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A B S T R A C T

As the field of computational cognitive neuroscience continues to expand and generate new theories,
there is a growing need for more advanced methods to test the hypothesis of brain-behavior
relationships. Recent progress in Bayesian cognitive modeling has enabled the combination of
neural and behavioral models into a single unifying framework. However, these approaches require
manual feature extraction, and lack the capability to discover previously unknown neural features in
more complex data. Consequently, this would hinder the expressiveness of the models. To address
these challenges, we propose a Neurocognitive Variational Autoencoder (NCVA) to conjoin high-
dimensional EEG with a cognitive model in both generative and predictive modeling analyses.
Importantly, our NCVA enables both the prediction of EEG signals given behavioral data and the
estimation of cognitive model parameters from EEG signals. This novel approach can allow for a
more comprehensive understanding of the triplet relationship between behavior, brain activity, and
cognitive processes.

1. Introduction
Current approaches to understanding brain function em-

phasize the search for statistical relationships between hu-
man behavior and individual physiological measures (EEG,
fMRI, fNIRS, etc.; e.g. Itthipuripat, Sprague and Serences,
2019). Behavioral measures, such as accuracy and speed
of responses, reflect latent cognitive processes that underlie
decision making that are not observed directly and must
be inferred by cognitive models (Lee and Wagenmakers,
2014). An ongoing challenge in computational cognitive
neuroscience research is formulating the link between brain
activity and latent cognitive processes. Here, we present
a novel approach that allows a theoretical account of the
cognitive process of decision-making, and artificial neural
networks to estimate a joint latent space to link cognitive
parameters to both neural signals and behavioral measures.
This joint latent space model is a valuable new framework
for computational cognitive neuroscience, allowing for new
forms of inference and hypothesis generation.

Previous work has focused on neurocognitive relation-
ships between human neural data and behavioral data in
decision-making tasks (Nunez, Srinivasan and Vandekerck-
hove, 2015; Nunez, Vandekerckhove and Srinivasan, 2017;
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Nunez, Gosai, Vandekerckhove and Srinivasan, 2019; Lui,
Nunez, Cassidy, Vandekerckhove, Cramer and Srinivasan,
2021; Turner, Forstmann, Wagenmakers, Brown, Sederberg
and Steyvers, 2013; Turner, Rodriguez, Norcia, McClure
and Steyvers, 2016). The hierarchical Bayesian models used
in these projects make strong predictions about the rela-
tionships between brain activity and the speed of decision-
making. These models typically make use of the drift-
diffusion model (DDM; Ratcliff and McKoon, 2008), a
widely-used cognitive model in decision-making, as their
generative model of choice and reaction time data. To
integrate neural signals, these models require knowledge
of previously discovered features of the neural data (e.g.,
known functional signals in the cognitive neuroscience
literature) that are then linked by prescribed (usually linear)
relationships to the latent cognitive variables in a Bayesian
hierarchical model. The resulting neurocognitive models test
the relationship between neural signals and cognitive vari-
ables, and enhance the accuracy of predictions of behavior
directly from brain signals (Turner et al., 2016; Nunez et al.,
2017). This can be thought of as one domain of the larger
field of model-based cognitive neuroscience (Forstmann and
Wagenmakers, 2015).

A limitation of this approach is that we must know in
advance which brain signals are possibly linked to cognitive
functions. However, advances in frameworks and tools for
neuroscience allow for the discovery of previously unknown
neural features that we could use to explain latent cog-
nitive variables. Ideally, such frameworks operate across
observations, experimental manipulations, and individual
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differences. Deterministic models that leverage deep learn-
ing have been proposed for learning feature representation
of EEG data to analyze and decode brain activity (Roy,
Banville, Albuquerque, Gramfort, Falk and Faubert, 2019).
As a notable example, Sun, Vo, Lui, Nunez, Vandekerckhove
and Srinivasan (2022) have proposed a SincNet-based neural
network that made use of EEG signals to learn the latent
cognitive variables of the DDM on individual decisions.
This approach identifies time windows of information pro-
cessing and frequency bands that can be used to predict latent
processes directly from EEG data as a trial-level association
between neural features, choice, and response time.

This work aims to develop a deep probabilistic method
for linking neural data from EEG to the latent parameters
of a cognitive model. The innovation of our work lies in
the use of a theoretical account of the cognitive process.
This theoretical account drives the analysis of neural and
behavioral measures. The framework allows for one-step,
joint inference on integrative neurocognitive models that
map EEG and behavior into a joint latent space. Uniquely,
this new approach has the potential to allow us to generate
task-relevant EEG signals from behavioral data, and predict
modulation of EEG signals by cognitive model parameters.
By combining the exploratory potential of modern latent
variable methods with the theoretical appeal of human-
interpretable cognitive model parameters, the proposed tech-
nique can be used to make predictions of brain signals and
cognitive parameters in future experiments to test neurocog-
nitive theories.

2. Neurocognitive Variational Autoencoders
2.1. Generative EEG Modeling with VAEs

Consider first a data set 
def
=
{

1,… ,𝑀
}

containing
𝑀 subjects, where each subject 𝑚

def
=
{

𝐱1,… , 𝐱𝐼
}

consists
of 𝐼 trials 𝐱𝑖 ∈ ℝ𝐶×𝑇 that are EEG signals of 𝐶 channels
by 𝑇 time samples. Throughout the paper, the subscript 𝑚 is
omitted when we refer to only one subject or when it is clear
from the context.

For each subject 𝑚, we aim to learn an EEG generative
process with a latent-variable model comprising of a fixed
Gaussian prior over latent variables 𝑝(𝐳) =  (𝐳 ∣ 𝟎, 𝐈),
where 𝐈 is the identity covariance matrix, and a parametric
non-linear Gaussian likelihood 𝑝𝜃(𝐱 ∣ 𝐳). The learning pro-
cess finds 𝜃 such that the Kullback-Leibler (KL) divergence
is minimized between the true data generating distribution
𝑝 and the model 𝑝𝜃:

argmin
𝜃

KL
(

𝑝(𝐱)‖𝑝𝜃(𝐱)
)

= argmax
𝜃

𝔼𝑝(𝐱)
[

log 𝑝𝜃(𝐱)
] (1)

where 𝑝𝜃(𝐱) = ∫ 𝑝𝜃(𝐱 ∣ 𝐳)𝑝(𝐳)𝑑𝐳 is the likelihood of data
point 𝐱, approximated by averaging over the latent 𝐳.

Nevertheless, estimating 𝑝𝜃(𝐱) is typically intractable.
This issue can be mitigated by introducing a parametric
inference model 𝑞𝜙(𝐳 ∣ 𝐱) to construct a variational evidence

lower bound on the log-likelihood log 𝑝𝜃(𝐱) as follows:

(𝐱; 𝜃, 𝜙)
def
= log 𝑝𝜃(𝐱) − KL

(

𝑞𝜙(𝐳 ∣ 𝐱)‖𝑝𝜃(𝐳 ∣ 𝐱)
)

= 𝔼𝑞𝜙(𝐳∣𝐱)
[

log 𝑝𝜃(𝐱 ∣ 𝐳)
]

− KL
(

𝑞𝜙(𝐳 ∣ 𝐱)‖𝑝(𝐳)
)

(2)

Taking the likelihood model 𝑝𝜃(𝐱 ∣ 𝐳) to be a decoder
and the inference model 𝑞𝜙(𝐳 ∣ 𝐱) to be an encoder, a
variational autoencoder (VAE; Kingma and Welling, 2013;
Sohn, Lee and Yan, 2015) considers this objective from
a deep probabilistic autoencoder perspective. Here, 𝜃 and
𝜙 are neural network parameters, and learning takes place
via stochastic gradient ascent using unbiased estimates of
∇𝜃,𝜙

1
𝑛
∑𝑛

𝑖=1 
(

𝐱𝑖; 𝜃, 𝜙
)

.
In the following sections, we extend the traditional VAE

to create the Neurocognitive VAE (NCVA) (Figure 1). This
model allows us to model a joint distribution of neural and
behavioral data. Instead of a training technique that encour-
ages disentanglement, as in 𝛽-VAE (Higgins, Matthey, Pal,
Burgess, Glorot, Botvinick, Mohamed and Lerchner, 2016),
NCVA imposes restrictions on latent space by using a cog-
nitive model that provides interpretability and controllable
generation.

2.2. Disentangled Cognitive Latent Space of EEG
Now consider the data 𝑚

def
=

{(

𝐱1, 𝐲1
)

,… ,
(

𝐱𝐼 , 𝐲𝐼
)}

,
consisting, on the one hand, of 𝑁 trials of the EEG data 𝐱𝑖
and, on the other hand, of the corresponding choice response
times (choice-RT) 𝐲𝑖. Both 𝐱𝑖 and 𝐲𝑖 are associated with a
context vector 𝐜𝑖 (where the applicable context might be an
experimental condition; say, noise conditions 𝐜𝑖). For math-
ematical simplicity, the context vector 𝐜 is not mentioned
when we refer to one of the data modalities.

Crucially, we propose a generative model with two
sources of variation: 𝐳𝐶 , which is cognitively specific, and
𝐳𝑁 , which captures any residual neural variations left in 𝐱.
We assume the approximate posterior 𝑞𝜙(𝐳𝑁 , 𝐳𝐶 ∣ 𝐱) has the
following fully factorized form:

𝑞𝜙
(

𝐳𝑁 , 𝐳𝐶 ∣ 𝐱
)

= 𝑞𝜙𝑁

(

𝐳𝑁 ∣ 𝐱
)

𝑞𝜙𝐶

(

𝐳𝐶 ∣ 𝐱
)

𝑞𝜙𝑁

(

𝐳𝑁 ∣ 𝐱
)

= 
(

𝐳𝑁 ∣ 𝝁𝜙𝑁
(𝐱), diag

(

𝝈2
𝜙𝑁

(𝐱)
))

𝑞𝜙𝐶

(

𝐳𝐶 ∣ 𝐱
)

= 
(

𝐳𝐶 ∣ 𝝁𝜙𝐷
(𝐱), diag

(

𝝈2
𝜙𝐷

(𝐱)
))

(3)

A Gaussian prior over latent variables 𝑝(𝐳𝐶 ) can be chosen
for each subject. We use subject priors obtained from a
Bayesian hierarchical fitting of a DDM using the Markov
chain Monte Carlo (MCMC) (Nunez et al., 2019).

We learn the generative model by maximizing the lower
bound on log 𝑝𝜃(𝐱, 𝐲) as:

(𝐱, 𝐲; 𝜃, 𝜙𝑁 , 𝜙𝐶 )
= 𝔼𝑞𝜙(𝐳𝑁 ,𝐳𝐶 ∣𝐱)

[

log 𝑝𝜃(𝐱 ∣ 𝐳𝑁 , 𝐳𝐶 ) + log 𝑝(𝐲 ∣ 𝐳𝐶 )
]

− KL
(

𝑞𝜙𝑁
(𝐳𝑁 ∣ 𝐱)‖𝑝(𝐳𝑁 )

)

− KL
(

𝑞𝜙𝐶
(𝐳𝐶 ∣ 𝐱)‖𝑝(𝐳𝐂)

)

(4)
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(a) Generative Process

(b) Regularized Discriminative Process

Figure 1: The Neurocognitive VAE. After the generative process (a) learns the joint latent neurocognitive variables (Section 2.2),
the regularized discriminative process (b) retrofits its hierarchical latent space to the joint latent space (Section 2.3). Inference
networks 𝑞 and Generation networks 𝑝 contain neural network parameters 𝜃 and 𝜙. Black arrows: flows of operations. Red arrows:
loss functions. MSE and WFPT stand for Mean Squared Error and Wiener First Passage Time, respectively. The heatmaps
represent the probability distributions in the latent spaces. Plasma color maps are for the drift-diffusion variables (𝑧𝐶 ∈ ℝ3), while
greenery color maps are for residual neural variables (𝑧𝑁 ∈ ℝ32). Blue blocks contain 𝜇 and 𝜎, which are the parameters of the
multivariate Gaussian latent spaces. Gray blocks contain 𝑧 sampled (∼) from the distributions. The variables 𝑥 and 𝑦 represent
EEG signals and choice-RTs, respectively. Each trapezoid represents a different convolutional neural network (see Table 2 for
detailed architectures).

where 𝑝𝜃(𝐱 ∣ 𝐳𝑁 , 𝐳𝐶 ) =  (𝐱 ∣ 𝝁𝜃(𝐳𝑁 , 𝐳𝐶 ), 𝐈) and 𝑝(𝐲|𝐳𝐶 )
can be any neurocognitive likelihood. This work applies the
Wiener First Passage Time distribution (WFPT; Navarro and
Fuss, 2009) corresponding to the lower boundary:

𝑝(𝐲|𝐳𝐶 )
= Wiener (RT ∣ 𝛼, 𝜏, 𝛿)

= 𝜋
𝛼2

𝑒−
1
2
(

𝛼𝛿+𝛿2(𝑅𝑇−𝜏)
)

×
+∞
∑

𝑘=1

[

𝑘 sin
(𝜋𝑘

2

)

𝑒−
𝑘2𝜋2

2𝛼2
(𝑅𝑇−𝜏)

]

(5)

The probability at the upper boundary is obtained by setting
𝛿′ = −𝛿. 𝐳𝐶 comprises of three parameters including drift
rate 𝛿, boundary 𝛼, non-decision time (ndt) 𝜏. The bias
towards correct or incorrect responses is fixed at 0.5, that
is, the starting point is always unbiased.

The joint inference is performed using only EEG 𝐱 to
ensure that encoder 𝜃𝐶 would learn to extract neural features
that are tailored to cognitive parameters, without relying
on choice-RT 𝐲. This has the advantage of providing more
accurate trial-level parameter estimates that are associated
with the EEG data.

Note that the dimension of the cognitive space is sig-
nificantly lower than that of the residual neural space. This
facilitates the representation of the variation in neural signals
only through flexible 𝐳𝑁 . Maximizing the likelihood of ob-
serving neural signals does not guarantee decoder 𝜃 utilizing
𝐳𝐶 to output 𝐱. In the next section, we present an approach
to capture the correlation between behavior and cognition,
as well as the mapping of the variability of behavior and
cognition to neural signals.
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2.3. Structured EEG Modeling from Behavior
Here, we propose a discriminative model regularized by

the generative model learned in the previous section. We
aim to discriminatively learn the distribution of the cognitive
parameters conditioned on behaviors, and the distribution of
the neural latent variables conditioned on cognitive parame-
ters. The joint latent space inferred from the behavior can be
factorized into the two-level latent space as follows:

𝑞𝜙𝐵

(

𝐳𝑁 , 𝐳𝐶 ∣ 𝐲𝑖
)

= 𝑞𝜙2
𝐵

(

𝐳𝑁 ∣ 𝐳𝐶
)

𝑞𝜙1
𝐵

(

𝐳𝐶 ∣ 𝐲𝑖
)

(6)

Inspired by Suzuki, Nakayama and Matsuo (2016), we learn
the following approximations, w.r.t parameter 𝜙1

𝐵:

𝔼𝑝

[

KL
(

𝑞𝜙𝐶
(𝐳𝐶 ∣ 𝐱) ∣ 𝑞𝜙1

𝐵
(𝐳𝐶 ∣ 𝐲)

)]

(7)

and w.r.t parameter 𝜙2
𝐵:

𝔼𝑝

[

KL
(

𝑞𝜙𝑁
(𝐳𝑁 ∣ 𝐱) ∣ 𝑞𝜙2

𝐵
(𝐳𝑁 ∣ 𝐳𝐶 )

)]

(8)

By decomposing the KL divergences as in
Hoffman and Johnson (2016); Vedantam, Fischer,
Huang and Murphy (2017), we effectively
minimize KL

(

𝑞avg
𝜙𝐶

(

𝐳𝐶 ∣ 𝐱
)

∣ 𝑞𝜙1
𝐵
(𝐳𝐶 ∣ 𝐲)

)

and

KL
(

𝑞avg
𝜙𝑁

(

𝐳𝑁 ∣ 𝐱
)

∣ 𝑞𝜙2
𝐵
(𝐳𝑁 ∣ 𝐳𝐶 )

)

, where 𝑞avg𝜙 (𝐳 ∣ 𝐱) =
𝔼𝑝(𝐱∣𝐲)

[

𝑞𝜙(𝐳 ∣ 𝐱)
]

. As there is little posterior uncertainty
once conditioned on an EEG signal 𝐱𝑖, the approximations
are close to the average posterior induced by each of the
EEG 𝐱𝑖 associated with similar 𝐲.

Having fit both the generative and discriminative mod-
els, we can now explore the three-way relationship between
behavior, brain activity, and cognitive processes.

3. Experiments
3.1. EEG and Behavioral Datasets

We used behavioral and EEG data collected while partic-
ipants performed a two-alternative forced-choice task where
they had to decide whether a Gabor patch presented with
added dynamic noise is higher or lower spatial frequency
(for details, see Experiment 2 by Nunez et al., 2019). Task
difficulty was manipulated by adding spatial white noise to
manipulate the quality of the perceptual evidence available
to make the discrimination. The signal and the noise flick-
ered at 40 and 30 Hz frequencies, respectively. 4 participants
performed the task in blocks of trials at 3 added noise
levels (low, medium, and high). Each subject performed ap-
proximately 3000 trials over 7 experimental sessions, while
128 channels of EEG and behavioral data were recorded.
The independent component analysis (ICA)-based artifact
rejection method was used on EEG data to remove eyeblinks,
electrical noise, and muscle artifacts. A subset of 98 EEG
channels were selected, excluding channels located in the
outer ring. EEG data were bandpass filtered to 1 to 45 Hz
in the frequency domain and then downsampled from 1000
Hz to 250 Hz in the time domain prior to data analysis. The
data for each subject were divided into 80% for training and
validation and the remaining 20% for testing.

Table 1
Comparison of the sum of Wiener negative log-likelihood
(−

∑

log Wiener (RT𝑖 ∣ 𝝎𝑖)) of four subjects on the test sets.
�̄� represents the median fitted cognitive parameters from the
training set.

Subjects 𝝎test
𝑖 �̄�train

s1 −0.018 0.212
s2 −0.244 0.159
s3 0.264 0.735
s4 0.031 0.230

3.2. Results
To validate the neurocognitive modeling approach, we

first examine the trial-by-trial variability of the parameters
within each subject and the generalization of the model to
unseen data. Figures 2a and 2c show the trial-by-trial cor-
relations between estimated DDM posteriors and observed
choice-RTs in the training data from neural signals and
behavior, respectively. Spearman correlations between fitted
drift rates (𝛿) and choice-RTs are negatively strong. At the
same time, there are strong positive correlations between
boundaries (𝛼) and choice-RTs, as well as between non-
decision time and choice-RTs. The estimates in NCVA are
regularized by the subject priors obtained from a Bayesian
hierarchical fitting of a DDM using MCMC Nunez et al.
(2019). The model was individually fitted for each sub-
ject using choice-RT and accuracy only and accounted for
between-condition variability within subjects. Clear clusters
of drift rates and non-decision-time estimates depending on
the noise conditions can be seen, though boundary estimates
are highly overlapped. It is worth noting that uncertainties
in the estimates can be inspected from the figures through
the posterior covariance. Understandably, the uncertainties
in the estimations from choice-RTs are significantly higher
than from EEG signals, which agree with the theoretical
derivations in Section 2.3. Figures 2b and 2d also demon-
strate a satisfactory generalization to unseen data. The
drift rates positively correlate with choice-RTs, whereas the
boundaries and non-decision time negatively correlate with
choice-RTs. The model successfully learns to extract the
neural features that account for the choice-RT variability
at each trial. To evaluate whether obtaining trial estimates
of cognitive parameters improved the model of choice and
choice-RT data, Table 1 presents the Wiener likelihood test
for the neurocognitive generalization ability to unseen data.
The results show that the use of single-trial predictions
of cognitive parameters 𝝎𝑖 provides higher likelihood than
the median estimates �̄� fitted from the training data. This
implies that single-trial estimates better account for new data
compared to median estimates.

Figure 3a shows the average of signals generated by
the neurocognitive autoencoder when given a set of ap-
proximately 800 test choice-RTs compared to the average
of actual signals associated with the same choice-RTs. At
the selected electrodes, the window of interest is 100 ms
pre-stimulus to 500 ms post-stimulus, which captures the

Khuong Vo et al.: Preprint submitted to Elsevier Page 4 of 12
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(a) Fitted from EEG (training data)

(b) Predicted from EEG (test data)

(c) Fitted from choice-RTs (training data)

(d) Predicted from choice-RTs (test data)

Figure 2: Drift-diffusion single-trial parameter estimations from correct responses of subject s1. The parameters are constrained
by the subject priors resulting from a Bayesian MCMC modeling (without EEG data). Scatter plots illustrate the relationship
between the parameters and the observed choice-RTs for each trial. The top two rows are posterior inferences from neural signals,
while the bottom two are from behaviors. The left column shows the drift-rate (𝛿) estimates, the middle column shows boundary
(𝛼) estimates, and the right column presents non-decision time (𝑛𝑑𝑡) estimates. The correlations between the choice-RTs and the
inferred DDM parameters are consistent with what is expected. On top of each panel are the Spearman correlation coefficients (𝜌).
The covariances of the inferred parameters are indicated by circles, which correspond to contours having one standard deviation.
For clarity, each circle is magnified 300 times.
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N200 waveform. The generated and original signals appear
visually similar in the timing and amplitudes of the peaks
and troughs. Figures 3b, 3c, and 3d depict the trial-averaged
frequency spectra and corresponding ERP waveforms of the
reconstructed signals. Regarding the frequency spectra, the
most important features are the 40 and 30 Hz peaks, which
correspond to the flicker frequency of the signal (Gabor
patch) and spatial white noise, respectively. Interestingly,
the generative model learns to structure output the steady-
state visually evoked potentials (SSVEPs) that occur in re-
sponse to a visual stimulus flickering at different frequencies,
even though it was never explicitly encoded in the model.
Moreover, in the low noise condition (b), the 30 Hz peak
is large and the 40 Hz is small, while in the high noise
condition (d), the 30 Hz peak is reduced and the 40 Hz peak
is enhanced. In terms of ERP waveforms, the model captures
the relationships of the N200 peak latencies with respect to
the additive noise conditions. Higher additive white noise in
the stimulus effectively increases the latency and decreases
the amplitude of the N200. We focus on the N200 signal
because the original study (Nunez et al., 2019) found strong
relationships between N200 latency and choice-RT, and thus
the N200 is a good validation of our model. These prove the
convergence of the model in optimizing the lower bound of
the conditional likelihood mapping from behavioral data to
EEG features, which effectively encodes differences in the
stimuli presented to the subjects in the latent variable space.

In addition to evaluating traditional ERP estimates (trial-
averaged), we also assess the single-trial ERP estimate
(channel-averaged). To increase the signal-to-noise ratio to
better detect the N200, the first singular-value decomposi-
tion (SVD) component obtained from the ERP response is
taken as a channel weighting function. More details of the
SVD method can be seen at (Nunez et al., 2019). Figure 4
shows the performance of the model in learning the N200
feature in each trial. As shown in Figure 4, the distribu-
tions of the single-trial N200 peak latencies, as well as the
amplitudes calculated from the generated signals, closely
match those of the original signals at three different noise
levels. The peak amplitude distribution is somewhat broader
than the original data’s generated distribution. Importantly,
the model can generate the variability of the N200 latency
with the experimental manipulation of low, medium, and
high noise, systematically increasing the N200 latency in the
generated signals.

Figure 5 represents the sensitivity analysis of the choice-
RT and drift-diffusion parameters regardless of the noise
conditions. In the left column, we examine the sensitivity
of the neural signals generated by the choice-RTs. We can
see similar patterns across subjects where the increases in
choice-RTs lead to significant declines in the 30 Hz and the
rises of the N200 latencies. This confirms the minimization
approach of the KL divergence between the latent spaces
inferred from the behavioral data and the neural signals.
Power at 40 Hz reflecting the neural response to the noise
also changes according to the choice-RTs, though the pattern

is not as strong as the subjects suppressed the noise signal in
all conditions.

One of the powerful tools for exploring the relationship
between cognitive processes is to examine the sensitivity of
neural signals to cognitive parameters. The middle and right
columns of Figure 5 depict the effect of hypothetical modu-
lations of drift rates and non-decision time on the generated
neural signals. The results show that our model reveals
the intricate interactions between cognitive parameters and
neural signals, which is consistent with prior discoveries in
the cognitive modeling literature. As the non-decision time
is faster, the N200 latencies are shorter, and the 30 Hz peaks
are larger. Accordingly, the amplitudes of the N200 peaks
are more prominent, though not shown in the figures for
clarity. The same interactions are observed with the increase
in drift rates, representing evidence accumulation. Again,
the effects on 40 Hz peaks are weaker and depend on the
subjects. We did not observe the effects of the boundary
separation (caution) on the neural signals. The effect can
be reversed with slower non-decision times and lower drift
rates. The strongest effects can be seen when both parameters
influence neural signals. This demonstrates the effectiveness
of the designs of the hierarchical latent variables inferred
from choice-RTs and the disentangled latent space produced
by the EEG data.

4. Conclusion
In this work, we proposed a joint behavioral and EEG

modeling approach driven by a cognitive model of decision
making. The experimental results demonstrate the effective-
ness of our Neurocognitive VAE in simultaneously mod-
eling high-dimensional EEG signals and low-dimensional
behavioral data. Remarkably, the model learns essential
task-relevant neural features, e.g. N200 peaks and SSVEP,
without explicit specification in the optimization objective.
Furthermore, the model captures how these features modu-
late behavior, specifically discovering relationships between
brain activity and behavior consistent with other models
based on prior knowledge. This suggests that the Neurocog-
nitive VAE helps uncover neural signals linked to behavioral
data by mapping to a structured latent space. Compared to
the aforementioned published joint models (Nunez et al.,
2015, 2017, 2019; Lui et al., 2021; Turner et al., 2013,
2016), our end-to-end model is capable of inferring task-
relevant EEG features from behavior without prior knowl-
edge of which features to optimize. The structured latent
space allows the learning of behavioral variability to drive
the EEG data generation process, leading to the prediction of
the structure of EEG features in relation to the stimuli used
in the experiments (N200 and SSVEP) and the behavioral
performance (choice-RT). In addition, the model allows us
to directly map the variability of cognitive parameters to
neural signals, allowing for theoretical predictions that guide
future experimental studies. It should be noted that our
framework does not serve to refine the functional form of
process-oriented computational models. Instead, it presumes
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(a) EEG data at the selected electrodes

(b) Low noise condition

(c) Medium noise condition

(d) High noise condition

Figure 3: Performance of the model in reconstructing 98 EEG channels of subject s1 by averaging ≈ 800 predicted EEG trials from
≈ 800 choice-RTs in the test set. Time point zero denotes the time point of stimulus onset. The first row displays the original
(blue) and generated (orange) trial-averaged EEG data at the pooled electrodes. The x-axis denotes the time in milliseconds from
stimulus onset, and the y-axis denotes the signal amplitude. The second, third, and fourth rows are (left) frequency spectra and
(right) EEG signals averaged over all test choice-RT trials (≈ 800∕3 per condition). The signals on the right are low-pass filtered
at 15 Hz for clarity of N200 peaks. Each colored line corresponds to one reconstructed EEG channel. In low-noise conditions, the
spectra show a strong peak at the Gabor flicker frequency of 30 Hz, and the ERP waveform shows a shorter N200 latency and
larger peak amplitude. Under high-noise conditions, the spectra show a strong peak at the noise flicker frequency of 40 Hz, and
the ERP waveform shows a longer N200 latency and a smaller peak amplitude.
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(a) Subject s1

(b) Subject s2

(c) Subject s3

(d) Subject s4

Figure 4: Performance of the model in reconstructing single-trial N200 peaks from choice-RTs in four subjects. The dotted lines
are references to the original data. The distributions of (left) single-trial N200 peak latencies across three noise conditions and
(right) the N200 peak amplitude statistics are shown. Single-trial observations of the peak latency of N200 are found using the
SVD method (Nunez et al., 2019) for each subject and noise condition.
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(a) Subject s1

(b) Subject s2

(c) Subject s3

(d) Subject s4

Figure 5: Sensitivity analysis of choice-RTs and latent drift-diffusion parameters on EEG signal generation in four subjects. The
left column presents the effects of choice-RTs on the output neural signals. The blue bars represent the power at 30 Hz, while
the red bars represent the power at 40 Hz. The orange bars show the N200 latencies. The middle column shows the changes in
the single-trial N200 distribution w.r.t to hypothetical changes in the cognitive parameters. The yellow distribution represents
the reference data, while the blue and red ones correspond to modified parameter settings that decrease or increase the N200
latencies, respectively. The modification in subject s4 (ndt ± 0.05, 𝛿± 0.3) is different from other subjects. The right column
characterizes the changes in 30 Hz and 40 Hz peaks w.r.t to the changes in the same cognitive parameters.
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a set of fixed assumptions; in the DDM, a constant drift
rate and boundary separation within trials. Importantly, our
framework can be generalized to encompass any other neural
measures combined with any cognitive model to explain
behavior, provided that the cognitive model expresses a
closed-form likelihood of behavioral data. Importantly, by
parameterizing the likelihood by a deep neural network re-
ceiving neural data as input, trial-level parameter inferences
are made possible. In this research, we assume a DDM
posterior with a diagonal covariance matrix. This could
lead to an overestimation of the variance of the marginal
posteriors if the true posterior has dependencies. It would
be beneficial to investigate the use of a full covariance
matrix as an alternative. It is important to mention that our
validation process focused on correct responses. Due to the
low number of incorrect responses compared to correct ones,
we lack confidence in interpreting the results in this study
for the incorrect trials, although the direction of the trial-
level parameter fits was consistent with the results for correct
trials. We anticipate future research to explore strategies to
address the class imbalance problem in deep learning models
(Johnson and Khoshgoftaar, 2019). Further work with a
larger dataset is needed to demonstrate that we can extend the
model to new individuals. In principle, this would potentially
allow us to predict brain activity in clinical populations with
known behavioral differences.
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A. Appendix
A.1. Neural Network Architectures and Training

Hyperparameters
The inferential and generative processes are parameter-

ized by deep neural networks, as shown by the flows in
Figure 1. Table 2 details the architectures of the five net-
works. The input EEG signals are of size 98 x 250 (1 second
of data of 98 channels at 250 Hz). The feature extraction
layers in the EEG and cognitive encoders are similar to Vo,
Vishwanath, Srinivasan, Dutt and Cao (2022). All the feature
maps have 128 channels. Leaky ReLU (lReLU) activation
functions are applied to all layers, with a slope of 0.1 to
stimulate easier gradient flow. Batch normalizations (BN)
(Ioffe and Szegedy, 2015) are used in each convolutional
layer of the encoders and decoders. Self-attention layers
(Zhang, Goodfellow, Metaxas and Odena, 2019) are applied
in the encoders and decoders to better account for long-
range relationships in time series. 𝐜 are noise condition
embeddings as one-hot vectors (size 3). The size of 𝐳𝑁 is
set at 32 as increasing the dimension did not lead to any
improvement in performance on a validation set.

In Equation (4), the term log 𝑝(𝐲 ∣ 𝐳𝐶 ) is weighted
by 𝜆 = 2 to scale up the likelihood of low-dimensional
behavior. The KL terms are weighted by 𝛽 = 20. The KL
terms are normalized to balance the KL divergence loss
and the reconstruction loss. Please refer to Sections 4.2 and
A6 of (Higgins et al., 2016) for further information. The
optimization of 𝑞𝜙𝐶

(

𝐳𝐶 ∣ 𝐱
)

is divided into two stages. We
first optimize the network w.r.t drift rate 𝛿 and boundary 𝛼,
while non-decision time 𝜏 is set to 0.93 ⋅ 𝑅𝑇𝑚𝑖𝑛 for each
subject, approximating the results of the Bayesian MCMC
modeling Nunez et al. (2019). Having trained 𝜙𝐶 for 𝛿 and
𝛼, we can proceed to train only the last fully connected layer
that predicts 𝜏. This procedure is to circumvent the difficulty
of simultaneously optimizing the network for the boundary
and the non-decision time on the experimental data. We
used Adam (Kingma and Ba, 2014) for optimizations, with
a learning rate of 5e-4 and exponential decay rates 𝛽1 = 0.9
and 𝛽2 = 0.999.

A.2. Simulation Studies
We assessed our ability to recover true non-decision time

(NDT) and drift rate by simulating response time data and
EEG signals. Response time data were simulated from a
drift-diffusion model with trial-to-trial variability in NDT
and evidence accumulation rate (i.e., drift rate). To simulate
EEG signals with a known relationship with DDM parame-
ters, we specifically focused on N200 due to the significant
associations between N200 latency and NDT reported by
Nunez et al. (2019). In our new experiments, we additionally
observed a substantial relationship between drift rate and
N200 latency, which we included in the simulation. Bound-
ary separation was not included in the simulation, as we
did not find any neural correlates of variability in boundary
separation, and those are usually only found in tasks with
trial-level accuracy feedback (Cavanagh and Frank, 2014;
Nunez, Fernandez, Srinivasan and Vandekerckhove, 2024).
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Table 2
Neural network parametrization

EncoderN − 𝑞𝜙𝑁 (𝐳𝑁 ∣ 𝐱) EncoderC − 𝑞𝜙𝐶 (𝐳𝐶 ∣ 𝐱) Decoder - 𝑝𝜃 (𝐱 ∣ 𝐳𝑁 , 𝐳𝐶 )
maps EEG signals to neural latents maps EEG signals to cognitive latents reconstructs EEG signals

Dropout(0.3) Get 𝐳𝐶
Conv 1, lReLU, 128 x 250 Conv 1, lReLU, 128 x 250 Linear 128, lReLU

Conv 6, BN, lReLU X 2 Conv 6, BN, lReLU, Dropout(0.7) Linear 32, lReLU
Conv 6, Stride 2, BN, lReLU Conv 6, Stride 2, BN, lReLU, Dropout(0.7) Concat 𝐳𝑁 , 𝐜

Self Attention Self Attention Conv Transp 8, Stride 4, 512 Channels, BN, lReLU
Conv 6, BN, lReLU X 2 Conv 6, BN, lReLU, Dropout(0.7) Conv Transp 8, Stride 4, 256 Channels, BN, lReLU

Conv 6, Stride 2, BN, lReLU Conv 6, Stride 2, BN, lReLU, Dropout(0.7) Self Attention
Reshape 2048, Concat 𝐜 Reshape 2048, Concat 𝐜 Conv Transp 6, Stride 3, 128 Channels, BN, lReLU

Linear 32 (mean 𝐳𝑁 ) Linear 1 (mean 𝛿), Linear 1 (logvar 𝛿) Conv Transp 6, Stride 3, 128 Channels, BN, lReLU
Linear 32 (logvar 𝐳𝑁 ) Linear 1, Softplus (mean 𝛼) Self Attention

Linear 1 (logvar 𝛼) Conv Transp 10, Stride 2, 98 Channels
Linear 1, Softplus (mean 𝑛𝑑𝑡)

Linear 1 (logvar 𝑛𝑑𝑡)

Encoder2𝛽 − 𝑞2𝛽
(

𝐳𝑁 ∣ 𝐳𝐶
)

Encoder1𝛽 − 𝑞1𝛽
(

𝐳𝐶 ∣ 𝐲𝑖
)

maps cognitive latents to neural latents maps behaviors to cognitive latents
Linear 128, lReLU Linear 128, lReLU
Linear 128, lReLU Linear 128, lReLU

Concat 𝐜 Concat 𝐜
Linear 64 Linear 6

To simulate single-trial EEG signals, we shifted the true
averaged ERP waveform based on each sample of trial-level
NDT, using a linear regression slope of 1, as in Nunez et al.
(2019). EEG noise was obtained from the original data,
using independently sampled segments that did not include
responses to stimuli. The resulting ERP and EEG waveforms
were then combined to generate artificial EEG signals for
each trial that carried the N200 latency information and was
associated with choice and response time.

It is evident from the results in Figure 6 that the model
can accurately recover the original distributions of trial-
specific parameters. In particular, the generating and recov-
ered distributions strongly overlap, and the correlation plots
indicate that our single-trial estimates of cognitive parame-
ters exhibit good correlations with the reference parameters.
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