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D. Mortlock56, D. Munshi85, J. A. Murphy80, P. Naselsky81,39, F. Nati34, P. Natoli33,4,50, H. U. Nørgaard-Nielsen16, F. Noviello70, D. Novikov56,
I. Novikov81, S. Osborne87, F. Pajot60, R. Paladini57, D. Paoletti50, B. Partridge44, F. Pasian48, G. Patanchon1, O. Perdereau72, L. Perotto76,
F. Perrotta84, F. Piacentini34, M. Piat1, E. Pierpaoli23, S. Plaszczynski72, E. Pointecouteau89,9, G. Polenta4,47, N. Ponthieu60,53, L. Popa63,

T. Poutanen45,25,2, G. W. Pratt74, S. Prunet61,88, J.-L. Puget60, J. P. Rachen21,79, W. T. Reach90, R. Rebolo67,14,40, M. Reinecke79, C. Renault76,
S. Ricciardi50, T. Riller79, I. Ristorcelli89,9, G. Rocha69,10, C. Rosset1, M. Rowan-Robinson56, J. A. Rubiño-Martı́n67,40, B. Rusholme57,
A. Sajina24, M. Sandri50, G. Savini83, D. Scott22, G. F. Smoot27,78,1, J.-L. Starck74, R. Sudiwala85, A.-S. Suur-Uski25,45, J.-F. Sygnet61,

J. A. Tauber43, L. Terenzi50, L. Toffolatti19,68, M. Tomasi51, M. Tristram72, M. Tucci72, M. Türler54, L. Valenziano50, B. Van Tent77, P. Vielva68,
F. Villa50, N. Vittorio37, L. A. Wade69, B. D. Wandelt61,88,30, M. White27, D. Yvon15, A. Zacchei48, and A. Zonca29

(Affiliations can be found after the references)

Submitted 19-Jul-2012/ Accepted 27-Nov-2012

Abstract

We make use of thePlanck all-sky survey to derive number counts and spectral indicesof extragalactic sources – infrared and radio sources – from
thePlanck Early Release Compact Source Catalogue (ERCSC) at 100 to 857GHz (3 mm to 350µm). Three zones (deep, medium and shallow)
of approximately homogeneous coverage are used to permit a clean and controlled correction for incompleteness, which was explicitly not done
for the ERCSC, as it was aimed at providing lists of sources tobe followed up. Our sample, prior to the 80 % completeness cut, contains between
217 sources at 100 GHz and 1058 sources at 857 GHz over about 12,800 to 16,550 deg2 (31 to 40 % of the sky). After the 80 % completeness
cut, between 122 and 452 and sources remain, with flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so defined can be used
for statistical analysis. Using the multi-frequency coverage of thePlanck High Frequency Instrument, all the sources have been classified as
either dust-dominated (infrared galaxies) or synchrotron-dominated (radio galaxies) on the basis of their spectral energy distributions (SED). Our
sample is thus complete, flux-limited and color-selected todifferentiate between the two populations. We find an approximately equal number of
synchrotron and dusty sources between 217 and 353 GHz; at 353GHz or higher (or 217 GHz and lower) frequencies, the number is dominated by
dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide forthe first time counts of bright
sources from 353 to 857 GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where
these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (from
earlierPlanck results,Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies, and
covering a large range of flux densities. We derive the multi-frequency Euclidean level – the plateau in the normalised differential counts at high
flux-density – and compare it toWMAP, Spitzer andIRAS results. The submillimetre number counts are not well reproduced by current evolution
models of dusty galaxies, whereas the millimetre part appears reasonably well fitted by the most recent model for synchrotron-dominated sources.
Finally we provide estimates of the local luminosity density of dusty galaxies, providing the first such measurements at545 and 857 GHz.

Key words. Cosmology: observations – Surveys – Galaxies: statistics -Galaxies: evolution – Galaxies: star formation – Galaxies:active

⋆ online material at http://www.aanda.org and counts at
http://www.ias.u-psud.fr/irgalaxies/planck_hfi_counts_2013/
⋆⋆ corresponding author e-mail:herve.dole@ias.u-psud.fr

1. Introduction

Among other advantages, all-sky multifrequency surveys have
the benefit of probing rare and/or bright objects in the sky. One

http://arxiv.org/abs/1207.4706v2
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http://www.ias.u-psud.fr/irgalaxies/planck_hfi_counts_2013/
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Figure 1. Comparison between ourPlanck 857 GHz mask (red
indicates regions removed from the analysis) and theWMAP 7-
year KQ75 mask (green means removed); unlike the case for the
mask employed in this paper, theWMAP mask excludes some
point sources. The background (blue) is the sky area used for
our analysis. This map is a Mollweide projection of the sky in
Galactic coordinates.

reason to probe bright objects is to study the number counts of
extragalactic sources and their spectral shapes. In the far-infrared
(FIR) the sources detected by these surveys are usually domi-
nated by low-redshift galaxies withz < 0.1, as found byIRAS
at 60µm (Ashby et al., 1996) but a few extreme objects like the
lensed F10214 source (Rowan-Robinson et al., 1991) also ap-
pear. However, the population in the radio band is dominated
by synchrotron sources (in particular, blazars) at higher redshift
(seede Zotti et al., 2010, for a recent review). Previous mul-
tifrequency all-sky surveys were carried out in the infrared (IR)
range by theIRAS satellite (between 12 and 100µm;Neugebauer
et al. 1984), and more recently byAkari (between 2 and 180µm;
Murakami et al. 2007) and WISE (between 3.4 and 22µm;
Wright et al. 2010). Early, limited sensitivity surveys were car-
ried out in the IR and microwave range byCOBE (between
1.2µm and 1 cm;Boggess et al. 1992), and more recently in the
microwave range byWMAP (between 23 and 94 GHz;Bennett
et al. 2003; Wright et al. 2009; Massardi et al. 2009; de Zotti
et al. 2010).

Planck’s all-sky, multifrequency surveys offer several advan-
tages to all of the above. The frequency range covered is wide,
extending from 30 to 857 GHz; observations at all frequencies
were made simultaneously, reducing the influence of source vari-
ability; the calibration is uniform; and the delivered catalogue of
sources used in this paper was carefully constructed and vali-
dated.

The Planck frequency range fully covers the transition be-
tween the dust emission dominated regime (tracing star forma-
tion), and the synchrotron regime (tracing active galacticnuclei).
The statistical analysis of the populations in this spectral range
has never been done before. At large flux densities (typically
1 Jy and above), number counts from all-sky surveys of extra-
galactic FIR sources show a Euclidean component, i.e. a distri-
bution of the number of source per flux density binS ν at ob-
served frequencyν (dN/dS ν in Jy−1 sr−1) proportional toS −2.5

ν

(see Eq.1). This result is in line with expectations from a local
Universe uniformly filled with non-evolving galaxies (Lonsdale
& Hacking, 1989; Hacking & Soifer, 1991; Bertin & Dennefeld,
1997; Massardi et al., 2009; Wright et al., 2009). In the radio
range, the Euclidean part is modified by the presence of higher-

Figure 2. Comparison between ourPlanck 353 GHz mask (red
means removed) andWMAP 7-year KQ85 mask (green). The
background (blue) is the sky area used for the analysis.

redshift sources. At flux densities smaller than typically 0.1 to
1 Jy, an excess in the number counts compared to the Euclidean
level is an indication of evolution in luminosity and/or density
of the galaxy populations. This effect is clearly seen in deeper
surveys in the FIR (e.g.Genzel & Cesarsky 2000; Dole et al.
2001, 2004; Frayer et al. 2006; Soifer et al. 2008; Bethermin
et al. 2010a); in the submillimetre (submm) range (e.g.Barger
et al. 1999; Blain et al. 1999; Ivison et al. 2000; Greve et al.
2004; Coppin et al. 2006; Weiss et al. 2009; Patanchon et al.
2009; Clements et al. 2010; Lapi et al. 2011); – and in the mil-
limetre and radio ranges (e.g.de Zotti et al. 2010; Vieira et al.
2010; Vernstrom et al. 2011).

Figure 3.Cumulative distribution ofPlanck hit counts on the sky
(here at 857 GHz with Nside=2048), with the corresponding in-
tegration time per sky pixel (given on the top axis). The three sky
zones used in the analysis are defined at 857 GHz: shallow (50
to 75 % of the hit count distribution, short-spaced lines, blue);
medium (75 to 95 % of the hit counts, medium-spaced lines,
green); and deep (95 % and above hits, widely-spaced lines, red).
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Figure 4. The three sky zones used in the analysis at 857 GHz:
deep (red); medium (green); and shallow (blue); These are based
on the 857 GHz hit counts.

The Planck1 all-sky survey covers nine bands between 30
and 857 GHz. It gives us for the first time robust extragalactic
counts over a wide area of sky at these wavelengths, and the first
all-sky coverage between 3 mm (WMAP) and 160µm (Akari) –
e.g. see Table 1 ofPlanck Collaboration VII(2011). The counts
in turn give us powerful constraints on the long-wavelength
spectral energy distribution (SED) of the dusty galaxies inves-
tigated e.g. byIRAS, and on the short-wavelength SED of the
active galaxies studied at radio wavelengths, e.g. byWMAP or
ground-based facilities.

For Planck’s six highest frequency bands (100 to 857 GHz,
we present here the extragalactic number counts and spectral
indices of galaxies selected at high Galactic latitude and using
identifications.Planck number counts and spectral indices of ex-
tragalactic radio-selected sources were already published for the
frequency range 30 to 217 GHz using results from the LFI and
HFI instruments (Planck Collaboration XIII, 2011). The transi-
tion between synchrotron-dominated sources and thermal dust-
dominated occurs in the crucial spectral range 200-800GHz .
Thus our broader frequency data allow a better spectral charac-
terisation of sources.

We use theWMAP 7 year best-fitΛCDM cosmology (Larson
et al., 2011), with H0 = 71 km s−1 Mpc−1, ΩΛ = 0.734 andΩM
= 0.266.

2. Planck data, masks and sources

Planck (Tauber et al., 2010; Planck Collaboration I, 2011) is the
third generation space mission to measure the anisotropy ofthe
cosmic microwave background (CMB). It observes the sky in
nine frequency bands covering 30–857GHz with high sensitiv-
ity and angular resolution from 31′ to 5′. The Low Frequency
Instrument LFI; (Mandolesi et al., 2010; Bersanelli et al., 2010;
Mennella et al., 2011) covers the 30, 44, and 70 GHz bands with
amplifiers cooled to 20 K. The High Frequency Instrument (HFI;
Lamarre et al. 2010; Planck HFI Core Team 2011a) covers the
100, 143, 217, 353, 545, and 857 GHz bands with bolometers
cooled to 0.1 K. Polarization is measured in all but the highest

1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states (in particularthe lead
countries France and Italy), with contributions from NASA (USA) and
telescope reflectors provided by a collaboration between ESA and a sci-
entific consortium led and funded by Denmark.

Figure 5. The three sky zones used in the analysis at 100 GHz:
deep (red); medium (green); and shallow (blue). These are based
on the 100 GHz hit counts.

two bands (Leahy et al., 2010; Rosset et al., 2010). A combina-
tion of radiative cooling and three mechanical coolers produces
the temperatures needed for the detectors and optics (Planck
Collaboration II, 2011). Two Data Processing Centers (DPCs)
check and calibrate the data and make maps of the sky (Planck
HFI Core Team, 2011b; Zacchei et al., 2011). Planck’s sensitiv-
ity, angular resolution, and frequency coverage make it a pow-
erful instrument for galactic and extragalactic astrophysics as
well as cosmology. Early astrophysics results are given in Planck
Collaboration VIII–XXVI 2011, based on data taken between
13 August 2009 and 7 June 2010. Intermediate astrophysics re-
sults are now being presented in a series of papers based on data
taken between 13 August 2009 and 27 November 2010.

The Planck data used in this paper (unlike other interme-
diate Planck papers) come entirely from the Early Release
Compact Source Catalogue, or ERCSC (Planck Collaboration
VII , 2011; Planck Collaboration, 2011). This in turn is based
on Planck’s first 1.6 sky surveys, data taken between 13 August
2009 and 7 June 2010. First results from the ERCSC are pub-
lished asPlanck early papers (Planck Collaboration XIII, 2011;

Figure 6. Completeness (vs. flux density of sources) coming
from the Monte-Carlo runs for the ERCSC and derived for each
zone. The horizontal dashed line represents our threshold for
number count analysis.

http://www.esa.int/Planck
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Planck Collaboration XIV, 2011; Planck Collaboration XV,
2011; Planck Collaboration XVI, 2011). In this paper, we use
only HFI data, covering the 100–857GHz range in six bands.

2.1. Galactic masks

To obtain reliable extragalactic number counts, uncontaminated
by Galactic sources, we mask out areas of the sky strongly af-
fected by Galactic sources, defining a set of “Galactic masks”.
These are based on removing a fraction of the sky above a spec-
ified level in sky surface brightness. We use two masks, one at
high frequencies (857 and 545 GHz), and one at lower frequen-
cies (353 GHz and below). The use of two different masks is mo-
tivated by the different astrophysical components dominating the
higher HFI frequencies and the lower frequencies, which arenot
necessarily spatially correlated. While emission from Galactic
dust dominates at 857 GHz, its spectrum decreases with de-
creasing frequency. On the contrary, the synchrotron and free-
free components dominate at 100 GHz.

Before applying a brightness cut to the maps, we degrade the
angular resolution of the maps from 1.′5 (Nside=2048 in Healpix;
Górski et al. 2005) down to 55′(Nside=64). The maps at low res-
olution are then interpolated at the original high angular reso-
lution. Creating a Galactic mask using this procedure has the
double benefit of: 1) not masking the bright sources (because
they are smoothed away); and 2) smoothing the Galactic struc-
ture. We checked to make sure that even the brightest sources
remained unmasked after applying this smoothing.

The 857 GHz Galactic mask keeps 48 % of the sky for anal-
ysis (thus removing 52 % of the sky), and this corresponds to a
cut of 2.2 MJy sr−1 at 857 GHz. This mask is applied at 857 and
545 GHz. The 353 GHz Galactic mask keeps 64 % of the sky for
analysis (thus removing 36 % of the sky), and corresponds to a
cut of 0.28 MJy sr−1 at 353 GHz.This mask is applied at 353,
217, 143 and 100 GHz.

Figs.1 and2 show thePlanck masks, comparing them with
the WMAP 7 year KQ75 and KQ85 masks (Gold et al., 2011;
Jarosik et al., 2011). Note that we do not use theWMAP masks
in this work.

2.2. Three zones in the sky: deep, medium and shallow

Three main zones are identified to ensure reasonably homoge-
neous coverage of the sky by thePlanck detectors at each fre-
quency, thereby allowing a clean and simple estimate of the
completeness. As noted above, thePlanck data used here corre-
spond to approximately 1.6 complete surveys of the sky; in ad-
dition each survey has non-uniform coverage of the sky (Planck
Collaboration I, 2011; Planck HFI Core Team, 2011a,b). While
performing statistics on sources drawn from a non-uniformly
covered survey is feasible, both the nature of thePlanck data
(including scanning strategy, and masking of planets (see the
ERCSC articlePlanck Collaboration VII 2011) and its hetero-
geneous coverage (see Fig.3) make it difficult to implement.
We therefore select three zones in the sky, in each of which
the observations are approximatively homogeneous in integra-
tion time.

The hit count can be defined by counting the number of times
a singlePlanck detector observes one sky position in the sky. The
hit count can also be defined for a particular frequency band:
it is the number of times each sky pixel has been hit by any
Planck detector at a given frequency. We will be using this latter
definition. This quantity is similar toNobs in WMAP data files.

The three zones have hit counts varying by not more than
a factor of two, except in the smaller deep zone (at the ecliptic
poles) where there is high redundancy. They are defined as (and
illustrated in Fig.3):

– deep:<5% of the best covered sky fraction (or 95 % or more
of the cumulative hit count distribution at a given frequency);

– medium: 5 to 25% of the best covered sky fraction (or 75
to 95 % of the cumulative hit count distribution at a given
frequency);

– shallow: 25 to 50% of the best covered sky fraction (or 50
to 75 % of the cumulative hit count distribution at a given
frequency).

Thus, pixels in the deep zone (at a given frequency) all have a
hit count value greater than or equal to the hit count value corre-
sponding to 95 % of the total distribution at this frequency.Note
that each frequency map has different hit counts, due to the focal
plane geometry; each zone will thus have slight differences in
geometry from one frequency to another, leading to slightlydif-
ferent surface areas. Table2 summarizes the surface area of each
zone; typically, the deep zone covers 1000 deg2, the medium
zone about 3000 deg2, and the shallow about 12000deg2. Fig. 4
(or 5) shows the three different zones used in this analysis: deep,
medium and shallow at 857 GHz (100 GHz), respectively.

2.3. Sample selection and validation

The sample is drawn from the ERCSC (Planck Collaboration
VII , 2011), which was constructed to contain high SNR sources.
Notice that at high frequency, the noise is dominated by the con-
fusion, mainly due to faint extragalactic sources and Galactic
cirrus (Condon, 1974; Hacking et al., 1987; Franceschini et al.,
1989; Helou & Beichman, 1990; Franceschini et al., 1991, 1994;
Toffolatti et al., 1998; Dole et al., 2003; Negrello et al., 2004;
Dole et al., 2006). The selection is performed with the following
steps at each HFI frequency independently:

– select sources within each zone: deep, medium and shallow;
– select point sources, using the keyword “EXTENDED” set

to zero;

These criteria should favour the presence of galaxies rather
than Galactic sources. To validate this, we make three checks in
addition to using conservative masks.

1. We measure the mid-IR to submm flux density ratios of
known Galactic cold cores (from thePlanck Early Cold Core
catalogue, ECC,Planck Collaboration XXIII 2011) and con-
versely of known galaxies in the ERCSC. UsingWISE (Wright
et al., 2010) W3 and W4 bands (when available with the first
public release), and the 857 GHz HFI band, we measure a factor
of 100 to 200 between the submm-to-mid-infared ratios of galax-
ies and ECC sources. When measuring this ratio in our sam-
ple, we see that the submm-to-mid-infared colours of all sources
in our sample are compatible with galaxy colours, and not with
ECC colours.

2. The CIRRUS flag in the ERCSC gives an estimate of the
normalised neighbour surface density of sources at 857 GHz,
as a proxy for cirrus contamination. The median value of the
CIRRUS flag in our sample is 0.093 at 857 GHz, a low value
compatible with no cirrus contamination when used in conjunc-
tion with the EXTENDED=0 flag (e.g.Herranz et al. 2012).

3. We query the NED and SIMBAD databases at the po-
sitions of all our ERCSC sources using a 2.′5 search radius.
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Table 1.Percentage and number ofPlanck source identifications using the SIMBAD and NED databases.

Galactic

Extragal Insecure Secure Unident Total

Zone % N % N % N % N % N

857 deep . . . . . . . . . . 91.2 73 2.5 2 1.2 1 5.0 4 100 80
medium . . . . . . . 95.5 255 1.9 5 0.0 0 2.6 7 100 267
shallow . . . . . . . 94.6 697 1.6 12 0.8 6 3.0 22 100 737

545 deep . . . . . . . . . . 76.5 39 7.8 4 2.0 1 13.7 7 100 51
medium . . . . . . . 91.1 143 2.5 4 0.0 0 6.4 10 100 157
shallow . . . . . . . 91.8 301 2.1 7 0.9 3 5.2 17 100 328

353 deep . . . . . . . . . . 81.6 31 2.6 1 5.3 2 10.5 4 100 38
medium . . . . . . . 87.0 94 0.9 1 2.8 3 9.3 10 100 108
shallow . . . . . . . 78.0 170 4.6 10 4.6 10 12.8 28 100 218

217 deep . . . . . . . . . . 77.3 17 0.0 0 22.7 5 0.0 0 100 22
medium . . . . . . . 92.5 62 1.5 1 1.5 1 4.5 3 100 67
shallow . . . . . . . 88.5 170 0.5 1 4.2 8 6.8 13 100 192

143 deep . . . . . . . . . . 86.7 13 0.0 0 13.3 2 0.0 0 100 15
medium . . . . . . . 100.0 48 0.0 0 0.0 0 0.0 0 100 48
shallow . . . . . . . 96.8 182 0.5 1 1.6 3 1.1 2 100 188

100 deep . . . . . . . . . . 77.8 14 0.0 0 22.2 4 0.0 0 100 18
medium . . . . . . . 100.0 45 0.0 0 0.0 0 0.0 0 100 45
shallow . . . . . . . 93.9 154 0.0 0 3.7 6 2.4 4 100 164

Table 2.Number of extragalactic sources by zone before (after) the completeness cut, and the surface area of the zones.

ν N Before (After) Completeness Cut Surface Area [deg2]

[GHz] Deep Medium Shallow Total Deep Medium Shallow Total

857 . . . . . . . . 77 (24) 262 (115) 719 (313) 1058 (452) 880 2288 9800 12969
545 . . . . . . . . 46 ( 8) 153 ( 69) 318 (143) 517 (220) 874 2324 9551 12749
353 . . . . . . . . 35 (14) 104 ( 59) 198 (151) 337 (224) 1086 2971 12373 16431
217 . . . . . . . . 17 (15) 65 ( 57) 183 ( 71) 265 (143) 1104 3169 1190016174
143 . . . . . . . . 13 ( 8) 48 ( 44) 184 ( 90) 245 (142) 1111 2972 11977 16061
100 . . . . . . . . 14 ( 6) 45 ( 39) 158 ( 77) 217 (122) 1072 2870 12611 16554

Table 3.Number of extragalactic sources used in the deep (D), medium(M), and shallow (S) number counts, and the corresponding
number of unidentified sources.

Nused/Nunidentified

S ν [Jy] 857 GHz 545 GHz 353 GHz 217 GHz 143 GHz 100 GHz

D M S D M S D M S D M S D M S D M S

0.398 0.303– 0.480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7/0 28/1 92/9 3/0 12/0 81/1 . . . . . . . . .

0.631 0.480– 0.762 . . . . . . . . . . . . . . . . . . 8/0 31/4 83/14 3/0 13/1 34/2 2/0 13/0 43/0 4/0 15/0 68/3
1.000 0.762– 1.207 . . . . . . . . . . . . . . . . . . 4/0 18/2 38/ 7 4/0 8/0 21/1 4/0 10/0 25/0 4/0 11/0 47/1
1.585 1.207– 1.913 . . . . . . . . . 5/0 26/6 78/9 1/1 6/0 14/ 0 1/0 4/0 11/0 2/0 4/0 12/0 2/0 7/0 13/0
2.512 1.913– 3.032 11/0 31/1 139/4 0/0 20/1 28/1 1/0 2/0 8/ 0 . . . 1/0 3/0 . . . 3/0 5/0 . . . 3/0 11/0
3.981 3.032– 4.805 7/0 33/2 95/4 1/0 16/1 20/1 . . . 1/0 6/ 0 . . . 2/0 1/0 . . . 1/0 3/0 . . . 2/0 3/0
6.310 4.805– 7.615 3/0 22/2 41/7 1/0 6/0 8/1 . . . . . . . . . . . . 1/0 1/0 . . . 1/0 1/0 . . . . . . 2/0

10.000 7.615–12.069 2/0 20/1 23/1 1/0 1/0 5/0 . . . 1/0 . . . . . . . . . . . . . . . . . . . . . . . . 1/0 1/0
15.849 12.069–22.801 1/0 9/0 15/0 0/0 0/0 4/0 . . . . . . 2/ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each Planck source has many matches (many of them com-
pletely unrelated, e.g. foreground stars), and the identification
is more complex at higher frequencies. However, as we show
later, ourN(> S ) cumulative distribution of sources is always
less than 200 sources per steradian, i.e. less than 3.3 × 10−4

ERCSC sources per 2.′5 search radius on average. We thus search
for the most probable match by identifying the source type in

this order: Galactic, then extragalactic. The Galactic types in-
clude supernova remnants, planetary nebulae, nebulae, Hii re-
gions, stars, molecular clouds, globular/star clusters. We call a
source “Galactic unsecure” when one of the two databases re-
turns no identification and the other a Galactic identification. We
do not use “Galactic secure” or “Galactic un-secure” sources in
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Figure 7. Distribution of spectral indices (for the sources present in the ERCSC at a given frequency in our sample with complete-
ness of 80 % or above). Hereα217

143 is shown as a dotted line,α353
217 as a dashed line, andα857

545 as a solid line. The region 2≤ α ≤ 4
is typical of thermal dust emission. In red we show the dusty sources, whereas in blue we show the synchrotron sources. The
sources in all three samples (deep, medium, and shallow) arecombined here. Note that, as expected, the 100 GHz, and 143 GHz
samples are dominated by radio galaxies, whereas the 545 GHzand 857 GHz samples are dominated by dusty galaxies. At 217 GHz
and 353 GHz we observe the transition between the two populations, with significant numbers of both types being present inthe
samples.

the analysis in this paper. The statistics of identifications is given
in Table1.

Our final sample is composed of confirmed galaxies, the vast
majority being NGC,IRAS, radio galasy and blazar objects, as
well as some unidentified sources (a small fraction of the to-
tal number). The few completely unidentified sources, where
no SIMBAD or NED ID was found, are interpreted as poten-
tial galaxies, and hence are included in our counts, becausethey
have a small cirrus flag value (see point 2 above). Their relatively
small number don’t change the results presented in this article,
wether or not we include these sources.

Table2 summarises the source number and surface area of
each zone (deep, medium and shallow). We find a total number
of sources ranging from 217 at 100 GHz to 1058 at 857 GHz.

2.4. Completeness

The ERCSC Pipeline (Planck Collaboration VII, 2011) used ex-
tensive Monte-Carlo simulations ( to account for systematic and
sky noise) to assess various parameters such as positional or
flux density accuracies. Here, we use the results of those runs
to estimate the completeness in each of the three zones, as pre-
sented in Fig.6. The uncertainties in completeness are at the
5 % level, as discussed inPlanck Collaboration VII(2011) and
Planck Collaboration(2011). The correction for incompleteness
is then applied to the number counts of each zone separately.

We use a completeness level threshold of 80 % for all fre-
quencies. This ensures: 1) minimal source contamination; 2)
no photometric biases (Planck Collaboration, 2011); and 3)
good photometric accuracy (Planck Collaboration, 2011) – see
Sect.2.5. The number of sources actually used to estimate the
number counts is given in Tab.3, which also includes the number
of unidentified sources. In the end, we use a number of sources
ranging from 122 at 100 GHz to 452 at 857 GHz (Tab.2).

2.5. Photometry

The photometry of the ERCSC is extensively detailed inPlanck
Collaboration VII(2011) as well as in the explanatory supple-
ment Planck Collaboration(2011). Here we use the “FLUX”
field for flux densities. Notice that 100 and 217 GHz flux den-
sities can be affected by Galactic CO lines (Planck HFI Core
Team, 2011b).

We would like to emphasise that the extensive simulations
performed in the process of generating/validating the ERCSC

Figure 8. Fraction of galaxy types as a function of frequency,
on the sample having completeness of 80 % and above: dusty
(red squares) and synchrotron (blue triangles). Error barsare
Poissonian.
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Table 4.Planck number counts at 353, 545, and 857 GHz.

857 GHz 545 GHz 353 GHz

S ν [Jy] dN
dS ν

S 2.5
ν N>S ν dN

dS ν
S 2.5
ν N>S ν dN

dS ν
S 2.5
ν N>S ν

Mean Range [Jy1.5 sr−1] [sr−1] [Jy1.5 sr−1] [sr−1] [Jy1.5 sr−1] [sr−1]

0.631 0.480– 0.762 . . . . . . . . . . . . 30.6± 3.7 50.1± 3.3
1.000 0.762– 1.207 . . . . . . . . . . . . 26.4± 4.0 21.0± 2.1
1.585 1.207– 1.913 . . . . . . 131.4± 21.4 60.3± 4.1 17.6± 4.1 8.4± 1.3
2.512 1.913– 3.032 466.2± 70.5 127.7± 6.0 104.6± 20.4 28.9± 2.7 18.3± 5.7 4.2± 0.9
3.981 3.032– 4.805 613.6± 96.6 71.8± 4.4 160.2± 33.8 16.3± 2.1 23.3± 9.0 2.0± 0.6
6.310 4.805– 7.615 573.4± 103.4 35.0± 3.0 129.4± 37.5 6.7± 1.3 . . . . . .

10.000 7.615–12.069 755.2± 150.3 17.7± 2.1 119.5± 47.8 2.8± 0.9 13.2± 13.3 0.6± 0.3
15.849 12.069–22.801 837.1± 200.5 6.3± 1.3 136.2± 70.4 1.0± 0.5 52.9± 37.6 0.4± 0.3

Table 5.Planck number counts at 100, 143, and 217 GHz.

217 GHz 143 GHz 100 GHz

S ν [Jy] dN
dS ν

S 2.5
ν N>S ν dN

dS ν
S 2.5
ν N>S ν dN

dS ν
S 2.5
ν N>S ν

Mean Range [Jy1.5 sr−1] [sr−1] [Jy1.5 sr−1] [sr−1] [Jy1.5 sr−1] [sr−1]

0.398 0.303– 0.480 16.5± 2.0 54.3± 3.54 8.5± 1.1 44.3± 2.95 . . . . . .

0.631 0.480– 0.762 11.5± 1.9 23.0± 2.21 13.7± 2.1 28.1± 2.46 21.9± 3.0 43.7± 3.14
1.000 0.762– 1.207 14.6± 2.8 12.0± 1.58 17.4± 3.1 15.0± 1.77 29.1± 4.4 22.9± 2.22
1.585 1.207– 1.913 13.6± 3.6 5.1± 1.01 15.4± 3.8 6.7± 1.17 18.8± 4.3 9.1± 1.35
2.512 1.913– 3.032 6.8± 3.4 1.8± 0.61 13.6± 5.0 3.1± 0.79 23.2± 6.5 4.6± 0.95
3.981 3.032– 4.805 10.1± 5.9 1.0± 0.45 13.6± 6.9 1.4± 0.54 16.5± 7.5 1.8± 0.59
6.310 4.805– 7.615 13.5± 9.6 0.4± 0.29 13.6± 9.7 0.6± 0.35 13.2± 9.4 0.8± 0.40

10.000 7.615–12.069 . . . . . . 13.6± 13.6 0.2± 0.20 26.3± 18.7 0.4± 0.28

allow us to derive reliable completeness estimates for eachzone
(see Sect.2.4) and also to estimate the quality of the photometry.
In the faintest flux density bins that we are using (corresponding
to 80 % completeness), there is no photometric offset, and the
photometric accuracy from the Monte-Carlo simulations (Planck
Collaboration, 2011, ; Fig. 7 for reference) is about: 35 % at
480 mJy for 100 GHz; 30 % at 300 mJy for 143 GHz; 20 % at
300 mJy for 217 GHz; 20 % at 480 mJy for 353 GHz; 20 % at
1207 mJy for 545 GHz; and 20 % at 1913mJy for 857 GHz. This
scatter in the faintest flux density bins strongly decreasesat
larger flux densities. Note that photometric uncertaintiescan bias
the determination of the counts slope (e.g.Murdoch, Crawford
& Jauncey, 1973); at our completeness level, the effect is negli-
gible.

From our sample, we also create “Band-filled catalogues”.
For each frequency/zone sample, we take each source position
from the ERCSC and perform aperture photometry from the
corresponding images in the other frequencies. We adopt 4σ
as the detection threshold. These aperture photometry measure-
ments (and upper limits) are used for the spectral classification
of sources and in the spectral index determinations, butnot in
the number counts measurements (which rely only on ERCSC
flux densities). We define the spectral indexα by S ν ∝ να.

The derived spectral indices are used to determine the colour
correction of the ERCSC flux densities (Planck HFI Core Team,
2011b). This correction changes the flux densities by at most
5 % at 857 GHz, 15 % at 545 GHz, 14 % at 353 GHz, 12 % at
217 GHz, and 1 % at 143 GHz and 100 GHz.

3. Classification of galaxies into dusty or
synchrotron categories

For the purposes of this paper, we aim for a basic classifica-
tion based on SEDs that separates sources into those dominated
by thermal dust emission and those dominated by synchrotron
emission. (Free-free emission does exist, but is not dominant,
e.g.,Peel et al. 2011). In order to classify our sources by type,
we start with the band-filled catalogues discussed in Section 2.5.
Thermal dust emission is expected to show spectral indices in the
rangeα∼ 2 – 4. On the other hand, colder temperature sources
can show lowerα857

545, if the 857 GHz measurement falls near the
spectral peak. Also, the presence of a strong synchrotron com-
ponent, or perhaps a free-free emission component, would start
to flatten the SED below∼ 353 GHz. With such issues in mind,
we have set up the following classification algorithm:

• all sources withα857
545≥ 2, orα545

353≥2 are assigned a “dusty”
classification;
• all sources where both of these spectral indices are lower

than 2, including non-detections, are assigned “synchrotron”
classification.

The resulting classification is summarised in Fig.7, showing the
spectral index distributions for each type as a function of ob-
served frequency.

However, some sources are difficult to classify, and could be
part of an “intermediate dusty” or “intermediate synchrotron”
type. These intermediate sources can be defined as follows:

• being dusty (according to our criterion above) but also hav-
ing α857

100 < 1
• being synchrotron (according to our criterion above) but also

being detected either at 857 or 545 GHz, and undetected at
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Table 6.Planck number counts of dusty galaxies at 217, 353, 545, and 857 GHz.

S ν [Jy] dN
dS ν

S 2.5
ν [Jy1.5 sr−1]

Mean Range 857 GHz 545 GHz 353 GHz 217 GHz

0.398 0.303– 0.480 . . . . . . . . . 3.2± 0.7
0.631 0.480– 0.762 . . . . . . 23.6± 3.1 2.3± 0.8
1.000 0.762– 1.207 . . . . . . 18.5± 3.2 1.8± 0.9
1.585 1.207– 1.913 . . . 129.0± 21.1 12.5± 3.4 . . .

2.512 1.913– 3.032 463.6± 70.2 100.3± 19.8 11.7± 4.5 1.7± 1.7
3.981 3.032– 4.805 609.0± 6.0 151.5± 32.5 13.3± 6.7 . . .

6.310 4.805– 7.615 573.4± 103.4 129.4± 37.5 . . . . . .

10.000 7.615–12.069 755.2± 150.3 119.5± 47.8 13.2± 13.3 . . .

15.849 12.069–22.801 837.1± 200.5 136.2± 70.4 26.4± 26.5 . . .

Table 7.Planck number counts of synchrotron galaxies at 100, 143, 217, 353,545, and 857 GHz.

S ν [Jy] dN
dS ν

S 2.5
ν [Jy1.5 sr−1]

Mean Range 857 GHz 545 GHz 353 GHz 217 GHz 143 GHz 100 GHz

0.398 0.303– 0.480 . . . . . . . . . 13.3± 1.7 8.5± 1.1 . . .

0.631 0.480– 0.762 . . . . . . 7.0± 1.4 9.2± 1.6 13.5± 2.1 21.9± 3.0
1.000 0.762– 1.207 . . . . . . 7.9± 2.0 12.8± 2.6 16.9± 3.1 28.6± 4.3
1.585 1.207– 1.913 . . . 2.4± 1.7 5.0± 2.1 13.6± 3.6 15.4± 3.8 18.8± 4.3
2.512 1.913– 3.032 2.6± 2.6 4.3± 3.1 6.7± 3.4 5.1± 3.0 13.6± 5.0 23.2± 6.5
3.981 3.032– 4.805 4.5± 4.6 8.7± 6.2 10.0± 5.8 10.1± 5.9 13.6± 6.9 16.5± 7.5
6.310 4.805– 7.615 . . . . . . . . . 13.5± 9.6 13.6± 9.7 13.2± 9.4

10.000 7.615–12.069 . . . . . . . . . . . . 13.6± 13.6 26.3± 18.7
15.849 12.069–22.801 . . . . . . 26.4± 26.5 . . . . . . . . .

353 and 217 and 143 GHz, i.e. sources that show both a sig-
nificant dust component and a strong synchrotron compo-
nent.

Among the sources included in the number counts analy-
sis, fewer than 10 % are classified as “intermediate”. This frac-
tion rises significantly if we remove the completeness cut due to
the increasing photometric uncertainties at lower flux densities
(see AppendixA for details). Examples of both “dusty” or “syn-
chrotron” sources with somewhat unusual SEDs are discussedin
AppendixB .

4. Planck extragalactic number counts between 100
and 857 GHz

The Planck extragalactic number counts (differential, nor-
malised to the Euclidean slope, and completeness-corrected) are
presented in Fig.9 and Tables4 and5. They are obtained using a
mean of the 3 zones (weighted by the surface area of each zone).

The error budget in the number counts is made up of: (i)
Poisson statistics (ii); the 5 % uncertainty in the completeness
correction (iii); the absolute photometric calibration uncertainty
of 2 % at and below 353 GHz, and 7 % above 545 GHz (Planck
HFI Core Team, 2011a,b). According to e.g. Eq. 1 ofBethermin
et al. (2011), calibration uncertainties produce errors scaling as
the 1.5 power in the Euclidean, normalized, differential number
counts.

Notice that for our bright counts, the error budget is dom-
inated by sample variance of nearby sources and consequently
by small-number statistics. For instance, the small wiggleseen
in the counts at the three highest frequencies (seen at 600 mJy
at 353 GHz, 4 Jy at 545 GHz and 10 Jy at 857 GHz) is due to

a few tens of local NGC sources in the medium zone (see
AppendicesB andC).

Integral (i.e. cumulative) combined number counts are
shown in Fig.11. Although error bars are highly correlated, these
counts provide a useful estimate of the source surface density.
The completeness correction is also applied here, and we usethe
same cuts in flux density as for the differential counts. Tab.4 and
5 also give theN > S values.

5. Further Results & Discussion

5.1. Nature of the Galaxies at submillimetre and millimetre
wavelengths

The change in the nature of sources (synchrotron dominated vs.
dusty) with frequency was first observed in thePlanck data in
Planck Collaboration VII(2011). Our new sample allows a more
precise quantification because of its completeness. The statis-
tics of synchrotron vs. dusty galaxies are summarised in Fig. 8,
showing the fraction of galaxy type as a function of frequency.
We estimate the uncertainty in the classification to be of theor-
der of 10 % (see AppendixA). The striking result is the almost
equal contribution of both source types near 300 GHz. The high
frequency channels (545 and 857 GHz) are, unsurprisingly, dom-
inated (> 90 %) by dusty galaxies. The low frequency channels
are, unsurprisingly, dominated (> 95 %) by synchrotron sources
at 100 and 143 GHz. At 217 GHz, fewer than 10 % of the sources
show a dust-dominated SED.

All the sources from our complete sample have an identified
spectral type (by construction), and we can compute the num-
ber counts separately for synchrotron and dusty galaxies. Fig. 9,
10 and11 show the differential and integral number counts by
type, also given in Tables6 and 7. We note that at 353 GHz,
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Figure 9. Planck differential number counts, normalised to the Euclidean value (i.e. S 2.5dN/dS ), compared with models and other
data sets.Planck counts: total (black filled circles); dusty (red circles); synchrotron (blue circles). Four models are also plotted:de
Zotti et al.(2005, dealing only with synchrotron sources – solid line);Tucci et al.(2011, dealing only with synchrotron sources –
dots);Bethermin et al.(2011, dealing only with dusty sources – long dashes);Serjeant & Harrison(2005, dealing only with local
dusty sources – short dashes). Other data sets:Planck early counts for 30 GHz-selected radio galaxies (Planck Collaboration XIII,
2011) at 100, 143 and 217 GHz (open diamonds);Herschel ATLAS and HerMES counts at 350 and 500µm fromOliver et al.(2010)
andClements et al.(2010); BLAST at the same two wavelengths, fromBethermin et al.(2010b); all shown as triangles. Left vertical
axes are in units of Jy1.5 sr−1, and the right vertical axis in Jy1.5.deg−2.

about two thirds of the number counts are made-up by dusty
sources. At 217 GHz (545 GHz) there is a minor contribution
(10 % or less) of the dusty (synchrotron) sources contributing
to the counts. These number counts of extragalactic dusty and
synchrotron sources are an important step towards further con-
straining models of galaxy SED and to including the results in
more general models of galaxy evolution (see below).

5.2. Planck Number Counts Compared with Other Datasets

The number counts are in fairly good agreement at lower fre-
quencies (100 to 217 GHz) with the counts published in the
Planck early results, based on a 30 GHz selected sample (Planck
Collaboration XIII (2011); represented as diamonds in Fig.9
and10). The effect of incompleteness in the latter is seen in the
fainter flux density bins, below about 500 mJy. We also notice
a slight disagreement around 400 mJy at 217 GHz, where our
counts of synchrotron galaxies exceed thePlanck early counts
by a factor of 1.7 (13.7± 1.5 vs. 8.2 ± 0.9 Jy1.5 sr−1). This dis-
crepancy can be easily understood: our current selection ofsyn-

chrotron sources is not the same as the one adopted in thePlanck
Early results paperPlanck Collaboration XIII(2011), in which a
more restrictive criterion was used (α217

143 < 0.5). If we adopt the
same criterion as in that paper, we find no statistically significant
difference between the two estimates of the number counts.

Our estimates of counts also seem consistent with the
Herschel ATLAS and HerMES counts (Clements et al., 2010;
Oliver et al., 2010) at high frequency (545 and 857 GHz) as
well as BLAST at the same two wavelengths (Bethermin et al.,
2010b), although there is no direct overlap in flux density and
small number statistics affect the brightestHerschel points.

The ACT 148 GHz data (Marriage et al., 2011) and SPT 150
and 220 GHz (Vieira et al., 2010) data are also plotted in Fig.10,
together with SCUBA and LABOCA data at 353 GHz (Borys
et al., 2003; Coppin et al., 2006; Scott et al., 2006; Beelen et al.,
2008; Weiss et al., 2009). The ACT and SPT data, when added
to thePlanck data at 143 GHz, cover more than four orders of
magnitude in flux density.

Finally, we checked that our counts are in agreement with
thePlanck Sky Model (Delabrouille et al., 2012).
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Figure 10.Same as Fig.9, but on a wider flux density scale and with the addition of ACT (Marriage et al., 2011) and SPT (Vieira
et al., 2010) data shown as squares at 143 and 217 GHz, and SCUBA and LABOCAdata shown as stars at 353 GHz (Borys et al.,
2003; Coppin et al., 2006; Scott et al., 2006; Beelen et al., 2008; Weiss et al., 2009). Notice that we added the model ofBethermin
et al.(2011) at 500µm (dash-dot) to comply with the Herschel data taken at that wavelength (and not at 545 GHz).

Figure 11. Planck integral number counts (filled circles); dusty
(red); synchrotron (blue). Vertical axes are in number per stera-
dian; right axis is in number per square degree. Counts are
completeness-corrected. The same faint flux density cut as for
differential counts is applied.

5.3. Planck Number Counts and Models

5.3.1. Models

Fig. 9 and10 display our present estimates of number counts
of extragalactic point sources, based on ERCSC data, together
with predictions from recent models of the numbers and evo-
lution of extragalactic sources. These models focus eitheron
radio-selected sources – i.e. sources with spectra dominated by
synchrotron radiation at mm/submm wavelengths (“synchrotron
sources”):de Zotti et al.(2005) andTucci et al.(2011) – or on
far-IR selected sources – i.e. sources with spectra dominated by
thermal cold dust emission at mm/submm wavelengths (“dusty
sources”):Serjeant & Harrison(2005) and Bethermin et al.
(2011). Many other models exist in the literature, among which
areLe Borgne et al.(2009), Negrello et al.(2007), Pearson &
Khan (2009), Rowan-Robinson(2009), Valiante et al.(2009),
Franceschini et al.(2010), Lacey et al.(2010), Marsden et al.
(2011), Wilman et al. (2010), and Rahmati & van Der Werf
(2011). A comparison is given with these models in Fig.12 for
857 GHz.

Thede Zotti et al.(2005) model focusses on radio sources,
both flat- and steep-spectrum, the latter having a componentof
dusty spheroidals and GPS (GHz peaked spectrum) sources. It
includes cosmological evolution of extragalactic radio sources,
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Figure 12. Planck differential number counts at 857 GHz, nor-
malised to the Euclidean (i.e.S 2.5dN/dS ). Planck counts: to-
tal (black filled circles); dusty galaxies (red circles). Models:
Bethermin et al.(2011) (long red dashes – dusty);Serjeant &
Harrison(2005) (short green dashes – dusty);Rahmati & van
Der Werf (2011) (black dash-dot-dot-dot line). Other:Lagache
et al. (2004); Negrello et al.(2007); Rowan-Robinson(2009);
Valiante et al.(2009); Pearson & Khan(2009); Franceschini
et al.(2010); Lacey et al.(2010); Wilman et al.(2010).

based on an analysis of all the main source populations at GHz
frequencies. It currently provides a good fit to all data on number
counts and on other statistics from∼ 5 GHz up to∼ 100 GHz.
This model adopts a simple power-law, with a very flat spectral
index (α ≃ −0.1), for extrapolating the spectra of the brightest
extragalactic sources (essentially “blazar2 sources”) to frequen-
cies above 100 GHz.

The Tucci et al. (2011) models provide a description of
three populations of radio sources: steep-, flat-, and inverted-
spectrum. The flat-spectrum population is further divided into
Flat-Spectrum Radio Quasars (FSRQ), and BL Lacs. The main
novelty of these models is the statistical prediction of the“break”
frequency,νM , in the spectra of blazar jets modeled by classi-
cal, synchrotron-emission physics. The most successful ofthese
models, “C2Ex”, assumes different distributions of break fre-
quencies for BL Lac objects and Flat Spectrum Radio Quasars,
with the relevant synchrotron emission coming from more com-
pact regions in the jets of the former objects. This model, de-
veloped to fit both the Atacama Cosmology Telescope (ACT)
data (Marriage et al., 2011) at 148 GHz and the results published
in the Planck Early paperPlanck Collaboration XIII(2011), is
able to give a very good fit to all published data on statistics
of extragalactic radio sources: i.e. number counts and spectral
index distributions. The model “C2Ex” also correctly predicts
the number of blazars observed in the Herschel Astrophysical
Terahertz Large Area Survey (H-ATLAS) at 600 GHz, as dis-
cussed inLópez-Caniego et al.(2012).

TheSerjeant & Harrison(2005) model is based on the SED
properties of local galaxies detected byIRAS and by SCUBA
in the SLUGS sample (Dunne et al., 2000). These local SEDs
are used in many models, including theLapi et al.(2011) model

2 Blazars are jet-dominated extragalactic objects, observed within a
small angle of the jet axis and characterized by a highly variable, non-
thermal synchrotron emission at GHz frequencies in which the beamed
component dominates the observed emission (Angel & Stockman,
1980).

(based onLapi et al. 2006andGranato et al. 2004) which links
dark matter halo masses with the mass of black holes and the
star formation rate.

Bethermin et al.(2011) present a backwards evolution
model, taking into account IR galaxies, which is a parametric
model fitting the fainter counts. It contains two families ofSEDs:
normal and starburst, fromLagache et al.(2004).

5.3.2. Synchrotron sources

Thede Zotti et al.(2005) model over-predicts the number counts
of extragalactic synchrotron sources detected byPlanck at HFI
frequencies. The main reason for this disagreement is the spec-
tral steepening observed in ERCSC sources above about 70 GHz
(Planck Collaboration XIII, 2011; Planck Collaboration XV,
2011), and already suggested by other data sets (González-
Nuevo et al., 2008; Sadler et al., 2008).

The more recent “C2Ex” model byTucci et al. (2011) is
able to give a reasonable fit to thePlanck number counts on
bright extragalactic radio sources from 100 up to 545 GHz (and
marginally at 857 GHz where our data are noisy). However, our
current data at 100 and 217 GHz are consistently higher than the
model number counts of synchrotron sources in the faintest flux
density bin probed by ERCSC completeness-corrected data (300
and 600 mJy, respectively). On the whole, however, the “C2Ex”
model accounts well for the observed level of bright extragalac-
tic radio sources up to 545 GHz.

5.3.3. Dusty sources

The Serjeant & Harrison(2005) model performs reasonably
well at 857 GHz, but is lower than our observations at 545 and
353 GHz. TheBethermin et al.(2011) model has the same trend
– it is compatible with the data at 857 GHz, but is lower than the
observations by a factor of about 3 at 353 and 545 GHz. This is
likely due to the limits of that model’s validity at high flux den-
sity (typically above one Jy). For both models, the likely origin
of the discrepancy with our new,Planck, high-frequency data
is the models’ inaccurate description of local SEDs. Since the
counts of bright sources at high frequency depend mainly on the
SED of low-z, IR galaxies, rather than on cosmological evolu-
tion at higher redshifts, any discrepancy with models is telling
us more about their accuracy in reproducing the averaged SED
of the low-z Universe than about any cosmological evolution.
This effect is also seen as a discrepancy in the Euclidean level
(Sect.5.4and Fig.13).

5.3.4. Other models

Fig. 12shows the predictions of more models at 857 GHz. Most
of the models do not explicitly include the counts at such high
flux densities (and/or are subject to numerical uncertainties, like
Valiante et al. 2009; Wilman et al. 2010). We thus suggest that
future model predictions extend up to a few tens of Jy in orderto
provide a good anchor for the SEDs at low redshift. At 857 GHz,
many models disagree with our data, e.g.Negrello et al.(2007),
Franceschini et al.(2010), Lacey et al.(2010), Rahmati & van
Der Werf (2011), Rowan-Robinson et al.(2010). Other mod-
els agree or marginally agree with our data, e.g.Lagache et al.
(2004); Pearson & Khan(2009); Bethermin et al.(2011).
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5.3.5. Main results

The two main results from the comparison with models are: 1)
the good agreement of theTucci et al.(2011) model with our
counts of synchrotron-dominated sources, including for the first
time at 353, 545 and marginally at 857 GHz; and 2) the failure of
most models to reproduce the dusty-dominated sources between
353 and 857 GHz. This latter point is likely due to errors in the
SEDs of local galaxies used (i.e. at redshifts less than 0.1 and
flux densities larger than 1 Jy).

5.4. Beyond the number counts

5.4.1. Planck observations of the Euclidean level

The Euclidean level of the number counts, described as the
plateau level,p, in the normalised differential number counts at
high flux density,

dN/dS = p S −2.5 (1)

mainly depends on the SED shape of galaxies (local galaxies in
the case of high frequency observations).

Figure 13 shows p over more than two orders of magni-
tude in observed frequency, from the mid-IR to the radio range.
The values ofp are reported in Table8. The Euclidean level
was determined using number counts above 1 Jy (except in the
case ofSpitzer, where number counts at fainter flux densities
were used). Beyond our measurements atPlanck HFI frequen-
cies (total in black, but also shown by source type: dusty and
synchrotron), we also show thePlanck early results at LFI and
HFI 100 GHz frequencies (Planck Collaboration XIII, 2011), as
well as WMAP-5year results at Ka (Wright et al., 2009) and
in all bands (Massardi et al., 2009; de Zotti et al., 2010), and
finally IRAS 25, 60 and 100µm results (Lonsdale & Hacking,
1989; Hacking & Soifer, 1991; Bertin & Dennefeld, 1997). The
Spitzer level at 24, 70 and 160µm comes from counts above 8,
70 and 300 mJy, respectively (Bethermin et al., 2010a). We also
plot the models ofSerjeant & Harrison(2005) (based onIRAS
and SCUBA 850µm local colors), ofde Zotti et al.(2005), of
Bethermin et al.(2011), and ofTucci et al.(2011).

As expected from our data on number counts discussed
above, our current and the earlyPlanck estimates are in good
agreement at 100 GHz. Also, thePlanck LFI and WMAP esti-
mates agree within the error bars. ThePlanck contribution is
unique in disentangling the dusty from synchrotron sourcesin
the key spectral regime around 300 GHz where the two popula-
tions contribute equally to the Euclidean level.

Likewise, thePlanck measurements of synchrotron sources
between 30 and 217 GHz at LFI frequencies and lower HFI fre-
quencies are very well reproduced by theTucci et al.(2011)
model “C2Ex”, as is the Euclidean level for synchrotron sources
at 353 GHz.

ThePlanck measurements lie above theSerjeant & Harrison
(2005) andBethermin et al.(2011) models at the three upper HFI
frequencies between 353 and 857 GHz. There are two explana-
tions for this: (1) the presence of synchrotron galaxies in equal
numbers to dusty galaxies between 217 and 353 GHz which
are not seen in theIRAS 60µm selected sample; and (2) the
cold dust component in the local Universe. Although the pres-
ence of cold dust has been known for some time (Stickel et al.,
1998; Dunne et al., 2000), its effects may have been underesti-
mated, as suggested inPlanck Collaboration XVI(2011). There
is a significant and largely unexplored cold (T < 20 K) com-
ponent in many nearby galaxies. This excess of submm emis-
sion is statistically confirmed here. At 545 GHz for instance,

we measurep = (125± 16) Jy1.5 sr−1 for the dusty galaxies;
the Serjeant & Harrison(2005) model predicts 45 Jy1.5 sr−1 (a
factor of 2.7 lower) and theBethermin et al.(2011) predicts
10 Jy1.5 sr−1 (a factor of 12 lower). At 353 GHz, we measure
p = 13± 7 Jy1.5 sr−1 for the dusty galaxies, while theSerjeant
& Harrison (2005) model predicts 4.92 Jy1.5 sr−1 (a factor of
2.7 lower). This is in line with the cooler 60µm:450µm colour
(i.e, smaller 60/450 flux ratio) found in ERCSC sources (Planck
Collaboration XVI, 2011, e.g. their figure. 4). Unlike the case of
the SLUGS sample (Dunne et al., 2000), Planck ERCSC sources
can have 60µm:450µm flux ratios up to ten times smaller.

5.4.2. Link between the Euclidean level for dusty galaxies
and the local luminosity density

In the IR and submm, the bright counts of dusty galaxies
probe only the local Universe, which can be approximated as a
Euclidean space filled with non-evolving populations. The vol-
umeVmax where a source with a luminosity densityLν is seen
with a flux density larger thanS ν,lim is:

Vmax =
4π
3

D3
max =

4π
3

(

Lν
4πS ν,lim

)
3
2

, (2)

whereDmax is the maximum distance at which a source can be
detected, andS ν,lim the limiting flux density at frequencyν. The
contribution of sources withLν − dLν/2 < Lν < Lν + dLν/2 to
the counts is then

dN(S ν > S ν,lim)
dLν

=
d2N

dLνdV
×

L
3
2
ν

S
3
2

ν,lim6
√
π

, (3)

. whereN(S ν > S ν,lim) is the number of sources brighter than
S ν,lim over the entire sky andd2N

dLνdV the local luminosity function.
The integral countsdN(S ν > S ν,lim)/dΩ are linked to this local
luminosity function by:

dN(S ν > S ν,lim)
dΩ

=
1
4π

∫ ∞

Lν=0

d2N
dLνdV

×
L

3
2
ν

S
3
2

ν,lim6
√
π

dLν (4)

The differential countsd2N/(dS νdΩ) are thus

d2N
dS νdΩ

=
S
−5
2
ν

16π
3
2

∫ ∞

Lν=0

d2N
dLνdV

× L
3
2
ν dLν (5)

, and the levelp of the Euclidean plateau is thus

pν =
1

16π
3
2

∫ ∞

Lν=0

d2N
dLνdV

× L
3
2
ν dLν (6)

.
The local monochromatic luminosity densityρν can be com-

puted as

ρν =

∫ ∞

Lν=0

d2N
dLνdV

× Lν dLν (7)

If we assume a single mean colorC between frequenciesν1 and
ν2 (with S ν1 = CS ν2) for all the sources, we simply have the
relation
ρν2

ρν1
= C. (8)

We make this assumption for simplicity. Note, however, thatthe
strongly peaked distributions of spectral indices from Figure 7
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Figure 13.Euclidean levelp (plateau inS 2.5dN/dS , see Eq.1) for bright sources, expressed in number of galaxies times Jy1.5 sr−1

(or Jy1.5deg−2 on the right axis) averaged between approximately 1 and 3 Jy at microwave to mid-IR frequencies. We specifically
show: ourPlanck HFI results (black circles), and separately dusty sources (red circles) and synchrotron sources (blue circles). The
dusty 545 GHz point is almost on top of the totalPlanck point. Also shown are:Planck Early results (purple diamonds) from (Planck
Collaboration XIII, 2011); WMAP-5year (red squares) fromWright et al.(2009); Massardi et al.(2009); de Zotti et al.(2010); IRAS
25, 60 and 100µm results (purple triangles) fromHacking & Soifer(1991), Lonsdale & Hacking(1989), andBertin & Dennefeld
(1997); andSpitzer 24, 70 and 160µm (blue stars) fromBethermin et al.(2010a). We also plot the models (solid lines):Serjeant &
Harrison(2005), based onIRAS and SCUBA data and dealing with dusty galaxies (SH05 green plus signs);Bethermin et al.(2011)
(B11 light blue plus signs) dealing with dusty galaxies;de Zotti et al.(2005) (D05 red crosses) dealing with synchrotron sources;
Tucci et al.(2011) (T11 blue crosses) for synchrotron sources. Values are given in Tab.8.

at 857 and 545 GHz are consistent with this assumption. At
353 GHz, the lowest frequency we consider in this analysis, the
situation is complicated by the appearance of some synchrotron
sources. Their effect, however, is small compared to other uncer-
tainties in the calculation ofρ. If we perform the same analysis
on the level of the Euclidean plateau, we obtain

pν2
pν1
= C

3
2 . (9)

The quantitiespν andρν are thus linked by

ρν2

ρν1
=

(

pν2
pν1

)
2
3

(10)

We could useρ60 (the IRAS local luminosity density at
60µm) and p60 (the Euclidean level at 60µm) as a reference,

in order to deriveρν, the luminosity density of dusty galaxies at
frequencyν (with IRAS as a reference):

ρν =

(

pν
p60

)
2
3

ρ60 (11)

However, the extrapolation of the dust emission from the
FIR to the (sub-)millimetre wavelengths is uncertain (as our data
show). We might instead want to use the luminosity density esti-
mated at 850µm from previous studies, and correct it to account
for the excess observed byPlanck. We can thus use:

ρν =

(

pν
p850

)
2
3

ρ850 (12)

Both the 60µm-based and the 850µm-based estimates are
shown in Fig.14and discussed in the next section.
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Figure 14. Luminosity densityρν (in units of h L⊙ Mpc−3) of
dusty galaxies, derived from the Euclidean levelp and scaled to
the luminosity density of: SCUBA 850µm data (Dunne et al.,
2000; Serjeant & Harrison, 2005) (see Eq.12); or IRAS 60µm
data (Soifer & Neugebauer, 1991; Bertin & Dennefeld, 1997;
Takeuchi et al., 2003) (see Eq.11). Red circles: estimate from
Planck for dusty galaxies (this work); green diamonds: compila-
tion fromTakeuchi et al.(2006); black dots: model fromSerjeant
& Harrison(2005). Values are given in Tab.9. OurPlanck esti-
mates lie in the shaded area. Note that we takeh = 0.71 here.

5.4.3. Estimate of the local luminosity density for dusty
galaxies

We use two reference wavelengths to deriveρν:
• at 60µm we useIRAS data: ρ60 is estimated bySoifer &
Neugebauer(1991) andTakeuchi et al.(2006); p60 by Soifer &
Neugebauer(1991) andBertin & Dennefeld(1997);
• at 850µm we use SCUBA SLUGS:ρ850 is estimated byDunne
et al. (2000) and Takeuchi et al.(2006); p850 by Serjeant &
Harrison(2005).
The values from these references are:ρ60 = 4.08 × 107h L⊙
Mpc−3 and p60 = 891.3 Jy1.5 sr−1 at 60µm; ρ850 = 9.45× 104h
L⊙ Mpc−3 and p850 = 4.92 Jy1.5 sr−1. The use of two reference
wavelengths is driven by the oversimplified hypothesis of a con-
stant colorC between two frequencies (assumptions described in
Sect.5.4.2). Computingρν using two different reference wave-
lengths allows us to estimate the impact of this hypothesis.

The results of our estimated luminosity densities from this
simple model are shown in Fig.14: lower points using the
SCUBA 850µm reference (Eq.12); upper points using theIRAS
60µm reference (Eq.11). The values are given in Tab.9.

As expected, ourPlanck indirect upper estimate is higher
than SLUGS at 353 GHz if we use 850µm as a reference. This
is clearly consistent with our value ofp being 2.7 times higher,
implying a factor of 2 (i.e. 2.72/3) in the luminosity densities. On
the other hand, our 353 GHz estimate using 60µm as a reference
falls way above the SCUBA estimate at 850µm. This again il-
lustrates that caution is required when extrapolating FIR colors
to the submm.

The true luminosity density should lie between our lower and
upper estimates; the ratio equals 13.5. At 353 GHz, our estimate
using SCUBA as a reference should be more appropriate to use
than theIRAS extrapolation.

6. Conclusion and Summary

From thePlanck all-sky survey, we derive extragalactic number
counts based on the ERCSC (Planck Collaboration VII, 2011)
from 100 to 857 GHz (3 mm to 350µm). We use an 80 % com-
pleteness cut on three homogeneous zones, covering a total of
about 16000deg2 ( fsky ∼0.31 to 0.40) outside a Galactic mask.
We provide, for the first time, bright extragalactic source counts
at 353, 545 and 857 GHz (i.e., 850, 550 and 350µm; see Fig.9).
Our counts are in the Euclidean regime, and generally agree with
other data sets, when available (Fig.10).

Using multi-frequency information to classify the sourcesas
dusty- or synchrotron-dominated (and measure their spectral in-
dices), the most striking result is the contribution to the number
counts by each population. The cross-over takes place at high
frequencies, between 217 and 353 GHz, where both populations
contribute almost equally to the number counts. At higher or
lower frequencies, counts are quickly dominated by one or other
population. We provide for the first time number counts esti-
mates of synchrotron-dominated sources at high frequency (353
to 857 GHz) and dusty-dominated sources at lower frequencies
(217 and 353 GHz).

Our counts provide new constraints on models which ex-
tend their predictions to bright flux densities. Existing models of
synchrotron-dominated sources are not far off from our obser-
vations, with the model “C2Ex” ofTucci et al.(2011) perform-
ing particularly well at reproducing the synchrotron-dominated
source counts up to 545 GHz (and marginally up to 857 GHz,
where our statistics become sparse). Perhaps less expectedis the
failure of most models of dusty sources to reproduce all the high-
frequency counts. The model ofBethermin et al.(2011) agrees
marginally at 857 GHz but is too low at 545 GHz and at lower
frequencies, while the model ofSerjeant & Harrison(2005) is
marginally lower at 857 GHz, fits the data well at 545 GHz, but
is too low at 353 GHz. The likely origin of the discrepancies is
an inaccurate description of the SEDs for galaxies at low red-
shift in these models. Indeed a cold dust component, seen e.g.
by Planck Collaboration XVI(2011), is rarely included in the
models at low redshift. This failure to reproduce high-frequency
counts at bright flux density should not have any impact on the
predictions at fainter flux densities and higher redshifts,as is
shown in the good fit toHerschel counts. Nevertheless it tells us
about the ubiquity of cold dust in the local Universe, at least in
statistical terms.

Finally, in Fig. 13, we provide a review of the Euclidean
plateau levelp of the number counts, spanning nearly three or-
ders of magnitude in both frequency and counts. The values ofp
are calculated for flux densities above 1 Jy, except in the case of
Spitzer where fainter objects are used. Fig.13compares these re-
sults with some relevant models. Thep value is usually not well
reproduced by models (at least forde Zotti et al. 2005; Serjeant
& Harrison 2005; Bethermin et al. 2011) in the synchrotron- or
dust-dominated regimes. TheTucci et al.(2011) model, on the
contrary, reproduces our observations of synchrotron sources, up
to 545 GHz. This multifrequency diagnostic is a powerful tool
for investigating the SEDs of galaxies in the context of cosmo-
logical evolution – at relatively low redshifts for the dusty galax-
ies. We derive a range of values for the local luminosity density
for dusty galaxies, based on simple considerations and using the
SCUBA 850µm andIRAS 60µmluminosity density as a refer-
ence.

The Planck multi-frequency all-sky survey is very rich
dataset, in particular for extragalactic studies (e.g.Negrello et al.
2012). The finalPlanck catalogue of sources will be based on
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Table 8. Values ofp, the Euclidean plateau level (in Jy1.5 sr−1)
from andPlanck and other satellite data. The column ”flag” in-
dicates the nature of the sources (a=all; d=dusty; s=synch).

ν p Flag Experiment Reference
[GHz] [Jy1.5 sr−1]

100 22 ± 5 s Planck PlanckCollab2012
143 15 ± 1 s Planck PlanckCollab2012
217 11 ± 3 s Planck PlanckCollab2012
353 21 ± 4 a Planck PlanckCollab2012
545 128± 17 a Planck PlanckCollab2012
857 627± 152 d Planck PlanckCollab2012
353 15 ± 6 d Planck PlanckCollab2012
545 125± 15 d Planck PlanckCollab2012
353 7 ± 9 s Planck PlanckCollab2012
545 3 ± 3 s Planck PlanckCollab2012
30 38 ± 8 s Planck PlanckCollab2011
44 29 ± 12 s Planck PlanckCollab2011
70 25 ± 5 s Planck PlanckCollab2011
100 20 ± 3 s Planck PlanckCollab2011
143 13 ± 2 s Planck PlanckCollab2011
217 10 ± 2 s Planck PlanckCollab2011
33 31 ± 1 s WMAP Wright2009
23 37 ± 7 s WMAP Massardi2009
33 37 ± 22 s WMAP Massardi2009
41 32 ± 15 s WMAP Massardi2009
61 19 ± 6 s WMAP Massardi2009
12000 63 ± 1 d IRAS Soifer91Bertin97
5000 891 ± 1 d IRAS Soifer91Bertin97
3000 3019± 1 d IRAS Soifer91Bertin97
12500 43 ± 5 d Spitzer Bethermin2010
4285 2252± 143 d Spitzer Bethermin2010
1875 5261± 743 d Spitzer Bethermin2010

Table 9. Values ofρν, the luminosity density of dusty galaxies
(in h L⊙Mpc−3), inferred from the Euclidean plateau levelp and
scaled to the luminosity density at 850µm (upper values) and
60µm (lower values).

ν ρν [scaled 850µm] ρν [scaled 60µm]
[GHz] [h L⊙Mpc−3] [h L⊙Mpc−3]

353 (1.99± 0.57)× 105 (2.69± 0.77)× 106

545 (8.18± 0.69)× 105 (1.10± 0.09)× 107

857 (2.39± 0.39)× 106 (3.23± 0.52)× 107

five complete sky surveys, while the present work is based on
only 1.6 surveys. With this improved data set, we expect to pro-
vide further constraints on the synchrotron and dust-dominated
populations at all frequencies, and over a wider range in redshift.
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20 Departamento de Matemáticas, Universidad de Oviedo, Avda.
Calvo Sotelo s/n, Oviedo, Spain

21 Department of Astrophysics/IMAPP, Radboud University
Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands



Planck Collaboration:Planck statistical properties of extragalactic IR and radio ERCSCsources 100–857 GHz 17

22 Department of Physics & Astronomy, University of British
Columbia, 6224 Agricultural Road, Vancouver, British Columbia,
Canada

23 Department of Physics and Astronomy, Dana and David Dornsife
College of Letter, Arts and Sciences, University of Southern
California, Los Angeles, CA 90089, U.S.A.

24 Department of Physics and Astronomy, Tufts University,
Medford, MA 02155, U.S.A.

25 Department of Physics, Gustaf Hällströmin katu 2a, University of
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Campus UAB, Torre C5 par-2, Bellaterra 08193, Spain

63 Institute for Space Sciences, Bucharest-Magurale, Romania

64 Institute of Astronomy and Astrophysics, Academia Sinica,
Taipei, Taiwan

65 Institute of Astronomy, University of Cambridge, Madingley
Road, Cambridge CB3 0HA, U.K.

66 Institute of Theoretical Astrophysics, University of Oslo,
Blindern, Oslo, Norway

67 Instituto de Astrofı́sica de Canarias, C/Vı́a Láctea s/n, La Laguna,
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CNRS, Bâtiment 210, 91405 Orsay, France

78 Lawrence Berkeley National Laboratory, Berkeley, California,
U.S.A.

79 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1,
85741 Garching, Germany

80 National University of Ireland, Department of Experimental
Physics, Maynooth, Co. Kildare, Ireland

81 Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark

82 Observational Cosmology, Mail Stop 367-17, California Institute
of Technology, Pasadena, CA, 91125, U.S.A.

83 Optical Science Laboratory, University College London, Gower
Street, London, U.K.

84 SISSA, Astrophysics Sector, via Bonomea 265, 34136, Trieste,
Italy

85 School of Physics and Astronomy, Cardiff University, Queens
Buildings, The Parade, Cardiff, CF24 3AA, U.K.

86 Space Sciences Laboratory, University of California, Berkeley,
California, U.S.A.

87 Stanford University, Dept of Physics, Varian Physics Bldg,382
Via Pueblo Mall, Stanford, California, U.S.A.

88 UPMC Univ Paris 06, UMR7095, 98 bis Boulevard Arago,
F-75014, Paris, France
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Appendix A: Spectral classification; effect of
intermediate sources and photometric noise

In this appendix, we investigate the fate and influence of theso-
called “intermediate” sources as defined in Sect.3.

Figure A.1. As in Fig. 8, the fraction of source type (dusty, red
squares; synch, blue triangles) as a function of frequency.The
difference is that we have now included the “intermediate” pop-
ulation (green diamonds). We can see that at most 13 % of our
classification as dusty or synchrotron can be affected by inter-
mediate sources. Our number counts by type (above 80 % com-
pleteness) are thus almost unaffected by these intermediate type
sources.

Fig. A.1 shows the fraction of sources (like Fig.8) by type
(dusty, synchrotron, and now intermediate) as a function offre-
quency computed for sources above 80 % completeness. The
fraction is at most 13 %, and is on average around 7 %. The in-
termediate source population thus has no impact on our number
counts by type.

We conclude that a genuine population of intermediate
sources exist (i.e. having both a thermal dust emission compo-
nent and a synchrotron component) but its contribution in num-
ber is less than typically 10 % (Fig.A.1). Notice that a free-free
emission can also play a role in the spectrum flattening around
100 GHz (Peel et al., 2011).

We notice, however, that this intermediate populations lies at
the faint end of the flux distribution (i.e. they usually are among
the faintest sources of our sample). To investigate furtherif the
presence of intermediate sources is linked to the level of pho-
tometric noise, we performed the classification on our whole
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sample, thus including sources at fluxes below the 80 % com-
pleteness limit. The results, shown in Fig.A.2, indicates that the
higher the photometric noise the more sources are classifiedas
intermediate.

When using the total sample (i.e. with sources fainter that the
80 % completeness cut), the fraction of intermediate sources in-
creases, but those sources are always at the faint end of the flux
distribution: the effect of the photometric noise is thus mainly
responsible for the uncertain classification. This emphasises that
we should use highly-complete samples for such statisticalanal-
ysis, in order not to be biased towards mis-classification.

Figure A.2. Like Fig. A.1, the fraction of source type (dusty,
red squares; synchrotron, blue triangles; green diamonds,inter-
mediate) as a function of frequency. The difference is that we
have now included the whole catalogue, i.e. including sources
affected by more photometric noise below the 80 % complete-
ness limit cut. The effect of increasing noise is to induce more
sources to be classified as intermediate.

Appendix B: Some peculiarities; individual sources
or groups of sources

While the SEDs of some particular sources have been published
in the Planck early papersPlanck Collaboration XIV(2011);
Planck Collaboration XV(2011); Planck Collaboration XVI
(2011), we review here some specific sources detected at low
or high frequency, but with unexpected classifications.

B.1. Low-frequency dusty galaxies

There are seven low-frequency sources (three detected at
100 GHz and four at 143 GHz) that are classified as dusty
galaxies. This kind of classification is not necessarily expected,
unless we detect local galaxies showing both radio and infrared
components. For this reason we check them individually.

1) PLCKERC100 G062.69−14.07: There is no radio iden-
tification in NVSS & GB6 or in NED, and no detection at LFI
frequencies. This source is likely correctly classified as adusty
galaxy.

2) PLCKERC100 G140.41−17.39: This source is found
with NED to be NGC 891. There is no LFI detection, but
detections in NVSS/GB6. We might be seeing two spectral
components (dusty and synchrotron) of this nearby galaxy.

3) PLCKERC100 G141.42+40.57: This is NGC3034 (M82).
As above we are sensitive to both components of this nearby
and well-studied galaxy.

4) PLCKERC143 G001.33−20.49: No LFI detection nor
radio identification. This source is correctly classified asa dusty
galaxy.

5) PLCKERC143 G148.59+28.70: This source is likely
a blazar with an almost flat spetrcum at high frequencies and
detections in NVSS and GB6. This source is likely incorrectly
classified as dusty, because of the small jump in flux at 545 GHz.

6) PLCKERC143 G236.47−14.38: No LFI detection nor
radio identification. This source is correctly classified asa dusty
galaxy.

7) PLCKERC143 G349.61−52.57: No LFI detection. At 0.2
to 20 GHz it is identified as a flat-spectrum source but its high-
frequency spectrum shows a clear dusty behaviour. This source
is correctly classified as a dusty galaxy, although a clear radio
component is detected.

B.2. High frequency synchrotron galaxies

There are four sources classified at synchrotron sources at
857 GHz. We also check them individually.

1) PLCKERC857 G206.80+35.82: This is a confirmed
blazar detected withWMAP . This source is correctly classified
as synchrotron-dominated.

2) PLCKERC857 G237.75−48.48: This is a confirmed
blazar detected withWMAP andATCA. This source is correctly
classified as synchrotron-dominated.

3) PLCKERC857 G250.08−31.09: This is a confirmed
blazar detected withWMAP andATCA. This source is correctly
classified as synchrotron-dominated.

4) PLCKERC857 G148.24+52.44: This is NGC 3408, quite
faint for Planck at high frequencies (812 mJy at 857 GHz and
not detected at 545 GHz). This source, although in our sample
defined in Sect.2.3, was not used in the number counts because
of the low completeness level at this flux density.

B.3. Bump at 4 Jy at 545 GHz in the medium zone

As discussed in Sect.4 and shown in Fig.B.1, there is an excess
of 545 GHz sources in the medium zone at 4 Jy, which is also
seen at 857 GHz at 10 Jy and at 353 GHz at 1 Jy. This bump is
created at 545 by 18 sources (between 3 and 5 Jy). Among the
sources, we find NGC 3147, NGC 4449, NGC 4217, NGC 3992,
NGC 4088, NGC 4096, NGC 4051, NGC 3631, NGC 3938, IC
0750, NGC 4244, NGC 3726, NGC 4214, NGC 7582 and NGC
7552. At 857 GHz, we find 20 sources between 7.6 and 12 Jy,
with many in common with the list above. These sources are
not physically associated and are spread over a large surface of
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Figure B.1.Planck differential number counts (total, dusty and synchrotron) at 6 frequencies between 100 and 857 GHz, normalized
to the Euclidean, for each zone (filled circles): deep (red),medium (green) and shallow (blue). Diamonds are fromPlanck HFI
(Planck Collaboration XIII, 2011), triangles from Herschel SPIRE (Oliver et al., 2010; Clements et al., 2010) and BLASTBethermin
et al.(2010b). The bump at 4 Jy at 545 GHz (and at 10 Jy at 857 GHz) in the medium zone is discussed in Sect.B.3.

the sky, although the majority lie around (150 deg., 60 deg.)in
Galactic coordinates.

Appendix C: Number counts by zone

Fig. B.1 shows the number counts for each of the three zones:
deep, medium, and shallow. This illustrates the sample variance,
as mentioned in AppendixB.3.

Since, with the exception of one zone at 545 GHz, there is
little difference between the counts in different zones, this figure
also demonstrates that the weight given to each zone in calculat-
ing the total number counts has little influence on the result.
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