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ABSTRACT OF THE DISSERTATION

Towards Algorithm and Data Efficient Deep Learning

by

Yuanhao Xiong

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Cho-Jui Hsieh, Chair

Deep Learning has transformed our interaction with the world significantly, with numer-

ous breakthroughs in the fields of computer vision, natural language understanding, au-

tonomous driving and more. We have witnessed great success of large models in captur-

ing intrinsic patterns and representations present in the training data. However, despite

prosperous development, we are faced with challenges such as computational constraints

and the lack of high-quality annotated data when scaling up models. Consequently, it is

necessary to design both algorithm and data efficient methods to address these issues.

For algorithm efficiency, we explore techniques including meta-learning and dataset dis-

tillation to reduce training time. On the other hand, for data efficiency, we show per-

formance improvement by pre-training on unannotated noisy datasets followed by fine-

tuning. Specifically, we investigate representation learning and language modeling, two

prevalent frameworks to enhance the utilization of pre-training data. In the meanwhile,

we propose an automatic data annotation pipeline to further enable model and data co-

development. With all the efforts in efficient deep learning, we make it feasible and prac-

tical to train a well-performed model efficiently.
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CHAPTER 1

Introduction

1.1 Background

Deep learning [GBC16] has emerged as one of the most transformative technologies in

past few decades, revolutionizing fields ranging from computer vision and natural lan-

guage processing to robotics and healthcare. The success of deep learning models can

be largely attributed to their ability to automatically learn complex patterns and repre-

sentations from large amounts of training data [KMH20, HBM22]. However, the in-

satiable appetite of these models for massive datasets and immense computational re-

sources [KMH20, HBM22] poses significant challenges to scalability, efficiency, and ac-

cessibility, hampering their widespread application and real-world deployment. As we

move towards an era of ubiquitous artificial intelligence (AI) systems, there is a pressing

need to develop efficient deep learning techniques.

In particular, efficiency in deep learning encompasses a multifaceted approach, ad-

dressing not only the computational costs associated with training but also the judicious

utilization of data resources [Men23]. Traditional deep learning paradigms often rely on

massive datasets and compute-intensive algorithms, which raises concerns in scenarios

where where computational resources are constrained, or where annotated data collec-

tion is limited or expensive. Therefore, the pursuit of algorithm and data efficiency in

deep learning endeavors to mitigate these problems, enabling the development of leaner,

more sustainable, and adaptable models.

1



1.2 Algorithm Efficiency

Algorithm efficiency refers to the ability of models to learn effectively with fewer com-

putational resources, lower memory footprints, and faster training times. By streamlin-

ing model architectures, refining optimization algorithms, and leveraging novel training

paradigms, researchers aim to reduce the computational burden associated with deep

learning workflows, thereby enhancing their algorithm efficiency and applicability across

diverse domains. Among these potential directions, our research focuses primarily on

automatic optimization techniques [XH20], in which the whole or partial model update

rules are learned automatically through a meta-learning process. Specifically, “learning

to optimize” [ADG16, CCC22] has been adopted in our works to replace traditional opti-

mization algorithms such as PGD for adversarial learning [GSS14, ZYJ19] and Adam for

image classification [KB14], and achieved better generalization and faster convergence

at the same time. In addition, to circumvent the problem of instability of learned op-

timizers in longer training, we have taken an alternative path to automate only learn-

ing rate scheduling, one essential part of the complete optimization procedure. Apart

from improving efficiency in optimization algorithms, we have resorted to dataset distilla-

tion [ZMB20,NCL20,WZT18] to accomplish communication-efficient federated learning,

reducing message transmission between the client and the server significantly.

1.3 Data Efficiency

Data efficiency, on the other hand, pertains to the capability of models to learn general-

izable representations from limited training data, reducing the reliance on massive, man-

ually labeled datasets. Although deep learning’s ability to extract complex patterns from

data has fueled breakthroughs in image recognition, natural language processing, and a

multitude of other domains, this power comes at a cost. Traditional deep learning mod-
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els are often data hungry, requiring massive datasets for training, and computationally

expensive, demanding significant resources to run [GBC16, Men23]. These limitations

hinder deep learning’s potential severely. For better data efficiency, there are a number

of algorithms to leverage several kinds of information such as unlabeled data, data from

another domain, and prior knowledge. Due to the abundance of web-crawled noisy data

without annotations, first pre-training the model on such a large-scale dataset followed

by downstream adaptation becomes a typical and prevalent approach. In this disserta-

tion, we explore the pre-training and fine-tuning from single modality of language only

to multiple ones of vision and language. Models pre-trained on different tasks includ-

ing contrastive learning and language modeling have been investigated and both of them

have demonstrated impressive performance given limited data for fine-tuning in down-

stream evaluation. Moreover, multimodal large models have made automatic annotation

andmodel-dataset co-development possible, democratizing an efficient collection of high-

quality data.

1.4 Overview

This dissertation covers topics from algorithmic innovations that enhance optimization

strategies to data efficient learning approaches such as transfer learning. The significance

of achieving algorithm and data efficiency in deep learning extends beyond academic cu-

riosity, resonating deeply with practical considerations in industry, academia, and soci-

etal domains. By reducing computational burdens and data dependencies, efficient deep

learning methodologies pave the way for deploying AI solutions in resource-constrained

environments, empowering edge devices, and democratizing access to AI technologies.

The thesis consists of 9 chapters with Chapter 2-8 as the core contents of this disserta-

tion. In particular, we expand on algorithm efficient deep learning in Part I from Chapter

2-5 and concentrate on data efficient methods in Part II from Chapter 6-8. An overview
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of all these chapters are as follows:

• Chapter 1 introduces the background and landscape of algorithm and data efficient

deep learning, and presents an overview of the dissertation.

• Chapter 2 explores the adaptation of learned optimizers to adversarial training, re-

placing the original PGD for faster training.

• Chapter 3 discusses how to stabilize the training of neural optimizers via adversarial

regularization for further improvement on final performance and convergence rate.

• Chapter 4 introduces a reinforcement learning based approach tomodel the learning

rate scheduler, reducing manual labor on hyperparameter tuning notably.

• Chapter 5 describes how to leverage dataset distillation to achieve communication-

efficient federated learning.

• Chapter 6 investigates a pre-training method to deal with extreme text classification

in zero-shot scenario where limited supervision is provided.

• Chapter 7 refines the contrastive learning in the video-language domain, with a focus

on utilizing fine-grained structures in pre-training data.

• Chapter 8 presents a unified causal video-oriented language modeling framework

and introduces how to use the obtained model to automatically annotate internet

videos with temporally-aligned captions for better data efficiency.

• Chapter 9 concludes this dissertation and outlines future research directions.
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Part I

Algorithm Efficient Deep Learning
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CHAPTER 2

Improved Adversarial Training via Learned

Optimizer

In this chapter, we describe how to learn a neural optimizer for adversarial training to

achieve better performance in terms of both model robustness and training speed against

the widely-adopted PGD optimizer.

2.1 Introduction

It has beenwidely acknowledged that deepneural networks (DNN)havemade tremendous

breakthroughs benefiting both academia and industry. Despite being effective,manyDNN

models trained with benign inputs are vulnerable to small and undetectable perturbation

added to original data and tend to make wrong predictions under such threats. Those

perturbed examples, also known as adversarial examples, can be easily constructed by al-

gorithms such as DeepFool [MFF16], Fast Gradient Sign Method (FGSM) [GSS14], and

Carlini-Wagner, i.e., C&W attack [CW17]. Moreover, such adversarial attacks can also be

conducted in the black-box setting [BRB17, CLC18, CSC20] and can appear naturally in

the physical world [HZB19, KGB16a]. This phenomenon can bring about serious conse-

quences in domains such as face recognition and autonomous-driving. Therefore, how to

train a model resistant to adversarial inputs has become an important topic.

A variety of defensemethods have been proposed to improve the performance of DNNs

against adversarial attacks [KGB16b, SKC18,WY19,WZ19,XWM19, ZYJ19]. Among them,
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adversarial training [KGB16b] stands out for its effectiveness. Moreover, [MMS17] shows

that adversarial training can be formulated as a minimax optimization problem, resem-

bling a game between the attacker and the defender. The formulation is so intuitive that

the inner problem aims at generating adversarial examples by maximizing the training

loss while the outer one guides the network in the direction that minimizes the loss to re-

sist attacks. However, directly obtaining the optimal value of the inner maximization is

infeasible, so one has to run an iterative optimization algorithm for a fixed number (often

10) iterations to get an approximate inner maximizer.

Existing adversarial training often uses hand-designed general purpose optimizers,

such as PGDattack, to (approximately) solve the innermaximization. However, there is an

essential property of adversarial training that is rarely explored: the maximization prob-

lems associatedwith each sample share very similar structure, and a good innermaximizer

for adversarial training only needs to work well for this set of data-dependent problems.

To be specific, there are a finite of nmaximization problems need to be solved (where n is

number of training samples), and those maximization problems share the same objective

function along with identical network structure and weights, and the only difference is

their input x. Based on this observation, can we have a better optimizer that in particular

works well for these very similar and data-dependent problems?

Motivated by this idea, we propose a learned optimizer for improved adversarial train-

ing. Instead of using an existing optimizer with a fixed update rule (such as PGD), we aim

at learning the inner maximizer that could be faster and more effective for this particular

set of maximization problems. We have noticed that two works have already put forward

algorithms to combine learning to learn with adversarial training [JCS18, JZH19]. Both of

them adopt a convolutional neural network (CNN) generator to producemalicious pertur-

bations whereas CNN structure might complicate the training process and cannot grasp

the essence of the update rule in the long term. In contrast, we propose an L2L-based

adversarial training method with recurrent neural networks (RNN). RNN is capable of
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capturing long-term dependencies and has shown great potentials in predicting update

directions and steps adaptively [LJL17]. Thus, following the framework in [ADG16], we

leverage RNN as the optimizer to generate perturbations in a coordinate-wise manner.

Based on the properties of the inner problem, we tailor our RNN optimizer with removed

bias and weighted loss for further elaborations to ameliorate issues like short-horizon in

L2L [WRL18].

Specifically, our main contributions in this chapter are summarized as follows:

• We first investigate and confirm the improvement in the model robustness from

stronger attacks by searching a suitable step size for PGD.

• In replacement of hand-designed algorithms like PGD, an RNN-based optimizer

based on the properties of the inner problem is designed to learn a better update

rule. In addition to standard adversarial training, the proposed algorithm can also

be applied to any other minimax defense objectives such as TRADES [ZYJ19].

• Experimental results show that the proposed method can noticeably improve the

robust accuracy of both adversarial training [MMS17] and TRADES [ZYJ19]. Fur-

thermore, our RNN-based adversarial training significantly outperforms previous

CNN-based one and requires much less number of trainable parameters.

2.2 RelatedWork

2.2.1 Adversarial Attack and Defense

Model robustness has recently become a great concern for deploying deep learning mod-

els in real-world applications. Goodfellow et al. [GSS14] succeeded in fooling themodel to

make wrong predictions by Fast Gradient SignMethod (FGSM). Subsequently, to produce

adversarial examples, IFGSM and Projected Gradient Descent (PGD) [GSS14,MMS17] ac-
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cumulate attack strength through running FGSM iteratively, and Carlini-Wagner (C&W)

attack [CW17] designs a specific objective function to increase classification errors. Be-

sides these conventional optimization-based methods, there are several algorithms focus-

ing on generating malicious perturbations via neural networks [ROG18, XLZ18]. For in-

stance, Xiao et al. [XLZ18] exploit GAN, which is originally designed for crafting decep-

tive images, to output corresponding noises added to benign iuput data. The appearance

of various attacks has pushed forward the development of effective defense algorithms

to train neural networks that are resistant to adversarial examples. The seminal work of

adversarial training has significantly improved adversarial robustness [MMS17]. It has

inspired the emergence of various advanced defense algorithms: TRADES [ZYJ19] is de-

signed tominimize a theoretically-driven upper bound and GAT [LHL17] takes generator-

based outputs to train the robust classifier. All these methods can be formulated as a

minimax problem [MMS17], where the defender makes efforts to mitigate negative ef-

fects (outer minimization) brought by adversarial examples from the attacker (inner max-

imization). Whereas, performance of such an adversarial game is usually constrained by

the quality of solutions to the inner problem [JZH19, JCS18]. Intuitively, searching a bet-

ter maxima for the inner problem can improve the solution of minimax training, leading

to improved defensive models.

2.2.2 Learning to Learn

Recently, learning to learn emerges as a novel technique to efficiently address a variety of

problems such as automatic optimization [ADG16], few-shot learning [FAL17], and neural

architecture search [EMH18]. In this chapter, we emphasize on the subarea of L2L: how

to learn an optimizer for better performance. Rather than using human-defined update

rules, learning to learn makes use of neural networks for designing optimization algo-

rithms automatically. It is developed originally from [CC90] and [YHC01], in which early

attempts are made to model adaptive algorithms on simple convex problems. More re-
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cently, [ADG16] proposes an LSTM optimizer for some complex optimization problems,

such as training a convolutional neural network classifier. Based on this work, elabo-

rations in [LJL17] and [WMH17] further improve the generalization and scalability for

learned optimizers. Moreover, [RXR19] demonstrates that a zeroth order optimizer can

also be learned using L2L. Potentials of learning-to-learn motivates a line of L2L-based

defense which replaces hand-designed methods for solving the inner problem with neu-

ral network optimizers. [JCS18] uses a CNN generator mapping clean images into corre-

sponding perturbations. Since it onlymakes one-step and deterministic attack like FGSM,

[JZH19] modifies the algorithm and produces stronger and more diverse attacks itera-

tively. Unfortunately, due to the large number of parameters and the lack of ability to

capture the long-term dependencies, the CNN generator adds too much difficulty in the

optimization, especially for the minimax problem in adversarial training. Therefore, we

adopt an RNN optimizer in our method for a more stable training process as well as a

better grasp of the update rule.

2.3 Preliminaries

2.3.1 Notations

We use bold lower-case letters x and y to represent clean images and their corresponding

labels. An image classification task is considered in this chapter with the classifier f pa-

rameterized by θ. sign(·) is an element-wise operation to output the sign of a given input

with sign(0) = 1. B(x, ϵ) denotes the neighborhood of x as well as the set of admissible

perturbed images: {x′ : ∥x′ − x∥∞ ≤ ϵ}, where the infinity norm is adopted as the dis-

tance metric. We denote by Π the projection operator that maps perturbed data to the

feasible set. Specifically,ΠB(x,ϵ)(x
′) = max(x− ϵ,min(x′,x+ ϵ)), which is an element-wise

operator. L(·, ·) is a multi-class loss like cross-entropy.
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2.3.2 Adversarial Training

In this part, we present the formulation of adversarial training, together with some hand-

designed optimizers to solve this problem. To obtain a robust classifier against adversarial

attacks, an intuitive idea is to minimize the robust loss, defined as the worst-case loss

within a small neighborhood B(x, ϵ). Adversarial training, which aims to find the weights

that minimize the robust loss, can be formulated as a minimax optimization problem in

the following way [MMS17]:

min
θ

E(x,y)∼D

{
max

x′∈B(x,ϵ)
L(f(x′),y)

}
, (2.1)

whereD is the empirical distribution of input data. However, Equation (2.1) only focuses

on accuracy over adversarial examples and might cause severe over-fitting issues on the

training set. To address this problem, TRADES [ZYJ19] investigates the trade-off between

natural and robust errors and theoretically puts forward a different objective function for

adversarial training:

min
θ

E(x,y)∼D

{
L(f(x),y) + max

x′∈B(x,ϵ)
L(f(x), f(x′))/λ

}
. (2.2)

Note that Equation (2.1) and Equation (2.2) are both defined as minimax optimization

problems, and to solve such saddle point problems, a commonly used approach is to first

get an approximate solution x′ of inner maximization based on the current θ, and then

use x′ to conduct updates on model weights θ. The adversarial training procedure then

iteratively runs this on each batch of samples until convergence. Clearly, the quality and

efficiency of inner maximization is crucial to the performance of adversarial training. The

most commonly used inner maximizer is the projected gradient descent algorithm, which
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conducts a fixed number of updates:

x′
t+1 = ΠB(x,ϵ)(α sign(∇x′L(x′

t)) + x′
t). (2.3)

L(x′
t) represents the maximization term in Equation (2.1) or 2.2 with abuse of notation.

2.3.3 Effects of Adaptive Step Sizes

We found that the performance of adversarial training crucially depends on the optimiza-

tion algorithm used for inner maximization, and the current widely used PGD algorithm

may not be the optimal choice. Here we demonstrate that even a small modification of

PGD and without any change to the adversarial training objective can boost the perfor-

mance of model robustness. We use the CNN structure in [ZYJ19] to train a classifier on

MNIST dataset. When 10-step PGD (denoted by PGD for simplicity) is used for the inner

maximization, a constant step size is always adopted, which may not be suitable for the

subsequent update. Therefore, we make use of backtracking line search (BLS) to select a

step size adaptively for adversarial training (AdvTrain as abbreviation). Starting with a

maximum candidate step size value α0, we iteratively decrease it by αt = ραt−1 until the

following condition is satisfied:

L(x′ + αtp) ≥ L(x′) + cαtp
Tp (2.4)

where p = ∇x′L(x′) is a search direction. Based on a selected control parameter c ∈

(0, 1), the condition tests whether the update with step size αt leads to sufficient increase

in the objective function, and it is guaranteed that a sufficiently small α will satisfy the

condition so line search will always stop in finite steps. This is standard in gradient ascent

(descent) optimization, and see more discussions in [NW06]. Following the convention,

we set ρ = 0.5 and c = 10−4. As shown in Table 2.1, defense with AdvTrain+BLS leads to
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Figure 2.1: Model architecture of our defense method with an RNN optimizer

a more robust model than solving the inner problem only by PGD (88.71% vs 87.33%). At

the same time the attacker combined with BLS generates stronger adversarial examples:

the robust accuracy of the model trained from vanilla adversarial training drops over 1.2%

with PGD+BLS, compared to merely PGD attack. This experiment motivates our efforts

to find a better inner maximizer for adversarial training.

Table 2.1: Effects of the inner solution quality on robust accuracy (%)

Defense
Attack

Natural PGD PGD+BLS

AdvTrain 96.43 87.33 86.09
AdvTrain+BLS 96.70 88.71 88.00

2.4 Proposed Algorithm

2.4.1 Learning to Learn for Adversarial Training

Asmentioned in the previous section, it can be clearly seen that the inner maximizer plays

an important role in the performance of adversarial training. However, despite the ef-

fectiveness of BLS introduced in Section 2.3.3, it is impractical to combine it with adver-
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sarial training as multiple line searches together with loss calculation in this algorithms

increase its computational burden significantly. Then a question arises naturally: is there

any automatic way for determining a good step size for inner maximization without too

much computation overhead? Moreover, apart from the step size, the question can be ex-

tended to whether such a maximizer can be learned for a particular dataset and model in

replacement of a general optimizer like PGD. Recently, as a subarea of learning-to-learn,

researchers have been investigating whether it is possible to use machine learning, es-

pecially neural networks, to learn improved optimizer to replace the hand-designed opti-

mizer [ADG16, LJL17,WMH17]. However, it is commonly believed that thoseML-learned

general-purpose optimizers are still not practically useful due to several unsolved issues.

For instance, the exploded gradient [MMN19] in unrolled optimization impedes general-

ization of these learned optimizers to longer steps and truncated optimization on the other

hand induces short-horizon bias [WRL18].

In this chapter, we show it is possible and practical to learn an optimizer for inner

maximization in adversarial training. Note that in adversarial training, the maximization

problems share very similar form: maxx′∈B(x,ϵ) L(f(x′),y), where they all have the same

loss function L and the same network (structure and weights) f , and the only difference is

their input x and label y. Furthermore, we only need the maximizer to perform well on a

fixed set of n optimization problems for adversarial training. These properties thus enable

us to learn a better optimizer that outperforms PGD.

To allow a learned innermaximizer, we parameterize the learned optimizer by an RNN

network. This is following the literature of learning-to-learn [ADG16], but we propose sev-

eral designs as shown below that works better for our inner maximization problem which

is a constrained optimization problem instead of a standard unconstrained training task

in [ADG16]. We then jointly optimize the classifier parameters (θ) as well as the parame-

ters of the inner maximizer (ϕ). The overall framework can be found in Figure 2.1.

Specifically, the inner problem is tomaximize vanilla adversarial training loss in Equa-
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tion (2.1) or TRADES loss in Equation (2.2), with a constraint that x′ ∈ B(x, ϵ). With an

RNN optimizer m parameterized by ϕ, we propose the following parameterized update

rule to mimic the PGD update rule in Equation (2.3):

δt,ht+1 = mϕ(gt,ht), x′
t+1 = ΠB(x,ϵ) (x

′
t + δt) . (2.5)

Here, gt is the gradient ∇x′L(f(x′),y) and ht is the hidden state representation. It has

to be emphasized that our RNN optimizer generates perturbations coordinate-wisely, in

contrast to other L2L based methods which take as input the entire image. This property

reduces trainable parameters significantly, making it much easier and faster for training.

In addition, note that the hidden state of our RNN optimizer plays an important role in the

whole optimization. A separate hidden state for each coordinate guarantees the different

update behavior. And it contains richer information like the trajectory of loss gradients

mentioned in [JZH19] but can produce a recursive update with a simpler structure.

For the RNN design, we mainly follow the structure in [ADG16] but with somemodifi-

cations to make it more suitable to adversarial training. We can expand the computation

of perturbation for each step as:

δt = tanh(V ht + b1), (2.6)

ht+1 = tanh(Ugt +Wht + b2) (2.7)

where ht ∈ Rd, V ∈ R1×d,U ∈ Rd×1,W ∈ Rd×d, b1 ∈ R and b2 ∈ Rd in the coordinate-wise

update manner. As the optimization proceeds, the gradient will become much smaller

when approaching the local maxima. At that time, a stable value of the perturbation is

expected without much change between two consecutive iterations. However, from Equa-

tion (2.6) and Equation (2.7), we can clearly see that despite small gt, the update rule

will still produce an update with magnitude proportional to tanh(b1). Imagine the case

where the exact optimal value is found with an all-zero hidden state (b2 needs to be zero
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as well), δt = tanh(b1) with a non-zero bias will push the adversarial example away from

the optimal one. Thus, two bias terms b1 and b2 are problematic for optimization close to

the optimal solution. Due to the short horizon of the inner maximization in adversarial

training, it is unlikely for the network to learn zero bias terms. Therefore, to ensure stable

training, we remove the bias terms in the vanilla RNN in all implementations.

With an L2L framework, we simultaneously train the RNNoptimizer parameters ϕ and

the classifier weights θ. The joint optimization problem can be formulated as follows:

min
θ

E(x,y)∼D {L(fθ(x′
T (ϕ

∗)),y)} (2.8)

s.t. ϕ∗ = argmaxL(ϕ) (2.9)

wherex′
T (ϕ

∗) is computed by running Equation (2.5) T times iteratively. Since the learned

optimizer aims at finding a better solution to the inner maximization term, the objective

function for training it in the horizon T is defined as:

L(ϕ) =
T∑
t=1

wtL(fθ(x′
t(ϕ)),y). (2.10)

If we set wt = 0 for all t < T and wT = 1, then Equation (2.10) implies that our learned

maximizer mϕ will maximize the loss after T iterations. However, in practice we found

that considering intermediate iterations can further improve the performance since it will

make themaximizer converge faster even after conducting one or few iterations. Therefore

in the experiments we set an increased weightswt = t for t = 1, . . . , T . Note that [MMN19]

showed that this kind of unrolled optimization may lead to some issues such as exploded

gradients which is still an unsolved problem in L2L. However, in adversarial training we

only need to set a relative small T (e.g., T = 10) so we do not encounter that issue.

While updating the learned optimizer, corresponding adversarial examples are pro-

duced together. We can then train the classifier by minimizing the loss accordingly. The
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whole algorithm is presented in Algorithm 1.

Algorithm 1 RNN-based adversarial training

1: Input: clean data {(x,y)}, batch size B, step sizes α1 and α2, number of inner itera-
tions T , classifier parameterized by θ, RNN optimizer parameterized by ϕ

2: Output: Robust classifer fθ, learned optimizermϕ

3: Randomly initialize fθ andmϕ, or initialize them with pre-trained configurations
4: repeat
5: Sample a mini-batchM from clean data.
6: for (x,y) in B do
7: Initialization: h0 ← 0, Lθ ← 0, Lϕ ← 0
8: Gaussian augmentation: x′

0 ← x+ 0.001 · N (0, I)
9: for t = 0, . . . , T − 1 do
10: gt ← ∇x′L(fθ(x′

t),y)
11: δt,ht+1 ← mϕ(gt,ht), where coordinate-wise update is applied
12: x′

t+1 ← ΠB(x,ϵ)(x
′
t + δt)

13: Lϕ ← Lϕ + wt+1L(fθ(x′
t+1),y), where wt+1 = t+ 1

14: end for
15: Lθ ← Lθ + L(fθ(x′

T ),y)
16: end for
17: Update ϕ by ϕ← ϕ+ α1∇ϕLϕ/B
18: Update θ by θ ← θ − α2∇θLθ/B
19: until training converged

2.4.2 Advantages over Other L2L-based Methods

Previous methods have proposed to use a CNN generator [JZH19, JCS18] to produce per-

turbations in adversarial training. However, CNN-based generator has a larger number of

trainable parameters, which makes it hard to train. In Table 2.2, the detailed properties

including the number of parameter and training time per epoch are provided for differ-

ent learning-to-learn based methods. We can observe that our proposed RNN approach

stands out with the smallest parameters as well as efficiency in training. Specifically, our

RNN optimizer only has 120 parameters, almost 5000 times fewer than L2LDA while the

training time per epoch is 268.50s (RNN-TRADES only consumes 443.52s per training

epoch) v.s. 1972.41s. Furthermore, ourmethod also leads to better empirical performance,
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as shown in our main comparison in Table 2.3, 2.4 and 2.5.

Table 2.2: Comparion among different L2L-based methods

Number of parameters Training time per epoch (s)

RNN-Adv 120 268.50

RNN-TRADES 120 443.52

L2LDA 500944 1972.41

2.5 Experimental Results

In this section, we present experimental results of our proposed RNN-based adversarial

training. We compare ourmethodwith various baselines on bothwhite-box and black-box

attack. In addition, different datasets and network architectures are evaluated.

2.5.1 Experimental Settings

• Datasets and classifier networks. Wemainly useMNIST [LBB98] and CIFAR-

10 [KNH10] datasets for performance evaluation in our experiments. For MNIST,

the CNNarchitecture with four convolutional layers in [CW17] is adopted as the clas-

sifier. For CIFAR-10, we use the standard VGG-16 [SZ14] and Wide ResNet [ZK16],

which has been used in most of the previous defense papers including adversarial

training [MMS17] and TRADES [ZYJ19].

• Baselines for Comparison. Note that our method is an optimization framework

irrelevant to what minimax objective function is used. Thus we choose two popular

minimax formulations, AdvTrain1 [MMS17] and TRADES2 [ZYJ19], and substitute

1https://github.com/xuanqing94/BayesianDefense

2https://github.com/yaodongyu/TRADES
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the proposedL2L-based optimization for their original PGD-based algorithm. More-

over, we also compare with a previous L2L defense mechanism L2LDA3 [JZH19]

which outperforms other L2L-based methods for thorough comparison. We use

the source code provided by the authors on github with their recommended hyper-

parameters for all these baseline methods.

• Evaluation and implementation details. Defense algorithms are usually eval-

uated by classification accuracy under different attacks. Effective attack algorithms

including PGD, C&W and the attacker of L2LDA are used for evaluating the model

robustness, with the maximum ℓ∞ perturbation strength ϵ = 0.3 for MNIST and

ϵ = 8/255 for CIFAR-10. For PGD, we run 10 and 100 iterations (PGD-10 and -100)

with the step size η = ϵ/4, as suggested in [JZH19]. C&W is implementedwith 100 it-

erations in the infinity norm. For L2LDA attacker, it is learned fromL2LDA [JZH19]

under different settings with 10 attack steps. In addition, we also uses the learned

optimizer of RNN-Adv to conduct 10-step attacks.

For our proposed RNN-based defense, we use a one-layer vanilla RNN with the hidden

size of 10 as the optimizer for the inner maximization. Since we test our method under

twodifferentminimax losses, we name themasRNN-Adv andRNN-TRADES respectively.

The classifier and the optimizer are updated alternately according to the Algorithm 1. All

algorithms are implemented in PyTorch-1.1.0 with four NVIDIA 1080Ti GPUs. Note that

all adversarial trainingmethods adopt 10-step inner optimization for fair comparison. We

run each defense method five times with different random seeds and report the lowest

classification accuracy.

3https://github.com/YunseokJANG/l2l-da
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2.5.2 Performance onWhite-box Attacks

We demonstrate the robustness of models trained from different defense methods under

thewhite-box setting in this part. Experimental results are shown in Table 2.3, 2.4 and 2.5.

From these three tables, we can observe that our proposed L2L-based adversarial training

with RNN always outperforms its counterparts.

Table 2.3: Robust accuracy under white-box attacks (MNIST, 4-layer CNN)

Defense
Attack

Natural PGD-10 PGD-100 CW100 L2LDA RNN-Adv Min

Plain 99.46 1.04 0.42 83.63 5.94 0.79 0.42

AdvTrain 99.17 94.89 94.28 98.38 95.83 94.39 94.28
TRADES 99.52 95.77 95.50 98.72 96.03 95.50 95.50

L2LDA 98.76 94.73 93.22 97.69 95.28 93.16 93.16

RNN-Adv 99.20 95.80 95.62 98.75 96.05 95.51 95.51
RNN-TRADES 99.46 96.09 95.83 98.85 96.56 95.80 95.80

Table 2.4: Robust accuracy under white-box attacks (CIFAR-10, VGG-16)

Defense
Attack

Natural PGD-10 PGD-100 CW100 L2LDA RNN-Adv Min

Plain 93.66 0.74 0.09 0.08 0.89 0.43 0.08

AdvTrain 81.11 42.32 40.75 42.26 43.55 41.07 40.75
TRADES 78.08 48.83 48.30 45.94 49.94 48.38 45.95

L2LDA 77.47 35.49 34.27 35.31 36.27 34.54 34.27

RNN-Adv 81.22 44.98 42.89 43.67 46.20 43.21 42.89
RNN-TRADES 80.76 50.23 49.42 47.23 51.29 49.49 47.23

To be specific, our method achieves 95.80% robust accuracy among various attacks on

MNIST dataset. On CIFAR-10, RNN-TRADES reaches 47.23% and 54.11 for VGG-16 and

WideResNetwith 1.28%and 1.43%gain over other baselines. It should be stressed that our

method surpasses L2LDA (the previous CNN-based L2Lmethod) noticeably. For conven-

tional defense algorithms, our L2L-based variant improves the originalmethod by 1%−2%
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Table 2.5: Robust accuracy under white-box attakcs (CIFAR-10, WideResNet)

Defense
Attack

Natural PGD-10 PGD-100 CW100 L2LDA RNN-Adv Min

Plain 95.14 0.01 0.00 0.00 0.02 0.00 0.00

AdvTrain 86.28 46.64 45.13 46.64 48.46 45.41 45.13
TRADES 85.89 54.28 52.68 53.68 56.49 53.00 52.68

L2LDA 85.30 45.47 44.35 44.19 47.16 44.54 44.19

RNN-Adv 85.92 47.62 45.98 47.26 49.40 46.23 45.98
RNN-TRADES 84.21 56.35 55.68 54.11 58.86 55.80 54.11

percents under different attacks from comparison of robust accuracy in AdvTrain and

RNN-Adv. A similar phenomenon can also be observed in TRADES and RNN-TRADES.

Since previous works of L2L-based defense only concentrate on PGD-based adversarial

training, the substantial performance gain indicates that the learned optimizer can con-

tribute to the minimax problem in TRADES as well. Furthermore, apart from traditional

attack algorithms, we leverage our RNNoptimizer learned from adversarial training as the

attacker (the column RNN-Adv). Results in three experiments show that compared with

other general attackers when conducting 10 iterations such as PGD-10 and L2LDA, ours

is capable of producing much stronger perturbations which lead to low robust accuracy.

2.5.3 Analysis

Learned Optimizer. As mentioned in Section 2.5.2, the optimizer learned from PGD-

based adversarial training can be regarded as an special attacker. Thus, we primarily in-

vestigate the update trajectories of different attackers to obtain an in-depth understanding

of our RNN optimizer. For VGG-16 models trained from four defense methods, three at-

tacker are used to generate perturbations in 10 steps respectively and losses are recorded

as shown in Figure 2.2.

We can see clearly from these four figures that the losses obtained from RNN-Adv are
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Figure 2.2: Comparison of optimization trajectories among various attack algorithms. We
evaluate four defensemechanisms, AdvTrain TRADES, RNN-Adv andRNN-TRADES, un-
der three attackers including PGD, L2LDA and our proposed RNN-Adv. All attackers con-
duct 10-step perturbing process

always larger than others within 10 iterations, reflecting stronger attacks produced by our

proposed optimizer. Moreover, it should be noted that the loss gap between RNN-Adv and

other attackers is much more prominent at some very beginning iterations. This in fact

demonstrates an advantage of the L2O framework that the optimizer can converge faster

than hand-designed algorithms.

Generalization to more attack steps. Although our learned RNN optimizer is only

trained under 10 steps, we show that it can generalize to more steps as an attacker. From
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Table 2.6, we can observe that the attacker is capable of producing much stronger adver-

sarial examples by extending its attack steps to 40. Performance of our attacker is even

comparable with that of PGD-100, which further demonstrates the superiority of our pro-

posed method.

2.5.4 Performance on Black-box Transfer Attacks

We further test the robustness of the proposed defense method under transfer attack. As

suggested by [ACW18], this canbe served as a sanity check to seewhether our defense leads

to obfuscated gradients and gives a false sense of model robustness. Following procedures

in [ACW18], we first train a surrogatemodel with the same architecture of the targetmodel

using a different random seed, and then generate adversarial examples from the surrogate

model to attack the target model.

Table 2.6: Generalization to more steps of learned optimizer

Defense
Step

10 40

Plain 0.43 0.03

AdvTrain 41.07 40.70
TRADES 48.38 48.27

L2LDA 34.54 34.19

RNN-Adv 43.21 42.89
RNN-TRADES 49.49 49.28

Specifically, we choose VGG-16 models obtained from various defense algorithms as

our target models. In the meanwhile, we train two surrogate models: one is Plain-Net

with natural training and the other is PGD-Net with 10-step PGD-based adversarial train-

ing. Results are presented in Table 2.7. We can observe that our method outperforms

all other baselines, with RNN-PGD and RNN-TRADES standing out in defending attacks

from Plain-Net and PGD-Net respectively. It suggests great resistance of our L2L defense
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Table 2.7: Robust accuracy under black-box attack settings

Defense
Surrogate

Plain-Net PGD-Net

AdvTrain 79.94 62.57
TRADES 77.01 65.41

L2LDA 76.37 60.32

RNN-Adv 80.58 63.17
RNN-TRADES 79.54 67.09

to transfer attacks.

2.5.5 Loss Landscape Exploration

To further verify the superior performance of the proposed algorithm, we visualize the

loss landscapes of VGG-16 models trained under different defense strategies, as shown

in Figure 2.3. According to the implementation in [EIA18], we modify the input along a

linear space defined by the sign of the gradient and a random Rademacher vector, where

the x and y axes represent the magnitude of the perturbation added in each direction and

the z axis represents the loss. It can be observed that loss surfaces of models trained from

RNN-Adv and RNN-TRADES in Figure 2.3e and 2.3f are much smoother than those of

their counterparts in Figure 2.3b and 2.3c. Besides, our method significantly reduces the

loss value of perturbed data close to the original input. In particular, the maximum loss

decreases roughly from 7.61 in adversarial training to 3.66 in RNN-Adv. Compared with

L2LDA in Figure 2.3d, the proposed RNN optimizer can contribute to less bumpier loss

landscapeswith smaller variance, which further demonstrates the stability and superiority

of our L2L-based adversarial training.
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Figure 2.3: Comparison of loss landscapes among different training methods. The color
gradually changes from blue (low loss) to red (high loss)

2.6 Conclusion

For defense mechanisms that can be formulated as a minimax optimization problem, we

propose to replace the inner PGD-based maximizer with a automatically learned RNN

maximizer, and show that jointly training the RNN maximizer and classifier can signifi-

cantly improve the defense performance. Empirical results demonstrate that the proposed

approach can be combined with several minimax defense objectives, including adversar-

ial training and TRADES. For future work, it can be a worthwhile direction to address the

inadequacy of L2L in dealing with a long-horizon problem. Then we can substitute the

learned optimizer for hand-designed algorithms in both inner and outer problems, which

enables an entirely automatic process for adversarial training.
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CHAPTER 3

Learning to Learn with Smooth Regularization

Despite impressive performance against traditional optimization algorithms, those learned

ones suffer from instability severely. To mitigate the issue, we propose a smooth regu-

larization term via adversarial training to further improve effectiveness and efficiency of

learned optimizers.

3.1 Introduction

Optimization is always regarded as one of the most important foundations for deep learn-

ing, and its development has pushed forward tremendous breakthroughs in various do-

mains including computer vision and natural language processing [CRK20, LJL17]. Ef-

fective algorithms such as SGD [RM51], Adam [KB14] and AdaBound [LXL19] have been

proposed to work well on a variety of tasks. In parallel to this line of hand-designedmeth-

ods, Learning to Learn (L2L) or Learning to Optimizer (L2O) [ADG16, WMH17, MMN18,

LJL17, CRK20], a novel framework aimed at an automatic optimization algorithm (opti-

mizer), provides a new direction to performance improvement in updating a target func-

tion (optimizee). Typically, the optimizer, modeled as a neural network, takes as input a

certain state representation of the optimizee and outputs corresponding updates for pa-

rameters. Then such a neural optimizer can be trained like any other network based on

specific objective functions.

Empirical results have demonstrated that these learned optimizers can perform better
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optimization in terms of the final loss and convergence rate than general hand-engineered

ones [ADG16, WMH17, MMN18, LJL17, CRK20]. In addition, such advantages in faster

trainingmake the learnedoptimizer a great fit for few-shot learning (FSL) [RL17,HMX20],

where only a limited number of labelled examples per class are available for generalizing

a classifier to a new task.

However, instability concealed behind the algorithm impedes its development signif-

icantly. There are some unsolved issues such as gradient explosion in unrolled optimiza-

tion [MMN18] and short-horizon bias [WRL18] challenging the promotion of neural opti-

mizers. One of the most essential problems is that contrary to traditional optimizers, the

learned ones modeled as neural networks cannot guarantee smoothness with respect to

input data. Specifically, an ideal optimizer is expected to conduct similar updates given

similar states of the target optimizee. For instance, SGD updates a parameter by a magni-

tude proportional to its original gradient. Current meta learners neglect this property and

suffer from the issue that they would produce a quite different output while merely adding

a small perturbation to the input state.

Such a phenomenon has been widely observed in other problems like image classifica-

tion [GSS14], where the perturbed image can fool the classifier to make a wrong predic-

tion. Inspired by the progress in adversarial training [MMS17] where the worst-case loss

is minimized, we propose an algorithm that takes the smoothness of the learned optimizer

into account. Through penalizing the non-smoothness by a regularization term, the neural

optimizer is trained to capture a smooth update rule with better performance.

In summary, we are the first to consider the smoothness of neural optimizers, and our

main contributions include:

• A smoothness-inducing regularizer is proposed to improve the existing training of

learned optimizers. This term, representing the maximal distance of updates from

the current state to the other in the neighborhood, isminimized to narrow the output
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gap for similar states.

• We evaluate our proposed regularization term on various classification problems

and the learned optimizer outperforms hand-engineered methods even if transfer-

ring to tasks with different architectures and data.

• In addition, we also conduct experiments on few-shot learning based on a Meta-

LSTM optimizer [RL17] and SIB [HMX20]. Results show that our smoothness-

inducing regularizer consistently improves the accuracy on FSL benchmark datasets

for 5-way few shot learning.

3.2 RelatedWork

Gradient-based optimization has drawn extensive attention due to its significance to deep

learning. Various algorithms have been proposed to improve training of deep neural net-

works, including SGD [RM51], Adam [KB14], RMSProp [HSS12], and the like. On the

other hand, a profound thought of updating the optimizee automatically rather than using

hand-engineered algorithms has broken the routine and shown great potentials in improv-

ing specific problems. Early attempts can be dated back to 1990s when [CC90] leveraged

recurrent neural networks to model adaptive optimization algorithms. The idea was fur-

ther developed in [YHC01] where neural optimizers were trained to tackle fundamental

convex optimization problems. Recently a seminal work of [ADG16] designed a learning-

to-learn frameworkwith an LSTMoptimizer, which obtained better performance than tra-

ditional optimizers for training neural networks. Follow-upwork in [LJL17] and [WMH17]

have improved the generalization and scalability of learned optimizers. L2L has also been

extended to various applications such as few-shot learning [RL17], zeroth-order optimiza-

tion [RXR19] and adversarial training [XH20].

Our work is the first to investigate the smoothness of neural optimizers in the L2L
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Figure 3.1: The framework of learning-to-learn. The dashed line shows the computation
graph of the objective function Lopt for training the optimizer to learn a general update
rule while the horizontal full line is the one for few-shot learning. Note thatm is the neural
optimizer parameterized by ϕ, and st is the state of the optimizee taking the form of st =
(θt, . . . ,∇θℓ)

T .

framework. It is related to the notion of adversarial robustness in classification models.

As observed in [GSS14], neural network based models are vulnerable to malicious pertur-

bations. In particular, for image classification the classifier would be fooled by adversar-

ial examples to make a wrong prediction [GSS14], while for reinforcement learning the

agent is likely to act differently under perturbed states [SLJ20]. Our learned optimizers

might be affected by this issue as well. In other domains some algorithms have been pro-

posed to mitigate the non-smooth property of neural networks such as adversarial train-

ing [MMS17], and SR2L [SLJ20]. In this chapter, our method utilizes the idea of minimiz-

ing the worst-case loss to regularize training of neural optimizers towards smoothness. In

contrast to previous algorithms targeted at classification, we design a specific regularizer

to neural optimizers.

3.3 Background on the L2L Framework

In this section, we present the framework of L2Owith neural optimizers for tackling prob-

lems of general optimization for classification and few-shot learning.
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3.3.1 Optimization Process

As shown inFigure 3.1, like any traditional optimizationmethods, we can apply the learned

optimizer as follows:

(a) At each time step t, feed a batch of training examples {(x, y)} from the distribution

D into the target classifier f parameterized by θ, and the state of the optimizee st can

be described by several values such as the current parameter value, its gradient, or

the exponentially weighted moving averages of the gradient.

(b) Given the current state st and the hidden state ht, the neural optimizer m parame-

terized by ϕ accordingly outputs the increment of the parameter and the next hidden

state by ut, ht+1 = m(st, ht).

(c) The optimizer updates the parameter by θt+1 = θt + ut.

All above operations are coordinate-wise, which means the parameters are updated by a

shared neural optimizer independently and maintain their individual hidden states.

The exploitation of the learned optimizer is straightforward but how can we train it?

Following [ADG16], since parameters of the optimizee depend implicitly on the optimizer,

which can be written as θt(ϕ), the quality of the optimizer can be reflected by performance

of the optimizee for some horizon T , leading to the objective function below to evaluate

the optimizer:

Lopt(ϕ) = E(x,y)∼D

[
T∑
t=1

wtℓ(f(θt(ϕ); x), y)

]
. (3.1)

ℓ(·, ·) represents cross-entropy and wt is the weight assigned for each time step.

3.3.2 Few-shot Learning

Apart from optimization, the superiority of learned optimizers is a natural fit for few-

shot learning. Generally, FSL is a type of machine learning problems with only a limited
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number of labeled examples for a specific task [WYK19]. In this chapter, we mainly fo-

cus on FSL targeted at image classification, specifically N-way-K-shot classification. We

deal with a group of meta-sets Dmeta in this task. Each element in Dmeta is a meta-set

D = (Dtrain, Dtest), where Dtrain is composed of K images for each of the N classes (thus

K · N images in total) and Dtest contains a number of examples for evaluation. The goal

is to find an optimization strategy that trains a classifier leveraging Dtrain with only a few

labeled examples to achieve good learning performance onDtest. All meta-sets are further

divided into three separate sets: meta-training set Dmeta-train, meta-validation set Dmeta-val,

and meta-testing set Dmeta-test. More concretely, Dmeta-train is utilized to learn an optimizer

and Dmeta-val is for hyperparameter optimization. After the optimizer is determined, we

conduct evaluation on Dmeta-test: we first update the classifier with the learned optimizer

on the training-set inDmeta-test; then we use the average accuracy on the test set inDmeta-test

to evaluate the performance of the optimizer.

The N-way-K-shot classification problem can be simply incorporated into the L2L

framework, where the optimization strategy is modeled by the learned optimizer. As we

aim at training a classifier with high average performance on the testing set, instead of

harnessing the whole optimization trajectory, the objective can be modified to attach at-

tention only to the final testing loss:

LFSL = ED∼DmetaE(x,y)∼Dtest [ℓ (f(θT (ϕ); x), y)] , (3.2)

where θT is updated by a procedure described in Section 3.3.1 under examples fromDtrain.
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3.4 Method

3.4.1 Motivation

Despite great potentials of neural optimizers in improving traditional optimization and

few-shot learning, there exists a significant problem impeding the development of L2L.

In contrast to classical hand-engineered optimization methods, those learned ones can-

not guarantee a smooth update of parameters, i.e., producing similar outputs for similar

states, where by state we mean the gradient or parameters of the optimizee. In Figure 3.2,

we demonstrate the non-smoothness of the learned optimizer explicitly. This is a typical

phenomenon in various neural-network-based algorithms such as image classification and

reinforcement learning. [Ham74] and [SLJ20] have pointed out advantages of smooth-

ness of a function tomitigate overfitting, improve sample efficiency and stabilize the over-

all training procedure. Thus, enforcing the smoothness of the learned optimier can be

crucial to improve its performance and stability.

s
s0

B(s, ✏) u(s0)

u(s)

usmooth(s
0)

Regularization R = max
s02B(s,✏)

d(u(s), u(s0))

= max
s02B(s,✏)

ku(s)� u(s0)k2

State Space Update Space

Learned Optimizer

Smooth
Non-smooth

Figure 3.2: An illustration of non-smoothness.

3.4.2 Smoothness Regularization

Some techniques, such as ℓ2 regularization and gradient clipping, have been developed and

utilized in training neural optimizers to enforce smoothness but they are shown insuffi-

cient to reduce non-smoothness [ADG16, LJL17, MMN18]. We propose to robustify the

learned optimizer through a smoothness-inducing training procedure where a regulariza-
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tion term is introduced to narrow the gap between outputs of two similar input states. It is

also known as an effective method to constrain the Lipschitz constant of neural networks

to boost smoothness. To describe our method clearly, we first denote two states before

updating the optimizee at the time step t + 1 by st and s′t. Note that st and s′t are distinct

but similar states, i.e., s′t ∈ B(st, ϵ), where B(st, ϵ) represents the neighborhood of s within

the ϵ-radius ball in a certain norm and ϵ is perturbation strength. In this chapter, we just

use ℓ∞ norm without loss of generality. Fix the hidden state ht, then ut and u′
t, which are

the corresponding parameter increments of st and s′t, can be written as functions of the

state u(st) and u(s′t) explicitly.

An ideal optimizer is expected to produce similar updates and thus to attain such an

optimizer, our goal is to minimize the discrepancy d(·, ·) between u(st) and u(s′t). Inspired

by adversarial training [MMS17], it is intuitive to find the gap under the worst-case as

the targeted difference that takes the form of max d(u(st), u(s′t)) and minimize this term

directly. However, the optimizer that takes the state of optimizee as input and the update

as output, is different from the classifier whose input is an image and output is a vector

of softmax logits. There is no classification for the optimizer so distance metrics such as

cross-entropy and KL-divergence are not applicable to our problem. Since the output is a

scalar value, we measure the distance with the squared difference and the gap at the time

step t+ 1 becomes

Rt+1(ϕ) = max
s′t∈B(st,ϵ)

d(u(st), u(s
′
t)) = max

s′t∈B(st,ϵ)
∥u(st)− u(s′t)∥2. (3.3)

After the regularization term is determined, we can add it to the original objective function

of L2L as a regularizer. For each time step, the objective becomes

ℓt(ϕ) = ℓ(f(θt(ϕ); x), y) + λRt(ϕ), (3.4)
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where λ is the regularization coefficient and the optimizer’s parameters ϕ are updated by

min
ϕ
Lopt(ϕ) = E(x,y)∼D

[
T∑
t=1

wtℓt(ϕ)

]
. (3.5)

In few-shot learning, we store regularization terms during training withDtrain and add the

accumulated items to Eq. 3.2, leading to the training objective as

min
ϕ
LFSL(ϕ) =ED∼Dmeta

[
E(x,y)∼Dtestℓ (f(θT (ϕ); x), y)

+ E(x,y)∼Dtrain
λ

T∑
t=1

Rt(ϕ)

]
.

(3.6)

Note that our proposed regularizer can be applied to any neural optimizer-based algo-

rithms in meta-learning, such as methods in [ADG16, LJL17, HMX20].

3.4.3 Training the Optimizer

The key component for training the optimizer is the calculation of the regularization term

in Eq. 3.3. As stated in [SLJ20], in practice we can effectively approximate the solution of

the inner maximization by a fixed number of Projected Gradient Descent (PGD) steps:

s′ = ΠB(s,ϵ)(η sign(∇s′d(u(s), u(s
′))) + s′), (3.7)

where Π is the projection operator to control the state located within the given radius of

the neighborhood. Note that we use truncated Backpropagation Through Time (BPTT)

to update our RNN optimizer in case of a too long horizon. For the predefined weight in

Eq. 3.5, to make best use of the optimization trajectory and concentrate more on the loss

of the last step at the same time [CRK20], we adopt a linearly-increasing schedule that

wt = tmod T where T is the number of step in each truncation. We present the whole
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training procedure in Algorithm 2.

Specifically, since our aim is to find a perturbed state in the neighborhood of the origi-

nal state, we can obtain it as follows: a) Starting from the original state s, we add an imper-

ceptible noise to initialize s′; b) Compute the current value of d(u(s), u(s′)), backpropagate

the gradient back to s′ to calculate∇s′d(u(s), u(s
′)), and then adjust the desired state by a

small step η in the direction, i.e., sign(∇s′d(u(s), u(s
′))), that maximizes the difference; (c)

RunK steps in Eq. 3.7 to approximate the regularization term in Eq. 3.3.

Algorithm 2 L2L with Smooth-inducing regularization

1: Input: training data {(x, y)}, step sizes η1 and η2, inner steps K, total steps Ttotal,
truncated steps T , classifier parameterized by θ, optimizer parameterized by ϕ

2: repeat
3: Initialize θ randomly, reset RNN hidden state
4: L ← 0
5: for t = 0, . . . , Ttotal − 1 do
6: Sample a batch of data (x, y), feed it to the classifier, obtain state st
7: Update θ as demonstrated in Section 3.1
8: s′t ← st + 0.05 ∗ N (0, I)
9: for k = 1, . . . , K do ▷ Find the perturbed state
10: s′t ← ΠB(st,ϵ)(η1 sign(∇s′t

d(u(st), u(s
′
t))) + s′t)

11: end for
12: Rt+1 ← ∥u(st)− u(s′t)∥2 ▷ Regularization term
13: L ← L+ wt+1ℓt+1 ▷ ℓt+1 is computed by Eq. 3.4
14: if tmod T − 1 == 0 then
15: Update ϕ by L using Adam with η2
16: L ← 0
17: end if
18: end for
19: until converged

3.5 Experimental Results

We implemented comprehensive experiments for evaluation of our proposed regularizer.

Detailed results are presented in Section 3.5.1 for neural network training andSection 3.5.2

for few-shot learning. All algorithms are implemented in PyTorch-1.2.0 with one NVIDIA
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1080Ti GPU.

3.5.1 L2L for neural network training

In this part, we evaluate our method through the task of learning the general update rule

for training neural networks. The performance of different optimization algorithms is pri-

marily displayed in learning curves of both training and testing loss, as suggested in pre-

vious studies [ADG16, LJL17, MMN18, CZJ20]. As loss and accuracy do not necessarily

correlate, we also report accuracy curves for thoroughness.

3.5.1.1 Experiment settings

We consider image classification onMNIST [LeC98] and CIFAR10 [KNH14]. Our learned

optimizer with regularization is compared with hand-designed methods including SGD,

SGD with momentum (SGDM), Adam, AMSGrad, and RMSProp, as well as neural op-

timizers DMOptimizer [ADG16] and SimpleOptimizer [CRK20]. For hand-designed op-

timizers, we tune the learning rate with grid search over a logarithmically spaced range

[10−4, 1] and report the performance with the best hyperparameters. As to baseline neu-

ral optimizers, we use recommended hyperparameters, optimizer structures, and state

definitions in [ADG16] and [CRK20] respectively. We have tried different hyperparam-

eters for baselines and found that recommended ones are the best in our experiments.

Our smoothed optimizers adopt original settings, except for two extra hyperparemeters

for training, the perturbation strength ϵ and the regularization coefficient λ. In particular,

ϵ and λ in our method are also determined by a logarithmic grid search with the range

ϵ ∈ [10−2, 10] and λ ∈ [10−1, 102]. Neural optimizers are learned with Adam of the learning

rate 10−4 with the number of total steps Ttotal = 200 and truncated steps T = 20. Note

that for all neural optimizers we only tune the hyperparameters during training and di-

rectly apply them to a new optimization problem, while for hand-engineered algorithms,
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the learning rate is always tuned for the specific task. Experiments for each task are con-

ducted five times with different seeds and the batch size is 128.

3.5.1.2 Compatibility of the proposed regularizer

We first conduct an experiment to demonstrate that the proposed regularization term can

be combined with various L2L structures. We demonstrate the performance of learned

optimizers including training loss and testing loss for training a 2-layer MLP on MNIST.

As can be seen in Figure 3.3a and 3.3c, two L2L architectures, DMOptimizer [ADG16] and

SimpleOptimizer [CRK20], are compared. With the regularizer, the smoothed version of

both optimizers make an improvement in the final training and testing loss, and obtain

a faster convergence rate at the same time. In addition, since SimpleOptimizer performs

better than DMOptimizer, which is consistent with the observation in [CRK20], we will

apply it as our base optimizer in the following experiments.

3.5.1.3 Training on MNIST

In this part, we train the neural optimizers for a 200-step optimization of LeNet onMNIST.

Following [ADG16], we make an evaluation on a longer trajectory with 1000 steps. Al-

though the neural optimizer is only trained within 200 steps, it is capable of updating the

optimizee until 1000 steps with faster convergence rate and better final loss consistently,

as shown in Figure 3.3b and 3.3d.

3.5.1.4 Training on CIFAR-10

It is insufficient to merely test different optimizers on MNIST, whose size is relatively

small. Therefore, we add to the difficulty of the targeted task and focus on image classifica-

tion on CIFAR-10. The classifier of interest is a 3-layer convolutional neural network with

32 units per layer and the learned optimizer is employed to update the optimizee for 10000
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Figure 3.3: Learning curves on MNIST. Training loss is shown in the first row and testing
loss is in the second row. (a) and (c) are results of two neural optimizer structures to show
the compatibility of our proposed regularizer; (b) and (d) demonstrate performance of
different optimizers for training LeNet of 1000 steps.

steps. It should be pointed out that the neural optimizer is still trained within 200 steps

and the optimization step for evaluation is 50 times larger than what it has explored dur-

ing training. Figure 3.4a and 3.4e demonstrate its great generalization ability: the smooth

version of the learned optimizer can converge faster and better than hand-engineered al-

gorithms such as SGD and Adam, even though it only observes the optimization trajectory

in the limited steps at the very beginning. Our smoothed variant also outperforms the

original learned optimizer.
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Figure 3.4: Learning curves on CIFAR-10 and CIFAR-100.
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3.5.1.5 Transferrablity to different settings

After obtaining a neural optimizer trained on CIFAR-10 with a 3-layer CNN, we evalu-

ate its transferrability in multiple aspects. Specifically, we first transfer the optimizer to

training another network structure, ResNet-18 [HZR16] for 10000 steps. In Figure 3.4b

and 3.4f, Smoothed-Simple without finetuning can still beat all hand-designed methods.

Besides, it should be emphasized that SimpleOptimizer oscillates violently at the end of

training and loses its advantages over traditional methods for this transferring task, while

the performance of our Smoothed-Simple is consistent and robust.

Moreover, since we have shown that our neural optimizer can generalize to longer

training horizon and different network architectures on optimizees with the same dataset,

this naturally leads to the following question: can our neural optimizer learn the intrinsic

update rule so that it can generalize to unseen data? To answer this question, we modify

the experimental setting to evaluate our proposed optimizer with respect to optimization

on unseen data. We split the original CIFAR-10 dataset into three different sets: a training

set containing 6 classes, a validation set and a testing set with 2 classes respectively. When

training the optimizer, we sample 2 classes from training set and minimize the objective

function for a binary classification problem. Images in the validation set are exploited to

select the optimizer which achieves best final testing loss in the 200-step optimization. A

comparison of learning curves among our smoothed optimizer, SimpleOptimizer, and the

rest hand-designed methods for updating the classifier on two unseen classes is shown

in Figure 3.4c and 3.4g. We can observe that the smoothed optimizer learns much more

quickly and better than other algorithms.

Finally, we test the performance of our optimizer in the most difficult setting: training

a ResNet-18 on CIFAR-100, where both the network structure and the dataset are mod-

ified. It can be observed in Figure 3.4d and 3.4h that Smoothed-Simple has comparable

performance with fine-tuned hand-engineered optimizers in terms of testing loss. On the
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contrary, SimpleOptimizer is incapable of dealing with this scenario with a large dataset

and a complicated network.

3.5.1.6 Comparison with other regularization methods.

As the proposed method serves as a novel regularization term, for the completeness of

experiments, we compare our adversarial regularization with three representative tech-

niques: ℓ2 regularization [Sch15], orthogonal regularization [BCW18], and spectral nor-

malization [MKK18]. In detail, we train a 3-layer CNN on CIFAR-10 for 10000 steps,

following the setting in Section 3.5.1. Results of training and testing loss can be found in

Figure 3.5, and we also report the test accuracy for reference in Table 3.1. It can be ob-

served that orthogonal regularization even worsens the learned optimizer, which cannot

provide meaningful updates and only leads to a random-guess classifier with 10.00% on

test accuracy. While ℓ2 regularization and spectral normalization can improve the Sim-

pleOptimizer to 69.69% and 69.35% respectively, our proposed Smoothed-Simple still

outperforms them significantly with 72.50%. This experiment shows that the smoothness-

inducing regularization obtained by PGD can achieve performance gain against other pop-

ular regularization techniques and is more suitable in training a neural optimizer.

Table 3.1: Test accuracy of different regularizers.

Regularizer Test accuracy

SimpleOptimizer 69.02 ± 0.58%
Simple-Smoothed 72.50 ± 0.49%
ℓ2 Regularization 69.69 ± 0.56%

Orthogonal Regularization 10.00 ± 0.04%
Spectral Normalization 69.35 ± 1.23%
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Figure 3.5: Learning curves of neural optimizers with different regularization methods.

3.5.1.7 Smoothness with Perturbation

In this section, we analyze the optimizer’s smoothness property with perturbation. De-

tailedly, we sample 1000 points fromN (0, 0.1) to form a set of perturbed states around 0.

Then these states are fed into the simple and smoothed optimizer respectively, and cor-

responding outputs are shown in Figure 3.6 (x-axis in (a) is the state number while (b)

sorts the specific state values.) Around the zero state with zero gradient, the update with

a small magnitude is expected for an ideal optimizer. We can see that the smooth version

can produce muchmore stable updates around zero state, while Simple-Optimizer suffers

from non-smoothness.
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Figure 3.6: A comparison of smoothness between simple and smoothed optimizer.
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3.5.1.8 Additional Evaluation

Besides the metric of loss, we explore classification accuracy which is another important

performance indicator, to show advantages of our smoothed neural optimizer. In Fig-

ure 3.7, we present curves of training and testing accuracy, for MNIST with LeNet and

CIFAR10 with the 3-layer CNN.We can observe that the relative ranks of all optimizers do

not change if the evaluation metric is switched to accuracy, and our smoothed optimizer

still outperforms other algorithms with best final training and testing accuracy as well as

convergence rate.
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Figure 3.7: Learning curves of different optimizers in training and testing accuracy. (a)-
(b) for MNIST with LeNet and (c)-(d) for CIFAR-10 with a 3-layer CNN.
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3.5.2 Few-Shot Learning with LSTM

Apart from improving the training procedures, L2L can be applied to few-shot learning as

well. Therefore, in this part we primarily explore the effectiveness of our smoothed neural

optimizer in FSL, in particular, N-way-K-shot learning. We consider 5-way-1-shot and

5-way-5-shot problems on two benchmark datasets, miniImageNet [VBL16] and tiered-

ImageNet [RTR18]. The base structure we utilize is Meta-LSTM, proposed in [RL17] to

train an LSTM-based meta learner to learn the optimization rule in the few-shot regime.

We compare it with our smoothed version. We keep all hyperparameters the same as

reported in [RL17] and only tune ϵ and λ in a manner introduced in Section 3.5.1.1. Sta-

tistical results of 5 experiments with different random seeds are reported in Table 3.2.

Our smoothed Meta-LSTM attains 2% percents improvement over all scenarios against

the baseline. It should be emphasized that the performance boost is purely credited to the

regularizer since we apply our regularization term to the exactly same structure as Meta-

LSTM. Since the official code forMeta-LSTM iswritten in lua and is out-of-date, we use the

latest PyTorch implementation in [Don19]. Thus, our results might lead to inconsistency

with the original paper but do not affect the conclusion.

In addition, we integrate our proposed regularizer into one of themost recent methods

involving a neural optimizer, SIB [HMX20] on miniImageNet and CIFAR-FS. Results are

presented in Table 3.3 andwith regularization, SIB performs consistently better especially

for 5-shot tasks.

Table 3.2: Average accuracy of 5-way few shot learning on miniImageNet and tieredI-
amgeNet.

Model
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

Meta-LSTM 38.20 ± 0.73% 56.56 ± 0.65% 36.43 ± 0.65% 53.45 ± 0.61%
Smoothed Meta-LSTM 40.42 ± 0.68% 58.90 ± 0.61% 36.74 ± 0.76% 55.14 ± 0.60%
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Table 3.3: Average accuracy of 5-way few shot learning problems on miniImageNet and
CIFAR-FS.

Model Backbone
miniImageNet CIFAR-FS

1-shot 5-shot 1-shot 5-shot

SIB(η = 1e−3,K = 3) WRN-28-10 69.60 ± 0.60% 78.90 ± 0.40% 78.40 ± 0.60% 85.30 ± 0.40%
Smoothed SIB WRN-28-10 70.03 ± 0.51% 80.85 ± 0.32% 79.24 ± 0.40% 86.13 ± 0.42%

3.6 Conclusion and Discussion

Thiswork first investigates the smoothness of learned optimizers and leverage it to achieve

performance improvement. Specifically, we propose a regularization term for neural op-

timizers to enforce similar parameter updates given similar input states. Extensive exper-

iments show that the regularizer can be combined with different L2L structures involving

neural optimizers, and verify its effectiveness of consistently improving current algorithms

for various tasks in classification and few-shot learning. Despite promising results, cur-

rently the learned optimizer is constrained to a group of problemswith amoderate number

of optimization steps and cannot replace hand-crafted ones in such settings. Training a

powerful optimizer that can generalize to longer horizon still remains a challenge and can

be a potential future direction. Besides, how to design a neural optimizer to deal with

language tasks with RNNs or even more complex models like Transformers is also an in-

teresting problem to be explored.
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CHAPTER 4

Learning to Schedule Learning Rate with Graph

Neural Networks

Even after regularization, learned optimizers are likely to cause divergencewhen the train-

ing horizon is very long. Therefore, we study to make only part of the updating proce-

dure automatic, in particular, learning rate scheduling in this chapter. We design a neu-

ral scheduluer based on reinforcement learning and demonstrate it can outperform other

hand-crafted ones in representative downstream tasks.

4.1 Introduction

Stochastic optimization [RM51] has achieved great success in training deep learningmod-

els, due to the tremendous data size and non-convexity of neural networks [XLL20]. How-

ever, in contrast to classical and hyperparameter-free optimizers, performance of widely

used stochastic algorithms such as SGD and Adam significantly depends on the choice of

hyperparameters including batch size, learning rate and momentum coefficients [XLL20,

SMV20, CLD21, CSN19].

Learning rate scheduling is one of the most important factors which stochastic opti-

mizers are very sensitive to [CLD21, XDK19]. A fixed and static learning rate throughout

the whole training is insufficient to attain an optimal model. Thus, various scheduling

algorithms [GKX18] including polynomial decay, cosine decay and warmup have been de-

veloped and each of them is designed in a distinct form. In practice, models trained with
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an appropriate schedulingmechanism can outperform those with a constant learning rate,

in terms of convergence rate as well as the final performance [SHR13, GKX18, LH16].

As the learning rate scheduling is of vital importance to themodel performance, how to

tune it for a given stochastic optimizer effectively and automatically has been investigated

intensively. Current approaches tackle this problemby assuming a particular learning rate

scheduling rule (e.g., polynomial or cosine decay, warmup and restart) based on empirical

studies and domain knowledge [XQW17, GKX18], and apply traditional hyperparameter

optimization methods [LJD17, SLA12, BB12] to tune the parameters of the rule. How-

ever, searching within those pre-defined principles is restricted since the best learning

rate scheduling for a particular training problem may not exactly follow any existing rule.

To overcome this restriction, finding an optimal scheduler can be viewed as a learning-

to-learn problem [ADG16, CZJ20], where empirical scheduling principles are replaced by

a data-driven neural network alternative. For instance, attempts such as [XDK19] and

[XQW17] model the learning rate scheduling as a sequential decision process where the

learning rate is modified in every decision step, and train a policy network with reinforce-

ment learning algorithms. However, these methods sacrifice rich state representations

in order to maintain generalization. This implies that problem-dependent information,

such as the architecture of neural networks to be optimized, and the state of intermediate

neurons is not fully exploited. Therefore, state-of-the-art algorithms such [CZJ20] only

represent the current state by the statistics of final layer neurons. A straightforward way

to leverage such information is to concatenate states in every layer as a super vector. How-

ever, it would lead to the explosion of the input dimension and fail to work in models with

different sizes. Therefore it is nontrivial to obtain a representation of training state that is

both informative (being able to encode rich information of architecture and intermedi-

ate neurons) and generalizable (can be applied to different architectures).

In this work, we propose a Graph Network-based Scheduler (GNS) to overcome the

above-mentioned challenges. Different fromprevious attempts, our GNSmakes full use of
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the problem structure: since deep neural networks can be represented as directed graphs

intrinsically [ZRU18], we leverage graph networks to encode states into latent features

with richer information and such a design allows GNS to be easily transferred to differ-

ent network architectures at the same time. Moreover, an action definition for stabling

training and an efficient reward signal collection procedure are designed for GNS.

Our main contributions are summarized as following:

• We develop the Graph Network-based Scheduler (GNS) to search for the best learn-

ing rate scheduling rule by representing the target network as a directed graph. Our

dynamic learning rate scheduler can thoroughly capture the intermediate layer in-

formation in both image classification and language understanding tasks. Also, an

efficient reward collection procedure is designed to speedup our method.

• We apply the proposed GNS to multiple training tasks. In particular, GNS achieves

average scores of 85.2 and87.8 onGLUEwithRoBERTa-base and -large respectively

and outperforms 84.7 and 86.9 from the best existing learning rate schedule. Unlike

previous learning-to-learn methods that mostly are applied to toy examples such as

CIFAR-10, we are the first to apply an automatic scheduler to challenging tasks like

RoBERTa training and improve the performance of those realistic large models.

• We demonstrate that the GNS framework is able to generalize to problems of dif-

ferent datasets (from CIFAR10 to CIFAR100) and model structures (from ResNet to

VGG, and from RoBERTa-base to RoBERTa-large).

4.2 RelatedWork

Learning rate scheduling. This topic has been an open problem in stochastic opti-

mization. In [ALA98] and [BCR17], learning rate was regarded as a trainable parame-

ter and modified using its gradient with respect to the objective function. [Sut92] and
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[SYA06] considered a meta-descent algorithm to adjust local learning rate with a meta

one. In the era of deep learning, a number of adaptive optimization algorithms have been

proposed, such as RMSProp [TH12], AdaGrad [DHS11], and Adam [KB14]. They conduct

parameter-wise adaptation to learning rate based on heuristics of the geometry of the tra-

versed objective. For instance, RMSProp normalizes the learning rate with the magnitude

of recent gradients while AdaGrad generates a large learning rate for infrequently-updated

parameters. Complimentary to these parameter-wise adaptations, some predefined learn-

ing rate schedulers are also observed beneficial to training performance [YLW19, GKK19,

SZL13, SHR13]. Mechanisms like polynomial [MS19] and cosine decay [LH16] together

with a warmup process [GKX18] improve the convergence rate and final performance of

deep learning models empirically. However, they still hold additional hyperparameters to

be tuned. At the same time, these parametric schedules have limited flexibility and may

not be optimized for the training dynamics of different high dimensional and non-convex

optimization problems [XQW17, XDK19].

Reinforcement learning. The goal of reinforcement learning (RL) is to find an agent

that produces an optimal policy to maximize a cumulative reward [SB18]. Recently, deep

reinforcement learning with neural networks as approximation functions has shown great

potentials inmany applications, such asAtari games [GLS16,HVP18, SWD17], Go [SHM16,

SSS17], and training deep learningmodels [ZL16, CZM18]. There are also several attempts

to apply RL to learning rate controlling. For example, [DTN16] proposed to improve the

stability of training w.r.t. the initial learning rate via reinforcement learning. [LM16],

[XQW17] and [XDK19] leveraged RL agents to adjust the learning rate to reach a final

performance whereas their selection of state features, reward and action leads to an inef-

ficient training process, and is difficult to scale up to large models such as BERT [DCL18]

and RoBERTa [LOG19].

Graph Neural Networks. Graph Neural Networks (GNN) is a type of neural networks

that operate on graph data and structure their computations accordingly [BHB18]. A
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graph network, or a graph-to-graph module, can be interpreted as a mapping from an

input graph to an output graph with the same structure but potentially different node,

edge, and graph-level representations [BHB18, SGP20]. The most important component

in GNN, Message Passing Neural Networks (MPNN) [GSR17], have been shown effec-

tive in learning dynamics for graph-structured settings. Generally, MPNN utilizes the

graph structure to propagate information between nodes via edges, and extract latent

features for downstream tasks. Variations such as GCN [KW16] and Interaction Net-

works [BPL16] have previously demonstrated promising results on simulation tasks in

the field of physics [BPL16, SGP20] and chemistry [GSR17, YLY18].

4.3 Reinforcement Learning for Learning Rate Scheduling

In this section, we formulate learning rate scheduling as an RL problem, with the goal to

find an optimal control policy to maximize the accumulated reward in the current envi-

ronment which is defined by the target training problem.

4.3.1 Reinforcement Learning

Reinforcement learning aims at solving a group of problems, known as Markov Decision

Process (MDP) with an agent choosing optimal actions [SB18]. Typically, the MDP prob-

lem is formulated by a tuple M = ⟨S,A,P ,R, γ⟩. Given the state set S and action set A,

the reward function R is a mapping of S ×A → R. The discounted return is denoted by

Rt =
∑∞

l=0 γ
lrt+l where γ is a discount factor for future rewards. P is the state transition

function, which specifies the probability p(st+1|st, at) and is usually determined by the en-

vironment itself. To encourage more exploration, we focus on a stochastic policy π(a|s),

which maps states to action probabilities.
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4.3.2 Learning rate scheduling as a MDP

Formost problems involved in training deep neural networks, a standard approach for the

objective function minimization is stochastic gradient descent on a certain form [RM51,

KB14, DHS11], which sequentially updates the parameters using gradients bywk+1 = wk−

αk · gk. Specifically, wk represents network parameters to be trained and αk is the global

learning rate. gk is defined by the optimizer (e.g., gk can be the SGD or Adam direction).

For learning rate scheduling, we primarily consider generating a sequence for the global

learning rate αk.

We can formulate learning rate scheduling into a sequential decision process. In each

environment of a particular optimization task, states can be described by dynamics of the

target network such as a combination of weight and gradient values [XDK19, DTN16].

Actions can be any operation that might change the learning rate. As to rewards, since the

ultimate goal is to achieve higher final performance, metrics like loss or accuracy can serve

as a signal to guide the agent training. Besides, as training a deep learning model usually

requires a large number of iterations, rather than a single optimization step, we execute an

action everyK steps to avoid instability from too frequent learning rate modifications. By

training such an agentmodeled as a policy network, we canobtain a learning rate scheduler

to adjust learning rate dynamically.

4.4 Method

4.4.1 State Encoding with Graph Neural Networks

The selection of features to represent the environment is of vital significance. Previous

work such as [XQW17] and [XDK19] aims to learn a generalized agent that can be appli-

cable to any network architecture, so they were only able to utilize statistics of the final

layer to describe the state. It might work for small scale models, but when dealing with
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large ones like RoBERTa [LOG19], solely using information of the last layer is insufficient

to describe the environment.

A straightforward way to obtain a more thorough representation is to utilize dynamics

of all layers in a neural network and concatenate them into one super vector. However,

such a representation cannot guarantee promising results as shown in Section 4.5.6 of

ablation study. The problem is that naively concatenating all features increases the input

dimension and does not explore the correlation between layers. For instance, dynamics

between nearby layers should have a higher correlation than layers that are far away. This

concatenation also loses transferrablity to different network structures.

Tomaintain a rich state description and generalization in themeanwhile, we construct

a computational graph to depict the state. We represent a network as a directed graph

G = (E ,V). Each node v denotes an operator fv(·;wv) (convolution, linear, etc.) parame-

terized by wv which generates an output activation tensor. An edge euv ∈ E represents the

computation flow from node u to node v. The output for node v is computed by applying

its associated computational operator taking all source nodes as the input. Examples of

the graph structure of a neural network are presented in Figure 4.1(a) and (b). For each

node v with trainable parameters wv, the raw feature xv includes the mean and variance

of weights, biases, and absolute gradient values of wv, as well as global dynamics of the

previous learning rate and the average training loss in the decision step. In the end, the

environment can be represented by a graph with a feature matrix X ∈ RN×F and an adja-

cency matrix A ∈ RN×N , where N is the number of nodes and F is the feature dimension.

Given an input architecture, we describe the state as a graphG with the feature matrix

X and the adjacency matrixA. Then we can feedG into an encoderE, modeled as a graph

convolutional neural network [KW16], one of themost effective techniques to achievemes-

sage propagation. More concretely, hidden features can be extracted by

Hl+1 = E(Hl,A) = σ(ÃHlWl), (4.1)
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{hv|v 2 V2}
<latexit sha1_base64="raH0Gb9iq/+dk7LJPB7+w5sgCI4=">AAACBHicbVDLSsNAFL2pr1pf9bHrZrAIrkpSFF0W3LisYB/QhDCZTtqhk0mYmRRKzMKNv+LGhSJu/Qh3/o3Tx0JbD1w4nHMv994TJJwpbdvfVmFtfWNzq7hd2tnd2z8oHx61VZxKQlsk5rHsBlhRzgRtaaY57SaS4ijgtBOMbqZ+Z0ylYrG415OEehEeCBYygrWR/HLFzYb++GGMXCaQG2E9JJhn7dyvu7lfrto1ewa0SpwFqTZOwhmafvnL7cckjajQhGOleo6daC/DUjPCaV5yU0UTTEZ4QHuGChxR5WWzJ3J0ZpQ+CmNpSmg0U39PZDhSahIFpnN6plr2puJ/Xi/V4bWXMZGkmgoyXxSmHOkYTRNBfSYp0XxiCCaSmVsRGWKJiTa5lUwIzvLLq6RdrzmXNfvOpHEBcxShAqdwDg5cQQNuoQktIPAIz/AKb9aT9WK9Wx/z1oK1mDmGP7A+fwBbnJrK</latexit>

{hv|v 2 V2}
<latexit sha1_base64="5vQaxhuRWDz4YYcHjsQ50pMOeRA=">AAACBHicbVDLSsNAFL2pr1pf8bHrZrAIrkoiii4LbtwIFewDmhAm00k7dDIJM5NCiV248VfcuFDErR/hzr9x+lho64ELh3Pu5d57wpQzpR3n2yqsrK6tbxQ3S1vbO7t79v5BUyWZJLRBEp7IdogV5UzQhmaa03YqKY5DTlvh4Hrit4ZUKpaIez1KqR/jnmARI1gbKbDLXt4Phg9D5DGBvBjrPsE8b46DW28c2BWn6kyBlok7J5XaUTRFPbC/vG5CspgKTThWquM6qfZzLDUjnI5LXqZoiskA92jHUIFjqvx8+sQYnRili6JEmhIaTdXfEzmOlRrFoemcnKkWvYn4n9fJdHTl50ykmaaCzBZFGUc6QZNEUJdJSjQfGYKJZOZWRPpYYqJNbiUTgrv48jJpnlXdi6pzZ9I4hxmKUIZjOAUXLqEGN1CHBhB4hGd4hTfryXqx3q2PWWvBms8cwh9Ynz+Evprl</latexit>

{hv|v 2 VM}
<latexit sha1_base64="5vQaxhuRWDz4YYcHjsQ50pMOeRA=">AAACBHicbVDLSsNAFL2pr1pf8bHrZrAIrkoiii4LbtwIFewDmhAm00k7dDIJM5NCiV248VfcuFDErR/hzr9x+lho64ELh3Pu5d57wpQzpR3n2yqsrK6tbxQ3S1vbO7t79v5BUyWZJLRBEp7IdogV5UzQhmaa03YqKY5DTlvh4Hrit4ZUKpaIez1KqR/jnmARI1gbKbDLXt4Phg9D5DGBvBjrPsE8b46DW28c2BWn6kyBlok7J5XaUTRFPbC/vG5CspgKTThWquM6qfZzLDUjnI5LXqZoiskA92jHUIFjqvx8+sQYnRili6JEmhIaTdXfEzmOlRrFoemcnKkWvYn4n9fJdHTl50ykmaaCzBZFGUc6QZNEUJdJSjQfGYKJZOZWRPpYYqJNbiUTgrv48jJpnlXdi6pzZ9I4hxmKUIZjOAUXLqEGN1CHBhB4hGd4hTfryXqx3q2PWWvBms8cwh9Ynz+Evprl</latexit>

{hv|v 2 VM}

<latexit sha1_base64="GACKvsbdR0ede4hXvmE1EWSykKk=">AAAB6nicbVDLSgNBEOyNr5j4iPHoZTAKOYVZQfQkAQ96jGgekCxhdjKbDJmdXWZmhbDEL9CLByV49Yu8+TdOHgdNLGgoqrrp7vJjwbXB+NvJrK1vbG5lt3P5nd29/cJBsaGjRFFWp5GIVMsnmgkuWd1wI1grVoyEvmBNf3g99ZuPTGkeyQczipkXkr7kAafEWOn+pou7hRKu4BnQKnEXpFQtTp6fyif5Wrfw1elFNAmZNFQQrdsujo2XEmU4FWyc6ySaxYQOSZ+1LZUkZNpLZ6eO0alVeiiIlC1p0Ez9PZGSUOtR6NvOkJiBXvam4n9eOzHBpZdyGSeGSTpfFCQCmQhN/0Y9rhg1YmQJoYrbWxEdEEWosenkbAju8surpHFWcc8r+M6mcQVzZOEIjqEMLlxAFW6hBnWg0IcXeIN3RzivzsT5mLdmnMXMIfyB8/kD1wWPtg==</latexit>

G0
<latexit sha1_base64="GACKvsbdR0ede4hXvmE1EWSykKk=">AAAB6nicbVDLSgNBEOyNr5j4iPHoZTAKOYVZQfQkAQ96jGgekCxhdjKbDJmdXWZmhbDEL9CLByV49Yu8+TdOHgdNLGgoqrrp7vJjwbXB+NvJrK1vbG5lt3P5nd29/cJBsaGjRFFWp5GIVMsnmgkuWd1wI1grVoyEvmBNf3g99ZuPTGkeyQczipkXkr7kAafEWOn+pou7hRKu4BnQKnEXpFQtTp6fyif5Wrfw1elFNAmZNFQQrdsujo2XEmU4FWyc6ySaxYQOSZ+1LZUkZNpLZ6eO0alVeiiIlC1p0Ez9PZGSUOtR6NvOkJiBXvam4n9eOzHBpZdyGSeGSTpfFCQCmQhN/0Y9rhg1YmQJoYrbWxEdEEWosenkbAju8surpHFWcc8r+M6mcQVzZOEIjqEMLlxAFW6hBnWg0IcXeIN3RzivzsT5mLdmnMXMIfyB8/kD1wWPtg==</latexit>

G0
<latexit sha1_base64="4T8qxoKNIrTH5YR/rwk4fCHx9rQ=">AAAB6nicbVDLSgNBEOyNr5j4iPHoZTAKOYVdQfQkAQ96jGgekCxhdjKbDJmdWWZmhbDEL9CLByV49Yu8+TdOHgdNLGgoqrrp7gpizrRx3W8ns7a+sbmV3c7ld3b39gsHxYaWiSK0TiSXqhVgTTkTtG6Y4bQVK4qjgNNmMLye+s1HqjST4sGMYupHuC9YyAg2Vrq/6XrdQsmtuDOgVeItSKlanDw/lU/ytW7hq9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfzk4do1Or9FAolS1h0Ez9PZHiSOtRFNjOCJuBXvam4n9eOzHhpZ8yESeGCjJfFCYcGYmmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv+eVV0jireOcV986mcQVzZOEIjqEMHlxAFW6hBnUg0IcXeIN3hzuvzsT5mLdmnMXMIfyB8/kD2ImPtw==</latexit>

G1
<latexit sha1_base64="4T8qxoKNIrTH5YR/rwk4fCHx9rQ=">AAAB6nicbVDLSgNBEOyNr5j4iPHoZTAKOYVdQfQkAQ96jGgekCxhdjKbDJmdWWZmhbDEL9CLByV49Yu8+TdOHgdNLGgoqrrp7gpizrRx3W8ns7a+sbmV3c7ld3b39gsHxYaWiSK0TiSXqhVgTTkTtG6Y4bQVK4qjgNNmMLye+s1HqjST4sGMYupHuC9YyAg2Vrq/6XrdQsmtuDOgVeItSKlanDw/lU/ytW7hq9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfzk4do1Or9FAolS1h0Ez9PZHiSOtRFNjOCJuBXvam4n9eOzHhpZ8yESeGCjJfFCYcGYmmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv+eVV0jireOcV986mcQVzZOEIjqEMHlxAFW6hBnUg0IcXeIN3hzuvzsT5mLdmnMXMIfyB8/kD2ImPtw==</latexit>

G1
<latexit sha1_base64="Yf8wXCENf3usIJd2UIMrWH7J1to=">AAAB6nicbVDLSgNBEOzxGRMfMR69DEYhp7AbED1JwIMeI5oHJEuYncwmQ2Znl5lZISzxC/TiQQle/SJv/o2Tx0ETCxqKqm66u/xYcG0c5xutrW9sbm1ndrK53b39g/xhoaGjRFFWp5GIVMsnmgkuWd1wI1grVoyEvmBNf3g99ZuPTGkeyQczipkXkr7kAafEWOn+plvp5otO2ZkBrxJ3QYrVwuT5qXSaq3XzX51eRJOQSUMF0brtOrHxUqIMp4KNs51Es5jQIemztqWShEx76ezUMT6zSg8HkbIlDZ6pvydSEmo9Cn3bGRIz0MveVPzPaycmuPRSLuPEMEnni4JEYBPh6d+4xxWjRowsIVRxeyumA6IINTadrA3BXX55lTQqZfe87NzZNK5gjgwcwwmUwIULqMIt1KAOFPrwAm/wjgR6RRP0MW9dQ4uZI/gD9PkD2g2PuA==</latexit>

G2
<latexit sha1_base64="Yf8wXCENf3usIJd2UIMrWH7J1to=">AAAB6nicbVDLSgNBEOzxGRMfMR69DEYhp7AbED1JwIMeI5oHJEuYncwmQ2Znl5lZISzxC/TiQQle/SJv/o2Tx0ETCxqKqm66u/xYcG0c5xutrW9sbm1ndrK53b39g/xhoaGjRFFWp5GIVMsnmgkuWd1wI1grVoyEvmBNf3g99ZuPTGkeyQczipkXkr7kAafEWOn+plvp5otO2ZkBrxJ3QYrVwuT5qXSaq3XzX51eRJOQSUMF0brtOrHxUqIMp4KNs51Es5jQIemztqWShEx76ezUMT6zSg8HkbIlDZ6pvydSEmo9Cn3bGRIz0MveVPzPaycmuPRSLuPEMEnni4JEYBPh6d+4xxWjRowsIVRxeyumA6IINTadrA3BXX55lTQqZfe87NzZNK5gjgwcwwmUwIULqMIt1KAOFPrwAm/wjgR6RRP0MW9dQ4uZI/gD9PkD2g2PuA==</latexit>

G2
<latexit sha1_base64="8XhsgWFm/rPq7JC9YccLdTth2Uk=">AAAB6nicbVDLSgNBEOz1GRMfMR69DEYhp7AriJ4k4EEvQkTzgGQJs5PZZMjM7DIzK4QlfoFePCjBq1/kzb9x8jhoYkFDUdVNd1cQc6aN6347K6tr6xubma1sbntndy+/X6jrKFGE1kjEI9UMsKacSVozzHDajBXFIuC0EQyuJn7jkSrNIvlghjH1Be5JFjKCjZXurzu3nXzRLbtToGXizUmxUhg/P5WOc9VO/qvdjUgiqDSEY61bnhsbP8XKMMLpKNtONI0xGeAebVkqsaDaT6enjtCJVboojJQtadBU/T2RYqH1UAS2U2DT14veRPzPayUmvPBTJuPEUElmi8KEIxOhyd+oyxQlhg8twUQxeysifawwMTadrA3BW3x5mdRPy95Z2b2zaVzCDBk4hCMogQfnUIEbqEINCPTgBd7g3eHOqzN2PmatK8585gD+wPn8AQMIj9M=</latexit>

GM
<latexit sha1_base64="8XhsgWFm/rPq7JC9YccLdTth2Uk=">AAAB6nicbVDLSgNBEOz1GRMfMR69DEYhp7AriJ4k4EEvQkTzgGQJs5PZZMjM7DIzK4QlfoFePCjBq1/kzb9x8jhoYkFDUdVNd1cQc6aN6347K6tr6xubma1sbntndy+/X6jrKFGE1kjEI9UMsKacSVozzHDajBXFIuC0EQyuJn7jkSrNIvlghjH1Be5JFjKCjZXurzu3nXzRLbtToGXizUmxUhg/P5WOc9VO/qvdjUgiqDSEY61bnhsbP8XKMMLpKNtONI0xGeAebVkqsaDaT6enjtCJVboojJQtadBU/T2RYqH1UAS2U2DT14veRPzPayUmvPBTJuPEUElmi8KEIxOhyd+oyxQlhg8twUQxeysifawwMTadrA3BW3x5mdRPy95Z2b2zaVzCDBk4hCMogQfnUIEbqEINCPTgBd7g3eHOqzN2PmatK8585gD+wPn8AQMIj9M=</latexit>

GM
<latexit sha1_base64="nDY64tfjqRBxmiLQo7XwOQbhvvg=">AAAB7nicbVDLSgNBEOyNrxhfUY96GAyCIIRdQeJJAh70IkQwD9gsYXYymwyZnVlmZoWw5CMEEVTEq9/jzb9x8jhoYkFDUdVNd1eYcKaN6347uaXlldW1/HphY3Nre6e4u9fQMlWE1onkUrVCrClngtYNM5y2EkVxHHLaDAdXY7/5QJVmUtybYUKDGPcEixjBxkrN6052e+qNOsWSW3YnQIvEm5FS9fDlyecVXOsUv9pdSdKYCkM41tr33MQEGVaGEU5HhXaqaYLJAPeob6nAMdVBNjl3hI6t0kWRVLaEQRP190SGY62HcWg7Y2z6et4bi/95fmqiiyBjIkkNFWS6KEo5MhKNf0ddpigxfGgJJorZWxHpY4WJsQkVbAje/MuLpHFW9s7L7p1N4xKmyMMBHMEJeFCBKtxADepAYACP8ApvTuI8O+/Ox7Q158xm9uEPnM8fcH2R6w==</latexit>

GM+1
<latexit sha1_base64="nDY64tfjqRBxmiLQo7XwOQbhvvg=">AAAB7nicbVDLSgNBEOyNrxhfUY96GAyCIIRdQeJJAh70IkQwD9gsYXYymwyZnVlmZoWw5CMEEVTEq9/jzb9x8jhoYkFDUdVNd1eYcKaN6347uaXlldW1/HphY3Nre6e4u9fQMlWE1onkUrVCrClngtYNM5y2EkVxHHLaDAdXY7/5QJVmUtybYUKDGPcEixjBxkrN6052e+qNOsWSW3YnQIvEm5FS9fDlyecVXOsUv9pdSdKYCkM41tr33MQEGVaGEU5HhXaqaYLJAPeob6nAMdVBNjl3hI6t0kWRVLaEQRP190SGY62HcWg7Y2z6et4bi/95fmqiiyBjIkkNFWS6KEo5MhKNf0ddpigxfGgJJorZWxHpY4WJsQkVbAje/MuLpHFW9s7L7p1N4xKmyMMBHMEJeFCBKtxADepAYACP8ApvTuI8O+/Ox7Q158xm9uEPnM8fcH2R6w==</latexit>

GM+1

<latexit sha1_base64="xwJWkPflFOq5eHfuJ268aK+TnEo=">AAAB7nicbVC7SgNBFL0bXzG+olZiMxgEqzAriNoFLLSMYB6QLMvsZDYZMju7zMwKYQn2FoKNhSK2fo+dvV/gFzh5FJp44MLhnHu5954gEVwbjD+d3MLi0vJKfrWwtr6xuVXc3qnrOFWU1WgsYtUMiGaCS1Yz3AjWTBQjUSBYI+hfjPzGLVOax/LGDBLmRaQrecgpMVZq9Pzs0sdDv1jCZTwGmifulJQqe3ffXw/3quoXP9qdmKYRk4YKonXLxYnxMqIMp4INC+1Us4TQPumylqWSREx72fjcITq0SgeFsbIlDRqrvycyEmk9iALbGRHT07PeSPzPa6UmPPMyLpPUMEkni8JUIBOj0e+owxWjRgwsIVRxeyuiPaIINTahgg3BnX15ntSPy+5JGV/bNM5hgjzswwEcgQunUIErqEINKPThEZ7hxUmcJ+fVeZu05pzpzC78gfP+A6kTk4Q=</latexit>

hG0

<latexit sha1_base64="xwJWkPflFOq5eHfuJ268aK+TnEo=">AAAB7nicbVC7SgNBFL0bXzG+olZiMxgEqzAriNoFLLSMYB6QLMvsZDYZMju7zMwKYQn2FoKNhSK2fo+dvV/gFzh5FJp44MLhnHu5954gEVwbjD+d3MLi0vJKfrWwtr6xuVXc3qnrOFWU1WgsYtUMiGaCS1Yz3AjWTBQjUSBYI+hfjPzGLVOax/LGDBLmRaQrecgpMVZq9Pzs0sdDv1jCZTwGmifulJQqe3ffXw/3quoXP9qdmKYRk4YKonXLxYnxMqIMp4INC+1Us4TQPumylqWSREx72fjcITq0SgeFsbIlDRqrvycyEmk9iALbGRHT07PeSPzPa6UmPPMyLpPUMEkni8JUIBOj0e+owxWjRgwsIVRxeyuiPaIINTahgg3BnX15ntSPy+5JGV/bNM5hgjzswwEcgQunUIErqEINKPThEZ7hxUmcJ+fVeZu05pzpzC78gfP+A6kTk4Q=</latexit>

hG0

<latexit sha1_base64="IKiAEP1rk/I3xm2qBL8q4Zg8uic=">AAAB7nicbVC7SgNBFL0bXzG+olZiMxgEq7AriNoFLLSMYB6QLMvsZDYZMjuzzMwKYQn2FoKNhSK2fo+dvV/gFzh5FJp44MLhnHu5954w4Uwb1/10cguLS8sr+dXC2vrG5lZxe6euZaoIrRHJpWqGWFPOBK0ZZjhtJoriOOS0EfYvRn7jlirNpLgxg4T6Me4KFjGCjZUavSC7DLxhUCy5ZXcMNE+8KSlV9u6+vx7uVTUofrQ7kqQxFYZwrHXLcxPjZ1gZRjgdFtqppgkmfdylLUsFjqn2s/G5Q3RolQ6KpLIlDBqrvycyHGs9iEPbGWPT07PeSPzPa6UmOvMzJpLUUEEmi6KUIyPR6HfUYYoSwweWYKKYvRWRHlaYGJtQwYbgzb48T+rHZe+k7F7bNM5hgjzswwEcgQenUIErqEINCPThEZ7hxUmcJ+fVeZu05pzpzC78gfP+A6qYk4U=</latexit>

hG1

<latexit sha1_base64="IKiAEP1rk/I3xm2qBL8q4Zg8uic=">AAAB7nicbVC7SgNBFL0bXzG+olZiMxgEq7AriNoFLLSMYB6QLMvsZDYZMjuzzMwKYQn2FoKNhSK2fo+dvV/gFzh5FJp44MLhnHu5954w4Uwb1/10cguLS8sr+dXC2vrG5lZxe6euZaoIrRHJpWqGWFPOBK0ZZjhtJoriOOS0EfYvRn7jlirNpLgxg4T6Me4KFjGCjZUavSC7DLxhUCy5ZXcMNE+8KSlV9u6+vx7uVTUofrQ7kqQxFYZwrHXLcxPjZ1gZRjgdFtqppgkmfdylLUsFjqn2s/G5Q3RolQ6KpLIlDBqrvycyHGs9iEPbGWPT07PeSPzPa6UmOvMzJpLUUEEmi6KUIyPR6HfUYYoSwweWYKKYvRWRHlaYGJtQwYbgzb48T+rHZe+k7F7bNM5hgjzswwEcgQenUIErqEINCPThEZ7hxUmcJ+fVeZu05pzpzC78gfP+A6qYk4U=</latexit>

hG1

<latexit sha1_base64="aqq5cK8RDHifH1TjjeONb2z3+ok=">AAAB7nicbVDLSsNAFL2pr1pfVVciyGARXIWkIFpwUXChG6GCfUAbwmQ6aYdOJmFmIpTQXxDcuFDErd/jzi9x6/Sx0NYDFw7n3Mu99wQJZ0o7zpeVW1peWV3Lrxc2Nre2d4q7ew0Vp5LQOol5LFsBVpQzQeuaaU5biaQ4CjhtBoOrsd98oFKxWNzrYUK9CPcECxnB2kjNvp9d+7cjv1hybGcCtEjcGSlVDx4r9tH3Zc0vfna6MUkjKjThWKm26yTay7DUjHA6KnRSRRNMBrhH24YKHFHlZZNzR+jEKF0UxtKU0Gii/p7IcKTUMApMZ4R1X817Y/E/r53q8MLLmEhSTQWZLgpTjnSMxr+jLpOUaD40BBPJzK2I9LHERJuECiYEd/7lRdIo2+6Z7dyZNCowRR4O4RhOwYVzqMIN1KAOBAbwBC/waiXWs/VmvU9bc9ZsZh/+wPr4Aa8Lkgg=</latexit>

hGM

<latexit sha1_base64="aqq5cK8RDHifH1TjjeONb2z3+ok=">AAAB7nicbVDLSsNAFL2pr1pfVVciyGARXIWkIFpwUXChG6GCfUAbwmQ6aYdOJmFmIpTQXxDcuFDErd/jzi9x6/Sx0NYDFw7n3Mu99wQJZ0o7zpeVW1peWV3Lrxc2Nre2d4q7ew0Vp5LQOol5LFsBVpQzQeuaaU5biaQ4CjhtBoOrsd98oFKxWNzrYUK9CPcECxnB2kjNvp9d+7cjv1hybGcCtEjcGSlVDx4r9tH3Zc0vfna6MUkjKjThWKm26yTay7DUjHA6KnRSRRNMBrhH24YKHFHlZZNzR+jEKF0UxtKU0Gii/p7IcKTUMApMZ4R1X817Y/E/r53q8MLLmEhSTQWZLgpTjnSMxr+jLpOUaD40BBPJzK2I9LHERJuECiYEd/7lRdIo2+6Z7dyZNCowRR4O4RhOwYVzqMIN1KAOBAbwBC/waiXWs/VmvU9bc9ZsZh/+wPr4Aa8Lkgg=</latexit>

hGM

(a)

(b) (c)
Figure 4.1: (a) A repeated block in ResNet models. (b) A repeated block in Transformer
models. (c) Illustration of the hierarchical GCN message passing.

whereH0 is initialized asX, and Ã is a normalized adjacency matrix with a self-loop.

However, a deep learning model usually adopts hundreds of operations and results in

a large computation graph which is hard to process. We notice that repeated blocks are

stacked in commonly-used structures such as ResNet [HZR16] and Transformer [DCL18,

VSP17] to boost the expressiveness of the network [ZRU18, ZVS18], shown in Figure 4.1(a)

and (b). Instead of passing messages through the whole graph directly, we separate the

graph into a number of blocks as {Gi = (Vi, Ei)}M+1
i=0 and each block has a group of nodes.

M is the number of repeated blocks, and G0 stands for the input block (e.g., embedding

layers) while GM+1 represents the output block (e.g., classification layers). We can then

use a shared encoder across different blocks as shown in Figure 4.1(c) to conduct infor-

mation propagation. This is implemented by a hierarchical GCN as follows: (a) com-

pute latent features of nodes in each block by Eq. 4.1; (b) summarize the i-th block as

hGi
= AGG({hv|v ∈ Vi}); (c) then use hGi

as the input node feature for the next block:

(d) Finally, to obtain the graph level information to describe the whole network, we just

take the aggregation over each node by hG = AGG({hv|v ∈ V}). Here, we use the mean

function as aggregation function to allow generalization to different structures.

Compared with a concatenated state with dynamics in all nodes, representing the en-

vironment as a graph and then encoding it via a hierarchical GCN have two primary ad-
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vantages: (1) GCN can capture the correlation between neighboring nodes and generate

a meaningful latent feature for action prediction; (2) a shared encoder can learn message

passing within one block and between blocks in the meanwhile and is not constrained to a

specific graph structure. In detail, the dimension of a concatenated representation varies

between different network architectures, for example, RoBERTa-base and -large models.

A scheduler learned from such concatenated states fails to work in another environment

due to the inputmismatch. On the contrary, by stacking the same encoder along the depth

dimension, we can transfer our graph-network-based scheduler trained on one network

to the new environment of another different network directly or with slight fine-tuning.

4.4.2 Environment design

Wediscuss the rest components of the environment of the target problem involved in neu-

ral network optimization in this part besides the state. An effective set of reward functions

and actions is defined to facilitate an efficient and generalizable agent.

Action. We adopt the action as scaling the previous learning rate by a factor [XDK19]

considering the wide range of α. Through that operation, the learning rate can be changed

stably and consistently. More concretely, after each action execution, αt+1 = αt · (1 + at).

State transition. As mentioned in Section 4.3.2, once we modify the learning rate to

αt+1, we execute gradient descent forK batches to get the next state st+1.

Reward design. With the goal of the agent to achieve higher final performance,

there are a series of metrics that can be leveraged, such as validation loss and accuracy.

In [XDK19], validation loss at each decision step serves as an immediate reward. How-

ever, loss might not be an ideal indicator for task specific metrics which we are ultimately

concerned with, like accuracy, F1 score and correlation [VTD21]. Thus, we choose to use

such task-related metrics directly instead of the loss. On the other hand, since defining an

intermediate reward can utilize training information thoroughly and provide direct feed-
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back [XDK19], we take the performance difference between two steps as the reward signal:

rt = Pt+1 − Pt, (4.2)

where Pt represents the validation result under the given metric at the t-th decision step.

Whereas, computing a reward in Eq. 4.2 indicates that we have to conduct a validation

procedure every decision step, which is a non-trivial burden. In order to make training

more efficient, we turn to reduce the frequency of validation with a probability p, i.e., the

validation is only carried out if the number randomly sampled from Uni(0, 1) is less than

p. Specifically, suppose under our principle, we calculate the validation metric Pt1 and Pt2

at the decision step t1 and t2 respectively. The reward signal for each step can be derived

by linearly distributing the difference as follows:

r′t =
Pt2 − Pt1

t2 − t1
, ∀t ∈ [t1, t2). (4.3)

4.4.3 Graph Network-based Scheduler

With illustration of the environment design, we can then move to the general framework

of our Graph Network-based Scheduler (GNS). As shown in Figure 4.2, at each decision

step, GNS takes the observation st as input, encodes st into ht, sample an action at based

on the policy network, evaluates the value of st, then execute the action to render the next

state st+1.
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Figure 4.2: The transition from st to st+1.

In the procedure of sampling and evaluation, we use the hidden feature ht to evaluate

the current state and predict the action. Denotems andmf as two different MLPs. Specif-

ically, the state value can be computed by V (st) = ms(ht). Then we calculate the mean
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of the action and the policy π samples at from the corresponding normal distribution in

Eq. 4.4 with a fixed deviation σ:

at ∼ N (µt, σ
2), µt = 0.1 · tanh(mf (ht)). (4.4)

By Eq. 4.4, we can constrain that the scale factor (1 + at) is within the range of [0.9, 1.1] at

most of the times in order to train the target network stably [XDK19].

As to the agent training, we first parameterize the value network V (critic), and policy

network π (actor) by ϕ, φ respectively for clarity. Each environment of the target problem

has a fixed time horizon T , i.e., the number of total training steps, which is called as one

episode. We adopt Proximal PolicyOptimization (PPO) [SWD17] in the actor-critic style to

optimize our scheduling policy, which is the state of the art on-policy RLmethods inmany

continuous control tasks [Ach18, BBC19]. On-policy RL methods only use the experience

generated by current policy. Therefore, the training will be more stable due to the training

data distribution. The key objective function of the policy network is defined as

Lclip(φ) = Et

[
min(ρt(φ)Ât, clip(ρt(φ), 1− ϵ, 1 + ϵ)Ât)

]
, ρt(φ) =

πφ(at|st)
πφold

(at|st)
, (4.5)

where ρt(φ) is the probability ratio and Ât is the estimated advantage estimator. Besides, a

learned state-value function Vϕ(·) is leveraged to reduce variance in advantage estimators

and can be trained by minimizing the following squared-error loss:

L(ϕ) = Et[(Vϕ(st)− V targ
t )2], (4.6)

where V targ
t = rt + γV (st+1). During the training phase, we run the agent in the environ-

ment for one episode, and then update the value and policy network at the end. We reset

environment at the beginning of each episode and repeat the process formultiple episodes.

During inference, we first sample a number of initial learning rates, run each setting for
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Tpre steps, compute corresponding V (sTpre), and choose the learning rate with the largest

value to complete the training.

4.5 Experimental Results

To validate the effectiveness of GNS, we evaluate our method on various tasks in im-

age classification and language understanding, and compare it with popular learning rate

scheduling rules. We further investigate the generalization of GNS on different transfer

tasks. In addition, we conduct an ablation study to analyze the state representation and

reward collection.

4.5.1 Experimental Settings

In this section, we present our experimental settings.

Image classification. We consider two benchmark datasets in image classifica-

tion, Fashion-MNIST [XRV17] and CIFAR10 [KNH14]. These two datasets are first split

into the standard training and test sets. Then we randomly sample 10k images for each

dataset from the training set to construct a validation set. A ResNet-18 [HZR16] model is

trained on Fashion-MNIST while a ResNet-34 [HZR16] is trained on CIFAR10. We use

Adam [KB14] with the batch size of 128 for 200 epochs to train these two image classifica-

tion tasks.

Language understanding. For language understanding, we conduct experiments

on GLUE [WSM19], a benchmark consisting of eight tasks. They are divided into train-

ing, validation and test sets and we have no access to ground truth labels of test sets. On

each dataset, we fine-tune a pre-trained RoBERTa model [LOG19], use it to generate pre-

dictions on the test set, and obtain the corresponding performance through the official

GLUE platform. Both RoBERTa-base and -large models are evaluated. No ensembling
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techniques are adopted for purely validating the effectiveness of our proposed scheduler.

The AdamW [LH17] optimizer is adopted to train RoBERTa models.

Baselines. Three hand-designed scheduling mechanisms (constant, polynomial de-

cay, cosine decay), one gradient-basedmethodHypergradient [BCR17], and one learning-

based method, SRLS [XDK19] are compared with our GNS framework as baselines. For

traditional schedulers with the warmup process, we use the following equation to summa-

rize them:

αt =



tcur
Twarm

αmax, warmup;

(αmax − αmin)
(
1− tcur−Twarm

Tdecay−Twarm

)p

+ αmin, polynomial;[
1
2
(αmax − αmin)

(
1 + cos( tcur−Twarm

Tdecay−Twarm
π)
)
+ αmin

]
, cosine;

αmin, constant.

(4.7)

In detail, αmax and αmin = µαmax are the maximum and minimum learning rate respec-

tively during the training. Ttotal is the number of total training steps, Twarm = η1Ttotal is

the number of warmup steps and Tdecay = η2Ttotal is the number of decay steps. We tune

all hyperparameter combinations within a specific search space and select the configura-

tion with the best validation performance. Then we run the experiment 5 times and report

the average test performance. For Hypergraident and SRLS, we follow training details

in [BCR17] and [XDK19] respectively.

GNS implementation. To encode raw observations into latent features, we use a 2-

layer GCN [KW16] with 64 dimensional node embeddings in all hidden layers, and apply

batch normalization for each layer. After a shared encoder, each of the value network

and policy network has an MLP with a hidden layer of size 32. Our GNS is trained with

PPO [SWD17] for 30 episodes for ResNet models and RoBERTa-base while 10 episodes

for RoBERTa-large by fine-tuning the agent learned from RoBERTa-base, by an Adam

optimizer of the learning rate 0.005 and 0.001 for the critic and actor respectively.
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4.5.2 Results on Image Classification

In this section, we present experimental results of image classification tasks. Test accuracy

obtained by different schedulers are shown in Table 4.1. It can be observed that the con-

stant learning rate scheduling is insufficient to lead to a satisfactory result and is beaten

by all other methods. Although hand-designed schedulers like polynomial and cosine de-

cay and the gradient-based method Hypergradient can make an improvement over a con-

stant learning rate, learning-basedmethods can still outperform them. In particular, GNS

achieves much better accuracy on both Fashion-MNIST and CIFAR10 than SRLS, due to

a richer state representation from the utilization of the model’s graph structure.

Table 4.1: Test accuracy on Fashion-MNIST and CIFAR10 of different schedulers
Scheduler Fashion-MNIST CIFAR10

Constant 93.0 ± 0.2 93.0 ± 0.4
Polynomial 93.4 ± 0.1 93.5 ± 0.3
Cosine 93.4 ± 0.1 93.6 ± 0.4

Hypergradient 93.5 ± 0.2 93.7 ± 0.6
SRLS 93.6 ± 0.3 93.6 ± 0.6
GNS 94.6 ± 0.2 94.3 ± 0.5

4.5.3 Results on Language Understanding

Apart from image classification, we also focus on language understanding tasks on eight

GLUEbenchmarkdatasets. Twomodelswith different sizes, RoBERTa-base andRoBERTa-

large, are evaluated and detailed results are reported in Table 4.2. As expected, adjusting

learning rate rather than keeping a constant one contributes to the test performance. In

addition, a consistent performance boost can be observed in GNS over all eight datasets

for both base and largemodels. Specifically, it achieves a score of 85.2 and 87.8 on average

in RoBERTa-base and -large model respectively, while the best baseline in each scenario

only reaches 84.5 and 86.9. It should be noticed that SRLS performs poorly and even can-

not surpass the constant scheduling. It is likely that the simple state design of SRLS (only
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(c) STS-B
Figure 4.3: Learning rate trajectories generated by GNS for three tasks.

using information in the last layer) constrains its ability to adjust the learning rate dy-

namically, especially for large models like RoBERTa. Thus, SRLS fails to generate a good

scheduling to improve the performance.

Table 4.2: Test performance of RoBERTa on GLUE benchmarking of different schedulers.

Scheduler CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.

Base model:
Constant 60.5 ± 0.4 95.1 ± 0.2 86.9 ± 0.6 89.0 ± 0.0 88.6 ± 0.2 87.0 ± 0.1 92.9 ± 0.1 73.0 ± 0.3 84.1
Polynomial 61.2 ± 0.3 95.3 ± 0.3 87.2 ± 0.4 89.2 ± 0.1 89.3 ± 0.3 87.3 ± 0.2 93.0 ± 0.1 73.1 ± 0.4 84.4
Cosine 61.2 ± 0.3 95.4 ± 0.3 87.2 ± 0.5 89.2 ± 0.1 89.4 ± 0.1 87.2 ± 0.1 93.0 ± 0.2 73.5 ± 0.3 84.5

Hypergradient 61.0 ± 0.4 95.3 ± 0.2 87.0 ± 0.4 89.1 ± 0.2 89.4 ± 0.2 87.1 ± 0.1 93.0 ± 0.1 73.4 ± 0.5 84.4
SRLS 58.4 ± 1.2 95.3 ± 0.3 86.8 ± 0.5 88.4 ± 0.1 89.4 ± 0.3 86.7 ± 0.2 92.3 ± 0.2 70.8 ± 0.7 83.5
GNS 63.3 ± 0.5 95.8 ± 0.2 87.7 ± 0.5 89.6 ± 0.0 89.7 ± 0.1 87.7 ± 0.2 93.2 ± 0.0 74.4 ± 0.3 85.2

Large model:
Constant 63.1 ± 0.7 95.8 ± 0.2 87.7 ± 0.7 89.2 ± 0.0 90.1 ± 0.3 90.0 ± 0.2 94.0 ± 0.2 80.6 ± 0.2 86.3
Polynomial 64.2 ± 0.8 95.9 ± 0.4 88.4 ± 0.7 89.2 ± 0.1 91.1 ± 0.2 90.0 ± 0.0 94.5 ± 0.1 82.0 ± 0.2 86.9
Cosine 63.3 ± 0.6 95.8 ± 0.3 88.5 ± 0.6 89.3 ± 0.0 91.2 ± 0.2 89.9 ± 0.2 94.3 ± 0.2 81.0 ± 0.3 86.7

Hypergradient 63.3 ± 0.7 95.7 ± 0.4 88.2 ± 0.8 89.2 ± 0.1 91.0 ± 0.3 89.9 ± 0.3 94.4 ± 0.2 81.4 ± 0.4 86.6
SRLS 62.3 ± 0.5 95.9 ± 0.3 87.5 ± 1.2 88.2 ± 0.2 91.2 ± 0.4 88.8 ± 0.1 93.4 ± 0.2 79.8 ± 0.3 85.9
GNS 65.8 ± 0.7 96.7 ± 0.1 89.0 ± 0.9 89.7 ± 0.1 92.1 ± 0.2 90.4 ± 0.1 94.7 ± 0.1 84.0 ± 0.2 87.8

Weplot learning rate scheduling trajectories for three tasks in Figure 4.3: MRPC, RTE,

and STS-B. It can be observed that different mechanisms are deployed for distinct tasks.

The learning rate is generally adjusted in a similar trend for both RoBERTa-base and large

models within a task. Specifically, we can see that the learning rate for MRPC is not mod-

ified aggressively. For RTE, a decayed scheduling is learned while there is a warmup-like

procedure followed by a decreasing tendency for STS-B. Besides, it should be emphasized

that the learning rate does not changemonotonically, and there are ups and downs during

the training to react to the environment observations dynamically.
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4.5.4 Generalization of GNS

Due to the utilization of hierarchical GCN as the learning rate scheduler described in Sec-

tion 4.4.3, our GNS can be transferred to different but similar graphs, e.g., ResNet and

VGG [CSB16] structures on CIFAR10. Thus, we conduct an experiment to evaluate the

generalization of the learned scheduler. We select the policy network trained under the

environment of ResNet-34, and apply it directly to the task with VGG-16. For all other

baselines, we simply adopt the best hyperparameter configuration of ResNet-34 to train

the VGG-16 network. Results are shown in the second column of Table 4.3. We can see

that GNS can still achieve the best performance on the VGGmodel while the hyperparam-

eter settings of other methods are not suitable for the VGGmodel. It indicates that GNS is

able to learn the fundamental rule to conduct message passing between nodes and is gen-

eralizable to various graphs. The excellent transferred performance from RoBERTa-base

model to large model also explains why only a few episodes are needed when fine-tuning

the agent under RoBERTa-large models.

Table 4.3: Transferred performance of GNS.
Scheduler ResNet→ VGG CIFAR10→ CIFAR100

Constant 91.4 ± 0.3 69.3 ± 0.3
Polynomial 91.8 ± 0.3 70.5 ± 0.4
Cosine 91.7 ± 0.4 71.2 ± 0.2

Hypergradient 91.5 ± 0.5 70.9 ± 0.3
SRLS 91.7 ± 0.3 71.0 ± 0.6
GNS 92.5 ± 0.4 72.3 ± 0.3

In addition, GNS canbeutilized to the samenetwork structure but ondifferent datasets.

Specifically, we apply the graph scheduler trained on ResNet-34 for CIFAR10 to training a

ResNet-34 network for CIFAR100. It can be observed in the third column of Table 4.3 that

GNS achieves 72.3% on test accuracy and outperforms 71.2% of the best baseline sched-

uler with a cosine decay. Such a performance further validates that GNS is generalizable

to different datasets.
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4.5.5 Running time comparison

Compared with SRLS in which validation is required in every decision step, GNS can re-

duce a considerable amount of time with the validation probability p = 0.2. We consider

trainingRoBERTa-base in this section. For instance, when running onMRPC for 5 epochs,

we need to make 58 decisions with the number of network updates K = 10. The average

time of one episode with one NVIDIA 1080Ti GPU of SRLS is 405s while GNS only takes

259s, which decreases the original cost by 30%.

For hand-designed rules, there are 40 hyperparameter settings shown to be considered

forRoBERTa fine-tuningwhile it takes 30 episodes to train the learned scheduler. The time

for running one setting is 223s on average. Thus, a thorough grid search among these 40

settings consumes approximately 2.5 hours. On the contrary, GNS takes 2.2 hours and

even achieves better results. Furthermore, fine-tuning the scheduler on RoBERTa-large

from the base model only requires 10 episodes and costs much less time than grid search

in all configurations.

4.5.6 Ablation Study

In this part, an ablation study is carried out to corroborate that the design of state repre-

sentations and reward collection play an important role in the GNS framework.

Table 4.4: Test performance of three scheduler variants for RoBERTa-base.
Scheduler CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.

SRLS 58.4 ± 1.2 95.3 ± 0.3 86.8 ± 0.5 88.4 ± 0.1 89.4 ± 0.3 86.7 ± 0.2 92.3 ± 0.2 70.8 ± 0.7 83.5
CSS 60.0 ± 0.5 94.9 ± 0.1 87.1 ± 0.3 89.2 ± 0.2 88.7 ± 0.3 86.4 ± 0.1 92.3 ± 0.2 72.2 ± 0.5 83.8
FRS 63.5 ± 0.3 95.9 ± 0.3 87.7 ± 0.4 89.4 ± 0.0 89.4 ± 0.2 87.6 ± 0.2 93.2 ± 0.1 74.6 ± 0.4 85.2
GNS 63.3 ± 0.5 95.8 ± 0.2 87.7 ± 0.5 89.6 ± 0.0 89.7 ± 0.1 87.7 ± 0.2 93.2 ± 0.0 74.4 ± 0.3 85.2

State representations with graph networks. To show advantages in encoding

the state by a graphneural network, we compare ourGNSwith a variant called concatenated-

state scheduler (CSS), where features of all nodes in the state graph are concatenated to

form a super representation and then fed into subsequent neural networks for controlling
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the learning rate. Compared with the basline SRLS that only uses the final layer state, CSS

uses all layers but without using GCN to exploit correlation between layers and cannot be

applied to different target models. We can observe in Table 4.4 that using a concatenated

state slightly outperforms SRLS but is still insufficient to render as a competitive scheduler

as GNS, which shows the importance of encoding by graph neural networks.

Reward collection with a probability. We also compare the difference between

collecting a reward signal at every decision step (the variant is denoted as full-reward

scheduler, FRS) and collecting it with a probability. We report the evaluation metric on

the test set in Table 4.4. We can see that an instant reward cannot necessarily improve

the final performance of the learned scheduler. It is likely that the performance does not

improve monotonically and typically oscillates during the training. For example, in two

consecutive decision steps, the latter one gives us a worse validation result, leading to a

negative reward computed by Eq. 4.2 and indicating that the action is not good. However,

this information might be misleading and impede agent training. Thus, to alleviate such a

phenomenon, we design a stochastic reward collection procedure for more useful signals.

4.6 Conclusion

This work proposes a novel graph-network-based scheduler to control the learning rate

dynamically by reinforcement learning. We are the first to take into consideration the

structure of the target optimization problem with neural networks, and hereby leverage

message passing via the graph to encode the state for predicting the action. Comprehen-

sive experiments have shown that GNS can consistently achieve performance boosts on

benchmark datasets in both image classification and language understanding. However,

in this work we only focus on problems with a moderate time horizon. How to efficient

train a learning rate scheduler for a problem with hundreds of thousands optimization

steps such as BERT pre-training can be a potential future direction.
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CHAPTER 5

FedDM: Iterative Distribution Matching for

Communication-Efficient Federated Learning

Besides optimization techniques, algorithm efficiency can be improved by dataset distil-

lation, which we will delve into in the following chapter. Specifically, we integrate dataset

distillation into existing federated learning pipelines to reduce communication rounds be-

tween the server and the clients while maintaining comparble or even better performance.

5.1 Introduction

Traditional machine learning methods are designed with the assumption that all training

data can be accessed from a central location. However, due to the growing data size to-

getherwith themodel complexity [DBK20,KT19,KSH12], distributed optimization [SSZ14,

DCM12, CSA14] is necessary over different machines. This leads to the problem of Feder-

ated Learning [MMR17] (FL) –multiple clients (e.g. mobile devices or local organizations)

collaboratively train a global model under the orchestration of a central server (e.g. ser-

vice provider) while the training data are kept decentralized and private. Such a practical

setting poses two primary challenges [KMA21, MMR17, LWW21, KMY16, LSZ20]: train-

ing data of the FL system are highly unbalanced and non-i.i.d. across down-

stream clients andmore efficient communicationwith fewer costs is expected

because of unreliable devices with limited transmission bandwidth.

Most of the existing FL methods [MMR17, LSZ20, WLL20, KKM20, LDC22] adopt an
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iterative training procedure from FedAvg [MMR17], in which each round takes the fol-

lowing steps: 1) The global model is synchronized with a selected subset of clients; 2)

Each client trains the model locally and sends its weight or gradient back to the server; 3)

The server updates the global model by aggregating messages from selected clients. This

framework works effectively for generic distributed optimization while the difficult and

challenging setting of FL, unbalanced data partition in particular, would result in statis-

tical heterogeneity in the whole system [LST20] and make the gradient from each client

inconsistent. It poses a great challenge to the training of the shared model, which re-

quires a substantial number of communication rounds to converge [LDC22]. Although

some improvements have been made over FedAvg [MMR17] including modifying loss

functions [LSZ20], correcting client-shift with control variates [KKM20] and the like, the

reduced number of communication round is still considerable and even the amount of

information required by the server rises [ZPM20].

In our paper, we propose a different iterative surrogate minimization based method,

FedDM, referred to Federated Learning with iterative Distribution Matching. Instead

of the commonly-used scheme where each client maintains a locally trained model re-

spectively and sends its gradient/weight to the server for aggregation, we take a distinct

perspective at the client’s side and attempt to build a local surrogate function to approxi-

mate the local training objective. By sending those local surrogate functions to the server,

the server can then build a global surrogate function around the current solution and con-

duct the update by minimizing this surrogate. The question is then how to build local

surrogate functions that are informative and with a relative succinct representation. In-

spired by recent progresses in data condensation [ZMB20, ZB21b] we build local surrogate

functions by learning a synthetic dataset to replace the original one to approximate the

objective. It can be achieved by matching the original data distribution in the embedding

space [GBR12]. After the optimization of synthesized data, the client transmits them to the

server, which then leverages the synthetic dataset to recover the global objective function
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for training. Our method enables the server to have implicit access to the global objec-

tive defined by the whole balanced dataset from all clients, and thus outperforms previous

algorithms involved in training a local model with unbalanced data in terms of commu-

nication efficiency and effectiveness. We also show that our method can be adapted to

preserve differential privacy, an important factor to the deployment of FL systems.

Our contributions are primarily summarized as follows:

• We propose FedDM by iterative distribution matching to learn a surrogate function.

It sends synthesized data to the server rather than commonly-used local model up-

dates and improves communication efficiency and effectiveness significantly.

• We analyze how to protect privacy of client’s data for our method and show that it is

able to guarantee (ϵ, δ)-differential privacy with the Gaussian mechanism and train

a better model under the same privacy budget.

• We conduct experiments on three tasks and demonstrate that FedDM outperforms

its FL counterparts in communication efficiency and the final model performance.

5.2 RelatedWork

Federated Learning. Federated learning [MMR17, KMA21] has aroused heated discus-

sion nowadays from both research and applied areas. With the goal to train the model

collaboratively, it incorporates the principles of focused data collection and minimiza-

tion [KMA21]. FedAvg [MMR17] was proposed along with the concept of FL as the first ef-

fective method to train the global model under the coordination of multiple devices. Since

it is based on iterative model averaging, FedAvg suffers from heterogeneity in the FL sys-

tem, especially the non-i.i.d. data partitioning, which degrades the performance of the

global model and adds to the burden of communication [LST20]. To mitigate the issue,

some variants have been developed upon FedAvg including [LSZ20, WLL20, KKM20].
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For instance, FedProx [LSZ20] modifies the loss function. FedNova [WLL20] and SCAF-

FOLD [KKM20] leverage auxiliary information to balance the distribution shift. Apart

from better learning algorithms with faster convergence rate, another perspective at im-

proving efficiency is to reduce communication costs explicitly [CSP21, SWM19, XKG19,

CSJ19, RMH20]. An intuitive approach is to quantize and sparsify the uploaded weights

directly [RMH20]. Efforts have also been made towards one-shot federated learning, ex-

pecting to obtain a satisfactory model through only one communication round [ZPM20,

GTS19, SSG21, SSG19].

Differential Privacy. To quantify information disclosure about individuals, researchers

usually adopt the state-of-the-artmodel, differential privacy (DP) [DMN06,DR14,Dwo11].

DP describes the patterns of groups while withholding information about individuals in

the dataset. There aremany scenarios inwhichDP guarantee is necessary [DKM06,DL09,

ACG16, PS21, ASY18, McS09, KOV15]. For example, [ACG16] developed differentially

private SGD (DP-SGD) which enabled training deep neural networks with non-convex

objectives under a certain privacy budget. It was further extended to settings of feder-

ated learning, where various techniques have been designed to guarantee client-level or

instance-level differential privacy [MRT17, PAE16, YIL22]. Recently, DP has been taken

into account for hyperparameter tuning [PS21].

Dataset Distillation. With the explosive growing of the size of training data, it becomes

much more challenging and costly to acquire large datasets and train a neural network

within moderate time [NCL20, NNX21]. Thus, constructing smaller but still informa-

tive datasets is of vital importance. The traditional way to reduce the size is through

coreset selection [BMK20], which select samples based on particular heuristic criteria.

However, this kind of method has to deal with a trade-off between performance and data

size [NCL20, ZMB20]. To improve the expressiveness of the smaller dataset, recent ap-

proaches consider learning a synthetic set from the original data, or data distillation for

simplicity. Along this line, different methods are proposed using meta-learning [WZT18,
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SS21], gradient matching [ZMB20, ZB21a], distribution matching [ZB21b, WZP22], neu-

ral kernels [NCL20, NNX21] or generative models [SRL20]. These methods demonstrate

great potentials in datasets such as CIFAR10 but face challenges in scaling up to larger

ones like ImageNet. Besides, a recent work [DZL22] has analyzed the privacy property

of dataset distillation methods, focusing on membership inference attacks. It provides a

complementary prospective to (ϵ, δ)-differential privacy discussed in our paper.

5.3 Methodology

In this part, we first present the iterative surrogate minimization framework in Section

5.3.1, and then expand on the details of our implementation of FedDM in Section 5.3.2.

In addition, we discuss preserving differential privacy of our method through Gaussian

mechanism in Section 5.3.3.

5.3.1 Iterative surrogate minimization framework for federated learning

Neural network training can be formulated as solving a finite summinimization problem:

min
w

f(D;w) where f(D;w) = 1

n

n∑
i=1

ℓ(xi, yi;w), (5.1)

where w ∈ Rd is the parameter to be optimized, D is the dataset and ℓ(xi, yi;w) is the loss

of the prediction on sample (xi, yi) ∈ D w.r.t. w such as cross entropy. We will abbreviate

these terms as f(w) and ℓi(w) for simplicity. Equation (5.1) is typically solved by stochastic

optimizers when training data are gathered in a single machine. However, the scenario is

different under the setting of federated learning withK clients. In detail, each client k has

access to its local dataset of the size nk with the set of indices Ik (nk = |Ik|), and we can
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Figure 5.1: A 1-D example showing advantages of minimizing the surrogate function.

rewrite the objective as

f(w) =
K∑
k=1

nk

n
fk(w) where fk(w) =

1

nk

∑
i∈Ik

li(w). (5.2)

Since information can only be communicated between the server and clients, previous

methods [MMR17, LSZ20,WLL20, KKM20] train the globalmodel by aggregation of local

model updates, as introduced in Section 5.1. However, as each client only sees local data

which could be biased and skewed, the local updates is often insufficient to capture the

global information. Further, since local weight update consists limited information, it is

hard for the server to obtain better joint update direction by considering higher order in-

teractions between different clients. We are motivated to leverage the surrogate function

by the example in Figure 5.1. Specifically, we synthesize a 1-D binary classification prob-

lem and learn a surrogate for the objective function. We learn the surrogate function via

distribution matching introduced in Section 5.3.2 around the weight of 0. Compared with

the tangent line computed by the gradient, the surrogate function in orange matches the

original one accurately andminimizing it leads to a satisfactory solution. More details can

be checked in Appendix B.Thus, we hope to develop a novel scheme such that each client

can send a local surrogate function instead of a single gradient or weight update to
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the server, so the server has a more global view to loss landscape to obtain a better update

instead of pure averaging.

To achieve this goal, we propose to conduct federated learning with an iterative sur-

rogate minimization framework. At each round, let wr be the current solution, we build a

surrogate training objective f̂r(·) to approximate the original training objective in the lo-

cal area aroundwr, and then update themodel byminimizing the local surrogate function.

The update rule can be written as

wr+1 = min
w∈Bρ(wr)

f̂r(w), (5.3)

where f̂r(w) ≈ f(w), ∀w ∈ Bρ(wr) and Bρ(wr) is a ρ-radius ball around wr. We do not

expect to build a good surrogate function in the entire parameter space; instead, we only

construct it near wr and obtain the update by minimizing the surrogate function within

this space. Many optimization algorithms can be described under this framework. For

instance, if f̂r(w) = ∇f(wr)
T (w − wr) (based on the first-order Taylor expansion), then

Equation (5.3) leads to the gradient descent update where ρ controls the step size.

To apply this framework in the federated learning setting, we consider the decomposi-

tion of Equation (5.2) and try to build surrogate functions to approximate each fk(w) on

each client. More specifically, each client aims to find

f̂r,k(w) ≈ fk(w), ∀w ∈ Bρ(wr) (5.4)

and send the local surrogate function f̂r,k(·) instead of gradient orweights to the server.

The server then form the aggregated surrogate function

f̂r(w) = f̂r,1(w) + · · ·+ f̂r,K(w) (5.5)

and then use Equation (5.3) to obtain the update. Again, if each f̂r,k is the Taylor expansion
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based on local data, it is sufficient for the client to send local gradient to the server, and the

update will be equivalent to (large batch) gradient descent. However, we will show that

there exists other ways to build local approximations to make federated learning more

communication efficient.

5.3.2 Local distribution matching

Inspired by recent progresses in data distillation [ZMB20, ZB21b, ZB21a,NCL20,NNX21],

it is possible to learn a set of synthesized data for each client to represent original data in

terms of the objective function. Therefore, we propose to build local surrogate models

based on the following approximation for the r-th round:

fk(w) ≈
1

ns
k

∑
j∈IS

k

ℓj(x̃j, ỹj;w) = f̂r,k(S;w), ∀w ∈ Bρ(wr), (5.6)

where S denotes the set of synthesized data and ISk is the corresponding set of indices.

Note that we aim to approximate fk only in a local region around wr instead of finding the

approximation globally, which is hard as demonstrated in [ZMB20, ZB21b]. To form the

approximation function in Equation (5.6), we solve the following minimization problem:

min
S

Ew∼Pw∥fk(w)− f̂r,k(S;w)∥2 (5.7)

where w is sampled from distribution Pw, which is a Gaussian distribution truncated at

radius ρ. A different perspective at Equation (5.7) is that we can justmatch the distribution

between the real data and synthesized ones given fk(w) and f̂r,k(S;w) are just empirical

risks. A common way to achieve this is to estimate the real data distribution in the latent

space with a lower dimension by maximum mean discrepancy (MMD) [WZP22, ZB21b]:

sup∥hw∥H≤1
(E[hw(D)]− E[hw(S)]). Here H is reproducing kernel Hilbert space and hw is

the embedding function that maps the input into the hidden representation. We use the
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empirical estimate ofMMD in [ZB21b] since the underlying distribution is inaccessible. To

make our approximation more accurate and effective, we match outputs of the logit layer

which corresponds with Equation (5.7), together with the preceding embedding layer:

LDM = Ew∈Bρ(wr)∥
1

|D|
∑

(x,y)∈D

hw(x)−
1

|S|
∑

(x̃,ỹ)∈S

hw(x̃)∥2

+Ew∈Bρ(wr)∥
1

|D|
∑

(x,y)∈D

zw(x)−
1

|S|
∑

(x̃,ỹ)∈S

zw(x̃)∥2,
(5.8)

where hw(x) again denotes intermediate features of the input while zw(x) ∈ RC represents

the output of the final logit layer. Note that we learn synthesized data for each class re-

spectively, which means samples in D and S belong to the same class. For training, we

adopt mini-batch based optimizers to make it more efficiently. Specifically, a batch of real

data and a batch of synthetic data are sampled randomly for each class independently by

BDk
c ∼ Dk and BSk

c ∼ Sk. We plug these two batches into Equation (5.8) to compute Lc

and L =
∑C−1

c=0 Lc. Sk can be updated with SGD by minimizing L for each client.

Then we aggregate all synthesized data from K clients at the server’s side to approxi-

mate the global objective function, which is computed as

f(w) =
K∑
k=1

nk

n
fk(w) ≈

K∑
k=1

nS
k

n
f̂r,k(Sk;w), ∀w ∈ Bρ(wr). (5.9)

Moreover, since synthesized data are trained based on a specific distribution around

the current value of w, we need to iteratively synchronize the global weights with all the

clients and obtain proper S according to the latest w for the next communication round.

Therefore, instead of transmitting information such as parameters or gradients in pre-

vious FL algorithms, we propose federated learning with iterative distribution match-

ing (FedDM) in Algorithm 3 following the steps below to train the global model:
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(a) At each communication round, for each client, we adopt Equation (5.8) as the objec-

tive function to train synthesized data for each class.

(b) The server receives synthesized data and leverages them to update the global model.

(c) The current weight is then synchronized with all the clients and a new communica-

tion round starts by repeating step (a) and (b).

It should be noticed that through estimating the local objective, FedDM extracts richer

information than existing model averaging based methods, and enables the server to ex-

plore the loss landscape from a more global view. It reduces communication rounds sig-

nificantly. On the other hand, the explicit message uploaded to the server, or the number

of float parameters, is relatively smaller. This is especially true when training large neural

network models, where the size of neural network parameters (and therefore gradient up-

date) ismuch larger than the size of the input. Take CIFAR10 as an example, when training

data are distributed obeying Dir10(0.5), the average number of classes per client (cpc) is

9. When we adopt the number of images per class (ipc) of 10 for the synthetic set, the to-

tal number of float parameters uploaded to the server is: the number of clients × cpc ×

ipc × image size = 10 × 9 × 10 × 3 × 32 × 32 ≈ 2.8 × 106. For those iterative model av-

eraging model methods, the number of float parameters is equal to the product of weight

size and the number of clients, which is 320010× 10 ≈ 3.2× 106 for ConvNet [ZMB20] and

comparably larger than FedDM. An extensive comparison is presented in Appendix C.

5.3.3 Differential privacy of FedDM

An important factor to evaluate a federated learning algorithm is whether it can preserve

differential privacy. Before analyzing our method, we first review some fundamentals of

differential privacy.

Definition 5.3.1 (Differential Privacy [DKM06]) A randomized mechanism M :
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Algorithm 3 FedDM: Federated Learning with Iterative Distribution Matching

1: Input: Training setD, set of synthetic samples S, deep neural network parameterized
withw, probability distribution over parametersPw, training iterations of distribution
matching T , learning rate ηc and ηs.

2: Server executes:
3: for each round r = 1, . . . , R do
4: for client k = 1, . . . , K do
5: Sk ← ClientUpdate(k, wr)
6: Transmit Sk to the server
7: end for
8: Aggregate synthesized data from each client and build the surrogate function by

Equation (5.9)
9: Update weights to wr+1 on S by SGD with the learning rate ηs
10: end for
11: ClientUpdate(k, wr):
12: Initialize Sk from random noise or real examples.
13: for t = 0, · · · , T − 1 do
14: Sample w ∼ Pw(wr)
15: Sample mini-batch pairs BDk

c ∼ Dk and BSk
c ∼ Sk for each class c

16: Compute Lc based on Equation (5.8), L ←
∑C−1

c=0 Lc

17: Update Sk ← Sk − ηc∇Sk
L

18: end for

D → R with domain D and range R satisfies (ϵ, δ)-differential privacy if for any two

adjacent datasetsD1, D2 and any measurable subset S ⊆ R,

Pr(M(D1) ∈ S) ≤ eϵPr(M(D2) ∈ S) + δ. (5.10)

In this paper, we focus on instance-level differential privacy, which indicates that D1 and

D2 differ on a single element. Typically, the randomized mechanism is applied to a query

function of the dataset, f : D → X . Without loss of generality, we assume that the output

spacesR,X ⊆ Rm. A key quantity in characterizing differential privacy for various mech-

anisms is the sensitivity of a query [DR14] f : D → Rm in a given norm ℓp. Formally this

is defined as

∆p
∆
= max

D1,D2

∥f(D1)− f(D2)∥p. (5.11)
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Gaussianmechanism [DR14] is one simple and effectivemethod to achieve (ϵ, δ)-differential

privacy:

M(D)
∆
= f(D) + Z, where Z ∼ N (0, σ2∆2

pI). (5.12)

It has been proved that under Gaussian mechanism, (ϵ, δ)-differential privacy is satisfied

for the function f of sensitivity ∆p if we choose σ ≥
√

2 log 1.25
δ
/ϵ [DR14]. Differentially

private SGD (DP-SGD) [ACG16] then applies Gaussian mechanism to deep learning opti-

mization with hundreds of steps and demonstrates the following theorem:

Theorem 1 (Differential Privacy of DP-SGD) There exist constants c1 and c2 so that

given the sampling probability q and the number of steps T , for any ϵ < c1q
2T , DP-SGD

is (ϵ, δ)-differentially private for any δ > 0 if

σ ≥ c2
q
√

T log(1/δ)
ϵ

. (5.13)

We then prove that by leveraging DP-SGD to update the synthetic dataset which is initial-

ized from randomGaussian noise, FedDM can preserve differential privacy of the original

dataset. We present this DP guarantee of FedDM in the theorem below:

Theorem 2 (Differential privacy of FedDM.) Given the synthetic dataset S is ini-

tialized fromrandomnoise, FedDMtrainedwithDP-SGDcanguarantee (ϵ, δ)-differential

privacy in a K-client federated learning system, with σ ≥
√

log(δ)
Tq2−ϵ

or σ ≥
√

2 log(1/δ)
ϵ

if

Tq2 ≤ ϵ/2 in each communication round.

Acomplete proof and an initial analysis of differential privacy forR communication rounds

are included in Appendix D.We also present the whole procedure of FedDM integrated

with DP-SGD in Appendix E.
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Table 5.1: Summary of different FL methods.
Method Client Message Server

FedAvg [MMR17] min fk(w) ∆w
* model averaging

FedProx [LSZ20] min fk(w) + µ∥w − wr∥/2 ∆w model averaging
FedNova [WLL20] min fk(w) d and a* normalized model averaging

SCAFFOLD [KKM20] min fk(w, c) ∆w and∆c
* model averaging for both w and c

FedDM(Ours) min Equation (5.8) S model updating on S
* ∆w denotes the model update, d is the aggregated gradient and a is the coefficient vector, ∆c is the change
of control variates. Refer to original papers for more details.

Table 5.2: Test accuracy of FL methods with different level of non-uniform partitioning.

Method
α = 0.1 α = 0.01

MNIST CIFAR10 CIFAR100 MNIST CIFAR10 CIFAR100

FedAvg 96.92 ± 0.09 57.32 ± 0.04 32.00 ± 0.50 91.04 ± 0.80 39.28 ± 0.25 27.05 ± 0.45
FedProx 96.72 ± 0.04 56.92 ± 0.30 30.77 ± 0.52 91.18 ± 0.16 40.30 ± 0.15 25.88 ± 0.39
FedNova 98.04 ± 0.03 60.76 ± 0.14 31.92 ± 0.42 90.27 ± 0.49 36.46 ± 0.42 27.52 ± 0.43

SCAFFOLD 98.32 ± 0.06 60.96 ± 1.20 34.39 ± 0.25 88.37 ± 0.25 32.42 ± 1.13 31.14 ± 0.20
FedDM 98.67 ± 0.01 67.38 ± 0.32 37.58 ± 0.27 98.21 ± 0.23 63.82 ± 0.17 34.98 ± 0.17

5.4 Experiments

5.4.1 Experimental setup

Datasets. In this paper, we focus on image classification tasks, and select three commonly-

used datasets: MNIST [LeC98], CIFAR10 [KH09], and CIFAR100 [KH09]. We adopt the

standard training and testing split. Following commonly-used scheme [WYS19], we sim-

ulate non-i.i.d. data partitioning with Dirichlet distribution DirK(α), whereK is the num-

ber of clients and α determines the non-i.i.d. level, and allocate divided subsets to clients

respectively. A smaller value of α leads to more unbalanced data distribution. The default

data partitioning is based on Dir10(0.5) with 10 clients. Furthermore, we also take into

account different scenarios of data distribution, including Dir10(0.1), Dir10(0.01).

Baseline methods. We compare FedDM with four representative iterative model av-

eraging based methods: FedAvg [MMR17], FedProx [LSZ20], FedNova [WLL20], and

SCAFFOLD [KKM20]. We summarize the action of the client and the server, and the trans-

mitted message for all methods in Table 5.1. Two stronger methods, FedAvgM [HQB19]
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and FedAdam [RCZ], are compared in Appendix F.1.

Hyperparameters. For FedDM, following [ZB21b], we select the batch size as 256 for

real images, and update the synthetic set Sk for T = 1, 000 iterations with ηc = 1 for

each client in each communication round, and tune the number of images per class (ipc)

within [3, 5, 10]. Synthetic images are initialized as randomly sampled real images with

corresponding labels suggested by [ZMB20, ZB21b], and random noise initialization is

leveraged when differential privacy is required. Considering the trade-off between com-

munication efficiency and model performance, we choose ipc to be 10 for MNIST and CI-

FAR10, 5 for CIFAR100 when there are 10 clients. The choice of radius ρ = 5 is discussed

in Section 5.4.5. On the server’s side, the global model is trained with the batch size 256

for 500 epochs by SGD of ηs = 0.01. For baseline methods1, we choose the same batch

size of 256 for local training. We tune the learning rate at the client from [0.001, 0.01, 0.1]

and at the server from [0.01, 0.1, 1], and local epoch from [1, 2, 5, 10, 15, 20]. In particular,

we tune µ for FedProx in [0.01, 0.1, 1]. For a fair comparison, all methods share the fixed

number of communication rounds as 20, and the samemodel structure ConvNet [ZMB20]

by default. All experiments are run for three times with different random seeds with one

NVIDIA 2080Ti GPU and the average performance is reported.

1We use implementations from https://github.com/Xtra-Computing/NIID-Bench in [LDC22].
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5.4.2 Communication efficiency & convergence rate
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0 5 10 15 20
Communication Round

5

10

15

20

25

30

35

40

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR100

FedAvg
FedProx
FedNova
SCAFFOLD
FedDM

(c) CIFAR100; rounds

0 2 4 6 8 10 12 14
# of float parameters(×106)

84

86

88

90

92

94

96

98

100

Te
st

 A
cc

ur
ac

y 
(%

)

MNIST

FedAvg
FedProx
FedNova
SCAFFOLD
FedDM

(d) MNIST; message size

0 10 20 30 40 50
# of float parameters(×106)

30

35

40

45

50

55

60

65

70

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR10

FedAvg
FedProx
FedNova
SCAFFOLD
FedDM

(e) CIFAR10; message size
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(f) CIFAR100; message size
Figure 5.2: Test accuracy along with the number of communication rounds and the mes-
sage size. Within the limited communication budget, FedDMperforms the best in all three
datasets, in terms of efficiency and final test accuracy.

We first evaluate our method in terms of communication efficiency and convergence rate

on all three datasets on the default data partitioning Dir10(0.5). As we can see in Figure

5.2(a)-(c), our method FedDM performs the best among all considered algorithms by a

large margin on MNIST, CIFAR10, and CIFAR100. Specifically, for CIFAR10, FedDM

achieves 69.66±0.13%on test accuracy while the best baseline SCAFFOLD only has 66.12±

0.17% after 20 communication rounds. FedDM also has the best convergence rate and it

significantly outperforms baseline methods within the initial few rounds. Advantages of

FedDM are more evident when we evaluate convergence as a function of the message size.

As mentioned in 5.3.2, FedDM requires less information per round. Therefore, we can

observe in Figure 5.2(d)-(e) that FedDM converges the fastest along with themessage size.

Details of the message size of each method for different tasks are provided in Appendix C.
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5.4.3 Evaluation on different data partitioning

In real-world applications, there are various extreme data distributions among clients. To

synthesize such non-i.i.d. partitioning, we consider two more scenarios with Dir10(0.1)

and Dir10(0.01). As mentioned, α → 0 implies each client holds examples from only one

random class. It can be seen in Table 5.2 that previous methods based on iterative model

averaging are insufficient to handle these two challenging scenarios and their performance

degrades drastically compared with Dir10(0.5). In contrast, FedDM performs consistently

better andmore robustly, since distributionmatching enables it to approximate the global

training objective more accurately.

5.4.4 Performance with DP guarantee

As discussed in Section 5.3.3, if the synthetic dataset is initialized from random noise,

using DP-SGD in local training of FedDM can satisfy (ϵ, δ)-differential privacy, with σ ≥√
2 log(1/δ)

ϵ
for any Tq2 ≤ ϵ/2, a relatively loose bound independent of training steps T . To

make a fair comparison, we use tensorflow privacy to compute ϵ with a tight bound given

the number of examples, batch size, training steps, δ = 10−5 under σ ∈ 1, 3, 5 for FedDM,

and obtain noise levels for baselinemethods accordingly which are [0.44, 0.76, 0.95] respec-

tively. We tune clipping norm C ∈ [1, 3, 5, 10]. S is initialized from N (0, 1) to guarantee

differential privacy. We notice in Figure 5.3 that under the same DP guarantee, FedDM

outperforms other FL counterparts in terms of convergence rate and final performance.

Moreover, the accuracy of FedDM does not drop significantly compared with all consid-

ered methods when the noise level increases, indicating that FedDM is most resistant to

the perturbed optimization.
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(b) Medium noise (ϵ = 2.46).
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(c) Large noise (ϵ = 1.35).
Figure 5.3: Performance of FLmethodswith different noise levels. To preserve differential
privacy, FedDM initializes the synthetic data from random Gaussian noise.

5.4.5 Analysis of FedDM

In this section, we analyze FedDM to investigate effects of hyperparameters including the

initialization of the synthetic dataset, image-per-class (ipc), network structure and selec-

tion of ρ–radius ball. Besides, we compare our method with a strong baseline of sending

real images with the same size. Extensive results are reported in Appendix F.1.

Initialization of the synthetic dataset. We conduct an ablation study on the ini-

tialization of the synthetic dataset S on CIFAR10 with the default partition Dir10(0.5). In

detail, random initialize S based on the standard normal distribution N (0, 1) while real

samples instances from the original dataset to be distilled. It can be observed in Table 5.3

that real performs consistently better than random, which concurs with the conclusion in

[ZB21b] and justifies the choice of real in our experiments. Note that even random can

outperform model averaging methods compared with results in Figure 5.2 and Table 5.2.

In addition, random with DP-SGD helps preserve differential privacy of FedDM, and still

improves the efficiency and accuracy significantly in Figure 5.3.

Effects of ipc. Experiments are conducted on CIFAR10 with the distribution Dir10(0.5)

with three different ipc values from [3, 5, 10]. As the ipc increases, the performance gradu-

ally get better from 53.64±0.35%, 62.24±0.04% to 69.62±0.14%. On the other hand, more
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Partitioning random real

α = 0.5 64.12 ± 0.15 69.66 ± 0.13
α = 0.1 62.75 ± 0.24 67.38 ± 0.32
α = 0.01 59.00 ± 0.26 63.82 ± 0.17

Table 5.3: Test accuracy of FedDM with random and real S initialization on CIFAR10.
Three data partitionings are evaluated.

images per class indicates a heavier communication burden in the meanwhile. We need

to trade off the model performance against the communication cost, and thus choose an

appropriate ipc value based on the task.
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Figure 5.4: Performance under different ipc values.

Different network structures. Besides ConvNet, we evaluate FedDM under the de-

fault CIFAR10 setting on ResNet-18. It can be observed that our method works well even

for this more complicated and larger model in Figure 5.5. It should also be emphasized

that for FL baseline methods, they have to transmit a larger amount of message while

FedDMmaintains the original size. This makes FedDMmore efficient in larger networks.
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Figure 5.5: Test accuracy on ResNet-18.
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Selection of ρ-radius ball. It has been discussed in Section 5.3.1 that Bρ(wr) is a ρ-

radius ball around wr:

Bρ(wr) = {w|∥w − wr∥2 ≤ ρ}. (5.14)

In FedDM, we sample w based on a truncated Gaussian distribution below:

Pw(wr) = Clip(N (wr, 1), ρ), (5.15)

where we clip the sampled weight to guarantee that ∥w − wr∥2 ≤ ρ. At the server’s side,

when training the global model, we also clip the weight to the ρ-radius ball. We conduct

experiments to choose ρ from [3, 5, 10] and present the test accuracy after 20 communica-

tion rounds on CIFAR10 under the default Dir10(0.5) setting in Table 5.4. We find that

performance is similar and FedDM is not very sensitive to the choice of ρ. ρ = 5 performs

relatively the best and we hypothesize that a too small weight restricts the optimization to

a limited range and a too big one adds to the difficulty of learning a surrogate function.

Based on results in Table 5.4, we select ρ = 5 for all our experiments.

ρ Test accuracy (%)

ρ = 3 69.15 ± 0.09
ρ = 5 69.66 ± 0.13
ρ = 10 69.32 ± 0.24

Table 5.4: Test accuracy of FedDM under different ρ.

Comparisonwith transmitting real images. Ourmethod is compared with REAL,

which sends real images of the same size as FedDM (ipc = 10). In particular, REAL

achieves test acccuracy of 68.66 ± 0.08% on CIFAR10 with the default setting, but can-

not beat FedDMwith 69.62±0.14%. It indicates that our learned synthetic set can capture

richer information of the whole dataset rather than just a few images.
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5.5 Conclusions and Limitations

In this work we propose an iterative distribution matching based method, FedDM, to

achieve more communication-efficient federated learning. By learning a synthetic dataset

for each client to approximate the local objective function, the server can obtain a global

view of the loss landscape better than aggregating local model updates. We also show that

FedDMcan preserve differential privacywithGaussianmechanism. However, there is still

a trade-off between the size of the synthetic set and the final performance, especially for

classification tasks with hundreds of clients or classes. How to reduce the synthetic set to

save communication costs can be a future direction.
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Part II

Data Efficient Deep Learning
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CHAPTER 6

Extreme Zero-Shot Learning

for Extreme Text Classification

In parallel with algorithm efficiency, data efficiency is another essential factor that influ-

ences the development of deep learning. In this chapter, we present a pre-trainingmethod

to tackle zero-shot extreme text classification, given limited or even no supervision.

6.1 Introduction

The eXtremeMulti-label text Classification (XMC) problem aims at tagging a text input

with most relevant subset of labels from an extremely large output space. Many web-

related applications can be formulated as an XMC task with encouraging results, such as

finding the best matching products from a large catalog in e-commerce systems [MHW19,

CJY21], auto-completing queries given its prefix on search engines [YSH21], predicting

search keywords for dynamic advertising [PKH18,CYZ20], tagging categories ofWikipedia

articles from a large label taxonomy [DS10, CFM19], to name just a few.

The current XMC setup is built on full label coverage and full supervision, where full

label coverage means labels to be predicted have appeared in the training set and full su-

pervision indicates it requires a significant number of annotated (instance, label) pairs. In

detail, it is assumed that an XMC algorithm has access to raw text of instances and labels,

together with their corresponding relations during training, as shown in Figure 6.1.

However, there are several limitations of this XMC setting. First of all, due to the as-
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XMC

GZ-XMC

EZ-XMC

Instances Labels

Antinomianism,
Libertarian socialism,
Autism,
Sexuality of Abraham Lincoln,
Grace Bedell,
……

Supervision Label coverage

TestTraining

Training Test

Training Test

Full

Partial

None

Instances Labels

√

√

√

√

√

√ ×

√

√

Full

Full & Partial & None

Full & Partial & None

FS-XMC √ √ Full & Partial & None√*

Figure 6.1: Four different settings in XMC. Four essential components are considered:
instances (raw text), labels (raw text), supervision (positive pairs), and label coverage. We
divide label coverage into 3 groups: full, partial, and none. * in FS-XMC emphasizes that
only a limited amount of supervision is available. We can see that EZ-XMC is the most
general and practical setting, where no supervision and label coverage are required.

sumption of full label coverage, it is typical inXMCapproaches to simply treat labels as IDs

for classification and thus they are restricted tomaking predictionswithin observed labels.

This assumption is unrealistic since the label set usually keeps growing over time, e.g.,

newly added websites or products which are absent during training yet crucial for applica-

tions such as recommendation and advertising. Besides, collecting labeled pairs is time-

consuming, expensive and sometimes infeasible, for example, launching an e-commerce

system in the emerging locale, where no user behavioral signals are avaiable. In spite of

these constraints, most existing methods [DSM21, YZW19, MSA21, DAS21] followed this

XMC setup. It can be seen in Figure 6.2 that Astec [DSM21], one of the state-of-the-art ex-

treme classifiers, is incapable of handling the scenario without supervision, which leads to

zero performance in both Precision@5 and Recall@100. Moreover, the increasing trend

in Astec’s performance along with the label ratio suggests that it depends highly on the su-

pervision level and is hard to generalize to unseen labels. This motivates us to investigate

how to design an effective XMC model with zero supervision.
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Figure 6.2: Performance of three representative XMC methods on LF-Amazon-131K at
different ratios of label coverage. A subset covering [0, 1, 5, 10, 25, 50, 100](%) of the whole
label set is sampled for fine-tuning.

In this work, we consider an essential yet under-explored XMC setting, called Extreme

Zero-shot XMC (EZ-XMC). As depicted in Figure 6.1, we can access raw text of both in-

stances and labels but do not know their corresponding relations in EZ-XMC. Moreover,

we do not make any assumption on the label coverage, so the labels in the testing set may

or may not appear in the training stage. An extension to EZ-XMC with a limited number

of training pairs, Few-shot XMC (FS-XMC), is also taken into account in our work. Either

EZ-XMC or FS-XMC occurs frequently in the real world since informative and abundant

(instance, label) pairs are never easy to obtain. Also, it is more practical and worthwhile to

reduce labor for manual annotation by solving problems under EZ-XMC. Note that gener-

alized zero-shot XMC (GZ-XMC) proposed in a recent work [GBP21] can be regarded as a

special case of EZ-XMC. GZ-XMC allows that the set of test labels is not completely over-

lapped with training labels but still requires supervision from positive pairs, as shown in

Figure 6.1. From Figure 6.2, we can observe that ZestXML [GBP21] designed for GZ-XMC

also suffers the issue of no supervision.

A natural question then arises: how should we deal with EZ-XMC problems? De-

spite the name, EZ-XMC is barely easy to tackle. Fortunately, although dedicated su-
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pervision signals are lacking, raw text of instances and labels, e.g., product descriptions

and categories, are still accessible in EZ-XMC. Thus it is of vital importance to effec-

tively leverage self-information of these data to train a model for classification. To over-

come challenges encountered in EZ-XMC, we turn to solving the problem from a different

perspective without learning classifiers explicitly. In particular, XMC can be cast into a

problem which learns a sentence encoder E to map instances and labels into dense em-

beddings, and predictions are made through approximate nearest neighbor search al-

gorithms in the latent space [SL14]. Motivated by recent progresses in self-supervised

learning [GYC21, CKN20, HFW20, DCL18], we proposeMACLR (Multi-scale Adaptive

Clustering & Label Regularization), a two-stage pre-training procedure with those un-

paired raw data to obtain a sentence encoder E under EZ-XMC. As to FS-XMC, fine-tuning

the encoder on a fewpaired data is sufficient for the performance boost. Figure 6.2 demon-

strates that MACLR achieves superior performance when no supervision is available and

achieves much higher recall than Astec and ZestXML by a large margin, even under the

higher label coverage ratio.

Our main contributions are summarized below:

• We propose an essential Extreme Zero-Shot XMC (EZ-XMC) setting without any

assumptions on supervision and label coverage, which has not been explored in pre-

vious work and is more practical in real applications.

• We leverage unlabeled data to pretrain the sentence encoder E with improved In-

verse Cloze Task in Stage I of MACLR. In particular, multi-scale adaptive clustering

and label regularization are proposed to utilize raw text thoroughly. In Stage II, we

further self-train the encoder with pseudo positive pairs constructed from E in Stage

I as well as TF-IDF model with complementary information.

• Extensive experiments are conducted on four public EZ-XMC benchmark datasets.

Results demonstrate that our pre-trained encoder can outperform existing unsuper-

vised baseline methods notably. As an example, MACLR achieves Recall@100 of
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54.99%, nearly the same level as Astec [DSM21], one of the SOTA methods, trained

with a supervised subset covering around 70% labels on LF-Amazon-131K.

• MACLR can also achieve comparable or even better performance under the few-

shot setting than those heavily dependent on supervised information. For example,

MACLR is better than the SOTA ZestXML [GBP21] in Recall@100 over 20% (57.55%

v.s. 32.69%) when fine-tuned on the subset covering 1% labels of LF-Amazon-131K.

6.2 RelatedWork

Extrememulti-label classification Various extreme classifiers have been proposed

to address the large output space challenge of XMC problems. We can broadly catego-

rize them into two groups: partitioned-basedmodels with linear classifiers [PKH18, PV14,

YZZ20] that partition labels with hierarchical trees, leading to sub-linear inference time

complexity, and embedding-based methods [BJK15, JBC19, GMW19] that learn a clas-

sifier for each label and leverage approximated nearest neighbor [MY18, GKC16] to in-

dex labels in the large output space. There are also deep learning models such as Atten-

tionXML [YZW19], Astec [DSM21], SiameseXML [DAS21], and XR-Transformer [ZCY21]

that further improve the accuracy of those linear counterparts with various advanced en-

coder architectures. Nevertheless, none of those XMC methods can handle the EZ-XMC

setup: they not only suffer from the lack of supervised signals, but also fail to generalize to

unseen cold-start labels in the test set. The only exception is ZestXML [GBP21], a recently

proposed XMCmethod that was designed to address the generalized zero-shot XMC (GZ-

XMC) problem where a number of labels for prediction are absent during training. While

ZestXML partially resolves the generalization challenge of cold-start labels, just like those

conventional XMCmodels, it still depends heavily on a large number of training data with

positive (instance, label) pairs.
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Self-supervised learning techniques Past few years have witnessed great promise

in self-supervised learning, where a pre-training task is defined using only data’s self-

information [LCG20, CKN20, HFW20, DCL18, KTW20, GYC21]. Learned representa-

tions from the pre-training task can be then leveraged in a wide range of downstream

tasks in various domains, such as image classification [CKN20, HFW20] and object detec-

tion [LHQ20] in computer vision, and open-domain question answering [LCT19, GLT20]

in natural language processing. Specifically, we focus on contrastive approaches for Sen-

tenceBERT [RG19] models in this work, where the intuition is to pull semantically close

neighbors together and push apart non-neighbors via noise contrastive estimation or N-

pair losses. Various effective pre-training tasks such as Inverse Cloze Task (ICT) [LCT19]

and SimCSE [GYC21] have been shown to further improve the performance.

6.3 Problem Formulation

In this section, we present the problem formulation of EZ-XMC. With X and Y denoting

the set of instances and labels respectively, the general XMC problem can be viewed as

learning a scoring function f : X ×Y → R. f(·, ·)maps an (instance, label) pair (x, y) to a

similarity score, which is used tomake a prediction through approximate nearest neighbor

search algorithms. In previous settings such as XMC andGZ-XMC, a considerable amount

of relevant (instance, label) pairs {(xi, yi)} are available. On the contrary, in EZ-XMC, we

have no knowledge about corresponding relations between instances and labels, but only

their raw text, as shown in Figure 6.1. Thus, existing approaches dependent on relevant

pairs fail to learn an effective scoring function, evenwith a few paired data under FS-XMC.

Recent progresses in self-supervised learning have shown that a generalized sentence

encoder can be learned through elaborately designed pre-training tasks even without any

supervision [LCT19, CYC20], and then adapted to different downstream tasks directly

or via slight finetuning. On the other hand, the scoring function f can be modeled as
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f(x, y) = ⟨E(x), E(y)⟩, where E is a sentence encoder producing semantical dense embed-

dings, and ⟨·, ·⟩ is the similarity measurement such as inner product and cosine similarity.

Without loss of generality, inner product is adopted in the paper as the similarity metric

between embeddings of instances and labels. Thus, we formulate the problem as training

an encoder E with raw text of X and Y through a pre-training task for EZ-XMC. As to the

few-shot scenario FS-XMC, we can fine-tune E for improvement.

6.4 Method

In this section, we introduce a two-stage pre-training procedure, MACLR, to thoroughly

leverage unpaired data with raw text for EZ-XMC. Specifically, we present the general

framework in Section 6.4.1, and then dive into details of two stages, pre-training with the

improved Inverse Cloze Task and self-trainingwith pseudo positive pairs, in Sections 6.4.2

and 6.4.3 respectively.

6.4.1 Framework

The framework of our pre-training procedure is shown in Figure 6.3. MACLR consists of

two stages:

• Stage I: title-context pairs are constructed for the Inverse Cloze Task, and the en-

coder E is then trained on these pairs together with two proposed techniques, multi-

scale adaptive clustering and label regularization.

• Stage II: More pseudo positive pairs are crafted using different score functionsmod-

eled by the encoder from Stage I and TF-IDF respectively. E is further trained on

additional pairs to improve the encoding performance.

Details of each component are discussed in the following sections.
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Figure 6.3: Framework of our pre-training procedure.

6.4.2 Stage I: Pre-training with improved ICT

Inverse Cloze Task [LCT19] is a frequently used pre-training task for the sentence en-

coder. Specifically, for an instance x = {s1, . . . , sn} consisting of n sentences, ICT ran-

domly samples a sentence to serve as the pseudo positive label ŷ = si where i ∼ [1, n].

Then the rest of x is the pseudo instance x̂ = {s1, . . . , si−1, si+1, . . . , sn}. In XMC, due

to the property that the label usually summarizes the instance with one short sentence,

which works similarly as the title s1, we directly utilize (context, title) pairs in the form

of (x̂ = {s2, . . . , sn}, ŷ = s1). This construction works as the analog of the ground truth

(instance, label) pairs and capture the semantics of a sentence. With these pseudo pairs,

the contrastive training objective for a mini-batch of N pairs is as follows:

Lcontrastive = −
N∑
i=1

log
exp(E(x̂i) · E(ŷi))∑N
j=1 exp(E(x̂i) · E(ŷj))

(6.1)
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Based on ICT, we also develop two techniques, multi-scale adaptive clustering and label

reguarization, to fully leverage the information of unpaired instances and labels.

6.4.2.1 Multi-scale Adaptive Clustering

In the original ICT scheme, we can construct only one positive pair for a particular in-

stance. It is relatively hard in contrastive learning without enough positive examples, es-

pecially for extrememulti-label classification where one instancemight be associated with

more than one label, and a label is also likely to point to several different instances at the

same time. Thus a question arises naturally: is it possible to construct more positive pairs

from purely unpaired raw data to intergrate richer information into the pre-training pro-

cess? We solve it by the unsupervised K-means clustering. In detail, we divide pseudo

(context, title) pairs from ICT intoK clusters through K-means based on the embeddings

of all instances. Then ifC(x̂i) = C(x̂j), i.e., x̂i and x̂j belong to the same cluster, (x̂i, ŷj) and

(x̂j, ŷi) are regarded as positive pairs besides original ICT pairs. Furthermore, supervised

contrastive loss is adopted for training the encoder with a mini-batch of N pairs based on

the cluster assignment:

Lcluster =
N∑
i=1

−1
|PY(i)|

∑
p∈PY (i)

log
exp(E(x̂i) · E(ŷp))∑N
j=1 exp(E(x̂i) · E(ŷj))

(6.2)

Here, PY(i) = {p ∈ {1, . . . , N} : C(x̂i) = C(x̂p)} is the set of indices of all positives for

x̂i in the batch, and |PY(i)| is its cardinality. Minimizing Equation (6.2) pulls close the

representations of instances and their positive labels within the same cluster and pushes

away the representations of those from different clusters.

Besides, since the ultimate goal is the minimization of Equation (6.1), we propose a

multi-scale approach with adaptive training, which guides the encoder to learn the eas-

ier tasks with sufficient positive examples, and then master harder tasks gradually. This

approach allows the encoder to learn from the coarse scale to the fine scale of cluster-
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ing assignment, and is similar to the idea of curriculum learning [BLC09] to first focus on

learning from a subset of simple examples, and expanding to include the remaining harder

samples. Our adaptive training process can be conducted by modifying the cluster size to

adjust the task difficulty accordingly. To be specific, we initialize the cluster assignment

with the number of clusters K0, and double the cluster size every T steps. The cluster as-

signment is also updated every Tupdate steps along with the training of E . Such a process

lasts for half of the total training steps Ttotal to take advantage of positive examples from

constructed clusters. The obtained intermediate encoder from this adaptive procedure is

expected to satisfactorily capture the semantics of a sentence and is ready to deal with

the optimization of Equation (6.1). Then for the rest half of training steps, we turn to the

hardest setting treating each instance as one independent cluster, which exactly falls into

the contrastive training objective in Equation (6.1). Our multi-scale adaptive clustering is

illustrated in Figure 6.4.
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ŷ4
<latexit sha1_base64="1hpSomqG4oo3nRV2litKBoRdPwk=">AAAB8HicbZDLSgMxFIbP1Futt2qXboJFcFVmqnjZFdy4rGAv0g4lk6ZtaJIZkowwDH0KNy4UcSc+hyuX7nwM38D0stDWHwIf/38OOecEEWfauO6Xk1laXlldy67nNja3tnfyu3t1HcaK0BoJeaiaAdaUM0lrhhlOm5GiWAScNoLh5Thv3FGlWShvTBJRX+C+ZD1GsLHWbXuATZqMOiedfNEtuROhRfBmUKwUvt/LH43Xaif/2e6GJBZUGsKx1i3PjYyfYmUY4XSUa8eaRpgMcZ+2LEosqPbTycAjdGidLuqFyj5p0MT93ZFioXUiAlspsBno+Wxs/pe1YtM791Mmo9hQSaYf9WKOTIjG26MuU5QYnljARDE7KyIDrDAx9kY5ewRvfuVFqJdL3mnp+NorVi5gqizswwEcgQdnUIErqEINCAi4h0d4cpTz4Dw7L9PSjDPrKcAfOW8/RLmUcA==</latexit>

ŷ4

(a) K=1 (b) K=2 (c) K=4

Positive

Negative

Figure 6.4: An example of multi-scale adaptive clustering. Different colors represent dif-
ferent clusters. (a) In the beginning, there is only one cluster and {ŷj}4j=1 are all positive
labels for x̂1. (b)K is doubled to 2 and ŷ1 and ŷ3 are positive to x̂1. (c) Finally,K is equal to
4 where each instance is a cluster, and hence x̂1 only has one positive label ŷ1. The process
is similar for the rest of the instances.

6.4.2.2 Label Regularization

In addition to leveraging information from the instance side, we also have access to the

raw texts of the whole label set and can utilize them to boost the encoder’s performance
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from the label side [MKR22, MPF22]. Intuitively, for a randomly sampled label, with a

high probability it is an negative example to the instance of interest. We can take advan-

tage of this intuition to make the embedding of the instance far from its irrelevant labels.

Instead of increasing the distance directly, it is more stable and effective to adopt con-

trastive losses. To avoid overfitting, we choose a new positive example for each instance

instead of its corresponding pseudo label from ICT which has been used in Lcluster. More

concretely, x̂+
i is selected exactly the same as x̂i, since the dropout layer is placed in the

standard training of Transformer-based models and can be viewed as a minimal form of

data augmentation [GYC21]. By feeding the same sentence to the encoder E , two embed-

dings with different dropout masks are obtained, i.e., ĥi = E(x̂i, zi) and ĥ+
i = E(x̂+

i , z
+
i )

where z represents a random mask for dropout. ĥi ̸= ĥ+
i due to the dropout noise, but

they hold similar semantics from the same sentence and thus can be used as a positive

pair for contrastive learning. The procedure of label regularization is depicted in Figure

6.5. At each step, we sampleM real labels from the label set Y , and the reguarization term

is computed as follows:

Llabel =
N∑
i=1

− log
exp(ĥi · ĥ+

i )∑M
j=1 exp(ĥi · E(y−j )) + exp(ĥi · ĥ+

i )
(6.3)

Throughminimizing Llabel, the encoder learns to pull the instance away from its irrelevant

labels and incorporate the dropout augmentation at the same time. Together with Lcluster,

we have the final objective function for pre-training in the Stage I as L = Lcluster + Llabel.

6.4.3 Stage II: Self-training with multi-viewed pseudo pairs

After the pre-training procedure in Section 6.4.2, we can obtain an intermediate encoder

EI . But are there any ways to further improve the encoder? Inspired by self-training in

semi-supervised learning [YJC19, XLH20, HGS20, ZGL20], EI can be leveraged to make

predictions on those unpaired training instances themselves, to generate pseudo positive
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<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i
<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i
<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i
<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i

<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>

y�1
<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>

y�1
<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>

y�1
<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>

y�1
<latexit sha1_base64="QndEjE+ftMbQHmW4+XEu0lAatjI=">AAAB7HicbZDLSgMxFIbP1Futt6rLboJFEMEyU8HLruDGZQWnLbZjyaSZNjSTGZOMMNQ+gxsXirj1CXwEn8Cdb2N6WWjrD4GP/z+HnHP8mDOlbfvbyiwsLi2vZFdza+sbm1v57Z2aihJJqEsiHsmGjxXlTFBXM81pI5YUhz6ndb9/Mcrr91QqFolrncbUC3FXsIARrI3lpu3y7VE7X7RL9lhoHpwpFCuFw4ebz7uPajv/1epEJAmp0IRjpZqOHWtvgKVmhNNhrpUoGmPSx13aNChwSJU3GA87RPvG6aAgkuYJjcbu744BDpVKQ99Uhlj31Gw2Mv/LmokOzrwBE3GiqSCTj4KEIx2h0eaowyQlmqcGMJHMzIpID0tMtLlPzhzBmV15HmrlknNSOr5yipVzmCgLBdiDA3DgFCpwCVVwgQCDR3iGF0tYT9ar9TYpzVjTnl34I+v9B46rkYE=</latexit>

y�2
<latexit sha1_base64="QndEjE+ftMbQHmW4+XEu0lAatjI=">AAAB7HicbZDLSgMxFIbP1Futt6rLboJFEMEyU8HLruDGZQWnLbZjyaSZNjSTGZOMMNQ+gxsXirj1CXwEn8Cdb2N6WWjrD4GP/z+HnHP8mDOlbfvbyiwsLi2vZFdza+sbm1v57Z2aihJJqEsiHsmGjxXlTFBXM81pI5YUhz6ndb9/Mcrr91QqFolrncbUC3FXsIARrI3lpu3y7VE7X7RL9lhoHpwpFCuFw4ebz7uPajv/1epEJAmp0IRjpZqOHWtvgKVmhNNhrpUoGmPSx13aNChwSJU3GA87RPvG6aAgkuYJjcbu744BDpVKQ99Uhlj31Gw2Mv/LmokOzrwBE3GiqSCTj4KEIx2h0eaowyQlmqcGMJHMzIpID0tMtLlPzhzBmV15HmrlknNSOr5yipVzmCgLBdiDA3DgFCpwCVVwgQCDR3iGF0tYT9ar9TYpzVjTnl34I+v9B46rkYE=</latexit>

y�2
<latexit sha1_base64="QndEjE+ftMbQHmW4+XEu0lAatjI=">AAAB7HicbZDLSgMxFIbP1Futt6rLboJFEMEyU8HLruDGZQWnLbZjyaSZNjSTGZOMMNQ+gxsXirj1CXwEn8Cdb2N6WWjrD4GP/z+HnHP8mDOlbfvbyiwsLi2vZFdza+sbm1v57Z2aihJJqEsiHsmGjxXlTFBXM81pI5YUhz6ndb9/Mcrr91QqFolrncbUC3FXsIARrI3lpu3y7VE7X7RL9lhoHpwpFCuFw4ebz7uPajv/1epEJAmp0IRjpZqOHWtvgKVmhNNhrpUoGmPSx13aNChwSJU3GA87RPvG6aAgkuYJjcbu744BDpVKQ99Uhlj31Gw2Mv/LmokOzrwBE3GiqSCTj4KEIx2h0eaowyQlmqcGMJHMzIpID0tMtLlPzhzBmV15HmrlknNSOr5yipVzmCgLBdiDA3DgFCpwCVVwgQCDR3iGF0tYT9ar9TYpzVjTnl34I+v9B46rkYE=</latexit>

y�2
<latexit sha1_base64="QndEjE+ftMbQHmW4+XEu0lAatjI=">AAAB7HicbZDLSgMxFIbP1Futt6rLboJFEMEyU8HLruDGZQWnLbZjyaSZNjSTGZOMMNQ+gxsXirj1CXwEn8Cdb2N6WWjrD4GP/z+HnHP8mDOlbfvbyiwsLi2vZFdza+sbm1v57Z2aihJJqEsiHsmGjxXlTFBXM81pI5YUhz6ndb9/Mcrr91QqFolrncbUC3FXsIARrI3lpu3y7VE7X7RL9lhoHpwpFCuFw4ebz7uPajv/1epEJAmp0IRjpZqOHWtvgKVmhNNhrpUoGmPSx13aNChwSJU3GA87RPvG6aAgkuYJjcbu744BDpVKQ99Uhlj31Gw2Mv/LmokOzrwBE3GiqSCTj4KEIx2h0eaowyQlmqcGMJHMzIpID0tMtLlPzhzBmV15HmrlknNSOr5yipVzmCgLBdiDA3DgFCpwCVVwgQCDR3iGF0tYT9ar9TYpzVjTnl34I+v9B46rkYE=</latexit>

y�2
<latexit sha1_base64="JOEFPkuPa955OJBBo+N9RK+nkV4=">AAAB7HicbZDLSgMxFIbP1Futt6rLboJFEMEyY8HLruDGZQWnLbZjyaSZNjSTGZOMMNQ+gxsXirj1CXwEn8Cdb2N6WWjrD4GP/z+HnHP8mDOlbfvbyiwsLi2vZFdza+sbm1v57Z2aihJJqEsiHsmGjxXlTFBXM81pI5YUhz6ndb9/Mcrr91QqFolrncbUC3FXsIARrI3lpu3y7VE7X7RL9lhoHpwpFCuFw4ebz7uPajv/1epEJAmp0IRjpZqOHWtvgKVmhNNhrpUoGmPSx13aNChwSJU3GA87RPvG6aAgkuYJjcbu744BDpVKQ99Uhlj31Gw2Mv/LmokOzrwBE3GiqSCTj4KEIx2h0eaowyQlmqcGMJHMzIpID0tMtLlPzhzBmV15HmrHJeekVL5yipVzmCgLBdiDA3DgFCpwCVVwgQCDR3iGF0tYT9ar9TYpzVjTnl34I+v9B5AxkYI=</latexit>

y�3
<latexit sha1_base64="JOEFPkuPa955OJBBo+N9RK+nkV4=">AAAB7HicbZDLSgMxFIbP1Futt6rLboJFEMEyY8HLruDGZQWnLbZjyaSZNjSTGZOMMNQ+gxsXirj1CXwEn8Cdb2N6WWjrD4GP/z+HnHP8mDOlbfvbyiwsLi2vZFdza+sbm1v57Z2aihJJqEsiHsmGjxXlTFBXM81pI5YUhz6ndb9/Mcrr91QqFolrncbUC3FXsIARrI3lpu3y7VE7X7RL9lhoHpwpFCuFw4ebz7uPajv/1epEJAmp0IRjpZqOHWtvgKVmhNNhrpUoGmPSx13aNChwSJU3GA87RPvG6aAgkuYJjcbu744BDpVKQ99Uhlj31Gw2Mv/LmokOzrwBE3GiqSCTj4KEIx2h0eaowyQlmqcGMJHMzIpID0tMtLlPzhzBmV15HmrHJeekVL5yipVzmCgLBdiDA3DgFCpwCVVwgQCDR3iGF0tYT9ar9TYpzVjTnl34I+v9B5AxkYI=</latexit>

y�3
<latexit sha1_base64="JOEFPkuPa955OJBBo+N9RK+nkV4=">AAAB7HicbZDLSgMxFIbP1Futt6rLboJFEMEyY8HLruDGZQWnLbZjyaSZNjSTGZOMMNQ+gxsXirj1CXwEn8Cdb2N6WWjrD4GP/z+HnHP8mDOlbfvbyiwsLi2vZFdza+sbm1v57Z2aihJJqEsiHsmGjxXlTFBXM81pI5YUhz6ndb9/Mcrr91QqFolrncbUC3FXsIARrI3lpu3y7VE7X7RL9lhoHpwpFCuFw4ebz7uPajv/1epEJAmp0IRjpZqOHWtvgKVmhNNhrpUoGmPSx13aNChwSJU3GA87RPvG6aAgkuYJjcbu744BDpVKQ99Uhlj31Gw2Mv/LmokOzrwBE3GiqSCTj4KEIx2h0eaowyQlmqcGMJHMzIpID0tMtLlPzhzBmV15HmrHJeekVL5yipVzmCgLBdiDA3DgFCpwCVVwgQCDR3iGF0tYT9ar9TYpzVjTnl34I+v9B5AxkYI=</latexit>

y�3
<latexit sha1_base64="JOEFPkuPa955OJBBo+N9RK+nkV4=">AAAB7HicbZDLSgMxFIbP1Futt6rLboJFEMEyY8HLruDGZQWnLbZjyaSZNjSTGZOMMNQ+gxsXirj1CXwEn8Cdb2N6WWjrD4GP/z+HnHP8mDOlbfvbyiwsLi2vZFdza+sbm1v57Z2aihJJqEsiHsmGjxXlTFBXM81pI5YUhz6ndb9/Mcrr91QqFolrncbUC3FXsIARrI3lpu3y7VE7X7RL9lhoHpwpFCuFw4ebz7uPajv/1epEJAmp0IRjpZqOHWtvgKVmhNNhrpUoGmPSx13aNChwSJU3GA87RPvG6aAgkuYJjcbu744BDpVKQ99Uhlj31Gw2Mv/LmokOzrwBE3GiqSCTj4KEIx2h0eaowyQlmqcGMJHMzIpID0tMtLlPzhzBmV15HmrHJeekVL5yipVzmCgLBdiDA3DgFCpwCVVwgQCDR3iGF0tYT9ar9TYpzVjTnl34I+v9B5AxkYI=</latexit>

y�3
<latexit sha1_base64="9s3blf/J7U22x2akutb90W4uZIU=">AAAB7HicbZDLSgMxFIbP1Futt6rLboJFEMEyo+JlV3DjsoLTFtuxZNJMG5rJjElGKGOfwY0LRdz6BD6CT+DOtzG9LLT1h8DH/59Dzjl+zJnStv1tZebmFxaXssu5ldW19Y385lZVRYkk1CURj2Tdx4pyJqirmea0HkuKQ5/Tmt+7GOa1eyoVi8S17sfUC3FHsIARrI3l9lvHtwetfNEu2SOhWXAmUCwX9h9uPu8+Kq38V7MdkSSkQhOOlWo4dqy9FEvNCKeDXDNRNMakhzu0YVDgkCovHQ07QLvGaaMgkuYJjUbu744Uh0r1Q99Uhlh31XQ2NP/LGokOzryUiTjRVJDxR0HCkY7QcHPUZpISzfsGMJHMzIpIF0tMtLlPzhzBmV55FqqHJeekdHTlFMvnMFYWCrADe+DAKZThEirgAgEGj/AML5awnqxX621cmrEmPdvwR9b7D5G3kYM=</latexit>

y�4
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Figure 6.5: An illustration of label reguarization. (a) shows that x̂i is expected to be far
from sampled irrelevant labels {y−j }4j=1, while (b) indicates the identical x̂i is added as a
positive example for label regularization.

pairs. These pseudo pairs are much better than random guessing and can serve as a dis-

tinct view from ICT pairs. On the other hand, similar pseudo pairs can be constructed by

other unsupervisedmethods such as TF-IDF, which provide different and complementary

information about the instance.

With multi-viewed pseudo positive pairs, we can conduct further training on the en-

coder in State II from a new perspective and self-improve EI . The detailed process works

as follows:

1) Compute the similarity score using EI for each training instance xi, and select labels

with top-k maximum scores as its pseudo labels;

2) Generate labels similarly with TF-IDF, except that E(x) and E(y) are replaced with

their TF-IDF vectors;

3) Mix pseudo positive pairs from 1) and 2), and train EI on them with Equation (6.2).

6.4.4 MACLR Algorithm

The whole pre-training procedure of MACLR is shown in Algorithm 4. Note that for FS-

XMC, we simply fine-tune the encoder E fromMACLR on available positive pairs for sev-

eral steps by minimizing the original contrastive loss in Equation (6.1).
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Algorithm 4 Pre-training procedure of MACLR

Require: Raw text of instances and labels (X ,Y), the sentence encoder E , batch size N
and M , training step parameters TK , Tupdate and Ttotal, initial cluster size K0, # of top
candidates k

Ensure: A pre-trained sentence encoder E
▷ Stage I: Pre-training with the improved ICT

1: Construct ICT (context, title) pairs from raw texts in X
2: Feed the context for each pair into the encoder E and cluster them intoK = K0 clusters

via k-means
3: for t = 1, . . . , Ttotal do
4: Sample a mini-batch of pseudo pairs of size N and a mini-batch of real labels of

sizeM
5: Compute the loss: L = Lcluster + Llabel
6: Train the encoder by minimizing L
7: if tmod TK = 0 and t < Ttotal/2 then
8: K = K ∗ 2
9: end if
10: if tmod Tupdate = 0 and t < Ttotal/2 then
11: Feed raw texts of X again into E , and update current cluster assignment via

k-means with the cluster numberK
12: end if
13: if t ≥ Ttotal/2 then
14: Treat each instance as an independent cluster
15: end if
16: end for

▷ Stage II: Self-training with multi-viewed pseudo pairs
17: Construct pseudo pairs (Xpseu,Ypseu) by selecting top-k candidate labels with the sim-

ilarity metric on the encoder E and TF-IDF respectively
18: Train the encoder E for Ttotal steps by minimizing Equation (6.2)

6.5 Experimental Results

6.5.1 Experimental Settings

Datasets We evaluate MACLR on 4 public XMC benchmark datasets [BDJ16, GBP21]

where raw text of instances and labels are available. These datasets are derived from

real-world applications, ranging from item-to-item recommendation (LF-Amazon-131K,
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LF-Amazon-1M), to Wikipedia articles category/title tagging (LF-WikiSeeAlso-320K, LF-

Wikipedia-500K).

EvaluationProtocol Weconsider two evaluation setups: ExtremeZero-shot Learning

of XMC (EZ-XMC) and Few-shot Learning of XMC (FS-XMC). EZ-XMC is a fully unsuper-

vised learning setup where no positive (instance, label) pairs are available. The only avail-

able information is the raw text of training instances and the whole label set. FS-XMC is a

semi-supervised learning setup where only very few positive (instance, label) pairs in the

training set are available. Regardless of the learning procedure, all models are evaluated

on the same test set for fair comparison.

We evaluate the models’ performance with precision@k (P@k, k ∈ {1, 3, 5}) and re-

call@k (R@k, k ∈ {1, 3, 5, 10, 100}), which are two commonly-used evaluation metrics in

the XMC literature [RKY19, CJY21].

Baseline Methods For EZ-XMC, we compare our method with the following unsu-

pervised learning algorithms: TF-IDF, XR-Linear, GloVe, SentBERT, MPNet, SimCSE

and ICT. Note that SentBERT and MPNet are pre-trained on external multi-task learn-

ing datasets with extra supervision. In contrast, SimCSE and ICT are fully unsupervised

pre-rained Siamese-Transformers on the specific XMC dataset only.

For FS-XMC, as few-shot (instance, label) pairs are available, we additionally compare

fine-tuned MACLR with competitive XMC approaches, including Astec [DSM21], Siame-

seXML [DAS21], and ZestXML [GBP21]. ZestXML is the leading XMC method that im-

proves performance on few-shot labels. We also take into account SentBERT [RG19] with

further fine-tuning to demonstrate the effectiveness of our pre-training procedure.
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Table 6.1: Extreme Zero-shot Learning (EZ-XMC) comparison of different methods.

Method
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

LF-Amazon-131K

TF-IDF 12.38 11.50 9.14 6.91 18.14 23.21 29.32 45.04
XR-Linear 7.56 7.84 7.30 4.05 12.11 18.32 29.17 40.39
GloVe 3.67 2.78 2.15 2.05 4.33 5.44 7.23 14.17
SentBERT 1.86 1.44 1.14 1.01 2.22 2.88 4.01 10.18
MPNet 13.94 11.41 8.82 7.82 18.08 22.58 27.91 43.39
SimCSE 10.13 8.61 6.69 5.61 13.39 16.84 21.27 35.81
ICT 13.82 11.41 8.90 7.76 18.09 22.80 28.94 47.40
MACLR (ours) 18.13 15.42 11.93 10.35 24.45 30.43 37.28 54.99

LF-WikiSeeAlso-320K

TF-IDF 10.71 8.90 7.15 5.92 13.03 16.48 21.60 42.55
XR-Linear 4.73 4.27 3.90 2.23 5.83 8.64 14.18 36.93
GloVe 3.86 2.76 2.21 2.12 4.11 5.22 6.95 15.33
SentBERT 1.71 1.27 1.06 1.08 2.16 2.90 4.17 10.76
MPNet 13.75 11.93 9.58 8.14 17.77 22.21 28.11 45.91
SimCSE 9.03 6.64 5.22 4.99 9.89 12.34 15.93 30.11
ICT 10.76 10.05 8.12 6.12 14.32 18.05 23.01 39.77
MACLR (ours) 16.31 13.53 10.78 9.71 20.39 25.37 32.05 53.83

LF-Wikipedia-500K

TF-IDF 20.30 12.98 9.96 7.25 12.91 15.98 20.31 38.16
XR-Linear 10.67 8.77 7.61 3.69 8.58 12.11 19.80 31.02
GloVe 2.19 1.52 1.23 0.85 1.66 2.18 3.10 8.52
SentBERT 0.17 0.15 0.13 0.05 0.13 0.18 0.30 1.29
MPNet 22.46 12.87 9.49 8.74 14.07 16.76 20.64 34.72
SimCSE 14.32 6.84 4.55 4.24 8.03 11.26 14.35 27.68
ICT 17.74 9.67 7.06 7.35 11.60 13.84 17.19 31.08
MACLR (ours) 28.44 17.75 13.53 10.40 18.16 22.38 28.52 50.09

LF-Amazon-1M

TF-IDF 7.68 9.20 7.23 5.61 19.30 24.92 31.76 51.79
XR-Linear 5.19 5.48 5.26 3.63 11.30 17.94 31.18 43.79
GloVe 4.05 4.07 3.07 2.91 8.42 10.44 12.90 21.18
SentBERT 2.82 2.87 2.13 2.03 5.91 7.21 8.80 14.22
MPNet 8.29 8.87 6.80 6.04 18.64 23.51 29.35 46.15
SimCSE 3.33 3.69 2.74 2.38 7.66 9.38 11.43 18.54
ICT 8.66 9.26 7.13 6.30 19.45 24.60 30.73 48.42
MACLR (ours) 9.58 10.41 8.03 7.38 22.01 27.72 34.48 55.23
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6.5.2 Zero-Shot Learning

In this section, we focus on extreme zero-shot learning (EZ-XMC), where no real positive

(instance, label) pairs are accessible. Table 6.1 presents detailed performance of precision

and recall on all four datasets. Our proposed MACLR consistently outperforms all com-

paring baselines by a large margin on all four datasets. Compared to the leading sparse

method TF-IDF, MACLR has an average of 5.3% and 9.1% improvement in Precision@1

and Recall@100, respectively. Compared to the leading model MPNet, MACLR has an

average of 3.5% and 10.9% improvement in Precision@1 and Recall@100 respectively.

Speaking of sparse lexical matching approaches, TF-IDF remains a tough-to-beat un-

supervised baseline. Specifically, TF-IDF performs better than many BERT variants (e.g.,

SentBERT, SimCSE, ICT), which is aligned with the finding in recent zero-shot dense re-

trieval literature [TRR21, ICH22]. It suggests the importance of designing proper self-

supervised learning tasks for Transformer models in unsupervised EZ-XMC setup. Note

that XR-Linear is based on TF-IDF vectors whereas the noise from pseudo pairs makes it

even inferior to the original TF-IDF.

As for pre-trained SentBERT models, on the other hand, only MPNet shows compa-

rable performance with TF-IDF. MPNet remains competitive because it was trained on

a large supervised corpus (out-of-domain) to learn semantics between paraphrasing sen-

tences. Thus, MPNet should be viewed as a multi-task learning baseline with extra su-

pervision. However, MACLR is significantly better than MPNet with an average improve-

ment of 3.5% in P@1 and over 10% in R@100. Furthermore, MACLR also outperforms its

counterparts which are trained with effective pre-training tasks such as SimCSE and ICT

on the target dataset, showing the effectiveness of pre-training strategies like multi-scale

adaptive clustering in MACLR. Overall, results in Table 6.1 demonstrates that MACLR is

capable to learn informative embeddings and to make useful predictions even with no su-

pervision. We will investigate each component in MACLR in Section 6.5.4 thoroughly.
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Table 6.2: Results of FS-XMC where the training subset covers 1% labels.

Method
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 1.53 0.57 0.36 0.67 0.75 0.78 0.81 0.92
Astec 0.94 0.44 0.29 0.55 0.78 0.84 0.91 1.13
SiameseXML 1.45 0.56 0.35 0.84 0.96 1.00 1.03 1.16
ZestXML 10.10 9.19 7.34 5.63 14.46 18.61 23.73 32.69
SentBERT 12.64 9.82 7.80 6.97 15.34 19.74 25.33 43.53
MPNet 14.78 11.55 8.97 8.28 18.24 22.84 28.54 45.89
MACLR (ours) 18.74 16.07 12.52 10.73 25.44 31.89 39.17 57.55

LF-WikiSeeAlso-320K

XR-Linear 1.24 0.57 0.37 0.42 0.58 0.63 0.68 0.76
Astec 1.25 0.60 0.41 0.69 0.98 1.11 1.27 1.56
SiameseXML 1.81 0.75 0.48 1.03 1.26 1.33 1.41 1.67
ZestXML 8.74 6.78 5.41 4.68 9.70 12.21 15.73 24.98
SentBERT 16.30 12.62 10.08 9.30 18.92 23.78 30.40 52.92
MPNet 17.14 12.64 9.96 9.97 18.98 23.45 29.67 50.75
MACLR (ours) 19.09 14.57 11.53 11.39 22.34 27.63 34.81 57.92

LF-Wikipedia-500K

XR-Linear 2.95 1.19 0.75 0.62 0.74 0.76 0.79 0.84
Astec 2.85 1.16 0.73 1.46 1.75 1.84 1.92 2.08
SiameseXML 2.72 1.15 0.73 1.39 1.73 1.84 1.93 2.09
ZestXML 23.86 14.97 11.31 7.19 13.00 16.03 20.13 29.95
SentBERT 32.09 20.50 15.78 10.94 19.46 24.12 30.94 55.94
MPNet 34.58 22.02 16.86 11.96 21.32 26.30 33.53 57.78
MACLR (ours) 44.27 28.46 21.83 15.14 27.04 33.33 42.03 67.95

LF-Amazon-1M

XR-Linear 0.51 0.20 0.12 0.36 0.42 0.43 0.45 0.49
Astec 0.49 0.59 0.12 0.34 0.40 0.42 0.44 0.49
SiameseXML 0.60 0.73 0.15 0.41 0.46 0.48 0.49 0.53
ZestXML 5.07 5.89 4.38 3.68 12.31 15.04 17.80 22.51
SentBERT 6.56 6.93 5.68 4.35 18.29 24.72 28.69 48.52
MPNet 8.87 10.34 7.56 6.78 20.11 26.14 31.98 50.48
MACLR (ours) 10.37 11.23 8.58 7.57 23.55 29.60 36.71 56.44
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Table 6.3: Results of FS-XMC where the training subset covers 5% labels.

Method
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 5.09 2.09 1.32 2.36 2.86 3.02 3.18 3.74
Astec 3.94 1.92 1.26 2.31 3.34 3.66 4.00 4.96
SiameseXML 5.36 2.23 1.41 3.15 3.89 4.08 4.27 4.82
ZestXML 12.33 10.99 8.71 6.84 17.19 21.97 28.10 46.49
SentBERT 15.47 12.24 9.64 8.63 19.23 24.40 30.82 49.22
MPNet 15.03 11.88 9.28 8.47 18.74 23.69 29.93 48.84
MACLR (ours) 19.56 16.19 12.64 11.15 25.65 32.18 39.63 58.45

LF-WikiSeeAlso-320K

XR-Linear 4.69 2.20 1.46 1.82 2.41 2.63 2.82 3.42
Astec 5.90 2.80 1.86 3.26 4.49 4.95 5.49 6.83
SiameseXML 6.83 3.15 2.06 3.88 5.15 5.56 6.02 7.09
ZestXML 10.06 8.11 6.60 5.33 11.49 14.74 19.57 40.46
SentBERT 18.47 14.19 11.29 10.82 21.55 26.77 33.92 57.02
MPNet 18.59 13.99 11.08 10.89 21.12 26.10 32.82 54.70
MACLR (ours) 20.99 15.57 12.26 12.59 23.94 29.41 36.78 59.81

LF-Wikipedia-500K

XR-Linear 11.80 5.30 3.39 2.76 3.47 3.65 3.82 4.09
Astec 11.23 5.27 3.48 5.46 7.47 8.16 8.90 10.35
SiameseXML 12.44 5.69 3.79 6.05 7.98 8.62 9.22 10.40
ZestXML 27.31 17.31 13.09 8.28 15.13 18.64 23.30 36.50
SentBERT 41.06 26.35 20.25 14.17 25.34 31.32 39.77 66.24
MPNet 42.81 28.07 21.66 14.67 26.81 33.24 42.28 67.76
MACLR (ours) 47.25 30.57 23.54 16.20 29.01 35.81 45.13 71.35

LF-Amazon-1M

XR-Linear 2.11 0.84 0.53 1.45 1.74 1.81 1.88 2.04
Astec 2.22 2.56 0.71 1.54 1.91 2.03 2.16 2.41
SiameseXML 2.60 3.01 1.06 1.81 2.20 2.30 2.41 2.60
ZestXML 7.17 8.35 6.36 5.18 17.49 21.88 26.80 36.51
SentBERT 8.89 10.02 7.93 7.00 21.58 27.35 33.98 54.28
MPNet 9.25 10.41 8.00 7.11 21.87 27.64 34.61 54.72
MACLR (ours) 10.60 11.47 8.80 7.89 24.14 30.44 37.95 58.45
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6.5.3 Few-Shot Learning

We further conduct few-shot learning (FS-XMC) experiments in which different learning

algorithms can access a limited number of positive (instance, label) pairs. To simulate the

scenario of few-shot learning, we first manually sample a small ratio of labels, then collect

all their positive instances from the training set as the final subset of positive (instance,

label) pairs for model training. Results of FS-XMC methods fine-tuned with 1% and 5%

labels are shown in Tables 6.2 and 6.3 respectively.

Our proposedMACLR outperforms all other baselines significantly, including variants

of Siamese-Transformer models (e.g., SentBERT, MPNet) and major competitive XMC

methods (e.g., XR-Linear, Astec and SiameseXML), on all four datasets.

Note that SiameseXML is the state-of-the-art XMC method under the full supervision

setup of XMC. Here, we again witness that existing XMC methods heavily rely on the su-

pervision level as well as the full-coverage of label space for test set. MACLR, in contrast,

still performs robustly under FS-XMC, which enjoy larger applicability to emerging do-

mains with many cold-start labels.

Crucially, even ZestXML tailored to address the challenging scenario of unseen la-

bels cannot match the performance of MACLR. In particular, when focusing on the few-

shot scenario with only 1% sampled labels, MACLR achieves 18.74% in P@1, improving

the performance of Astec with 0.94% and ZestXML with 10.10% significantly. Besides,

MACLR outperforms all Sentence-BERT counterparts, validating the effectiveness of our

pre-training procedure. As to fine-tuning on the subset with 5% labels, performance of all

methods are improved as expected with more supervision. The relative rank among these

methods remains the same, with MACLR still performing the best in terms of precision

and recall on all four datasets.
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6.5.4 Ablation Study

In this part, we conduct an ablation study to investigate each component in our pre-training

procedure, includingmulti-scale adaptive clustering, label regularization, and self-training

with pseudo positive pairs constructed from the encoder or TF-IDF. We add a component

once a time on LF-Amazon-131K to observe its independent influence on the model per-

formance. Table 4.4 presents detailed performance on seven different configurations.

Table 6.4: Ablation study on LF-Amazon-131K.

Index
Ablation Configuration Precision Recall

MAC * LR * E † TFIDF † @1 @3 @5 @1 @3 @5 @10 @100

1 No No No No 13.82 11.41 8.90 7.76 18.09 22.80 28.94 47.40
2 Yes No No No 15.79 13.16 10.22 8.85 20.90 26.27 32.61 49.83
3 No Yes No No 16.02 13.29 10.28 9.04 21.27 26.51 32.97 50.34
4 Yes Yes No No 16.37 13.71 10.65 9.29 21.63 27.03 33.93 51.45

5 Yes Yes Yes No 17.01 14.75 11.41 9.72 23.33 29.04 35.20 53.55
6 Yes Yes No Yes 16.51 14.12 10.92 9.52 22.43 28.02 34.64 52.78
7 Yes Yes Yes Yes 18.13 15.42 11.93 10.35 24.45 30.43 37.28 54.99

* MAC represents adaptive clustering while LR stands for label regularization.
† Pseudo positive pairs are constructed from E or TFIDF.

For two techniques multi-scale adaptive clustering and label regularization during the

Stage I, they can improve the performance of the encoder separately, as shown in the per-

formance gain of the index 2 and 3 over the index 1. When combined, they can further im-

prove the accuracy of themodel, from8.90% to 10.65% inP@5 and from47.40% to 51.45%

in R@100. As to the second stage, we explore the impact of self-training with pseudo pos-

itive pairs either from the encoder itself or TF-IDF. We can see from Table 6.4 that pairs

from both E and TF-IDF contribute to the precision and recall gain over the index 5. It

further validates that the encoder and TF-IDF provides complementary perspective when

constructing pseudo positive pairs.
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6.6 Conclusions

This work is the first to investigate the problem of Extreme zero-shot XMC without any

supervision. We develop a two-stage pre-training procedure MACLR to train a Sentence-

BERT style encoder on pseudo (context, title) pairs constructed from raw text. We demon-

strate that techniques including multi-scale adaptive clustering, label regularization and

self-training contribute to the performance gain of the pre-trained encoder. In particular,

MACLR outperforms all unsupervised baselines significantly when there are no (instance,

label) pairs provided. It also offers leading accuracy in both precision and recall after fine-

tuning on a limited number of paired data. One limitation is relative low accuracy of top

candidates and a future direction could be adding a ranker model after the encoder to

improve performance on head labels.
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CHAPTER 7

Structured Video-Language Modeling with Temporal

Grouping and Spatial Grounding

The idea of pre-training followed by downstream adaptation can be extended to video-

language learning, where web-craweled noisy data are easy to obtain. To improve the

utilization of the pre-training dataset, we exploit fine-grained structures in this chapter to

make latent representations more expressive and generalizable.

7.1 Introduction

Videos are composed of groups of pixels spanning spatially and temporally. Semantically

related groups of pixels form the objects in the visual scenes and their changes through

space and time vividly show the action and interactions of physical world. Scene switch-

ing further complicates the video story line and finally depicts attractive video stories. The

similar structures also appear in the paragraphs when they come to describe the videos.

Captions are built from the basic grammar components such as nouns and verbs, and sen-

tences are concatenated to describe complex scenes.

Modern video-languagemodels (VLMs), however,mostly neglect the fine-grained struc-

tures of such video-text pairs during the development. Video-language pre-training typ-

ically follows the pipeline: (1) encoding video and text pairs into latent representations,

(2) modality fusion, and (3) pre-training on specific objectives. Existing methods typi-

cally optimize these three components in the pre-training pipeline by designing expressive
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encoders [BNV21, LLL22, GGL22a, NSS22, MJW23], fusing two modalities via a cross-

encoder [GGL22a, LLL22, LLZ21, LCC20, LJS20, XGH21a, ZY20], or adopting a com-

bination of various pre-training tasks such as contrastive learning and masked model-

ing [LLL22, GGL22a, FLG21, ZLL22, CYW22, GGL22b]. While these modifications bene-

fit the pre-trained model, their lack of local discriminative modeling poses challenges for

VLMs to further understand complex videos.

It has been shown that most video-language pre-training methods merely perform

well on learning holistic representations to match a ⟨video, caption⟩ pair while neglect

fine-grained information such as region-object correspondences, or scene/action changes

along the time in a video [AYQ21, BNV21, LLZ21, LCC20, LJS20,MZA19,XGH21b,NSS22].

However, such regional or temporal fine-grained information has been demonstrated to

play a vital role in localization and reasoning tasks [LLL22, GGL22a, ZYW22, MJW23,

YQC22]. Motivated by aforementioned observations, we revive the strong connectivity

between basic components of video clips and languages in self-supervised video-language

pre-training. We approach the video-language pre-training task from a different perspec-

tive with a focus on exploiting spatiotemporally fine-grained structures.

In this work, we integrate structured video-language interactions into the pre-training

stage and propose a novel framework, Structured Video-LanguageModeling (S-ViLM),

with temporal grouping and spatial grounding. S-ViLM encourages instance-level video-

caption alignment, fine-grained region-object alignment, and learns temporal-aware video

representations, simultaneously. As shown in Figure 3.1, S-ViLM consists of three train-

ing objectives: inter-clip spatial grounding, intra-clip temporal grouping, and global con-

trastive learning. Given a video-caption pair as the input, a classical dual-encoder model

is leveraged to extract the representation for each modality, respectively. Videos are pre-

processed with the cut-and-paste operation, inspired by [ZYW22, YHO19], i.e., pasting

one clip in a video onto the other background video, to explicitly introduce temporal scene

changes. We further adopt grouping blocks [XDL22, YWQ22] to aggregate semantically
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similar video patches to represent regions without off-the-shelf detectors via a set of group

tokens shared among all videos. In inter-clip spatial grounding, we align grouped video

tokens with objects represented by nouns in the caption by minimizing our grounding

loss. In intra-clip temporal grouping, we improve features temporal granularity by distin-

guishing foreground and background representations within one clip. Finally, the model

is trained by a global video-caption contrastive loss to match instance-level video-caption

pairs. We evaluate our proposed method comprehensively on four representative tasks,

including text-video retrieval, video question answering, video action recognition, and

temporal action localization. Our strong experimental results demonstrate that exploiting

fine-grained video-text structures during pre-training effectively improves VLM’s video

understanding and reasoning capabilities.

Our key contributions are summarized as follows:

• We propose S-ViLM, a dual-encoder video-language modeling framework, utilizing

structured video-caption interactions for more expressive spatiotemporal features.

• We leverage a cut-and-paste operation to introduce scene changes into videos during

pre-training, and propose an intra-clip grouping module to learn more temporal-

aware features.

• Wedesign an inter-clip spatial groundingmodule to capture fine-grained correspon-

dences by aligning objects from the caption and regions from the video in a self-

supervised manner.

• Experimental results have demonstrated the effectiveness of S-ViLM on four down-

stream tasks, including text-video retrieval, video question answering, video action

recognition, and temporal action localization. For example, S-ViLM outperforms

SOTA by 3% in R@1 in zero-shot video-text retrieval on MSR-VTT and 5% in accu-

racy in action recognition onUCF101, showing its advantages over bothmulti-modal

and single-modal tasks.
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7.2 RelatedWork

Video-language pre-training. Video-language pre-training is an emerging research

area that aims to develop machine learning models capable of jointly understanding vi-

sual and textual content. Representations learned from large scale noisy datasets such as

HowTo100M [MZA19],WebVid [BNV21], and VideoCC [NSS22] have demonstrated great

potentials in adapting to downstream tasks, including text-video retrieval, video ques-

tion answering, and video captioning. Elaborately designed pre-training objectives rang-

ing from generative [CLY20, FLG21, LYY19, LXX22] to discriminative [BNV21, LLZ21,

AYQ21, SXS22, LLL22, GGL22a, MXS22, WYC23, WGY23, WSC23] have been proposed,

among which contrastive learning is prevalent and widely adopted to attract paired video-

caption instances and repelling unpaired ones. However, their primary focus is still on

learning holistic global representations to align instance-level ⟨video, caption⟩ pairs. Re-

cently, some approaches have been proposed to leverage finer-grained information such

as nouns/verb phrases from a caption. ALPRO [LLL22] extracts pseudo entity labels by

feeding noun prompts into a frozen model and use contrastive objective to align cropped

visual regions and the corresponding textual labels. In [GGL22a],MCQ recovers randomly

masked noun/verb tokens via resorting to global video features, which implicitly improves

text entity association in visual encoding. LAVILA [ZMK23] constructed temporally dense

captions by automatic annotation from large language models to describe activities more

comprehensively. In addition, TemPVL [MJW23] enables temporal and semantic align-

ment such that the trained model can accurately perceive temporal boundaries in videos

given the text description. Despite these efforts, correspondences between visual regions

and objects from noun concepts in captions and temporal scene shifts in a video are still

neglected and not modeled explicitly in existing video-language pre-training methods. In

this work, we propose two novel designs, spatial grounding and temporal grouping, to

leverage fine-grained information in the pre-training stage.
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Vision languagegrounding. The goal of visual grounding (VG) is to locate themost rel-

evant object or region in a visual input based on a natural language query [FGI15, RRH16,

FPY16, GGC22, GVC20]. Recently, visual grounding has been adapted to pre-training

tasks for open-vocabulary image segmentation [GGC22, XDL22]. OpenSeg [GGC22], for

example, semantically aligns a caption with extracted image regions via a grounding loss.

Moreover, without the off-the-shelf object detectors, GroupViT [XDL22] learns to group

together semantic regions from text supervision by contrastive learning. Note that visual

grounding is mostly discussed in the image domain and its success motivates us to extend

visual-semantic alignment to video-language pre-training. To achieve this, we integrate

a novel spatial grounding module in our framework to promote visual and textual entity

correspondences in a self-supervised manner.

Video temporal modeling. In contrast to images, videos contain a sequence of dy-

namic frames and how to model temporal information is critical in video understand-

ing [FFM19, BWT21, TBF14, AGG21, ZYW22, QLY22]. Specifically, TSP [AGG21] learns

temporal information via predicting clips inside or outside the action with substantial an-

notations. PAL [ZYW22] aligns features of pasted pseudo action regions from two syn-

thetic videos. BSP [XPE21] introduces a novel boundary-sensitive pretext task via classi-

fying the boundary types of synthetic videos. These techniques are elaborately designed

for training models on long videos such as movies or TV dramas, which contains natural

scene changes. However, fewof themhave been considered in video-language pre-training

since the majority of video-language datasets contains short videos with repeated frames

and are lacking in temporal differences. Instead, we develop a temporal grouping method

to learn temporal-aware clip features in a self-supervised manner. We show that features

extracted from explicitly temporal modeling achieve significant improvements in not only

temporal action localization tasks, but also coarse-grained reasoning and understanding

tasks such as video question answering and video action recognition.
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7.3 Method

7.3.1 Overview

The framework of S-ViLM is presented in Figure 7.1. We adopt the dual encoder architec-

ture for video-language pre-training, and there are three primary objectives used in the

pre-training stage: (1) inter-clip spatial grounding, (2) intra-clip temporal grouping, and

(3) global contrastive learning.

As shown in Figure 7.1, temporal changes are first artificially introduced into training

examples through cut-and-paste. Then the pre-processed video together with learnable

group tokens are fed into the video encoder. Specifically, group tokens aggregate seman-

tically similar video tokens via grouping blocks and are then aligned with object concepts

by spatial grounding. It promotes region-object groundingness, which indicates the align-

ment between a region in the video and an object in the caption, e.g., as illustrated in Inter-

clip Spatial Grounding in Figure 1, the red region corresponds exactly to the word “pins” in

red. In contrast to previous methods where regions are extracted with pre-trained object

detectors [CGW22, LLL22, YSG21], these learnable group tokens can cluster and organize

semantically similar regions in a self-supervised manner, which is more effective and re-

duces the artifacts of any detectors. For the language branch, the original captions are

tokenized into a sequence of text tokens, which are then fed into a text encoder to extract

the corresponding representation from the preceding [CLS] token. Noun tokens repre-

senting objects are extracted in the same way given a set of prompts.

To promote temporal awareness, we use masks derived from the cut-and-paste opera-

tions as the ground-truth for temporal grouping. Furthermore, we model the interaction

between region features and noun tokens using inter-clip spatial grounding loss. Finally,

a global contrastive loss is computed between the video and the caption representations

to match the instance-level ⟨video, caption⟩ pair.
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Figure 7.1: Illustration of S-ViLM pre-training. Three training objectives promote struc-
tured video-language interaction: (1) temporal grouping learns temporal-aware features
by distinguishing clips from background or foreground; (2) spatial grounding focuses
on local correspondences between regions and objects; (3) global contrastive learning
matches instance-level ⟨video, caption⟩ pairs.

7.3.2 Intra-clip Temporal Grouping with Cut-and-Paste

Commonly-used video-language pre-training data usually consist of short video clips with

repetitive scenes. To simulate scene shifts, we design a cut-and-paste operation inspired

from image augmentations [YHO19, ZYW22] to introduce temporal changes manually to

further improve video representations.

Given a target video vi with T frames as the foreground and a randomly sampled video

vpi with the index pi as the background from the same batch of size B, we divide each

video into Nt = T/t clips with the temporal window size t. We then sample the start and

end clip indices s and e from (0, Nt), and paste the corresponding region from vi into the

background video vpi to form a blended video v̂i. For the clip sampling procedure, we first

uniformly sample the duration of the foreground video d from [Nt/2, Nt) to guarantee it is

112



the majority of the blended video. Then we sample the start index s from [0, Nt − d), and

the end index e was computed naturally as e = s+ d. We included this detail in our latest

version. We define the foreground-background mask as mi ∈ RNt = {1(j ∈ [s, e])|j ∈

[0, Nt)}, where 1(·) is the indicator function. This operation is illustrated in Figure 7.1.

A video is first flattened into N non-overlapping voxels. After projected by a linear

layer, these voxel tokens are fed into the transformer encoder to obtain transformed tokens

zvi ∈ RN×d, where d is the feature dimension. To obtain clip-level representations zclipi ∈

RNt×d, we average-pool over zvi along the spatial dimension after recovering the feature

map’s 3D shape. Two cluster centers, zbi for the background and zfi for the foreground,

are further computed by averaging features from zvi on the corresponding position based

on the mask mi. To assign each clip to either background or foreground, we compute ai

via cosine similarity with an element-wise softmax function applied on the last dimension,

where ⟨·, ·⟩ is cosine similarity and τ is the temperature to scale logits:

ai = Softmax(⟨zclipi , [zbi ; z
f
i ]

T ⟩/τ) ∈ RNt×2. (7.1)

Finally, the temporal grouping loss can be computed within a batch between ai and the

ground-truth one-hot maskingmi using mean squared error as

Lt =
1

B

B∑
i

ℓBCE(ai,One-hot(mi)). (7.2)

Note that we have also tried the binary cross entropy loss which performs comparably to

MSE. Thus, we select a relatively simple MSE loss for temporal grouping.

7.3.3 Inter-clip Spatial Grounding with Group Tokens

Observing the correspondences between visual regions in a video and noun phrases (ob-

jects) in a caption, we model such fine-grained alignment for more expressive encoders.
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In practice, it is infeasible to pool tokens of interest as cluster centers since we do not have

ground-truth segmentation. Thus, we adopt M learnable group tokens to cluster seman-

tically similar regions in a self-supervised manner. Note that group tokens are randomly

initialized and shared among different videos. Multiple grouping blocks are placed at dif-

ferent layers of the video encoder to update group tokens progressively. The final group

tokens denoted asG = {gmi }Mm=1 aggregate semantically similar voxels and represent differ-

ent regions in the video vi. Compared with using off-the-shelf region proposal networks,

our design of token grouping is more computationally efficient, and can be adapted to the

pre-training dataset without region annotations in a self-supervised manner dynamically

and flexibly. For each caption ci of a video, we extractK noun phrases using noun chunk-

ing in spaCy1 and prompt each of them with a set of handcrafted sentence templates, e.g.,

“Aphoto of a {noun}”. Such prompted nounphrases are fed into the text encoder to extract

noun tokens {nk
i }Kk=1.

We denote softmax on a vector x at the i-th element as: σ(x)i = exp(xi)/τ∑
j exp(xj)/τ

, where

τ is the temperature to scale logits. The similarity of all group tokens G with respect to

a noun token nk is defined as s(G, nk) = [⟨g1, nk⟩, . . . , ⟨gM , nk⟩] ∈ RM , where ⟨·, ·⟩ is the

cosine similarity. As the ground-truth correspondences between regions and nouns are

inaccessible, we compute the grounding similarity between all group and noun tokens by:

G(v, c) =
1

K

K∑
k=1

⟨
nk,

M∑
m=1

σ
(
s(G, nk)

)
m
· gm

⟩
. (7.3)

G(v, c) encourages each noun to be grounded to one or a few regions and avoids penalizing

regions that cannot find any relevant nouns.

Similarity scores are computed as: G(V , ci) = [G(v1, ci), . . . , G(vB, ci)] ∈ RB andG(vi, C) =

[G(vi, c1), . . . , G(vi, cB] ∈ RB, where V = {vi}Bi=1 and C = {ci}Bi=1 denote the set of videos

and captions in a batch respectively and B is the batch size. Inter-clip spatial ground-

1https://spacy.io/
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ing loss Lg is then defined to enable nouns to be matched with regions for each positive

⟨video, caption⟩ pair: Lg = Lv→c
g +Lc→v

g consists of a video-to-caption grounding loss and

a caption-to-video grounding loss

Lv→c
g = − 1

B

B∑
i=1

log σ (G (vi, C))i , Lc→v
g = − 1

B

B∑
i=1

log σ (G (V , ci))i . (7.4)

Recall that the cut-and-paste operation indicates that v̂i has another positive caption

cpi besides its original ci, and the loss weights of positive indices areW
v ∈ RB×B = {wv

i,j}

which satisfy

wv
i,j =


βi, j = i

1− βi, j = pi

0, otherwise

, (7.5)

where βi = (e − s)/Nt is the ratio of the foreground in the cut-and-paste video v̂i. From

the perspective of captions, we can obtain W c = (W v)⊤. We can derive the augmented

grounding loss Lg with the video-to-caption loss and and the caption-to-video loss:

Lv→c
g = − 1

B

∑B
i=1

∑B
j=1 w

v
i,j log σ (G (v̂i, C))j , Lc→v

g = − 1
B

∑B
i=1

∑B
j=1 w

c
i,j log σ

(
G
(
V̂ , ci

))
j
. (7.6)

7.3.4 Overall Pre-training Objective

We include a global contrastive learning objective for instance-level alignment. f v
i , the

video representation of v̂i, is extracted from average-pooled group tokens and f c
i , the cap-

tion representation ci, is computed from the [CLS] token of the original caption. Instance

similarity scores are defined as: s(V , ci) = [⟨f v
1 , f

c
i ⟩, . . . , ⟨f v

B, f
c
i ⟩] ∈ RB and s(v̂i, C) =

[⟨f v
i , f

c
1⟩, . . . , ⟨f v

i , f
c
B⟩] ∈ RB. A global contrastive loss is defined as Lcontrast = Lv→c

contrast +
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Lc→v
contrast, a combination of the video-to-caption and the caption-to-video views:

Lv→c
contrast = − 1

B

∑B
i=1

∑B
j=1 w

v
i,j log σ(s(v̂i, C))j, Lc→v

contrast = − 1
B

∑B
i=1

∑B
j=1 w

c
i,j log σ(s(V , ci))j. (7.7)

The overall pre-training objective is a weighted sum of grouping loss, grounding loss,

and global contrastive loss: L = ω1Lt+ω2Lg+ω3Lcontrast. We set three weights, ω1, ω2, and

ω3, to be equal to one in our experiments for simplicity.

7.4 Experiments

7.4.1 Downstream Tasks

Text-video retrieval. We adopt the widely used text-video retrieval benchmark MSR-

VTT [XMY16a] for evaluation. It consists of 10K YouTube video clips with 200K captions.

We conduct experiments in both zero-shot and fine-tuning settings. For fine-tuning setup,

we follow [BNV21] and [GGL22a], and train and test the model on the split of 9K and 1K

videos.

Video question answering (VQA). We consider open-ended VQA settings with two

representative datasets: (1) MSRVTT-QA [XZX17] with 1,500 answer candidates and (2)

MSVD-QA [XZX17] with 2,423 answer candidates.

Video action recognition. We select HMDB51 [KJG11] containing 6,766 videos with 51

categories and UCF101 [SZS12] containing 13,320 videos with 101 categories. Both linear

probing and fine-tuning the whole model are explored.

Temporal action localization (TAL). TAL aims at predicting the temporal extent and

the labels of action instances. We evaluate the performance on ActivityNet [HEG15], an

action understanding dataset of 19,994 temporally annotated untrimmed videos with 200

action categories.
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7.4.2 Implementation Details

Input. Following [NSS22], we sample 32 frames for each video and resize them into

224×224with the same augmentations. Each caption is tokenized into 32 tokens including

[CLS]. K = 2 noun phrases are extracted for each caption and then prompted with a set

of prompt templates such as “It is a video of {noun}”.

Model architecture. We use a 12-layer ViT-basemodel with the patch size of 2×16×16

as the video encoder and initialize it with weights pre-trained on Kinetics-400. We adopt

32 learnable group tokens and 3 grouping blocks featuring K-means attention [XDL22,

YWQ22]. Grouping blocks are inserted at the 6th, 9th and last layers of the video en-

coder [XDL22, YWQ22]. The text encoder is initialized from the pre-trained BERT-base

model. Representations are projected into the common space with the dimension of 256.

Pre-training datasets. We pre-train S-ViLMwith the VideoCC [NSS22] dataset, which

contains about 3.3M video-caption pairs. We also include ActivityNet-Caption [KHR17]

with 20K well-aligned pairs into the pre-training corpus. We note the commonly-used

WebVid [BNV21] is unavailable to us due to the restricted data access policy. To illustrate

the effectiveness of our proposed method and how the pre-training datasets contribute

to final results, we designed fair studies on dataset impacts. Details could be found in

Section 7.4.3.5.

Pre-training and fine-tuning setups. We implement S-ViLM in JAX and train all

models on TPU accelerators. During pre-training, SGD with momentum 0.9 and initial

learning rate 0.1 is used for optimization. We train S-ViLM for 10 epochs with a batch size

1024 and adopt a cosine learning rate decay schedule with a warmup ratio 0.05. It takes

about one day for the whole pre-training stage. In terms of fine-tuning, different tasks

are trained independently with their own set of hyperparameters on the target dataset.

For temporal action localization, we fix weights of the pre-trained video encoder and its

grouping blocks to extract video features, which are then evaluated by G-TAD [XZR20], a
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Table 7.1: Zero-shot (top) and fine-tuning evaluation (bottom) of text-video retrieval on
MSR-VTT test set with 1K videos. HigherR@k and lowerMedR (Median Rank) indicate
better performance.

Method Video Encoder Input PT Dataset #Pairs PT R@1 R@5 R@10 MedR

MIL-NCE [MZA19] Raw Videos HowTo100M 120M 9.9 24.0 32.4 29.6
VATT [AYQ21] Raw Videos HowTo100M, AudioSet 138M - - 29.7 49.0

VideoCLIP [XGH21b] S3D HowTo100M 110M 10.4 22.2 30.0 -
SupportSet [PHA20] R(2+1)D-34 HowTo100M 120M 12.7 27.5 36.2 24.0
Frozen [BNV21] Raw Videos CC3M, WebVid-2M 5.5M 18.7 39.5 51.6 10.0
AVLnet [RBH21] ResNeXt-101 HowTo100M 120M 19.6 40.8 50.7 9.0

DemoVLP [CGW22] Raw Videos CC3M, WebVid-2M 5.5M 24.0 44.0 52.6 8.0
ALPRO [LLL22] Raw Videos CC3M, WebVid-2M 5.5M 24.1 44.7 55.4 8.0
MCQ [GGL22a] Raw Videos CC3M, WebVid-2M 5.5M 26.0 46.4 56.4 7.0
VCC [NSS22] Raw Videos VideoCC 3.3M 18.9 37.5 47.1 -
S-ViLM Raw Videos VideoCC, ActivityNet 3.3M 28.6 53.6 65.1 5.0

UniVL [LJS20] S3D HowTo100M 110M 21.2 49.6 63.1 6.0
MMT [GSA20] S3D HowTo100M 120M 26.6 57.1 69.6 4.0

ClipBERT [LLZ21] Raw Videos COCO, VisGenome 5.6M 22.0 46.8 59.9 6.0
AVLnet [RBH21] ResNeXt-101 HowTo100M 120M 27.1 55.6 66.6 4.0

SupportSet [PHA20] R(2+1)D-34 HowTo100M 120M 30.1 58.5 69.3 3.0
VideoCLIP [XGH21b] S3D HowTo100M 110M 30.9 55.4 66.8 -

Frozen [BNV21] Raw Videos CC3M, WebVid-2M 5.5M 31.0 59.5 70.5 3.0
DemoVLP [CGW22] Raw Videos CC3M, WebVid-2M 5.5M 36.0 61.0 71.8 3.0
ALPRO [LLL22] Raw Videos CC3M, WebVid-2M 5.5M 33.9 60.7 73.2 3.0
MCQ [GGL22a] Raw Videos CC3M, WebVid-2M 5.5M 37.6 64.8 75.1 3.0

VIOLETv2 [FLG23] Raw Videos CC3M, WebVid-2M 5.5M 37.2 64.8 75.8 -
All-in-One [WGY23] Raw Videos HowTo100M, WebVid-2M 112M 37.1 66.7 75.9 -

VCC [NSS22] Raw Videos VideoCC 3.3M 35.0 63.1 75.1 -
S-ViLM Raw Videos VideoCC, ActivityNet 3.3M 38.4 65.7 76.3 2.0

commonly used method for TAL.

7.4.3 Evaluation Results

7.4.3.1 Text-Video Retrieval

We evaluate S-ViLM for the text-video retrieval task on MSR-VTT under both zero-shot

and fine-tuning settings, and compare it with existing prevalent methods in Table 7.1. S-

ViLMoutperforms othermethods significantly for zero-shot evaluationwithR@10 of 65.1,

yielding approximately 9% improvement over the best-performing baselineMCQ. The su-

perior results demonstrate that our pre-trainedmodel builds up a good alignment between

video and language and generalizes well to unseen datasets. S-ViLM also achieves per-

formance gain when the model is fine-tuned on the target MSR-VTT dataset, which fur-
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Table 7.2: Accuracy (%) of Video Question Answering on MSRVTT-QA and MSVD-QA.
Method PT Dataset MSRVTT-QA MSVD-QA

HGA [JH20] - 35.5 34.7
QUEST [JCL20] - 34.6 36.1
HCRN [LLV20] - 35.6 36.1

ClipBERT [LLZ21] COCO, VG 37.4 -
SSML [ABR21] HowTo100M 35.1 35.1
CoMVT [SNS21] HowTo100M 39.5 42.6

DemoVLP [CGW22] CC3M, WebVid-2M 38.3 39.5
ALPRO [LLL22] CC3M, WebVid-2M 42.1 45.9

S-ViLM VideoCC, ActivityNet 43.5 46.4

ther validates advantages of the pre-trained model. Note that S-ViLM performs favorably

against existing methods despite the much smaller size of the pre-training data used in

S-ViLM than those in baselines, such as HowTo100M and WebVid-2M.

7.4.3.2 Video Question Answering

VQA results on two open-ended datasets are shown in Table 7.2. To enable S-ViLM to

deal with the VQA task, we add a fusion head adapted from BUTD [AHB18] by integrat-

ing video and text features with simple linear layers. Then a classifier is inserted after the

fusion module to perform question answering as a classification problem. Compared with

previous methods which leverage particular architectures for VQA or include a compli-

cated fusion encoder, S-ViLM is the most efficient and flexible for various vision-language

tasks. S-ViLM achieves better performance than competing methods with the accuracy of

43.5% (+1.4%) and 46.4% (+0.5%) on MSRVTT-QA and MSVD-QA, respectively.

7.4.3.3 Video Action Recognition

For video action recognition, we only keep the video encoder together with its grouping

blocks to extract single-modality video representations for evaluation. Two evaluation set-

tings are considered: (1) linear probing where the backbone encoder is frozen and only the

last linear classifier is trained and (2) end-to-end fine-tuningwhere both the backbone and
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Table 7.3: Experiments of action recog-
nition on UCF101 and HMDB51 with lin-
ear evaluation (Lin) and fully fine-tuning
evaluation (FT).

Method Modal
UCF101 HMDB51
Lin FT Lin FT

CoCLR [HXZ20] OF 77.8 90.6 52.4 62.9
MVCGC [HDL21] MV 78.0 90.8 53.0 63.4
XDC_R [AMK20] A 80.7 88.8 49.9 61.2
XDC_K [AMK20] A 85.3 91.5 56.0 63.1
MIL-NCE [MZA19] T 83.4 89.1 54.8 59.2
Frozen [BNV21] T 87.8 89.8 61.3 66.3
VATT [AYQ21] A, T 89.2 - 63.3 -
ELO [PAR20] A, OF - 93.8 64.5 67.4
MMV [ARS20] A 77.1 - 53.6 -
MMV [ARS20] T 86.8 - 55.1 -
MMV [ARS20] A, T 91.8 95.2 67.1 75.0
MCQ [GGL22a] T 89.1 92.3 65.8 69.8

S-ViLM T 94.8 96.5 70.0 76.9

Table 7.4: Comparison to SOTA
methods on temporal action localiza-
tion (TAL).

Method
TAL Task (G-TAD)

mAP@0.5 @0.75 @0.95 Avg

CoCLR [HXZ20] 47.9 32.3 7.3 31.9
XDC [AMK20] 48.4 32.6 7.6 32.3

MoCo-v2 [CFG20] 46.6 30.7 6.3 30.3
VideoMoCo [PSY21] 47.8 32.1 7.0 31.7
RSPNet [CHH21] 47.1 31.2 7.1 30.9
AoT [WLZ18] 44.1 28.9 5.9 28.8

SpeedNet [BEL20] 44.5 29.5 6.1 29.4
PAL [ZYW22] 50.7 35.5 8.7 34.6
TAC [XZR20] 48.5 32.9 7.2 32.5
BSP [XPE21] 50.9 35.6 8.0 34.8
LoFi [XPZ21] 50.4 35.4 8.9 34.4
TSP [AGG21] 51.3 37.1 9.3 35.8
S-ViLM 51.7 36.4 9.7 35.6

the classifier are trained. Top-1 accuracy onUCF101 andHMDB51 is reported in Table 7.3.

We observe that in linear probing, S-ViLM outperforms other baselines, with 3.0% and

2.9% higher than current SOTA,MMV that leverages audio and textmodalities in addition

on UCF101 and HMDB51. S-ViLM also achieves consistently superior performance under

the fine-tuning evaluation. Outstanding performance of S-ViLM demonstrates that lever-

aging fine-grained video language structures during pre-training contributes to meaning-

ful video representations. This aligns with our intuition because finer-grained video-text

alignment improves video understanding.

7.4.3.4 Temporal Action Localization

We report the mean average precision (mAP) under different temporal Intersection over

Union (tIoU) thresholds on ActivityNet in Table 7.4. For temporal action localization,

the model is pre-trained on HowTo100M only, which is observed to be beneficial to TAL

compared with VideoCC + ActivityNet (see the ablation study below). We directly use pre-

trainedmodels to extract video features as the input to G-TAD and do not further train the

encoder. S-ViLMconsistently exceeds other self-supervised competitors and even fully su-

pervised approaches such as LoFi and BSP. This observation again consolidates the con-
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Caption: The boat makes a turn to the right.

Caption: A man was driving a tractor for land reclamation.

baseline temporal-aware

Inter-clip Spatial GroundingIntra-clip Temporal Grouping

Figure 7.2: Visualization of S-ViLM. Left: Similarity scores derived from the baseline and
our method. Right: Attention maps between region and object with spatial grounding.

clusion that vision-language pre-training can not only be applied to specific VL problems

like text-video retrieval, but also benefit single-modal downstream tasks.

7.4.3.5 Ablation Studies

Pre-training datasets. To analyze of effects of pre-training datasets, we report the

model performances on selected downstream tasks in Table 7.5. In particular, the same

model pre-trained on VideoCC achieves the best performance in zero-shot retrieval on

MSR-VTT, comparedwithHowTo100MandWebVid-2M.These results coincidewith find-

ings in [NSS22], where HowTo100M has been pointed out not appropriate for vision-

language tasks requiring strong alignment. S-ViLM trained onVideoCC alone significantly

outperforms VCC on both tasks, showing the effectiveness of our proposed techniques. In

particular, when pre-trained on the same VideoCC dataset, S-ViLM leads to better perfor-

mance than MCQ. The significant improvement over MCQ shows that our techniques do

help to learn better features for downstream tasks. It is also worth noting that pre-training

on VideoCC and ActivityNet performs consistently better than using only one dataset, and

thus we choose this setup in the main experiments.

Training objectives. Without loss of generality, themodel in this ablation is pre-trained
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Table 7.5: Effects on different choices of pre-training datasets.

Method PT Dataset
MSRVTT-ZS TAL

R@1 R@5 R@10 mAP@0.5 0.75 0.95 Avg

VCC
HowTo100M 10.4 22.2 30.0 -

WebVid 15.4 33.6 44.1 -
VideoCC 18.9 37.5 47.1 49.9 34.3 8.7 33.7

MCQ VideoCC 22.5 43.8 54.8 -

S-ViLM

HowTo100M 9.4 22.9 31.3 51.7 36.4 9.7 35.6
ActivityNet 14.4 33.5 44.0 50.5 35.3 8.7 34.5
VideoCC 24.7 47.4 59.0 50.5 35.0 9.2 34.2

VideoCC, ActivityNet 28.6 53.6 65.1 50.8 35.6 9.3 34.7

on VideoCC only. For better understanding S-ViLM, we start with the contrastive baseline

represented in Scenario 1 in Table 7.6. Thenwe add our proposed spatial groupingmodule

during the pre-training phase. This module is driven by the grouping loss Lg in Scenario

2, and we observe consistent improvements on all tasks across the board comparing to

Scenario 1. Similarly, we introduce the temporal groupingmodule inLt to encouragemore

temporal discriminative video representation. After comparing Scenario 3 to Scenario 1

in Table 7.6, we also observe noticeable improvements on different downstream tasks.

These phenomenons suggest both spatially and temporally fine-grained features improve

video understanding tasks. After combining everything together in Scenario 4, we show

significant performance improvements on all tasks, which demonstrates the effectiveness

of S-ViLM pre-training. Moreover, we visualize effects of temporal grouping and spatial

grounding in Figure 7.2. It can be observed from similarity scores among frames that with

temporal grouping, features from different scenes aremuch easier to distinguish. Besides,

attentionmaps from spatial grounding indicates the alignment between the region and the

object has been learned in the pre-training stage without any fine-grained annotations.

7.5 Conclusion

In this work, we present a novel video-language pre-training framework, named S-ViLM,

that aims to utilize fine-grained structures in video and languages to learn region-object
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Table 7.6: Ablation study on training objectives. We validate that our proposed spatial
grounding loss and temporal grouping loss both benefit downstream tasks.

Scenario Lcontrast Lg Lt
MSRVTT-ZS MSVD-QA UCF101 TAL

R@1 R@5 R@10 Acc Acc mAP@0.5 0.75 0.95 Avg

1 ✓ 22.7 45.9 57.0 43.6 90.5 49.9 34.3 8.7 33.7
2 ✓ ✓ 23.3 46.6 58.6 44.1 90.6 50.2 34.7 8.7 34.0
3 ✓ ✓ 24.2 46.7 58.2 43.9 90.9 50.1 34.6 8.8 34.0
4 ✓ ✓ ✓ 24.7 47.4 59.0 44.9 91.0 50.5 35.0 9.2 34.2

correspondences and temporal-aware features simultaneously. Spatial grounding and

temporal grouping are introduced to achieve the goal of local region-object alignment and

temporal distinction in a self-supervised manner. The proposed framework outperforms

existing methods significantly on downstream tasks, including text-video retrieval, video

question answering, video action recognition, and temporal action localization. The su-

perior performance validates our design and our method could be easily scaled up, as it is

self-contained and does not rely on other artifacts.
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CHAPTER 8

UNICORN: A Unified Causal Video-Oriented

Language-Modeling Framework for Temporal

Video-Language Tasks

Even though video-language representation learning has achieved great success in a vari-

ety of downstream tasks, problems such as mismatching objectives between pre-training

and fine-tuning stages impedes its development. Therefore, we resort to multimodal lan-

guage modeling for a unified framework to tackle temporal video-language tasks in this

chapter. The learned model outperforms its counterparts on downstream tasks and is

leveraged in an automatic annotation process for improved data efficiency.

8.1 Introduction

Recent breakthroughs in large language models (LLMs) [OWJ22, cha23, Ope23, vic23,

TLI23, TMS23] have reignited the enthusiasm about the achievement of artificial general

intelligencewhere a single foundationmodel can accomplish a large variety of downstream

tasks based on human instructions. Towards this ultimate goal, the community has wit-

nessed promising advances in powerful large multimodal models (LMMs) for vision and

language [LLW23, LLL23b, WCC23, DLL23, BBY23, LZC23a, ZCS23], the two essential

modalities to understand the world. Most of these LMMs follow the pipeline of visual in-

struction tuning [LLW23] and demonstrate strong capabilities in various tasks, including
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Table 8.1: Example of instruction-following data. In particular, the response of moment
retrieval is computed by time tokenization for the window [7.7s, 22.1s] with 75 bins.

Visual input example, Playing Tennis (34s in total):

Task 1: Moment Retrieval
Instruction Please predict start and end time of the followingmoment: Hehits the ball over the

net several times. The output format should be <start><end>.
Response <16><48>

Task 2: Video Paragraph Captioning

Instruction Provide a detailed description of the video, capturing its key moments.
Response Aman is bouncing a tennis ball on an outdoor court. He hits the ball over the net several

times. The balls roll over to the opposing fence, broken in half from the impact.

vision-centric tasks like image classification and object detection [WCC23], and vision-

language tasks like image captioning and visual question answering [DLL23, LLW23].

Despite impressive results in the image domain, videos, another important data for-

mat in the visionmodality, are under-explored. In contrast to images, videos have an extra

temporal dimension and are much more difficult to process due to increased complexity.

Existing approaches either directly apply LMMs trained on image-text pairs [DLL23] to

the video domain without fine-tuning or develop video-oriented LMMs [ZLB23, MK23,

LHW23] on short trimmed videos. However, such models are limited to handle problems

which are less dependent on temporal information like action recognition and video ques-

tion answering. It still remains unclear how to solve video-language tasks that requires ex-

plicit temporal modeling, including moment retrieval [HWS17, LBB21], video paragraph

captioning [PRD19], and dense video captioning [KHR17] in one single LMM.

In fact, the inherent disparities among these task formats pose a challenge to the de-

velopment of such models: moment retrieval requires predicting the temporal location of

a moment described by language, paragraph captioning entails to write a coherent story

from an untrimmed video, while the goal of dense video captioning is to generate captions
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and temporal locations for a series of moments simultaneously. These tasks are typically

solved individually by specifically-designed models [LWS20, YNS23, LBB21, LZC23b].

While attempts have been made to unify these temporal video-language tasks [WZZ23,

YXN23], separate modules and training objectives tailored for each task are involved in

these methods, making them complicated in both training and inference.

To address these challenges, we propose aUNIfied Causal videO-oRiented laNguage

modeling framework (UNICORN) that unifies the tasks as a simple yet generic language

modeling problem. For moment retrieval and video paragraph captioning, we convert

original training datasets into corresponding instruction-following formats, as shown in

Table 8.1. In particular, inspired by previous efforts in discretizing bounding box coordi-

nates [CSL22, PWD23, ZSC23], our approach represents the continuous event boundaries

as a sequence of discrete tokens via a novel time-tokenization procedure to adapt this task

into a unified language interface. Themodel then generates the target output in the formof

natural language descriptions conditioned on the input video and instruction. On a range

of datasets and tasks, we show that our unified approach achieve comparable or better

performance over previous methods.

On the other hand, the development of large video-language models is hindered by

the lack of semantically- and temporally-aligned video-text pairs, an issue unique to the

video domain. As pointed out in [HXZ22], the models pre-trained on commonly-used

noisy datasets such as HowTo100M [MZA19] and YT-Temporal-1B [ZLL22] suffer from

themisalignment between videos and captions severely. Thanks to the generalization abil-

ity of LMMs, our UNICORN can be leveraged to automatically annotate public internet

videos lacking in human annotations to collect a high-quality pre-training dataset with

better aligned captions. We demonstrate that qualitatively the corresponding dataset

contains more semantically- and temporally-aligned captions compared with original au-

tomated transcribed speeches, and quantitatively incorporating our generated captions

in either instruction-tuning for moment retrieval or end-to-end representation learning
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leads to significant performance gains.

Our primary contributions are summarized as follows: (1)We propose UNICORN, a

simple and generic framework that unifies various temporal video-language tasks via lan-

guagemodeling; (2)Our approach achieves comparable or better performance to state-of-

the-art methods on multiple downstream tasks, including moment retrieval, video para-

graph captioning, and dense video captioning; (3) Compared to existing captions, those

automatically generated by our method have shown to be better aligned with the videos,

both semantically and temporally. Empirically, the generated captions have demonstrated

to improve performance of models trained on them. Our automatic annotation pipeline

can be useful for empowering the development of future large multimodal models.

8.2 RelatedWork

Large Multimodal Models. Large language models are taking the world by storm

with their incredible capabilities to answer questions in a coherent and informative way

aligned with human instructions [cha23, OWJ22, vic23, Ope23, TLI23, TMS23]. The uni-

versality and generalization of LLMs make it potential to unlock the door to a founda-

tion general-purpose model. Towards this goal, a variety of large multimodal models

are emerging to bridge different modalities, in particular vision and language [LLW23,

LLL23b, WCC23, DLL23, BBY23, LZC23a, ZCS23]. Such LMMs adopt the pipeline of

visual instruction tuning [LLW23] by converting original datasets into the instruction-

following format and casting traditional computer vision problems as a language mod-

eling task. For instance, LLaVa [LLW23] generates multimodal language-image instruc-

tional data usingGPT-4 [Ope23] anddevelops anLMMconnecting a pre-trained image en-

coder and a pre-trained large languagemodel to deal with vision-language tasks. Instruct-

BLIP [DLL23] enlarges the task coverage by gathering 26 publicly available datasets and

proposes an instruction-aware visual feature extraction process. These models achieve
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the state-of-the-art performance on numerous downstream tasks, ranging from vision-

centric ones such as image classification and object detection to vision-language ones such

as image captioning and visual reasoning. Despite efforts in understanding images, few

attempts have been made for video-language tasks due to additional complexity. Thus,

in this paper we study how to model the interaction between long untrimmed videos and

captions from the perspective of language modeling.

Video-Language Modeling. While large multimodal models tailored for videos are

under-explored, video-languagemodeling has been a heated topic for past few years. Elab-

orate designs and complicated structures have been proposed to solve particular video-

language tasks respectively such as moment retrieval [LBB21, LZC23b, MCH20, ZXH20],

video paragraph captioning [LWS20, PRD19, YNS23, WZL21], and dense video caption-

ing [KHR17, YNS23, WZL21]. Some methods [LZC23b, YXN23, WZZ23, LLL22] pre-

train amodel on large-scale corpus to generate latent video and language representations,

which can be then adapted to different downstream tasks. This line of work typically

requires elaborate designs and multiple training objectives tailored for each target task.

In contrast, we propose a more elegant unified framework to integrate various tempo-

ral video-language tasks into a simple yet generic language modeling problem. Compared

with existing video-oriented LMMs targeting at short video clips [LHW23, ZLB23,MK23],

UNICORN attaches more attention to long untrimmed videos. The most relevant method

to UNICORN is Vid2Seq [YNS23], which also formulates dense video captioning as lan-

guage modeling. However, it should be emphasized that Vid2Seq depends heavily on pre-

training and is unable to handle tasks other than captioning. On the contrary, by visual

instruction tuning on high quality datasets, our efficient and effective UNICORN demon-

strates superior performance on a series of video-language tasks without intensive pre-

training. Moreover, our method can be applied towards noisy video datasets to generate

better-aligned captions.
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Figure 8.1: The framework of UNICORN using video paragraph captioning as an exam-
ple. Each frame of the input video is encoded individually to obtain a visual token and we
concatenate all visual tokens to represent the video. We highlight the encoding process of
one frame in red. All modules are instruction-tuned with the generic language modeling
loss except for the frozen image encoder.

8.3 Method
In this section, we introduce our unified framework UNICORN in detail. We start by dis-

cussing how to transform the original datasets for different downstream tasks into the gen-

eral instruction-following format in Section 8.3.1. Then in Section 8.3.2, we describe the

model architecture designed for video-language interaction. In Section 8.3.3, we present

the training pipeline of UNICORN including datasets and training objective. Finally in

Section 8.3.4, we demonstrate how to conduct inferencewith the obtainedmodel on down-

stream tasks together with the process to generate captions for noisy datasets.

8.3.1 Instruction-Following Data Generation

As the ultimate goal of ourmethod is to unify various temporal video-language tasks in one

framework, we cast moment retrieval and video paragraph captioning into a sequence-to-

sequence problem with instruction following formats. For dense video captioning, it can

be regarded as a two-stage procedure of paragraphing captioning and moment retrieval

and thus no specific training data are required. We provide details in following sections.
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MomentRetrieval Inmoment retrieval (MR) [HWS17,GSY17, KHR17, LYB20, LBB21],

a continuous timewindowwith start and end timestamps is predicted given an untrimmed

video and a language moment query. With the task definition, an example instruction

can be: “Please predict start and end time of the following moment: {target}”,

where {target} is replaced by the specific query. We curate a template instruction list to

explicitly teach the underlying model the concepts of the task and the objective.

A key challenge here is how to generate output sequences to represent moment loca-

tions. To reduce the exploration space for more controllable predictions, we follow previ-

ous sequence generation strategies for such continuous values [CSL22, PWD23, YNS23,

WCC23, CZZ23], and discretize the timestamp t in a d-s long video into an integer in

{0, 1, . . . , Nbin − 1} with Nbin equally-spaced bins by ⌊t×Nbin⌋/d. Moreover, since recent

large language models exhibit surprising performance in mathematical reasoning, we use

the original vocabularywithout adding extra special time tokens, which in turn reduces the

number of trainable parameters and avoids large-scale pre-training to re-acquire the abil-

ity to reason about numbers. Meanwhile, to distinguish our discrete relative timestamps

from other numerical expressions, such as “5 apples”, we enclose the timestamp values

into angle brackets: “<start><end>” where start and end are replaced by corresponding

converted timestamps. For instance, as illustrated in Table 8.1, the moment starting at

7.7s and ending at 22.1s within a 34s-long video is transformed into the desired output

sequence “<16><48>” after our proposed time tokenization with 75 bins. To make out-

put predictions consistent in format, we append a language constraint to our instruction:

“Theoutput format should be<start><end>.” For amoment query associatedwith

multiple time windows, we regard each query-location pair as an individual data sample

and reform it into the above instruction-following format.

Video Paragraph Captioning In contrast to single-sentence captioning [XMY16b],

video paragraph captioning (VPC) [PRD19, LWS20] aims at generating a set of coherent

sentences to describe an untrimmed video that contains several events. While previous

130



pipelines [PRD19, LWS20] decompose the problem by segmenting the video intomultiple

clips based on ground-truth event boundary proposals, our method takes as input frames

sampled from the whole untrimmed video and the instruction “Provide a detailed de-

scription of the given video, capturing its key moments.”. For the output, it is

intuitive to leverage the paragraph caption of the target video as the prediction.

Dense Video Captioning The goal of dense video captioning (DVC) [KHR17] is to gen-

erate multiple corresponding captions for a series of events together with their temporal

locations from the untrimmed video. It is much harder than moment retrieval and para-

graph captioning since it requires predicting events and their timestamps simultaneously.

The most straightforward way to convert the task into the instruction-following format

is to construct a sequence containing the information of both events and locations given

a specific input prompt instruction. However, design choices such as event serialization

(e.g., chronological or random) and where to insert associated time windows might affect

the performance significantly [CSL22, YNS23]. Furthermore, the training of such mod-

els is challenged by the longer input sequence with both timestamps and event descrip-

tions. It also takes extra computational costs to learn redundant information from mo-

ment retrieval and video paragraph captioning again. Considering the inherent property

of dense video captioning, we find that it can be naturally decomposed into a two-stage

procedure of video paragraph captioning followed by moment retrieval. Thus, no addi-

tional instruction-following data are required on dense video captioning and this task can

be addressed at inference-time by the model instruction-tuned on two tasks above, with

more details in Section 8.3.4.

8.3.2 Model Architecture

After the construction of instruction-following data, we need to design a model archi-

tecture that can be leveraged in a sequence-to-sequence framework by bridging together

video frames and natural language instructions as the ultimate input sequence. To tackle
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this problem, we propose a large multimodal language model, demonstrated in Figure

8.1. Specifically, a sequence of visual tokens are obtained by feeding frames and the corre-

sponding instruction from an untrimmedminutes-long video into our per-frame encoding

module. Visual tokens are processed by a projection layer to the same latent space as the

large language model (LLM). The LLM takes a concatenation of visual tokens and instruc-

tion tokens as input and generates the desired output given different task instructions.

How to connect vision and language is an essential problem in LMMs. Compared with

image-language interaction, few attempts have been made in the video domain due to in-

creased complexity. However, using image encoders to conduct per-frame encoding for

videos by brute force will lead to an extremely long sequence of visual tokens proportional

to the number of frames, which are then processed by the subsequent languagemodel. On

the other hand, a completely new encodermight require a considerable amount of training

to align modalities of vision and language again. To strike a balance between two afore-

mentioned issues, we resort to the recently proposed InstructBLIP [DLL23] and make

some adaptions on the Q-Former module to handle the video input. In detail, our method

first extracts nq visual tokens from each frame using the frame-based encoding of the orig-

inal Q-Former. For efficiency, we then apply average pooling in a frame-wise manner,

which results in one token for each frame. Given a video of N frames, these N tokens are

further processed by a module with two self-attention layers to integrate temporal infor-

mation. Our design maintains a reasonable length of visual tokens for instruction tuning

and takes advantage of pre-trained LLMs for feature alignment between the two modali-

ties. Note that UNICORN is a generic framework to which we can flexibly utilize various

LMMs as the base model. We analyze the effects of different LMMs like LLaVA [LLW23]

in Section 4.5.6 to justify our framework design.
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8.3.3 Training

With all data converted into the instruction-following format, we cannowpresent a unified

framework of instruction tuning on various downstream tasks.

Objective. The instruction-following format makes it feasible to train the model to pre-

dict next tokens with an auto-regressive languagemodeling loss. Given input video frames

X = {xi}Ni=1 and the input task instruction Y = {yj}Mj=1, we maximize the log likelihood of

the output sequence Z = {zk}Lk=1 :

max
L∑

k=1

log pθ(zk|X,Y, z1:k−1), (8.1)

where L is the length of the output target sequence. We use θ to represent all the train-

able parameters in the model and pθ denotes the output probability distribution over the

vocabulary of the large language model.

Trainable parameters. As shown in Figure 8.1, we only keep the weights of the CLIP

image encoder frozen during instruction tuning, and tune the rest modules including Q-

Former, self-attention layers, the fully connected projection layer and the LLM. For effi-

cient training, instead of fine-tuning the whole large language model, we use Low-Rank

Adaptation (LoRA) [HSW22].

8.3.4 Inference

At inference time, since the model has already been instructed-tuned on the tasks of mo-

ment retrieval and paragraph captioning, we directly prompt themodel using correspond-

ing task instructions to generate responses via beam search. Note that for moment re-

trieval, we also need to de-quantize the predicted discrete time bins and transform them

back to continuous windows by reversing time tokenization in Section 8.3.1. As to dense

video captioning, recall that in Section 8.3.1 we point out that we can divide this task into
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a two-stage procedure. In detail, given the target video, the model first generates a para-

graph caption based on the instruction, then the paragraph is split into a number of sen-

tences and each sentence serves as a query for the subsequent moment retrieval task to

obtain timestamps. In this way, we are able to obtain both captions and their associated

timestamps during inference.

8.4 Experiments

In this section, we evaluate UNICORN comprehensively against state-of-the-art methods

to show the effectiveness of our unified framework. We first introduce setups of all the

experiments in Section 8.4.1. Then we present results on downstream tasks including

moment retrieval, video paragraph captioning anddense video captioning in Section8.4.2.

Ablation studies are conducted in Section 8.4.3 for better understanding of our designs.

Finally, in Section 8.4.4 we investigate the quality of the automatic annotation generated

by UNICORN on HowTo100M.

8.4.1 Experimental Setups

Architecture. As discussed in Section 8.3.2, the backbone of our video encodingmodule

is adapted from InstructBLIP [DLL23]. Specifically, we implement the video encoder with

the same image encoder (ViT-G/14) [FWX23], Q-Former with 32 learnable query embed-

dings and a fully-connected projection layer as the original InstructBLIP structure, plus a

temporal modeling module with 2 self-attention layers. For the language side, we select

Vicuna-7B [vic23], a publicly available large language model fine-tuned with instructions

from LLaMa [TLI23]. The video encoder is initialized from InstructBLIP [DLL23] except

for the temporal modeling module.

Datasets. Rather than intensive pre-training on a large scale noisy dataset without an-
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Table 8.2: Comparison with the state-of-the-art for moment retrieval. Results are re-
ported on QVHighlights (test), Charades-STA (test), and ActivitityNet Captions (val_2)
benchmarks. We bold the best results, and underline the second-best.

Method
QVHighlights Charades-STA ActivityNet Captions

R@0.5 R@0.7 mAP avg R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

LGI [MCH20] — — — 59.5 35.5 51.4 41.5 23.1 41.1
2D TAN [ZPF20] — — — 46.0 27.5 41.2 44.5 26.5 —
VSLNet [ZSJ20] — — — 42.7 24.1 41.6 43.2 26.2 43.2
MDETR [LBB21] 59.8 40.3 36.1 52.1 30.6 45.5 — — —
GVL [WZZ23] — — — — — — 48.9 27.2 46.4
UnLoc [YXN23] 64.5 48.8 — 58.1 35.4 — 48.0 29.7 —
UniVTG [LZC23b] 58.9 40.9 35.5 58.0 35.6 50.1 — — —
UniVTG w/ PT [LZC23b] 65.4 50.1 43.6 60.2 38.5 52.2 — — —
UNICORN 68.4 51.9 45.0 69.0 45.6 58.9 48.4 29.8 47.1

notations, we directly fine-tune our model on a comprehensive set of publicly available

video-language datasets, including QVHighlights [LBB21], Charades-STA [GSY17], Activ-

ityNet Captions [KHR17], and YouCook2 [ZXC18]. The collection coversmoment retrieval

and video paragraph captioning (no training data for dense video captioning as discussed

in Section 8.3.1), and is from various domains with different length distributions.

Instruction tuning details. We adopt the LAVIS library [LLL23a] to implement our

model and run all the experiments. The model is instruction tuned for 5 epochs with a

batch size of 32. We randomly sample one task at a time based on data size. We use

AdamW [LH19] with β1 = 0.9, β2 = 0.999, and a weight decay of 0.05 to optimize the

model. The learning rate is warmuped from 10−6 to 10−4 in the first epoch, followed by

a cosine decay with a minimum of 10−5. We freeze the image encoder and fine-tune the

rest of the model, with LoRA applied on the LLM. The number of trainable parameters is

around 243M. UNICORN is trained utilizing 8 NVIDIA A100 (80G) GPUs in 12 hours.,

Evaluation. Formoment retrieval, we evaluate onQVHighlights, Charades-STA, andAc-

tivityNet Captions. We report the standardmetrics Recall at 1 under temporal Intersection

over Union (IoU) thresholds of 0.5 and 0.7, abbreviated as R@0.5 andR@0.7. Besides, we

use the average mAP over IoU thresholds [0.5:0.05:0.95] on QVHighlights with multiple

ground-truth segments for onemoment, andmean IoU (mIoU) for the other two datasets.
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For video paragraph captioning, we use commonly-adopted metrics CIDEr [VLP15] (C)

and METEOR [BL05] (M) and report results on YouCook2 and ActivityNet Captions. As

to dense video captioning, we follow the existing protocol [KHR17] which first matches

pairs between generated sentences and the ground truth across IoU thresholds [0.3, 0.5,

0.7, 0.9] and compute captioning metrics over the matched pairs. SODA_c [FHK20] (S)

is also used to measure the coherence for a set of captions by considering their temporal

structure. This task is evaluated on YouCook2 and ActivityNet Captions as well.

8.4.2 Results

Weevaluate our instruction-tunedmodel on three video-language tasks: moment retrieval,

video paragraph captioning, and dense video captioning. Note that all results are obtained

from one shared model and different tasks are addressed by changing the prompting in-

structions at inference time only.

Moment retrieval. In Table 8.2, our method is compared with state-of-the-art algo-

rithms for this task on three representative datasets, QVHighlights [LBB21], Charades-

STA [GSY17], and ActivityNet Captions [KHR17]. It can be observed that our method

achieves comparable (mostly better) performance on all three datasets. In particular, on

QVHighlights we achieve 68.4, 51.9, and 45.0 for R@0.5, R@0.7 and averagemAP respec-

tively, improving the best-performing baseline UniVTG with pre-training substantially by

+3.0, +1.8 and+1.4. Note that all the baselinemethods adopt the conventional localization

loss for a regression problem to predict moment boundaries while we only use a generic

language modeling loss. In contrast to complicated designs in previous approaches, we

remove most of the specification: UNICORN is based mainly on the intuition that if a

model knows about where the moment is within the video, we just need to teach it how to

read the location out. In summary, UNICORN makes minimal assumptions on the task

yet accomplishes it with superior performance.
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Table 8.3: Comparison with the SoTA for video paragraph captioning on YouCook2 (val)
and ActivityNet Captions (ae-test). V/F/O refers to visual/flow/object features.

Method Backbone
YouCook2 ActivityNet
C M C M

With GT Proposals
VTransformer [ZZC18] V (ResNet-200) + F 32.3 15.7 22.2 15.6
Transformer-XL [DYY19] V (ResNet-200) + F 26.4 14.8 21.7 15.1
MART [LWS20] V (ResNet-200) + F 35.7 15.9 23.4 15.7
GVDSup [ZKC19] V (ResNet-101) + F + O — — 22.9 16.4
AdvInf [PRD19] V (ResNet-101) + F + O — — 21.0 16.6
PDVC [WZL21] V + F (TSN) — — 27.3 15.9
With Learned Proposals
MFT [XDL18] V + F (TSN) — — 19.1 14.7
PDVC [WZL21] V + F (TSN) — — 20.5 15.8
PDVC [WZL21] V (CLIP) — — 23.6 15.9
TDPC [SCJ21] V (ResNet-200) + F — — 26.5 15.6
Vid2Seq [YNS23] V (CLIP) — — 28.0 17.0
GVL [WZZ23] V (TSN) — — 26.0 16.3
UNICORN V (CLIP) 37.8 18.3 34.8 17.3

Video paragraph captioning. Table 8.3 shows the video paragraph captioning results.

In UNICORN, we consider this task as a general captioning problem, and the only dif-

ference is that the target output sequence now becomes a paragraph with multiple sen-

tences instead of only one single caption. Without any customized training objectives or

prior knowledge on the input such as ground-truth event proposals as in previous meth-

ods [PRD19, LWS20], our method demonstrates outstanding performance on captioning

metrics over other baselines under both settings of ground truth or learned proposals. It

further showcases the strong adaptation of LMMs to downstream tasks through instruc-

tion tuning with high-quality instruction-following data.

Dense video captioning. We generate dense video captions following the procedure

introduced in Section 8.3.1 and evaluate the performance in Table 8.4. It can be observed

that ourmethod takes the lead among the compared approaches, including Vid2Seqwhich

leverages language modeling to predict captions and their associated timestamps simul-

taneously. These promising results also demonstrate the effectiveness of our divide-and-

conquer strategy for dense video captioning. Such an inference design makes the train-

ing more efficient without learning on redundant and lengthy DVC data again while still
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achieving competitive results.

Table 8.4: Comparison with SoTA for dense video captioning on YouCook2 (val) and Ac-
tivityNet Captions (val_1 and val_2).

Method Backbone
YouCook2 ActivityNet
S C M S C M

MT [ZZC18] TSN — 6.1 3.2 — 9.3 5.0
ECHR [WZY20] C3D — — 3.8 3.2 14.7 7.2
PDVC [WZL21] TSN 4.4 22.7 4.7 5.4 29.0 8.0
PDVC [WZL21] CLIP 4.9 28.9 5.7 6.0 29.3 7.6
UEDVC [ZSJ22] TSN — — — 5.5 26.9 7.3
E2ESG [ZPT22] C3D — 25.0 3.5 — — —-
Vid2Seq [YNS23] CLIP 5.7 25.3 — 5.9 30.2 8.5
GVL [WZZ23] TSN 4.9 26.5 5.0 6.2 32.8 8.5
UNICORN CLIP 5.7 37.0 7.7 6.3 35.4 9.2

8.4.3 Ablation Studies

Weconduct ablation studies to further analyze effects of the key components inUNICORN,

including training strategies, base model selection, the choice of time tokens, and various

model designs. We evaluate the performance on QVHighlights (val) for moment retrieval

and on ActivityNet Captions (ae-test) for video paragraph captioning.

Training strategies. In this section, we study the effect of the multi-task and multi-

dataset training strategy used in UNICORN. Specifically, we consider three strategies:

single-task & single dataset, single task & multi-dataset, and multi-task & multi-dataset.

For the single-task version, we fine-tune two separate models with corresponding instruc-

tions tailored formoment retrieval and video paragraph captioning respectively, and select

one representative dataset for each task for evaluation. For the single-dataset version, we

train only on the training split of the evaluation dataset (i.e., QVHighlights for moment

retrieval and ActivityNet Captions for video paragraph captioning)

We report detailed results in Table 8.5a. By introducing datasets from different do-

mains for the same task, we can improve the model’s capability on the single dataset. Be-
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Table 8.5: Ablation studies on training strategies and base model selection.
Training Setup

QVHighlights ActivityNet
R@0.5 R@0.7 mAP C M

Single-task, single-dataset 66.3 51.5 42.8 33.6 16.4
Single-task, multi-dataset 68.2 52.3 44.8 34.6 16.9
Multi-task, multi-dataset 69.5 54.4 45.3 34.8 17.3

(a) Comparison of different training strategies.

Base model
QVHighlights ActivityNet

R@0.5 R@0.7 mAP C M

LLaVA-7B [LLW23] 66.3 51.5 42.8 33.6 16.4
InstructBLIP-7B [DLL23] 68.2 52.3 44.8 34.6 16.9
InstructBLIP-13B [DLL23] 69.5 54.4 45.3 34.8 17.3

(b) Comparison of different base models.

Table 8.6: Ablation studies on model designs including the number of frames, LoRA, and
temporal modeling.

#frames
QVHighlights ActivityNet

R@0.5 R@0.7 mAP C M
25 61.5 37.4 35.0 33.4 16.9
50 65.4 47.9 41.4 34.5 17.0
75 69.5 54.4 45.3 34.8 17.3
100 67.8 52.8 44.7 34.6 17.3

(a) Effects of the number of frames.

LoRA Temporal modeling
QVHighlights ActivityNet

R@0.5 R@0.7 mAP C M
7 7 60.6 36.4 33.2 23.0 16.0
3 7 66.7 49.2 39.8 34.4 17.2
7 3 65.5 47.0 40.4 27.6 16.8
3 3 69.5 54.4 45.3 34.8 17.3

(b) Effects of LoRA and temporal modeling.

sides, in contrast to traditionalmulti-task training strategies, instruction tuning on various

descriptions ismore like a unified approach to integrate different tasks and can even boost

the performance from understanding a video frommultiple perspectives. Meanwhile, it is

more convenient to store only one model to accomplish distinct tasks, which narrows the

gap from constructing a general-purpose foundation model.

Base model. As discussed in Section 8.3.2, our framework is generic to different model

structures and the base model can be replaced by other LMMs like LLaVA [LLW23] with

a simple re-design to take video inputs. Thus, we study the effects of UNICORN adopting

different basemodels. Specifically, we instruction-tuned LLaVA for moment retrieval and

video paragraph captioning. Results are shown in Table 8.5b and it is expected that the

performance of LLaVA variant drops compared with our InstructBLIP variant, due to the

information loss from 256 frame-level tokens pooled to one token. Besides, InstructBLIP

has a QFormer while LLaVA only uses a simple projection layer, which may be insuffi-

cient to align video and language. We also added an experiment with InstrutBLIP-13B

and observed performance gains with a larger model size.

Time tokens. To represent time in our tasks, we can either introduce new dedicated time

tokens or directly use the digits in the original vocabulary. We investigate the impacts of
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these two strategies in the single-task, single-dataset setup on QVHighlights in Table 8.7.

Table 8.7: Comparison between two choices of time tokens.

Time tokens R@0.5 R@0.7 mAP

Dedicated 64.1 48.2 40.7
Original vocab 66.3 51.5 42.8

We can observe that representing time via the original vocabulary performs better than

new dedicated tokens, which indicates the knowledge of digits in LLM can be transferred

to our tasks easily. Meanwhile, new tokens would introduce extra overheads and increase

the number of trainable parameters by 262M, more than double of the original value.

Number of frames. By default, we evenly sample 75 frames from a video as model

inputs. In Table 8.6a, we study the impact with #frames of 25, 50, 75, and 100. The

performance generally improves when we adopt more frames while it saturates or even

gets worse around 100 frames. Since the videos in the datasets we studied are usually not

very long (e.g., videos in QVHighlights are on average 150 seconds long), we hypothesize

that 75 frames are enough to cover all the semantic information needed for the tasks.

LoRA. LoRA is a parameter-efficient fine-tuning method, and we use it to fine-tune the

LLM of UNICORN. We analyze the effects of using LoRA in Table 8.6b. LoRA has been

proven effective in boosting performance for downstream tasks (row 1→ 2 and row 3→

4). It is expected that frozen LLM would not work properly because we have assigned

new meanings to original digit tokens to represent discrete time bins, and efficient LoRA

training mitigates the issue without tuning the whole LLM intensively.

Temporal modeling. Since our model is adapted from image-based InstructBLIP, we

include an additional module with self-attention layers on top of Q-Former to incorporate

temporal information for video inputs in Figure 8.1. As shown in Table 8.6b, when tempo-

ral modeling is enabled from average pooling only to self-attention interaction (row 1→ 3

and row 2→ 4), there is substantial improvement in bothmoment retrieval and paragraph

captioning, indicating the necessity of this module for temporal video-language tasks.
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0:00 0:20 0:27 0:49 1:20 1:36 1:45 2:22 2:53

A woman is seen speaking to the camera and 
leads into her holding up various objects

She then holds up a piece of clay and 
begins creating an egg out of the clay

She paints the egg with several 
colors using a brush.

More eggs are shown 
hanging on a string

Input
Video

HTM-
UNICORN Various pictures of clay eggs are shown 

followed by a woman speaking to the camera.
The woman then begins drawing on the clay and ends with her 
showing off the product.

Several different colored clay eggs 
are shown hanging from the string.

She shows how she makes the clay eggs into necklace.

She ties them onto a string 
and hangs them up.

My name is Anna and 
I make DIY videos 
about fashion lorraine

Each egg is the combination of 
two colors to make the blue egg

You let the paint dry and then 
take web cord and tie two notesHTM-AA

The eggs are made out of
air drying clay. You can 
use some water to make

Add an eye pin and let them dry 
completely. Each egg is the combination 
of two colors to make the blue egg

Tell me which one 
is your favorite. 
I’ll see you soon

HTM-ASR
My name is Anna and 
I make DIY videos 
about fashion lorraine

You let the paint dry 
and then take web 
cord and tie two notes

…

Timestamp

Figure 8.2: Comparison among captions from HTM-ASR, HTM-AA, and UNICORN re-
spectively. For HTM-UNICORN, we show three sets of generated captions via beam
search, coded with different colors.

8.4.4 Auto Annotation of HowTo100M

Thanks to the generalization of LMMs, the instruction-tuned model to deal with temporal

video-language tasks can be further deployed on large-scale public video datasets crawled

from the web such as HowTo100M [MZA19] and YT-Temporal-1B [ZLL22]. Videos in

these datasets are previously paired with captions from auto speech recognition (ASR), a

majority of which are not visually and temporally aligned [MAS20, TLB21, HXZ22]. Since

our model is capable of generating dense captions for the target video, it is a promising

direction to leverage UNICORN for annotating the dataset automatically.

To evaluate the quality of our generated captions, we use our trained model to densely

caption a subset of 240K videos from theHowTo100Mdataset in [HXZ22]. We denote our

annotated dataset as HTM-UNICORN, and compare it with two variants with the same set

of videos, HTM-ASR [MZA19]with original ASR transcripts, andHTM-AA [HXZ22]which

is a version of HTM-ASR that has been aligned temporally via an automated process. Note

that UNICORN can output multiple diverse captions using beam search [VCS16], which

can increase the training data size and as a result improve model performance.
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Table 8.8: Zero-shot and fine-tuning moment retrieval evaluation on QVHighlights (val)
among models pre-trained on different datasets. HTM-UNICORN ×n indicates that we
generated n sets of captions for each video.

Dataset #queries
Zero-shot Fine-tuning

R@0.5 R@0.7 mAP R@0.5 R@0.7 mAP

InstructBLIP — — — — 66.3 51.5 42.8
HTM-ASR [MZA19] 5.0M 7.7 2.8 1.9 63.5 48.3 40.3
HTM-AA [HXZ22] 3.3M 13.0 4.8 3.5 65.8 50.6 42.1
HTM-UNICORN 690K 44.2 26.4 26.0 68.9 53.6 45.0
HTM-UNICORN ×2 1.4M 47.5 30.8 29.9 69.5 54.0 45.2
HTM-UNICORN ×3 2.1M 50.0 32.7 30.4 70.2 54.6 45.5

In Figure 8.2, we present an qualitative comparison of the 3 types of captions. Although

the auto-aligned HTM-AA has removed irrelevant captions and reorganized the rest com-

pared with HTM-ASR, it can be observed that our captions from HTM-UNICORN are the

best aligned with the input video both visually and temporally, compared with HTM-ASR

and the auto-aligned HTM-AA. In addition, captions from different sets can complement

each other, leading to more comprehensive descriptions of the video.

For quantitative evaluation, we use three HowTo100M variants to pre-train the model

with instructions for moment retrieval only, and compute metrics on QVHighlights under

both zero-shot and fine-tuning settings. We convert these datasets into the instruction-

following format as described in Section 8.3.1, and train the model from the same initial-

ization. In Table 8.8, we can observe that our automatically annotated HTM can achieve

superior zero-shot performance, which shows the better alignment of moments and their

timestamps. Besides, we fine-tune the pre-trained models on QVHighlights to further

analyze data quality in Table 8.8. We notice that performance even degrades on models

pre-trained on HTM-ASR and HTM-AA, while the one pre-trained on HTM-UNICORN

outperforms other variants, reflecting the high quality of the generated dataset.

Apart from temporal video-language tasks, we follow [HXZ22] to conduct end-to-end

representation learning with an Info-NCE loss [MAS20] on the automatically annotated
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dataset. After contrastive pre-training, we evaluate video representations by linear prob-

ing on three action recognition datasets, UCF101 [SZS12], HMDB51 [KJG11], andKinetics-

400 (K400) [KCS17] in Table 8.9. UNICORN achieves the highest classification accuracy

on all datasets, which again demonstrates the better quality of our generated captions.

Both qualitatively and quantitatively, data generated from our automated annotation

pipeline utilizing UNICORN has shown to be better than noisy web data. As data quality

and quantity are crucial for the performance of large models [ZLX24, JDG23, LLL23b],

we hope such a pipeline could be useful for empowering the development of future large

multimodal models.

Table 8.9: Linear probing accuracy for action recognition.

PT Dataset Backbone UCF101 HMDB51 K400

HTM-ASR [MAS20] S3D 82.1 55.2 55.7
HTM-AA [HXZ22] S3D 83.2 56.7 56.2
HTM-UNICORN S3D 84.1 57.7 56.6

8.5 Conclusion

In this work, we propose a unified causal video-oriented language modeling framework

UNICORNto address temporal video-language tasks. By finetuning on instruction-following

data constructed from existing datasets, our model achieves outstanding performance

on various downstream tasks including moment retrieval, video paragraph captioning

and dense video captioning. We further show that UNICORN can be leveraged for au-

tomatic annotation on internet videos such as HowTo100M to provide semantically- and

temporally-aligned captions. These captions canbeused to improve video-languagemodel

performance againstASRones. In conclusion, UNICORNpaves theway towards a general-

purpose foundation model that explicitly considers temporal information.
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CHAPTER 9

Conclusions and Future Directions

Although prevailing research topics, approaches and methodologies in artificial intelli-

gence have been evolving constantly, the pursuit of algorithm and data efficiency in deep

learning will never pause. In this chapter, we provide a concise summary of what has been

achieved for optimizing the computational and data resources required to train and deploy

deep learning models, and delve into the future research tendencies in the field.

9.1 Summary and Conclusions

In summary, this thesis explores our contributions towards democratizing and realizing

the full potential of deep learning models, categorized into two topics discussed below.

• Algorithm efficiency. To make deep learning approaches more algorithm effi-

cient, we have focused on improving optimization process during the training stage.

In particular, we have leveraged neural optimizers to replace orignial hand-designed

ones for adversarial training with faster convergence rate and better robustness per-

formance. We have also investigated techniques including smooth regularization

and automatic learning rate scheduling to stabilize suchmeta-learned optimizers, re-

ducing efforts in hyperparameter tuning significantly. Apart from optimization, we

have utilize dataset distillation in federated learning to make existing methods more

communication-efficient with few interactions between the server and the clients.

• Data efficiency. When the access to large scale annotated datasets is infeasible,
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it is crucial to think of data efficient approaches. Pre-training followed by down-

stream fine-tuning is one of the most effective solutions to address the challenge of

data scarcity. Specifically, we have successfully adopted contrastive learning to deal

with zero-shot extreme text classification under limited supervision. We have ex-

tended such an idea to the video-language domain, making use of fine-grained struc-

tures concealed behind pre-training data pairs to learn more expressive spatiotem-

poral features. Moreover, we have exploited potentials of pre-trained large language

models and fine-tuned a multimodal version for temporal video-language tasks ef-

ficiently. The obtained model has further enabled a novel annotation pipeline, im-

proving data efficiency by generating high quality labeled data automatically.

9.2 Future Directions

While significant progress has been made in enhancing algorithm and data efficiency in

deep learning, there remain numerous opportunities for further advancements in this crit-

ical area. The following are some promising future plans and directions:

• Parameter-efficient fine-tuning. Largemodels [cha23,Ope23, LLW23,DLL23]

trained on vast amounts of data have demonstrated remarkable capabilities in rea-

soning and understanding tasks. However, the sheer size and complexity of these

models, often comprising billions of parameters, pose significant challenges to com-

putational resources andmemory requirements. Various techniques, such as adapter

modules [PSP23], prompt tuning [LAC21], prefix tuning [LL21], andLoRA [HSW22],

have been proposed to realize parameter-efficient fine-tuning, A potential future di-

rection can be selecting the optimal subset of parameters to fine-tune for a given

task. This could involve leveraging meta-learning, reinforcement learning, or other

techniques to dynamically identify themost relevant parameters based on task char-

acteristics and resource constraints.
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• Model and data co-development. Model and data co-development is an emerg-

ing paradigm that recognizes the interdependence between machine learning mod-

els and their training data. By closely integratingmodel design and data engineering,

researchers and practitioners canmaximize the value extracted from limited data re-

sources, enabling the development of powerful AI systems in data-constrained set-

tings. Such a pipeline has been successfully deployed in recent large models like

Segment Anything [KMR23], wheremodels can be designed to efficiently learn from

partially labeled or weakly supervised data, reducing extensive manual annotation.

• Building foundation models. Foundation models [BHA21] which are trained

on a considerable number data from diverse sources and modalities, have attracted

great attention in the AI community. By pre-training a single, unified model on a

broad range of data and tasks, we can acquire a rich, general-purposemodel that can

be adapted and fine-tuned for a wide variety of downstream applications, improving

data efficiency significantly. This approach is contrary to the conventional training

of specializedmodels for individual tasks, offering amore efficient and scalable path

towards achieving artificial general intelligence (AGI).

Efficiency in deep learning is evolving at a rapid speed, with new directions/methods

emerging frequently. There are many important research topics that are not discussed

in this thesis, mostly due to the daily-updated research innovation. As we reflect on the

accomplishments and challenges of efficient deep learning, it is clear that the journey is

far from over. Future endeavors will continue to explore new frontiers in algorithmic effi-

ciency and data utilization, making intelligent technologies accessible to all.
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