT), Root-Mean-Square Thickness Difference (RMSTD), and Dice’s similarity Coefficient (DSC): 
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where A and M are the auto and manual segmentation edges at pixel i, with superscript t and b indicating the top and 
bottom edges, respectively; X and Y are the auto and manual segmented layer regions; and n is the total pixel number.  

Table 2 lists the comparison results for the pig data set. Even though the thickness of both the mucosa and submucosa 
layer increased post smoke, the RMSTD between auto-manual segmentation remained at a relatively low value. The 
segmentation accuracy for the submucosa layer suffered from a small decrease at the post-smoke time point, and the 
DSC for the auto-selected region dropped 9.6% compared to the baseline value. 

Table 2. Average thickness measurement results for the pig data set* 

auto AVGT manual AVGT mean RMSTD mean 
DSC pixels mm pixels mm pixels mm 

Baseline 
Layer 1 31.63 0.380 30.55 0.367 2.89 0.035 0.950 

Layer 2 49.44 0.593 48.26 0.579 4.30 0.052 0.953 

Post-
smoke 

Layer 1 40.22 0.483 41.04 0.492 3.68 0.044 0.922 

Layer 2 62.85 0.754 65.20 0.782 8.28 0.099 0.871 

*Layer 1: mucosa layer; Layer 2: submucosa layer

4. CONCLUSION
In summary, a fully automatic airway wall structure segmentation method for endoscopic optical coherence tomography 
images is presented in this paper. The boundaries of the mucosa and the sub-mucosa layers were accurately extracted 
using a graph-theory-based dynamic programming algorithm. The algorithm was tested with pig airway OCT images. 
Quantitative thicknesses of the mucosal layers were obtained automatically for the smoke inhalation injury experiments. 
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