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Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical

approaches) find widespread use in simulating dynamical processes in molecular

systems. For large chemical systems, however, which involve potential energy surfaces

(PES) of general/arbitrary form, it is usually the case that only classical molecular

dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at

least for chemical processes involving dynamics on a single PES (i.e., within a single

Born–Oppenheimer electronic state). This paper reviews recent developments in an

approach which extends standard classical MD methods to the treatment of

electronically non-adiabatic processes, i.e., those that involve transitions between

different electronic states. The approach treats nuclear and electronic degrees of

freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity

of standard MD), and provides “quantization” of the electronic states through

a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be

capable of treating extreme regimes of strong and weak coupling between the

electronic states, as well as accurately describing coherence effects in the electronic

DOF (including the de-coherence of such effects caused by coupling to the nuclear

DOF). A survey of recent applications is presented to illustrate the performance of the

approach. Also described is a newly developed variation on the original SQC model

(found universally superior to the original) and a general extension of the SQC model to

obtain the full electronic density matrix (at no additional cost/complexity).
1 Introduction

Reaction rate theory, and the theory of chemical dynamics more generally,
provides the foundation for a quantitative description of many important prac-
tical problems in the chemical sciences. It is also an intrinsically fascinating
subject from the perspective of basic physical theory because it involves quantum
and classical mechanics in almost equal measure, one or the other being more
useful depending on the problem of interest. Quantum mechanics (QM) is of
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course always correct (it is the “theory of everything” in molecular science), but
accurate calculations with it are limited to molecular systems that are not too
large (although this size continues to increase with time) or special forms of the
quantum Hamiltonian. Classical mechanics (CM), on the other hand, while only
approximate on the molecular scale, can be applied to extremely large systems
with essentially arbitrary interaction potentials. Semiclassical (SC) approaches,
which use classical-like approximations to quantum mechanics, try to incorpo-
rate some of the advantages of each (the correctness of QM with the applicability
of CM), and by providing insight into the classical limit of quantum theory it also
nds use in developing various analytic approximations. One sees examples of all
these approaches in the papers presented for this Discussion.

As a simulation tool, though, SC methodologies are still considerably more
difficult to implement than a completely classical treatment, so classical molec-
ular dynamics (MD) remains the most widely used and oen the only applicable
approach for simulating the dynamics of large molecular systems. For this
reason, in the last 2–3 years we have been exploring the question of how far one
can go with a more-or-less standard classical MD simulation approach in treating
electronically non-adiabatic processes. Electronic non-adiabaticity is, of course,
a key feature in many important molecular processes—about 30 percent of the
papers in this Discussion deal with electronically non-adiabatic dynamics—so if
such an approach can treat a wide class of these processes to an acceptable level of
accuracy, it would be a useful addition to theoretical capabilities.

The purpose of this paper is to review such an approach for treating processes
involving electronically non-adiabatic dynamics,1–8 one which involves some very
old ideas, but with some more recent updates that have made it remarkably
accurate for a variety of applications that have been carried out to date. Rather
than a “mixed quantum–classical” approach (i.e., electrons treated quantum
mechanically and nuclei classically), it treats the dynamics of all degrees of
freedom (DOF), nuclear and electronic, by classical mechanics, thus providing
a dynamically consistent (albeit classical) description of their interaction.

The two key ingredients that make up the overall approach are (i) how elec-
tronic DOF are described by classical mechanics, and (ii) how electronic state
information is recovered from a classical MD simulation. The rst step uses the
Meyer–Miller9 (MM) classical representation for electronic DOF (summarized in
Section 2) together with the standard classical description of the nuclear DOF,
and the second uses a symmetrical quasi-classical (SQC) model1,2 to “quantize”
the electronic DOF initially and nally (described in Section 3). The overall
approach will thus be referred to as SQC/MM, and its most attractive feature
(apart from how well it works) is its simplicity and straight-forward imple-
mentation via standard classical MD simulation protocols. A review of some of its
recent applications is given in Section 4, and further/future model development is
discussed in Section 5.

It is worthwhile noting that the MM vibronic (i.e., nuclear + electronic)
Hamiltonian—which can be derived in various ways, heuristic or more
rigorous10—is actually an exact Hamiltonian in the sense that if the classical
nuclear and electronic coordinates and momenta variables were all replaced by
quantum mechanical operators in the standard way, and the resulting Hamilto-
nian operator used in the Schrödinger equation, this would provide an exact
description of the quantum vibronic dynamics. Thus, the approximation is that
10 | Faraday Discuss., 2016, 195, 9–30 This journal is © The Royal Society of Chemistry 2016
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both nuclear and electronic DOF are treated classically, i.e., by computing clas-
sical trajectories in these nuclear and electronic variables.

The symmetrical quasi-classical (SQC) model for extracting electronic state
information from such classical trajectories (in order, e.g., to calculate transition
probabilities from one electronic state to another) evolved from the quasi-clas-
sical (QC) trajectory method for obtaining ro-vibrational state information from
classical trajectory calculations (on a single potential energy surface); this is
a natural way to proceed since the electronic DOF in the MM representation are
harmonic oscillators. Key to its success has been some useful “tweaks” that have
been added to the original QC technique in the intervening years: the “symmet-
rical” idea suggested11 many years ago but not pursued, Stock's suggestion12,13 of
including less than the full zero point energy (ZPE) in the “electronic oscillators”
of the MM model, and Bonnet et al.'s14 introduction of window functions of
reduced size (though not applied symmetrically). We also emphasize in the
presentation of Section 3 that the SQC model can be thought of as the “classical
Wigner model” (which emerges from various semiclassical approaches), provided
that the Wigner functions are dened appropriately.
2 Classical representation of the electronic
degrees of freedom

The Meyer–Miller (MM) model provides a classical description of the electronic
degrees of freedom for a nite set (F, say) of electronic states. It has been
described and reviewed many times, so only its salient features will be discussed
here. In its original presentation, the MM model9 characterizes each electronic
state k by a pair of classical harmonic oscillator action-angle variables (nk, qk), and
if (P, R) are the nuclear momenta and coordinates, the MM classical Hamiltonian
for the nuclear and electronic DOF is

HðP;R; n; qÞ ¼ jPj2
2m

þ
XF
k

nkHk;kðRÞþ

2
XF
k\k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ g

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk0 þ g

p
cos

�
qk � qk0

�
Hk;k0 ðRÞ; (1)

where the F � F diabatic electronic matrix {Hk,k0(R)} (assumed here to be real
symmetric) depends parametrically on the nuclear coordinates and in principle
comes frommany-electron quantum chemistry. (Of practical importance, there is
an equivalent adiabatic version derived in Appendix B of the original MM paper.9)
The electronic and nuclear dynamics are determined by computing classical
trajectories from this Hamiltonian (by integrating Hamilton's equations) for
electronic and nuclear DOF. This was the primary goal of the MM approach: to
have a consistent dynamical description of electronic and nuclear DOF that
treated both in an equivalent framework.

In MM's heuristic derivation of eqn (1), the parameter g was inserted into the
off-diagonal coupling elements and taken to be 1

2 on the basis of semiclassical
considerations (e.g., since Bohr–Sommerfeld quantization gives half-integer
values of the classical action). This effectively provided each electronic DOF with
a half-integer quantum of ZPE, benecially causing there to be a dependence of
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 9–30 | 11
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nal action variables {nk} on the initial angles {qk}. Stock12,13 later found in some of
his applications that better results were obtained by choosing g < 1

2 (suggesting
a “best value” of z1

4) so as to incorporate only a fraction of the full ZPE. We have
also generally viewed g as an empirical parameter (chosen between 0 and 1

2),

though the value

ffiffiffi
3

p � 1
2

z0:366 has some theoretical justication,2 and a very

similar value of g ¼ 1
3 arises naturally in our new SQC windowing model (dis-

cussed below) from purely geometric considerations;7 either of these values is
essentially optimal depending on the windowing model employed.

In nearly all applications of the MM model, Hamilton's equations have not
been integrated directly in action-angle variables {nk, qk} themselves, but rather in
the Cartesian variables {pk, xk} that are related to them via the following canonical
transformation,

pk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnk þ gÞ

p
sinðqkÞ (2a)

xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnk þ gÞ

p
cosðqkÞ; (2b)

in terms of which the Hamiltonian of eqn (1) becomes

HðP;R; p; xÞ ¼ jPj2
2m

þ
XF
k

�
1

2
pk

2 þ 1

2
xk

2 � g

�
Hk;kðRÞ

þ
XF
k\k0

�
pkpk0 þ xkxk0

�
Hk;k0 ðRÞ: (3)

The procedure is thus to specify initial conditions in terms of action-angle vari-
ables (see below), change to the initial conditions for the Cartesian variables via
eqn (2), integrate Hamilton's equations (for nuclear and electronic variables) as
generated from the Hamiltonian of eqn (3), and then, at the nal time, compute
the nal action variables {nk} via the inverse of eqn (2):

nk ¼ 1

2
pk

2 þ 1

2
xk

2 � g: (4)

TheMM representation thus characterizes the F electronic states as F (coupled)
harmonic oscillators, the excitation of which represents the occupation of that
electronic state, and electronic transitions emerge in this picture as “vibrational”
transitions between these “electronic oscillators”. Electronic state k thus corre-
sponds to the direct product of F harmonic oscillator states, all of which are in
their ground state (no quanta) except the kth mode which has one quantum of
excitation,

jki ¼ j0;/; nk ¼ 1;/; 0i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F-states

: (5)

Because a classical simulation with the MM Hamiltonian adds only F vibrational-
like DOF (for the electronic states) to the set of (perhaps very many) nuclear DOF,
it is thus typically a very modest addition to a MD simulation for the nuclear DOF
alone—provided, of course, that one has the potential energy surfaces (PES) for
the various electronic states and their couplings (either through rigorous
“quantum chemistry” (e.g., computed “on-the-y”), less-rigorous density
12 | Faraday Discuss., 2016, 195, 9–30 This journal is © The Royal Society of Chemistry 2016
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functional theory (DFT), or possibly from a semi-empirical “molecular
mechanics” force eld as oen used in bio-molecular simulations).

Finally, it should also be noted that although the classical dynamics resulting
from the MM Hamiltonian was noted from its origin to be “Ehrenfest
dynamics”—i.e., the force on the nuclei at any time is the coherent average over all
electronic states—we have explained how the boundary conditions implicit in the
SQC procedure (see below) eliminate the Ehrenfest method's well-known de-
ciency of emerging from a region of electronic coupling in an intermediate
electronic conguration; i.e., the equations of motion generated from the MM
Hamiltonian are Ehrenfest, but the SQC boundary conditions are not; relatedly,
we have shown how the SQC boundary conditions insure that detailed balance is
described in a reasonable way4 (though not necessarily exactly).
3 Symmetrical windowing of the electronic
states

The symmetrical quasi-classical (SQC) windowing procedure has been presented
previously as arising from an averaging (or smoothing) of the Bohr–Sommerfeld
(semiclassical) quantization of the initial and nal electronic action variables.11

Here we give a somewhat different presentation, starting with the exact quantum
expressions before invoking the classical limit.

A general A–B quantum time correlation function has the form

CAB(t) ¼ tr[Â eiĤt/ħB̂ e�iĤt/ħ] h tr[ÂB̂(t)], (6)

where the operators Â, B̂, and the Hamiltonian Ĥ all operate in the full dimension
of all DOF (here electronic and nuclear), and B̂(t) is the Heisenberg time-evolved
operator. For the case

Â ¼ r̂nu|iihi|, B̂ ¼ |fihf|, (7)

where i and f are the initial and nal electronic states (the nuclear part of B̂ is the
identity) and r̂nu is the initial density operator for the nuclear DOF (oen the
Boltzmann operator for the initial electronic state, but not necessarily so), eqn (6)
is the time-dependent electronic transition probability,

CAB(t) / Pf)i(t) h h|fihf|it, (8)

where the average is over the initial density operator (Â) of the nuclear and
electronic DOF. More generally, if B̂ is the off-diagonal density (matrix) operator,

B̂ ¼ |jihk|, (9)

eqn (6) is the time-dependent electronic (i.e., “reduced”) density matrix

CAB(t) / Pj,k(t) h h|jihk|it. (10)

The classical Wigner approximation15–20 (which comes about from several
semiclassical approaches, e.g., by linearizing the difference between the forward
and backward time evolution operators21 in the Heisenberg time evolution of eqn
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 9–30 | 13
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(6)) gives the traditional classical limit, whereby the trace in eqn (6) becomes
a phase space average over the initial conditions of classical trajectories (for all
DOF), Â becomes theWigner function at the initial point in phase space, and B̂ the
Wigner function at the (classically) time-evolved phase point. For Â and B̂ of eqn
(7), the classical transition probability for the i / f electronic transition is thus
given by

CABðtÞ �����!
Classical

1

ð2pħÞFþG

ð
dP dR dn dq WnuðP;RÞ$Wiðn; qÞ$Wf ðnt; qtÞ; (11)

where action-angle variables of the “electronic oscillators” are used since the
initial and nal electronic states are dened in terms of them. The Wigner
function Wnu for the initial nuclear DOF is the traditional Wigner function of
nuclear coordinates and momenta (R, P), and those for the electronic density
(matrix) operators are obtained from the direct product (cf. eqn (5)) of 1D
harmonic oscillator states for the “electronic oscillators”. In the past, these latter
Wigner functions were obtained by rst calculating them in the Cartesian oscil-
lator variables {pk, xk} and then transforming to action-angle variables by eqn (2),
but it has recently been pointed out7 that one obtains different Wigner functions
which are more consistent with semiclassical theory by carrying out the Wigner
integral transform directly in action-angle variables. For a diagonal element of the
density operator this gives (for F electronic states)

Wkðn; qÞ ¼ dðnk � 1Þ
YF
lsk

dðnlÞ; (12)

i.e., the electronic oscillators for electronic state k have one quantum of excitation
in the kth oscillator, with all others being in the ground vibrational state; it is
independent of the angle variables, and recognized to be a statement of Bohr–
Sommerfeld quantization (i.e., integer values of the action variables and a random
distribution of the angle variables). For the off-diagonal elements of the electronic
density operator, one obtains

Wjkðn; qÞ ¼ e�iðqj�qkÞ$d
�
nj � 1

2

�
$d

�
nk � 1

2

� YF
lsj;k

dðnlÞ; (13)

which can be shown to be equivalent to the Heisenberg Correspondence Principle
(a semiclassical approximation for off-diagonal matrix elements); since these
depend on the angle variables (which are the classical phase of the harmonic
oscillators) they carry electronic phase information.

In both eqn (12) and (13), the SQC approach is to replace the delta functions by
“pre-limit” delta functions—or “window” functions—localized about the integer
(or half integer) action variables. This not only makes the calculations much
simpler, but the smoothing effect this entails brings the classical results into
much better agreement with quantum results versus using the delta functions
themselves.22 There is, of course, no unique pre-limit delta function, and this is
where the modelistic aspect of the SQC model enters; one uses intuition and
experience to choose these “window” functions to be as universally capable of
treating as wide a range of situations as possible.

In practice, therefore, one samples initial conditions (byMonte Carlo) from the
initial phase space distribution in eqn (11), initial electronic actions being
14 | Faraday Discuss., 2016, 195, 9–30 This journal is © The Royal Society of Chemistry 2016
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sampled from the selected window function (with conjugate angles chosen
randomly between 0 and 2p), and aer integrating Hamilton's equations
(generated from the MM Hamiltonian) for electronic and nuclear DOF to any
desired time t, “collecting” the nal electronic actions in the window functions
corresponding to all nal electronic states of interest (also applying window
functions for off-diagonal elements of the electronic density matrix, and accu-
mulating the electronic phase factor as dictated by eqn (13), if these elements are
of additional interest).
4 Test applications

Presented here is a sample of applications that have recently been carried out
using the SQC/MM approach for a variety of non-adiabatic benchmark problems.
While it is unlikely that such a simple, purely-classical methodology can provide
quantitative accuracy in all cases—e.g., where true tunnelling in the nuclear DOF
is necessary to reach a region of non-adiabatic coupling—the following examples
illustrate some of the breadth that the approach has been able to achieve.

We begin with examples in the regime of moderate to very strong non-adia-
batic coupling between the electronic states, rst for simple 1D scattering (where
there is at least one avoided crossing between two PES), and then for a more
realistic model of non-adiabatic dynamics in condensed phases (via standard
spin–boson and related site–exciton models).

Considered next is the limit of weak electronically non-adiabatic coupling,
a regime where we have expected the original SQC/MM model to fail (for under-
standable reasons). By analyzing the weak-coupling limit, a new SQC windowing
methodology has been developed8 which not only deals with the anticipated
problem of weak-coupling, but is also seen to perform even better than our
original model in essentially all coupling regimes. It is also interesting that the
value of the ZPE g-parameter (see eqn (1) and related discussion) is set in this new
windowing scheme based on purely geometric considerations (though the value
is still consistent with our prior analytical justications and empirical
observations).

We conclude with application to two site–exciton models: (i) a 7-site model of
the Fenna–Matthews–Olson (FMO) complex in order to illustrate the treatment of
a problem (with the original SQC/MM approach) involving a higher number of
electronic states, and (ii) a simpler 2-state site–excitonmodel which illustrates the
use of eqn (13) to calculate the full electronic density matrix.
4.1 Moderate to strong (to very strong) coupling between the electronic states

4.1.1 1D Scattering: single and dual avoided crossings (Tully 1 and 2). In
devising his fewest switches surface hopping (FSSH) model, Tully23 used several
simple 1D 2-state scattering problems that have become popular benchmarks; the
Tully 1 and Tully 2 problems illustrate treatment of single or dual avoided
crossings of two PES. The results of applying the SQC/MM approach to these
problems are presented in Fig. 1, and good agreement is observed. There is
electronic coherence structure exhibited in the dual avoided crossing problem
(Tully 2) which is accurately captured in the SQC/MM calculations. This may at
rst seem surprising—i.e., that quantum coherence effects are well described by
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 9–30 | 15
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Fig. 1 Tully 1 and 2 problems: single avoided crossing (left) and dual avoided crossing
(right).
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a fully classical MD calculation—but it is a consequence of the fact that the
classical dynamics of the electronic oscillators generated by theMMHamiltonian,
eqn (3), is equivalent to the time-dependent electronic Schrödinger equation (for
a given nuclear trajectory); i.e., quantum coherence in the electronic DOF is
encoded in the classical coherence of the electronic oscillators by this classical
vibronic Hamiltonian.

4.1.2 Spin–boson problems. Electronically non-adiabatic processes in
a condensed phase environment are oen modeled with the well-known spin–
boson (SB) problem, which corresponds to taking the diagonal elements of the
diabatic electronic matrix to be harmonic oscillators (displaced in position and
energy); the off-diagonal elements are usually taken to be constants. This
“harmonic bath” of nuclear DOF dissipates/absorbs electronic energy and leads
to decoherence in the electronic DOF. The model is commonly given by:

HðQÞ ¼
	
V0ðQÞ þ V1ðQÞ þ 3 D

D V0ðQÞ � V1ðQÞ � 3



; (14)

where

V0ðQÞ ¼
XG
k¼1

1

2
uk

2Qk
2 and V1ðQÞ ¼

XG
k¼1

ckQk;

23 being the energetic bias and D the non-adiabatic coupling (a constant inde-
pendent of nuclear coordinates).

The harmonic bath embodied in eqn (14) may be described by a spectral
density (SD) function which represents a distribution of vibrational frequencies
{uk} chosen so as to correspond to a particular condensed phase environment. For
simplicity, the SD is oen taken to have a continuous functional form which cuts
off at high-frequency, and for the benchmark problems considered here, the
common exponentially-damped ohmic form is used which is given by

JðuÞ ¼ p

2
au e�u=uc ; (15)

where uc is the SD's characteristic frequency and a is the bath coupling (or fric-
tion) parameter. Alternatively, a Debye SD is also oen used, which is given by

JðuÞ ¼ 2l
uuc

u2 þ uc
2
; (16)
16 | Faraday Discuss., 2016, 195, 9–30 This journal is © The Royal Society of Chemistry 2016
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where the overall coupling strength is parameterized by the reorganization energy
l (instead of a). In either case, from the relationship

JðuÞ ¼ p

2

XG
k¼1

ck
2

wk

dðu� ukÞ; (17)

the coupling strengths {ck} of the local vibrational modes are given by

ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
DuukJðukÞ

r
(18)

for use in eqn (14).
The standard Wigner distribution function is usually used for the initial

conditions of the nuclear/bath DOF,

rðP;QÞf
YG
k¼1

e

�ak$

"
1

2
Pk

2 þ 1

2
uk

2

�
Qk þ ck

wk
2

�2
#
; (19)

where ak ¼ 2
uk

tanh
�
buk

2

�
, which serves to set the effective temperature T ¼

(kBb)
�1 of the simulation. Note that G¼ 100 bathmodes (see eqn (14) and (19)) are

used in the calculations below—so of an order relevant to an electronic transition
in the condensed phase.

The most interesting aspect of the SB problem is the time-dependent pop-
ulation of the various electronic states and the extent to which coherence
effects in them survive or are de-cohered (and how rapidly) by coupling to the
nuclear/bath DOF, and the dependence of all this on the “bath” temperature. It is
further recognized that the asymmetric variant of the problem—i.e., having
energetic bias between the electronic states (3 s 0)—is typically much more
challenging for simple (and inexpensive) classical methodologies to describe
accurately.

Four cases are thus considered in Fig. 2: symmetric and asymmetric versions
of the SB problem at high and low temperatures (the same as in ref. 2, 4 and 8,
with the parameters as given in the gure caption). Plotted for the four cases
versus benchmark QM results24,25 are the SQC/MM-calculated time-dependent
population differences between electronic states 1 and 2 (P1)1(t) � P2)1(t)) aer
the system is initialized in electronic state 1. As with the simple Tully 2 problem, it
is seen that the SQC/MM methodology is able to do a good job of quantitatively
capturing the electronic coherence (and decoherence) in the exact results for all
four parameter regimes, as well as correctly describing the long-time limit. It
should be emphasized that no special “de-coherence effects” (i.e., corrections)
need be added to the theory; the coherence structure comes about (or not) and
decoheres naturally (if present) from the interaction of the nuclear and electronic
DOF as generated by the classical mechanics of the MM Hamiltonian (and is
extracted from the dynamics by the windowing methodology).

4.1.3 Very strong electronic coupling: Bellonzi et al.'s spin–boson problem. A
version of the SB problem was recently used by Bellonzi et al.26 to provide
a strenuous test of the accuracy of various simple non-adiabatic approaches in the
regime of very strong electronic coupling. The model is essentially equivalent to
eqn (14) with the distribution of harmonic modes given by the Debye SD of eqn
(16) (instead of the ohmic form of eqn (15) used in the examples of Fig. 2) and with
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 9–30 | 17
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Fig. 2 Symmetric (3¼ 0) and asymmetric (3 ¼ 1) spin–boson benchmark problems at high
and low temperature treated with SQC/MM approach versus exact QM results;24,25

parameters corresponding to eqn (14), (15), and (19): case (a) a¼ 0.09, bD¼ 0.1, uc ¼ 2.5D;
case (b) a¼ 0.09, bD¼ 5, uc ¼ 2.5D; case (c) a¼ 0.1, bD¼ 5, uc¼ 2.5D; case (d) a¼ 0.1, bD
¼ 0.25, uc ¼ D.

Faraday Discussions Paper
Pu

bl
is

he
d 

on
 0

2 
Se

pt
em

be
r 

20
16

. D
ow

nl
oa

de
d 

by
 L

aw
re

nc
e 

B
er

ke
le

y 
N

at
io

na
l L

ab
or

at
or

y 
on

 2
6/

06
/2

01
7 

20
:5

5:
59

. 
View Article Online
the electronic coupling constant D assigned various multiples of kBT (with these
and other parameters as given in the gure caption).

Fig. 3 consists of six panels showing Bellonzi et al.'s results† for the population
decay of initial state 1, P1)1(t), calculated using the standard fewest-switches
surface hopping (FSSH) procedure and the mean-eld/Ehrenfest (MF) method,
plotted against their benchmark HEOM results. The different panels correspond
to three values of electronic coupling strength of D ¼ {1, 2, 3} � kBT (top to
bottom in Fig. 3), at short and long (10�) times (le to right). Overlaid on these
results for each of the six panels are our SQC/MM results, computed in the same
manner as the other SQC/MM results reported here except that G ¼ 500 modes
were used to discretize the bath DOF (as opposed to G ¼ 100 for the SB calcula-
tions in Fig. 2).
† N. Bellonzi and J. E. Subotnik, private communication of results for the strong coupling model in
ref. 26. It was noted that due to difficulty in converging the FSSH (fewest-switches surface hopping)
and MF (Ehrenfest) calculations with a Debye SD (i.e., eqn (16), as would correspond to the HEOM
result), the FSSH and MF calculations instead employed the SD of eqn (28) of ref. 26; we understand
that these FSSH results are in better agreement with the benchmark HEOM calculations (because they
were better converged) despite using a different SD. (Also, we note that the result corresponding to the
middle coupling strength (2 � kBT) in Fig. 3 looks very similar (if not identical) to the corresponding
FSSH result shown in Fig. 7 of ref. 26, which was calculated using a Debye SD, reinforcing the
suggestion that the different SD's give essentially the same results in this case.)

18 | Faraday Discuss., 2016, 195, 9–30 This journal is © The Royal Society of Chemistry 2016
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Fig. 3 Bellonzi et al.'s asymmetric (3 ¼ 5) SB problem26 with very strong electronic
coupling (D ¼ {1, 2, 3} � kBT where kBT is taken to be 5 (in AU)); the Debye SD of eqn (16)
was used with l ¼ 1.25 and uc ¼ 0.25 (in AU); displayed are Bellonzi et al.'s benchmark
HEOM results (black curves), FSSH results (red curves), and MF/Ehrenfest results (green
curves), along with our SQC/MM results (yellow curves).
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Several conclusions are evident from the data in Fig. 3: rst, with regard to the
long-time limit of the population decay (right panels), for each of the three
coupling strengths, the gure shows that both the FSSH and SQC/MM approaches
reproduce the correct long-time limits, matching what is obtained from the
benchmark HEOM calculations, while the conventional Ehrenfest (MF) method
does not.

For the shorter time scales (asmagnied in the le panels of Fig. 3), however, it
is clear that only the SQC/MM approach reproduces the short-time dynamics
quantitatively (as determined by the benchmark HEOM results). Looking closely
at Fig. 3 one sees that the oscillations in the decay curves are so rapid at short
time—t ( 5 in the plots (le)—that they appear coalesced as a vertical block (of
yellow for SQC/MM, and beneath it, black for HEOM), a consequence of the
extremely strong electronic coupling in these examples (relative to the other
parameters) in comparison to the oscillation/coupling time-scales of the SB
problems shown in Fig. 2. These results are thus quite signicant in the sheer
strength of the electronic coupling presented in this application, and the results
thus provide an interesting and well-dened comparison between the MF, FSSH
and SQC/MM methodologies in this extreme limit.

In summary, the SQC/MM methodology is seen to perform quite well in the
regimes of moderate to strong to very strong coupling between the electronic
states. Ironically, it is the weak-coupling regime (discussed next) which poses
a severe problem for the SQC/MM approach in its original implementation.
4.2 Weak coupling

4.2.1 Analysis and SQC model development. It is easy to understand why the
standard SQCmodel used so far fails to treat the weak-coupling limit properly: the
origin of the problem lies in the denition of the windowing functions. Up to this
point, we have exclusively relied on simple square histogram windowing func-
tions as the pre-limit delta-functions to be used in eqn (11) and (12) (i.e., “boxes”
of width 2g centered at the quantum integer values of the electronic action
variables). Fig. 4 illustrates such square histogram window functions for the case
of F¼ 2 electronic states, and shows that for our preferred value of g¼ 0.366 there
is a gap between the windows dening the two states.

For moderately and strongly coupled problems (e.g., having transition proba-
bilities T0.1), the presence of this gap between the windows poses no issue.
However, as we have recently discussed,8 for weak coupling between the electronic
states, the action variables (n1, n2) originating in the windowing function dening
one state in Fig. 4 will move only slightly during the course of a simulation—they
would not move at all if the coupling were zero—and thus (because of the gap)
none of them will reach the window function dening the other state, yielding
(aer renormalization) a zero transition probability. This deciency can be
remedied by having the window functions touch at a point in the action space so
that even for very small coupling a small number of trajectories will reach the
window function dening the other state, but for the square histogram windows
shown in Fig. 4 this would entail setting g ¼ 1

2 which we know from experience
generates much poorer results for problems having “normal” transition proba-
bilities (T0.1), thus leading to the undesirable possibility of having to use a value
for g that depends on the strength of the electronic coupling.
20 | Faraday Discuss., 2016, 195, 9–30 This journal is © The Royal Society of Chemistry 2016
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Fig. 4 Square histogram windows, with g ¼ 0.366, for the electronic action variables of
two electronic states; black dots show the integer quantum values of the actions for the
two states.
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A surprising solution to this dilemma is a new SQC windowing model8 based
on triangle-shaped window functions. These functions do touch at a point in the
electronic action space, but they retain a value of g in the neighborhood of what
we know from experience to be optimal. The new SQC triangle windowing scheme
is shown in Fig. 5 for the value of g ¼ 1

3 along with the previous square histogram
model (of the same g). In the square histogram model, g sets the width of the
window functions. In the triangle scheme, g instead adjusts the position of the
windows in the action space (their size is xed so that they touch). The value of
g ¼ 1

3 is the unique value which places the centroids (center points) of these unit-
length isosceles right triangles at the quantum values of the action variables
((n1, n2) ¼ (1, 0) for state 1, and (n1, n2) ¼ (0, 1) for state 2) as shown in Fig. 5.
Thus, unlike the square histogram scheme where g was viewed as an empirical
parameter setting the size of the histogramwindows and whose optimal value was
arrived at through numerical “experimentation” (and separately justied on
independent theoretical grounds2), for these triangle windows, the “right” value
of g (i.e., 1

3) is uniquely determined from purely geometric considerations.
4.2.2 Tully 1 revisited. Though this new SQC model with triangle window

functions was devised in order to properly treat the limit of very weak electronic
coupling (and it does so quite well), it has also been found to perform even better
in the “normal” coupling regime than our previous standard model (with square
histogram windows);8 i.e., the new scheme performs universally better than the
prior standardmodel in all coupling regimes, while being nomore complicated to
implement (and also likely to be superior from the standpoint of numerical
convergence). Recent work8 presents applications to a variety of model problems
that validate the new methodology; here we briey show results for a weakly-
coupled version of the Tully 1 problem, as the simplest non-trivial example
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 9–30 | 21
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Fig. 5 Triangle (blue) and square histogram (red) window functions (with dots indicating
quantum centers).
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illustrating the failure of the previous histogram windowing scheme in the weak-
coupling limit and the excellent treatment provided by the new SQC triangle
methodology.

In its original form Tully 1 is a very strongly coupled problem (as shown in
Fig. 1), but it may be turned into a weakly coupled problem by reducing the
strength of the off-diagonal element of the diabatic Hamiltonian matrix (which is
real symmetric),

H12(R) ¼ C e�R2

, (20)

i.e., by reducing the value of the parameter C.
Fig. 6 shows (on a log–log scale) the SQC-calculated T2)1 transmission

probabilities for Tully 1 using both the triangle and square histogram window
functions computed over a broad range of values for the parameter C—from its
original value of 0.005 down to 10�5—for a xed value of the initial nuclear
momentum (P ¼ 15 AU, in the middle of the momentum range for Tully 1 shown
in Fig. 1).‡ Also shown are the exact QM benchmark results, and the anticipated
failure of the original SQC square histogram methodology in the weak coupling
limit is readily apparent: deviations from the correct non-adiabatic transition
probability begin to appear for transition probabilities around 10%, with very
‡ Rigorous energy-domain QM scattering calculations for the Tully 1 problem reveal “Feshbach
resonances” around the peak in transmission shown in Fig. 1 which are not present in time-domain
wave-packet scattering calculations and which become more pronounced as the non-adiabatic
coupling is reduced. To focus on the weak-coupling issue, the selected value of nuclear momenta is
away from these resonances.

22 | Faraday Discuss., 2016, 195, 9–30 This journal is © The Royal Society of Chemistry 2016
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Fig. 6 SQC/MM results calculated using square histogram and triangle window functions
versus energy-domain QM scattering calculations (P ¼ 15 AU).
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signicant deviations for transition probabilities around 1%; below that, the SQC
transition probability is essentially zero.

It is thus striking to see how effective the new windowing scheme is in
describing the weak coupling regime with no additional effort or cost: simply by
re-shaping the original SQC square histogram pre-limit delta functions into
triangles, one is able to capture the correct QM transmission probabilities down
to 10�5 with quantitative accuracy (and without disturbing the prior good results
obtained with the SQC methodology in the “normal” coupling regime). Further
results8 indicate that these conclusions (regarding the new windowing) generalize
to the treatment of more complicated non-adiabatic systems, for example to
treating the site–exciton Hamiltonian (below) used to model an electronic exci-
tation hopping from site-to-site in a condensed phase having hundreds of nuclear
DOF interacting with the electronic dynamics.
4.3 Application to more than 2 states: the 7 site FMO complex

Though most models of non-adiabatic processes treat only two electronic states,
the SQC/MM methodology can also be applied to systems with any number of
electronic states, and the o-studied 7-state site–exciton model of the Fenna–
Matthews–Olson (FMO) complex provides a convenient benchmark example to
illustrate this.6

For two states, the site–exciton (SE) Hamiltonian28 is very similar to the SB
Hamiltonian given above in eqn (14), the primary difference being that in the SE
model the two electronic states correspond to whether one or the other of two
“sites” is electronically excited, and also that each such site is coupled to its own
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 9–30 | 23
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independent harmonic bath (the notion being that the nuclear DOF about each
site may be different). The electronic Hamiltonian matrix for two sites is thus
given by:

HðQÞ ¼
"
V

ð1Þ
bathðQ�DÞ þ V

ð2Þ
bathðQÞ þ 31 D12

D12 V
ð1Þ
bathðQÞ þ V

ð2Þ
bathðQ�DÞ þ 32

#
; (21)

where {3k} are the site energies, D12 is the non-adiabatic coupling constant
between sites/states 1 and 2, and

V
ðkÞ
bathðQÞ ¼

XG
x˛site k

modes

1

2
ux

2Qx
2: (22)

For the general case of F sites/states, there is an F � F matrix of site energies {3k}
and coupling constants {Dk,k0}, with the kth diagonal element of the electronic
Hamiltonian matrix given by

Hk;kðQÞ ¼ V
ðkÞ
bathðQ�DÞ þ

XF
k0sk

V
ðk0Þ
bathðQÞ þ 3k; (23)

again showing the kth state being an electronic conguration with a single exci-
tation at the kth site. For the benchmark problems considered here, the bath
vibrational modes {ux} of eqn (22) are characterized by the Debye SD of eqn (16)
(parameterized by the reorganization energy l) with the coupling constants D h
{Dx} in eqn (21) and (23) given by

Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p

Du

ux
3
JðuxÞ

s
: (24)

All the SQC/MM calculations shown here employed G ¼ 200 bath modes per site
in eqn (22). Thus, for 2 sites, the calculations used 2 � G ¼ 400 nuclear DOF plus
F ¼ 2 electronic DOF, and for the 7-site FMO model, 7 � G ¼ 1400 nuclear DOF
plus F ¼ 7 electronic DOF.

While there are newer model Hamiltonians for the FMO complex advocated in
the literature, Ishizaki & Fleming's original (7-site/state) version27—along with
their essentially exact (HEOM) calculations—serves as a well-dened benchmark
for evaluating the performance of the SQC/MM methodology. SQC/MM calcula-
tions for this system are shown in Fig. 7 and 8 along with the benchmark HEOM
results (with the parameters as given in the gure captions).

The results in Fig. 7 correspond to the FMO complex having the initial elec-
tronic excitation at site 1, and the SQC/MM calculations are seen to agree
reasonably well with the HEOM results, e.g., the overall participation of the
various states in causing the decay of population from state 1, the coherence/
decoherence patterns, etc., are described well. The most noticeable deviation of
the SQC/MM calculation from the correct HEOM result is that the long time decay
of state 1 (predominantly to state 3) is about 20% faster than that given by the
HEOM calculation.

Fig. 8 shows analogous calculations for the initial excitation being on site/
pigment 6. In this case the time-evolution of the electronic coherence structure
and the overall multi-state dynamics is considerably more complex than what is
seen in Fig. 7, with all 7 states showing some coherence structure in the rst 200
24 | Faraday Discuss., 2016, 195, 9–30 This journal is © The Royal Society of Chemistry 2016
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Fig. 7 SQC/MM and benchmark HEOM results for 7-state FMO model; T ¼ 77 K, l ¼ 35
cm�1, uc ¼ 106.14 cm�1; the matrix of site energies {3k} and non-adiabatic couplings {Dk,k0}
are given in ref. 27 (see Fig. 2a of ref. 27).
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femtoseconds, and 5 of the 7 states receiving signicant electronic excitation by
the end of the 1 picosecond simulation. Here the SQC calculation does an
excellent job of replicating the exact HEOM result, exhibiting no substantial
deviations from it.

Fig. 7 and 8 thus demonstrate application of the SQC/MM approach to larger
numbers of electronic states, showing a good description of condensed-phase
“quantum” coherence/de-coherence effects, just as was seen (above) for the
2-state examples.

4.4 Example calculation of the full electronic density matrix

As discussed in Section 3, the SQC windowing methodology may be viewed
formally as an approximate implementation of Bohr–Sommerfeld quantization
Fig. 8 SQC/MM and HEOM results for 7-state FMO model; same as Fig. 7 except site 6
(instead of site 1) is initialized as electronically excited (see Fig. 2b of ref. 27).

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 9–30 | 25
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through the use of Wigner functions calculated directly in terms of action-angle
variables. A practical consequence of this view is that it provides a simple
prescription for using window functions (i.e., pre-limit delta functions in eqn (13))
to extract the off-diagonal elements of the electronic density matrix (i.e., the
“quantum” coherences between the electronic states) from the same classical
trajectory simulation used to obtain the diagonal elements (the electronic state
populations), and to do so at essentially little or no additional cost.

To proceed with such a calculation, it is natural to choose the windowing
scheme shown in Fig. 9 which denes the window function for the off-diagonal
element of the density matrix, r12, to be a square histogram “box” (red window)
centered at (12,

1
2) having the same width 2g as the window functions for the elec-

tronic state populations (blue windows) centered at (1, 0) and (0, 1). Calculation of
r12(t) then simply entails monitoring trajectories as they evolve in the electronic
action-space (n1, n2) and for those which happen to be within the r12 (red) window
function at time t, calculating their average phase factor e�i(q1(t)�q2(t)). (Note that the
phase-factor also makes the window function for r12 orthogonal to the other
windows despite their overlap in the action-space as shown in Fig. 9.)

An example calculation of the full time-dependent electronic density matrix is
shown in Fig. 10 for a 2-state version of the SE model given above in eqn (21) (with
the parameters as given in the gure caption). One sees that this simple proce-
dure provides a very good description of the time-dependence of the real and
imaginary parts of the r12 density matrix element, in addition to yielding excellent
results for the electronic populations (r11 and r22).
4.5 Other issues

The development of this SQC treatment of the MM classical vibronic model is
clearly an ongoing process, and as one nds new areas where it has problems one
Fig. 9 SQC window functions for the diagonal (blue) and off-diagonal (red) elements of
the density matrix applied to a system of 2 electronic states.

26 | Faraday Discuss., 2016, 195, 9–30 This journal is © The Royal Society of Chemistry 2016
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Fig. 10 SQC/MM computed density matrix {rij(t)} versus HEOM results for 2-state site–
exciton model (difference in site energies 31 � 32 ¼ 100 cm�1, non-adiabatic coupling D ¼
100 cm�1, bath characteristic frequency uc ¼ 53.08 cm�1, reorganization energy l ¼
20 cm�1, and T ¼ 300 K; see Fig. 4 of ref. 28).
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seeks useful remedies that can still be implemented within a standard classical
MD protocol. It has been emphasized that the window functions of the SQC
model should be thought of as pre-limit delta functions that impose Bohr–
Sommerfeld quantization of the initial and nal electronic action variables
approximately, and since there is no unique pre-limit delta function, this offers
the possibility of creative choices to deal with various “issues” as they are
discovered. The triangle window functions described in Section 4.2 are an
excellent example of this, where it was realized that the standard square histo-
gram window functions would fail in the limit of weak electronic coupling; the
triangle windows were designed to deal with this, and they were then found to
perform better more generally, for all coupling regimes.

Another problem that has been discussed recently26 for the SQC/MM approach
arises when some of the potential surfaces (e.g., diagonal elements of the diabatic
electronic matrix) have very harshly repulsive regions. One can see from eqn (1)
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 9–30 | 27
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that the action variables for some trajectories can have negative values (their
lower limit is �g), which will lead to potentials that are thus extremely attractive
and cause the nuclear trajectory to diverge (“run away”). This problem was seen
earlier29 when classical trajectories from the MM Hamiltonian were used as input
to the “initial value representation” of semiclassical theory (SC-IVR). In these
earlier applications it was seen that some trajectories diverged, but since they
were typically no more than 10% or so in the Monte Carlo sampling over initial
conditions, they were simply discarded and thus caused no signicant problem.
For the model system treated in ref. 26, however, the vast majority of trajectories
diverge, so something else must be done. One very simple approach that we have
explored is simply to cut off the strongly repulsive potentials at an energy far
above an energy that any classical trajectory would experience; i.e., the repulsive
potential is replaced by Vcut whenever it is larger than this cutoff value. Testing
this idea for the model in ref. 26 yields trajectories none of which diverge, so this
particular “issue” is thus really not a problem. Further consideration of such
examples, however, is certainly warranted and there may be other even better ways
to deal with this.

There will certainly be other situations for which even ourmost recent versions
of the SQC approach will fail, and the challenge will be to see if other simple and
useful modications can be found. What does seem clear to us, however, is that
the basic dynamics generated by the MM classical vibronic Hamiltonian is the
“correct” dynamics, and the challenge is to extract the relevant quantities from it.

5 Future work
SQC triangle windowing in higher dimensions

Fig. 5 illustrates the SQC triangle and square histogram windowing schemes for
the case of 2 electronic states. For the square histogram windows, generalization
to higher numbers of states is straightforward and the treatment of the 7-state
FMO complex in Fig. 7 and 8 provides an illustration of its effectiveness. It is not
immediately clear, however, how the triangle windowing scheme shown in Fig. 5
is properly generalized to more than 2 states. Thus, an area of future work is to
consider a generalized version of the SQC triangle model, and to validate it over as
many illustrative benchmark problems involving higher numbers of electronic
states as possible.

In Fig. 11, as an initial step, we have taken a rst version of our higher-
dimensional SQC triangle scheme and applied it to a 3-state spin–boson (SB)
problem treated by exact QM path-integral methods by Sim & Makri.30 The SB
model is basically a 3-state generalization of that given in eqn (14), and again with
the bath DOF described by the ohmic SD of eqn (15). From Fig. 11, it is seen that
the agreement between the SQC triangle calculation and the QM result is excel-
lent, and moreover (and perhaps more signicantly), only 1000 trajectories were
used in this calculation (though 100 nuclear DOF were simulated for the bath).
We thus conclude (preliminarily) based on this rst proof-of-concept calculation,
that a higher-dimensional generalization of the triangle windowing scheme is
possible and that it is likely to be quite accurate and efficient (similar to what was
discovered to be the case for two electronic states). Subsequent work will provide
detailed analysis and model development, as well as further validating
calculations.
28 | Faraday Discuss., 2016, 195, 9–30 This journal is © The Royal Society of Chemistry 2016
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Fig. 11 3-State spin–boson problem of Sim & Makri treated with 3-D triangle SQC
windows.
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