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Abstract A sharing game is a very simple device for partially reconciling an organi-
zation’s goal with the interests of its members. Each member chooses an action, bears
its cost, and receives a share of the revenue which the members’ actions generate.
A (pure-strategy) equilibrium of the game may be inefficient: surplus (revenue minus
the sum of costs) may be less than maximal. In a previous paper, we found that for a
wide class of reward functions, no one squanders at an inefficient equilibrium (spends
more than at an efficient profile) if the revenue function has a complementarity prop-
erty. In the present paper, we examine the “opposite” of the complementarity property
(Substitutes) and we study a class of finite games where squandering equilibria indeed
occur if Substitutes holds strongly enough. Squandering equilibria play a key role
when one traces the effect of technological improvement on a sharing game’s sur-
plus shortfall. We then turn to the question of choice among reward functions in a
principal/agents setting. We find that if we again assume complementarity then strong
conclusions can be reached about the reward functions preferred by “society”, by the
players (agents), and by the principal.
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8 D. Courtney, T. Marschak

1 Introduction

A sharing game is a simple device for an organization which has a goal but consists
of n self-interested members. Each member chooses an action (strategy) from a set of
possible actions and bears that action’s cost. The n actions determine a revenue. The
game’s designer chooses a reward function for each member, defined on the possible
revenues. We then have a game in which, for a given action profile, each player’s payoff
is his reward minus his cost. The informational requirements of the arrangement are
very modest, since no messages are sent. Truth-telling is not an issue. There is no
monitoring. It is hardly surprising that in the real world, sharing schemes are among
the oldest and most common arrangements for partially reconciling organizational
goals with individual incentives.

Suppose, moreover, that one seeks to understand how well “decentralization”, with
respect to information and with respect to authority, performs relative to “central-
ization”. Two extreme benchmarks are useful. In the extreme centralized structure, a
center has full access to members’ private information and can command their choices.
A sharing game is a natural candidate for the extreme decentralized opposite of that
structure. Members do what they want, no one sees their choices, and no one asks
about their private information.

Of course a sharing game’s informational and authority-free virtues may be offset
by a penalty: the actions chosen at an equilibrium of the game may not be efficient.
They may not maximize surplus, i.e. revenue minus total costs. To understand the
penalty (the “price of decentralizing”), a general theory of sharing games is needed.

In Courtney and Marschak (2006), an earlier paper, we developed some of the fun-
damentals of a general theory. We found that complementarity in the revenue function
yields strong conclusions. In particular, we found that if we have complementarity
then, for a wide class of reward functions and any increasing cost functions, there can-
not be an equilibrium at which some player squanders, i.e. spends more (or “works
harder”) than he does in an efficient strategy profile. In the present paper, we continue
the task. We explore the following two questions: (1) When does the “opposite” of
complementarity (the “substitutes” property) imply that at some equilibria squander-
ing indeed occurs? (2) Given a simple class of reward functions (e.g., constant-share
functions) which members of that class yield high surplus at the game’s equilibria?

1.1 The framework

In an n-player sharing game, player i chooses a strategy or action xi from a set Si .
Those choices yield a revenue A(x), where x denotes the strategy (action) profile
(x1, . . . , xn) and A is a function from S ≡ S1 × · · · × Sn to the nonnegative real
numbers. When player i chooses the strategy xi he pays the nonnegative cost ci (xi ).
It is often helpful to use the term effort instead of “cost” and we use the two terms
interchangeably. Once x is chosen and the resulting revenue is realized, Player i
receives the reward ρi (A(x)), where ρi is a function from A(S), the set of possible
revenues, to the nonnegative real numbers. Player i’s net payoff at the profile x is
ρi (A(x)) − ci (xi ). Letting N denote the player set {1, . . . , n}, the game is defined by
the quadruple 〈{Si }i∈N , A, {ρi }i∈N , {ci }i∈N 〉.
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Inefficiency and complementarity in sharing games 9

Note that a player may have several equally costly strategies. The literature, by con-
trast, usually confines attention to games in which a strategy is uniquely determined
by its cost or effort level. We shall call such games effort games.1 We confine attention
to a sharing game’s pure-strategy equilibria. We will be interested in the surplus at
each equilibrium. The surplus at a profile x is A(x) − τ(x), where τ(x) denotes the
total cost

∑
i∈N

ci (xi ). A profile which maximizes surplus is efficient. A profile x is
squandering (shirking) relative to an efficient profile y if τ(x) > τ(y) (τ (x) < τ(y)).

While our formal framework is stated in deterministic style, it nevertheless covers
probabilistic settings if the players are risk neutral and the reward functions are linearly
related.2

1.2 Organization of the paper

In Sect. 2, we consider two sharing-game settings: a principal with agents and a bud-
get-balancing partnership.3 We then introduce a broad class of reward functions. They
are nondecreasing and they have the “nondecreasing residual” (NDR) property. Those
properties can be justified, under certain assumptions, for each of our two settings. We
summarize some of our previous results on existence of equilibrium and on equilibria
at which squandering occurs. In Sect. 3, we provide a strong motivation for studying
the squandering phenomenon, namely the impact of technological improvement on
organizational structure. Whether or not technological improvement strengthens the
appeal of sharing games relative to the centralized structure depends on the type of
sharing-game equilibria one considers. The effect of technological improvement on
the surplus shortfall at a squandering equilibrium is very different than the effect for

1 The framework just given, in its effort-game version, fits a number of papers, starting with Holmstrom
(1982). Recent papers include Arya et al. (1997), Che and Yoo (2001), Ishida (2006), Legros and Matthews
(1993), Levitt (1995) and Nandeibam (2002).
2 First suppose there is a random variable θ , whose probability distribution is common knowledge. Revenue
depends on that variable’s value as well as the chosen strategies, and is written as A(x, θ). If players are
risk-neutral, then Player i’s net payoff is the expected value of ρi (A(x, θ)) − ci (xi ). Suppose the reward
functions are linearly related; for all i , we have ρi = ki · ρ, where ki > 0. If we now define Ã(x) to be the
expected value ofρ(A(x, θ)), then we can write i’s net payoff for the profile x as ρ̃i ( Ã(x)) − ci (xi ), where
ρ̃i (z) = ki · z. So the game can be rewritten as the deterministic game defined by Ã, the reward functions
ρ̃i , and the original strategy sets Si and cost functions ci .

Next, we can introduce uncertainty about individual costs in addition to the uncertainty just considered,
while still using our formalism. Interpret the strategies xi , the sets Si and the functions A and ci in the
following way. Player i repeatedly and privately observes a random signal ei whose values lie in a set Ei .
The random variable ei influences i’s costs and in addition the n-tuple e = (e1, . . . , en), whose proba-
bility distribution is common knowledge, influences revenue. Player i responds to the signal ei with an
action bi in a set Bi , where bi costs c̄i (bi , ei ). To find that action, i uses a response rule xi : Ei → Bi .
The response rule xi is chosen, once and for all, from a set Si of admissible response rules. For a given
value of (e1, . . . , en), the action n-tuple (b1, . . . , bn) yields the revenue α((b1, . . . , bn), e) and Player
i receives the reward ki · ρ(α((b1, . . . , bn), e)). Now let A(x1, . . . , xn) denote the expected value of
ρ(α((x1(e1), . . . , xn(en)), e)). Then i’s net payoff for any x = (x1, . . . , xn) is the expected value of his
reward minus his expected cost, i.e., it is ki · A(x1, . . . , xn) − ci (xi ), where ci (xi ) denotes the expected
value of c̄i (xi (ei ), ei ).
3 The discussion of these two settings is much more detailed than the very brief remarks made in Courtney
and Marschak (2006).
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10 D. Courtney, T. Marschak

a shirking equilibrium. In Sect. 4, we study the implications of a sufficiently strong
Substitutes property for the existence of squandering equilibria in a class of finite
two-player games. In Sect. 5, we briefly consider three information-gathering games,
in which each player specializes in a private random variable and learns more about its
current value by spending more. Revenue is earned when each player reports what he
has learned to Headquarters, which then takes an appropriate action. It is plausible that
squandering (“information overload”) may occur at the game’s equilibria, but a great
deal remains to be learned. In Sect. 6, we turn to the choice of reward functions, and the
associated surplus. We find that surplus increases when we move from an equilibrium
of any given sharing game to an equilibrium of an NDR game, if the players work
harder at the latter equilibrium. We find that if two games differ with regard to reward
functions only, players prefer an equilibrium of the first game to an equilibrium of the
second if they work harder at the first equilibrium, provided the reward functions in the
first game are more generous. We then turn to a key question: when do more generous
rewards indeed imply a harder-working equilibrium (and hence higher surplus)? Here
complementarity plays a crucial role. We apply the findings to bargaining between
principal and players (agents) as to the constant-share reward functions that will be
used. We find, for selected equilibria, that the more weight is given to the players’
preferences in choosing the reward functions, the harder players work and hence the
higher is surplus. In Sect. 7, we make some summarizing remarks.

2 Two settings, and a class of reward functions

2.1 Two settings: a principal with agents and a partnership

Suppose the organization consists of a principal and his agents. The strategy sets, reve-
nue function and cost functions are given. The principal designs the game by choosing
the reward functions and the agents agree to play it. After they choose their strate-
gies, the principal pays them their rewards and pockets the residual, i.e., the realized
revenue minus the rewards. The principal seeks to design a game in which residual is
maximal at the game’s equilibria. But the principal’s design choices are constrained
because there is an exogenously given Participation Constraint (PC). Consider the PC
that is defined when each agent i states

A necessary condition for my participation in the game is that at every (pure-
strategy) equilibrium of the game my net payoff be at least Ji , i.e.,

if x is an equilibrium, then ρi (A(x)) ≥ Ji + ci (xi ). (+)

The number Ji reflects the other options available to player i . Now suppose that
x∗ = (x∗

1 , . . . , x∗
n ) is efficient for a given triple 〈{Si }i∈N , A, {ci }i∈N 〉, i.e.,

for all x ∈ S, A(x∗) − τ(x∗) ≥ A(x) − τ(x). (++)

Then

if the sharing game G satisfies the PC, an upper bound to the principal’s residual
at any (pure-strategy) equilibrium of the game is A(x∗) − τ(x∗) − ∑

i∈N Ji .
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Inefficiency and complementarity in sharing games 11

That is the case since for any equilibrium x̄ ∈ S we have, using (+) and (++),

A(x̄) −
∑

i∈N

ρi (A(x̄)) ≤ A(x̄) − τ(x̄) −
∑

i∈N

Ji ≤ A(x∗) − τ(x∗) −
∑

i∈N

Ji .

Next suppose that the set S = S1 × · · · × Sn contains at least one minimal-cost strat-
egy profile, say x̃ = (x̃1, . . . , x̃n), i.e., for all i ∈ N and for all xi ∈ Si , we have
ci (x̃i ) ≤ ci (xi ). Then the following “collective punishment” reward functions ρi ,
which are prominent in the literature, may appeal to a residual-maximizing principal:

ρi (z) =
{

Ji + ci (x∗
i ) + δ if z = A(x∗)

Ji + ci (x̃i ) if z 	= A(x∗),

where δ > 0. The efficient profile x∗ is an equilibrium of this game, and so is any other
efficient profile x for which A(x) = A(x∗) and ci (xi ) = ci (x∗) for all i .4 Moreover
any profile x for which A(x) 	= A(x∗) and some player i’s cost is not minimal can-
not be an equilibrium, because at that profile, i receives the smallest possible reward,
and would continue to receive it, while increasing his net payoff, if he deviates to a
strategy at which his cost is minimal. A profile like x̃ , at which every player’s cost
is minimal, may also be an equilibrium,5 but it is Pareto-dominated (at least weakly)
by the equilibrium x∗. We may, moreover, have a “free-riding” equilibrium, say x ′,
where A(x ′) = A(x∗) but for some players cost exceeds cost at x∗ while for other
players the reverse is true.6

To summarize, the strongest statement that can be made in favor of the collective-
punisment reward functions is as follows.

By making δ positive and sufficiently small, we can ensure that for the collective-
punishment game: (1) the PC is met, (2) the efficient profiles are equilibria and
they Pareto-dominate the minimal-cost equilibria, (3) the residual at an efficient
equilibrium is as close as desired to the upper bound on residual.7

4 If Player i unilaterally deviates from x∗
i to another strategy which costs the same as x∗

i , then he continues
to get the net payoff Ji + ci (x∗

i ) + δ if the resulting new profile again yields the revenue A(x∗), and a
lower payoff if it does not. If he deviates to a costlier strategy (whether or not the new profile yields A(x∗)),
then his net payoff is smaller than it was, since his reward cannot exceed Ji + ci (x∗

i ) + δ. If he deviates to
a cheaper strategy, say x̄i , then the resulting revenue cannot equal A(x∗) (if it did, then x∗ would not be
efficient) and hence his net payoff would shrink to Ji + ci (x̃i ) − ci (x̄i ).
5 That is the case, in particular, if any profile at which some player’s cost is minimal yields a revenue that
does not equal A(x∗). Then a player gains nothing by deviating from x̃i to a costlier strategy, for then
revenue remains distinct from A(x∗) and so his net payoff shrinks. He cannot deviate to a cheaper strategy
because there are none, and deviating to an equally costly stategy leaves his payoff unchanged.
6 At such an equilibrium x ′, all players receive the highest possible reward. Clearly no player can gain by
deviating from x ′ to a costlier strategy. Suppose it is the case that every unilateral deviation from x ′ to a
lower-cost strategy produces a revenue distinct from A(x∗) and hence yields the lowest possible reward.
If the cost saving for a player who deviates from x ′ to a cheaper strategy is never more than the reward
reduction, then no player gains from a deviation to a cheaper strategy.
7 The principal’s residual at x∗ is A(x∗) − ∑

i∈N Ji − τ(x∗) − nδ. For δ = 0 that equals the upper bound
given above. Parts of the preceding discussion can be found (in a somewhat different form) in Mookherjee’s
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12 D. Courtney, T. Marschak

Some might conclude from the preceding three-part statement, that the matter of
choosing reward functions is “closed”, i.e., there is no reason for the principal to
have the slightest interest in reward functions other than the collective-punishment
functions, so the study of other reward functions is unmotivated and superfluous. We
would disagree. First, note that the reward-function designer needs to know enough
about the cost functions ci so that he can compute A(x∗) and the quantities ci (x∗).
Other reward functions (e.g., constant-share functions) require no such knowledge.
Next, note that the PC is a necessary condition for the agents to agree to become
players, but it is not sufficient. Among the many games which satisfy the PC, some
are more attractive to the agents than others, and the same is true for the principal.
The collective-punishment game has a knife-edge property: small deviations from x∗
are punished just as severely as large deviations. The agents, and perhaps the princi-
pal, may find this unpleasant. The possibility of undominated inefficient free-riding
equilibria is unattractive as well.8

Now consider partnerships. The players share the revenue and none of it is thrown
away. Thus the admissible reward functions satisfy the balanced-budget condition∑

i∈N
ρi (z) = z. It is again appropriate to impose a participation constraint, say the

above PC. The partners seek a reward-function n-tuple such that in the equilibria
of the resulting game, A(x) − τ(x) (the surplus that they are dividing) is maximal.
Within the set of such reward functions a reward-function n-tuple is selected, perhaps
by bargaining among the n partners. If A, the ρi , and the ci are differentiable, then,
as Holmstrom first pointed out, an equilibrium of the game is never a maximizer of
A−τ .9 For finite games, the situation is different. It is easy to construct plausible finite

Footnote 7 continued
pioneering version (Mookherjee 1984) of the problem facing a residual-maximizing principal with many
agents. A number of later writings varied Mookherjee’s problem.
8 The following two-player example is instructive. S1 = S2 = [0, 1], A = x1 + x2, ci (xi ) = x2

i , and

J1 = J2 = 0. The unique efficient profile is
(

1
2 , 1

2

)
, which yields the revenue 1. Let i’s reward function

be ρi (z) =
{ 1

4 + δ if z = 1
0 if z 	= 1

, where δ > 0. Then
(

1
2 , 1

2

)
is an equilibrium, but so is

(
1
2 + δ′, 1

2 − δ′)

(which also yields the revenue 1), provided δ′ is positive and satisfies δ > δ′ +(δ′)2. A positive δ′ satisfying
that inequality exists no matter how small δ may be. In the absence of deviation, Player 1’s net payoff is
1
4 + δ −

(
1
2 + δ′)2 = δ − δ′ − (δ′)2 and 2’s net payoff is 1

4 + δ −
(

1
2 − δ′)2 = δ + δ′ − (δ′)2. Since

δ > δ′ + (δ′)2, each player’s net payoff is positive. If either player deviates from
(

1
2 + δ′, 1

2 − δ′), then

revenue differs from 1 and hence each player’s net payoff is zero minus his cost. So a deviation lowers

his payoff. At the equilibrium
(

1
2 + δ′, 1

2 − δ′), Player 2 is the free rider. The free-riding equilibrium

is not Pareto-dominated by the efficient equilibrium. Note that total cost at the free-riding equilibrium is
(

1
2 + δ′)2 +

(
1
2 − δ′)2 = 1

2 + 2(δ′)2, while total cost at
(

1
2 , 1

2

)
is 1

2 . So the free-riding equilibrium is

squandering relative to the efficient profile.
9 This follows, in fact, from a weaker condition than budget balancing. It is enough to require that for every
z ∈ A(S), there is some player, say i(z), for whom ρ′

i(z)(z) 	= 1. The surplus-maximization first-order

condition is Ai (x) = c′
i (xi ), all i (where Ai denotes the derivative of A with respect to xi ). The first-order

condition for an equilibrium of the sharing game is ρ′
i (A(x))· Ai (x) = c′

i (xi ), all i . Thus if x# ∈ A(S) satis-

fies both the surplus-maximization condition and the equuilibrium condition, then ρ′
i (A(x#)) = 1 for all i .

That violates our requirement.
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Inefficiency and complementarity in sharing games 13

budget-balancing sharing games where the only equilibrium is efficient,10 as well as
finite games with several equilibria, with one or more of them efficient.

2.2 A wide class of plausible reward functions

Our criticism of collective-punishment reward functions was informal. We shall not
propose a formal “acceptability” criterion for reward functions. But if we are to make
progress, we have to impose some restrictions on the reward functions to be studied.

First we confine attention to nondecreasing reward functions. Second, in many of
the results in Courtney and Marschak (2006) we confine attention to the wide class of
Nondecreasing Residual (NDR) reward functions. For a given revenue z, the residual is
z −∑

i∈N ρi (z). The reward-function profile {ρi }i∈N is said to have the NDR property
if and only if the residual is nondecreasing in the revenue z. Balanced-budget functions
have the NDR property, since the residual is always zero for those functions, and so
do constant-share functions with shares summing to one or less (ρi (z) = ri · z, where
ri > 0,

∑
i∈N ri ≤ 1). Note that an NDR non-decreasing reward-function profile lies

in a larger class, namely the class of profiles in which each function is nondecreasing
and regressive. Player i’s reward function ρi is said to have that property if and only
if i’s reward never goes up by more than revenue, i.e.,

for all z,� with � > 0 and z, z + � ∈ A(S), we have ρi (z + �) − ρi (z) ≤ �.

10 Here is a symmetric two-player example. Let n = 2. Let S1 = S2 = {0, 1, 2}. Let the revenue function
A be given by the following matrix

⎛

⎜
⎜
⎝

0 1 2

0 0 14 27
1 14 35 39
2 27 39 42

⎞

⎟
⎟
⎠.

Let ci (xi ) = 5xi , i = 1, 2. Note that we have “diminishing marginal product”: for a given choice of one
player, the revenue increment declines as the other player increases effort. Surplus is given by:

⎛

⎜
⎜
⎝

0 1 2

0 0 9 17
1 9 25 24
2 17 24 22

⎞

⎟
⎟
⎠.

The unique efficient pair is (1,1). Let ρi (z) = 1
2 z, i = 1, 2. Then the payoff matrix of the sharing game is

⎛

⎜
⎜
⎝

0 1 2

0 (0, 0) (7, 2) (13.5, 3.5)

1 (2, 7) (12.5, 12.5) (14.5, 9.5)

2 (3.5, 13.5) (9.5, 14.5) (11, 11)

⎞

⎟
⎟
⎠.

The only equilibrium is the efficient pair (1,1).
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14 D. Courtney, T. Marschak

If, in violation of regressivity, some player’s reward went up by more than revenue, then
the residual would have to go down. Note that if ρi is differentiable, then regressivity
implies that ρ′

i ≤ 1.
Observe that collective-punishment reward functions generally violate the NDR

condition. At a revenue that is ε below the critical efficient revenue, the n players’
rewards are minimal. They jump to their highest level as soon as revenue reaches the
critical value. If ε is small, the sum of the n jumps exceeds the revenue increase, so
that residual goes down.

Informally speaking, the nondecreasing and regressivity requirements on the reward
functions appear to be rather weak. The nondecreasing property can be justified for
the principal/agents setting in the following way. Call the pair (A, {ci }i∈N ) productive
if one player’s switch to a costlier strategy cannot decrease revenue, i.e., (using some
standard notation):

for all i ∈ N , all xi , x ′
i ∈ Si , and all x−i ∈ S−i , ci (x ′

i ) > ci (xi )�⇒ A(x ′
i , x−i )

≥ A(xi , x−i ).

If the second inequality is strict we shall call the pair (A, {ci }i∈N ) strictly produc-
tive. A sharing game 〈{Si }i∈N , A, {ρi }i∈N , {ci }i∈N 〉 will be called productive (strictly
productive) if the pair (A, {ci }i∈N ) is productive (strictly productive). Now suppose
the game 〈{Si }i∈N , A, {ρi }i∈N , {ci }i∈N 〉 is productive, all the sets Si are finite, and
for the function ρ1 (for example), for some x−1 ∈ S−1, and some x1, x ′

1 ∈ S1, we
have (i) c1(x ′

1) > c1(x1), (ii) A(x ′
1, x−1) > A(x1, x−1), but (iii) ρ1(A(x ′

1, x−1) <

ρ1(A(x1, x−1)). Note that (x ′
1, x−1) cannot be an equilibrium, since 1 will want to

defect to x1, where her cost is lower and her reward is higher. Now replace the reward
function ρ1 by a new function ρ̂1 which coincides with ρ1 at all revenues except
A(x ′

1, x−1); there we have ρ̂1(A(x ′
1, x−1)) = ρ1(A(x1, x−1)). It is straightforward to

check, using productivity, that this change does not eliminate any equilibria of the origi-
nal game. In the partnership setting the change in ρ1 has to be accompanied by compen-
sating changes in the otherρi , so as to preserve budget-balancing. But again, none of the
previous equilibria are eliminated. Sucessive corrections of this sort yield a new game
with nondecreasing reward functions and with all equilibria of the original game pre-
served.11 Thus neither the principal’s maximal equilibrium residual, nor the partners’
maximal equilibrium surplus declines when we replace the old game by the new one.12

Now consider the regressive property and the principal/agents setting. Suppose
again that all the sets Si are finite. Suppose that for the function ρ1, and for some

11 For the case where the Si are not finite but are compact, while reward, revenue, and cost functions are
smooth, a different argument leads to the same conclusion.
12 In a recent contribution, Nandeibam (2002) presents a related strong result for budget-balancing (but not
necessarily nondecreasing) reward functions when the revenue function is smooth and concave and the cost
functions are smooth. Let x̄ be a strategy profile and let V be a an n-player reward profile. It is shown that if
there is a game in this class for which x̄ is an equilibrium and V is the associated reward profile, then there
is also a game which uses constant-share reward functions and again has x̄ as an equilibrium and V as the
associated reward profile. Hence given a game where some reward functions are sometimes decreasing and
there is an equilibrium with a given surplus, we can replace the game by a constant-share game in which
the same surplus is obtained at some equilibrium. Constant-share reward functions are nondecreasing.
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Inefficiency and complementarity in sharing games 15

x∗−1 ∈ S−1, and some x1, x ′
1 ∈ S−1 with c1(x ′

1) > c1(x1), we have A(x ′
1, x∗−1) =

A(x1, x∗−1) + �, with � > 0, but ρ1(A(x ′
1, x−1)) − ρ1(A(x1, x−1)) > �, so that

regressivity is violated. Now replace the reward function ρ1 by a new function ρ̃1 which
coincides with ρ1 at all revenues except A(x ′

1, x−1). There we have ρ̃1(A(x ′
1, x−1) =

ρ1(A(x1, x−1))+�. This change does not eliminate any equilibria of the original game,
except possibly (x ′

1, x∗−1). Analagous changes can be made wherever regressivity is
violated, until regressivity holds. Then the only equilibria that might be eliminated are
profiles which occur after some player increases his effort, where that effort increase
leads to a reward jump that exceeds the revenue increase which the extra effort pro-
duces. It appears difficult to construct a plausible game in which eliminating such
equilibria diminishes the principal’s maximal equilibrium residual.

Moreover, in the principal/agents setting, nondecreasing reward functions have the
NDR property if the principal insists on reserving a certain proportion of revenue for
himself, say the proportion F , with 0 < F < 1, and lets the agents divide up the
remaining portion as they wish, using any reward functions for which

∑
i∈N ρi (z) =

(1 − F) · z.13

Finally, consider the regressivity property and the partnership setting. Every reward-
function profile is budget-balancing. Hence it is NDR and therefore each indidividual
reward function is regressive if all of them are nondecreasing.

2.3 A summary of some previous results

The following are some of the conclusions obtained in Courtney and Marschak (2006).
Only nondecreasing reward functions are considered. One of the results deals with
existence of equilibrium and the others concern the possibility of squandering.
(i) Existence of a (pure-strategy) equilibrium. Suppose the reward functions of a shar-
ing game are linearly related, i.e. there is a function ρ : A(S) → R, and positive
numbers r1, . . . , rn such that for each i we have ρi = ri · ρ. Then a pure-strategy
equilibrium exists if S contains a maximizer of the function p : S → R defined by

p(x) = ρ(A(x)) −
∑

i∈N

1

ri
· ci (x).

That maximizer is an equilibrium. In particular, every finite game with linearly related
rewards has a maximizer of p and hence an equilibrium. One can easily construct
games in which the rewards are not linearly related and there is no (pure strategy)
equilibrium.14 The function p is a potential function for the game, in the sense devel-
oped by Monderer and Shapley (1996).

13 That is one way to model a principal who licenses a technology to a partnership.
14 Existence of an equilibrium can also be shown, using standard supermodularity results, if each individ-
ual payoff function ρi A((xi , x−i )) − ci (xi ) has the “increasing differences” property: the increment in i’s
payoff when xi is replaced by xi + � (where � > 0), is not smaller for x−i than for x∗−i , where x∗

j ≥ x j
for all j 	= i . Our existence result does not require the increasing differences property.
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16 D. Courtney, T. Marschak

(ii) No one squanders in productive NDR games that exhibit complementarity. Com-
plementarity is a property of the pair (A, {ci }i∈N ). A pair (and a game) exhibits com-
plementarity if for all i ∈ N and any xi , x ′

i ∈ Si satisfying ci (x ′
i ) ≥ ci (xi ), we have15

A(y/x ′
i ) − A(y/xi ) ≥ A(z/x ′

i ) − A(z/xi )

whenever c j (y j ) ≥ c j (z j ) for all j 	= i .16 If x is an inefficient equilibrium of a
sharing game with complementarity and nondecreasing NDR reward functions, and
y is efficient, then ci (xi ) ≤ ci (yi ) for all i ∈ N . So at the equilibrium x , no player
squanders relative to the efficient y; every player either shirks or spends the same as
at y. This proposition is not implied by standard theorems on supermodular games
and complementarity. It requires its own argument.17

(iii) In NDR games which lack complementarity but exhibit “aggregate” productivity
there is some set of players who shirk (aggregatively). We shall say that a sharing game
exhibits aggregate productivity if for any s, s′ ∈ S we have A(s′) ≥ A(s) whenever
τ(s′) > τ(s), and if for any partitioning of the player set N into two nonempty subsets
V and W we have A(s′

V , sW ) ≥ A(s) whenever τ(s′
V ) > τ(sV ). (Here τ(sV ) denotes∑

j∈V c j (s j ), and (s′
V , sW ) denotes the n-tuple whose j th entry is s′

j or s j according
to whether j ∈ V or j ∈ W ). Aggregate productivity does not imply productivity
and is not implied by productivity. If y is an efficient profile in an aggregatively pro-
ductive NDR game, and x is an inefficient equilibrium, then in any partitioning of the
player set, at least one set of the partitioning aggregatively shirks, i.e., the total spent
by the players in that set is less at x than at y. Formally, for any partitioning of N
into T ≥ 1 disjoint nonempty subsets W1, . . . , WT , there is a subset Wt∗ for which
τ(xWt∗ ) < τ(yWt∗ ).
(iv) In NDR games with equal rewards there cannot be aggregative squandering at a
potential-maximizing equilibrium. Consider an NDR game in which all players have
the same nondecreasing reward function. Suppose that x is an inefficient equilibrium
and that it maximizes the potential function p which appears in our existence result.

15 A symbol of the form x/x̄i denotes the n-tuple obtained from x = (x1, . . . , xn) when we replace xi
by x̄i .
16 Consider the case where the game is not an effort game. For some i, xi , x ′

i we have x ′
i 	= xi but

ci (x ′
i ) = ci (xi ). Player i’s deviation from xi to x ′

i may increase revenue, decrease it, or leave it unchanged.
Complementarity tells us that the change in revenue is not less when the other players choose y−i than
when they choose z−i .
17 Standard theorems are of some help in the special case of identical constant-share reward functions.
One can then use, for example, Theorem 4.2.2 in Topkis (1998), which concerns a collection of super-
modular games, each defined by a parameter, and provides conditions under which there exists a greatest
and least equilibrium each of which is increasing in the parameter. Let player i’s payoff in a sharing game
be k · A(x) − ci (xi ), 0 < k ≤ 1. Our proposition compares an equilibrium profile of the game with an
efficient (surplus-maximizing) profile. A necessary condition for a profile to be efficient is that it have the
equilibrium property for a game in which k equals one. But to make that a sufficient condition as well, we
have to make further assumptions on A and the ci . If the k = 1 equilibrium condition were indeed both
necessary and sufficient for efficiency, then one could apply Topkis’ Theorem 4.2.2, letting his parameter be
our k, to obtain some conclusions about what happens to the equilibrium value of the effort xi when we start
with k equal to one and then decrease its value. Even so, in the case of multiple equilibria, those conclusions
would only cover the least and the greatest, not all of them, as our proposition does. Theorem 4.2.2 is not
helpful when we turn from the special case of constant-share functions to the general NDR case.
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Inefficiency and complementarity in sharing games 17

Then at x there cannot be aggregative squandering relative to an efficient y, i.e., we
must have τ(x) ≤ τ(y). That result, combined with our existence result, has an inter-
esting Corollary: If the game has a maximizer of p (if it is a finite game, for example),
and if it has just one equilibrium, then that equilibrium must be the unique maximizer
of p, and it cannot be aggregatively squandering relative to an efficient profile, i.e., it
is either efficient or else aggregatively shirking relative to some efficient profile.

Note that the NDR property is assumed in all our propositions about squandering. If
we drop that requirement, then squandering can occur even though the other conditions
in our propositions are fulfilled. This is illustrated rather strikingly, in the following
two-player symmetric example, where squandering dominates for each player.

Let S1 = S2 = {1, 2, 3}. Let the revenue function A be given by the following
symmetric smatrix

⎛

⎜
⎜
⎝

1 2 3

1 143 145 146
2 145 160 164
3 146 164 178.5

⎞

⎟
⎟
⎠.

Let ci (xi ) = 9xi − 8, i = 1, 2. So a player’s possible costs are 1, 10, and 19. We have
strict productivity. Note that the “marginal products” (the revenue gains) diminish as a
player increases his cost, and the marginal product due to a given cost increment grows
when the other player increases her cost. Thus we have complementarity. Surplus is
given by:

⎛

⎜
⎜
⎝

1 2 3

1 141 134 126
2 134 140 135
3 126 135 140.5

⎞

⎟
⎟
⎠.

The unique efficient profile is (1, 1). Now let each player have the following increasing
reward function:

revenue: 143 145 146 160 164 178.5
reward: 2 14.5 23 80 80.5 81

This function is not regressive (For example, when revenue rises by 2, from 143 to
145, reward goes up by 12.5). Hence the sharing game lacks the NDR property. The
payoff matrix of the game is

⎛

⎜
⎜
⎝

1 2 3

1 (1, 1) (13.5, 4.5) (22, 4)

2 (4.5, 13.5) (78, 78) (70.5, 61.5)

3 (4, 22) (61.5, 70.5) (62, 62)

⎞

⎟
⎟
⎠.
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18 D. Courtney, T. Marschak

For each player the strategy 2 (which costs 10) dominates. At that strategy each player
squanders relative to the efficient pair (1,1), where each player’s cost is only 1.

3 Technological change and squandering equilibria

A strong motivation for understanding squandering and shirking arises when one asks
whether improved technology might change the organization’s structure because the
improvement makes sharing games more attractive. Suppose the cost functions drop.
One would want to know whether such an improvement lessens the “decentralization
penalty” associated with an equilibrium of the sharing game, i.e., the amount by which
surplus at the equilibrium falls short of its maximum. If an organization contemplates
the use of a sharing game because of its informational simplicity and the autonomy it
permits, rather than using (for example) the costly and intrusive monitoring that would
guarantee maximal surplus, then a drop in the penalty associated with a sharing-game
equilibrium may tip the balance in favor of the sharing game. It turns out, however,
that the effect of a cost drop on the penalty associated with an equilibrium is generally
quite different when the equilibrium is squandering than when it is shirking.

Consider a sharing game where each player i’s cost function is ci = γ · c̄i , and
γ > 0 is a parameter which drops when technology improves, because the inputs
which players must buy (to carry out a chosen strategy) become cheaper or the input
quantities needed are smaller. Suppose first that the drop in γ is small enough so
that every strategy profile which was efficient before the drop remains efficient and
every profile which was a sharing-game equilibrium remains an equilibrium. Let τ̄ (x)

denote
∑

i∈N
c̄i (x). Then if x∗ is efficient while x̃ is an equilibrium, the decentral-

ization penalty (surplus shortfall) associated with x̃ is

[A(x∗) − γ · τ̄ (x∗)] − [A(x̃) − γ · τ̄ (x̃)] = A(x∗) − A(x̃) + γ · [τ̄ (x̃) − τ̄ (x∗)].

If x̃ is squandering relative to x∗, then the final expression in square brackets is positive
and so the penalty drops as γ drops. But if x̃ is shirking relative to x∗, then that expres-
sion is negative and the penalty rises as γ drops.

Suppose, on the other hand, that each strategy set Si is a subset of the real line, and
that for every γ we can select an efficient profile and an equilibrium in the sharing-
game defined by γ , in such a way that both of them change smoothly as γ changes.
If the selected equilibrium is always squandering relative to the selected efficient pro-
file, if the game has regressive reward functions (which is the case for NDR games
with nondecreasing rewards), and if we make the plausible assumption18 that each
player’s equilibrium effort does not drop when γ drops, then we can again make
the unambiguous claim that technological improvement (i.e., a drop in γ ) lowers the
penalty associated with the squandering equilibrium. We have the theorem which fol-
lows. Each cost function again has the form ci (xi ) = γ c̄i (xi ) and we again let τ̄ (x)

denote
∑

i∈N c̄i (xi ). In stating the theorem, we let π(x̃, x∗) denote the decentralization

18 Assumption (vi) in the theorem which follows.
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Inefficiency and complementarity in sharing games 19

penalty associated with the equilibrium x̃ and the efficient profile x∗, i.e., π(x̃, x∗) =
A(x∗) − τ(x∗) − [A(x̃) − τ(x̃)].

Theorem A Consider a sharing game 〈{Si }i∈N , A, {ρi }i∈N , {γ c̄i }i∈N 〉 in which the
following hold:

(i) Each strategy set Si is an open set in the real line.
(ii) for all γ ∈ [γ +, γ ++], where 0 < γ + < γ ++, there is an efficient profile

x∗(γ ) = (x∗
1 (γ ), . . . , x∗

n (γ )) and an equilibrium x̃(γ ) = (x̃i (γ ), . . . , x̃n(γ )),
where the functions x∗

i , x̃i are differentiable on [γ +, γ ++]
(iii) A is differentiable, with respect to each of its arguments, on S = S1 × · · · × Sn

(iv) each function c̄i is differentiable on Si and is strictly increasing
(v) each reward function ρi is positive-valued, differentiable on A(S), regressive,

and nondecreasing.

Suppose that

(vi) for all i ∈ N we have x̃i (γ
′) ≥ x̃i (γ

′′) whenever γ + ≤ γ ′ < γ ′′ ≤ γ ++.

Suppose that for γ + ≤ γ ′ < γ ′′ ≤ γ ++, the equilibrium x̃(γ ′) is aggregatively
squandering relative to x∗(γ ′) and x̃(γ ′′) is aggregatively squandering relative to
x∗(γ ′′), i.e., γ ′τ̄ (x̃(γ ′)) > γ ′τ̄ (x∗(γ ′)), γ ′′τ̄ (x̃(γ ′′)) > γ ′′τ̄ (x∗(γ ′′)). Then π(x̃(γ ′′),
x∗(γ ′′)) < π(x̃(γ ′), x∗(γ ′)) (the penalty associated with the squandering equilibrium
drops when technology improves).

Proof Define V (γ ) to be the penalty associated with x̃(γ ), x∗(γ ), i.e., V (γ ) =
π((x̃(γ ), x∗(γ )). We shall consider the derivative V ′ and shall prove that it is positive
for γ ∈ [γ +, γ ++], which will imply our claim. We can write V (γ ) = Va(γ )−Vb(γ ),
where

Va(γ ) = A(x∗(γ )) − γ · τ̄ (x∗(γ )), Vb(γ ) = A(x̃(γ )) − γ · τ̄ (x̃(γ )).

Since x∗(γ ) is a maximizer of A(x) − γ τ̄ (x), it follows from the Envelope Theorem
that

V ′
a(γ ) = −τ̄ (x∗(γ )). (+)

Whenever x is an equilibrium for the game defined by a fixed γ , the first-order con-
dition ρ′

i (A(x)) · Ai (x) = γ · c̄′
i (xi ) is met for each i , where Ai denotes the partial

derivative of A with respect to xi . In particular, for the equilibrium x̃(γ ), the condition
can be rewritten as

Ai (x̃(γ )) = γ c̄′
i (x̃i (γ ))

ρ′
i (A(x̃(γ ))

. (++)
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20 D. Courtney, T. Marschak

Differentiating Vb, and using (++), we obtain

V ′
b(γ ) =

∑

i∈N

[
Ai (x̃(γ )) · x̃ ′

i (γ ) − γ c̄′
i (x̃i (γ )) · x̃ ′

i (γ ) − c̄i (x̃i (γ ))
]

=
∑

i∈N

[
γ c̄′

i (x̃i (γ ))

ρ′
i (A(x̃(γ ))

· x̃ ′
i (γ ) − γ c̄′

i (x̃i (γ )) · x̃ ′
i (γ )

]

− τ̄ (x̃(γ ))

=
∑

i∈N

[

γ c̄′
i (x̃i (γ )) · x̃ ′

i (γ ) ·
(

1

ρ′
i (A(x̃(γ ))

− 1

)]

− τ̄ (x̃(γ )).

We therefore obtain, using (+),

V ′(γ ) = V ′
a(γ ) − V ′

b(γ )

= τ̄ (x̃(γ )) − τ̄ (x∗(γ )) −
∑

i∈N

[

γ c̄′
i (x̃i (γ )) · x̃ ′

i (γ ) ·
(

1

ρ′
i (A(x̃(γ ))

− 1

)]

.

Since ρi is regressive, we have (as noted just after the definition of regressivity) that
ρ′

i ≤ 1. Hence 1
ρ′

i
− 1 ≥ 0. Since, by assumption, c̄′

i ≥ 0 and x̃ ′
i ≤ 0, the entire

expression in large square brackets is nonpositive. By our squandering assumption,
τ̄ (x̃(γ )) > τ̄ (x∗(γ )). We conclude that V ′(γ ) > 0 for γ ∈ [γ +, γ ++]. �

If x̃(γ ) is a shirking equilibrium, the situation changes. Unless we make further
assumptions, the sign of V ′—i.e., the effect of technological improvement on the
penalty associated with the equilibrium—is ambiguous.

Theorem A concerns games with regressive reward functions in which the strategy
sets are continua and there are squandering equilibria. We have not yet illustrated a
game of that sort. (Finite games with squandering are illustrated in the next section).
We now provide an “economic” example of such a game and we apply Theorem A to
the example.

There are two players. They produce the same product and each uses his own plant
to do so. The plants are identical. Each player chooses his product quantity and pays
its cost, but they share the revenue obtained when the sum of the two quantities is sold.
Player i chooses a nonnegative quantity xi , and that costs γ ln(1+ xi ) (so, in the nota-
tion of Theorem A, c̄i (xi ) = ln(1+xi )). When the total x1+x2 is placed on the market,
it sells for a price per unit of α−(x1+x2), where α > 0. For simplicity, we permit neg-
ative prices; they will not occur at efficient profiles or at equilibria. Revenue at (x1, x2)

is A(x1, x2) = (α−x1 −x2)(x1 +x2). (This function A violates productivity when the
sum of the two strategies exceeds α

2 , but Theorem A does not assume productivity).
Since, in each plant, marginal cost always drops when product grows, efficiency is
achieved if just one plant is used—say Player 1’s plant. Then the profile (y, 0), with
y > 0, is efficient if y maximizes π(y) = (α− y)(y)−γ ln(1+ y) on the nonnegative
reals. The function π is defined for all y > −1. We have π ′(y) = α −2y − γ

1+y . Note
the following four facts: (i) π(0) = 0; (ii) π ′(0) = α − γ ; (iii) limy→−1 π(y) = ∞;
(iv) limy→∞ π(y) = −∞. The first-order condition for a maximum is 0 = π ′(y),
which is equivalent to 0 = 2y2 − wy + (γ − w − 2), where w = α − 2. The roots of
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Inefficiency and complementarity in sharing games 21

that equation are 1
4 (w ± √

w2 − 8γ + 8w + 16). If α > γ , then these are both real,
so the graph of π reverses direction twice. Assume that α > γ and call the larger of
the two roots y∗(γ ). In view of (i)–(iv), the graph of π has an arbitrarily high value
when y is close to −1; descends to a negative number when y equals the smaller of
the two roots (that root is negative); rises to zero at y = 0; continues to rise until y
equals y∗(γ ); and then decreases without bound. (In informal economic terminology:
at both roots marginal revenue equals marginal cost and both marginals are falling;
at y∗(γ ) marginal revenue is falling faster than marginal cost, but at the smaller of
the two roots the opposite is true). Thus the profile x∗(γ ) = (y∗(γ ), 0) is efficient if
α > γ .

Now consider the sharing game in which each player chooses a positive quantity
and gets r times revenue, where 0 < r ≤ 1

2 . Suppose we have, for some γ , an equilib-
rium x̃(γ ) of the form (z(γ ), z(γ )). That equilibrium is squandering relative to x∗(γ )

if 2γ · ln(1 + γ ) > γ · ln(1 + y∗(γ ), which is equivalent to (1 + z(γ ))2 > 1 + y∗(γ ).
We can, in fact, find α, γ +, γ ++, with 0 < γ + < γ ++ < α such that for r = 1

2 and
for every γ ∈ [γ +, γ ++], such a squandering equilibrium (z(γ ), z(γ )) exists. More-
over, the condition x̃ ′

i (γ ) < 0, i = 1, 2, required in Assumption (vi) of Theorem A, is
satisfied for every γ ∈ [γ +, γ ++]. Then Theorem A implies that if the sharing game
uses r = 1

2 , then for γ + < γ ′ < γ ′′ < γ ++, the decentralization penalty associated
with x̃(γ ′) is less than the penalty associated with x̃(γ ′′).19

19 The argument for the existence of such a triple (α, γ +, γ ++) is as follows. Suppose, to start with, that
Player i’s strategy set is the closed set {xi : xi ≥ 0}. Given a value of x2, Player 1’s net payoff for x1 is
P(x1; x2) = r · (α − x1 − x2) · (x1 + x2) − γ ln(x1 + 1). That function is defined for x1 > −1. Similarly
to what we found above for π , we have

lim
x1→−1

P(x1; x2) = ∞, lim
x1→∞ P(x1; x2) = −∞. (+)

We have P ′(x1; x2) = rα − 2r x1 − 2r x2 − γ
x1+1 . The first-order equation P ′(x1, x2) = 0 is equiva-

lent to 0 = 2x2
1 + x1 · (−α + 2 + 2x2) + (γ /r + 2x2 − α). This has the two roots 1

4 · (w − 2x2 ±
√

(2x2 − w)2 − 8(γ /r + 2x2 − w − 2)), where w again denotes α − 2. Suppose now that the roots are
real and call the larger of the roots L(x2). Then, in view of (+), the graph of P(x1; x2) is similar to the
graph of π : it reverses direction twice, and the value of P at L(x2) exceeds its value at the smaller root.
One or both roots may, however, be negative. Player 1’s best response to Player 2’s x2 is:

x̂1(x2) =
{

L(x2) if L(x2) > 0 and P(L(x2); x2) > P(0; x2)

0 otherwise

Player 2’s best response to x1, denoted x̂2(x1), is analagous. Now fix α and r . Suppose we find a positive
value of γ and a positive quantity z(γ ) such that z(γ ) = x̂1(z(γ )) = L(z(γ )), which, by symmetry, implies
z(γ ) = x̂2(z(γ )). Then the profile x̃(γ ) = (z(γ ), z(γ )) is an equilibrium of the game and z(γ ) is the larger
(real) root of the equation P ′(z; z) = 0. Thus z(γ ) is a solution of the equation (3/2)z − (1/4)w =
(1/4) ·

√
(2z − w)2 − 8(γ /r + 2z − w − 2). Multiplying both sides by 4 and then squaring both sides, we

obtain 36z2 − 12wz + w2 = 4z2 − 4wz + w2 − 8 γ
r + 16z − 8w + 16.

Collecting terms and simplifying, we get 4z2 − (w − 2)z + ( γ
r − w − 2

) = 0. Now choose z(γ ) to be

the larger of the two solutions of that equation, i.e., z(γ ) = 1
8 · (w − 2 +

√
(w − 2)2 − 16 γ

r − w − 2)).

To summarize: given positive r, γ, α, we have a squandering equilibrium (z(γ ), z(γ )), where z(γ ) =
1
8 · (w − 2 +

√
(w − 2)2 − 16 γ

r − w − 2)) and w = α − 2, if: (I) α > γ ; (II) z(γ ) is real; (III) z(γ ) > 0;

(IV) P(z(γ ); z(γ )) ≥ P(0; z(γ )), which is equivalent to α > 3z(γ ); (V) (1 + z(γ ))2 > 1 + y∗(γ ). Now
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4 Squandering and the Substitutes property

As we saw in 2.3, complementarity rules out squandering by any player at any equilib-
rium of any productive NDR game, whatever the (increasing) cost functions may be.
We have seen that squandering equilibria are important. It is natural to see whether the
“opposite” of complementarity, namely the Substitutes property, implies the existence
of such equilibria. A productive sharing game has that property if the marginal product
(the revenue gain) achieved when one player increases his effort is damaged (or at least
not enhanced) if at least one other player increases his effort. Whether a sufficiently
strong Substitutes property implies squandering turns out to be a challenging question.
We offer small steps towards an answer.

In Courtney and Marschak (2006), we proved a theorem20 about a class of sym-
metric two-person games with linear costs and constant-share rewards. Player i’s
strategy set is a closed interval Ti = [gi , hi ] ⊂ R

+. The revenue function A is twice
differentiable on T1 × T2. At every strategy pair (x1, x2), we have the Substitutes
property ∂2 A

∂x1∂x2
≤ 0, as well as the Diminishing Marginal Product (DMP) property

∂2 A
∂xi ∂xi

< 0, i = 1, 2. A strategy pair α = (g + v, g + w) in the interior of T1 × T2 is
considered, where 2g + v + w > max[g1 + h2, g2 + h1], which means that α costs
more than the corner pairs (g1, h2) and (h1, g2). It is shown that if α is an equilibrium
of the sharing game, and if, at every strategy pair (x1, x2) ∈ T1 × T2, the strength
of the Substitutes effect (measured by | ∂2 A

∂x1∂x2
|) is sufficiently large relative to the

strength of the DMP effects (measured by | ∂2 A
∂xi ∂xi

|, i = 1, 2), then the corner pairs
(g1, h2), (h1, g2) are efficient, so that α is squandering.

We now seek analogous propositions for finite games.
Consider a finite two-player game, where each player has t strategies, labelled

1, . . . , t . Strategy �+ 1 costs more than strategy � and the game is strictly productive,
so that revenue rises when one player moves to a higher strategy. Let Ai j denote rev-
enue at the pair (i, j), where i is 1’s strategy and j is 2’s strategy. The game has the
DMP property if for every j ∈ {1, . . . , t}, and for i ∈ {2, . . . , t − 1} 1’s DMP effect
at (i, j), defined as

Footnote 19 continued
consider the following case: α = 62 (so w = 60); r = 1

2 . We first consider γ = 1 and then γ = 2 and

γ ∈]1, 2[. We have y∗(1) = 1
4 (60 + √

3600 − 8 + 480 + 16 = 1
4 (60 + √

4083) ≈ 1
4 (60 + 63.94) ≈ 31,

and z(1) = 1
8 (58 + √

3364 − 32 − 60 − 2) = 1
8 (58 + √

3270) ≈ 1
8 · (58 + 57.18) ≈ 14.4. The squan-

dering condition (V) is satisfied, since (12.89)2 > 27. The other four conditions are satisfied as well. Now
let γ = 2. We obtain y∗(2) = 1

4 (50 + √
2900) ≈ 25.963 and z(2) = 1

8 (48 + √
2190) ≈ 11.85. The

squandering condition (V) again holds, and so do the other conditions. The same is true for every γ in
]1, 2[.

As claimed, the condition x̃ ′
i (γ ) < 0, i = 1, 2, required in Assumption (vi) of Theorem A, is satisfied for

γ ∈ [1, 2]. Since for all γ ∈ [1, 2], y∗(γ ), z(γ ) are interior points of the closed strategy set {xi : xi ≥ 0},
we can replace that closed strategy set with the open set {xi : xi > 0}, as Theorem A requires. Then Theo-
rem A implies that if the sharing game uses r = 1

2 , then for α = 62, and γ + = 1 < γ ′ < γ ′′ < 2 = γ ++,
the decentralization penalty associated with x̃(γ ′) is less than the penalty associated with x̃(γ ′′). (That can
also be checked directly).
20 Theorem 8.
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[
Ai j − Ai−1, j

] − [
Ai+1, j − Ai, j

]
,

is positive, and every DMP effect for Player 2 (defined analagously) is positive.
The game has the Substitutes property if for i ∈ {2, . . . , t} and j in {1, . . . , t − 1},

Player 1’s Substitutes effect at (i, j), defined as

[
Ai j − Ai−1, j

] − [
Ai, j+1 − Ai−1, j+1

]
,

is positive, and every Substitutes effect for Player 2 (defined analagously) is positive.21

Roughly speaking, the DMP effect is the damage to a player’s marginal product due
to that player working one level harder. The Substitutes effect is the damage to the
player’s marginal product due to the other player working one level harder.

4.1 A class of symmetric two-player finite games with the Substitutes and DMP
properties but NO squandering equilibria

It will be useful to begin with a “benchmark” class, in which each player has a set of
t strategies, namely {1, 2, . . . , t}, t ≥ 4. Revenue at the strategy pair (i, j) is denoted
Ai j . We shall call the game a Simple Substitutes Game if (i) we have symmetry, i.e.,
Ai j = A ji ; (ii) there is a number J and a strictly decreasing sequence of 2t − 2
nonnegative numbers, say ε1, ε2, . . . , ε2t−2, such that A11 = J and for every other
(i, j) ∈ {1, . . . , t} × {1, . . . , t}, the revenue for the profile (i, j) is

Ai j = J + ε1 + ε2 + · · · + εi+ j−2;

(iii) Player i’s cost for the strategy xi ∈ {1, 2, . . . , t} is k · xi , where k > 0; (iv) each
player’s reward is half of revenue. To illustrate, here is the revenue matrix for t = 4.
Player 1 chooses a row and Player 2 chooses a column.

1 2 3 4
1 J J + ε1 J + ε1 + ε2 J + ε1 + ε2 + ε3
2 J + ε1 J + ε1 + ε2 J + ε1 + ε2 + ε3 J + ε1 + ε2 + ε3 + ε4
3 J + ε1 + ε2 J + ε1 + ε2 + ε3 J + ε1 + ε2 J + ε1 + ε2

+ε3 + ε4 +ε3 + ε4 + ε5
4 J + ε1 + ε2 J + ε1 + ε2 J + ε1 + ε2 + ε3 J + ε1 + ε2 + ε3

+ε3 +ε3 + ε4 +ε4 + ε5 +ε4 + ε5 + ε6

Note that in a Simple Substitutes Game:

• We have the Diminishing Marginal Product property.
• We have the Substitutes property.

21 If the game is symmetric (Ai j = A ji ) then the statements about Player 2 follow from the statements
about Player 1.
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• At any pair (i, j) for which the Substitutes and DMP effects are defined, the two
effects are equal.

• For each T in {2, 3, . . . , 2t −1} define the T th antidiagonal to be the set of profiles
{(r, s) : r + s = T }. In (or “along”) each antidiagonal, total revenue is constant
and so is total cost (since both players have the same linear cost function).

Theorem B In a Simple Substitutes Game, an inefficient equilibrium cannot be squan-
dering relative to an efficient profile.22

Proof See Appendix.

4.2 Symmetric two-player finite games in which a sufficiently strong Substitutes
Penalty implies that there are squandering equilibria

Theorem B tells us that we have to depart from the structure of Simple Substitutes
Games if we are to find squandering equilibria.

Consider a symmetric game with t ≥ 4 strategies for each player. For (i, j) such
that 1 < i < t, 1 ≤ j < t , the following definition will be useful.

The Substitutes Penalty (SP) at (i, j) is [Ai+1, j − Ai j ] − [Ai, j+1 − Ai−1, j+1].
When the penalty23 is positive, it has the following interpretation for games which

have the DMP property. Consider Player 1’s marginal product due to increasing effort
from i to i +1 when 2’s effort is j . If 2 now raises his effort to j +1, then the damage to
1’s marginal productivity (the Substitutes effect) is so severe that 1’s marginal product
now drops, even when 1 reduces his effort and starts at (i −1, j +1) (which gives him
a higher marginal product then he has at (1, j + 1) because of the DMP effect). The
penalty measures the difference between 1’s original marginal product and his new
lower one, after 1 has dropped his effort by one level while 2 has raised his effort by
one level. Note also that the penalty equals

[
the Substitutes effect (Ai+1, j − Ai j ) − (Ai+1, j+1 − Ai, j+1)

]

− [
the DMP effect (Ai, j+1 − Ai−1, j+1) − (Ai+1, j+1 − Ai, j+1)

]
.

Note that in a Simple Substitutes Game every SP is zero.
We now consider symmetric t-strategy sharing games (t ≥ 4) for which the cost

functions are ci (xi ) = kxi , k > 0 and each player’s reward is half of revenue.24

Each game will have the DMP and Substitutes properties. It will, moreover, satisfy
four conditions, each of which concerns the strength of the Substitutes effects. Those
conditions, denoted H1– H4, are as follows:

22 An application of Theorem B is given in Example 2 of Sect. 5 below.
23 It would be more descriptive to call the quantity we have just defined Player 1’s Substitutes Penalty at
(i, j). Player 2’s Substitutes Penalty at (i, j) would have an analagous definition. Because of symmetry it
suffices to consider Player 1 and to use the single definition above.
24 It is straightforward to reinterpret the theorem which follows, and its proof, so that it covers the case
where each player receives r times the revenue, where 0 < r < 1

2 and costs are linear. Simply replace the
revenue A with r A and replace the cost kxi with 2rkxi .
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H1 : For all i, j satisfying 1< i = j < t , the Substitutes Penalty at (i, j) is at least k.
H2 : For all i, j satisfying 1 < i < j < t , the Substitutes Penalty at (i, j) is at least

zero.
H3 : For some i ′, j ′ satisfying 1 < i ′ < j ′ < t , the Substitutes Penalty at (i, j) is at

least k.
H4 : A2t − A1t ≤ k.

Note that H4 holds if the Substitutes effects associated with the profiles (1, j) are
sufficiently strong that Player 1’s marginal product at strategy 1(the additional revenue
due to replacing strategy 1 with strategy 2) drops to k or less when player 2 reaches t ,
his costliest strategy.

Theorem C Consider a symmetric strictly productive two-player t-strategy game
with the Substitutes and DMP properties. Suppose t ≥ 4, and for i = 1, 2, we have
ci (xi ) = kxi , where k > 0. Suppose H1–H4 hold. Then

(i) (1, t) and (t, 1) are efficient
(ii) if (i, j), with i ≤ j , is an equilibrium, then j ∈ {t, t − 1, 1}.
Proof See Appendix.25

Corollary to Theorem C Consider a game that meets the conditions of Theorem C.
Let (i∗, j∗) be an inefficient equilibrium and suppose that (i∗, j∗) /∈ {(1, 1), (2, t −1),

(t − 1, 2)}. Then (i∗, j∗) is squandering relative to every efficient profile.

Proof Claims 1-3 in the proof of Theorem C imply that (1, t) and (t, 1) are efficient
and that no other profiles are efficient except possibly (1,1). Suppose i∗ ≤ j∗. Theo-
rem C implies that j∗ ∈ {t, t − 1}. Since (i∗, j∗) /∈ {(1, 1), (2, t − 1), (t − 1, 2)}, we
conclude that i∗ + j∗ > t + 1. If i∗ ≥ j∗, a symmetric argument leads to the same
conclusion. Thus (i∗, j∗) is indeed squandering relative to every efficient profile.26

�
Note, in particular, that any equilibrium other than (1,1) in which both players

choose the same effort level is squandering.
For a six-strategy example illustrating Theorem C, let k = 10 and consider the

following revenue table. The column chooser (Player 2) has marginal products—for a
fixed row choice by Player1—that are given as single-box numbers. The row chooser
(Player 1) has marginal products—for a fixed column choice by Player 2—that are
given as double-box numbers. Thus the DMP effects are the drops in the double-box
quantitities as we go down a column of double boxes and the drops in the single-box
quantities as we go along a row of single boxes. The Substitutes effects are the drops
in the double-box quantitities as we go along a row of double boxes and the drops
in the single-box quantities as we go down a column of single boxes. A Substitutes

25 We are grateful to Kevin Lin for generalizing a previous proof for the case t = 4 to the general case.
26 If we replace strict productivity by productivity, then we obtain a version of Theorem C where, in the
conclusion, {t, t − 1, 1} is replaced by {t, t − 1, t − 2, 1}. Then the (weaker) Corollary says that any inef-
ficient equilibrium which is not (1, 1), (2, t − 1), or (3, t − 2) (or their symmetric counterparts) must be
squandering.
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Penalty is the drop when we go from a double-box quantity to the double-box quantity
that lies directly “northeast”.

1 2 3 4 5 6

1 0 100 100 90 190 85 275 79 354 69.9 423.9

100 80 63 41 24 10

2 100 80 180 73 253 63 316 62 378 55.9 433.9

90 73 53 40 23 9

3 190 63 253 53 306 50 356 45 401 44 442.9

85 63 50 35 22 8.9

4 275 41 316 40 356 35 391 32 423 28.8 451.8

79 62 45 32 21 6.6

5 354 24 378 23 401 22 423 21 444 16.6 458.4

69.9 55.9 44 28.8 16.6 4

6 423.9 10 433.9 9 442.9 8.9 451.8 6.6 458.4 4 462.4

We have strict productivity, and the DMP property holds strictly. Condition H1 is
met, since the SP’s associated with diagonal elements are 73−63 = 10, 50−40 = 10,
32−22 = 10, and 16.6−6.6 = 10. Condition H2 is met, since the SP associated with
every profile above the diagonal is positive (in fact all SPs are positive). Condition H3
is met, since (for example) the SP at (3,5) is (22−9) > 10. Condition H4 is met, since
A26 − A16 = 10. We shall not present the surplus matrix, nor the payoff matrix of the
sharing game in which each player receives half the revenue. But it is easy to verify
that (1,6) and (6,1) are efficient and that the game has three (pure-strategy) equilib-
ria: the two efficient profiles and (5,5), which is squandering. (Moreover, (5,5) is not
Pareto-dominated by (1,6) or (6,1); at (5,5), each player’s payoff is 222 − 50 = 172,
while at the efficient pairs, one player’s payoff is 201.95 and the other’s payoff is
151.95).

5 Squandering in information-gathering games

We have just seen that squandering equilibria are not isolated phenomena but exist,
generically, in certain classes of finite sharing games that display the Substitutes prop-
erty sufficiently strongly. In our earlier paper,27 we found a class of games whose
strategy sets are continua, which also display the Substitutes property and possess
squandering equilibria. It seems intuitively plausible, moreover, that squandering equi-
libria exist, in certain settings, when each player’s efforts are devoted to gathering

27 See Theorem 8 in Courtney and Marschak (2006).
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information about an external random variable. They report their results to a cen-
tral Headquarters, which thereupon chooses an action. The organization then collects
a payoff which is a function of the action chosen and the true value of the exter-
nal random variable. HQ always chooses an action which maximizes the conditional
expected value of payoff, given the players’ reports. Our “revenue” is then the expected
value, over all possible reports, of the payoff earned when HQ makes its best-action
choice in response to the reports. Each player receives a share of revenue, and his net
gain equals that share minus his own information-gathering cost. We have the Sub-
stitutes property if the average gain in expected payoff when a player increases his
information-gathering effort, drops when some other player increases her effort. That
might occur, in particular, if the players external variables are correlated. We might
then have squandering relative to efficient information-gathering, i.e., the organization
suffers from “information overload”—to use a popular but quite imprecise term.

In the search for such situations, it is natural to start with very simple games. We
shall consider three two-player examples.

Example 1: Each player specializes in an external variable and partitions the set of
its possible values.28 The organization’s payoff depends on the action taken by HQ and
on a regularly changing random variable Z = (Z1, Z2), which takes 8 possible values,
denoted P1, . . . , P8, in [0, 4]×[0, 4]. It is common knowledge that each of these eight
points is equally probable. Player i in {1, 2} specializes in Zi and his job is to learn
about the current Zi . He can learn more by spending more. He chooses an effort level
xi ∈ {1, 2, 3, 4}, and divides the interval [0, 4] into 2xi −1 intervals of equal length. His
cost is a linear function of xi . Having found the current interval, he reports his finding
to HQ. HQ uses the two reports to choose an action a = (a1, a2) ∈ [0, 4] × [0, 4].
The organization then earns

W (Z , a) = 50 − 20((a1 − Z1)
2 + (a2 − Z2)

2).

HQ chooses the action which maximizes the expected value of W , conditional on
the reports received. Our “revenue” A(x1, x2) is the expected value of the highest
attainable conditional expected value of W . Each player receives half of the revenue.

The best action of HQ is easy to compute. Given the two reports, which tell HQ that
Z lies in some rectangle T , the best action a is a minimizer of the average value of the
squared distance ‖a − Pi‖2 where i runs over the indices for which Pi ∈ T . So HQ
minimizes

∑
Pi ∈R ‖a − Pi‖2. The minimizing a is the centroid of the points Pi ∈ T .

Those points can be chosen so that the sharing game has a squandering equilibrium.
That is the case, for example, if the points are:

P1 = (3.3, 3.9)

P2 = (3.6, 1.9)

P3 = (1.6, 2.2)

P4 = (2.1, 3.7)

28 An analysis of the effect of information-technology improvement in a class of information-gathering
games that are similar to this example is given in Marschak (2004).
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P5 = (1.4, 4)

P6 = (2.6, 1.2)

P7 = (.6, .6)

P8 = (3.8, 1.9)

For each player, let the cost of choosing the j th action be 0.5( j − 1) Then doing
nothing (choosing a one-set partititoning) is free, splitting the interval in two costs
0.5, splitting the interval in four costs 1, and splitting the interval in eight costs 1.5.
Suppose player 2 does nothing and player 1 chooses the finest division. We see that
HQ can then locate exactly 6 of the points, and only has to guess the average of P2
and P8. But HQ can also do this when both players choose to divide their intervals in
fourths, although that costs more.

The sharing game’s revenue A is shown in the following matrix. (A minus sign
indicates a negative quantity approximately equal to −2).

⎛

⎜
⎜
⎝

1 ( costs zero) 2 ( costs .5) 4 (costs 1) 8 (costs 1.5)

1 (costs zero) − 20.2 42.383 45.217
2 (costs 0.5) 14.543 41.167 45.267 48.1
4 (costs 1) 30.792 45.85 49.95 49.95
8 (costs 1.5) 49.95 49.95 49.95 49.95

⎞

⎟
⎟
⎠

The only violations of the Substitutes property occur near the effort levels (1, 1). Start-
ing there, a move by either player from 1 to 2 causes the other’s marginal productivity
to increase. Subtracting total cost from each revenue, we find that the unique efficient
pair is (4, 1), where total cost is 1. The sharing game’s payoff matrix is as follows.
Equilibria are in boldface and a minus sign indicates a negative quantity.

⎛

⎜
⎜
⎝

1 2 4 8

1 (−,−) (10.1, 9.6) (21.1915, 20.1915) (22.6085, 21.1085)

2 (6.7715, 7.2715) (20.0835, 20.0835) (22.1335, 21.6335) (23.55, 22.55)

4 (14.396, 15.396) (21.925, 22.425) (23.975, 23.975) (23.975, 23.475)

8 (23.475, 24.975) (23.475, 24.475) (23.475, 23.975) (23.475, 23.475)

⎞

⎟
⎟
⎠

The equilibrium (4, 4) has total cost 2 and is therefore squandering.

Example 2: Each player samples from the same normal distribution, which has known
variance and unknown mean; the payoff function is quadratic; and HQ and the players
have the same normal prior on the possible values of the unknown mean. Now suppose
there is just a single external random variable e. Its support is the real line. It has a
normal distribution with variance one and unknown mean µ. HQ and the players have
a common prior on the possible values of µ. That prior is itself normal, with variance
one and mean zero. HQ has to choose an action a ∈ R. For the pair (a, e), the payoff
2ea − a2 is earned once e is realized. Player i ∈ {1, 2} draws a sample of size xi from
the unknown distribution. Player i’s strategy set is the set of positive integers. The cost
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associated with xi is kxi . HQ receives the combined sample, of size x1 + x2. Denote
the sample D(x1, x2) and the sum of its elements Yx1+x2 . HQ then takes the action
which maximizes the posterior conditional expectation E(2µa −a2 | D(x1, x2)). The
maximizing action is the posterior conditional expectation E(µ | D(x1, x2)) itself.
Letting u denote x1 + x2, we find that this posterior conditional expectation equals
( Yu

u+1 ). The posterior expected value of E(2µa −a2|D(x1, x2)), when the maximizing

action is chosen, is ( Yu
u+1 )2. For fixed µ, the expected value of ( Yu

u+1 )2 is u+u2µ2

(u+1)2 . Using

our normal prior on the possible µs, we find that the expected value of u+u2µ2

(u+1)2 , over

all µ, is 1 − 1
u = 1 − 1

x1+x2
. That is our “revenue” A(x1, x2), given the observing

efforts x1, x2.
Note that if HQ had “perfect information”, i.e., it knew the true µ, then it would

take the action a = µ and would achieve the expected payoff µ2. Taking expecta-
tions over all µ, using the prior, yields a “revenue” of one. So revenue for the efforts
x1, x2 approaches perfect-information revenue as the efforts grow. Now consider the
sharing game in which each player receives half of revenue. That game is a sym-
metric Simple Substitutes Game, in the sense of Theorem B. Using the notation of
that theorem, the revenue A11 is J = 1

2 , and for i + j > 2, the revenue Ai j equals
J + ε1 + ε2 + · · · + εi+ j−2, where εi+ j−2 = 1

i+ j−1 − 1
i+ j . The epsilons are strictly

decreasing, as Theorem B requires. Theorem B tells us that there is no squandering
equilibrium even though we have the Substitutes property.

Example 3: There are two external variables which have a joint normal distribution
with known variance/covariance matrix but unknown means; each player observes
one of the variables; HQ and the players have a normal prior on the unknown means;
and payoff is quadratic. Now there are two external real variables, e1, e2, distrib-

uted normally with known variance/covariance matrix

(
1 σ

σ 1

)

but unknown means

µ1, µ2. HQ and the players have a normal prior on each of the unknown means. The
two priors are independent. Each prior has variance 1. The prior means are M1 for µ1
and M2 for µ2. HQ chooses an action pair a = (a1, a2). After making that choice, the
pair e = (e1, e2) is realized and a payoff is earned, namely

W (a, e) = 2e1a1 + 2e2a2 − 2qa1a2 − a2
1 − a2

2,

where q is fixed and satisfies |q| < 1. For given e, the unique W -maximizing action

pair e is â(e) =
(

e1−qe2
1−q2 ,

e2−qe1
1−q2

)
, and the highest attainable value of W is

W (â(e), e) = e2
1 + e2

2 − qe1e2

1 − q2 . (+)

Player i ∈ {1, 2}, chooses an effort level xi from the nonnegative integers. Let i∗ denote
a player whose effort level is highest, and let i∗∗ denote the other player. Before HQ
makes its action choice, at least xi∗ successive pairs e = (e1, e2) are realized. They
yield information about the unknown means µ1, µ2. Each player i observes ei for the
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first xi∗∗ of these successive pairs. But for the next xi∗ − xi∗∗ pairs, Player i∗∗ does no
further observing, while player i∗ observes ei∗ only.

Each player reports his observations to HQ. Let Di (xi ) denote player i’s report. Let
E(µi | D1(x1), D2(x2))denote the posterior expected value ofµi given the two reports.
Having received the two reports, HQ knows that for any action a = (a1, a2), the pos-
terior expected payoff W (a, (E(µ1 | D1(x1), D2(x2)), E(µ2 | D1(x1), D2(x2))) will
be earned. It takes the action which maximizes that expected payoff. The maximizing
action is â((E(µ1 | D1(x1), D2(x2)), E(µ2 | D1(x1), D2(x2))), where â is the func-
tion given above. Using (+), we see that the maximizing action yields the posterior
expected payoff

W
(
â( ), (E(µ1 | D1(x1), D2(x2)), E(µ2 | D1(x1), D2(x2)))

)

= 1

1 − q2 ·
[
(E(µ1 | D1(x1), D2(x2)))

2 + (E(µ2 | D1(x1), D2(x2)))
2

− q · E(µ1 | D1(x1), D2(x2)) · E(µ2 | D1(x1), D2(x2))
]
.

Our “revenue” (a function of x1 and x2) is the expectation of that posterior expected
payoff, over all the possible reports D1(x1), D2(x2) and all the possible values of the
unknown means. More explicitly, note that for fixed x1, x2, the two reports are random
variables whose joint density is determined by the unknown means. The same is true
of the joint density of the posterior expected values of the means given the two reports,
since those posterior expected values are functions of the two reports. For given x1, x2,
let Hi (x1, x2; µ̃1, µ̃2) denote the expected value, over all reports D1(x1), D2(x2), of
E(µi | D1(x1), D2(x2)), when the true means are µ̃1, µ̃2. Let the symbol E denote an
expectation that is taken with respect to the pairs (µ̃1, µ̃2), using the prior densities
on µ̃1, µ̃2 that are defined by the means M1, M2. Then our revenue is

A(x1, x2) = 1

1 − q2 ·
(
E

[
(H1(x1, x2; µ̃1, µ̃2)

2
]

+ E
[
(H2(x1, x2; µ̃1, µ̃2)

2
]

− q · E [
H1(x1, x2; µ̃1, µ̃2) · H2(x1, x2; µ̃1, µ̃2)

])
.

Under “perfect information”, HQ knows µ1 and µ2 exactly. As we increase x1 and x2,
our revenue A gets arbitrarily close to its perfect-information value. Using that fact,
one can show that there exists an integer J > 0, and a quadruple (M1, M2, q, σ ), such
that A has the DMP and Substitutes properties for all (x1, x2) ∈ {0, 1, 2, . . . , J } ×
{0, 1, 2, . . . , J }. Now consider the game defined by the sextuple (M1, M2, q, σ, J, k),
in which each player’s strategy set is {0, 1, . . . , J }, each ci (xi ) equals kxi (where
k > 0), and each player receives half of revenue. Can we find a sextuple such that this
game is not a Simple Substitutes Game and possesses a squandering equilibrium? The
question remains open.

Clearly a great deal remains to be learned about information-gathering games that
have the Substitutes property, and the conditions under which they possess squan-
dering equilibria. One approach would be to use Theorem C, and to try to construct
information-gathering games that have the properties assumed in that theorem.
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6 Choosing the reward functions

Suppose the strategy sets S1, . . . , Sn , the revenue function A, and the cost functions
c1, . . . , cn are fixed. Consider the following quest: for an interesting class of reward
functions—but not collective-punishment functions—find those in which surplus is
high at some (or all) equilibria. To start, consider the large class of NDR functions.
The following general theorem compares an equilibrium of an NDR game with an
equilibrium of another game, which need not have the NDR property. It says that if
players work harder at the first of those two equilibria, then surplus must be higher at
the first equilibrium as well. We let σ(x) denote the surplus A(x) − ∑

i∈N ci (xi ).

Theorem D: For the triple (A, {Si }i∈N , {ci }i∈N ), suppose the strategy profile x ′ is an
equilibrium of the productive sharing game

G ′ = 〈A, {Si }i∈N , {ci }i∈N , {ρ′
i }i∈N 〉

and x ′′ is an equilibrium of the productive sharing game

G ′′ = 〈A, {Si }i∈N , {ci }i∈N , {ρ′′
i }i∈N 〉,

where each ρ′
i and each ρ′′

i is nondecreasing, and {ρ′′
i }i∈N has the NDR property.

Suppose we have

ci (x ′′
i ) ≥ ci (x ′

i ) for all i. (+)

Then σ(x ′′) ≥ σ(x ′). That inequality is strict if (i) the game is strictly productive and
(ii) for some i the inequality in (+) is strict and ρ′′

i is strictly increasing.

Proof: Consider any player i . In the game G ′′, player i does not want to deviate from
the equilibrium x ′′ to the strategy x ′

i , i.e., using a standard notation,

ρ′′
i (A(x ′

i , x ′′−i )) − ci (x ′) ≤ ρ′′
i (A(x ′′)) − ci (x ′′). (*)

Condition (+), productivity, and the fact that ρ′′
i is nondecreasing imply ρ′′

i (A(x ′)) ≤
ρ′′

i (A(x ′
i , x ′′−i )). That, together with (∗), implies

ρ′′
i (A(x ′)) − ci (x ′) ≤ ρ′′

i (A(x ′′)) − ci (x ′′). (**)

Rearranging and summing over all i , we obtain

∑

i∈N

ci (x ′′
i ) −

∑

i∈N

ci (x ′
i ) ≤

∑

i∈N

ρ′′
i (A(x ′′)) −

∑

i∈N

ρ′′
i (A(x ′)). (***)

Since (by (+) and productivity) A(x ′′) ≥ A(x ′), and since {ρ′′
i }i∈N has the NDR

property, we have A(x ′) − ∑
i∈N ρ′′

i (A(x ′)) ≤ A(x ′′) − ∑
i∈N ρ′′

i (A(x ′′)) or

∑

i∈N

ρ′′
i (A(x ′′)) −

∑

i∈N

ρ′′
i (A(x ′)) ≤ A(x ′′) − A(x ′).
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That, together with (∗ ∗ ∗) imply

∑

i∈N

ci (x ′′
i ) −

∑

i∈N

ci (x ′
i ) ≤ A(x ′′) − A(x ′).

Rearranging, we obtain

σ(x ′′) ≥ σ(x ′),

as claimed. If the game is strictly productive, and for some i , ρ′′
i is strictly increasing

and we have ci (x ′′
i ) > ci (x ′

i ), then for that i , the inequality (∗∗) is strict. Hence (∗∗∗)

is strict and therefore σ(x ′′) > σ(x ′), as claimed. �
Informally speaking, it is socially desirable for the parties concerned to agree on a

reward-function profile that induces the agents to work hard (at equilibrium). We now
use Theorem D in studying the choice of reward functions in the principal/agents set-
ting. We are interested in the principal’s preferences on a class of reward functions, the
agents’ (players’) preferences, and the society’s preferences (surplus). First we have a
simple but general theorem about players’ preferences. It has the same form as Theo-
rem D, which dealt with society’s preferences. Again, the triple (A, {Si }i∈N , {ci }i∈N )

is fixed. Strict productivity is assumed. The theorem says that given two games that
differ with regard to reward functions, where the second game’s functions are at least
as generous as those of the first game, every player finds an equilibrium of the second
to be at least as good as an equilibrium of the first if every player works at least as
hard at the second equilibrium, and some player prefers the second equilibrium if at
least one player works harder.

Theorem E: Suppose the strategy profile x ′ is an equilibrium of the strictly produc-
tive sharing game G ′ = 〈A, {Si }i∈N , {ci }i∈N , {ρ′

i }i∈N 〉 and x ′′ is an equilibrium of the
strictly productive sharing game G ′′ = 〈A, {Si }i∈N , {ci }i∈N , {ρ′′

i }i∈N 〉, where each
ρ′

i and each ρ′′
i is strictly increasing. Suppose that for all i we have

ci (x ′′
i ) ≥ ci (x ′

i ). (+)

Suppose that for every z ∈ A(S) and every i , we have ρ′′
i (z) ≥ ρ′

i (z). Then for every
player i , we have ρ′′

i (A(x ′′)) − ci (x ′′
i ) ≥ ρ′

i (A(x ′)) − ci (x ′
i ), and that inequality is

strict for every i if the inequality in (+) is strict for some i.

Proof: Productivity, our assumption on the ρ′′
i and the ρ′

i , and our assumption (+)
imply that for every i we have

ρ′
i (A(x ′

i , x ′−i )) − ci (x ′
i ) ≤ ρ′

i (A(x ′
i , x ′′−i )) − ci (x ′

i ) ≤ ρ′′
i (A(x ′

i , x ′′−i )) − ci (x ′
i ). (*)

Since, in the game G ′′, the strategy x ′′
i is a best reply for i to x ′′−i , we have

ρ′′
i (A(x ′

i , x ′′−i )) − ci (x ′
i ) ≤ ρ′′

i (A(x ′′
i , x ′′−i )) − ci (x ′′

i ).
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Combining that with the inequalities preceding it, we obtain

ρ′
i (A(x ′)) − ci (x ′

i ) ≤ ρ′′
i (A(x ′′)) − ci (x ′′

i ), (**)

as claimed. If we have ci (x ′′
i ) > ci (x ′

i ) for some i , then A(x ′′) > A(x ′) and hence the
last inequality in (∗) is strict. Therefore the inequality in (∗∗) is strict, as claimed. �

Theorem D tells us that “society” prefers an equilibrium at which players work
harder,and Theorem E tells us that the players prefer the harder-working equilibrium
as well, provided it is an equilibrium of a game whose reward functions are more
generous. We now ask: when is it the case that more generous rewards indeed induce
the players to work harder at equilibrium? Here complementarity plays a crucial role.
We confine attention to effort games with linearly related rewards. (Recall that the
effort-game property means that a strategy is uniquely defined by its cost). Given the
triple ({Si }i∈N , A, {ci }i∈N ), player i’s net payoff at the profile x = (x1, . . . , xn) is
determined by an increasing function ρ : R → R

+ and a positive number ri . Let 

denote the vector (r1, . . . , rn). Player i’s net payoff is

f i
(x) = ri · ρ(A(x)) − ci (xi ).

Suppose the composition of ρ and A has the complementarity property.29 Thus

x ′′
i ≥ x ′

i , x ′′−i ≥ x ′−i implies ρ(A(x ′′
i , x ′′−i )) − ρ(A(x ′

i , x ′′−i ))

≥ ρ(A(x ′′
i , x ′−i )) − ρ(A(x ′

i , x ′−i )).

We then have (in the terminology of the supermodularity literature) the following two
“increasing differences” statements:

for any fixed x−i , f i
′′(x ′′

i , x−i )− f i
′′(x ′

i , x−i ) ≥ f i
′(x ′′

i , x−i )− f i
′(x ′

i , x−i )

if x ′′
i ≥ x ′

i and ′′ ≥ ′.
for any fixed , f i

(x ′′
i , x ′′−i ) − f i

(x ′
i , x ′′−i ) ≥ f i

(x ′′
i , x ′−i ) − f i

(x ′
i , x ′−i )

if x ′′
i ≥ x ′

i and x ′′−i ≥ x ′−i .

In view of these statements, we can directly apply results from the supermodular-
games literature, for example, Theorem 4.2.2 in Topkis (1998).30 We then obtain the
following theorem.

Theorem F: Fix the triple ({Si }i∈N , A, {ci }i∈N ), where, for each i , Si ⊆ R and Si

is compact. Let the triple have the effort-game property. Fix the increasing function

29 We shall let a statement like “w′ ≥ w” , where w = (w1, . . . , wt ) and w′ = (w′
1, . . . , w′

t ), mean that
w′

i ≥ wi for all i ∈ {1, . . . , t}. A vector w is greatest (least) in a given set if w ≥ (≤) w′ for every w′ in
the set.
30 That theorem is stronger than needed for our purposes, since it allows each player’s strategy set to lack
a complete ordering. In our effort-game case, each strategy set is completely ordered by cost (i.e., the set is
a “chain”).
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ρ : R → R
+. For every  = (r1, . . . , rn) ∈ R

n+
, consider the strictly productive

effort game G = 〈{Si }i∈N , A, {ci }i∈N , {riρ}i∈N 〉, where the function ρ ◦ A (the com-
position of A and ρ) is upper semi-continuous and has the complementarity property.
Then (i) G has a greatest equilibrium x and a least equilibrium x∗

; (ii) if ′′ ≥ ′,
then x′′ ≥ x′ and x∗

′′ ≥ x∗
′ .

So we can select an equilibrium for each  in such a way that if some player’s reward
parameter ri goes up, then at the new equilibrium no player works less hard than at
the old one. If we place further conditions on A and the ci , then at least one player
works harder at the new equilibrium.

Finally, consider a principal and his agents, who are prospective sharing-game play-
ers. They negotiate about the game’s rewards. In the following simple example, where
n = 2 and every  takes the form (r, r), we have a strong conclusion.

For each of the two players the strategy set is R
+. The revenue function is A(x1, x2)

= √
x1x2. Each player’s reward is r · A, where 0 ≤ r ≤ 1

2 . The cost functions are

ci (xi ) = x2
i , i = 1, 2. We have complementarity, since ∂2 A

∂x1∂x2
> 0. Given that Player

2 has chosen x2, Player 1’s payoff for a given x1 is r · √x1x2 − x2
1 . The second deriv-

ative of this payoff with respect to x1 is negative. So Player 1’s best reply to a positive
x2 is the solution of the first-order condition

r

2
√

x1x2
· x2 = 2x1.

There is an analagous statement for Player 2. Thus we have an equilibrium at (x1, x2),
where x1 > 0, x2 > 0, if and only if

r

2
√

x1x2
· x2 = 2x1,

r

2
√

x1x2
· x1 = 2x2.

That implies31 x1 = x2. Letting z denote the common value of both player’s strat-
egies at the equilibrium, we obtain r

2
√

z·z = 2z, or z = r
4 . Thus the unique interior

equilibrium is ( r
4 , r

4 ). At that equilibrium, each player’s payoff is 3r2

16 . There is another
equilibrium at (0, 0), but both players prefer ( r

4 , r
4 ). At the equilibrium ( r

4 , r
4 ), revenue

is
√

r
4 · r

4 = r
4 , and residual is

(1 − 2r) · r

4
= r

4
− r2

2
.

The derivative of residual is 1
4 − r and the second derivative is −1. Thus residual is

zero at r = 0, rises to a peak of 1
32 at r = 1

4 , and then drops, reaching zero again at
r = 1

2 . The principal’s favorite r is 1
4 . Each player’s payoff at the equilibrium ( r

4 , r
4 )

is

31 From the second equation we get
√

x1x2 = r x1
4x2

. Insert that into the first equation, obtaining x1 = x2.
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r ·
√

r

4
· r

4
−

(r

4

)2 = 3r2

16
.

So for 0 ≤ r ′ < r ′′ < 1
4 , all parties prefer r ′′ to r ′, but for 1

4 ≤ r ′ < r ′′ ≤ 1
2 , the

principal prefers r ′ to r ′′ and the players prefer r ′′ to r ′. The negotiation set is the
interval [ 1

4 , 1
2 ]. The further towards the upper bound of 1

2 the players are able to push
the final bargain, the harder they work at equilibrium, and hence the larger—according
to Theorem E—is the resulting surplus.

Can this strong conclusion be generalized? Let us continue to consider the case of
two players who have the same reward parameter r . Complementarity of A does not,
in general, guarantee that the principal’s residual will be a single-peaked function of
r , as it was in the preceding example. To see this, consider the following example:

S1 = S2 = [32/45,∞]; ci (xi ) = (15/2)x4
i − (32/3)x3

i + (3/2)x2
i , i = 1, 2;

A(x1, x2) = A1(x1) + A2(x2), where Ai (xi ) = (30x3
i − 16x2

i + 3xi ), i = 1, 2.

Here complementarity holds trivially since A is additively separable. On the domain
Si , the function ci is strictly increasing, and we have strict productivity on S1 × S2.
Again, r is to be chosen from the interval [0, 1

2 ]. On each Si , player i’s payoff for a
given positive choice of the other player is r Ai (xi )− ci (xi ). That has negative second
derivative on Si for r ∈ [0, 1

2 ]. Player i’s best reply to any positive choice of the other
player is then the unique solution to the first-order condition r A′

i (xi )−c′
i (xi ) = 0 and

that solution is quickly seen to be xi = r . So (r, r) is the unique equilibrium. At that
equilibrium, the principal’s residual is (1−2r)(2)A1(r) = (2−4r)(30r3−16r2+3r).
That again equals zero at r = 0 and r = 1

2 , but it does not have a single peak, as the
previous example did. Instead it rises and falls several times between zero and 1

2 .
Nevertheless, there is a value of r , say r∗, with 0 < r∗ < 1

2 such that residual falls
in the interval [r∗, 1

2 ]. Moreover, we may apply Theorem F (and we can also check
directly) to conclude that in the interval [r∗, 1

2 ] players prefer the higher of two given
values of r . So we find that the negotiation set contains the interval [r∗, 1

2 ]. In view
of Theorem F, it is in the social interest for the negotiated r to be as close as possible
to 1

2 .
We can generalize this example. Specifically, we can show that such an interval

[r∗, 1
2 ] exists if we make appropriate differentiability assumptions. In fact we now

show the existence of such an interval in a more general setting, where the individual
players’ rewards are allowed to differ from each other.

Suppose each player’s strategy set consists of a closed real interval. The agents
(players) start negotiations with the principal after having settled differences among
themselves, so that they become a single unified bargainer. Specifically they have
chosen a base vector r∗ = (r∗

1 , . . . , r∗
n ), with all its elements positive. (The sim-

plest example is r∗ = (1, 1, . . . , 1), which we just considered for the case n = 2).
The negotiations with the principal concern the selection of a positive real num-
ber γ > 0 so that for the revenue z, player i’s reward is γ r∗

i z and the princi-
pal’s residual is z(1 − γ

∑
i∈N r∗

i ). Once γ has been chosen, the game G(γ ) =
〈A, {Si }i∈N , {ci }i∈N , {γ r∗

i }i∈N 〉 will be played. At γ = 0 the only equilibrium is

123



36 D. Courtney, T. Marschak

(0, 0, . . . , 0) and for that equilibrium residual is zero. Residual is also zero at γ =
1/

(∑
i∈N r∗

i

)
. The principal insists that residual be nonnegative. So the negotiation will

select a value of γ in the interval
[
0, 1/

(∑
i∈N r∗

i

)]
. The agents agree among them-

selves that they prefer γ ′ to γ ′′ if and only if the sum of the n net payoffs (rewards
minus costs) at the greatest equilibrium of the game G(γ ′) exceeds the sum of the n
net payoffs at the greatest equilibrium of the game G(γ ′′). The principal prefers γ ′ to
γ ′′ if and only if his residual at the greatest equilibrium of the game G(γ ′) exceeds
his residual at the greatest equilibrium of the game G(γ ′′).

For this class of games, Theorem F implies the following theorem.

Theorem G: Fix a vector r = (r1, . . . , rn), where 0 ≤ r j ≤ 1 for all j , and
r j is positive for at least one j . Fix the triple ({Si }i∈N , A, {ci }i∈N ), where Si is
a closed interval for each i , the triple has the effort-game property, A is every-
where positive, and complementarity holds. Consider the strictly productive games
G(γ ) = 〈A, {Si }i∈N , {ci }i∈N , {γ ri }i∈N 〉 where γ ∈ [0, (

∑
i∈N ri )

−1]. Suppose that
for each γ the greatest equilibrium x(γ ) = (x1(γ ), x2(γ ), . . . , xN (γ )) of G(γ ), given
by Theorem F, is in the interior of S, and that all functions (xi )i∈N , (ci )i∈N , and A
are continuously differentiable. Then there exists γ̄ ∈ [0, (

∑
i∈N ri )

−1] such that for
γ̄ < γ ′ < γ ′′ < (

∑
i∈N ri )

−1, the sum of the players’ net payoffs is higher at x(γ ′′)
than at x(γ ′), while the principal’s residual is lower at x(γ ′′) than at x(γ ′).

Proof: See Appendix.

The theorem tells us that both “society” and the agents (players) want γ to be as close
to its upper bound as possible. It is in the “social” interest for the agents to be strong
bargainers when they confront the principal.

7 Concluding remarks

We have seen that two key assumptions are extremely fruitful in the theory of sharing
games: complementarity of the revenue function and the NDR property for the rewards.
Then no one squanders at an inefficient equilibrium, and when reward functions are
open to choice, we have strong results about the interests of society, of a principal,
and of the game’s players. But there are games with plausible reward and cost func-
tions and compelling squandering equilibria. Those equilibria are important when we
try to trace the influence of technological improvement on the relative performance
of sharing games compared to extreme centralization. We have seen that for smooth
NDR games, the decentralization penalty associated with such equilibria drops when
technology improves. We also saw that in a class of finite two-player games, squan-
dering equilibria are implied when the Substitutes property holds sufficiently strongly.
Enlarging that class remains a challenge, and so does the exploration of squandering
in information-gathering games that have the Substitutes property.

It is natural to seek a link between sharing games and the enormous design litera-
ture that flowed from the work of Leonid Hurwicz. We note that many NDR reward
functions can be defined without any knowledge of the cost functions ci . (That is
true for constant-share reward functions, for example; it is not true for collective-pun-
ishment functions). That property is attractive when cost functions are complicated,
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randomly changing, and privately known. One could formally pose the following ques-
tion: given a set of acceptable surpluses, and a set of possible n-player cost-function
profiles, what are the informationally cheapest “game forms” whose equilibria yield
an acceptable surplus for every cost-function profile? Suppose the revenue function
is common knowledge and so is a prior probability distribution on the possible cost-
function profiles. Once the cost-function profile is realized, only Player i knows the
function ci . A game form would specify (i) a set of possible strategies for each player,
where i’s strategy selects, for every possible ci , both an effort level and a message that
conveys information about ci , and (ii) an outcome function which assigns to the play-
ers’ chosen messages the reward functions to be used. At an equilibrium each player
is content with his strategy, given the others’ strategies, because it maximizes his
expected payoff. An informational cost measure for the game form would be needed,
perhaps some version of message-space size. If the acceptable-surplus set is large,
then game forms that require (at equilibrium) complete transmission of the privately
known cost functions would be needlessly expensive. The winner might be a game
form whose equilibria have no transmissions at all. In such an equilibrium, the same
reward functions are always used, and they do not depend on the players’ privately
known costs.

Appendix

Proof of Theorem B: First consider the change in surplus when we move from any
profile (i, j) to any profile that is not in the same antidiagonal as (i, j). Either revenue
goes up from J + ε1 + · · · + εi+ j−2 to, say, J + ε1 + · · · + εi+ j−2 + · · · + εi+ j−2+h

at an extra cost of hk; or revenue goes down to, say, J + ε1 + · · · + εi+ j+2−s with a
cost saving of sk. The fact that the epsilon sequence is strictly decreasing implies that
if there is a drop in surplus when we make a movement of the first kind for h = 1,
then there is, a fortiori, a drop in surplus when we make a movement of the first kind
for any h greater than one. Similarly if there is a drop in surplus when we make a
movement of the second kind for s = 1, then there is, a fortiori, a drop in surplus
when we make a movement of the second kind for any s greater than one.

Moreover, if (i, j) is efficient, then, in particular, surplus is not increased by making
a movement of the first kind with h = 1 or making a movement of the second kind
with s = 1. So we conclude:

(i) (i, j) is efficient if and only if εi+ j−1 ≤ k ≤ εi+ j−2.

Next note that at any profile (i, j), player 1’s reward loss due to replacing i by i −1
is 1

2εi+ j−2. If that reward loss equals or exceeds player 1’s cost saving of k, then,
a fortiori, the reward loss due to replacing i by i − t , where t > 1, exceeds player
1’s cost saving of kt . Again, that is the case because the epsilon sequence is strictly
decreasing.

Similarly note that at any profile (i, j), player 1’s reward gain due to replacing i
by i + 1 is 1

2εi+ j−1. If that reward gain is less than or equal to player 1’s extra cost
k, then, a fortiori the reward gain due to replacing i by i + t , for t > 1, is less than
player 1’s extra cost kt .
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Moreover, if (i, j) is an equilibrium, then, in particular, 1’s net payoff (reward
minus cost) does not rise when we replace i by i + 1, and it does not rise when we
replace i by i − 1.

Analagous statements hold for the deviations of player 2. So we conclude

(ii) (i, j) is an equilibrium if and only if εi+ j−1 ≤ 2k ≤ εi+ j−2.

Now let (i∗, j∗) be an inefficient equilibrium and let (ī, j̄) be efficient. Suppose
that, contrary to our claim, (i∗, j∗) is squandering relative to (ī , j̄), i.e., i∗+ j∗ > ī+ j̄ .
Hence i∗ + j∗ − 1 > ī + j̄ − 1 and therefore

(iii) εi∗+ j∗−1 < εī+ j̄−1

Using (i) and the efficiency of (ī, j̄), as well as (ii) and the fact that (i∗, j∗) is an
equilibrium, we now obtain (in view of (iii)):

εi∗+ j∗−1 < εī+ j̄−1 ≤ k < 2k ≤ εi∗+ j∗−2.

But then the sufficiency part of (i) implies that (i∗, j∗) is efficient, contrary to our
assumption. �
Proof of Theorem C: It will be convenient to denote the revenue at (i, j) by A(i, j)
rather than Ai j (as in the text). The proof has two parts.

Part 1. Here we prove that for a productive game satisfying DMP and Conditions
H1-H4, the profile (1, t) is efficient. To do so we first establish three Claims.

Claim 1: For all (i, j) satisfying 1 < i ≤ j < t , we have

A(i − 1, j + 1) − A(i, j) ≥ k.

We can interpret the claim in terms of the antidiagonals. Recall that for a given con-
stant V , with 1 ≤ V ≤ 2t − 1, the “V th antidiagonal” is the set of pairs {(i, j) ∈
{1, 2, . . . , t} × {1, 2, . . . , t} : i + j = V }. Claim 1 says that if we start at a pair
ī, j̄ with 1 < ī ≤ j̄ < t , and we proceed along the (ī + j̄)th antidiagonal, in the
direction of increasing j (and decreasing i), we find that at each step, revenue, and
hence surplus, increase by at least k.

We shall prove the statement that for all positive integers p, we have A(� − p,

� + 1) − A(� − p + 1, �) ≥ k whenever p < � < t . That is equivalent to the
Claim, and we establish it by induction on p. By H1, the SP at (�, �) is ≥ k whenever
1 < � < t . Therefore

(A(� + 1, �) − A(�, �)) − (A(�, � + 1) − A(� − 1, � + 1))

= A(� − 1, � + 1) − A(�, �) ≥ k

whenever 1 < � < t . That establishes the Claim for p = 1.
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Now consider p > 1, and suppose the Claim holds for p − 1, i.e.,

A(� − (p − 1), � + 1) − A(� − (p − 1) + 1, �) ≥ k

whenever p − 1 < � < t . By H2, the SP at (� − p + 1, �) is at least 0 whenever
p < � < t . Hence

(A(�− p+2, �)− A(�− p+1, �))−(A(� − p + 1, � + 1) − A(� − p, � + 1)) ≥ 0

whenever p < � < t . Adding the two preceding inequalities, we obtain

A(� − p, � + 1) − A(� − p + 1, �) ≥ k

whenever p < � < t . The induction is complete.

Claim 2: If m > t , then the maximal revenue on the mth antidiagonal, and hence the
maximal surplus on that antidiagonal,is achieved at the profile (m − t, t) (or (t, m − t)
by symmetry). If 2 ≤ m ≤ t , then the maximal revenue, and hence the maximal
surplus, on the mth antidiagonal is achieved at the profile (1, m − 1) (or (m − 1, 1) by
symmetry).

Note that (i, j) and (i − 1, j + 1) lie on the same antidiagonal. Hence Claim 1 tells
us that for m > t , revenue and surplus increase as we move along the mth antidiagonal
in the direction of increasing j , reaching a maximum at j = t . The second sentence
of the Claim holds by symmetry.

Claim 3: The profile (1, t) is efficient if and only if A(2, t) − A(1, t) ≤ k.

The surplus at (1, t) is A(1, t) − (t + 1)k. By Claim 2, the profile (1, t) is efficient if
and only if this surplus is at least as large as each of the surpluses at (1, 1), (1, 2), . . . ,

(1, t − 1) and (2, t), (3, t), . . . , (t, t). If (1, t) is efficient, it is clear that A(2, t) −
A(1, t) ≤ k.

Now consider the converse. Suppose that A(2, t) − A(1, t) ≤ k. This implies that
the surplus at (1, t) is at least as large as the surplus at (2, t). By the DMP property, we
have A(3, t) − A(2, t) < A(2, t) − A(1, t), hence A(3, t) − A(2, t) < k. Similarly,
we have A(m, t) − A(m − 1, t) < k for each m ≥ 3. Therefore for each m ≥ 3 we
have

(A(2, t)− A(1, t))+(A(3, t)− A(2, t))+· · ·+(A(m, t) − A(m − 1, t)) < (m − 1)k.

This inequality simplifies to A(m, t) − A(1, t) < (m − 1)k. So the surplus at (1, t) is
at least as large as each of the surpluses at (3, t), (4, t), . . . , (t, t).

Next we show that the surplus at (1, t) is at least as large as each of the surpluses
at (1, 2), . . . , (1, t − 1).

By Claim 1, we have A(1, α)− A(2, α−1) ≥ k for 3 ≤ α ≤ t . Then by productivity
we have A(1, α − 1) ≤ A(2, α − 1), so that

(i) A(1, α) − A(1, α − 1) ≥ k for 3 ≤ α ≤ t.
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Thus for each α with 3 ≤ α ≤ t , we have

(A(1, α) − A(1, α − 1)) + (A(1, α + 1) − A(1, α))

+ · · · + (A(1, t) − A(1, t − 1)) ≥ (t − α + 1)k,

which simplifies to A(1, t)− A(1, α−1) ≥ (t −α+1)k. This implies that the surplus
at (1, t) is at least as large as the surpluses at each of (1, 2), (1, 3), . . . , (1, t − 1).

The last step is to show that the surplus at (1, t) is at least as large as the surplus at
(1, 1). That is equivalent to

(ii) A(1, t) − A(1, 1) ≥ (t − 1)k.

By H3, there is some profile (i ′, j ′) with 1 < i ′ < j ′ < t such that the SP at (i ′, j ′)
is at least k. Note that j ′ ≥ 3. We first use H3 to prove an auxiliary result, namely

(iii) A(i ′ − q, j ′ + 1) − A(i ′ − q + 1, j ′) ≥ 2k for q = 1, 2, . . . , i ′ − 1.

As in the proof of Claim 1, we perform an induction on q. By our assumption on
(i ′, j ′) we have

(A(i ′ + 1, j ′) − A(i ′, j ′)) − (A(i ′, j ′ + 1) − A(i ′ − 1, j ′ + 1)) ≥ k.

By Claim 1, we have

A(i ′, j ′ + 1) − A(i ′ + 1, j ′) ≥ k.

Adding the above two inequalities, we get

A(i ′ − 1, j ′ + 1) − A(i ′, j ′) ≥ 2k,

establishing our result for the case q = 1. For the induction step, suppose that 1 <

q < i ′ and that

A(i ′ − (q − 1), j ′ + 1) − A(i ′ − (q − 1) + 1, j ′) ≥ 2k.

Then (by H2) the SP at (i ′ − (q − 1), j ′) is at least 0, so we have

(A(i ′ − (q − 1) + 1, j ′) − A(i ′ − (q − 1), j ′)) − (A(i ′ − (q − 1), j ′ + 1)

−A(i ′ − (q − 1) − 1, j ′ + 1)) ≥ 0.

Adding the two preceding inequalities, we obtain A(i ′−q, j ′+1)− A(i ′−q+1, j ′) ≥
2k, thereby completing the induction and establishing (iii).

For the case i ′ = 2, q = 1, (iii) becomes A(1, j ′ + 1) − A(2, j ′) ≥ 2k. That,
together with productivity, implies

(iv) A(1, j ′ + 1) − A(1, j ′) ≥ 2k.
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In view of (i) above we have

(A(1, t) − A(1, t − 1)) + (A(1, t − 1) − A(1, t − 2))

+ · · · + (A(1, j ′ + 2) − A(1, j ′ + 1)) ≥ (t − ( j ′ + 2) + 1)k,

which simplifies to A(1, t) − A(1, j ′ + 1) ≥ (t − ( j ′ + 2) + 1)k. Similarly we have

(A(1, j ′) − A(1, j ′ − 1)) + (A(1, j ′ − 1) − A( j ′ − 2)) + · · · + (A(1, 4)

−A(1, 3)) + (A(1, 3) − A(1, 2)) ≥ ( j ′ − 3 + 1)k,

which simplifies to A(1, j ′)−A(1, 2) ≥ ( j ′−3+1)k. That, together with productivity,
implies

(v) A(1, j ′) − A(1, 1) ≥ ( j ′ − 3 + 1)k.

Using (iii)–(v), we obtain

(A(1, t) − A(1, j ′ + 1)) + (A( j ′ + 1) − A(1, j ′)) + (A(1, j ′) − A(1, 1))

≥ (t − ( j ′ + 2) + 1)k + 2k + ( j ′ − 3 + 1)k,

which simplifies to A(1, t) − A(1, 1) ≥ (t − 1)k. So (ii) is established and the proof
of Claim 3 is complete.

Since, by H4, we have A(2, t) − A(1, t) ≤ k, Claim 3 tells us that (1, t) is indeed
efficient.
Part 2. In this part we show that H1, strict productivity, and the DMP property imply
that if (i, j), with i ≤ j , is an equilibrium, then j ∈ {t, t − 1, 1}.

Suppose, to the contrary, that j = t −u, for some u satisfying 2 ≤ u ≤ t −2. Since
(i, j) is an equilibrium we have A(i + 1, j) − A(i, j) ≤ 2k. That, together with the
DMP property, implies

A( j + 1, j) − A( j, j) ≤ 2k. (1)

By condition H1, the SP at ( j, j) is at least k, i.e.,

(A( j + 1, j) − A( j, j)) − (A( j, j + 1) − A( j − 1, j + 1)) ≥ k. (2)

Now (1) and (2) imply

A( j, j + 1) − A( j − 1, j + 1) ≤ k.

That inequality, together with DMP, implies

A( j + 2, j + 1) − A( j + 1, j + 1) ≤ k. (3)
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[Since we assume t ≥ 4, the strategy j = t − u exists for every u in [2, t − 2], and so
do j + 1 and j + 2]. By H1, the substitutes penalty at ( j + 1, j + 1) is at least k, i.e.

[A( j + 2, j + 1) − A( j + 1, j + 1)] − [A( j + 1, j + 2) − A( j, j + 2)] ≥ k. (4)

Now (3) and (4) imply

A( j + 1, j + 2) − A( j, j + 2) ≤ 0. (5)

That contradicts strict productivity. Hence j indeed belongs to the set {t, t − 1, 1}.
The proof of Theorem C is complete. �

Proof of Theorem G: Let p(t) denote
∑

i∈N (tri A(x(t)) − ci (xi (t)) (the sum of the
players’ net payoffs),and let r(t) denote (1− t

∑
i∈N ri )A(x(t)) (the residual at x(t)).

The conclusion of Theorem G holds if p(t) is increasing and r(t) is decreasing, on
some interval containing the number ε = (

∑
i∈N ri )

−1. As p and r are continuously
differentiable, it suffices to show that p′(ε) > 0 and that r ′(ε) < 0.

Abbreviating x(t) by x and x j (t) by x j , we get

p′(t) =
∑

i∈N

⎛

⎝ri A(x) + tri

⎛

⎝
∑

j∈N

A j (x)x ′
j

⎞

⎠ − c′
i (xi )x ′

i

⎞

⎠

>
∑

i∈N

⎛

⎝tri

⎛

⎝
∑

j∈N

A j (x)x ′
j

⎞

⎠ − c′
i (xi )x ′

i

⎞

⎠

=
∑

j∈N

(

t A j (x)x ′
j

∑

i∈N

ri

)

−
∑

i∈N

c′
i (xi )x ′

i .

(Here we are using the facts that each ri ≤ 1; each Ai is positive, by productivity;
and each x ′

i is positive by Theorem F). We now evaluate at t = ε and use the fact that
ε
∑

i∈N ri = 1 to get

p′(ε) >
∑

i∈N

x ′
i (Ai (x) − c′

i (xi ))

≥
∑

i∈N

x ′
i · [ri Ai (x) − c′

i (xi )].

Note that the term in square brackets is zero by the first-order conditions that are
satisfied by x , which is an interior equilibrium. Hence p′(ε) > 0, as claimed. Quite
similarly,

r ′(t) =
(

1 − t
∑

i∈N

ri

)⎛

⎝
∑

j∈N

A j (x)x ′
j

⎞

⎠ −
(

∑

i∈N

ri

)

· A(x(t)).
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Evaluating at t = ε, the first term in parentheses is zero, so we get

r ′(ε) =
(

−
∑

i∈N

ri

)

· A(x(t)) < 0,

since
∑

i∈N ri > 0 and A > 0. That concludes the proof. �
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