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Refined Impulse Approxinl,3.tion for the Collisional 

Excitation of the Classics:l AnharmoniC., OscilJa tor 

Bruc e H. },lahan 

Department of Chemistry and Inorganj,c Materials Reseatch 
Division of the Lawrence Radiation Laboratory, 
University of California, Berkeley, California 

A modification of the conventional classical 

theory of vibrational-translational energy exchange 

is made which leads to an expression of increas€d 

accuracy, and which ha'S the proper behavior at high 

energy. It is pointed out that' the refined impul'se 

approx::mation can be used to calculate the energy 

transferred to an anharmonic oscillator in configura-

tions where the potential energy curve has positive 

curvature. The case in vThich the oscillator potential 

has negative curvature is analysed, and is shown to 

lead to energy exchanges v.!hic;h exceed the predictions 

,'of the impulse approximation. Expressions are gi:ven 

for the energy transferred in grazing collisions 

which can be used to estimate total inelastic cross 

sections. 
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The excitation of a harmonic oscillator by collision 

'w~th an external free particle has been studied extensively 

usi~g both classical and qU8.ntLml nlechanics ,1 Much less 

attention has been directed to the collisional excitation of 

anharmonic oscillators, particularly those already in a state 

of high excitation. 'l'he purpose of this paper is to po:Lnt 

out an approximate solution to this problem which may be of 

value j.n unc1erGtanding of the colliGione.l dissociation of 

molecules, and in analysing ene:rgy part~tioning in reactive 

collisions. In addition, an elementary modification of the 

convent.ional solution of the excitation of the harmonic o~;cIJ-

lator is made, which leads to an expression having the correct 

behavior at high collision energies. 

GENEHAL CONSIDERArrIONS 

We treat the collision in one dimension of a particle A 

wJth the dia tOIl1iC: <::>scilla te>r BC,. .'rl~e coord ina te sand geo;(:::·t r~T 

of the collision are shoTlm j.n Fig. 1. Before beginning the 

mathematical manipulation, it ~s helpful to recognize in a 

qua'litative physical way tha·t a' given collision is considered 

to be ineliitic if it induces relative·~otion of ato~s Band 
". e. If' Band G are ,l.,ip.kedby"a bone. of infinite rigidity ,thET 

':...;, 
'. . '/. ~:.. ~ .. 

9' '. ' . . . 

'co an!Y .f®rc.,~.'l e'x'61,'?ted""on B as a result of collision Vii th A a1 so 
- _ .. 

acts with the same magnitude and direction on C. The sole 

consequence of the collision i~ then to change the velOCity of 

the center of mass of Be, with no energy appearing as relative 
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translation of Band C. Sjnce the ri[)_c1i.t.y of o. !T,oJecule j.s 

quantitatively expressed by the bond force constRnt J molecules 

with large force constants are difficult to excite vibration-

ally. 

The case in which Band C are free particles is particu-

larly interesting since the inelasticity can be found exactly, 

and because the situation represents the limiting cases of 

vanishing molecular force constant or impulsive A-B interaction~ 

If 13 and C are initially stationary in the laboratory, ond A 

has an initial velocity v , then the initial veloclty of B 
o 

relative to the AB cE:nter of me-ss is Vo MA/(MA + 1.IB). 'l'he 

collision is elastic in the AB center of mass system, so the 

change in the velocity of B after a head-on collision with A 

is just 2 Vo MA/(M
A 

+ M
B

), \'lhich is also the laboratory velocity 

of B after the collision. Consequently, the fine-l energy of 

relative motion of Band C is 

If 6E is to be expressed in terms of Er , the energy of initial 

relative motion of A on the center of me-ss of BC, then 

(1) 

\'lhere 

. We should expect then any classical theory of vibratidnal 

excitaticm should approach this re3ult in the limit of v~nishin~ 

molecular force constant, or as t~e A-B interaction time 
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becomes much srnaller than the v.i.bratj onc:l1. period. As he.:=:', 

been pointed out, 1 the conventional approximate trcc'.tC);l';r,i:, of 

vibrational excitat:Lon gj.ves a re8u1 t \'!h:ich do(:s not prof,erly 

converge to the impulse limit. In what follo~s, we shall. 

demonstrate why this incorrect Ihniting behavior occurs, and 

show that a proper treatment leads to an expression ':rhj.ch is 

correct in the impulse limit. 

EXCITATION OF A HARMONIC OSCILLATOR 

The derivation of the equations of motion for the otie-

dimeRsional collisional excitation of an osciJ.J.ator is given 

in the review article of Rapp and Kassal,l who2.e notation we 

follow. It is necessary to repeat several steps of the well 

worn derivation in order to establish the nature of the modifi-

cation which is required. AccordingJy, we have the equations of 

motion 
•• ()V 

\-L Y + 0; ~,= 
~ x + ()V 0 
m ox = . 

where y, the oscillator coordinate, is the separation ofB and 

C, \-L is the oscillator reduced mass !-IIBMC/(r·1B+i,1C), x is the 

distance between A and the BC center of mass, and ~ is the 
I . 

reduced mass of A on Be, or MA(MB+r'.'rC)/~:!' 'l'he potentialiV is 
! 

written as the sum of the term pertaini.ng to the free 'okci11ator .. :·'1 
and an interaction tenn: i 

! 
! 

. 1 2 
For the harmonic oscillat~rvo is repJaced by ~ f(y-yo) , 

where f is the force cons'tant and Yo is t:1C equi1ibriu.!!i Be'para .. 

tion. It is usually assumed that VI cl"ependsonly on'thc,A-B 
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separatjon, and has the form 

V I (x - yy) == A exp [ - (x - yy )/L ] 

where L is a characteristic distance for the A-B interaction, 

and y is Mel (MB + Me)' . Substitution into the equations of 

motion gives 

~ y 

rv 
ill X 

- f(Y - Y ) - (Ay/L) exp[-(x - yy)/LJ 
o· 

= (AIL) exp[-x(x -yy)/LJ 

(2 ) 

(3) 

In the conventIonal approximate trce.tment, it is assu:-:1cd 

that the displacement of the oscillator from its equilibrium 

position is very small during the duration of the collision, 

and consequently that y can be set equal to y in the exponent 
o 

of Eqs. (2) and (3) to give 

where 

~ y + f{y - Y ) = _(Aly/L) exp(-x/L) o 

m x = (A I/L) exp( -x/L) 

AI = A exp(yyolL) 

The solution of the second of these equations gives x(t), 

which is then substituted into Eq. (4) to define a driven 

(4) 

(5) 

oscillator problem. Application of Greenls method then gives 

the well-knovm solution for the change in the relativeve16stty 

of Band e. However, it is important to notice that the 

procedure of setting y equal to Yo or to any constant in the 

exponential tel~~ is equivalent to making the impulse approx-

imation. This becomes clear if we no~that for a freely 

vibratjng oscillator we have 
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y = Yo + B sin(wt + 6) 

with 13 nonzero. Setting y equ~ll to a constant du:cinc; the 

collision ~.mplies that the A-J3 intcY'(1cticm time is an inter'::,] 

~ short enough that 

which is the c ondi tion for validity of the impu1. s e approxjJJl:1t ion. 

If the A-B interactton is impulsive in the first q,pproxi-
'V 

mation, then it is not correct to retain m as the mass term 

in Eq. (5). In the impulse l~mit, A interacts only with B, 

and to remain consistent, ~, the reduced mass of A on Be, shou1.d 

be replaced by the r~duced mass of A on B. This change has 

an important consequence. In evaluating the constant AI, it 

is conventional to argue that at the turnins; point xt in the 

motion of particle A, all the kinetic energy of relative motion 

is converted to potential energy, and consequently 

1 in v2 = AI exp(-x IL) ~. A" 2" 0 t 

To remain consistent with the impulse approximation, m in thi.s 

expression should be replaced by MAMff'OvrA.~MB)' the. A-B reduced 

mass.· The conventional use of lli in this relation is equivalent 

to assuming that the BCobond is infinitely rigid, which is the 

antithesis of the impulse approximation. 

Changing to the correct reduced mass makes no difference 

to the solution of ·Eq. (5), since the same mass term appears 

on both sides of the equation. The same is not true for Eg. f4), 
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however, and when the driven oscillator problem is 

with the correct reduced mass, the resuJ.t is 

L-.E:/E r 
M1AMBMCM 

-----2-----------2-
(M +1'-1 ) (M -1-1·1 )." 

It B B C 

UC::SL-19172 

solved 

(6) 

Introduction of the expansion of the hyperbolic cosecant gives 

I 
l • 

L-.E/E r 

I 
2}- -.1 

B ("!!.~L'I~) 'Ji 
2k.1 v : 

. \ 0 : 
! 

(7 ) 

where B2k are the Bernoll_li numbers. Thj.s resul t shOi'iS tha t 

the modified solution converges properly to the impulse approxi

mation in the limit as ruL/v apl,roaches zero. 
o 

It is of interest to note that .in their extensi ve numericc~l 

investigation of the vibrational excitation problem, Kelley 

and vJolfsbel'g2 found that L-.Eap" the energy change calculated fro:'} 

the conventional approximation" exceeded the exact energy 

change L-.E calculated nUL'l.erically. Rapp and Kassal l give the 

approximate relation between L-.E and L-.E in the fonn ap 

where 

This expression is most accurate when m is small" which occurs 

when MA or !vIC is much less than M
B

• The ratio of 6E to ap 

the energy change Sr:RIA calculated by the refined 

approximation proposed in this paper (Eq. 6) is 
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When the mass of particle A is relatively small) these two 

ratios become approximately 

VIhen the mass of C is small compared to all others) MA re'places 

MC in the denominators of the second terms in these expres

sions. The similarity between these two ratios sho~s that the 

refined impulse approximation given in this paper is cJ.ose to . 

the exact result~ particularly when the mass of Aor C is 

small compared to that of B. Apparently the,failure of the 

approximate treatment to include energy conservation is not as 

serious a defect as has been thought . 

. EXCI'l'NfIONOF AN ANHARMONIC OSCILLATOR 

Once it is recognized that Eq. (6) is a first order 

re;finement of the impulse approxima tioD) a possibleextensj.on 

to the excitation of an anharmonic oscillator becomes clear. 

VIhile the restoring force for an anharmonic oscillator iso. 

nonlj.near function of dis:placeIl).ent~, i~ is possible to linearize 

it approxiuately by expanding the f~rce F(Y) about its value 

F at a particular extension y. Thus we can write a a 
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dy 
- F 

a 
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(
'2V ) 

+ ~--~ (y - y ) 
dy y a 

a 

We can use this expression in place of the oscillator restoring 

force tel~lin Eq. (4) to eet 

11 Y + p 
a - (A'r/L) exp( -x/L) 

Thus the fact that the collision occurs nearly impulsively 

. allows us to assume that y is always near y during the 
a 

·collision, and thereby to reduce the situation approximately 

to the linear driven oscillator problem. We can conclude 

that for an anharmonic oscillator, the quantity (J.)2 can be 

regarded as a function of the oscillator codrdinate, and 

Eq. (6) used to calculate the energy transfer to anharmonic 

oscillators in particular configurations. 

It should be noted that a highly excited anharmonic 

oscillator will spend much of the time in an extended state 

(8) 

where y exceeds the equilibrium internuclear separa.tion. In a 

such regions the curvature of the oscillator will be smaller 

than it is near y , and in fact will pass throueh zero and 
o 

become negative. For example, the curvature of the outer \'ra1.1 

of the Morse potential becomes negative when the potential 

energy exceeds one quarter of the dissociation energy. Thus 

it is important to consider the soltition of Eq. (8) when the 

potential curvature is negative. We write 

• 

.-
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2 where "A , a posi ti ve constant, is the negat i ve . curve. t,ure of 

the potential divided by the reduced rn3,S~~, and 

Al = A exp[-y(y - Y)/L] 
a 0 

The solutions to the homogeneous equation ~re easily 

( 9) 

found to be sj.nhAt and coshr,t. Froln thc2.e it is posslble to 

construct3 the Green's function· 

G(t,s) = A-I sinh"A(t-s) s < t 

which satisfies the homogeneous equation, vanishes and has 

unit derivative when s equals t. Thus. the general solution 

to the driven oscillator of negative curvature is 

. 1 (t 
y(t) = Ya cosh"At + (Ya/"A) $inhAt + j.1 L G(t,s)F(s)ds 

a 
(10) 

where F(s) is the time dependent driving force on the oscillator. 

For simplicity, we assume ~ is zero. In addition, we will . . a 

ignore the effect of the oscillator restoring force Fa in the 

inhomogeneous term of Eg. (9) since it represents the intrinsic 

moti0B'ofthe oscillator itself, and vre wish to calculate only 

the effect of the collision on the oscillator. We· expand 

the hyperbolic sine:whlch occurs in the Green's function, 

and r,estri,c.t ,the -,external driving forces to those v.[hich are 

even fUnctions of time. This gives us 



y( t) -. Y COS!1At + a 

-10·· 

( ) --1 p.I, F(s) COShAS ds (11) 

Comparison with Eq. (10) shows that as t approaches infinit~·, 

the oscillator velocity acquired as a result of the colljsibn 

is 

-1 
.- ~ f 

co 

. . F( s) 
-00 

COShAS ds 

and thus the energy increase of the oscillator is 

Equation (12) is very similar to the expression ~n1ich gives 

the energy transferred to a harmonic osci11atorof positive 

(12) 

curvature, which involves the cosine transform of the driving 

force. In fact, since cos(ix) equals coshx J the tV10 expressions 

could be interconverted merely by changing the sign of the 

curvature of the PCltential. 

For the exponential repulsive potential between particles 
. 1 

A and BJ the time dependent force is 

Substitution in Eq. (12) leads to a knmm integral, and after 

some manipulation we find 

[
·2 

l'.E/Er = 4MAM~lvIC}JV (f.'lA +MB) 
2 

(MB+r'1C )2J [( /fALl v 0) cos ec (71ALI v 0)] 
(l:"i) . 

~ .. . ,. 

--i 
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where we must have 

in both Egs. (13) and (14). 

We see that the energy transferred t.o an oscillator of 

negative curvature exceeds the impulse value by an amount 

which increases as' the mEignitude of the curvature inc:ree.ses. 

This result is physically reasonable, since any displacement 

of one atom of an oscilJ.ator with negative curvature of the 

potential induces a force on the other atom which is in the 

direction opposite to the displacement, thereby exciting 

relative motion of the atoms. A some\'rhat remar}~able consequence 

of the same argument is that the enerE'S transfer increases as 

the duration of the collision L/v 0 increases, as Eq. 14 ShO':1S 

to be true. 

Although Eq. (13) is limited to near impulse conditions, 

its qualitative implications for kinetic processes are very 

interesting. It seems clear that enerf,Y transfer to and from 

a highly vibrating osc5.11ator can be even more facile than if 

the particle of the bscillator were not bound at all. In 

this light , it is easier to understand the fairly large ammrnts 

of energy which have been found to be removed by collisions 

from molec~les uridergoing unimolecular decomposition after 

chemi~al activation: 4 Also, in the area of atom transfer 

reactions of the type 

A + Be -~ AB + C 
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it is of inter'est to estimate the amount of vibrat.ional ene:c['S 

which is induced in AB by recoil of atom C. It is now clear 
• 

that if th~s recoil occurs when the AB bond is sufficiently 

extended to be in a region of neftatjve curvature, large amounts 1 

of the B-C recoil energy Hill be lnco:cporated as internal 

energy of the new molecule. 

ENEHGY TRANSFEH IN GRAZING COLLISIONS 

Since it is clear that if the relative velocity of 

colli.sion is large, and the potential curvature small or nega-

tive, the energy transferred to vibrational motion can be large, 

it is bfinterest to examine the energy transferred in grazing 

Collisions. The coordinates and collisional trajectory appro-

priate for this situation are shoHn in Fig. 2. It is simplest 

to take an "impact parameter" b measured between the centers 

of mass of A and B, and assume that A moves with a constant 

velocity vo' The velocity change o~ B is to be calculated from 

the refined impulse approximation. To do this, one must first 

recognize that since B is stationary, the force on B parallel 

to the trajectory of A is equ9.1 and opposite· on the ~T}e.0m.·iflg 
".' ...... 

and outgoing legs of the trajectorYj and thus do~s not contribute 

to a Change in the velocity of B. The A-B force component 

perpendicular to trajectory does ch3.~ge the velocity of 13, 

and contributes both to vibrational and rotational excitation, 

depending on the orientation of BC. If the A-B potential is 

of the form· 
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. -r/L VAB = A e 

where l' is the A-B separation, then the force which cont:ributes 

to vibrational excitation is 

FVib == (cos5)(b/r)(A/L) 

The equation for the trajectory is 

-r/L e (15) 

(16) 

We assUJne first that the oscillator has pos:L ti ve curvature. 

Then" since the energy transferred to vibration is the absolute 

square of the Fourier transform of the appropriate force,} 

divided by 2~, we have 

'1lhe transform is knoVIn,6 and the resul t is 

(rr) 

where Kl is the fir~t arder modified Bessel function. If we 

make use of the asymptotic expres&d~on for ~,he Be.csseJ function 
.,-' ,:l' 

valid at large values of the argument, vTe get after sqrne 

reduction 

. -1 2 2 ..;2 . [ . 2 2 2 1/2J 6Ev == 7r~A (cos 5)(b/L)vo exp -(2b/L)(1+L W /vo) I (18) 
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'I'his result 8hovrs clearly that the v:L bl'a tl on_a 1 exe ita tj_on 

decreases as the impact parameter increases, as well as when 

the parameter LCu/v increases. Unlike the head-on collision 
o 

case, the energy transferred depends explicitly on the pre--

exponential factor in the A-B potential. 

For an oscillator of negative curvature ~2, the appro-

priate expression for the vibrational excitation is 

(19 ) 

with r given as a function of time by Eq. (16). This integral 

does -not appear to be knovm. Hovrever, most of the contribution 

to the integral comes from values of -r Dear b, and accol~dingly 

we write 

and use this in the exponential term of Eq. (19). '1'he result 

is 

[ 
- . 2 -2 2 J 

exp - (2b/L)( 1 - f.. L -/2v 0) 

(20) 

It is clear that this expression is closely related to Eq. (18). 

However, the energy transferred in the negative curvature 

case increases with ~I/vo' as was fuuridto be true for head-on 

collisions. Both Eqs. (18) and (20) can be used to find the 

m~ximum jmpact parameter and therefore the cross sectioh for 

, 
I' 
I' 'I' 

-1 i 

, , 
I 

, 
d. 
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smaller than the initial relative kinetic energy. 
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Figure 1. Cbordinates used in the tfeutment ~f a one-dimenSional 

treatment of the collision of an e.tom A "lith an oscills.tor Be . 

. : '. I .' .' . .' . " 
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}'i[~llre 2.· Coordin.qtes and geo]Jletr~l of a grazin2~ collisJJ)n. TIle E~tOT;"lS 

A and B lie in the pl[tne of t}1e collision.. The 2..ngle 

to the trajectory. The distance of closest approach is tc;.k(;n 

to be equal to the impact parDlneter b beh?een P. an~l B. 

--~~-~-

----------------~----------

:> 

'".' . 
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