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Abstract 

Abstract relational reasoning is a core component of human 
thinking.  While abstract relations are understood using a 
wide variety of methods, the formal algebraic equation is 
among the most powerful and general mechanisms for 
representing relational statements. It has often been assumed 
that the means by which expressions represent relations are 
purely semantic, and are encoded in an abstract syntax that 
governs the use of notation without regard to the details of its 
physical structure (Anderson, 2005; Hegarty, Mayer, & 
Monk, 1995).  In contrast, we propose an image of equation 
construction that highlights the role of concrete physical 
relations in mediating the interpretation of equations. In this 
account, construction processes involve a structural alignment 
across representation systems. Alignment biases reasoners 
toward the selection of representations that maintain the 
concrete structure of source representations.  We demonstrate 
that this approach accounts naturally for a variety of 
previously reported phenomena in equation construction, and 
correctly predicts several new phenomena. 

Keywords: Relational reasoning, analogy, psychology, 
education, problem solving 

Introduction 
Formal mathematics is among the most powerful means 

we have for dealing with abstract relational assertions. 
While mathematics uses a wide variety of tools to represent 
relations, for the last 500 years, the mathematical expression 
or equation as written in the formalism of algebraic notation 
has been the most ubiquitous and recognizable way to 
express abstract relationships. Understanding the use of 
formal symbol systems is thus an important part of 
understanding relational reasoning more generally. 

Given the importance of algebraic formalisms in 
mathematics generally as well as in middle-school and high-
school mathematics curricula, it is perhaps surprising that 
many people have great trouble constructing and 
interpreting even basic expressions written in it (e.g., 
Koedinger, Alibali, & Nathan, 2008). In particular, 
reasoners have great difficulty constructing and making 
sense of relational equations—equations that assert a 
quantitative relationship between two entities.  When 
Clement, Lochhead, and Monk (1981) asked undergraduate 
engineering students to write an equation representing the 
natural language expression “There are six times as many 
students as professors,” they found that 37% percent of their 
participants made errors. The great majority of those errors 

reversed the appropriate relation, (e.g., 6S=P instead of 
6P=S). Subsequent research established clearly the 
difficulty of these and other relational equations (e.g., 
Clement, 1982; Mestre & Lochhead, 1983; Hegarty, Mayer, 
& Monk, 1995; Martin & Bassok, 2005). 

In this paper, we provide an account of the source of 
reversal errors motivated by perceptually grounded theories 
of notation interpretation and use. Errors on relational 
equations result from a structural mismatch between the 
surface structure of typical relational comparison statements 
in English and the structure of default (multiplication) 
equations.  Before turning to our account, we review 
existing accounts for the difficulty of relational equations.  

Two systems accounts of equation construction 
Most research in relational equations posit two distinct 
strategies: a normative reasoning process, which leads from 
situation descriptions to correct relational equations, and 
some sort of shallow surface strategy which leads to errors 
(e.g., Clement, 1982; Fisher, Borchert, & Bassok, in press; 
Hegarty, Mayer & Monk, 1995; Martin & Bassok, 2005). 
On this kind of account, successful reasoning relies on 
building a mental model of the semantic relations specified 
in a situation description.  The relations encoded in the 
mental model can then be semantically converted into the 
relations of notational algebra, and this semantic alignment 
is used to construct a problem representation. 

Two systems accounts also posit a second route, in which 
reasoners use a heuristic or shortcut instead of modeling. 
The most commonly discussed second route is left-right 
transcription.  Reasoners using this strategy would directly 
transcribe words from a story problem into mathematical 
symbols in a left-right manner, without regard for the 
meaning of the mathematical symbols (Clement, 1982; 
Clement, et al., 1981; Hegarty, Mayer, & Monk, 1995).  

Fisher, Borchert, and Bassok (in press) proposed a two  
systems account that relies on their demonstration of two 
facts.  First, they persuasively demonstrate that inexpert 
algebraists often consider multiplication equations as a 
‘default’ algebraic expression, and treat division equation 
more-or-less exclusively as denoting arithmetic operations.  
Second, they speculate that reliance on multiplication as a 
standard form leads students into reversals, because 
multiplication equations’ left-right structure affords 
(incorrect) left-right transcription.  Fisher et al. evaluated  
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Table 1: Ways to phrase quantitative relational assertions in English. 
Phrasing 
Type 

Examples Variable 
 Type 

Equation 
Model 

Aligned? 

Direct  There are four screws for every nail. Count 4N=S No 
Comparison There are five rhinos for every six elephants. Weight 5R=6E Yes 
 Sally has seven more coats than hats. Count 7+H=C No 
     
Hypothetical 
Comparison 

If there were four nails for every nail there really is, there would be 
as many screws as nails. 

Count 4N=S Yes 

 If Sally had seven more hats, she would have as many hats as coats. Count 7+H=C Yes 
 If there were three magazines for every magazine there actually is, 

there would be as many magazines as journals. 
Weight 3M=J No 

     
Operation Multiplying the number of nails by four yields the number of screws. Count 4N=S Yes 
 Six times the number of rhinos is the number of elephants times five. Weight 6E=5R No 

 
their proposal by asking participants to construct division 
models of relational statements, as in  
 

P
6
= S  

 
In this case left-right transcription is impossible, 

ostensibly forcing students to engage in more sophisticated 
modeling. Indeed, Fisher et al. report a drastic decrease in 
the number of reversal errors when divisions are required. In 
one study, 29% of multiplication equations were reversals, 
compared to only 8% of division equations.  

Our account builds on Fisher et al.’s conclusion that 
students prefer to use multiplication operations in algebra 
equations, and indeed our account also predicts that a 
greater willingness to use division equations would 
correspond to increased success in relational equation 
modeling.  However, our proposal for why reasoners are 
more successful with division equations in their task is quite 
different from Fisher et al.’s. 

Structural alignment of concrete relations  
The pattern of errors in relational equation construction is 

quite robust, and has been replicated many times.  However, 
it is not clear that the two systems account is the best way to 
explain these data. First, reversals are often produced even 
when transcription seems impossible. For instance, Mestre 
and Lochhead (1983), analyzing across several studies 
involving different populations of college students in Israel, 
the US, and Japan, reported that reversal rates either stayed 
the same or increased when the verbal statement “In one 
school, there are six times as many students as there are 
teachers,” was replaced with an aerial photograph of 5 cows 
and 1 pig in a field.  Furthermore, students are often more 
successful at solving problems phrased in natural language 
than in algebraic syntax (Koedinger & Nathan, 2004; 
Koedinger, Alibali, & Nathan, 2008). These results suggest 
that the difficulty students face in solving such problems 
lies in their ability to work with algebraic notation, not in 
their ability or willingness to interpret relationships. 

 We think that the explanation for the difficulty of 
relational statements lies in a greater appreciation for the 
ways we interact with formal expressions.  Landy & 
Goldstone (2007; see also Kirshner & Awtry, 2004) argue 
that our use of notation is intimately bound up with the 
concrete physical structure of the algebraic notation—
people use proximity, for instance, as a strong cue to the 
binding structure of formal expressions. 

We propose the concrete alignment view as a novel 
explanation of difficulties students have in constructing and 
interpreting relational algebraic expressions.  On this 
account, students construct equations through constructing 
representations and using relational alignment (Gentner, 
1983) to reidentify terms, objects, and relations across 
representations, using as guides both semantic features and 
the concrete relations that inhere in physical notations. 
Errors can crop up in either the construction or the mapping 
processes, but the concrete alignment view attributes the 
primary source of reversals to the mapping stage. 

The concrete alignment view accounts for past results by 
noting the general mismatch between the physical structure 
of comparison statements in English and (multiplication) 
statements in algebra, illustrated in Table 1. English 
comparatives such as “There are six students for every 
professor” bind through textual proximity and phrasal 
structure the relating quantity “six” to “students.” Algebraic 
multiplication statements in which variables represent 
counts make the opposite binding. 

Table 1 illustrates that rephrasing the comparison as an 
operation automatically binds the relation to objects in the 
same manner as a multiplicative equation.  In a similar way, 
when Fisher et al. (in press) instructed students to write 
division equations, they asked them to construct equations 
that naturally matched the physical structure of the direct 
comparison.  On our interpretation, typical relational 
problems are hard because the structure of the phrasing 
mismatches the structure of problem, and aligning structures 
whose concrete features mismatch is generally hard. 

The concrete alignment view is compatible with a wide 
variety of published results.  To evaluate it further, we 
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tested several combinations of phrasing and operations not 
previously reported. Here we report results of three 
variations on this theme: participants read a problem in one 
of the above phrasings, and constructed an equation.  

Experiment 1 

Method 
Participants 16 undergraduates attending the University of 
Richmond received partial course credit for participation. 
 
Design We constructed sixteen relational equation 
problems. Target items were separated by a multidigit 
arithmetic problem that served as a distracter. Each target 
described in a short paragraph (2-4 sentences) two sets of 
similar objects (e.g. screws and nails) on opposite sides of a 
balanced scale. The critical sentence described the 
numerical relationship using two relatively prime constants. 
Participants filled appropriate numbers and variables into an 
equation frame consisting of an operation and equals sign.  

The test problems varied along three dimensions: 
phrasing (direct comparison or operation), equation frame 
format (multiplication or division), and variable type (count 
or weight). The “rhino” sentences from Table 1 provide 
examples of the form of the direct and operation comparison 
statements used in Experiment 1.   

On weight problems, students wrote an equation using 
variables to represent the weight of each object, rather than 
the number of objects. Mathematically, this has the effect of 
inverting the concrete relations of the correct equation 
without affecting those in the text. For instance, if there are 
four nails for every screw, and the total weight nails and 
screws is equal, then each screw weighs as much as four 
nails.  Count problems asked participants to construct more 
typical equations in which variables stand for set sizes. 
 
Predictions The basic prediction of the concrete alignment 
account is quite simple: accuracy will be highest when the 
text places closely together terms that should be placed 
closely together in the correct equation—that is, when the 
equation aligns with the text (see table 1). Note that on 
division problems, alignment is reversed from 
multiplication problems. Since each experimental dimension 
reverses the alignment of text and equation, this model 
predicts a three-way interaction between phrasing, variable 
type, and equation frame. 

The two strategies account also makes clear predictions. 
On problems with a multiplication equation frame, 
participants may engage in left-right transcription, so 
accuracy should depend on whether that transcription is 
correct (transcription yields correct count equations in the 
operation condition, and weight equations in the direct 
comparison condition). On division frame problems, 
participants will be unable to engage in left-right 
transcription, and so will be forced to model.  The difficulty 
of the problem will depend on how difficult it is to extract 
the relevant information from the text.  Crucially, on this 

account comparison phrasing and problem type act roughly 
independently, so that these factors should not interact in 
determining performance. 

This prediction provides a strong way to discriminate the 
two strategies account, which predicts main effects of 
phrasing and variable type when division problems are 
constructed, from the concrete alignment view, which 
predicts a three-way interaction.  

Results 
Results were analyzed using nested mixed-effects logistic 
regression models, including main effects of phrasing, 
frame, and variable type, as well as interactions. Items on 
which participants wrote equations or notes outside the 
provided equation frame were excluded from analysis. 

Reversal rates are shown in Figure 1.  The model 
including a three-way interaction between phrasing, 
equation frame, and variable type fit the data better than the 
model including only main effects by a likelihood ratio test, 
(χ2(4) = 76, p<.001), and than the model including only two-
way interactions (χ2(1) = 58, p<.001). This was also the best 
fitting model overall.   

The concrete alignment view uniquely predicts an 
interaction between variable type and phrasing for division 
problems. We separately explored this two-way interaction 
by computing mixed-effect logistic regressions using just 
division problems. The model that included a two-way 
interaction term fit the data substantially better than a model 
including only main effects (χ2(1) = 6.9, p<.01). 
Examination of this model revealed that weight problems 
were associated with more reversals than number problems 
(eβ=10.4, z=2.8, p<.01), and operation language led to 
marginally more errors than direct comparison (eβ=5.2, 
z=1.9, p~.06). The interaction was also significant, such that 
problems that were both weight problems and expressed 
using operation phrasing were solved with fewer errors than 
problems that contained just one of these. 

Discussion 
The pattern of results closely matched the predictions of the 
concrete alignment view.  Reversal rates on problems in 
which relation binding in English mismatched that of  
mathematics were very high (averaging 76%); when the 
concrete features of the two situations aligned, the reversal 
rate was just 13% on average.  The pattern is weaker in 
division than in multiplication.  The simplest account for 
this difference is suggested by Fisher et al.: multiplication is 
the default pattern in algebra, so many students may initially 
have conceived a multiplication expression, and converted it 
mentally in order to fit it into the required frame.  

These problems were clearly quite challenging for our 
participants.  The within-subjects design also meant that 
participants were faced with one difficult problem after 
another, and may not have felt motivated to model each 
situation individually. Additionally, the operation 
statements were written in a manner that could easily be 
transcribed, which, while it indeed matched the patterning  

104



 
Figure 1: Reversal errors in Experiment 
 

of algebra, was also fairly unnatural as an English sentence. 
These properties may have inclined students away from 
meaningful semantic modeling, or encouraged an arithmetic 
approach. Experiment 2 controls for these problems by 
giving participants extremely simple problems associated 
with a high degree of success, phrased in the relatively 
natural hypothetical comparison structure. 

Experiment 2 

Method 
Participants 100 undergraduates attending the University 
of Richmond received partial course credit in exchange for 
participation. 5 participants did not complete the study, or 
did not fill their responses into the blanks as instructed. 
These participants were eliminated from analysis. 
 
Design and Procedure Participants completed a written test 
containing 32 story problems, half of which were targets 
and half unrelated distracters. Each target item described in 
a single sentence the relative quantities of two sets of 
similar objects. Test problems varied along two factors: 
comparison type and phrasing.  

The type of comparison could be more or fewer.  For 
instance, if in the target situation there are eight more nails 
than screws, then half of all participants saw the comparison 
statement “there are eight more nails than screws”, while 
half saw “there are eight fewer nails than screws.”  Each 
participant translated 8 comparisons of each type. 

Problems were phrased as either direct comparisons or 
hypothetical comparisons.  Direct comparisons relate 
unequal quantities, as in “Alex has five more pocket 
watches than wristwatches”.  Hypothetical comparisons 
describe what would make the two sets equal, e.g., “If Alex 
had five more pocket watches she would have as many 
pocket watches as wristwatches.”  

Participants used experimenter-specified variables to fill 
in an equation frame that modeled the described situation. 
The frame included three blanks on the left side of an equals 
sign, and one blank on the right. All comparison statements 

could be modeled by either an addition or a subtraction 
equation; the participant chose which operation to use. 
Predictions On the concrete alignment view, hypothetical 
comparisons should be formalized more readily than direct 
comparisons, because their concrete and semantic properties 
align well with the same correct response.   

The two strategies account does not make a strong 
prediction about accuracy in this case.  On direct 
comparison statements, some reasoners will be ‘lured’ into 
making left-right transcriptions, while others will engage in 
modeling.  In the hypothetical comparisons, left-right 
transcription is blocked by the phrasing, but students who 
engage in modeling will arguably have a harder time doing 
so, since the relations involved are less transparent in 
English. Thus, which phrasing is associated with higher 
error rates will depend on whether more students are lured 
into transcription in the direct comparison, or more students 
make modeling errors in the hypothetical.   

However, the two models do make different predictions 
about the specific pattern of responses, because the 
constant-variable patterning of a “more than” statement is 
slightly dispreferred in algebra notation.  That is, if the 
sentence “Sally has seven more coats than hats” is 
transcribed, the result is “7 + c = h” even though the version 
“c + 7 = h” is slightly preferred (MacGregor & Stacey, 
1993).  While students engaging in left-right transcription 
may correct this and other minor oddities in producing 
expressions, they may not.  On the other hand, there is no 
pressure in the two systems account for students to invert 
expressions in this way in the hypothetical comparison.  
Thus, on the two systems account reasoners are more likely 
to invert in the direct than the hypothetical comparison. 

Just the opposite conclusion follows from the concrete 
alignment account.  Forming correct equations from direct 
comparison statements requires ignoring either physical or 
semantic cues, making matching the physical pattern less 
likely than in the hypothetical case, in which physical 
relationships are a sound guide to correct responding.   

Results 
The main results are presented in Figure 2. Overall accuracy 
was very high (M=.9, SE=.01).  Logistic regression models 
were evaluated with error rate as the dependent measure, 
and phrasing (direct vs. hypothetical comparison) and 
comparison type (more vs. fewer) as independent factors.  
The model including both factors fit better than a model 
including only phrasing (χ2(1) = 6.1, p=0.01), and one 
including only comparison type (χ2(1) = 11.2, p<.001), and 
was the best-fitting model overall. Problems containing the 
“more” language were solved more readily than problems 
using the “fewer” relation (eβ=1.6, z=2.4, p=.02); 
hypothetically phrased problems were solved more easily 
than direct problems (eβ=1.82, z=3.3, p=.001).  
A logistic analysis regressing relative ordering of the 
constant and symbol against phrasing did improve the fit 
over a null model (χ2(1) = 15.6, p<0.001; see Figure 3). 
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Figure 2: Error rates in Experiment 2.  Errors bars on all 
graphs depict standard errors. 
 
Inversions were more common in the hypothetical than the 
direct comparisons. Not surprisingly, inversions were also 
more common on “more” problems than on “fewer” 
problems; a model that fit main effects of both comparison 
type and phrasing provided a better fit than one containing 
just phrasing (χ2(1) = 71, p<0.0001) and one containing just 
comparison (χ2(1) = 19.7, p<0.0001).  Including the 
interaction did not improve the fit (χ2(1) = 1.2, p~.27). 

It is possible that the use of physical spacing on 
hypothetical comparison problems was an artifact of the 
within-subjects nature of the design; participants may have 
noticed early on that physical spacing was a reliable guide, 
and employed it on later problems in consequence. An 
examination of just the first problems seen by each 
participant indicated that this was not the case: considering 
only the first problem seen by each participant, inversions 
were still more common on hypothetical than direct 
problems (the model including both factors fit better than 
the model just including comparison type, χ2(1) = 11.8, 
p<.001), and was the best-fitting model overall. 

Discussion 
As predicted by the concrete alignment view, hypothetical 
comparatives were easier for participants to correctly solve.  
More interestingly, inversions were more frequent in this 
condition than in the direct comparison condition.  Rather 
than transcription accounting for errors, in this case 
“transcription” is selectively used when it is most likely to 
lead to correct responses.  This difference cannot be 
accounted for by a two systems account, which views 
transcription as a shortcut to avoid complex thinking.  
However, it is quite natural in the concrete alignment 
account in which surface features contribute as a core 
component of the general modeling process. 
The two systems view might accommodate some results of 
Experiments 1 and 2 by generalizing the simple heuristic 
shortcuts to include alignments of concrete elements in 
addition to simple transcription.  To evaluate this 
possibility, we next consider a more sophisticated case of 
equation construction, which requires the reasoner to select, 
remember, and apply an appropriate equation.  This task 
cannot be accomplished without some modeling, so we can 
use it to evaluate whether mapping occurs in modeling. 

Figure 3: Proportion of responses that were inverted in 
Experiment 2.  

Experiment 3 

Method 
Participants Participants were 32 undergraduates at the 
University of Illinois who had recently completed 
introductory physics participating in exchange for monetary 
compensation.  
 
Procedure Participants completed a short test containing 
several elementary mechanics problems, and other 
distracters.  Some problems were parts of other experiments, 
which will not be discussed here.  The target problem was 
the fifth problem in a set of sixteen. In this problem, 
participants were told a story about several asteroids (with 
masses m1, m2, and m3) and a single asteroid (mass m).  For 
each pairing of the single asteroid and the other asteroid, the 
participants were to construct the Newtonian gravitation 
equation, 

 

. 
 

Participants were not reminded of the gravitation 
equation, and had to retrieve it from memory.  Thus, 
transcription is not possible in this case, and some modeling 
was required to select and construct an appropriate equation.   

Constructing this equation requires deciding which mass 
to place on the left, and which on the right.  If the alignment 
of concrete features is a core component of equation 
construction, then in a situation with few semantic factors, 
participants should tend to place terms in the order in which 
they were introduced in the problem.  If concrete alignment 
is a shortcut separate from modeling, there is no particular 
reason why one term should be placed to the left. The order 
in which the terms were introduced was counterbalanced: in 
one condition, the single asteroid was described first, and 
was described as the agent (it moved from asteroid to 
asteroid).  The other condition introduced the asteroids first, 
which were described as moving past the asteroid. 

 
Results 27 participants responded either correctly, or made 
only minor errors not relevant for our purposes (such as 
neglecting to square the distance in the denominator).  Of 
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these, 24 (12 in each counterbalancing condition) placed the 
term that was introduced in the narrative first in the equation 
(p<.001 by Fisher’s exact test). Two participants in the 
asteroids-first condition and one in the asteroid-first 
condition placed the masses in the inverted order. 

 
Discussion The effect of the order in which terms appear in 
a problem statement on how reasoners order equation terms 
is not limited to cases in which it provides a suitable 
shortcut. This suggests that relational equation reversals are 
ubiquitous because the processes involved in modeling an 
equation involve relational mapping, and the attended 
relations include concrete aspects of algebraic notation. 

General Discussion 
Three experiments matched predictions made by the 

concrete alignment account of equation use: First, 
participants constructing division equations were affected 
by relation binding in problem statements, just as are people 
writing the more common multiplication equations.  
Second, participants freely constructing addition or 
subtraction equations did so more successfully when the 
problem statement afforded maintaining both concrete 
structure and semantic features. Third, participants proved 
more likely to match low-level physical structure when 
doing so led to correct answers than when it did not, 
suggesting that the use of physical structure occurs after or 
along with semantic processing. Finally, participants 
matched concrete details even when the problem did not 
afford any simple heuristic solution.   

Beyond simplifying existing accounts of empirical 
phenomena and providing new testable predictions, by 
making the alignment of concrete notations a central 
component of correct equation construction, the current 
proposal suggests approaches to teaching students how to 
read and understand equations.  In particular, it suggests that 
rather than trying to instruct students that physical structure 
is irrelevant, or exclusively focusing on the intra-
mathematical articulation of implications, it may be possible 
to help students understand equations as sensible utterances 
by providing interpretation routes (i.e., mappings onto 
natural-language descriptions or imagistic models) that are 
both interpretable and maintain concrete relational structure.  
That is, rather than seeing mappings like this as a shortcut to 
be averted, we can see them as a route to potential 
understanding. 

Finally, this research mirrors suggestions that our ability 
for wholly abstract relational reasoning may be strikingly 
limited.  Algebra and its accompanying notation are a 
paradigmatic case of purely symbolic thought.  That 
experienced users of algebra rely on concrete physical 
structure suggests the interpretation that purely symbolic 
thought is itself largely achieved not though complex 
abstract internal resources, but through the cooption—in this 
case via external formal notations—of resources typically 
devoted to representing concrete relations and features. 
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