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WebDISCO: a web service for distributed
cox model learning without patient-level
data sharing

Chia-Lun Lu1, Shuang Wang1,*, Zhanglong Ji1, Yuan Wu2, Li Xiong3,4,
Xiaoqian Jiang1,*, Lucila Ohno-Machado1

ABSTRACT
....................................................................................................................................................

Objective The Cox proportional hazards model is a widely used method for analyzing survival data. To achieve sufficient statistical power in a sur-
vival analysis, it usually requires a large amount of data. Data sharing across institutions could be a potential workaround for providing this added
power.
Methods and materials The authors develop a web service for distributed Cox model learning (WebDISCO), which focuses on the proof-of-concept
and algorithm development for federated survival analysis. The sensitive patient-level data can be processed locally and only the less-sensitive in-
termediate statistics are exchanged to build a global Cox model. Mathematical derivation shows that the proposed distributed algorithm is identical
to the centralized Cox model.
Results The authors evaluated the proposed framework at the University of California, San Diego (UCSD), Emory, and Duke. The experimental re-
sults show that both distributed and centralized models result in near-identical model coefficients with differences in the range 10�15 to 10�12.
The results confirm the mathematical derivation and show that the implementation of the distributed model can achieve the same results as the
centralized implementation.
Limitation The proposed method serves as a proof of concept, in which a publicly available dataset was used to evaluate the performance. The au-
thors do not intend to suggest that this method can resolve policy and engineering issues related to the federated use of institutional data, but they
should serve as evidence of the technical feasibility of the proposed approach.
Conclusions WebDISCO (Web-based Distributed Cox Regression Model; https://webdisco.ucsd-dbmi.org:8443/cox/) provides a proof-of-concept
web service that implements a distributed algorithm to conduct distributed survival analysis without sharing patient level data.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Survival analysis1 is widely used in biomedical informatics to study
time-to-event data, where a typical binary event might be, for exam-
ple, the development of a symptom, disease, relapse, or death.
Survival analysis can help researchers compare the effect of treat-
ments on mortality or other outcomes of interest.2 Lundin developed
and evaluated several models for prognostication in oncology and has
built an online resource for displaying survival curves for patient stra-
ta.3,4 Hagar et al.5,6 proposed using Bayesian multiresolution hazard
model in chronic kidney disease based on electronic health record
(EHR) data. EHR data mining including survival analysis was also stud-
ied in.7 Finprog8 is an early work for predicting survival curves using a
Kaplan-Meier (KM) approach, which belongs to population-level time-
to-event analyses. In a KM-based approach, if a patient does not fit
into a group, a curve cannot be generated. The Cox proportional haz-
ards model9 (aka, Cox model), which was primarily developed to de-
termine the importance of predictors in survival, can make use of
covariate information to make individual predictions.10,11 This is one
of the most popular survival analysis models and the focus of this
study.

The main problem we are trying to address is how to build a sur-
vival analysis model using patient data that are distributed across sev-
eral sites, without moving those data to a central site. This is

important because of multiple factors, which can include concerns
about individual privacy,12 practical considerations related to data
transmission (e.g., data size), and institutional policies. Institutional
policies for nondisclosure of data to other parties may be motivated by
several factors, including business interests, concerns about reputa-
tion and perception of service quality, loss of control, etc. The Health
Insurance Portability and Accountability Act (HIPAA) Safe Harbor13 de-
fines explicit rules for healthcare data de-identification. The risk de-
pends on the nature and amount of shared data, as well as on the
external information that an attacker may use. Not having to share pa-
tient-level data is convenient and helps overcome several barriers. For
example, institutional- and country-wide policies14 and legislation15

may restrict the hosting of patient data outside predetermined geo-
graphical boundaries. For example, covered entities can host patient
data in HIPAA-compliant environments,15 and they need to ensure
data confidentiality by not disclosing patient data to unauthorized third
parties. The Data Protection Act in the UK16 requires that all clinical
data that have not been explicitly consented by patients for secondary
uses remain in servers that are physically located in European Union
countries. The recently released Genome Data Sharing policy14 also
states that genome data cannot be submitted to databases without the
informed consent of participants. Another problem researchers are
facing when comparing multi-site patient records is database
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heterogeneity.17 Multi-site collaborative analyses following the same
experimental protocol could reduce the bias caused by different data
capture processes or different source populations. Analyses involving
large sample sizes may improve the confidence in estimation results.
Our methodology can be used by large data consortia like
Observational Health Data Sciences and Informatics (OHDSI),18 or the
patient-centered Scalable National Network for Effectiveness
Research,19 a clinical data research network involving nine health sys-
tems, by promoting interdisciplinary collaboration while minimizing
data sharing through distributed analysis. An advantage is that the
computation time to complete the analysis may be decreased, as each
site can perform the calculations in parallel.

Related Work
We propose an approach so that biomedical researchers can build and
use a model without having to share patient-level data. The system is
deployed as a web service, through which researchers can conduct
distributed survival analysis within their web browser directly. In this
article, we consider horizontally partitioned data20–23—that is, each
participant has a subset of records with the same variables, as op-
posed to vertically partitioned data in which a patient has records dis-
tributed across sites. This work is based on recently developed
approaches for horizontally partitioned distributed data, including Grid
Logistic Regression (GLORE)24 and its Bayesian extension EXPLORER
(Expectation Propagation Logistic Regression: Distributed Privacy-
Preserving Online Model Learning).25 GLORE developed binary logistic
regression in a distributed manner, allowing researchers to share
models without necessarily sharing patient data. EXPLORER alleviated
the synchronized communication requirement of GLORE and enabled
online learning for efficiently handling incremental data. Two recent
publications consider a distributed Cox model. Yu et al.26 introduced a
dimensionality reduction method that is not reversible. This approach
may be used to make predictions but cannot estimate parameters to
assess the importance of different covariates. Moreover, the low-
dimensional projection used in this method will result in information
loss and inaccurate predictions. Another approach suggested by
O’Keefe et al.27 discusses how to obtain survival analysis outputs from
a remote database in a confidential manner (i.e., protecting covariate
values from being disclosed). Their model avoids patient-level data ex-
change, but does not perform distributed learning. Therefore, it is im-
portant to develop accurate distributed computational algorithms to
enable accurate survival model learning across multiple sites. The pro-
posed method is specifically designed to handle the problem of build-
ing a shared accurate Cox model without sharing patient-level data.

MATERIALS AND METHODS
Cox Model
The hazard function in a Cox model,9 which represents the hazard at
time t , takes the form

kðt jZÞ ¼ k0ðt ÞexpðbT ZÞ ¼ k0ðt Þexpðb1Z1 þ :::þ bp ZpÞ: (1)

Here, k0ðt Þ is the baseline hazard function; Z ¼ fZ1; Z2; � � � ; Zpg
and b ¼ fb1; b2; � � � ; bpg are p dimensional vectors of explanatory
variables and model parameters, respectively. The ratio between
k t jZð Þ and k0 tð Þ can be calculated from the data even if k0ðt Þ is not
specified explicitly, since it is based on survival at each time point i.
For this reason, b helps estimate a proportional hazard, not an abso-
lute hazard. In practice, many partial likelihood based methods28,29

are widely used for estimating b. Breslow et al.29 introduced an ap-
proximate partial likelihood function to handle the situation with tied

event times. Breslow’s partial likelihood function can be expressed as
follows:

LðbÞ ¼
YD

i¼1

exp bT
X

l2Di
zl

� �
X

l2Ri
exp bT zl
� �h idi

; (2)

where D is the total number of distinct event times; Di and Ri are
the index sets of subjects with observed events (e.g., death) and at
risk for the event, respectively, at the i -th distinct event time with
i ¼ 1; :::; D ; di ¼ jDi j is the count of tied survival times at event
time i. zl ¼ fz l

1; z
l
2; � � � ; z l

pg is the realization of the p dimensional ex-
planatory variable Z for a subject indicated by the superscript l .

Based on the partial likelihood function in (2), the log likelihood

lðbÞ, its first order derivative l
0

r ðbÞ ¼
olðbÞ
obr

, and its second order deriv-

ative l
00
r ;qðbÞ ¼

o2 lðbÞ
obr obq

, where r and q ¼ 1; 2; � � � ; p are the indices

of the r -th and q-th element in the parameter vector b, respectively,
can be calculated as follows:

lðbÞ ¼
XD

i¼1

bT
X
l2Di

zl � di log
X
l2Ri

expðbT zl Þ
" #( )

(3)

l
0

r ðbÞ ¼
XD

i¼1

X
l2Di

z l
r � di

X
l2Ri

z l
r expðbT zl ÞX

l2Ri
expðbT zl Þ

8<
:

9=
; (4)

l
00

r ;q bð Þ¼�
XD

i¼1

di

X
l2Ri

z l
r z l

q exp bT zl
� �

X
l2Ri

exp bT zl
� � –

X
l2Ri

z l
r exp bT zl

� �
X

l2Ri
exp bT zl
� �

X
l2Ri

z l
q exp bT zl

� �
X

l2Ri
exp bT zl
� �

8<
:

9=
;:

(5)

Using the Newton-Raphson algorithm,28 the parameters bs that
maximize the likelihood function at the s-th iteration can be updated
until convergence as

bs ¼ bs�1 � ½l 00 bs�1� �
��1 l

0 ðbs�1Þ: (6)

Furthermore, the baseline hazard function in Breslow’s approach2

is defined as

k0ðti Þ ¼
1X

l2Ri
expðb̂T

zl Þ
; (7)

where ti is i-th distinct event time, and b̂ is the best estimate learned
in (6) that maximizes the likelihood function.

The survival function of the subpopulation with explanatory variable
Z is given by

Sðt jZÞ ¼ exp �
X
i :ti<t

diX
l2Ri

expðb̂T
zl Þ

0
@

1
A

2
4

3
5expðb̂T

ZÞ

; (8)

which can be used to generate a survival curve and test predictions.

Distributed Cox Model
As mentioned above, the traditional Cox model requires that data be
gathered in a central repository. In this section, we propose a distrib-
uted Cox model. Specifically, each participant from different data re-
positories is able to upload aggregated statistics without revealing
patient-level data at each iteration (i.e., each update of coefficients),
and the model parameters trained at the global server can generate
the same model outputs (i.e., estimated parameters) as those would
have been generated in a centralized model. Some authors30 showed
that the order of aggregation of the population may have impact on
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mutual information calculations, but this is not the case for the pro-
posed algorithm because the decomposition is done at each iteration
and is mathematically equivalent to performing updates using central-
ized data. In this section, the mathematical derivation demonstrates
that the distributed Cox model under the Breslow likelihood assump-
tion is mathematically equivalent to the centralized Cox model.

Suppose that there are M participant sites in a survival study.
Then, the first and the second order derivatives l

0
bð Þ and l

00
bð Þ can

be rewritten as

l
0

r ðbÞ ¼
XM

k¼1

XD

i¼1

X
l2Dk

i

z l
r �

XD

i¼1

XM

k¼1

jDk
i j

 !XM

k¼1

X
l2Rk

i
z l

r expðbT zl ÞXM

k¼1

X
l2Rk

i
expðbT zl Þ

:

(9)

and

l
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r ;qðbÞ ¼ �
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i¼1
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k¼1
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i j
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k¼1

X
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i
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r z l
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� �
XM

k¼1

X
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�
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� �
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X
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i
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q exp bT zl
� �

XM

k¼1

X
l2Rk

i
exp bT zl

� �
)
;

(10)

where Dk
i and Rk

i are subsets of Di and Ri denoting subjects from
the k -th participant site, and k ¼ 1; 2; � � � ;M . In (10), the count di is
replaced by di ¼

PM
k¼1jDk

i j, so that it can be aggregated from dis-
tributed sites. According to (9) and (10), the derivatives of the log like-
lihood function are naturally decomposed by computing and sharing
locally aggregated values such as

PD
i¼1

P
l2Dk

i
z l

r , jDk
i j,P

l2Rk
i

expðbT zl Þ,
P

l2Rk
i

z l
q expðbT zl Þ, and

P
l2Rk

i
z l

r z l
q expðbT zl Þ

from each site k . This decomposition guarantees that sum of deriva-
tives learned from distributed sites is exactly the same as the deriva-
tive calculated from a central repository that is used in the traditional,
centralized Cox model.

The details of the proposed distributed Cox model are listed in
Algorithm 1 (A1). The inter-site update in the distributed Cox model
starts with the local and global initialization steps (A1: lines 1–3),
where the local index subsets Rk

i and Dk
i , local aggregationPD

i¼1

P
l2Dk

i
z l

r , initial model parameter b0 are calculated. We can it-
eratively update the model parameter bs until it converges through
(A1: lines 4–12). Finally, the converged model parameters will be re-
ported and sent to each client to allow survival predictions.

Implementation
In this section, we focus on the development of the Web-based
Distributed Cox Regression Model (WebDISCO). WebDISCO enables it-
erative optimization of model parameters in real time among different
participants on a network, as illustrated in the diagram shown in
Figure 1.

Procedure: When entering WebDISCO, the user can choose to log
into the system, register, read instructions, or directly create a new
task via an anonymous login (see Figure 2 as an example). The regis-
tration step requires the following information: user name, email ad-
dress, and password. The input information is checked by the system.
To minimize user burden, anyone can use WebDISCO without registra-
tion. Only a registered user has the ability to access his/her study
analysis history.

When a user initializes a task, he/she needs to specify the follow-
ing parameters: task title, expiration day, email address for partici-
pants, maximum number of iterations, and criterion for terminating

the process and location of input data. The description of the data is
an optional field. The create button is disallowed until all the informa-
tion has been checked and validated. To ensure consistency, the train-
ing set used by each participant is required to be in exactly the same
format.

Once a task is created, both the task creator and invited partici-
pants are informed by emails originated by the WebDISCO service. A
unique link hashed with the task name and the participant’s email is
provided in each email. All the participants can specify the path of
their local training data in WebDISCO.

When triggered by the task creator, the server starts interacting
with the clients. First, the clients send their survival times to the
server, and the server responds with a list of unique survival times
(i.e., time points in which at least one event occurred at any of the
sites) to synchronize all the clients. Then, the global server will collab-
orate with all clients to start the computation based on Algorithm 1.
During the computation, the web page will show the progress in learn-
ing parameter estimates. After the computation, the user can obtain
globally learned model parameters. The user can also click on the test
button to evaluate the local data based the globally learned survival
function.

2) Software: HTML5 standards make it possible to build self-
contained applications for modern browsers without knowing the
specific server side language used to serve pages containing the

Algorithm 1: Inter-site update in the distributed Cox model

1: Local initialization for all sites:

2: Each site initializes index subsetsRk
i and Dk

i based on their
local data. Each site sends the aggregated statistic

PD
i¼1P

l2Dk
i

z l
r to the global server to avoid additional communica-

tion overhead, as this value is unchanged during the whole
learning process.

3: Global initialization:

The global server requests distinct event times from each site
to initialize the parameters D and jDk

i j. Additionally, the global
server aggregates the incoming statistics from all sites as ẑ r

¼
PM

k¼1

PD
i¼1

P
l2Dk

i
z l

r based on (10). The server initializes
b0 and disseminates it to each site.

4: Repeat

5: For all sites (parallel update)

6: Receive an updated bs from the global server.

7: Calculate the following aggregated statistics:P
l2Rk

i
expðbT zl Þ,

P
l2Rk

i
z l

q expðbT zl Þ andP
l2Rk

i
z l

r z l
q expðbT zl Þ.

8: Send these statistics back to the global server

9: end for

10: Calculate the first and second derivatives of the likelihood
function using the statistics received from each site according
to (10) and (11).

11: Update bsþ1 using the Newton-Raphson algorithm as shown
in (6) and send the updated bsþ1 back to each site.

12: Until parameters converge

13: Send the converged model parameters to each site.
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application. Although such applications are cutting edge, there are
strong limitations. Due to the constraint of keeping data locally, the
majority of the computation task will need to take place in client side
web browser rather than on server side, which is in conflict with the
heavy-server light-client architecture and limits the duration of the it-
eration to that of the slowest web browser among all the sites.

To address this challenge and ensure wide accessibility, we devel-
oped a signed communication between Servlets and Applets based on
Java technology, which is deployable in a variety of host environ-
ments. The Applets are embedded in webpages to handle local com-
putation so that original data are never sent to the server. Since only
signed Applets can execute and communicate with Servlets, we can
easily check the validity of inputs from participants on the server side.
Based on the Java backbone, the front-end consists of Ajax webpages
supported by JavaServer Pages (JSP), which dynamically reflect user
and task status. Safari, Firefox, and Chrome browsers currently sup-
port WebDISCO. Note that other implementations of distributed algo-
rithms are possible, but we wanted to illustrate a simple one in which
there is no need to download any particular software.

RESULT
The dataset used in our experiment is publicly available in the UMASS
Aids Research Unit (UARU) IMPACT study.31,32 The purpose of the

study was to investigate how different treatment programs affect the
drug abuse reduction and high-risk HIV behavior prevention. The origi-
nal UARU dataset contained 628 observations, where 574 records
were kept after missing data removal and 8 variables were used in
this study: age, Beck depression score, heroin/cocaine use, IV drug
use, number of prior drug treatments, race, length of the treatment,
and treatment site. Moreover, we introduced dummy variables to con-
vert nonbinary categorical variables into binary indicators as summa-
rized in Table 1.

We split the UARU dataset of 574 records into a training dataset
with 295 records and a test dataset with 279 records for prediction
purposes. Furthermore, the training dataset was split into 2 subsets
with 244 and 51 records based on the treatment site (i.e., site A or B
as listed in Table 1), respectively. Table 2 shows the estimated param-
eters for the proposed WebDISCO service with 1-site and 2-site set-
tings, where we observed identical results at the precision of 10�12.
The coefficient differences between centralized R and WebDISCO im-
plementations are also compared in Table 2, and range from 10�15 to
10�12. The response time for distributed model learning using the pro-
posed WebDISCO website is very short (5–10 s) to support a real-time
web service, as shown in Table 3, based on the average over 10 trials.
The experiments were conducted by the authors from three geograph-
ically different sites (i.e., UCSD, Emory, and Duke), where two training

Figure 1: Datasets from different institutions are locally aggregated into intermediate statistics, which are combined in the
server to estimate global model parameters for each iteration. The server sends the re-calculated parameters to the clients
at each iteration. All information exchanges are protected by HTTPS encrypted communication. The learning process is ter-
minated when the model parameters converge or after a pre-defined number of iterations are completed.
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subdatasets with 244 and 51 records were used between each of 2
sites (i.e., UCSD and Emory, UCSD and Duke, Emory and Duke). Safari
browsers on Apple Mac OS X 10.10 were used at Duke and Emory. A
Chrome browser on Microsoft Windows 8 64-bits machine was used
at UCSD during the experiments. All sites were using Java Runtime
Environment with version 1.8.0. For each pair sites test, one site initi-
ated the experiments through the WebDISCO service; the other site
joined the experiments when they received the automatic email notifi-
cation sent by the WebDISCO service. Based on the experimental re-
sults in Table 3, we can see that the response time is <10 s among
all participant sites.

Given the model parameters learned in WebDISCO, Figure 3 depicts
the time-dependent Area Under Curve (AUC) to measure discrimination
based on the method proposed by Chambless and Diao34 using a test
dataset with 279 records. When comparing the “baseline” (no-discrimi-
nation) performance in Figure 3, the learned Cox model resulted in AUCs
ranging from 0.64 to 0.75 for different time points. Finally, Figure 4 illus-
trates survival curves resulting from the application of the global model
(i.e., the model learned in a distributed manner) to 2 randomly selected
patient records from site A (in blue) and site B (in red). We illustrate dif-
ferent individual survival curves produced from the model that used in-
formation from both sites (without transmitting patient-level data across
sites) to provide improved personalized predictions. The red and blue

Figure 2: Snapshot of task creation page in WebDISCO. To create a task, a task initiator needs to provide the following in-
formation: task title, expiration day, email address for participants, maximum number of iterations, criterion for terminating
the process, and location of input data. The initiator has the administrator role after login. The input data need to have the
same format across participants.

Table 1: Summary of features in the UARU dataset31,32

used in our experiments, where the categorical variable, IV
drug use history, is converted into binary covariates based
on dummy coding.33 We included the following 10 covariates
in our experiment

Feature Description

AAE Age at enrollment (years)

BDS Beck depression score (0–54)

HU Heroin use during 3 months prior to admission

CU Cocaine use during 3 months prior to admission

IVDUPN IV drug use history: previous vs never

IVDURN IV drug use history: recent vs never

NPDT Number of prior drug treatments (0–40)

RACE Subject’s race: White vs Non-white

TREAT Treatment assignment: short vs long

SITE Treatment Site: A vs B
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survival curves correspond to applying the global model (learned in a
distributed manner) to 2 randomly selected patient records from site A
and site B (test data), respectively, using the baseline survival estimated
using Breslow’s approach. Figure 4 illustrates that survival curves of in-
dividual patients can be obtained without exchanging patient level data
across sites. Table 4 lists the attribute values of two randomly selected
patients for readers’ reference.

LIMITATIONS AND DISCUSSION
The proposed study just scratches the surface in terms of distributed
computing on sensitive data. It addresses the algorithm aspects by
showing that it is mathematically sound to decompose the Cox model
by sites, and illustrates a simple proof-of-concept implementation that
suggests that technical barriers are addressable. The study has some
important limitations. First, a public dataset31,32 was used to evaluate
the accuracy of federated survival analysis. Using real data generated
by partnering institutions would be indeed better to test whether our
proposed solution would be acceptable to health system leaders, but it
would require cross-institutional review board approval for a specific

study with named investigators, which would make it hard for external
users to check the results. Federated use of institutional data involves
multiple aspects, such as distributed algorithm development, secure
and practical engineering implementation, and adherence to policy. The
proposed solution limits its focus on the algorithm development with a
proof-of-concept web service implementation and does not imply that it

Table 2: Comparison of estimated parameters between distributed and centralized R implementations

Features b learned in WebDISCO Differences Other feature statistics

1 site 2 sites Se(b) z P

AAE �0.035664309 �0.035664309 5.06E-13 0.0118 �3.023 .0025

BDS 0.017800253 0.017800253 8.30E-15 0.0068 2.617 .0089

HU 0.053507037 0.053507037 9.21E-12 0.1704 0.314 .75

CU -0.051884396 �0.051884396 6.68E-13 0.1349 �0.385 .7

IVDUPN 0.299188008 0.299188008 2.78E-12 0.2249 1.33 .18

IVDURN 0.251226316 0.251226316 5.09E-12 0.2047 1.227 .22

NPDT 0.025211755 0.025211755 4.47E-12 0.0102 2.46 .014

RACE -0.455673981 �0.455673981 2.87E-12 0.1678 �2.716 .0066

TREAT -0.275508156 �0.275508156 2.16E-12 0.1366 �2.017 .044

SITE -0.621506977 �0.621506977 8.81E-12 0.2111 �2.944 .0032

We use R to implement both the centralized (i.e., 1 site) Cox model and the WebDISCO distributed (2 sites) Cox model. Both experiments were
based on the same training dataset, where we split training dataset between 2 sites for WebDISCO based on the attribute: treatment site. The re-
sults show that both models resulted in near-identical model coefficients with differences in the range 10�15 to 10�12. We also included other fea-
ture statistics learned from WebDISCO.

Table 3: Comparison of response time according to dataset
size and number of participant sites

Average Response Time (seconds)

UCSD and Emory UCSD and Duke Emory and Duke

5.50 9.25 9.33

We evaluated WebDISCO among geographically different sites (UCSD,
Emory, and Duke). We used the same training datasets as in Table 2,
2 subsets with 244 and 51 records based on the treatment site, re-
spectively. The table presents average response time from 10 trials
according to different pairs of sites, which shows that WebDISCO pro-
vides robust real-time service given all average response time <10 s.

Figure 3: Time-dependent AUC based on method pro-
posed by Chambless and Diao,34 where the solid and
dashed lines depict the AUC and random chance, re-
spectively. The AUC increases with the number of
days and ranges from 0.64 to 0.75, which indicates
that our distributed Cox model works properly for pre-
diction (AUC> 0.5) by estimating parameters b.
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would be readily adopted by health systems. The current implementa-
tion of WebDISCO has an important limitation in handling high dimen-
sional data. L1-norm regularization35 provides a way to select a small
number of features as well as achieve high model accuracy for high-
dimensional data. As this paper mainly focuses on the development of a
web interface to enable distributed Cox model learning, we have not fo-
cused on the developing a L1 regularized distributed Cox model but plan
to do this in future work. Finally, WebDISCO does not implement sophis-
ticated privacy methods such as differential privacy36 that guarantee
that the risk of re-identification via inspection of aggregate statistics
would rest below a certain value. We will investigate the utilization of
differential privacy algorithms, secure multi-party computation, and
encryption to protect such information in the future.

WebDISCO is a proof-of-concept web service for biomedical
researchers to collaborate and build a global Cox regression model
without sharing patient-level data. It does not preclude the need for
partners to trust each other in terms of modifying local Java settings,
submitting truthful aggregate statistics, and obtaining patient consent
as needed, but addresses the problem of partners not being able to
transmit patient-level data to another site. The WebDISCO framework
relies on a distributed Newton-Raphson algorithm and an HTTPS inter-
face, where the local statistics among participating institutions are ag-
gregated. This is useful to enable collaboration among institutions that

are not allowed to transmit patient-level data to an outside server.
WebDISCO is the first web service for distributed Cox model learning
in which global model parameters can be iteratively optimized in real
time among distributed collaborators of a network. We expect that the
utilization of distributed computation such as the one illustrated in
WebDISCO could help lower some barriers for collaboration and can
potentially accelerate research. WebDISCO might fit the work of large
multi-national data analysis projects, such as the OHDSI.19 In future
work, the proposed WebDISCO framework will need to accommodate
its Common Data Model and be released as production-level software
for OHDSI. Our ultimate goal is to contribute to the large-scale distrib-
uted data analysis project with WebDISCO and other distributed statis-
tical models. This article’s goal is to serve primarily as a proof of
concept for the decomposition algorithm we developed for distributed
Cox regression analyses.

CONCLUSION
We introduced WebDISCO, a proof-of-concept web service to provide
federated Cox model learning without transmitting patient-level data
over the network. WebDISCO has an interactive user interface so that
nonstatisticians can use the system without difficulty. When several
institutions participate, the analysis employs all datasets to produce
reliable results that are expected to be more generalizable than those
produced by a single institution. The proposed framework demon-
strated the feasibility of a federated survival analysis algorithm to facil-
itate collaboration across different institutions. However, the proposed
framework is limited as it does not deal with the policy and engineer-
ing concerns related to federated use of institutional data. We envision
that additional distributed models will continue to be added to the
arsenal of distributed statistical methods that can now be easily avail-
able to investigators worldwide.
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Figure 4: Individualized survival curve from a ran-
domly selected patient from Site A (patient 1, illus-
trated in blue) and a randomly selected patient from
Site B (patient 2, illustrated in red). Survival curves of
individual patients were obtained by using model esti-
mates and a baseline survival curve, without exchang-
ing patient level data across sites.
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Table 4: Attribute values of two randomly selected patients from Sites A and B

AAE BDS HU CU IVDUPN IVDURN NPDT RACE TREAT SITE Time Censor

P1 32 4 1 1 0 0 4 1 1 0 313 1

P2 24 15 0 1 1 0 0 0 0 1 238 1
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