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RESEARCH

Increased secretion of adipocyte-derived 
extracellular vesicles is associated with adipose 
tissue inflammation and the mobilization 
of excess lipid in human obesity
Johanna Matilainen1*  , Viivi Berg1,20, Maija Vaittinen2, Ulla Impola3, Anne‑Mari Mustonen1,4, Ville Männistö5,6, 
Marjo Malinen4,7, Veera Luukkonen1, Natalia Rosso8  , Tanja Turunen1, Pirjo Käkelä5,9, Silvia Palmisano10,11, 
Uma Thanigai Arasu12, Sanna P. Sihvo13,14, Niina Aaltonen1, Kai Härkönen1, Andrea Caddeo15, 
Dorota Kaminska2,16  , Päivi Pajukanta17,18, Minna U. Kaikkonen12, Claudio Tiribelli8  , Reijo Käkelä13,14, 
Saara Laitinen3, Jussi Pihlajamäki2,19  , Petteri Nieminen1 and Kirsi Rilla1 

Abstract 

Background Obesity is a worldwide epidemic characterized by adipose tissue (AT) inflammation. AT is also a source 
of extracellular vesicles (EVs) that have recently been implicated in disorders related to metabolic syndrome. However, 
our understanding of mechanistic aspect of obesity’s impact on EV secretion from human AT remains limited.

Methods We investigated EVs from human Simpson Golabi Behmel Syndrome (SGBS) adipocytes, and from AT 
as well as plasma of subjects undergoing bariatric surgery. SGBS cells were treated with TNFα, palmitic acid, and eico‑
sapentaenoic acid. Various analyses, including nanoparticle tracking analysis, electron microscopy, high‑resolution 
confocal microscopy, and gas chromatography–mass spectrometry, were utilized to study EVs. Plasma EVs were 
analyzed with imaging flow cytometry.

Results EVs from mature SGBS cells differed significantly in size and quantity compared to preadipocytes, disagreeing 
with previous findings in mouse adipocytes and indicating that adipogenesis promotes EV secretion in human adipo‑
cytes. Inflammatory stimuli also induced EV secretion, and altered EV fatty acid (FA) profiles more than those of cells, 
suggesting the role of EVs as rapid responders to metabolic shifts. Visceral AT (VAT) exhibited higher EV secretion 
compared to subcutaneous AT (SAT), with VAT EV counts positively correlating with plasma triacylglycerol (TAG) levels. 
Notably, the plasma EVs of subjects with obesity contained a higher number of adiponectin‑positive EVs than those 
of lean subjects, further demonstrating higher AT EV secretion in obesity. Moreover, plasma EV counts of people 
with obesity positively correlated with body mass index and TNF expression in SAT, connecting increased EV secre‑
tion with AT expansion and inflammation. Finally, EVs from SGBS adipocytes and AT contained TAGs, and EV secretion 
increased despite signs of less active lipolytic pathways, indicating that AT EVs could be involved in the mobilization 
of excess lipids into circulation.
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Background
Globally, obesity affects 13% of the total world adult 
population [1], with developed countries like the USA 
showing a 36% adult obesity rate [2]. This condition 
triggers chronic low-grade inflammation, macrophage 
accumulation, and dysregulated production of inflam-
matory cytokines in adipose tissue (AT) [3], leading to 
local and systemic insulin resistance (IR) and associated 
pathologies. AT, beyond storing energy as triacylglycerol 
(TAG)-filled lipid droplets, secretes various cytokines, 
hormones, and adipokines regulating whole-body energy 
metabolism. Recently, AT has been demonstrated to 
secrete extracellular vesicles (EVs) in high quantities [4]. 
These EVs, originating from plasma membrane or endo-
somal compartments of cells, serve as essential mediators 
between cells and tissues, carrying and transferring all 
types of biomolecules from their parental cells, including 
lipids, proteins, nucleic acids, and sugars [5].

Previous studies have shown elevated levels of cir-
culating EVs in obesity and obesity-related conditions, 
including IR, diabetes, and non-alcoholic fatty liver dis-
ease [6–9]. There is evidence that the majority of circu-
lating EVs may originate from AT [10]. More detailed 
in  vitro investigations have often utilized murine mod-
els, particularly mouse 3T3-L1 adipocytes. Several obe-
sity-associated events, including tumor necrosis factor 
α (TNFα)-induced inflammation, hypoxia, and palmitic 
acid (PA, 16:0) exposure, promote EV secretion from 
these cells [11–13]. Indeed, the number of secreted EVs 
from subcutaneous AT (SAT) and visceral AT (VAT) 
increased in obese compared to lean mice [4]. Despite 
these findings, detailed, mechanistic studies on the effects 
of obesity on EV secretion from the AT of human origin 
remain scarce. Patient omental and SAT EV counts from 
ex vivo cultures have been shown to correlate positively 
with homeostatic model assessment for IR (HOMA-IR) 
[14] and body mass index (BMI) [4], respectively. An ele-
gant study by Camino et  al. [15] suggested that in obe-
sity and type 2 diabetes (T2D) the amounts of AT EVs 
increase in human circulation. The idea was based on the 
high quantity of transforming growth factor β 1 (TGFB1) 
and mimecan in AT EVs of subjects with obesity, as well 
as elevated levels of TGFB1- and mimecan-containing 
EVs in the plasma of subjects with obesity and diabetes. 
Intriguingly, AT EVs might contribute to TAG release, 

as supported by the presence of TAGs in mouse AT EVs, 
and their doubled amount in AT EVs from obese mice 
compared to those from lean mice [16, 17]. These suggest 
that EV secretion may be another important mechanism 
for AT to mobilize TAGs into circulation.

Previous studies have largely concentrated on the pro-
teomic and miRNA analysis of rodent adipocyte or AT 
EVs [10, 11, 18]. A few recent reports examined SAT 
and VAT EV proteomic profiles, revealing greater IR- 
and inflammation-related proteins in VAT EVs [15, 19]. 
Regarding lipid profiles, murine 3T3-L1 cell-derived 
small and large EVs’ lipid classes have been quantified 
[11]. Other studies have found distinct fatty acid (FA) 
profiles in pre- and mature 3T3-L1 cell EVs [20], and 
the presence of arachidonic acid (ARA, 20:4n-6), eicosa-
pentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid 
(DHA, 22:6n-3), and several inflammation-related lipid 
mediators in mature 3T3-L1 EVs under PA exposure [21]. 
Moreover, a recent report elucidates the FA profiles of 
VAT EVs from two mouse obesity models, demonstrating 
differing lipid class proportions and higher amount of the 
lipid species containing ARA and stearic acid (SA, 18:0) 
[22]. However, to the best of our knowledge, detailed FA 
profiles of EVs from human AT or adipocytes have not 
been documented previously.

In the present study, we aimed to investigate EV secre-
tion from adipocytes and AT in human obesity by utiliz-
ing Simpson Golabi Behmel Syndrome (SGBS) adipocyte 
cell strain and patient AT ex  vivo cultures, respectively. 
Particularly, great effort was put into detailed EV valida-
tions to provide reliable data for the research field, which 
is in its early stages. FA profiles of EVs from patient VAT 
and SAT, as well as from SGBS cells after exposure to 
TNFα, PA, and EPA, were investigated thoroughly. AT 
EV secretion into circulation was studied by analyzing 
plasma EVs from normal-weight controls and subjects 
with obesity by imaging flow cytometry. Furthermore, 
we utilized high-resolution confocal microscopy to 
investigate the possible presence of TAGs in EVs from 
AT and adipocytes. Based on previous reports on mice, 
we hypothesized that inflammatory components would 
trigger EV secretion from human adipocytes, and that 
enhanced AT EV secretion could also be realized in cir-
culation. Additionally, we aimed to obtain further sup-
port for the role of AT EVs as TAG carriers.

Conclusions We are the first to provide detailed FA profiles of human AT EVs. We report that AT EV secretion increases 
in human obesity, implicating their role in TAG transport and association with adverse metabolic parameters, thereby 
emphasizing their role in metabolic disorders. These findings promote our understanding of the roles that EVs play 
in human AT biology and metabolic disorders.

Keywords Adipocyte, Adipose tissue, Extracellular vesicles, Fatty acids, Inflammation, Obesity
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Methods
Patient samples from bariatric surgeries for AT and blood 
collection
A total of 10 subjects with obesity (1 male and 9 females) 
undergoing Roux-en-Y gastric bypass operation were 
included for obtaining AT samples (Table  1). Of these, 
8 individuals were participating in the ongoing Kuopio 
Obesity Surgery Study (KOBS) [23], and 2 in the study 
ongoing at the Italian Liver Foundation (Fondazione 
Italiana Fegato) in collaboration with the Surgery Depart-
ment of the Secondary Care—Cattinara Hospital, Trieste, 
Italy. Anthropometric, clinical, and biochemical param-
eters were assessed at baseline, as previously described 
[24, 25]. Blood samples were drawn from another group 
of patients undergoing bariatric surgery at the Kuo-
pio University Hospital, Kuopio, Finland, after a 12-h 
o/n fasting, before surgery. The study protocol in Kuo-
pio was approved by the Ethics Committee of Northern 
Savo Hospital District (54/2005, 104/2008, 27/2010, and 
1108/2018), and the one in Trieste by the Local Ethical 
Committee (protocol N. 22979, Comitato Etico Region-
ale Unico, Friuli Venezia Giulia, Sistema Sanitario Nazio-
nale), and both were carried out in accordance with the 
Helsinki Declaration. Informed written consent was 
obtained from all participants.

AT collection, processing, and culturing
AT collection and ex vivo culture procedures were modi-
fied from [26]. After obtaining VAT (omental) and SAT 
(abdominal) biopsies by surgical resection, they were 
placed into a capped, sterile 50 ml Falcon tube contain-
ing either phosphate buffered saline (PBS) or AT ex vivo 
medium [(DMEM high glucose, either ECB7501L, 
EuroClone, Pero, Italy; or D6546, Sigma-Aldrich, St. 
Louis, MO, USA; containing 10% EV-depleted fetal 
bovine serum (FBS), 2  mM L-glutamine (ECB3000D, 

EuroClone), 100 IU/ml penicillin and 100 µg/ml strepto-
mycin (ECB3000D, EuroClone), 10 µg/ml human insulin 
(I9278, Sigma-Aldrich), 1  µM dexamethasone (D4902, 
Sigma-Aldrich), and 50  µg/ml gentamicin (G1397, 
Sigma-Aldrich)]. EV depletion from FBS was performed 
by 110,000 × g centrifugation for 16 h at + 4 °C, and ster-
ile-filtering with 0.22 µm syringe filters (Minisart, Sarto-
rius Stedim Biotech, Göttingen, Germany). AT samples 
were transported to cell culture laminar hood as soon as 
possible for AT processing. AT was placed onto a sterile 
Petri dish and minced using sterile scalpel and forceps 
into around 1–2   mm3 pieces. Next, AT was transferred 
onto a pre-weighed Petri dish and weighed. AT minces 
were then placed onto a 500 µm nylon mesh (43-50300-
01, pluriSelect Life Science, Leipzig, Germany) affixed on 
the top of a sterile 50 ml Falcon tube with forceps. Sterile 
PBS (RT) was added several times over the minced tis-
sue to remove broken cell debris, lipids, and blood. Tis-
sue pieces were carefully removed from the mesh with 
forceps, so that the waste would pass through the mesh. 
Visible blood clots were removed with forceps. AT was 
cultured on either 6-well plate, 10 or 15 cm dish accord-
ing to weight: around 100 mg was cultured on each well 
of 6-well plate (AT ex vivo medium volume 3 ml), 300–
500  mg on a 10  cm dish (medium volume 15  ml), and 
700 mg on a 15 cm dish (medium volume 22.5 ml).

Harvesting and purification of EVs from AT ex vivo medium
Conditioned media were collected from AT ex vivo cul-
tures daily until 3 days from culture initiation had passed. 
Each time, fresh AT ex vivo medium was carefully added 
for cultures. After the medium collection on day 3, 
renewed AT ex  vivo medium was incubated for 3 more 
days, after which the final (day 6) medium was collected. 
Media were carefully collected into 50  ml Falcon tubes 
on which a sterile 500 µm nylon mesh was placed. They 
were immediately centrifuged at 12,000 × g for 10  min 
at + 4 °C, to separate any large contaminants and to leave 
large oil droplets arising from broken adipocytes in a 
layer on top. The supernatant was carefully collected so 
that the upmost part, possibly containing lipid droplets 
from broken adipocytes, was discarded. Medium was 
filtered through a 5  µm syringe filter (Minisart 17594-
K, Sartorius Stedim Biotech) to remove cell debris, and 
then stored at − 80 °C until EV isolation by serial ultra-
centrifugation. For EV isolation, medium was centrifuged 
at 183,000 × g at + 4  °C for 90 min. Supernatant was dis-
carded and the pellet resuspended in sterile-filtered PBS 
(filtered with 0.22 µm syringe filter), after which an addi-
tional, similar ultracentrifugation as a washing step was 
performed. Finally, the remaining pellet was resuspended 
into sterile-filtered PBS and stored at −  80  °C until the 
further analysis.

Table 1 Clinical characteristics of the patients from whom 
fasting plasma and adipose tissue samples were obtained

Mean ± SEM

AT adipose tissue, HDL high-density lipoprotein, LDL low-density lipoprotein

AT (n = 10) Plasma (n = 10)

Gender (male/female) 1/9 5/5

Age (years) 47 ± 3.0 50 ± 3.0

Body mass index (kg/m2) 41.4 ± 1.70 39.8 ± 1.32

Triacylglycerols (mmol/l) 1.64 ± 0.42 1.49 ± 0.22

Total cholesterol (mmol/l) 5.4 ± 0.42 3.9 ± 0.31

HDL‑cholesterol (mmol/l) 1.1 ± 0.08 1.0 ± 0.09

LDL‑cholesterol (mmol/l) 3.6 ± 0.39 2.3 ± 0.28

Glucose (mmol/l) 6.4 ± 0.35 6.2 ± 0.34

Insulin (mU/l) 23.9 ± 9.03 11.5 ± 1.64
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Human SGBS cell culture and differentiation
Human SGBS preadipocytes [27] were cultured in 
Dulbecco’s Modified Eagle Medium/Nutrient Mixture 
F-12 (DMEM/F-12) (11330057, Thermo Fisher Sci-
entific, Vilnius, Lithuania) supplemented with 33  µM 
biotin (B4639, Sigma-Aldrich), 17  µM D-pantothenic 
acid hemicalcium salt (pantothenate) (P5155, Sigma-
Aldrich), 100  U/ml penicillin and 100  µg/ml strep-
tomycin (EuroClone), and 10% FBS (10270106, Life 
Technologies, Burlington, ON, Canada) until reaching 
confluence. Preadipocytes were induced to differentiate 
into mature adipocytes as previously described, with 
the exception that 3FC medium included 3% FBS [28].

Conditioned medium collection from SGBS adipocytes
For medium collection and EV isolation from preadi-
pocytes, cells that had reached confluence were washed 
with PBS, after which growth medium with 10% EV-
depleted FBS was added for 24  h. For medium collec-
tion from mature adipocytes, mature SGBS cells were 
washed with PBS, after which 3% EV-depleted FBS 3FC 
medium was added for 24 h.

Prior to experiments and medium collection for EV 
isolation, mature SGBS cells were washed with PBS, 
after which 3% EV-depleted FBS 3FC medium sup-
plemented with desired components was added. Cells 
were treated with either TNFα (300-01, PeproTech, 
Rocky Hill, NJ, USA), PA (P9767, Sigma-Aldrich), or 
EPA (90110, Cayman Chemical, Ann Arbor, MI, USA) 
for 24 h. When preparing treatment media for PA and 
EPA treatments, FAs were complexed with 10% FA-free 
bovine serum albumin (BSA) in PBS with the FA:BSA 
molar ratios of 4:1 and 2.7:1, respectively [29, 30]. The 
BSA concentration residing in FBS was taken into con-
sideration. Cells treated with the appropriate vehicle, 
without TNFα, PA, or EPA, were used as controls.

Isolation of EVs from SGBS adipocyte conditioned media
For EV isolation, conditioned media from SGBS adipo-
cytes were first filtered through a 5 µm syringe filter to 
remove cell debris, and then stored at − 80 °C until EV 
isolation by standard ultracentrifugation. Media were 
first centrifuged at 10,000 × g for 90 min at + 4  °C, and 
the remaining pellets of large EVs were resuspended in 
sterile-filtered (0.22 µm syringe filters) PBS. The super-
natant was further centrifuged at 183,000 × g at + 4  °C 
for 90 min in order to pellet the smallest EVs, and these 
fractions were then pooled with the fractions of large 
EVs. The final EV-preparations were stored at −  80  °C 
until the further analysis.

Real‑time quantitative PCR (RT‑qPCR)
After treatments, SGBS cells were lysed with TRI Rea-
gent® (Molecular Research Center, Cincinnati, OH, USA) 
for mRNA expression analyses. Total RNA extraction, 
cDNA synthesis, and RT-qPCR were performed as pre-
viously described [31]. Hypoxanthine phosphoribosyl-
transferase 1 was used as the reference gene. The primer 
sequences are shown in Table S1 (see Additional File 1). 
The data were expressed as fold changes compared to 
control.

SDS–polyacrylamide gel electrophoresis (PAGE) 
and Western Blotting (WB)
Proteins were extracted using RIPA lysis buffer (150 mM 
sodium chloride, 50  mM Tris, 1% Nonidet, 0.1% SDS 
(Sigma-Aldrich), and 0.5% sodium deoxycholate in PBS, 
pH 7.5) supplemented with 1  mmol/l sodium ortho-
vanadate, 0.1  mg/ml phenylmethylsulfonyl fluoride, and 
300 U/ml aprotinin, and resolved by SDS-PAGE, followed 
by transfer to Amersham Protran nitrocellulose mem-
brane (GE Healthcare, Chicago, IL, USA) with 350  mA 
current in Mini-PROTEAN® Tetra Blotting Module wet 
blotter (Bio-Rad Laboratories, Hercules, CA, USA) or 
with 2  mA/cm2 current in Fastblot B43 semidry blotter 
(Biometra, Göttingen, Germany). Membranes were incu-
bated with primary antibodies (Table S2, see Additional 
File 1) at + 4 °C for o/n and imaged with ChemiDoc MP 
Imaging System (Bio-Rad Laboratories). Protein intensi-
ties and relative protein expression levels were quantified 
with the Image Lab software (Bio-Rad Laboratories).

Glycerol assay
The glycerol concentrations were assessed from media 
obtained from TNFα-treated cells by free glycerol rea-
gent (F6428, Sigma-Aldrich) and glycerol standard 
(G7793, Sigma-Aldrich), according to the manufacturer’s 
protocol but modified for 96-well plate format. Briefly, 
5 µl of each standard and sample replicates were added 
into a 96-well plate, and 200  µl of Free glycerol reagent 
was further added.

Blood sampling and isolation of EVs from plasma samples
Blood samples from normal-weight subjects (n = 4 males 
and 2 females; Table S3, see Additional File 1) and bari-
atric surgery patients (n = 10, Table 1), after o/n fasting, 
were collected into EDTA tubes on ice. Within 30  min 
after collection, blood samples were centrifuged at 
1000 × g for 15 min at RT, and plasma was collected into 
2 ml Eppendorf tubes and stored at − 80 °C. For EV isola-
tion, samples were centrifuged at 2500 × g for 15 min at 
RT to pellet large impurities. Supernatants were trans-
ferred into new tubes and centrifuged at 5000 × g for 
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15  min at RT and subsequently placed into ultracentri-
fuge tubes on ice, and ice-cold, sterile-filtered PBS was 
added 1:1 (v/v). Samples were centrifuged at 100,000 × g 
for 2 h at + 4 °C (Optima L-90 K ultracentrifuge with 50.4 
Ti fixed angle-rotor, Beckman Coulter, Brea, CA, USA). 
The supernatants were discarded, and the remaining 
pellets resuspended in sterile-filtered PBS. Similar ultra-
centrifugation was performed as a washing step. The 
supernatants were again carefully discarded, after which 
the pellets were resuspended in sterile-filtered PBS or 
RIPA lysis buffer. Samples were then stored at − 80 °C.

Analysis of plasma EVs by flow cytometer
Plasma EV samples resuspended in sterile-filtered PBS 
were analyzed with 12 channel Amnis® ImageStream®X 
Mark II imaging flow cytometer (Luminex Corporation, 
Austin, TX, USA). Samples were labelled in 25  µl vol-
ume, with FITC-CD9 (312103, BioLegend, San Diego, 
CA, USA) and adiponectin antibodies (Anti-acrp30, 
SC-136131, Santa Cruz, Santa Cruz, CA, USA) in dark at 
RT for 60–90 min. The adiponectin antibody was labelled 
with Zenon AF647 fluorescent labelling kit (Z25008,  
Invitrogen, Life Technologies, Eugene, OR, USA) accord-
ing to manufacturer’s protocols. The instrument and 
INSPIRE software were set up as follows: excitation lasers 
488, 642, and 785 and channels 01 (Ch01, bright field, 
BF), Ch06 (scattering channel), plus fluorescence chan-
nels Ch02 and Ch011 were activated for signal detection. 
Amnis® High Gain Mode and 60 × magnification were 
used for enhanced small particle detection. Antibody 
staining was counted from both small EVs (particle diam-
eters up to 150–200 nm) and from all particles (including 
particles with diameters up to 400–500  nm) separately. 
Sample buffer (PBS) and antibody only controls (anti-adi-
ponectin and AF647, FITC-CD9) were used to determine 
background and auto fluorescent signals.

Transcriptomic analyses of SAT specimens
RNA extraction and sequencing analysis of SAT were 
performed for the same patients from which plasma sam-
ples were obtained to allow the comparison of EV data 
to TNF expression. These samples belonged to the KOBS 
study that has been described in detail previously [32]. 
In brief, RNA sequencing libraries underwent 69-nucle-
otide long paired-end sequencing. These reads were 
subsequently mapped to the human reference genome 
(GRCh38/hg38) with Gencode 29 annotations using 
STAR aligner [33] in 2-pass mode. Following alignment, 
gene-level counts were normalized using the trimmed 
mean of M values method, then converted to counts 
per million with edgeR [34], and log-transformed for 
analysis. To enhance the quality of subsequent analyses, 
expression data were adjusted to control for technical 

factors and potential confounders, specifically, the per-
centage of uniquely aligned reads and 3’ bias.

Lipoprotein isolation from serum samples
For obtaining reference material for assessing the purity 
of plasma EV samples, very-low-density lipoprotein 
(VLDL), low-density lipoprotein (LDL), and high-den-
sity lipoprotein (HDL) fractions were isolated at low 
salt concentrations in potassium bromide, as previously 
described [35]. Pure lipoprotein fractions were stored at 
– 80 °C.

Nanoparticle tracking analysis (NTA)
The size distribution and concentration of particles in 
the EV preparations were analyzed using the Nanopar-
ticle Tracking Analyzer (Malvern Panalytical, Malvern, 
UK) with a NS300 view unit, as previously described [36]. 
Data analysis was performed with the NTA 3.2 software 
(Malvern Panalytical).

Electron microscopy (EM) analysis of EVs
The EV preparations resuspended in PBS were prepared 
for transmission electron microscopy (TEM) [37] and 
scanning electron microscopy (SEM) [36], as previously 
described.

Imaging EVs by confocal microscopy
For imaging EVs by confocal microscopy, Ibidi chamber 
slides were coated with 10  μg/ml poly-D-lysine hydro-
bromide (P6407, Sigma-Aldrich) at + 37  °C in 5%  CO2 
for o/n. EVs were then placed on slides and incubated 
at + 37  °C in 5%  CO2 for 3 h. Next, 1 h incubation with 
staining solution (1:200 AF594-CD63 (353033, BioLe-
gend) and 1:200 FITC-CD9 (312103, BioLegend), or 
1:200 AF594-CD63 and 1:1000 LipidSpot (LipidSpot™ 
488 Lipid Droplet Stain, 70065 T, Biotium, Fremont, CA, 
USA) in 2% BSA PB) at RT was performed. The LipidSpot 
dye is a fluorescent neutral lipid stain used for staining 
intracellular lipid droplets, the main constituent of which 
is TAG. Adipocyte-derived EVs have been documented 
to contain also other neutral lipids, such as diacylglyce-
rols, but with clearly lower levels [38]. Staining solu-
tion was removed, and sterile-filtered PBS was carefully 
added. EVs were visualized with 63 × NA 1.4 objective 
on a Zeiss Axio Observer inverted microscope equipped 
with a Zeiss LSM 800 confocal module.

Gas chromatography–mass spectrometry
The FA profiles of EV samples, SGBS cells, and condi-
tioned media were analyzed by gas chromatography–
mass spectrometry. To obtain pre-SGBS cells, cells 
were washed with PBS, detached with trypsin, and 
centrifuged (1000 × g for 5  min). After centrifugation, 
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cell pellets were stored at −  80  °C until the FA deter-
minations. Mature SGBS cells were washed and then 
scraped. For the analyses, excess water was first 
removed from the subsamples of EVs and media by 
nitrogen stream followed by transmethylation in meth-
anolic  H2SO4 under nitrogen atmosphere [39]. The 
formed FA methyl esters (FAMEs) were extracted, the 
FAME and dimethyl acetal (DMA) structures identi-
fied, and the resulting chromatographic peaks inte-
grated, as previously described [31]. The FA sums 
were calculated as the ∑(mol-%) of all individual FAs 
within a particular FA class, i.e., saturated FAs (SFAs), 
monounsaturated FAs (MUFAs), polyunsaturated FAs 
(PUFAs), DMAs, and further for n-3 and n-6 PUFAs.

Statistical analyses
Different statistical analyses were performed using 
the SPSS v27.0 software (IBM, Armonk, NY, USA). 
Comparisons between EV counts secreted by VAT 
and SAT were performed with the generalized linear 
model. Otherwise, comparisons with > 3 treatment 
or sample groups were conducted with the Kruskal–
Wallis nonparametric analysis of variance (ANOVA). 
Nonparametric tests between two sample groups 
were performed with the Mann–Whitney U test. The 
p-value < 0.05 was considered statistically significant. 
The results are presented as the mean ± SEM. To per-
form a general assessment of the FA and DMA profiles 
of EVs, cells, or conditioned media, we also carried 
out supervised discriminant analyses (DA) by classi-
fying the composition data by discriminant functions 
to see how samples in the different treatment groups 
differed from one another, which variables separated 
them most clearly, and how well the analysis was able 
to classify the samples into their respective groups.

Results
EVs from mature SGBS cells differ in size and quantity 
compared to ones from pre‑SGBS cells
The differentiation of preadipocytes (Fig.  1a) into lipid-
laden adipocytes (Fig. 1b) was first induced, after which 
EVs were isolated from the conditioned medium. Con-
firming the presence of EVs and the sufficient sample 
purity, SEM and TEM analyses (Fig.  1c, d, respectively) 
revealed the presence of typical, cup-shaped EVs. The 
presence of EV-markers, CD63 and CD9 tetraspanins, 
was confirmed by fluorescent labeling and confocal 
microscopy (Fig.  1e). EV markers were further studied 
by WB, showing the presence of tumor susceptibility 101 
(TSG101), CD63, CD9, programmed cell death 6 inter-
acting protein (Alix), and β-actin, but also adipocyte-
derived material, fatty acid binding protein 4 (FABP4) 
and adiponectin, in EVs from mature SGBS cells (Fig. 1f ). 
Cross-contamination of EV samples with cell organelles 
was excluded by the absence of calnexin, an integral pro-
tein of the endoplasmic reticulum.

To investigate whether maturation into fully differen-
tiated adipocytes changes EV secretion and particle size 
distribution, EVs obtained before and after differentia-
tion were analyzed by NTA, demonstrating that mature 
SGBS cells secrete more EVs than pre-SGBS cells 
(Fig. 1g). These results indicate that adipogenesis, which 
is involved in the expansion of AT, would increase EV 
secretion from human AT. Moreover, size distribution 
analysis revealed that differentiation of the cells led to 
the secretion of smaller particles (averages for all parti-
cles: 150 ± 9.3  nm and 132 ± 8.6  nm from pre-SGBS and 
mature SGBS cells, respectively) (Fig.  1h). Gas chroma-
tography–mass spectrometry analyses detected several 
FAs both in cells and EVs (Supplementary Figure S1, see 
Additional File 1). FAs with the highest proportions in 
pre- and mature SGBS cells as well as in their EVs were 
PA, palmitoleic acid (PLA, 16:1n-7), SA, oleic acid (OA, 

(See figure on next page.)
Fig. 1 Characterization of extracellular vesicles (EVs) from Simpson Golabi Behmel Syndrome (SGBS) cells. The differentiation of pre‑SGBS cells (a) 
into mature, lipid‑laden SGBS cells was induced (b), after which EVs were isolated from culture medium by differential steps of ultracentrifugation. 
Scanning electron microscopy of EVs from mature SGBS cells (c) reveals good sample purity, and transmission electron micrograph 
a high‑magnification image of a typical EV (d). The presence of EV‑markers in EV samples was confirmed by fluorescent labelling of CD63 
and CD9 in confocal microscopy (e). The presence of adipocyte‑derived material (fatty acid binding protein 4 (FABP4) and adiponectin), tumor 
susceptibility 101 (TSG101), CD63, CD9, programmed cell death 6 interacting protein (Alix) and β‑actin, as well as the absence of calnexin were 
further analyzed by Western Blotting from mature SGBS cell EV samples (f). Nanoparticle tracking analysis (NTA) of EV samples from pre‑ and mature 
SGBS cells revealed concentration (g) and size distribution (h) of secreted particles. NTA results are presented as mean + SEM, from 4 independent 
experiments. *p = 0.021 (Mann–Whitney U test). Differences in FA profiles of pre‑ and mature cells and their EVs were determined from total lipids 
with gas chromatography–mass spectrometry (i). Results are presented as percentage differences, calculated by subtracting the mol‑% of each 
FA in the pre‑group from the mol‑% in the mature group. Red indicates an increase in the mature group, while blue indicates a decrease. DMA 
plasmalogen alkenyl chain‑derived dimethyl acetal derivative, SFA saturated fatty acid, MUFA monounsaturated fatty acid, PUFA polyunsaturated 
fatty acid, unsaturated FA (UFA) = MUFA + PUFA. *p ≤ 0.05 Mann–Whitney U test vs. control. Percentages of selected FAs in pre‑ and mature cells 
and secreted EVs, presented as mean mol‑% (j). The supervised discriminant analysis of FA proportions in pre‑ and mature SGBS cells, as well as their 
EVs (k)
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18:1n-9), and cis-vaccenic acid (CVA, 18:1n-7), indicat-
ing that the FA profiles of EVs reflect well the profiles of 
the corresponding cells. As expected, the differentiation 
process caused changes in the FA proportions of cells 
(Fig. 1i). For instance, PA and PLA mol-% were remark-
ably higher in the mature SGBS adipocytes compared 
to the SGBS pre-adipocytes, while the proportions of 
several FAs, including SA, linoleic acid (LA, 18:2n-6), 
EPA, DHA, and total PUFAs decreased along with the 
differentiation.

There were also indications of different FA propor-
tions between the EV types, although most of these 
changes did not reach statistical significance: PLA pro-
portion was significantly higher in EVs from the mature 
cells compared to pre-SGBS EVs, and α-linolenic acid 
(ALA, 18:3n-3), 19:0, and 20:1n-9 tended to have higher 
average values in EVs from the mature cells compared 
to EVs from the pre-SGBS cells, while γ-linolenic acid 
(GLA, 18:3n-6) proportions seemed to be higher in 
pre-SGBS EVs (Fig.  1j). Nonetheless, the proportion of 
particular FAs in relation to their parental cells was dif-
ferent and, for example, SA, ALA, EPA, docosapentae-
noic acid (DPA, 22:5n-3), and DHA were more abundant 
in EVs from mature SGBS cells than in mature SGBS 
cells. Indeed, despite the reduced proportion of PUFAs 
in SGBS cells along with the differentiation, this trend 
was reversed in the EVs, where PUFAs, particularly n-3 
PUFAs, exhibited an inclination to increase (Fig. 1i).

The supervised DA of FA profiles showed that pre-
SGBS and mature SGBS cells clustered apart from each 
other, and also from their EVs (Fig.  1k). However, EVs 
from pre- and mature SGBS cells were close to each other. 
Function 1, depicted on the horizontal axis, particularly 
separated mature SGBS cells, and function 2 pre-SGBS 
cells from other groups. Together these two functions 
explained 99.4% of the variance, and FAs mainly respon-
sible for the separation were ARA, 24:0, LA, 24:1n-9, 
14:0, 20:3n-3, ALA, SA, PA, EPA, dihomo-γ-linolenic 

acid (DGLA, 20:3n-6), DPA, 20:4n-3, 20:1n-7, DHA, 22:0, 
12:0, OA, and 20:2n-6.

Treatment of SGBS cells with TNFα, PA, and EPA reveal 
inflammation‑triggered EV secretion and differing FA 
profiles of EVs
To investigate how factors associated with AT inflam-
mation in human obesity affect EV secretion from adi-
pocytes, we treated mature SGBS cells with TNFα, an 
inflammatory cytokine elevated in AT in obesity due 
to macrophage infiltration, pro-inflammatory PA, and 
anti-inflammatory EPA, to assess the effects of different 
exposures. Our preliminary experiments with increasing 
concentrations of TNFα and PA confirmed that they trig-
gered inflammatory responses at the mRNA level (Sup-
plementary Figure S2, See Additional File 1). For further 
experiments, we chose the concentrations which induced 
the expression of inflammation-related genes without a 
significant degree of cell death (20 ng/ml and 400 µM for 
TNFα and PA, respectively) (Supplementary Figure. S3, 
See Additional File 1). The anti-inflammatory effects of 
EPA were also confirmed by RT-qPCR (Supplementary 
Figure S4, See Additional File 1). Because the expres-
sion of several inflammation-related genes decreased 
after 75  µM treatment, this concentration was chosen 
for the actual experiments. NTA analyses of total parti-
cle counts indicated that inflammatory responses caused 
by TNFα and PA triggered EV secretion from adipocytes, 
while EPA treatment did not cause any change (Fig. 2a). 
Size distribution analyses revealed only a few significant 
changes in size distributions of secreted EVs after treat-
ments (Fig. 2b).

Gas chromatography–mass spectrometry analyses of 
TNFα-, PA-, and EPA-treated cells and their EVs revealed 
that EVs and cells were well clustered in terms of FA 
profiles (Supplementary Figure S5, See additional file 1). 
Regarding FA modifications in cells, PA and EPA induced 
expected changes—PA increased PA and total SFA 

Fig. 2 Studying extracellular vesicle (EV) secretion and EV fatty acid (FA) profiles from adipocyte  treatments. Mature Simpson Golabi Behmel 
Syndrome cells were treated with either 20 ng/ml of tumor necrosis factor α (TNFα), 400 µM of palmitic acid (PA, 16:0) or 75 µM eicosapentaenoic 
acid (EPA, 20:5n‑3) for 24 h, after which EVs were isolated and analyzed by nanoparticle tracking analysis (NTA). Both particle counts (a) and size 
distribution of particles (b) were obtained by nanoparticle tracking analysis NTA. Particle counts have been normalized to cell number, 
and results are presented as mean + SEM. *p < 0.05 (Mann–Whitney U test). Differences in FA profiles of cells and secreted EVs from TNFα, PA, 
and EPA treatments were determined from total lipids with gas chromatography–mass spectrometry (c). Results are presented as percentage 
differences, calculated by subtracting the mol‑% of each FA in the control group from the mol‑% in the treatment group. Red indicates an increase 
in the treatment group, while blue indicates a decrease. FAs are listed in the order of increasing chromatographic retention time. DMA plasmalogen 
alkenyl chain‑derived dimethyl acetal derivative, SFA saturated fatty acid, MUFA monounsaturated fatty acid, PUFA polyunsaturated fatty acid, 
unsaturated FA (UFA) = MUFA + PUFA. *p ≤ 0.05 Mann–Whitney U test vs. control. Percentages of selected FAs in cells and secreted EVs from TNFα, 
PA, and EPA treatments, presented as mean mol‑% (d). The FA results of TNFα and PA treatments were measured from 5 independent experiments 
and the results of EPA treatments from 7 independent experiments. The supervised discriminant analysis depicts the classification of FA signatures 
of cells and EVs from TNFα, PA, and EPA experiments based on discriminant functions 1 and 2 (e). Function 1 (on the x‑axis) explained 81.7% 
of the variance in the dataset, and Function 2 10.6% of the variance

(See figure on next page.)
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proportions and decreased unsaturated FA/SFA ratios, 
while EPA treatment resulted in higher percentages of 
DPA, total n-3 PUFAs, and elevated n-3/n-6 PUFA ratios 
(Fig. 2c). TNFα, on the other hand, did not significantly 
change cellular FA profiles. Remarkably, when compar-
ing EVs and cells across all treatments, the observed dif-
ferences in FA proportions were more prominent in EVs 
than in cells.

Differences between EV and cell FA profiles were 
also observed in DA, revealing that EVs and cell sample 
groups were clustered visibly apart from each other, indi-
cating specific sorting of FAs into EVs (Fig. 2e). Interest-
ingly, different EV types displayed three subgroupings, 
each consisting of two EV types. These were PA control 
and PA treatment EVs, TNFα and EPA EVs, as well as 
TNFα control and EPA control EVs. Different cell groups, 
on the other hand, were not separated that well from 
each other. The individual FAs most strongly separating 
the sample groups were, e.g., LA, 14:1n-9, GLA, DGLA, 
24:0, 24:1n-9, and 20:4n-3. From these, several FAs were 
more abundant in EVs when compared to parental cells, 
for instance, 14:0, SA, LA, DGLA, ALA, 20:0, 20:3n-3, 
EPA, and DPA (Fig. 2d). On the contrary, CVA, 14:1n-5, 
and 16:1n-9 proportions were or tended to be smaller in 
EVs vs. cells.

Detailed characterization of patient AT EVs from ex vivo 
cultures
Regarding patient VAT and SAT samples, we first con-
firmed that no major degree of apoptosis was present in 
AT cultures by preparing histological sections for immu-
nohistochemical and immunofluorescent staining for 
caspase-9, an upstream caspase involved in apoptosis 
(Supplementary Figure S6, see Additional File 1). NTA of 
EV samples at different culture timepoints revealed that 
particle counts decreased over time, suggesting a dimin-
ished secretory function of AT when cultured ex vivo for 
a prolonged time (Fig.  3a). To confirm the presence of 
EV-like particles but also to assess the sample purity, EM 
analyses of VAT EV samples after 2 and 6 days from the 

initiation of culture were performed (Fig.  3b). Numer-
ous spherical and cup-shaped structures were found in 
SEM and TEM micrographs, respectively. Micrographs 
also revealed the possible presence of impurities, includ-
ing protein aggregates in 2-day samples. Therefore, we 
allocated 1-day and 2-day EV samples from both VAT 
and SAT cultures for apolipoprotein A1 (ApoA1) and 
calnexin WB (Fig. 3c). In these samples, the presence of 
ApoA1, a marker for HDL particles, was only detected 
in plasma, indicating that the EV fractions were not con-
taminated with blood-derived material. However, 1-day 
VAT EV sample was positive for calnexin, indicating 
that in the case of AT EV samples from ex vivo cultures, 
samples obtained after 2 days and onwards did not con-
tain significant amounts of cell-derived contaminants. 
For further validations, 2-, 3-, and 6-day samples were 
pooled, and the presence of CD63, β-actin, and TSG101 
was confirmed (Fig. 3d). Detailed validation was supple-
mented with high-resolution confocal microscopy analy-
sis of 2-day EVs, further confirming the presence of CD9, 
CD63, and CD63-colocalizing FABP4 (Fig. 3e).

VAT secretes more EVs than SAT and particle counts 
of these EVs positively correlate with plasma TAG levels
To compare EV secretion between VAT and SAT, from 
which VAT is more strongly related to the metabolic 
complications of obesity, VAT and SAT samples of the 
same patients (n = 6) were cultured ex  vivo. Particle 
concentrations were significantly higher in EV prepara-
tions obtained from VAT cultures than those from SAT 
cultures, suggesting that human VAT secretes more EVs 
than SAT when cultured ex  vivo (Fig.  4a). Interestingly, 
2-day VAT particle counts correlated with fasting plasma 
TAG levels of the patients (Fig.  4b). The most abun-
dant FAs in AT EVs included PA (approximately 25% in 
both EV types), OA (18% and 13% in VAT and SAT EVs, 
respectively), SA (15% in both EV types), and DHA (5% 
in both EV types) (Supplementary Figure S7, see Addi-
tional File 1). The sum of all PUFAs was more than 14% 
in both EV types and n-3 PUFA levels were higher than 

(See figure on next page.)
Fig. 3 Characterization of patient visceral (VAT) and subcutaneous adipose tissue (SAT) extracellular vesicles (EVs). AT samples from bariatric 
surgeries were cultured ex vivo in EV‑free culture medium for several days, after which EVs were isolated by differential steps of ultracentrifugation. 
To evaluate how EV secretion changes over time in AT cultures, culture supernatant was collected from VAT cultures and replenished daily 
until cultures had been maintained for 3 days in total (samples 1d, 2d, 3d). Replenished culture medium was then incubated for 3 more days, 
and then collected (6d). Results include VAT ex vivo cultures of 6 patients, presented as mean + SEM (a). *p = 0.006 (Kruskal–Wallis ANOVA). All EV 
counts have been normalized to 1 g of VAT obtained for culturing. Sample purity and the morphology of VAT EV isolates obtained after 2 and 6 
days of culture initiation were analyzed by scanning (SEM) and transmission electron microscopy (TEM) (b). Scale bars 1 µm. The possible presence 
of blood‑ and cell‑derived material was studied by apolipoprotein A1 (ApoA1) and calnexin Western Blotting, respectively, from 1 and 2d AT EV 
samples (c). Final VAT and SAT EV samples (pooled 2d, 3d, and 6d samples) were further analyzed by CD63, β‑actin, and tumor susceptibility 101 
(TSG101) Western Blotting (d). The presence of common EV markers (CD63 and CD9) and AT‑specific EV marker fatty acid binding protein 4 (FABP4) 
was further confirmed by fluorescent labelling and confocal microscopy (e)



Page 11 of 20Matilainen et al. Journal of Translational Medicine          (2024) 22:623  

a

TE
M

SE
M

1 µm 1 µm

1 µm 1 µm

b

*
*

VAT EVs 2d                          VAT EVs 6d

c

CD63                                    CD9                                    Merge

VA
T 

EV
s

SA
T 

EV
s

20 µm

d
CD63

VAT EVs 2d-6d

Plasma

SGBS cells

VAT EVs 1d

VAT EVs 2d

SAT EVs 1d

SAT EVs 2d

VAT EVs 1d

VAT EVs 2d

SAT EVs 1d

SAT EVs 2d
SAT EVs 2d-6d

β-actin

TSG101

60 kDa

42 kDa

44 kDa

25 kDa ApoA1

Calnexin90 kDa

e

Pa
rti

cl
e 

co
un

ts
/1

 g
 o

f V
AT

1d 2d 3d 6d

100 

105

1010

1015

20 µm
FABP4 CD63 Merge

VA
T 

EV
s

SA
T 

EV
s

20 µm

Fig. 3 (See legend on previous page.)



Page 12 of 20Matilainen et al. Journal of Translational Medicine          (2024) 22:623 

n-6 PUFA sums. Furthermore, the FA compositions of 
EVs were compared to those of their respective culture 
media. While n-3 PUFA proportions tended to be higher 
in EVs compared to culture media, n-6 PUFAs were more 
abundant in culture media compared to EVs (Fig.  4d). 
LA proportions were lower in EVs than in culture media. 

The supervised DA of VAT and SAT EVs, as well as the 
corresponding culture media, showed that VAT and 
SAT media were separated from each other, indicat-
ing possible differences in FA uptake and/or secretion 
based on AT type (Fig. 4e). Also, interestingly, SAT EVs 
clearly segregated from SAT ex vivo medium, indicating 
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specific incorporation of FAs into SAT EVs. However, 
VAT EV group overlapped with VAT ex  vivo medium 
group. Function 1 separated VAT and SAT EV samples 
and explained 89.3% of the variance, with EPA having the 
most separating power. Function 2, separating VAT from 
SAT medium samples, explained 8.0% of the variance, 
and the FAs responsible for this were ARA, 12:0, and SA. 
Considering these FAs, EPA proportions tended to be 
higher in EV samples than in media samples, particularly 
in SAT EV samples (Fig. 4c; Supplementary Figure S7, see 
Additional File 1).

Adipocyte‑ and patient AT‑derived EVs carry TAGs, and may 
deliver excess lipid to circulation under reduced lipolytic 
conditions
Based on biochemical analyses of mouse AT EVs, it was 
previously suggested that AT EVs contain TAGs, which 
raises an intriguing possibility for EV secretion being an 
additional mechanism for AT to relocate excess lipid and 
to communicate on the metabolic status of the body [40]. 
Therefore, we utilized high-resolution confocal micros-
copy of adipocyte and AT EV samples to investigate 
this possibility. EV samples from both pre- and mature 
SGBS cells, as well as from patient VAT and SAT ex vivo 
cultures were stained with LipidSpot stain and fluo-
rophore-conjugated CD63-antibody, and then imaged 
with high-resolution confocal fluorescence micros-
copy (Fig.  5a). We observed particles in which CD63 
and lipid droplet stain signals co-localized in all sample 
groups. In fact, some particles with the inner part of the 
EVs positive for LipidSpot signal, while having “CD63 
cover” around, were also observed. These results indi-
cate that AT EVs contain TAGs and that AT EV secre-
tion may have a role in mobilizing and releasing lipid in 
addition to canonical lipolysis. To address this possibil-
ity, we then investigated further the interplay between 
increased EV secretion and canonical lipolysis in TNFα-
treated SGBS adipocytes. Interestingly, the expression of 
PNPLA2 and LIPA, encoding adipose tissue triglyceride 
lipase (ATGL) and lysosomal acid lipase (LAL), respec-
tively, was strongly downregulated (Fig.  5b and d), and 
phosphorylated hormone sensitive lipase (HSL) protein 
levels showed a decreasing trend (Fig.  5c). However, 
despite these, glycerol concentration tended to increase 
in culture medium of cells (Fig.  5e), indicating that the 
breakdown of TAGs into free FAs and glycerol did occur, 
but not via canonical lipolysis, involving ATGL and HSL, 
and LAL in lysosomes. Also, the total levels of Rab7, the 
form of Rab GTPase that is present on lipid droplet sur-
face and responsible for lipase-independent lipolysis via 
lipophagy, were decreased (Fig.  5f ). Thus, our results 
reveal that TNFα-induced EV secretion occurs concomi-
tantly with reduced lipolytic activity, suggesting that 

EV secretion could be promoted as a compensation to 
reduced lipolysis.

Plasma EVs of patients with obesity contain more 
adiponectin‑positive EVs than ones of normal‑weight 
subjects
To investigate the presence of AT-derived EVs in circu-
lation, plasma EV samples labelled against CD9 and adi-
ponectin were analyzed with Amnis® ImageStream®X 
Mark II imaging flow cytometer. Isolated plasma EVs 
were first characterized by TEM (Fig.  6a) and WB 
(Fig. 6b). WB revealed the presence of common EV mark-
ers, CD63, CD9, and β-actin, but also some HDL marker, 
ApoA1, and LDL/VLDL marker, ApoCIII, in plasma EVs. 
Importantly, adiponectin was also present, confirming 
its possible utility as AT EV marker in the following flow 
cytometry analyses. Three samples, two from subjects 
with obesity and one from a normal-weight subject were 
incubated with the mixture of CD9 and adiponectin anti-
bodies (Fig. 6c). Most of the adiponectin positive events 
(≥ 95%) were double-positive for CD9, indicating that 
adiponectin staining reveals EV-resident adiponectin. 
The concentration of particles, obtained by side scatter, 
was higher in plasma EV samples from people with obe-
sity compared to normal-weight controls (Fig.  6d). The 
number of CD9-positive events was also higher in plasma 
EV samples from people with obesity, but the percentage 
of CD9-positive particles of all particles was on the same 
level in both sample types. Interestingly, the number of 
CD9-positive particles of subjects with obesity positively 
correlated with BMI, as well as SAT TNF expression lev-
els (Fig.  6e). Analyses of adiponectin-positive particles 
revealed that count and percentage of adiponectin-posi-
tive particles were higher in obese samples compared to 
lean samples, indicating higher AT EV secretion into cir-
culation in obesity (Fig. 6f ).

Discussion
Growing evidence associates elevated circulating EV 
numbers with obesity, T2D, and non-alcoholic fatty liver 
disease in both human patients and rodent models [41, 
42], although conflicting findings have also emerged [12]. 
Previous research on EV secretion from AT has yielded 
contrasting outcomes in murine adipocyte cell lines and 
AT depots, with some studies suggesting an increased 
secretion under obesity-related stimuli [4, 11, 22, 43, 
44], and others indicating a decrease [45]. To address 
the knowledge gap in AT EV secretion in human obesity, 
we examined human SGBS adipocytes, as well as VAT 
and SAT samples from patients with obesity. As hypo-
thesized, our findings indicate that inflammatory PA and 
TNFα promote EV secretion from SGBS adipocytes, and 
that patient VAT in ex  vivo cultures secrete more EVs 
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compared to SAT, providing novel insights into human 
AT EV secretion. We also explored changes in EV FA 
profiles under pro-inflammatory stimuli, suggesting EVs’ 
role as rapid responders to metabolic stress. Overall, we 
documented distinct FA profiles in human adipocyte EVs 
compared to previous murine data. Moreover, the posi-
tive correlation between VAT EV counts and plasma TAG 
levels, alongside the higher prevalence of adiponectin-
positive EVs in the plasma of bariatric surgery patients 
compared to lean individuals gives further evidence for 
higher AT EV secretion in obesity. Importantly, increased 
EV counts in plasma were associated with high BMI and 
TNF expression in SAT. Finally, based on high-resolution 
confocal microscopy analysis, we show for the first time 
that AT and adipocyte EVs carry TAGs, and that EV 
secretion may act as a compensation to reduced lipolysis, 
suggesting a significant role of EVs in lipid mobilization. 

Our study increases our understanding of AT EVs’ roles 
in metabolic health and disorders in humans.

To our best knowledge, we provide here for the first 
time statistically significant data showing that human 
VAT secretes more EVs than the same amount of SAT, 
and the association between increased VAT EV counts 
with higher plasma TAG levels. In the experiments by 
[14], omental AT EV number correlated positively with 
HOMA-IR, but differences in EV secretion between 
omental AT and SAT were not observed. Previous data 
presented by [15] provided a hint of higher numbers 
of EVs secreted by VAT compared to SAT but, prob-
ably due to a small sample size, no robust interpretation 
could be made. Considering the increased EV secretion 
from SGBS adipocytes under inflammatory conditions, 
together with more inflammatory characteristics of VAT 
compared to SAT [46], it is plausible that inflammation is 
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the driving force for the efficient EV secretion from VAT. 
The research in this particular field is in its early stages 
and, unlike in our study, proper EV validations with 
negative EV markers have rarely been included in previ-
ous studies utilizing AT EVs from ex  vivo cultures. We 
do acknowledge that other factors, including differences 
in cellular composition and metabolic activity between 
VAT and SAT could affect EV secretion, independent of 
inflammation. More mechanistic studies investigating 
factors mediating EV secretion from AT are needed to 
confirm and better understand the observed differences 
in EV secretion between VAT and SAT.

Few previous attempts have been made to study if 
increased AT EV secretion due to obesity can be real-
ized in vivo in circulation of mice and humans. Thomou 
et  al. [10] observed that in mice, the majority of circu-
lating EVs originated from AT, based on adipocyte-spe-
cific knockout mice of the miRNA-processing enzyme 
DICER, which resulted in decreased EV-resident miR-
NAs in circulation. However, Flaherty et  al. [40] sug-
gested in another mouse study that only a minority of 
circulating EVs originate from AT, but obesity increases 
EV secretion from AT. Camino et al. [15] proposed that 
plasma EVs positive for TGFB1 and mimecan, which are 
elevated in AT EVs, could be used as markers for tracking 
T2D and visceral obesity. However, the low tissue speci-
ficity of these proteins, particularly to AT, raises concerns 
about their reliability as AT EV markers, as TGFB1 is 
also expressed by immune cells and found in monocyte-
derived EVs [47], and it has been associated with other 
inflammatory conditions and diseases, such as adeno-
carcinoma as well as pulmonary hypertension in HIV 
[48, 49]. To address this, we chose adiponectin, which 
is almost exclusively expressed in adipocytes and found 
in 3T3-L1, SGBSs- and human AT-derived EVs [14, 20], 
as a marker for AT-derived EVs in the flow cytometry 
analyses.

We established that the majority of adiponectin-posi-
tive EVs were also positive for the common EV marker 
CD9, indicating that EV-resident adiponectin was meas-
ured in our studies. We demonstrated that the percent-
age of adiponectin-positive EVs was higher in plasma 
EV samples of patients with obesity compared to nor-
mal-weight subjects, suggesting increased adipocyte 
EV secretion in human obesity. Interestingly, we found 
a positive association between increased CD9-positive 
plasma EV counts and BMIs as well as TNF expression in 
SAT, but not with glucose or insulin levels or with other 
patient parameters. Thus, our results support the asso-
ciation of increased EV counts with AT expansion and 
inflammation. This differs from previous studies that have 
shown correlations between plasma EV counts and glu-
cose tolerance, IR, and HOMA-IR in people with obesity 

and patients with metabolic syndrome [21, 42]. It is note-
worthy, as previously mentioned, that EV particle counts 
from VAT ex vivo cultures correlated with fasting plasma 
TAG levels. These results prompted the hypo thesis, 
based on previous biochemical assays of mouse AT EVs 
[40], that EV secretion may be an additional mechanism 
for AT to redistribute excess TAGs, in addition to canon-
ical lipolysis. To further support this hypothesis, we used 
high-resolution microscopy to study if TAGs were pre-
sent in human SGBS and patient AT EVs and found co-
localization of lipid stain with the common EV marker 
CD63. To our best knowledge, this is the first time when 
the presence of TAGs in EVs has been studied at the sin-
gle EV level, providing more convincing evidence com-
pared to biochemical assays. Indeed, a recent study with 
mouse material has shown similarities in obesity-related 
changes in FA profiles of VAT, VAT EVs, and plasma [22], 
suggesting that diet-induced changes in FA signatures of 
AT are reflected in AT EVs and, ultimately, in peripheral 
circulation, supporting the role of EVs as redistributors 
of AT TAGs, and FAs therein. In order to investigate fur-
ther whether AT EVs could act in releasing TAGs into 
circulation, lipolysis pathways were investigated in more 
detail in TNFα-treated adipocytes, in which EV secre-
tion was clearly demonstrated. Interestingly, our results 
tentatively suggest an increasing trend of glycerol levels 
in culture medium, despite the decreased PNPLA2 and 
LIPA mRNA expression, as well as phospho-HSL protein 
levels. Although TNFα is commonly known as a factor 
stimulating lipolysis [50], differing evidence still exists. 
Apart from canonical ATGL/HSL mediated lipolysis, 
lipase-independent lipophagy, mediated by Rab7 may 
also contribute to the breakdown of TAGs. Intriguingly, 
protein levels of Rab7 were also downregulated, although 
this GTPase has also been implicated in exosome release 
[51]. To summarize, our data indicate that adipocyte EV 
secretion may be promoted as a compensation to reduced 
lipolysis, but further investigation is required to confirm 
this appealing possibility.

Previous research has primarily focused on proteomic 
and miRNA profiles of adipocyte EVs, largely overlooking 
their FA composition. Our study delved into EV secretion 
and FA signatures in human SGBS adipocytes. Differ-
ential FA profiles of pre- and mature SGBS cells, as well 
as cell and EV populations emerged, as indicated by our 
DAs. EVs from pre- and mature SGBS cells did not over-
lap, but were closely aligned, suggesting more profound 
differences between cells at different stages of develop-
ment than in their EVs. Contrary to previous findings in 
murine 3T3-L1 cells [20], SGBS cells secreted more EVs 
after differentiation in our experiments, indicating that 
adipogenesis promotes EV secretion in human adipo-
cytes. Thus, in addition to AT inflammation, increased 
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adipogenesis in response to excess energy may also 
account for increased EV secretion from AT in obesity. 
Additionally, FA compositions diverged from previous 
3T3-L1 data, with PA, SA, OA, and 14:0 being the most 
abundant FAs in SGBS EVs. In EVs from mature 3T3-L1 
cells, LA has been reported to be the FA with the highest 
mol-%, after which PA, SA, and OA were the next most 
abundant FAs [20]. In our analyses, LA was only a minor 
FA in both SGBS and patient AT EVs. Additionally, PLA 
was present in EVs from both pre-SGBS and mature 
SGBS cells, while in 3T3-L1 EVs, it was only detected in 
pre-3T3-L1 cells [20]. Interestingly, OA was more abun-
dant in mature SGBS cells compared to pre-SGBS cells, 
which was opposite to previously reported results in 
3T3-L1 cells. Also, mature 3T3-L1 EVs had higher mol-% 
of OA compared to mature 3T3-L1 cells, while EVs from 
both pre- and mature SGBS cells had smaller OA propor-
tions compared to the corresponding cells. Overall, our 
findings suggest selective differences in EV secretion and 
their FA signatures during the differentiation process 
between murine and human adipocytes.

Based on our DA data, human SGBS adipocyte EVs 
exhibited different FA profiles under TNFα, PA, and 
EPA treatments, stimuli relevant to nutrition, obesity-
induced inflammation, or potential resolution pro-
moted by EPA. Previous studies by Eguchi et  al. [21] 
emphasized ARA, DHA, and EPA as major n-3 and n-6 
PUFAs in EVs from PA-treated 3T3-L1 cells. High levels 
of ARA-containing lipid species were also documented 
in leptin-deficient mouse obesity models [22]. However, 
our research shows DPA, DHA, and LA among the 
most abundant PUFAs in PA-treated SGBS EVs. In fact, 
ARA was only a relatively minor FA in our SGBS and 
patient AT EVs and appeared to be more abundant in 
ex vivo culture medium than in the AT EVs. This con-
trasts with murine data, indicating unique human EV 
FA profiles under different stimuli. Notably, our results 
indicate stronger FA disparities in SGBS EVs versus 
cells during treatments, suggesting that metabolic stim-
uli-induced changes in FAs are detected in EVs earlier 
than in cells. EVs might function as swift responders 
to metabolic shifts, potentially conveying dietary FA 
changes across tissues. Elevated EV FA variances in 
obesity may mirror an AT attempt to counteract meta-
bolic dysregulation. This could include the incorpora-
tion of SFAs into EVs for protective effects, alongside 
PLA from high ∆9-desaturation of PA, and SA and OA 
from PA elongation, mediating attenuated inflamma-
tory signals and less lipotoxicity. Indeed, an increased 
proportion of SFAs compared to cells, a feature also 
reported elsewhere [52], was evident also in SGBS cells 
and EVs, suggesting that SFAs may be incorporated 
into EVs to alleviate harmful effects in AT. Also, despite 

the low PLA mol-% in EVs, the proportions of OA 
remained at a high level in EVs as in their parental cells, 
indicating the active incorporation of this ∆9-desatura-
tion product into secreted EVs, as also observed with 
fibroblast-like synoviocytes [53]. Also, the proportion 
of OA was lower in EVs from EPA-treated cells com-
pared to EVs from TNFα- and PA-treated cells, suggest-
ing that in treatments with inflammatory components, 
∆9-desaturation would have a protective role when 
producing OA to be incorporated into EVs instead of 
the SFAs.

There was a consistent abundance of PUFAs in both 
AT and SGBS EVs, surpassing culture medium and 
SGBS cells, respectively. Notably, beneficial n-3 PUFA 
proportions were as high as 7–8% in AT EVs and 
tended to be higher in EVs compared to culture media. 
For instance, DHA was more abundant in AT EVs com-
pared to EVs from PA-, TNFα-, and EPA-treated SGBS 
cells. High proportions of n-3 PUFAs in adipocyte EVs 
may act as an adaptive response to metabolic stress. 
Due to substrate competition for enzymes, n-3 PUFAs 
reduce the production of inflammatory eicosanoids 
from n-6 PUFAs, and produce resolvins, protectins, and 
maresins having anti-inflammatory and pro-resolving 
activities [54, 55]. PUFAs can also enhance membrane 
fluidity, potentially influencing microenvironments 
and the activity of membrane-associated receptors 
and enzymes. DHA, for instance, has been linked to 
reduced Toll-like receptor 4 recruitment and subse-
quent, attenuated pro-inflammatory response [56]. 
Thus, EVs enriched in PUFAs, especially n-3 PUFAs, 
could serve as messengers of anti-inflammatory and 
beneficial cues to recipient cells, aiding resolution of 
inflammation.

Interestingly, according to our DA, SAT EV FA pro-
files were distinct from those of SAT ex  vivo media, 
suggesting selective incorporation of FAs into SAT 
EVs rather than their release into culture medium. 
However, VAT EV group overlapped with VAT ex vivo 
medium, indicating that the overall differences in FA 
profiles between the two were not pronounced. A pos-
sible explanation for this could be the high lipolytic 
activity of VAT [46] leading to significant release of 
free FAs into the culture medium reducing the differ-
ences between the FA profiles of VAT EVs and medium. 
Second, the high similarity between VAT EVs and cul-
ture medium may simply be due to the high rate of 
EV secretion by VAT. The third possibility is that adi-
pocytes in VAT more effectively recycle FAs from the 
culture medium into cells and, further, EVs. Indeed, 
exogenous FAs have been reported to modulate FA pro-
files of secreted EVs from bone marrow mesenchymal 
stem cells [57].
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Conclusions
In summary, our study reveals that factors associ-
ated with AT inflammation in obesity orchestrate sig-
nificant changes in the secretion and FA profiles of AT 
EVs, indicating the role of AT EVs as rapid responders 
to metabolic stress. The detection of TAGs in adipo-
cyte- and AT-EVs and high EV secretion despite signs 
of reduced lipolysis suggest a novel mechanism for 
redistribution of AT lipids. Coupled with the elevated 
prevalence of adiponectin-positive EVs in the plasma 
of subjects with obesity compared to lean individuals, 
this implies a crucial systemic function of AT EVs in 
TAG distribution. The findings deepen our understand-
ing of AT biology and highlight the potential of EVs as 
prognostic and therapeutic targets for obesity and its 
associated conditions, while emphasizing the need for 
a deeper exploration of AT EV biological functions and 
clinical implications.
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