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Being proficient in mathematics involves having rich and connected mathematical knowledge, 

being a strategic and reflective thinker and problem solver, and having productive mathematical 

beliefs and dispositions. This broad set of mathematics goals is central to the Common Core 

State Standards for Mathematics. 

High stakes testing often drives instructional practice. In this article I discuss test 

specifications and sample assessment items from the two major national testing consortia and 

the prospects that their assessments will be positive levers for change.  
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For more than 20 years the Mathematics Assessment Project has focused on the 

development of assessments that emphasize productive mathematical practices, most recently 

creating “Formative Assessment Lessons” (FALs) designed to help teachers build up student 

understandings through focusing on student thinking while engaging in rich mathematical tasks. 

This article describes our recent work. 

 

 

 

Introduction 

The United States stands at the threshold of significant changes in mathematics assessment, both 

in terms of what kinds of understandings are assessed and in terms of the increasing 

homogeneity of mathematics assessments, nationwide. These changes reflect the continued 

evolution of the “standards movement,” which can be dated back to the of the National Council 

of Teachers of Mathematics’ (NCTM, 1989) production of the Curriculum and Evaluation 

Standards for School Mathematics in 1989 and to a radical change in the national high stakes 

accountability context due to the “No Child Left Behind” legislation passed by Congress in 2001 

(U.S. Government Printing Office, 2002). Within a few years the vast majority of American 

students will be taking one of 2 high stakes examinations, both of which are intended to 

represent the mathematical values represented in the Common Core State Standards for 

Mathematics, or CCSSM (Common Core State Standards Initiative, 2010). To the degree that the 

assessments represent the values in CCSSM, and to the degree that high stakes assessment drives 

instruction, mathematics teaching in the US will be much more focused and coherent than it has 

been over the past quarter century. 
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In what follows I focus on 2 kinds of assessments: Summative assessments are 

examinations or performance opportunities whose primary purpose is to assign students a score 

on the basis of their knowledge, such as end-of-course exams, SATs, or state or national high 

stakes exams. Formative assessments are examinations or performance opportunities whose 

primary purpose is to provide student and teachers feedback about the student’s current state, 

while there are still opportunities for student improvement (see, e.g., Black & Wiliam, 1998a, 

1998b, 2009; Educational Designer special issue, October 2014; Hernandez-Martinez, Williams, 

Black, Davis, Pampaka, & Wake, 2011). 

This introduction briefly describes the evolution of mathematics standards and the 

national testing context. I then examine some typical current test items, and some of the items 

that represent the assessments being produced by the 2 national assessment consortia, the 

Smarter Balanced Assessment Consortium (SBAC) and the Partnership for Assessment of 

Readiness for College and Careers (PARCC). Issues of alignment with the CCSSM remain; but, 

assuming that these can be worked out, the new assessments portend significant change. The 

question, then, is how to prepare students and teachers for such change. I describe one attempt, a 

series of Formative Assessment Lessons (FALs) created by the Mathematics Assessment Project  

((Mathematics Assessment Project, 2014). 

 

The Evolution of Standards, 1975-2010 

Prior to 1989, mathematics curriculum documents focused almost exclusively on the 

mathematical content (e.g., operations on numbers; measurement; algebra; geometry) that 

students were to learn. This changed when the national Council of Teachers of Mathematics’ 

(1989) Curriculum and Evaluation Standards for School Mathematics, reflecting current 

Acc
ep

ted
 m

an
us

cri
pt

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
A

la
n 

Sc
ho

en
fe

ld
] 

at
 2

2:
04

 0
7 

M
ay

 2
01

5 



Summative and Formative Assessments in Mathematics 

 

4 

research, emphasized cross-cutting processes of doing mathematics: problem solving, reasoning, 

communicating with mathematics, and making connections using mathematics. This trend 

continued, with NCTM producing an updated version of standards in 2000 (NCTM, 2000), and 

with groups like the National Research Council (2001) painting the picture of mathematical 

proficiency reflected in Figure 1. The core idea is that conceptual understanding and procedural 

fluency, the main foci or prior instruction, are not enough; true mathematical proficiency also 

includes developing a positive disposition toward mathematics, the ability to approach new 

problems and use the knowledge one has developed in other contexts, and to do so strategically. 

 

Figure 1. The representation of mathematical proficiency in Adding it Up (National Research 

Council, 2001, p. 5) 

The Common Core State Standards represent the natural evolution of these ideas. They 

provide content specs at each grade level, with an emphasis on the focus and coherence of the 

mathematics to be learned. And, an emphasis continues on how students are to engage with 

mathematics, now referred to as “Standards for Mathematical Practice.” The 8 mathematical 
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practices highlighted in the CCSSM (see specifically pages 6-8 of CCSSM, 2010) are that 

students will 

1. Make sense of problems and persevere in solving them. 

2. Reason abstractly and quantitatively. 

3. Construct viable arguments. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 

6. Attend to Precision. 

7. Look for and make use of structure. 

8. Look for and express regularity in repeated reasoning. 

The challenge for assessment has been, and will continue to be: Is it possible to assess student 

performance of such practices in ways that are reliable and valid? (see, e.g., Delandshere & 

Petrosky, 1998.) 

 

The Curriculum and Assessment Context, 1975 - present 

In the 1970s and through the 1980s, a small number of states had statewide mathematics 

standards; a smaller number (e.g., California, New York, and Texas) had assessments that were 

aligned to those standards. In effect, each state was free to do what it wanted with regard to 

curriculum and assessment – within the bounds of college requirements, standardized tests, etc. 

Substantial variation existed across states until the passage of the “No Child Left Behind” Act of 

2001. To qualify for federal funding under NCLB, as it is known, each of the states had to 

institutionalize standards for mathematical performance, and to assess students on a regular 

basis. These exams were high stakes: students’ promotion, teachers’ salaries (and jobs), 
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administrators’ salaries (and jobs), and the very existence of schools and districts (which could 

be dismantled if student test scores failed to meet the increasingly stringent scoring requirements 

over a period of years) depended on test scores. The result was to distort the system, where many 

teachers and districts did whatever was necessary to score well. Not surprisingly, most schools 

focused heavily on teaching to the tests, which were of highly variable quality. Given that each 

state had its own standards and assessments, the result was nationally institutionalized 

incoherence (See, e.g., Azzam, Perkins-Gough, & Thiers, 2006). 

This began to change with the US Department of Education’s (2009) Race to the Top 

(RTT) program, announced by President Obama and Secretary of Education Duncan on July 24, 

2009. The constraints of RTT were that consortia of states, not individual states, would apply for 

funding. This constraint led the Council of Chief State School Officers and the National 

Governors Association to sponsor the Common Core State Standards Initiative, which produced 

the CCSSM. As of this writing 43 states, the District of Columbia, 4 territories, and the 

Department of Defense Education Activity (DoDEA) have adopted the Common Core State 

Standards – thus establishing what is a de facto set of national mathematics standards. 

In addition, the Race to the Top Assessment Program “provided funding to [two] 

consortia of States to develop assessments that are valid, support and inform instruction, provide 

accurate information about what students know and can do, and measure student achievement 

against standards designed to ensure that all students gain the knowledge and skills needed to 

succeed in college and the workplace.” (US Department of Education, 2013, p. 1) Those 

consortia, the Partnership for Assessment of Readiness for College and Careers, or PARCC, and 

the Smarter Balanced Assessment Consortium, or SBAC, have between them enrolled the 

majority of the states that have agreed to align themselves with the Common Core State 
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Standards. Other states are producing their own assessments, which are intended to be aligned 

with the Common Core – as opposed to being aligned with their previous state standards. As a 

result, a patchwork of 50 state assessments will no longer exist. The vast majority of students 

across the country will be faced with one of 2 assessments, constructed either by PARCC or 

SBAC, and ostensibly aligned with the CCSSM. Given WYTIWYG, and the fact that CCSSM 

standards and assessments will be given at each grade K-8, there will be a degree of 

homogeneity in curricula and in assessments that is unprecedented in American history. 

 

The Nature of Mathematics Assessments, Past and Possibly Future 

Mathematics assessments across the US have varied widely from state to state. Here I 

provide an example from the California Standards Tests (CSTs) as an example of what has been 

the reality in one state, and contrast this with a richer assessment of proficiency in the same 

content area. I then discuss the item specifications and sample items from the 2 national 

assessment consortia. 

Figure 2 contains a representative eighth grade algebra problem from the CST. 

 

Figure 2. A released CST problem from the 8th grade algebra I test 

This task, like most of those on the CST, focuses on content knowledge. There are at 

least 3 straightforward ways to get the answer: by substituting x = 0 into the equation and solving 
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the resulting equation, 2y = 12; by writing the equation in the slope-intercept form  y = -2x +6; 

and by writing it in the 2-intercept form  x/3 + y/6 = 1. In each case, the procedure is mechanical 

and the answer straightforward to obtain. Although content knowledge is assessed, it is hard to 

argue that the standards for mathematical practice are assessed in any meaningful way. 

In contrast, consider the “hurdles race” task given in Figure 3. 

 
Figure 3. Hurdles Race. Swan, M., and the Shell Centre Team (1985), p. 42.  

Reprinted with permission. 

 

This question calls for interpreting distance-time graphs in a real-world context, a central 

component of mathematical modeling. A complete response includes 
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•  Understanding that a runner whose graph appears “to the left” of another is ahead at 

that point, having taken less time to travel the same distance. (Thus B wins the race); 

• Understanding what points of intersection signify in this context (that 2 runners have 

run the same distance at the same time, so they are tied at that point in the race) 

• Interpreting the horizontal line segment (the runner is not progressing, so – in the 

context of a hurdles race – must have tripped on a hurdle and fallen), and 

• Putting all of the above together in a coherent narrative. 

Equally important, responding appropriately to this question calls for demonstrating 

proficiency at (at least) the first 4 of the mathematical practices highlighted above: The students 

have to persevere in sense making and problem solving and reason abstractly and quantitatively, 

constructing reasoned explanations of “real world” phenomena. If tasks of this level of 

complexity will appear on the 2 consortia’s assessments, then there will be significant changes in 

what is assessed (and, by virtue of WYTIWYG, what is taught) across the nation.  

Thus, there is significant promise that the 2 assessment consortia can move things in very 

productive directions – but, progress is hardly guaranteed. There are various places where things 

can go wrong: in the specifications for the exams; in ways the specifications are realized in the 

exams themselves; and in the grading, to mention only 3. 

 

The Consortia’s Exam Specifications 

Here I think there are grounds for significant optimism. The fundamental change in the 

SBAC assessments is that they will report either 3 or 4 scores, not just one. Until now, a 

student’s score in most assessments was a number on a given scale – so many points out of 100 

on some tests or, say, a numerical score between 200 and 800 on the SAT. (See 
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http://sat.collegeboard.org/scores/understanding-sat-scores for a description of how to interpret 

such scores.). Such reporting provides an indication of how well the student did, but it provides 

no information about what the student did or did not do well. (For example, did the student do 

well on algebra but not geometry, or vice-versa? Did he or she earn most of his points on 

procedural questions, on those that asked for extended chains of reasoning, or on some of both?) 

In contrast, the SBAC (2012, p. 19) test specs call for reporting 4 scores for each student, 

corresponding to knowledge of: Concepts & Procedures; Problem Solving; Communicating 

Reasoning; and Modeling and Data Analysis. If the tests and the reporting provide meaningful 

opportunities to demonstrate proficiency in these areas, this will broaden instructional foci in 

desirable ways. (And, this will open up room for meaningful formative assessment, as described 

below.) 

This is promising. It is quite clear that a test like the California Standards Test, with only 

multiple-choice problems focusing on concepts and procedures, fails to assess claims 2, 3, and 4 

in a meaningful way. Extended problem-solving tasks, of complexity not unlike the “hurdles 

race” task, populate the SBAC specifications. If such tasks make their way into the actual 

assessments, they will (by virtue of WYTIWIG) drive classroom instruction in the direction of 

the CCSSM. But there are risks. 

The PARCC assessment promises tasks of 3 types: (1) Tasks assessing concepts, skills 

and procedures, (2) tasks assessing expressing mathematical reasoning, and (3) tasks assessing 

modeling/applications (PARCC, 2012, p. 14). This is broadly consistent with the approach taken 

by SBAC and the CCSSM. It is not clear from the documents available on the PARCC website 

(http://www.parcconline.org/) what the format for reporting student scores will be, so I was 

unable to determine whether there will be separate scores for the 3 categories listed above. If 
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there is only a single score, it will be difficult for users (including teachers) to know where to 

focus their attention when preparing for the tests. 

 

The Consortia’s Plans for Scoring 

A major challenge that the consortia face is how to score of millions of students’ tests in 

a relatively short time frame (a matter of weeks). Here we are in somewhat unknown territory, 

and I find the prospects troubling. SBAC plans to use a significant amount of computer-adapted 

testing; the PARCC assessments will be administered via computer, and a combination of 

automated scoring and human scoring will be employed” (http://www.parcconline.org/parcc-

assessment-design). 

I have several concerns with computer-based “efficiency.” The goal of both consortia is 

to move toward all assessments being given only on computers, and being completely computer-

scored. I am far from convinced that the state of the art with regard to the computer grading of 

“essay questions” in mathematics – especially those that employ diagrams and other 

mathematical representations – can deliver the accurate assessment of student work that is 

needed. As it stands now, creating diagrams on available interfaces is a clumsy and time-

consuming process (something I can sketch in 30 seconds can take more than a few minutes to 

produce on a computer screen), and I have yet to see programs that could do a good job of 

scoring student responses to problems like the one given in figure 3. 

I have equally large reservations about the very notion of computer-adaptive scoring. 

Such scoring may be appropriate when the goal is to simply assign one score, and reporting on 

content and practices is not central. (That should not be the case here!)  But worse, students who 

get off to a shaky start by giving the wrong answers to the first 2 problems on a test with 
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computer-adaptive scoring may never have the opportunity to demonstrate what they know. The 

primary determinant of the “next” questions in computer-adaptive testing is item difficulty, the 

goal being to converge rapidly on a student score. This may be efficient, but it does not serve the 

needs of students or teachers by providing information about what students know and can do. 

 

Sample released Items 

It is mid-2014 as I write this article, and the situation is in flux. Both consortia are pilot-

testing their exams as I write, with the expectation that the assessments will be used for the 2014-

2015 academic year. Sample items are now available on the PARCC and SBAC web sites; see, 

for example, <http://www.parcconline.org/samples/item-task-prototypes> and < 

http://sampleitems.smarterbalanced.org/itempreview/sbac/index.htm>. Readers should review 

the items and form their own opinions. Overall, the released items suggest some, but not much, 

reason for optimism. Some items make good use of the technology, even at the “basic 

knowledge” level; consider for example, SBAC item 42960 (Figure 4). The computer-based 

format improves on the “matching” format used in many paper and pencil or computer tasks. 

 

Figure 4. A computerized version of a “matching” problem. 
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I am less sanguine about some of the open-ended questions on both assessments. Given 

time constraints (not much time is allocated for open questions, so there may be only one or 2 

per assessment) and the challenges of scoring such exams via computer, the current exemplars 

may move mathematics assessment significantly forward. One can hope that the exams will 

evolve over time. 

Formative assessment 

A major challenge facing teachers, especially those whose instructional focus has 

primarily been on procedural items such as the one in Figure 2, is to help students develop the 

skills and understandings required to address tasks like the one in Figure 3. Part of that challenge 

is dealing productively with student approaches – both correct and incorrect – as students grapple 

with complex tasks. One prevalent approach is using formative assessment, which provides 

information about student understanding at a point when the teacher and students can act 

productively on that understanding, rather than demonstrating what students “know and can do” 

after instruction (See Black & Wiliam, 1998, for a classic overview). 

The Mathematics Assessment Project (MAP), for which I am Principle Investigator, has 

been producing formative assessment lessons (FALs) intended to support teachers in conducting 

formative assessments. As I write, nearly 100 FALs are available for free on the MAP web site, 

<http://map.mathshell.org/materials/index.php>. To convey the flavor of the approach taken by 

the project, I briefly describe the FAL “Interpreting distance-time graphs,” 

<http://map.mathshell.org/materials/lessons.php?taskid=208&subpage=concept>. 

FALs begin with a diagnostic problem that the students work before the lesson, so that 

the teacher is provided information about the students’ likely strengths and pitfalls. The 

diagnostic problem for “interpreting distance-time graphs” is given in Figure 5. 
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Journey to the Bus Stop 
 

Every morning Tom walks along a straight road from his home to a bus stop, a 

distance of 160 meters. The graph shows his journey on one particular day. 

 

 

 

1. Describe what may have happened. 

You should include details like how fast he walked. 

2. Are all sections of the graph realistic? Fully explain your answer. 

Figure 5. Diagnostic problem for “interpreting distance-time graphs.” 

 

The FAL lesson plan suggests that the teacher respond to the student work not by 

assigning scores, but instead by creating a set of questions that address the issues revealed by 

what the students have written. It supports the teacher as it identifies typical student 

misinterpretations and suggests questions that might push student thinking further. Common 

issues include (a) Student interprets the graph as a picture; (b) Student interprets graph as speed–
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time; (c) Student fails to mention distance or time; (d) Student fails to calculate and represent 

speed; (e) Student misinterprets the scale; and (f) Student adds little explanation as to why the 

graphs is realistic. A sample set of questions for issue (a) is given in Figure 6. 

 

Common Issue Suggested Questions and Prompts 

Student interprets the graph as a 

picture 
 

For example: The student assumes 

that as the graph goes up and down, 

Tom’s path is going up and down. 
 

Or: The student assumes that a 

straight line on a graph means that 

the motion is along a straight path. 
 

Or: The student thinks the negative 

slope means Tom has taken a detour. 

If a person walked in a circle around 

their home, what would the graph 

look like? 

If a person walked at a steady speed 

up and down a hill, directly away 

from home, what would the graph 

look like? 

• In each section of his journey, is 

Tom’s speed steady or is it changing?  

How do you know? 

• How can you figure out Tom’s speed in 

each section of the journey? 

 

Figure 6. A sample student issue and questions to explore it. 

 

The goal is for the teacher to annotate the student work (individually if time permits, or 

by way of a list of “thought questions” for the class if not), so the students can engage more fully 

with the content. The full 90-minute lesson begins with a whole-class discussion of the problem 

in Figure 7. The students are asked to decide which of the stories A, B, and C corresponds to the 

distance-time graph that appears in the figure, and a whole-class discussion of the reasons 

students had for their choices follows. The result of this discussion is an annotated graph, which 

looks something like Figure 8. 
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Figure 7. A distance-time graph question to start the lesson. 

 

 

 

 

Figure 8. An annotated graph. 
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With this as backdrop, the main part of the lesson, a card-matching exercise begins. 

Students are given a set of 10 distance-time graphs and 10 stories. They are asked to work in 

small groups, matching the stories to the graphs. A sampling of the first 4 distance-time graphs is 

given in Figure 9.  

 

Figure 9. Sample distance-time graphs for the card sort. 

 

Four of the 9 filled-out stories are shown in Figure 10. The tenth card says, “Make up your own 

story.”  
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Figure 10. Sample stories for the card sort. 

 

As students work on the sorting task, they often encounter untenable situations – e.g., 

they have 2 incommensurate stories for the same graph, or 2 different graphs for the same story. 

This gives rise to heated conversations about why stories and graphs do or do not match. 

At this point in the lesson, the teacher, who has been monitoring the discussions, starts a 

conversation about how to resolve the conflicts. He or she introduces the idea of building a table 

from a graph, as illustrated in Figure 11.  

 
Figure 11. Building a table from the graph. 
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The students are then given a third set of cards, which contains a collection of distance-

time tables. Their task now is to use the tables to reconsider their graph-to-story pairings, and to 

put together a poster that features ten matching triples, each containing a story, graph, and table 

that are mutually consistent. The students share their posters, compare and contrast results as a 

group. The lesson ends with students being given time to revise their posters on the basis of what 

had been discussed during the whole class discussion. 

I note, briefly, that this kind of lesson supports student engagement in a number of 

fundamentally important aspects of learning: dealing with conceptually rich mathematics, being 

given the opportunity to engage (and be supported in engaging with) challenging problems, and 

to discuss and present their own ideas. My research group has been developing a set of tools for 

supporting classroom activities of this type. See Schoenfeld (2014) and the “TRU Math” suite of 

tools at <http://map.mathshell.org/materials/trumath.php>. 

Discussion 

The United States stands at a crossroads with regard to mathematics education, with 

assessment playing a major role as a potential lever for change. The potential for significant 

change comes with (a) the adoption of the CCSSM by the vast majority of states, and (b) the fact 

that most of the states that have aligned with the CCSSM will be using one of only 2 assessments 

(PARCC or SBAC) to assess student proficiency. Condition “a” suggests that we will have, for 

the first time in the US, a de facto national curriculum. Condition “b” suggests that the 2 current 

assessments, because of the high stakes involved, will play a fundamental role in shaping how 

that curriculum comes to life in American classrooms. If the assessments focus on the 

mathematical values intended in the CCSSM, a great potential for assessment-driven progress 

exists; but if the assessments pervert the mathematical intentions of the CCSSM writers for 
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reasons of cost, ease in scoring, or psychometric considerations, the results can be disastrous. 

The stakes are indeed high. This is the time for a serious investment in an R&D agenda, so that 

the system can be self-improving. 

The right assessments can orient the system in the right directions, but even so, there are 

issues of system capacity. Teaching for the kinds of content understandings and mathematical 

practices described in the CCSSM is hard. Generally speaking, teacher preparation programs 

have not had the time or resources to help teachers become proficient at formative assessment; 

nor does the current generation of texts provide teachers with adequate support. Formative 

assessment, well done, can support teachers in building rich mathematical classroom 

environments. It is our hope that the kinds of FALs described in this paper will help to provide 

such support. 

 

Notes 

1. No Child Left Behind Act of 2001, Pub. L. No. 107-110, 115 Stat. 1425-2094, 2002. 

2. Some years ago Hugh Burkhardt coined the phrase “What You Test Is What You Get 

(WYTIWYG)” to represent this reality. Space does not permit a discussion of 

WYTIWYG; see Barnes, Clarke, & Stephens (2000) and Bell & Burkhardt (2001). 

3. See http://www2.ed.gov/programs/racetothetop/index.html. 

4. See http://www.corestandards.org/standards-in-your-state/. These figures downloaded 

December 7, 2014. 

5. See http://www2.ed.gov/programs/racetothetop-assessment/index.html. 

6. See http://www.parcconline.org/about-parcc. 

7. See http://www.smarterbalanced.org/. 
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8. This is problem 23 from the Algebra I released problems from the California Standards 

test, downloadable from the California Department of Education at 

<http://www.cde.ca.gov/search/searchresults.asp?cx=001779225245372747843:gpfwm5r

hxiw&output=xml_no_dtd&filter=1&num=20&start=0&q=released%20items%20califor

nia%20standards%20test>. If is typical of the level of difficult of the exam. More sample 

questions can be accessed at <http://starsamplequestions.org/starRTQ/search.jsp>. 

9. Full disclosure: I was lead author for the SBAC mathematics content specifications. 

10. http://www.smarterbalanced.org/smarter-balanced-assessments/. 

11. It is absolutely essential for the mathematical integrity of the standards to drive the test 

construction process, with psychometric considerations then taken into account, rather 

than – as is typical in test construction – the other way around. 
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