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Abstract

New recording technologies and the potential for closed-loop experiments have led to an 

increasing demand for computationally efficient and accurate algorithms to decode population 

spiking activity in multi-dimensional spaces. Exact point process filters can accurately decode 

low-dimensional signals, but are computationally intractable for high-dimensional signals. 

Approximate Gaussian filters are computationally efficient, but are inaccurate when the signals 

have complex distributions and nonlinear dynamics. Even particle filter methods tend to become 

inefficient and inaccurate when the filter distribution has multiple peaks. Here, we develop a new 

point process filter algorithm that combines the computational efficiency of approximate Gaussian 

methods with a numerical accuracy that exceeds standard particle filters. We use a mixture of 

Gaussian model for the posterior at each time step, allowing for an analytic solution to the 

computationally expensive filter integration step. During non-spike intervals, the filter needs only 

to update the mean, covariance, and mixture weight of each component. At spike times, a 

sampling procedure is used to update the filtering distribution and find the number of Gaussian 

mixture components necessary to maintain an accurate approximation. We illustrate the 

application of this algorithm to the problem of decoding a rat’s position and velocity in a maze 

from hippocampal place cell data using both 2-D and 4-D decoders.
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I. Introduction

ADVANCES in neural recording technology are making it possible to simultaneously record 

and manipulate the activity of large populations of cells [1], [2]. Numerous variables can 

influence this activity, and understanding how activity patterns represent information and 

contribute to specific computations requires analytical tools that are capable of extracting 

high dimensional information from these data [3], [4]. Having access to these patterns also 

makes it possible to use them in Brain-Machine Interfaces (BMIs) and to design and 

implement experimental interventions that can determine how specific patterns contribute to 

downstream activity and to behavior [5], [6]. BMIs and pattern-based interventions further 

require that the relevant multidimensional information be read out accurately and in real-

time, but at present, general methods that enable real-time decoding of high dimensional 

structure from spike trains are not well developed.

Point process filtering has emerged as a powerful tool for estimating biological and 

behavioral signals from single and multiunit neural spiking data [7]–[11]. It has been used 

successfully to predict arm reaches from motor cortical ensembles [10], to identify aberrant 

rhythms in the basal ganglia of Parkinson’s patients [11], and to decode the movement 

trajectories of rats from hippocampal place cells [8], [9], among many other applications. 

However, numerical computation of these filter algorithms is currently only tractable when 

the signals to estimate are very low dimensional. As a result, decoding using filter 

approaches is often done in a reduced 1D space, and decoding of 2D spaces is either very 

time consuming or uses more ad-hoc methods.

While these low dimensional approaches have been very useful, they cannot account for the 

high dimensional nature of the data. The spiking activity of single neurons typically relates 

to not one or two but many different covariates. As an example, the spiking of hippocampal 

place cells relates not only to animal’s position in space [12], but also to its velocity [13], 

and past or intended future position [14], [15] among other variables. For higher 

dimensional data, approximate Gaussian [16], [17] and Sequential Monte Carlo (SMC) 

methods [18]–[20] are often used, but can suffer from substantial estimation bias and 

extraneous variability when the signals have non-Gaussian distributions or nonlinear 

dynamics. More recent techniques such as the ensemble Kalman filter (EnKF) [21] and 

Gaussian mixture filter [22]–[25] have been developed for non-linear and high-dimensional 

estimation problems; however, these methods do not fully address the issues discussed above 

[26]. The EnKF and Gaussian mixture filters assume additive normal noise in the 

observation process, limiting their applicability in the case in which the observation noise is 

not additive or normal. Furthermore, Gaussian mixture filters are built using a pre-set 

number of mixture components and lack a well-defined mechanism to control the growth or 

shrinkage of approximate Gaussian mixture components given the content of the observation 

process. These challenges led us to develop a new multidimensional point process filter 
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procedure that takes advantage of the computational efficiency of Gaussian approximate 

methods but retains the accuracy of direct numerical computation of the filter distribution.

Two main advances contribute to the efficiency of this new point process filter algorithm. 

First, it uses a mixture of Gaussians approximation to the posterior filter distribution [23], 

[27], which allows for an analytic solution to the traditionally computationally expensive 

integration step of solving the filter equations. Second, a major improvement in efficiency is 

gained from treating spike and non-spike intervals distinctly. During non-spike intervals, the 

Gaussian mixture model approximation can remain accurate with updates only to the mean, 

covariance, and mixture weights of each component. In contrast, at spike times, we use a 

sampling procedure to update both the number of components in the Gaussian mixture 

model and the parameters for each component [28], [29]. Unlike in traditional particle 

filtering, this more computationally intensive sampling step only occurs at the fraction of 

time steps where spiking occurs.

To demonstrate the utility of this algorithm, we apply it to the decoding of a movement 

trajectory of a rat on a multi-arm track given the observed spiking activity of an ensemble of 

hippocampal place cells [30], [31]. We show the efficacy of the algorithm in 2 rats traversing 

the same track, each with an ensemble of greater than 50 hippocampal neurons. We perform 

the decoding using both a 2D position signal, which allows us to compare to the numerical 

solution point process filter equation, and using a 4D position and velocity signal, for which 

accurate numerical decoding would not be computationally feasible. The proposed algorithm 

can be applied to the general filter problem in high-dimensional spaces; it is specifically well 

suited to cases where the posterior distributions are multi-modal and show a complex 

structure.

The remainder of this paper is organized as follows: Section II describes the general 

formulation of the point process filter in multi-dimensional spaces given population spiking 

activity and develops the approximate Gaussian mixture particle filter solution. In Section 

III, we demonstrate the decoding result of the proposed filter solution in estimating a rat’s 

movement trajectory during a memory-guided navigation task on a W-shaped maze. We also 

compare the performance and computational efficacy of the Gaussian mixture particle filter 

with the numerically computed filter solution and Gaussian approximation. In Section IV, 

we discuss the advantages and challenges of the proposed filter solution and possible future 

directions. The Appendix provides further discussion of place cells’ receptive field 

properties, detailed derivation of gaussian approximation method, covariance matrix 

estimation, and methods to incorporate maze geometry constraints.

We use the following notation throughout this paper. Bold lowercase and uppercase letters 

are used to represent vectors and matrices, respectively. The state variable to be estimated is 

presented by xk, where k is time index. xk consists of the position - (xk, yk) - and later 

includes the velocity - (vx,k, vy,k) – of the rat in the maze. Population spiking activity at time 

k is given by Nk set. The set of parameters -(μ, Σ) - represents the mean vector and 

covariance matrix of a multivariate normal, N(μ, Σ). L(x; μ, Σ) is the likelihood of observing 

sample x from a multivariate normal with μ and Σ parameters; similarly, L(x; Nk) is the 
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likelihood of x given current observation of population spiking activity. ∇ and ∇2 are the 

gradient and Hessian operators.

II. Methods

A. Problem Definition

We model spiking observations as a point process using the conditional intensity, which 

defines the instantaneous probability of observing a spike at time t by

λ t ∣ Ht = lim
Δt 0

Pr A spike in (t, t + Δt] ∣ Ht /Δt (1)

Here, Ht represents the full history of spiking from all recorded neurons up to time t. The 

probability of the neuron’s firing a single spike in a small interval [t, t + Δt) can be 

approximated as λ(t|Ht)Δt. This conditional intensity function is a history-dependent 

generalization of the inhomogeneous Poisson rate function [32]. We model neural spiking as 

a function of a covariate vector xt by writing the intensity for each cell -λ(t|Ht) - as a 

function of xt. These intensity models may be from a parametric class of models or based on 

non-parametric kernel estimates.

Under the point process framework, the instantaneous likelihood when at coordinate xk of 

observing ΔNk total spikes from an ensemble of C cells, with ΔNk
1 spikes from cell 1, ΔNk

2

spikes from cell 2, …, in the interval Δk = (tk−1, tk] is defined by

L xk; Nk ∝

exp −ΔkΛ tk ∣ Hk ΔNk = 0

∏c = 1
C λc tk ∣ Hk Δk

ΔNk
c

exp −ΔkΛ tk ∣ Hk ΔNk > 0

(2)

Nk = ΔNk
c :c = 1⋯C (3)

ΔNk = ∑
c

ΔNk
c

(4)

where c refers to the cell index and λc(tk|Hk) represents the modeled intensity of cell c as a 

function of xk. In the definition of the likelihood function [9], [33], we assume the time 

interval is small enough that the likelihood of observing more than one spike per cell is 

negligible. We define the population intensity, Λ(tk|Hk) as the sum of the individual cells’ 

conditional intensities.

Λ tk ∣ Hk = ∑
c

λc tk ∣ Hk (5)
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We define the coordinate evolution xk - also called the state process – as a Markov process, 

and the state evolution over time is given by a one-step density

xk xk − 1 f xk ∣ xk − 1, θx (6)

where θx is the model-free parameter. For example, the state evolution can be a linear 

model, and θx might comprise the process mean and covariance matrices.

Given the observation process and state evolution equation, the exact posterior distribution 

of the state at time index k is defined by

p xk ∣ N1⋯k ∝ L xk; Nk ∫ p xk ∣ xk − 1 p xk − 1 ∣ N1⋯k − 1 dxk − 1 (7)

where the integral over xk−1 defines the one-step prediction in the Bayes filter paradigm [7]. 

The term p(xk|N1⋯k) is the filter estimate at time k given {N1, …, Nk}.

The one-step prediction stage of the filtering solution – the integral in equation (7) - presents 

a computational challenge. As there is no closed form solution of the one-step prediction for 

the point-process observation, a numerical approach is required. For a posterior distribution 

with a normal distribution and a linear state process – with a normal noise process, the one-

step prediction has a closed form solution; however, for the point process observation, the 

integral requires to be calculated for each possible xk and this calculation requires an integral 

over all possible values of xk−1. When xk is multidimensional, the integral requires to be 

calculated for each point of multidimensional space xk and it also becomes a 

multidimensional integral. Thus, the computational complexity of the numerical solution of 

the integral grows exponentially with the dimension. The computational cost will thus be of 

the order O(n2d), where n is the number of samples over each axis of the state space and d is 

the state dimension. Note that the computation is updated at each time index, where these 

time steps are generally on the order of milliseconds. Even for a decoding problem in only 

two dimensions, with 1000 samples over each axis, the cost will be of the order O(1012) per 

each time index. This rapidly becomes computationally impractical for real-time 

applications. For comparisons below, this strategy is referred to as the exact solution.

To build a computationally efficient solution, we discuss properties of the likelihood 

function of a point process observation given recordings of a neural ensemble. We then 

discuss how the one-step prediction and the filter solution can be efficiently approximated 

using a mixture model over time.

B. Approximate GMM Filter Solution

We assume that the posterior distribution of state at each time point – k – can be 

approximated by a Gaussian mixture model (GMM). The posterior of the state at time index 

k − 1 is defined by

p xk − 1 ∣ N1⋯k − 1 ∝ ∑
s

N μs, Σs πs (8)
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where πs is the mixing weight and (μs, Σs) are the mean vector and covariance matrix of the 

sth mixture component. We assume there are S mixtures in total.

For simplicity, we begin with the assumption that the state evolution can be described by a 

linear state process

xk = Axk − 1 + wk wk N(0, Q) (9)

where A is the state matrix, wk is the process noise, and Q is the process noise covariance 

matrix. Here, we assume that the elements of matrix A and covariance matrix Q are known. 

For a non-linear state transition process, we can use a multi-point linearization of the state-

equation at each update time step [20, 25–p214]. Generally, the state trajectory follows a 

continuous and smooth path and its linearization gives an accurate approximation of the 

state evolution. Under this linear state transition process and the GMM approximation of the 

filter density from the previous time point, the one-step prediction density given by the 

integral on the right-hand side of equation (7) has an analytic solution, given by

p xk ∣ N1⋯k − 1 ∝ ∑
s

N μos, Σos πos (10)

where μos=Aμs is called the one-step prediction mean and Σos = A ΣsA′ + Q is called the 

one-step prediction covariance for the sth mixture component. Under the linear state 

transition process, the mixing weights of one-step mixture components will be the same as 

the previous time point components, i.e., πos = πs. Notably, the GMM approximation 

substantially reduces the computational burden by eliminating the need to compute the 

integral in equation (7).

The next step in decoding is to update this one-step prediction density using the most recent 

observations from the neural population. Here we improve the efficiency of the update 

computation by separately considering time steps that include spiking and those that do not.

For any interval with no spiking observations, the likelihood function in equation (2) is 

defined by the population intensity, Λ(tk|Hk), and not by the individual intensities from any 

particular neuron – note that ΔNk = 0. Over these intervals, the filtering density diffuses 

slowly away from the local peaks of Λ(tk|Hk) [34], so that the difference between p(xk|

N1⋯k) and p(xk|N1⋯k−1) is minor. For this reason, we choose not to update the number of 

components in the GMM model for all these intervals except long ones (described below), 

and instead only update the mean, covariance, and mixture weight of each component.

To compute the updates to the mean, covariance, and mixture weight, we multiply each 

mixture component of the GMM one-step density given by equation (10) by the likelihood 

of observing no new spiking. Next, we Taylor expand the logarithm of the likelihood about a 

different point for each mixture component; specifically, for the sth mixture component, we 

expand the log likelihood about the one-step prediction mean for that component μos using a 

second-order Taylor expansion [32]. Finally, we complete the square to generate new 

Gaussian mixtures for each component, yielding the following updates for the posterior 

mean, covariance, and mixture weight
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Σs
−1 Σos

−1 + ∇2Λ μos Δk (11)

μs μos − Σs ∇Λ μos Δk (12)

πs πos
detΣs
detΣos

exp −ΔkΛ μos + 0.5Δk
2 ∇Λ μos

TΣs ∇Λ μos (13)

where ∇ and ∇2 are the gradient and Hessian of the log-likelihood function evaluated at the 

mean of one-step prediction mixture components. The gradient and Hessian can be 

calculated either numerically or analytically given how the conditional intensity is defined. 

To make the posterior estimate a probability distribution, we then normalize the sum of πs s 

to one. Appendix A describes derivation of equations (11)–(13). Here, the mixture of 

Gaussians approximation starts by updating the component covariance matrices and then 

uses these updated values to update the component means and weights. We also check that 

each component’s variance is positive definite, replacing any that are not with their one-step 

prediction values. In Appendix B, we propose a more robust Gaussian approximation 

method which guarantees the updated covariance matrices to be positive definite. In practice, 

when there is a long non-spiking period, we monitor the covariance of mixture components 

to avoid generating non-informative mixture components, for which the variance in each 

dimension significantly grows and the mixture becomes flattened over the space. 

Specifically, we check the mixtures’ largest eigenvalues and trigger a spike-time procedure 

(described below) whenever this eigenvalue exceeds a predefined threshold.

Our update procedure for intervals that contain any spiking is fundamentally different, since 

spikes can cause substantial changes in the filter density and may require a different number 

of mixture components than the one-step prediction density. In this situation, we build a new 

GMM by drawing samples from a proposal distribution and approximating the samples’ 

weights using a new GMM, which may have a different number of components.

The construction of the new GMM starts with a proposal distribution with the same number 

of components as the one-step prediction but with rescaled weights that reflect the likelihood 

of the most recent spiking activity [35], [36]. The new weight of the sth component is 

defined by

βs = L xs; Nk πos (14)

where βs is the un-normalized weight of the sth component. The xs is defined by a function 

of the sth component statistics; here, we set xs to be the mean of corresponding mixture 

component. The samples are drawn from this newly weighted proposal distribution, and the 

individual weights of each sample are defined by

wp = p xp ∣ N1⋯k /∑
s

βsL xp; μos, Σos (15)
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where xp is the pth sample from the proposal distribution, and wp is the sample weight. We 

assume there are P samples in total; we then run the re-sampling step to derive P samples 

with equal weight. For the proposal distribution, we update the one-step mixture 

components’ weights using the likelihood of the observed spiking. We could also adjust the 

mean and covariance of each mixture component in the proposal distribution, using the same 

update rule defined for non-spike time in equations (11)–(13). By incorporating the current 

observation in the proposal distribution, we tend to generate samples at locations where the 

posterior is larger, which potentially reduces the number of particles needed by an order of 

magnitude and avoids weight degeneracy [36].

Here, our focus is on solving the filter problem, assuming that the parameters for the 

observation and state models are known. When these parameters are unknown and need to 

be estimated along with the state process, we may augment these methods using recent 

techniques like SMC2 to dynamically update parameters of the observation and state 

processes [37]. Finally, in building our proposal distribution, we focus on improving the 

proposal density based on the one-step prediction density; for future offline applications, we 

could utilize methodologies like controlled SMC [38] which build proposal distributions that 

are optimal over the whole processing period.

Finally, we run an Expectation Maximization (EM) algorithm along with a Bayesian 

information criterion (BIC) to compute a new GMM with an updated number of components 

that parsimoniously approximates the posterior filtering distribution [39], [40]. To compute 

GMM, we need to know assignment of each particle to different mixture components; this 

information is not available and thus it becomes a latent variable in our GMM fitting 

problem. We thus utilize EM to iteratively estimate the particles’ assignment to mixture 

components and update mixture components. We use BIC to control growth of the mixture 

components; without BIC penalty term, larger number of mixture components provide a 

better fit no matter of the fit significance. Under this EM algorithm, we run expectation (E-

step) and maximization (M-step) steps recursively to update the parameters of a mixture 

given that the number of components is known. In the E-step, the expected assignment of 

each sample to the mixture components is evaluated. In the M-step, mixtures’ parameters -

means, covariances, and component weights - are recomputed given the expected 

assignment. The GMM estimation algorithm iterates between this EM procedure and a 

procedure to modify the number of mixture components as follows:

1. Run the EM to find a GMM with a conservatively large number of mixture 

components, (μs, Ws, πs) s = 1 ⋯ S. The value of S can be a fixed large number, 

or it can be determined based on the number of neurons recorded or the number 

of peaks in the population intensity Λ over the state space.

2. Check all possible pairs of the GMM to find a pair with the lowest effect on the 

full likelihood. If we exclude the si and sj components, we calculate the 

likelihood of remaining components by

f−i, j xp = 1
1 − πsi − πsj

∑
s ∉ si, sj

πsL xp; μs, W s (16)
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L−i, j = ∑
p

logf−i, j xp
(17)

We then pick the pair - (i, j) - that gives the highest value of L−i,j.

3. Replace the removed pair with a new mixture component that maximizes the 

following cost function

max
μe, W e, α∑p

log (1 − α)f−i, j xp + αL xp; μe, W e (18)

where, (μe, We) are the mean vector and covariance matrix of the new mixture, 

which require estimation. α ∈ [0, 1] is the mixing weight between f−i,j(·) and 

L(xp; μe, We). The cost function is convex in α and the maximum occurs in the 

open interval (0, 1) for a known (μe, We). The initial values of (μe, We, α) are 

defined by

μe = πi
πi + πj

μi + πj
πi + πj

μj (19.a)

W e = πi
πi + πj

W i + πj
πi + πj

W j + πiπj

πi + πj
2 μi − μj μi − μj

T
(19.b)

α = πi + πj . (19.c)

In Appendix C, we describe how these terms are estimated.

The weight and shape parameters of the new component are updated by an EM procedure to 

maximize the cost function with the following E- and M-steps.

E-step:

p ce ∣ xp = α∑pL xp; μe, W e
∑pαL xp; μe, W e + (1 − α)f−i, j xp (20)

where p(ce|xp) is the expected assignment of xp to the new mixture component, ce.

M-step:

μe = ∑
p

p ce ∣ xP xp/∑
p

p ce ∣ xp
(21)

W e = ∑
p

p ce ∣ xp xp − μe xp − μe
T /∑

p
p ce ∣ xp

(22)
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α = ∑
p

p ce ∣ xp
(23)

This EM procedure estimates the mean and covariance of only one mixture component plus 

its mixing weight; this suggests that numerical methods like gradient ascent can be utilized 

for simultaneous estimation of the (μe, We, α) parameters.

4. Calculate the reduced model BIC and compare it with the original model. If the 

reduced model BIC is lower than the original one, replace the model with the 

updated one and go to step 2. Stop if the BIC criterion fails to reduce. The BIC 

for a GMM model with S mixture components - with (μs, Ws, πs)s = 1⋯ S 
parameters - is equal to

BICS = − 2∑
p

log ∑
s

πsL xp; μs, W s + ln(P )Dg (24.a)

Dg = S d2 − d
2 + 2d + 1 − 1 (24.b)

where, P is the number of samples and d is the dimension of xp.

We perform steps 1 to 4 iteratively to find a minimum number of mixture components that 

properly approximate the posterior distribution of state at the spike time.

In this section, we developed an approximate GMM filter solution for both non-spiking and 

spike time periods. In Appendix D, we have summarized the processing steps of the 

complete solution. The resultant GMM comprises a minimum number of components which 

generally lie within a small spread and are evenly distributed over space. Through our 

analysis, we found these mixture components tend to better follow the state trajectory than 

do mixture components with a larger spread over space. Other choices of GMM might be 

examined depending on the problem definition.

III. Application to Decoding Spiking Activity of Place Cell Ensemble

We applied the GMM point process filter to neural data consisting of sorted spiking activity 

of ensembles of hippocampal place cells recorded from rats navigating a multi-arm track. 

Due to the close relationship between the firing of hippocampal place cells and spatial 

location of the animal in an environment, spike trains from multiple neurons can be used to 

decode a rat’s location during behavior [30], [12]. Because the rat’s position is also 

measured using video tracking software, we can assess decoding accuracy by comparing 

decoded position to the ground truth video-tracked position. For each of approximately 15 

minute-long recording sessions, we use the first 85% of the session to build encoding 

models for each place cell, and we decode the remaining 15% of the recording session. For 

the 2D decoding, we compare performance metrics obtained with our GMM decoder to 

those obtained with the numerical computation of the exact solution filter, a standard particle 
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filter, and a more traditional single Gaussian approximation. For the exact solution, we 

perform the computation using a coarse (2 cm) grid on both the x and y dimensions.

We also demonstrate 4D decoding, which additionally provides an estimate of the rat’s 

velocity in the x and y direction. Because some place cells demonstrate directional firing - 

place fields that are specific to the rat traversing a region of track in a particular direction 

[40], we can also gain insight into the velocity of the animal by decoding the firing patterns. 

Using the velocity information, we are able to achieve greater accuracy in the decoded 

position compared to the 2D decoding. In the 4D case, we only report the performance of 

the GMM approximation solution, because estimating the exact solution in 4D is infeasible 

even for a coarse resolution in each axis.

A. 2-D Decoding

We use a non-parametric kernel method to build each cell’s place field model in 2D space; 

xk = (xk, yk) where xk and yk are the x and y coordinates at the time index k [41]. The 

conditional intensity per each cell is defined by

g xk, yk ∣ Hk =
∑i = 1

N K xk − xui, yk − yui; sx, sy

Δt ∑j = 1
T K xk − xj, yk − yj; dx, dy

(25.a)

K x, y; sx, sy = 1
2πsxsy

exp − x2

2sx2
exp − y2

2sy2
(25.b)

where xj is the x position of the rat at time step j, yj is the y position of the rat at time step j, 

and there are N spikes at times 0 < u1 < ⋯ < ui < ⋯< uN ≤ T in the training session period, 

(0, T]. Note that we assume conditional intensity is stationary over the course of an 

experiment; this means we can use a pre-defined time window to estimate g(xk, yk|Hk). 

Given this assumption, g(xk, yk|Hk) ≡ g(x, y). K is a two-dimensional Gaussian-shaped 

kernel with a smoothness over space defined by the parameters (sx, sy) – sx and sy 

correspond to the kernel standard deviations in x and y directions. sx and sy represent a cell’s 

place field and are set empirically given the cell response. The occupancy term, a measure of 

the time the rat spends at a specific coordinate, is defined by the same two-dimensional 

Gaussian kernel with a different smoothness term, (dx, dy). Δt is the observation update time, 

which is defined by the length T of the training session period divided by the number of 

observed samples in this period. In Appendix E, we show several examples of place cell 

spatial receptive fields as well as the likelihood function for non-spike intervals. Generally, 

dx and dy are set equal to or slightly larger than sx, sy to account for variability of the rat 

occupancy over the maze. Here, we set sx and sy to 6 and set dx and dy to 6. A more accurate 

estimation of these parameters can be attained by maximizing the likelihood of place cells 

activity using the g(xk, yk|Ht) model, but this is beyond the scope of this research.

The state process evolution is defined by
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xk
yk

= 1 0
0 1 ×

xk − 1
yk − 1

+ q q N 0
0 , 6 0

0 6 (26)

where q is the process noise. The covariance matrix terms of q were estimated from the rat’s 

movement statistics during the training session. Namely, they were set close to the average 

covariance of speed in the x and y directions during periods of rat mobility. The average x − 

y covariance term was close to zero, and thus it is set to zero in the process noise covariance 

matrix in equation (26). The movement model defined here does not consider maze 

topology; in Appendix F, we discuss an addition to the decoder model that incorporates 

maze topology. Note that the 2-D random walk model proposed here provides minimal 

information about the exact movement trajectory of the rat; thus, we expect the observation 

process (the population spiking activity) provides enough information for the decoder to 

accurately estimate the rat movement trajectory. As previously mentioned, maze topology 

may also be factored into the observation process. However, building the exact model of the 

movement trajectory is complex, and is beyond the scope of this paper. We have defined the 

state model so that the observation process provides most of the information for decoding, 

and the state equation serves to constrain the movement to smooth trajectories. Note that 

although the state equation can be time varying, defining it as linear and state-independent 

allows us to build a more computationally efficient algorithm.

The approximate GMM, exact solution, particle filter, and Gaussian approximation were 

used to decode the position of a rat during the final 15% (2.2 minutes) of a 15-minute 

recording session. This testing dataset includes 4099 time points at a time resolution of 33 

milliseconds (Δt = 0.033). The spatial resolution for the numerical solution of the exact filter 

in both the x and y dimensions is 2 cm; given the maze dimension, we have 50 samples in 

the x direction and 58 samples in the y direction. For the approximate GMM solution, we 

draw 4000 particles at each spike time and begin with 15 mixture components. The number 

of EM iterations for the first step of the EM algorithm is 250, and for the following steps is 

50. For the Gaussian approximation, we use the same procedure with only a single 

component.

Table I shows the performance of different solutions in terms of the root mean squared error 

(RMSE) in cm, the percentage of time that the 95% highest posterior density (HPD) region 

[42] of the estimated filter density contains the rat’s true position (95% HPD coverage), the 

average number of mixtures for the approximate GMM solution, and the 95% HPD area 

normalized by the 95% HPD area of the exact solution. Table I also shows the total runtime 

per each method; this time includes all necessary processing steps required to estimate the 

rat position posterior distribution for each processing timestep including conditional 

intensity of each cell using the non-parametric kernel – equation (25).

Figure 1 illustrates the decoding accuracy summary reported in Table I. At both time points, 

the Gaussian approximation tends to have a large covariance and provides a larger bias in 

estimating the rat’s position. The approximate GMM estimate is close to the exact solution; 

the mixture components better capture the rat’s actual position and the GMM estimate has a 

similar density to the exact solution. For this dataset, the RMSE for the (standard) particle 
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filter is larger than GMM method, using the same number of particles. For the particle filter; 

the lower performance is likely due to the inability of this filter to capture multimodal 

distributions [36]. In Appendix D, we replicate the performance of these methods using data 

from an additional rat and multiple sessions.

B. 4-D Decoding

We again use a non-parametric kernel method similar to that used in equation (22) for 2D 

decoding to build each cell’s conditional intensity in 4D given by xk = (xk, yk, vx,k, vy,k), 

where (vx,k, vy,k) represents the velocity of the rat’s movement in the x and y directions 

respectively, computed using first differences of positions. The state equation is defined by

xk
yk
vx, k
vy, k

=

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

×

xk − 1
yk − 1

vx, k − 1
vy, k − 1

+ q q N

0
0
0
0

,

6 0 0 0
0 6 0 0
0 0 12 0
0 0 0 12

(27)

where Δt is the update time step, and q is the process noise. For the covariance matrix terms 

of the process noise q, we assume that the position and velocity state variables are 

uncorrelated. We use the same covariance terms for position as were used in the 2D 

problem, and we set the velocity covariance matrix terms based on the descriptive statistics 

of velocity during periods of movement in the training period.

The last row of Table I shows the decoding performance in 4D on the same data set used in 

the 2D decoding problem, also performed with 4000 particles. The decoding performance 

over position (x, y) surpasses that of the exact 2D solution, consistent with the notion that 

place cells also encode velocity.

Figure 2 shows the 4D decoder result at a single time point. Mixture components are 

centered around the rat’s actual position (left) and velocity (right), consistent with the 

decoder accurately capturing position and velocity.

IV. Computational Efficiency

The computational complexity of numerical integration of the exact filter solution [9] in a d 
dimensional space through Riemann summation is on the order of O(n2d), where n is the size 

of the partition in each dimension. The factor of 2 in the exponent comes from the one-step 

prediction density computation, which requires for each value of xk integrating over all 

values of xk−1. This is the rate limiting step for complexity.

In contrast, for the Gaussian approximate filter [35], the computation of the one-step 

prediction distribution only requires matrix multiplication using a one step-prediction matrix 

that grows linearly with d. Conservatively, this has a computational complexity on the order 

of O(d3).

For the Gaussian mixture model approach described here, computation of the one-step 

prediction distribution still only involves matrix multiplication, but now for each mixture 
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component separately. With s mixtures, this would be conservatively of order O(sd3). While 

s could depend on the dimensionality of the problem in principle, we are mostly only 

interested in posterior solutions that have a limited number of distinct peaks. For the GMM 

approach, the limiting step for computational complexity may come from the Monte Carlo 

estimation of the posterior at the spike times, rather than the one-step prediction 

computation. In that case, the computation would scale with the number of particles, p, used 

for estimation. Once again, p could scale with dimensionality, but if the posteriors in which 

we are interested have a limited number of peaks, we should be able to limit the number of 

particles used.

We also benefit from the closed form solution in non-spike time points in our proposed 

solution. The GMM method may excel when decoding with finer time resolutions so that the 

number of time steps that include spikes is relatively small.

The GMM method gives a parametric distribution at each time point. Using parametric 

distributions, the time required to complete post-processing computations – e.g., distribution 

statistics such as mean, variance, or mode – is significantly less than that of the exact 

solution. These calculations are embedded in the GMM computation cost, and as a result, 

the GMM method becomes a more suitable method for real-time applications.

A. Computational Cost for Our Example Decoders

One goal in developing more computationally efficient decoders for problems with multiple 

dimensions is to enable real-time estimation and closed-loop experiments that use the 

decoder output to influence stimulation. While we have yet to perform the optimization of 

code and computing resources to achieve real-time estimation, a simple comparison on our 

existing system suggests that this GMM can reduce computational cost substantially.

Here we present results from our current algorithms written in MATLAB 2016a and run on a 

Dual Core Intel i7 3.4 GHz processor with 64 GB RAM. We further used the MATLAB 

profiler to determine the computational time of different processing steps in the numerical 

computation of the 2D exact and GMM solutions. We focused on the computation of the 

one-step prediction density and the Monte Carlo estimation of the posterior, excluding the 

computation time for the point process intensities and likelihoods. We are concurrently 

working on the development of modeling methods to make these components more 

computationally efficient. Excluding the conditional intensity estimation, the exact solution 

with 2 cm resolution in x and y directions – 58 × 50 grid points – takes about 7.476 seconds 

to run per time point. The processing time using the GMM method using 2900 particles (a 

number equal to the number of grid points in the exact solution) for a spike interval is about 

7.745 seconds. The GMM processing time for a non-spike time step is much faster: 0.186 

seconds. With 1-msec time resolution, 93.2% of intervals are non-spike timesteps. While we 

must run the exact solution for every time point, we only need to run the full GMM method 

on 6.8% of data points. The average computational time is 682 msec per each time point 

using the GMM method compared to 7.476 seconds in the exact method. This is about 11 

times faster than the exact solution.
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These computational savings will scale up for higher dimension problems. For the 4D 

decoder, the GMM average computation time using 4000 particles is about 1.21 seconds, 

0.285 seconds on non-spike times and 13.9 seconds on spike times, where the numerical 

exact decoder is computationally infeasible.

V. Discussion

Point process filtering has been successfully applied to a wide variety of neural data analysis 

problems, including decoding biological and behavioral signals from population spiking [8], 

[9], [12], tracking adaptation in neural coding properties [11], [32], and estimating 

parameters of biophysical neural models [9], [11], [33], [32]. With the development of new 

experimental methods and increasing interest in real-time and closed-loop experiments, the 

need for accurate and computationally efficient estimation algorithms from neural spiking 

data has grown tremendously. Here, we present a novel algorithm for solving the point 

process filter problem that combines computational benefits of approximate Gaussian 

methods with the potential accuracy in the face of multimodal filter distributions and 

nonlinear signal dynamics of exact numerical solutions.

The algorithm achieves these benefits by combining a Gaussian mixture model 

approximation to the filter distribution with an intermittent Monte Carlo sampling procedure 

that need only be conducted in intervals where the number of mixture components is likely 

to change substantially. Here, we chose to perform the resampling and update the number of 

mixtures only at times when spikes occurred because each spike can cause large changes in 

the filter density. Alternatively, we could have selected other periods for resampling; for 

example, we might resample only at periods where the spiking was unexpected given the 

current filter distribution, or we could be more conservative by resampling during some 

subset of non-spike times as well.

Our proposed algorithm improves the computational efficiency of the traditional point 

process filter procedure (the exact solution) in three ways. First, the GMM approach makes 

the integration step analytically solvable. Second, the update procedure at non-spike times 

has approximate analytic solutions that require simple computations. Finally, the more costly 

sampling procedure and computation of the appropriate number of mixture components 

occurs over only a fraction of time points. Though not explored here, these more costly steps 

are also readily parallelizable [43], allowing for the use of multicore computers or GPUs.

We applied the approximate GMM to decode the position (2D and 4D decoders) and 

velocity (4D decoder) of a rat based on the firing of hippocampal place cells. For 2D 

decoding, we compared performance metrics for decoded position using the approximate 

GMM with those obtained using the exact solution, standard particle filter, and the Gaussian 

approximation. Performance metrics were slightly better with the exact solution, but using 

more particles for approximate GMM may bridge that gap, and importantly the approximate 

GMM has the potential to be less computationally costly than the exact solution. The 

Gaussian approximation shows a larger RMSE and lower 95% HPD coverage that reflect 

bias and increased variability in the estimated posterior filter distribution. For 4D decoding, 

which involved estimation of position and velocity simultaneously, only the approximate 
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GMM was used, as 4D decoding would be computationally infeasible with the exact filter. 

The decoding accuracy in terms of RMSE is comparable to the exact solution in the 2D 

problem. The 95% HPD coverage in 4D decoding reaches 88%, which is close to the exact 

solution in 2D. Using a larger number of particles may further increase the HPD coverage of 

the 4D approximate GMM.

The algorithm we developed here is broadly applicable to the general point process filter 

problem in high-dimensional spaces. The algorithm may be particularly useful for processes 

that produce complex and multi-modal distributions. While we foresee this approach being 

useful for a number of applications, one immediate direction we are pursuing is its use in 

developing closed-loop experiments. Particularly, we are interested in decoding replay 

events which will be used to stimulate a hippocampal population to better understand the 

role of replay in rule learning and memory formation.

There are several modeling challenges which might be investigated in future research. 

Methods for optimally selecting the initial number of mixture components in the EM 

algorithm would be helpful. Algorithms that can modify the number of mixture components 

in batch rather than sequentially would also improve performance. We demonstrated our 

approach using a linear state equation process; extending the idea developed here for non-

linear state processes would be important for task with complex state dynamics. Further, 

extending this algorithm to datasets with more state variables (such as decoding during an 

arm reaching task) may highlight the pros and cons of this decoding framework.

VI. Conclusion

In this research, we proposed a computationally efficient point-process filter solution for 

multi-dimensional spaces. The methodology has been applied to decode a rat movement 

trajectory in a W-shaped maze. For the 2D decoding, we estimate the rat position given an 

ensemble of spiking activity. For the 4D decoding, we estimate the rat position and 

movement velocity given the same ensemble of spiking activity. In the 2D problem, we 

compared the performance of the proposed approximate GMM filter with that of an exact 

filter, standard particle filter, and Gaussian approximation in 2D. The approximate GMM 

solution shows a similar performance to the exact solution, whereas its computational cost is 

significantly lower than the exact solution. The Gaussian approximation shows a large 

RMSE and lower 95% HPD coverage that suggest a poor estimation of the posterior 

distribution. For the 4D decoding problem, the performance on position trajectory is close to 

the exact solution in the 2D problem. The 95% HPD coverage in 4D decoding reaches 

87.8%, which is close to the exact solution even with a small number of particles used in this 

analysis. We utilized GMM to approximate multi-modal distributions and proposed a 

computationally efficient update rule to estimate the filter solution on different observation 

times. In approximating the posterior distribution, we used a hybrid update rule given 

different dynamics of the observed signal. We used a modified Gaussian approximation on 

the non-spiking time points, and a Monte Carlo method combined with revised GMM 

estimation procedure on the spike time points; using this hybrid methodology, we are able to 

build a fast decoder algorithm without losing accuracy. The proposed methodology is 
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applicable to the general filter problem in high-dimensional spaces, specifically for 

observation processes showing a complex and multi-modal distribution.
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Appendix

A. Gaussian Approximation on a Non-Spike Time

For the sth mixture component, we require to approximate the following term with a new 

mixture component

πsL xk; μs, Σs ≅ πosL xk; μos, Σos exp −Λ xk Δk (A.1)

We first start by taking logarithm of both sides of (A.1).

− 1
2 xk − μs

TΣs
−1 xk − μs

≅ − 1
2 xk − μos

TΣos
−1 xk − μos − Λ xk Δk + E

(A.2)

where, E consists of all other terms not including xk. To find the update rule for the mixture 

mean and covariance, we take the first and second derivative of both sides of (A.2) with 

respect to xk. The first derivative is defined by

−Σs
−1 xk − μs = − Σos

−1 xk − μos − ∇Λ xk Δk (A.3)

and the second derivative is defined by

Σs
−1 = Σos

−1 + ∇2Λ xk Δk (A.4)

We assume that (A.1) and (A.2) are valid for any values of xk; thus, we set xk to μos [32]. By 

setting xk to μos, we can get equations (11) and (12). Here, we need to update the covariance 

matrix first and then the mean vector. The other possible solution is setting xk to μs; under 

this assumption, we get another solution where the update rule starts by updating the mean 

and then covariance matrix.

We also need to estimate updated mixing weight, πs. We assume that the likelihood of the 

new normal distribution should be the same of the right over possible xk including μos; 

though it can be estimated on any other point, μos represents the most probable point of the 

one-step prediction and thus update rule for mixing weight - πs - is defined by sett xk to μos

πs det 2πΣs exp − 1
2Δk

2∇ΛΣs∇Λ xk

= πos det 2πΣos exp −Λ μos Δk
(A.5)
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where, the left side is calculated using the multivariate normal with mean and covariance of 

μs and Σs. The update rule for mixing weight defined in equation (13) is derived by (A.5).

B. Revised Gaussian Approximation With Guaranteed Positive Definite 

Covariance

When Gaussian approximation is used during non-spike time periods to update the posterior 

distribution, it is important to ensure that the covariance estimate of posterior mixture 

components remains positive-definite. The conditional intensity estimation and likelihood 

function are multi-modal, which may cause the posterior covariance estimation of some of 

the mixture components to be non-negative. One solution is to avoid updating these 

mixtures, but a better solution is to control eigenvalues of these covariance matrices to 

ensure all are positive.

Here, we will discuss the idea for one mixture component, and its extension for multiple 

mixtures is trivial. The objective is to approximate the posterior using a multivariate 

Gaussian with a guaranteed positive-definite covariance matrix. Logarithm of the posterior is 

defined by

logxk ∣ N1⋯k ∝ logxk ∣ N1⋯k − 1 + logexp −ΛkΔt (B.1)

Now, we use Taylor expansion around mk|k−1 to approximate the posterior distribution with 

a Gaussian distribution

log xk ∣ N1⋯k ∝

− 1
2 xk − mk ∣ k − 1

T Σk ∣ k − 1
−1 xk − mk ∣ k − 1 ⋯

− ∇Λk mk ∣ k − 1 xk − mk ∣ k − 1 Δt⋯
− 1

2 xk − mk ∣ k − 1
T∇2Λk mk ∣ k − 1

× xk − mk ∣ k − 1 Δt + C

(B.2)

where ∇ and ∇2 are the gradient and Hessian of the conditional intensity at mk|k−1. Variable 

C is the remainder of the Taylor series.

To make sure that the posterior covariance is positive-definite, we use the following 

approximation.

log xk ∣ N1⋯k ∝

− 1
2 xk − mk ∣ k − 1

T Σk ∣ k − 1
−1 + r ∇2Λk mk ∣ k − 1 Δt

× xk − mk ∣ k − 1 − ∇Λk mk ∣ k − 1 xk − mk ∣ k − 1 Δt…
− 1

2(1 − r) xk − mk ∣ k − 1
T ∇2Λk mk ∣ k − 1

× xk − mk ∣ k − 1 Δt + C

(B.3)

Equation (B.3) can be rewritten as
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log xk ∣ N1⋯k ∝ − 1
2 xk − mk ∣ k − 1

T

× Σk ∣ k − 1
−1 + r ∇2Λk mk ∣ k − 1 Δt xk − mk ∣ k − 1

− ∇Λk mk ∣ k − 1 + 1
2(1 − r) xk − mk ∣ k − 1

T

× ∇2Λk mk ∣ k − 1
× xk − mk ∣ k − 1 Δt + C

(B.4)

The update rule for the posterior covariance matrix is defined by (11) – we assume the 

posterior is multivariate normal with mean mk|k and covariance Σk|k. Here, we work to 

rewrite the right side of equation (A.4) using a multivariate normal distribution with mean 

mk|k and covariance Σk|k.

Σk ∣ k
−1 = Σk ∣ k − 1

−1 + r ∇2Λk mk ∣ k − 1 Δt (B.5)

where we can find the largest r – 0 < r < 1 – that keeps the updated covariance positive 

definite. We check the eigenvalues of Σk|k, and select the largest value of r when all the 

corresponding eigenvalues are positive or larger than a minimum threshold. Given the 

posterior covariance, we build the update rule for the posterior mean by

mk ∣ k = mk ∣ k − 1 − Σk ∣ k ∇Λk mk ∣ k − 1 + 1
2(1 − r)

× ∇2Λk mk ∣ k − 1 mk ∣ k − mk ∣ k − 1 Δt
(B.6)

Solving equation (B.6) gives

mk ∣ k I + 1
2(1 − r)Σk ∣ k ∇2Λk mk ∣ k − 1 Δt

= ⋯mk ∣ k − 1 − Σk ∣ k

× ∇Λk mk ∣ k − 1 − 1
2(1 − r)∇2Λk mk ∣ k − 1 mk ∣ k − 1 Δt

(B.7)

Thus, we first run equation (B.5) to estimate the covariance matrix and then run equation 

(B.7) to update the posterior mean. Note that by setting r to zero, the posterior covariance 

becomes equal to the one-step covariance matrix. On the other end, an r equal to one causes 

a smoother change for the likelihood function around mk|k−1, which is the usual behavior 

when the Gaussian approximation is utilized.

C. Mean and Variance Update Rule

Here, we want to replace the two mixture components (μi, Wi, πi) and (μi, Wi, πj) with a 

single mixture component with mean and covariance parameters equal to those derived by a 

mixture model constructed using these two mixture components. These two mixture 

components are a subset of larger set of mixture components and thus the sum of πi and πj – 

their mixing weights - is not necessarily one. α which is the sum of πi and πj represents the 
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weight of the new mixture component. We first build a new GMM consisting of these two 

mixtures with normalized mixing weights of 
πi

πi + πj
 and 

πj
πi + πj

. This new GMM distribution 

– represent by Xe random variable, is defined by

Xe ∝ πi
πi + πj

N μi, Σi + πj
πi + πj

N μj, Σj (C.1)

Using this distribution, we can define the mean and covariance of Xe. Mean of Xe is defined 

by

μe = E Xe = πi
πi + πj

μi + πj
πi + πj

μj (C.2)

which is the mean over space given by Xe distribution. Xe covariance is defined by

Σe = E XeXe
T − μeμeT = πi

πi + πj
Σi + μiμiT

+ πj
πi + πj

Σj + μjμjT − μeμeT
(C.3)

where, by replacing μe from (C.1) - or (19.a), we get Σe defined in (19.b).

Now, μe and Σe define the mean and covariance of the new mixture component. This 

component weight - α - is the sum of πi and πj.

D. Complete Solution Processing Steps

Table II provides pseudo-code detailing each processing step of the filter solution on both 

spike and non-spike time points. In Table II, other parameters of the solution are reset to 

their initial value at a new time step.

E. Place Cell Receptive Fields

Figure 3 shows several examples of place cell spiking patterns. For each cell, we display the 

location of the rat at the time of each spike as well as the smoothed estimates of the 

contribution to the spatial likelihood in 2D at a spike time for that neuron. As established in 

prior literature, place cells’ receptive fields have diverse locations, extents, and topologies, 

and are often not unimodal [13], [14], [44]. This suggests that the posterior estimate of the 

position given these cells’ spiking activity can also have a multi-modal distribution [45].

Figure 4 shows the likelihood function over space on non-spike intervals. The likelihood is 

non-zero over the entire maze and becomes relatively flat when there are many place cells 

covering the maze area. Note that we have less than 100 putative cells in our experiments, 

out of which a limited number of cells show consistent neural activity and distinct receptive 

field activity. When there are many place cells, the likelihood on non-spike times becomes 

flat, suggesting that the posterior estimate simply broadens at non-spike times.
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F. Including Maze Information in the Decoder

We modeled the rat’s movement as a random walk over 2D space, and thus the movement 

model does not take into account maze topology. However, in reality, the rat’s position is 

constrained to the track area. Although it is possible to incorporate maze boundaries into the 

movement model, we prefer to include minimal information about it in our encoder model. 

This allows us to see how much information is embedded in the place cells spiking activity, 

and how well our decoder can trace the rat’s movement with minimal assumptions about its 

movement pattern. However, we imposed the maze topology in the likelihood function. To 

do this, we define a penalty term which becomes a small number (≪1) for any point outside 

the maze, and equal to one for any point inside the maze. The likelihood function is then 

multiplied by this value. This modified likelihood function is defined by eq. (F1), (F2) 

shown at the bottom of this page.

L xk; Nk ∝ L xk; Nk g xk (F.1)

g(x) =
1 x ∈ xk:xk are the coordinate of points inside the maze
εx ∉ xk:xk are the coordinate of points inside the maze (F.2)

where g(x) is the penalty term. The penalty term pushes the posterior estimate to the area 

inside the maze, and as result reflects the maze topology.

Figure 5 shows the penalty area, which includes all coordinates farther than a pre-defined 

minimum distance (3.5 cm) from the training trajectory points. The penalty term was set to 

10−6 for both 2D and 4D decoders. The term only carries information about the maze 

topology, not velocity constraints.

G. Performance Results in Multiple Datasets

Table III shows the decoding results for neural data from two rats over four experimental 

sessions. For each rat, we assessed the decoding algorithm on two separate recording 

sessions, which occurred on different days and may include distinct neural populations. The 

results for rat 2, session 1 are the ones reported in Table I. The performance results for the 

additional rat and sessions are consistent with the general findings presented in the main 

text.

H. Source Code and Sample Data

A copy of the source code written to implement the decoding methodologies presented in 

this paper are available at the GitHub repository https://github.com/Eden-Kramer-Lab/Multi-

Dimensional-Decoder. The repository also includes a copy of the data analyzed in this paper. 

Beside the decoding result, the code provides performance metrics of different methods. The 

source code also provides options to change number of particles in the particle-filtering and 

GMM method, and percentage of training and testing dataset. In GitHub repository, we also 

included a movie, which shows the decoding result for a complete session of the experiment.
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Fig. 1. 
2-D decoding result using three different estimation methods at two different time points (a) 

and (b). The leftmost figures show the instantaneous likelihood at that time point given the 

observed spiking activity. The second figures from left show the exact solution computed 

using a 2 × 2 cm grid. The third figures show the decoding result using the Gaussian 

approximation, and the rightmost figures show the approximate GMM solution. Each + 

represents the mean of a mixture component, and numbers in parentheses denote the number 

of mixtures. The red circle denotes the rat’s actual video-tracked position on the maze, and 

the grey lines represent the rat’s entire path throughout the session. In these figures, areas 

with a higher likelihood are shown in yellow while areas with a lower likelihood are shown 

in dark blue.
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Fig. 2. 
4-D decoding result using the approximate GMM filter. The left panel shows the marginal 

distribution over position, and the right panel shows the marginal distribution over velocity. 

The red circles denote the rat’s actual position and velocity. The + signs indicate the means 

of the 11 mixture components for this time point.
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Fig. 3. 
Spiking patterns of multiple place cells and their corresponding likelihood functions. (a) 

Spiking pattern of three different place cells. Each cell fires on a different section of the 

maze, and its receptive field has a different topology. In the figure, blue marks represent 

spikes and gray curves are the rat’s movement trajectory through the maze. (b) The 

contribution to the likelihood function over position when each of these place cells fire. The 

topology of place cells’ receptive fields is different, and they are not necessarily unimodal.
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Fig. 4. 
Likelihood function on non-spike times. The likelihood expands over the whole maze, and it 

is non-zero on almost every point on the maze. Note that because of the penalty term, the 

likelihood everywhere outside of the maze is close to zero.
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Fig. 5. 
The red area shows the penalty area used in the likelihood function to impose a topology 

constraint. In the penalty area, the penalty term is set to a small number.
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TABLE I

Performance Metrics Using Different 2-D and 4-D Decoder Methods

Method RMSE2D RMSE4D 95% HPD 
Coverage

Average 
Mixtures

95% HPD 
Normalized

Area Total 
Runtime (Sec)

Exact [9] 14.03 - 91.04% - 1 1.48e5

Particle Filter [31] 19.95 - NA - NA 2.01e5

Gaussian [15] 27.3 - 62.39% i 1.55 1.75e5

Approx. GMM (2D) 17.21 - 85.67% 11.56 1.41 1.99e5

Approx. GMM (4D) 15.66 18.68 87.89% 10.91 1.96 2.48e5

RMSE is a measure of error between the decoded and actual rat position. 95% HPD is the coverage of the 95% highest probability density region of 
the computed posterior distribution of the rat’s actual position. The last row shows performance of the 4D GMM decoder in both 2D and 4D 
spaces. The gaussian approximation uses our proposed methodology, limited to a single gaussian component at each time point. total runtime 
provides the whole processing time to run the decode over all 4099 sample data points. Note that the exact solution runs with a coarse resolution of 
2 cm over each axis.
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TABLE II

Complete Solution Processing Steps for Time Step k

Initialization:

 set T to 1000. T is dispersion threshold

1 for s from 1 to S do

  μos = A μs

  Σos= A ΣsA’ + Q

  πos = πs

 end for

2 if time step k is a non-spike time then

  call equations (11)–(13) to update (μs, Σs, πs) for time k

  check eigenvalues of Σs matrices and find the largest one

 end if

3 if the largest eigenvalue is larger than T then

  set mode to 1

 else if

  set mode to 0

 end if

4 if time step k is a spike time or mode is equal to 1 then

 call equation (14)

 call equation (15)

 call the EM algorithm, equations (16)–(23)

 build new (μs, Σs, πs) for time k

 end if

5 return new mixture components (μs, Σs, πs) for time k
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TABLE III

Performance Result Using Multiple Data Sessions

Data (Rat, 
Session, # Cell)

Exact (RMSE, 
HPD%)

Particle Filter 
(RMSE)

GMM (RMSE, 
HPD%)

Gaussian Approximation 
(RMSE, HPD%)

4D GMM (RMSE, 
HPD%)

(1,1,63) 13.8, 86 14.8 15.1,89 24.9, 67 13.8, 87

(1,2,54) 24.1,74 27.3 26.2, 65 48.0, 16 22.7, 83

(2,1,84) 14.0, 91 20.0 17.2, 86 27.3, 62 15.7, 88

(2,2,84) 25.7, 79 26.8 26.6, 72 27.6,71 26.3, 79

2D and 4D decoding results using different methodologies are presented for 4 different datasets (2 rats, 4 sessions). Sessions 1 and 2 for rat 1 occur 
on different days and thus we might have a different number of cells. The number of cells identified from the first rat in the second session dropped 
from 63 to 54.
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