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Abstract

We present a systematic study on the exchange-correlation effects in screened-exchange local

density functional method. To investigate the effects of the screened-exchange potential in the band

gap correction, we have compared the exchange-correlation potential term in the sX-LDA formalism

with the self-energy term in the GW approximation. It is found that the band gap correction of

the sX-LDA method primarily comes from the downshift of valence band states, resulting from

the enhancement of bonding and the increase of ionization energy. The band gap correction in

the GW method, on the contrary, comes in large part from the increase of the conduction band

energies. We also studied the effects of the screened-exchange potential in the total energy by

investigating the exchange-correlation hole in comparison with quantum Monte Carlo calculations.

When the Thomas-Fermi screening is used, the sX-LDA method overestimates (underestimates)

the exchange-correlation hole in short (long) range. From the exchange-correlation energy analysis

we found that the LDA method yields better absolute total energy than sX-LDA method.

PACS numbers: 71.15.Mb, 71.15.Qe, 71.20.Nr

∗Electronic address: bhlee@lbl.gov
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I. INTRODUCTION

Searching for better exchange-correlation functionals beyond the current local density

approximation[1] (LDA) or generalized gradient approximation[2] (GGA) is one of the main

research topics in density functional theory[3] (DFT) development. One particular goal in

this development is to overcome the band gap problem in LDA or GGA.[4, 5] Although it is

often commented that the DFT is a ground state theory and that, as a result, it intrinsically

cannot get the excited state band gap, strictly speaking, the band gap of semiconductors

is accessible by ground state total energy calculations. This is because the quasi-particle

energy of the conduction band minimum (CBM) equals to E(N + 1) −E(N), where E(M)

is the ground state energy of the system with M electrons and N is the number of the

electrons in the neutral system. Similarly, the valence band maximum (VBM) energy equals

E(N)−E(N−1). Furthermore, if there is no singularity in the explicit exchange-correlation

functional when M crosses N (e.g., LDA, GGA, and the screened-exchange functional to be

discussed below), the E(N + 1) −E(N) [E(N) −E(N − 1)] will be equal to the (N + 1)th

[Nth] eigenenergy in the generalized Kohn-Sham (KS) equation for an infinite bulk system.

Threrefore, it is quite legitimate to require a next generation DFT to give not only the

accurate ground state total energy but also accurate energy band gaps. After all, the DFT

single particle energy is just the total energy derivative with respect to the occupation

number of the state.[6]

To go beyond the LDA and GGA, it is now widely believed that some kind of nonlocal

expression in the exchange-correlation functional is necessary.[4, 5, 7] If this expression in-

volves the wavefunctions as well as the charge density, the scheme goes beyond the current

KS scheme of the DFT. Not only there is a nonlocal integral in the total energy expression,

but also there is a nonlocal potential in the generalized KS (GKS) equation (on the contrary,

in strict KS schemes, e.g., the exact exchange functional, there are only local potentials in

the KS equation). A simple and natural nonlocal expression in the exchange-correlation

functional is the screened-exchange LDA (sX-LDA) functional.[8] By screening the Hartree-

Fock (HF) exchange integral, the sX-LDA method attempts to introduce part of correlation

effects in the exchange hole. On the other hand, by reproducing the LDA results in homo-

geneous electron gas, the sX-LDA method retains many of the LDA successes for the total

energy calculations. It has been shown that the sX-LDA provides very good band gaps for
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common IV-IV, III-V, II-VI semiconductors and that its total energies and the resulting

atomic structures of materials are similar to, and sometimes better than, those of LDA

results.[8]

In order to further improve the sX-LDA method or to come up with alternative methods,

it is essential to understand the successes and failures of the current sX-LDA method by

comparing with more accurate methods. For the single particle eigenvalues and the related

GKS equations, we compare the sX-LDA method with the GW method[9–15], especially for

the nonlocal potentials. For the total energy calculations and exchange-correlation holes, we

compare sX-LDA with quantum Monte Carlo simulations. Our emphasis is in the nonlocality

of the potential and exchange-correlation hole, including their amplitudes, spatial ranges,

and the variations at different points. We choose bulk Si as our main test system to compare

with the existing quantum Monte Carlo (QMC) study.[16] We also study the origin of sX-

LDA band gap corrections and the difference in absolute total energy (not just the relative

total energy as used in the lattice constant and bulk modulus calculations) in comparison

with LDA.

The remainder of the paper is organized as follows. In Sec. II, we review the sX-LDA

method and demonstrate the improvement of the band gap. In Sec. III, we analyze the effects

of screened-exchange potential on the single particle eigenvalues and compare the behavior

of eigenvalues with the behavior of quasiparticle eigenvalues in GW method. The screened-

exchange potential effects on the total energy is studied using the exchange-correlation hole

in Sec. IV.

II. THE SCREENED-EXCHANGE METHOD

In this section we briefly review the sX-LDA method for the discussions in the following

sections. More detailed description with rigorous derivation can be found in Ref[8]. The

sX-LDA method is based on the generalized Kohn-Sham (GKS) schemes. Unlike in the

usual Kohn-Sham (KS) schemes, where the electron-electron interaction is included only via

electron density, ρ(r), the GKS scheme allows this interaction energy to have explicit orbital

dependence:

Etot = T + EH[ρ] + EsX[{ψ}] +R[ρ] + Eext[v], (1)
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where T , EH[ρ], and Eext[v] are the kinetic energy, direct Hartree Coulomb energy, and ex-

ternal potential energy, respectively, and v is an external potential. The orbital dependent

electron-electron interaction is included in the screened-exchange energy term EsX[{ψ}]. R[ρ]

is the difference between the true exchange-correlation energy and the screened-exchange en-

ergy. The present sX-LDA method uses the exchange energy with a Thomas-Fermi screening

for the screened-exchange energy;

EsX[{ψ}] = −
1

2

occ∑
i,j

∫ ∫
drdr′

ψ∗
i (r)ψ

∗
j (r

′)ψj(r)ψi(r
′)e−kTF |r−r′|

|r− r′|
, (2)

where {ψi} are the single particle orbitals that minimize the total energy in Eq.(1). We

hereafter use atomic units, i.e. ~ = m = e = 1, in equations through out our paper.

The approximation in GKS arises in the evaluation of the unknown energy functional R[ρ].

Because the LDA is accurate for homogeneous electron systems, R[ρ] is chosen so that the

total energy of the homogeneous electron systems agrees with the LDA results;

R[ρ] = ELDA
xc [ρ] − Eloc

sX [ρ] . (3)

Here, Eloc
sX [ρ] is the local density approximation of EsX[{ψ}];

Eloc
sX [ρ] = F [kTF/kF ] ELDA

x [ρ], (4)

where F [z] is a correction factor and kF is the Fermi wave vector. It was suggested that the

proper functional Eloc
sX [ρ] should have the same density dependence as in ELDA

x .[17] This is

achieved by using a constant Fermi wave vector, kF . To make the total energy agree with

LDA in homogeneous systems, the average charge density, ρ0 , is used for the Fermi and the

Thomas Fermi wave vectors; F0 = F [kTF/kF ] depends on only the average electron density,

ρ0.

The self-consistent equations for the single particle orbitals are obtained by constraint-

search minimization over single particle orbitals. The resulting GKS equations are

(T + Vext + VH + V LDA
xc )ψnk(r) +

∫
dr′VsX(r, r′)ψnk(r

′) − V loc
sX (r)ψnk(r) = ǫnkψnk(r) , (5)

where T is the kinetic energy operator, Vext is the external potential, VH is the Hartree

pontential, and V LDA
xc is the LDA exchange-correlation potential. The first four terms on

the left hand side of Eq. (5) are identical to the ones in the LDA KS equation. VsX is the
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non-local screened-exchange operator,

∫
dr′VsX(r, r′)ψ(r′) = −

occ∑
i

ψi(r)

∫
dr′

ψ∗
i (r

′)ψ(r′)e−kTF |r−r
′|

|r − r′|
, (6)

and the local potential V loc
sX is the functional derivative of Eloc

sX with respect to the charge

density ρ(r),

V loc
sX [ρ] = F0 V

LDA
x [ρ]. (7)

It is convenient to define an exchange charge density matrix,

ρx(r, r
′) =

occ∑
i

ψi(r)ψ
∗
i (r

′) (8)

so that the screened-exchange potential can be written as

∫
dr′VsX(r, r′)ψ(r′) = −

∫
dr′

ρx(r, r
′)e−kTF |r−r′|ψ(r′)

|r− r′|
. (9)

The advantage of sX-LDA is that the eigenvalue gaps of Eq.(5) agree better with ex-

periments than the LDA eigenvalue gaps.[8, 17–20] Fig. 1 shows improved band gaps in

sX-LDA for several tested zinc-blende structure semiconductors. The eigenfunctions of

LDA and sX-LDA are, on the other hand, very similar. The overlap of corresponding

LDA and sX-LDA eigenfunctions, 〈ψLDA
nk

|ψsX-LDA
nk

〉, is bigger than 99.9% for all bands and

Brillouin zone k-points, and different state eigenfunctions are almost mutually orthonormal,

i.e., 〈ψLDA
nk

|ψsX-LDA
n′k′ 〉 ≈ δn,n′δk,k′ , in all of our testing cases. This observation is analogous

to the well known fact that single particle wavefunctions calculated from Hartree-Fock and

GW method are very similar to those from LDA method.[21]

The calculations that are presented in the paper were done by using a plane-wave

sX-LDA code implemented in PEtot code[22] with Troullier-Martins norm-conserving

pseudopotentials.[23] For all investigated semiconductors, we used 19 special k points in the

irreducible wedge of Brillouin zone[24] to evaluate the k summation in the electron density

and the summation of the non-local potential in Eq.(6). The plane-wave basis was cut off at

a kinetic energy of 50 Ry for diamond, 30 Ry for Si and GaAs, and 20 Ry for Ge. For LDA

correlation energy, we used Perdew-Zunger parametrization of the electron gas correlation

energy.[25]
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III. SINGLE-PARTICLE POTENTIALS: COMPARISON WITH LDA AND GW

In this section we investigate sX-LDA formalism by comparing the eigenvalues of GKS

equations and the exchange-correlation potential of sX-LDA with the quasi-particle energies

and the self-energy of the GW method. We look into differences in eigenvalue gaps as well

as absolute eigenvalues of LDA, sX-LDA, and GW methods. We also study the nonlocality

of sX-LDA and GW potentials.

The quasi-particle GW equation in many-body perturbation theory is

(T + Vext + VH)ψnk(r) +

∫
dr′Σ(r, r′; ǫnk)ψnk(r

′) = ǫnkψnk(r) . (10)

The difference in the GW quasi-particle equation from the GKS equation is the the energy

dependent nonlocal self-energy term, Σ(r, r′; ǫnk). Similarly to the sX-LDA eigenfunctions,

the eigenfunctions of GW quasiparticle equations are very close to the eigenfunctions of LDA

KS equations.[21] Based on this similarity in eigenfunctions, we focus on the exchange-

correlation potential in the single-particle equations. Given the same charge density, the

other terms in single particle equations, i.e., the kinetic, Hartree, and external potentials,

are identical in LDA, sX-LDA and GW. Specifically, we analyze the exchange-correlation

potential matrix elements of (sX-)LDA and the self-energy matrix elements of GW.

We first show the fundamental energy gap of the test systems in LDA, sX-LDA, and

GW method in Table I. It has been reported that LDA and sX-LDA yield different lattice

constants and that sX-LDA improves the lattice constant closer to experiments in most

cases.[8] In all calculations reported here, both LDA and sX-LDA, we used experimental

lattice constants.[26] In general, the calculated sX-LDA band gap is in good agreement with

experiments. The agreement of sX-LDA and GW with experiments varies case by case. We

have not found definite relationship between the energy band gaps in sX-LDA and GW.

Compared with GW predictions, sX-LDA band gap is better for diamond but worse for

silicon while the band gap predictions are identical for germanium. Note that sX-LDA

tends to overestimate the X point conduction band energy.

Because the eigenfunctions of LDA and sX-LDA are almost identical, the correction in

the eigenvalue gap can be directly attributed to the exchange-correlation potential matrix

element, 〈nk|Vxc|nk〉. For LDA, Vxc is the usual local potential V LDA
xc . For sX-LDA, Vxc

is the sum of the local V LDA
xc , the nonlocal screened-exchange operator, VsX, and minus its
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local approximation, V loc
sX ;

V sX-LDA
xc (r, r′) = {(1 − F0)V

LDA
x (r) + V LDA

c (r)}δ(r− r′) −
ρx(r, r

′)e−kTF |r−r
′|

|r − r′|
. (11)

The effects of the screened-exchange potential on the eigenvalues can be seen by evaluating

the exchange-correlation matrix elements in LDA eigenfunction basis. Within a perturba-

tion theory, the first order sX-LDA correction in eigenvalues is the expectation value of

∆Vxc(r, r
′) = V sX-LDA

xc (r, r′) − V LDA
xc (r, r′) (difference of exchange-correlation potential be-

tween LDA and sX-LDA);

ǫsX-LDA
n,k ≈ ǫLDA

n,k + 〈ψLDA
n,k |∆Vxc|ψ

LDA
n,k 〉. (12)

In Table II, we compare the self-consistent band gap results with the first order estimation of

the band gaps using LDA wavefunctions. The good agreement between self-consistent band

gaps and perturbative estimations of the band gap has been reported in previous studies.[8]

Small disagreement arises from the charge density change in the self-consistent results, which

usually shows an increase of charge density in the bonding region in sX-LDA.

To clarify the origin of the improvement in band gaps, we show the difference between the

self-consistent eigenvalues obtained from sX-LDA and LDA as a function of the eigenvalues

of sX-LDA in Fig. 2. In all the cases we studied, there is a big jump in the eigenvalue

difference from valence band maximum (VBM) to conduction band minimum (CBM). Away

from the band gap, the difference increases monotonically with the energy difference from

the VBM energy, which results in the stretch of bands rather than a rigid shift of bands.

These results are similar to those of the GW calculations.[21]

Another feature in Fig.(2) is the downshift of valence band eigenvalues. Within DFT

formalism, the VBM eigenvalue is the minus ionization energy.[27] The increases in the

ionization energy in sX-LDA calculation is 1.84, 1.16, 0.86, and 0.97 eV for diamond, Si, Ge,

and GaAs, respectively. This increased ionization energy is due to reduced self-interactions

in sX-LDA. A similar increase in ionization energy is observed in self-interaction corrected

DFT (SIC-DFT).[25] Note that, unlike SIC-DFT where the self-interaction is completely

removed, in sX-LDA the self-interaction is removed only at short-range where r . k−1
TF .

In Fig. 3 we plot the exchange-correlation potential matrix elements of VBM and CBM

for diamond, Si, and GaAs. The matrix elements are evaluated using LDA wavefunctions.

Going from LDA to sX-LDA, the matrix elements are down-shifted for both CBM and VBM.
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The magnitude of the changes in VBM is much bigger than in CBM. Therefore, the band

gap correction in sX-LDA primarily comes from the deepening of VBM state energy. This

is a marked difference from the GW results, where the self-energy matrix elements of GW

are very similar to LDA exchange-correlation potential matrix elements for VBM but up-

shifted for CBM. On the other hand, our finding in sX-LDA is rather similar to the results

of Coulomb-hole-screened-exchange (COHSEX) approximation of the GW self-energy term.

[21]

To probe the difference between sX-LDA and GW more directly, we look into the non-

locality of the exchange-correlation potentials. In case of the GW method, the self-energy

term depends on the quasi-particle energy. However, we found that the self-energy term

has a weak dependence near the band gap and remains almost unchanged when the quasi-

particle energy changes from VBM to CBM. For the convenience of discussion, we fix the

quatiparticle energy to VBM energy. The three dimensional nonlocal potential V sX-LDA
xc (r, r′)

is difficult to visualize in a quantitative way. We plot the spherical average of the exchange-

correlation potential multiplied by the square of the radial distance, which provides a proper

weight for radial energy density. More specifically, we use

Vxc(r, R)R2 = R2

∫
dΩR

4π
Vxc(r, r + R), (13)

where one electron is fixed at a position r. The nonlocality can be seen from this spherically

average potential and the anisotropy of the original potential. In sX-LDA, the exponentially

decaying nonlocal potential hardly shows any anisotropy. Fig.4 shows Vxc(r, R)R2 of Si with

r at bond center, atom, and interstitial sites, along with GW and HF nonlocal potentials.

Note that the local part of V sX-LDA
xc (r, r′) in Eq(11) gives rise to a delta peak in Vxc(r, R)

at R = 0. This delta peak is not shown in Fig.4, when multiplied by R2, but should

be taken into account when we estimate the overall amplitude and the nonlocal range of

the the exchange-correlation potential, especially when we compare the sX-LDA exchange-

correlation potential to the GW and HF nonlocal potentials, which do not have such delta

peak. The local part of Vxc(r, r
′) are -2.00, -1.51, and -1.07 eV at bond center, atom, and

interstitial site, respectively.

Among the sX-LDA, GW and HF nonlocal potentials, HF has the largest and longest

range nonlocal potential, followed by the GW nonlocal potential. Compared with HF non-

local potential, GW potential is screened in the long range side, and its center of mass is
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shifted towards the short range side. The amplitude of sX-LDA nonlocal potential is too

small, especially for the small density region, e.g., the interstitial site. In addition, when

the delta peak at the origin is taken into account , the range of nonlocality is also too small

compared with the GW potentials. This implies that the range of the screening should be

increased to increase the nonlocality of the sX-LDA. The relative difference in the magni-

tude of the potential is more pronounced at the low electron density region, e.g., atom and

the interstitial sites. The dependence of sX-LDA and GW discrepancy on the local charge

density indicates that the homogeneous screening function with a constant screening length

in sX-LDA is inadequate to describe the nonlocality of the exchange-correlation potentials.

It might also contribute to the fact that sX-LDA often has a too high conduction band state

energy at zinc-blende X point, where the wavefunction has large amplitude at the interstitial

region.

IV. EXCHANGE-CORRELATION HOLE: COMPARISON WITH LDA AND

QMC

In this section we investigate the effects of the nonlocal screened-exchange potential on

total energy calculations. Unlike the GW method, where the interest is solely in the quasi-

particle energies, the screened-exchange method also provides the total energy, thus yielding

information on the ground state configuration. While sX-LDA method is constructed to

have the same total energy as in the LDA method for homogeneous systems, the compari-

son between LDA and sX-LDA total energy via the equilibrium lattice constants and bulk

moduli of semiconductors indicates that the two methods can be substantially different in

real systems. The sX-LDA results are better for the lattice constants but worse in bulk

moduli. [8] Both of those quantities, however, give information on the relative total energy

for different lattices and atomic structures, but they do not serve as the measure of the

accuracy of the absolute total energy. Because of the similarity of wavefunctions in LDA

and sX-LDA, the majority of the total energy difference in the two method arises from the

exchange-correlation energy. Since the comparison of the total energy alone might not pro-

vide enough information on the the origin of their differences, it is more interesting to study

the exchange-correlation hole itself.

To properly define the exchange-correlation hole in different formalisms, we start with
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the exact exchange-correlation energy expression.

Exc[n(r)] =
1

2

∫
drρ(r)

∫
dr′

nxc(r, r
′)

|r− r′|
, (14)

where the exchange-correlation hole nxc can be related to the symmetric pair distribution

function, g(r, r′);

nxc(r, r
′) = ρ(r′) [g(r, r′) − 1] . (15)

Similarly, the exchange-correlation hole, nsX(r, r′), due to the nonlocal part of screened-

exchange term in the sX-LDA formalism is

EsX =
1

2

∫
drρ(r)

∫
dr′

nsX(r, r′)

|r− r′|
, (16)

where

nsX(r, r′) = −
|ρx(r, r

′)|2e−kTF |r−r′|

ρ(r)
. (17)

Here ρx(r, r
′) is defined in Eq.(8). Note that the corresponding contribution to the pair

distribution function

gsX(r, r′) = 1 +
nsX(r, r′)

ρ(r′)
(18)

is symmetric with particle exchange between r and r′. The full sX-LDA exchange-correlation

hole has also contributions from the local density functional parts. The toal sX-LDA

exchange-correlation hole is

nsX-LDA
xc (r, r′) = (1 − F0)n

LDA
x (r, r′) + nLDA

c (r, r′) + nsX(r, r′). (19)

Here, following the convention, the LDA exchange and correlation hole, nLDA
x (r, r′) and

nLDA
c (r, r′), can be defined as

nLDA
x (r, r′) = Ux(|r− r′|ρ(r)1/3) ,

nLDA
c (r, r′) = Uc(|r− r′|ρ(r)1/3) , (20)

where Ux(x) and Uc(x) are universal functions derived from the exchange and correlation

energy expressions of homogeneous electron systems.[25] We point out that, in contrast to

nsX(r, r′), the corresponding pair-distribution functions of nLDA
x (r, r′) and nLDA

c (r, r′) are

not symmetric in particle exchange. As a result, the LDA exchange-correlation hole does

not connect the physical properties of the two points, r and r′. In this sense it is not the

true nonlocal hole. LDA XC hole is only defined by local properties (charge density) at
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r. Nevertheless, it is useful to compare nLDA
xc (r, r′) with the exchange correlation hole from

other methods since the LDA exchange-correlation energy can be calculated from nLDA
xc (r, r′).

Unlike in the Hartree-Fock approximation, the exchage-correlation sum rule is not fully

satisfied in the screened-exchange method, i.e.,
∫
dr′nsX-LDA

xc (r, r′) 6= −1. For example,

the total exchange-correlation hole in Si with one electron fixed at bond center, atom site,

and interstitial site are -0.996, -0.928, and -0.859, respectively. Like the nonlocal potential

discussed in previous section, the three dimensional nonlocality of the exchange-correlation

hole is hard to visualize, and it is often easier to see the characteristics of the functions when

the spherical average of the functions is used. For this regards, we define the spherically

averaged exchange-correlation hole as

ñxc(r, R) =

∫
dΩR

4π
nxc(r, r + R) (21)

and similarly, ñx(r, R) and ñsX(r, R) for spherically averaged exact exchange and screened-

exchange hole, respectively.

We now look into the effects of the screening on the exchange hole. In Fig. 5 we show the

screened and unscreened Hartree-Fock exchange holes with one electron fixed at the bond

center, the atom site, and the interstitial site using LDA wavefunctions. The exact Hartree-

Fock exchange hole shows more structure reflecting the electron density variation in the

real space. On the contratry, the screening in sX-LDA suppresses the long-range nonlocal

feature of the exchange hole, and nsX contributes only in short-range. Note the difference in

the magnitude of the exchange hole in different position. The absolute difference is larger

in bonding region while the relative difference is larger in lower density region.

The exchange-correlation hole in the sX-LDA method deviates from the LDA counterpart

due to the short-range nonlocal screened-exchange pontential. In Fig. 6, we show the spher-

ically averaged exchange-correlation hole, ñxc(r, R), from the sX-LDA method and LDA

method with one electron fixed at the same positions as in Fig. 5. For LDA calculations, we

used the self-consistent sX-LDA charge density and the Perdew-Wang pair-distribution func-

tion. [28] We also show the exchange-correlation hole from the coupling constant-averaged

variational Monte Carlo (VMC) calculations in Ref. [16] for qualitative comparison. Com-

pared with LDA method, the sX-LDA exchange-correlation hole is larger at short distance

while smaller at long distance, regardless of the position of the origin r. This can also be

seen from the formula. Since there is no screening at r = r′, the exchange-correlation hole
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is (2 − F0)n
LDA
x (r, r) + nLDA

c (r, r), thus increasing the exchange hole by (1 − F0)n
LDA
x (r, r)

relative to LDA. Comparison with VMC results reveals that the LDA gives better exchange-

correlation hole than sX-LDA, particularly in high electron density region. The Hartree-Fock

exchange holes in Fig. 5 (which are also replotted in Fig. 6 show similar structures as in VMC

exchange-correlation hole. Similar as in the case of the nonlocal potential in Fig. 4 (c) at the

small density region, when compared to VMC, the HF exchange-correlation hole structure

has been enhanced in the short distance range, while compressed in the long distance range.

Overall, the comparison indicates that the Thomas-Fermi screening in the current sX-LDA

method is too short range, and a constant screening length for all points in the system is

inadequate. These conclusions are similar to the conclusions of the previous section based

on the potential consideration.

Finally, we relate the exchange-correlation hole to the total energy calculation. Using the

spherically averaged exchange-correlation hole, the total exchange-correlation energy density

at r can be expressed as

exc(r) =
1

2

∫
dr′

nxc(r, r
′)

|r − r′|
= 2π

∫
dRR ñxc(r, R). (22)

Because the above integration has a factor R, the contribution of ñxc from the long range

weighs more in the energy calculation. In Fig. 7 we show the distance weighted exchange-

correlation hole 2πñxc(r, R). Although the structure of nx and nsX is more different in lower

density region, the contribution to the total energy difference is larger at higher density

region. Table IV shows exc(r) at the bond center and the interstitial site. Compared with

other methods, sX-LDA has the largest disagreement with VMC. The absolute disagreement

in the exchange-correlation energy density, ρ(r)exc(r), is larger at the bond center.

In Table III, we compare the total exchange-correlation energy calculated from∫
exc(x)ρ(r)dr in LDA and sX-LDA, and the QMC results from the Ref[16]. The small

energy difference ≈ 0.15 eV in the two LDA results can be attributed to the different pseu-

dopotentials. Clearly, the discrepancy of the sX-LDA exchange-correlation energy from

diffusion Monte Carlo (DMC) result is larger than that of LDA because of the short-range

overestimation of the exchange hole. The large difference between sX-LDA and DMC, ≈

1.0 eV, is beyond the pseudopotential error. Thus, in terms of the absolute total energy, the

LDA method is more accurate than the sX-LDA method.
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V. CONCLUSION

To summarize, we have the following conclusions: (1) The improvement of eigenvalue

gap in sX-LDA has different origin from the GW method. In sX-LDA the gap increases is

due to the deepening of the VBM state energy, while in GW method it is primarily due

to the increase of the CBM state energy. (2) In comparison with the QMC result, the

absolute sX-LDA exchange-correlation energy is too negative, and it is worse than the LDA

results. (3) The sX-LDA exchange-correlation nonlocal potential is much smaller than the

GW self-energy term, and the sX-LDA potential has a big local component. Thus, overall,

the nonlocality of the sX-LDA nonlocal potential is not large enough, and it is too short

range. (4) In comparison with the QMC result, the sX-LDA exchange-correlation hole is

overestimated in the short range, mainly due to the local density approximation part of the

exchange-correlation hole. Further more, it lacks the oscillating structure at the small charge

density sites (atom and interstitial sites) which exists in both the HF and QMC XC holes.

(5) The uniform screening for all sites with the constant screening length in the current

sX-LDA formalism might not be appropriate. This might contribute to the fact that the

sX-LDA tends to overestimate the conduction band energy at the X point.
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TABLE I: The fundamental band gaps (in eV) of diamond, silicon, germanium, and GaAs calcu-

lated from LDA, sX-LDA, and GW are compared to experiments.

LDA sX-LDA GW Experiment

Diamond 4.20 5.41 5.6a 5.41b

Silicon 0.52 1.42 1.29a 1.17b

Germanium < 0 0.74 0.75a 0.74b

GaAs 0.62 1.46 1.52b

aReference 21

bReference 26

TABLE II: Comparison of the fundamental band gaps difference and the exchange-correlation po-

tential matrix element difference. ∆Eg = EsX-LDA
g −ELDA

g ; the self-consistent band gap difference.

∆E
(1)
g = 〈ψLDA

CBM|∆Vxc|ψ
LDA
CBM〉 − 〈ψLDA

VBM|∆Vxc|ψ
LDA
VBM〉; the first order perturbation estimation of the

band gap. All energies in eV.

Diamond Silicon GaAs

∆Eg 1.21 0.90 0.84

∆E
(1)
g 1.03 0.96 0.89

TABLE III: Exchange-correlation energy (in eV) of bulk Si. The QMC results (VMC and DMC)

are coupling strength averaged.

sX-LDA LDA LDAa VMCa DMCa

-34.19 -32.59 -32.75 -32.73 ± 0.01 -33.23 ± 0.08

aReference 16
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TABLE IV: Exchange-correlation energy density per particle (in atomic unit) of bulk Si. For LDA

and HF results, the sX-LDA wavefunctions were used. The numbers inside the parentheses are the

relative difference (in %) from the VMC results.

bond center interstitial

sX-LDA -0.425 (-14.6) -0.119 (28.3)

HF -0.345 (7.0) -0.152 (8.4)

LDA -0.391 (-5.4) -0.130 (21.7)

LDAa -0.381 (-2.7) -0.133 (19.9)

VMCa -0.371 -0.166

aReference 16
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FIG. 1: (Color online) LDA (blue open squares) and sX-LDA (red filled circles) band gap v.s. the

experimental value for several semiconductors in the zinc-blende structure.
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FIG. 2: The eigenvalue difference between sX-LDA and LDA, ǫLDA
nk

− ǫsX-LDA
nk

, is plotted against

the sX-LDA eigenvalue for several symmetric Brillouin zone k-points: (a) diamond, (b) Si, (c) Ge,

and (d) GaAs. The zero of the eigenvalue is set at the top of the valence band maximum.
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maximum are shown.
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FIG. 4: (Color online) Vxc(r, R)R2. One electron is fixed at a) bond center, b) atom, and c) the

interstitial site. The solid (black), dashed (red), dashed-dotted (blue) lines correspond to sX-LDA,

GW, and HF results. The raw GW data show oscillation owing to the finite wavevector cutoff

used in our calculations. The data in the current figure were obtained by taking the median values

of the oscillating curves. For HF results, we used sX-LDA wavefunctions. Note that the figure

shows only the non-local part. For sX-LDA, there is a sharp peak in Vxc(r, R) at R = 0 due to the

local part of the exchange-correlation potentials. This delta peak is not shown in the figure when

Vxc(r, R) is multiplied by R2.
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FIG. 5: (Color online) The spherically averaged screened (black solid line) and Hartree-Fock (red

dashed line) exchange hole of bulk silicon are shown with one electron fixed at three different spatial

points: a) bond center, b) atom, and c) interstitial site. The exchange holes were calculated using

LDA wavefunctions.
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FIG. 6: (Color online) The spherically averaged sX-LDA exchange-correlation hole of bulk silicon

in the screened-exchange method (black solid lines) is shown with one electron is fixed at three

different spatial points: a) bond center, b) atom, and c) interstitial site. For comparison purpose,

we also show the HF (green dotted lines), LDA (red dashed lines), and coupling strength-averaged

VMC (blue dashed-dotted lines) exchange-correlation hole. The LDA and HF exchange-correlation

holes were calculated using sX-LDA wavefunctions. The VMC results are from Ref. [16].
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FIG. 7: (Color online) The distance weighted exchange-correlation hole of bulk silicon in the

screened-exchange method (black solid lines) is shown with one electron is fixed at three different

spatial points: a) bond center, b) atom, and c) interstitial site. The LDA (red dashed lines) and

HF (green dotted lines) exchange-correlation holes were calculated using sX-LDA wavefunctions

for comparison purpose. The VMC (blue dashed-dotted lines) results are from Ref. [16].
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