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Charge and Solvent Effects on the Redox Behavior

of Vanadyl Salen-Crown Complexes

Nadia G. Léonard, Hien, M. Nguyen, Teera Chantarojsiri, Tyler A. Kerr, Joseph W. Ziller, Jenny

Y. Yang*

Department of Chemistry, University of California, Irvine, California, 92697, United States

ABSTRACT. The incorporation of charged functionalities proximal to a redox active transition

metal center is an attractive strategy for modulating redox behavior, installing electric fields, and

potentially enhancing catalysis. Vanadyl salen (salen =  N,N’-ethylenebis(salicylideneaminato))

complexes functionalized with a crown ether containing a 1+ (Na+, K+), 2+ (Ba2+), or 3+ (La3+,

Ce3+, Nd3+) cation were synthesized and their electrochemical behavior investigated by cyclic

voltammetry  in  both  polar  (acetonitrile  and  dimethylformamide)  and  non-polar

(dichloromethane) solvents. The vanadium(V/IV) reduction potential  shifted anodically (>900

mV in acetonitrile and >700 mV in dichloromethane) with increasing cation charge as compared

to  complexes  lacking the  proximal  cation.  The redox behavior  of  the  parent  salen  and 3,3-

methoxy substituted salen (salen-OMe) vanadyl complexes was also investigated and compared

to the crown-containing complexes. For (salen-OMe)V(O), a weak association of triflate salt at

the vanadium(IV) oxidation state was observed through cyclic voltammetry titration studies. The

reduction  potential  for  all  vanadyl  crown  complexes  measured  in  dimethylformamide  was
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insensitive to cation charge magnitude. Titration studies of dimethylformamide into acetonitrile

resulted  in  cathodic  shifting  of  the  vanadium(V/IV)  reduction  potential  with  increasing

concentration of dimethylformamide.  Binding constants of dimethylformamide (KDMF) for the

series  of crown complexes  shows increased binding affinity in  the order  of  V-La>V-Ba>V-

K>(salen)V(O),  indicating  an  enhancement  of  Lewis  acid/base  interaction  with  increase  of

cation charge. This study demonstrates the non-innocent role of solvent coordination on redox

behavior and considerations for electric field quenching.

INTRODUCTION.

Vanadium complexes in the 4+ and 5+ oxidation states are highly attractive due to their activity

for a  variety of oxidation reactions.1–3 Vanadyl  (V=O) complexes  dominate the chemistry of

vanadium due to their stability and this has led to many applications ranging from catalysis,4–1112–

14 electrochemistry,15,16 bioinorganic chemistry,17–22 and molecular magnetism.23–28 Salen (salen =

N,N’-ethylenebis(salicylideneaminato)) vanadyl complexes are interesting models of vanadium

containing  enzyme  active  sites  and  have  shown  activity  for  the  oxygen  reduction  reaction

(ORR)29 and  autoxidation  of  alkenes.30 Given the  rich  oxidation  chemistry  of  salen  vanadyl

complexes, tuning the electrochemistry and redox behavior  is attractive and a potential strategy

for  controlling  reactivity  at  very  oxidizing  potentials.  Further,  it  is  important  to  understand

solvent effects on the redox behavior, as this may determine reactivity profiles and stability of the

vanadyl ion.  Proximal non-redox active Lewis acidic metals can result in large shifts in redox

potentials and enhancement of reactivity.31–35 Increasing the magnitude of charge of a positively

charged ion or substituent typically results in an anodic shift, or more positive shift, of reduction
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potential.  Investigations  on  the  impact  of  charge  effects  on  homogeneous  transition  metal

complexes are important for understanding electron transfer processes, spectroscopic properties,

and impact on catalytic activity. Given the stability of the salen vanadyl (V/IV) redox couple and

its  role  in  reactions  involving  vanadium  complexes,  we  investigated  salen-crown  vanadyl

complexes  containing  various  non-redox  active  cations  to  tune  the  redox  behavior.  Solvent

effects in both polar and non-polar solvents were investigated to explore how both charge and

solvent  impact  electron  transfer,  reorganization,  and coordination  around the vanadyl  center.

Understanding solvent  effects  when charge is  present  is  also critical  for  ion-pairing,  solvent

screening, and coordination as it relates to reactivity.36 Gaining a better  understanding of the

interplay  of  charge  effects,  solvent  interactions,  and  redox  behavior  at  vanadyl  complexes

informs how these characteristics may influence reactivity.
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Chart  1. Vanadyl  complexes  investigated  in  this  study.
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RESULTS AND DISCUSSION.
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Synthesis and structural characterization. Complexes (salen)V(O) and (salen-OMe)V(O)37 as

well  as  the  salen-crown38 and  salen-crown-M31–33,39 (M = Na+,  K+,  Ba2+)  ligands  have been

previously reported and were prepared accordingly. Salen-crown-Ln ligands (Ln = La, Ce, Nd)

were prepared through metalation of  salen-crown with the respective Ln(OTf)3 salt  in a 1:1

mixture  of  CHCl3 and  MeOH.  The  corresponding  vanadyl  complexes  were  then  achieved

through metalation of the desired salen-crown-M ligand with V(acac)3 (acac = acetylacetonate)

in EtOH followed by exposure to air.  Alternatively,  the desired vanadyl complexes could be

obtained directly through metalation of the salen-crown-M ligand with vanadyl acetylacetonate

(V(O)(acac)2) (Scheme 1). Single crystals suitable for X-ray diffraction of the vanadyl complexes

(V-Na, V-K, V-Ba, V-La, V-Ce, V-Nd) were obtained following slow diffusion of diethyl ether

into concentrated MeCN solutions at room temperature (Figure 1). The empty crown vanadyl

complex ((salen-crown)V(O)) could not be crystallized due to its insolubility in MeCN.

Scheme  1. Synthesis  of  vanadyl  complexes.
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Figure 1. Solid-state molecular structures of vanadyl complexes at 50% probability ellipsoids.

Hydrogen atoms omitted for clarity. See Table 1 for selected bond metrics.

In  the  solid  state,  V-Na and  V-Ba complexes  exist  as  dimers  where  the  oxo ligand

bridges between the vanadium and cation, M (M = Na+ or Ba2+). The bond lengths of the V–O

bonds vary minimally across the series for the solid state monomeric or dimeric species (Table

1).  Direct  binding  of  a  Lewis  acid  to  an  oxometal  fragment  has  been  shown  to  result  in

significant  elongation  of  the  M–O bond.40–42 However,  for  the  crown complexes,  we do not

observe significant elongation of the V–O bonds with the cation bound in the crown-ether tether.
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All complexes exhibit distorted square pyramidal geometry with 5 values ranging between 0.01

and 0.14. The vanadium atom is displaced toward the apical oxygen atom away from the basal

plane (defined by the Schiff base N2O2 atoms) in all complexes. The neodymium compound had

significant distortion in the crystal structure (say something more here).

Table  1. Summary  of  structural,  spectroscopic,  and  electrochemical  parameters  of  vanadyl

complexes.

Complex V–Oxido  Bond
(Å)

V–M  distance
(Å)

Cation  M
radius (Å)a

τ5 Displacement
of  V  from
basal  plane
(N2O2) (Å)

(salen)V(O)b 1.590(1) – – 0.18 0.589

(salen-OMe)V(O)c 1.590(3) – – 0.13 0.589

V-Na 1.5986(15) 3.4850(10) 1.02 0.01 0.518

V-K 1.6025(10) 3.8076(4) 1.38 0.14 0.613

V-Ba 1.6059(11) 3.7983(3) 1.35 0.12 0.610

V-La 1.600(3) 3.5980(7) 1.03 0.12 0.492

V-Ce 1.588(2) 3.6100(6) 1.01 0.10 0.485

V-Nd 1.586(3) 3.59569(17) 0.98 0.10 0.492

a Values from ref. 43. bValues from ref. 44. cValues from ref. 45.

Solution  state  magnetic  moment  measurements  and  electron  paramagnetic  resonance

spectroscopy.  The solution  state  magnetic  moments  of  the heterobimetallic  complexes  were

measured by Evans method in MeCN at 23 ºC. [insert conclusions here.] Electron paramagnetic

resonance (EPR) spectra were collected at 77 K in 1:1 MeCN/toluene solutions. The spectra

support a vanadium-centered S = 1/2 assignment with average g values ~ 1.98 for the series of

heterobimetallic complexes and exhibit the expected eight-line hyperfine splitting due to the I =
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7/2  51V (99.75% natural abundance) nucleus (See SI Figure SX, Table SX). No spin coupling

between the vanadium center and Ce3+ or Nd3+ was observed for  V-Ce or  V-Nd, respectively.

The  EPR spectra  exhibit  axially  symmetric  spectra  consistent  with  those  typical  for  related

square pyramidal oxovanadium(IV) complexes.46,47

Cyclic voltammetry.  Cyclic voltammetry of  (salen)V(O) (Figure 2, black trace) and  (salen-

OMe)V(O) (Figure 2, gray trace) in acetonitrile (dielectric of 37.5) show reversible reductions

corresponding  to  the  V(V/IV)  reduction  at  0.090 and  0.066  V vs  (C5H5)2Fe+/0,  respectively,

consistent with previously reported values.48 The electrochemical properties of V-M (Mn+ = Na+,

K+, Ba2+, Nd3+, La3+) were also measured in acetonitrile (Figure 2 and SI Figure SX) and values

for the V(V/IV) E1/2 are listed in Table 2. The V(V/IV) redox event for V-Na, V-K, and V-Ba is

reversible  and shifts  anodically  with  increase  of  cation  charge,  consistent  with  the  effect  of

incorporating  charge  with  related  heterobimetallic  complexes  previously  investigated  by  our

group.31–35 The vanadium(V/IV) reduction potential for the monocations (V-Na and V-K) shifts

90-130  mV  more  positive  than  (salen)V(O) and  114-164  mV  more  positive  than  (salen-

OMe)V(O).  For  the  dication,  V-Ba,  the  vanadium(V/IV)  reduction  potential  shifts  440 mV

positive of (salen)V(O) and 464 mV positive of (salen-OMe)V(O).  The cyclic voltammograms

of V-La and V-Nd showed an irreversible oxidation event (Epa) at 1.1 and 1.09 V vs (C5H5)2Fe+/0,

respectively,  indicating  chemical  instability  of  the  vanadium(V)  oxo for  these  complexes  in

MeCN.  Attempts  to  isolate  the  lanthanum  containing  vanadium(V)  oxo  complex  following

chemical oxidation of  V-La with NOBF4 were unsuccessful. Differential pulse voltammetry of

V-La showed an additional oxidation feature directly following the V(IV/V) oxidation (>1.3 V

vs Fc+/0) tentatively assigned as formation of the V(V)-phenoxyl radical, which may contribute to
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the observed electrochemical and chemical instability in isolating this species at such oxidizing

potentials (See SI Figure SX).

Figure 2. Cyclic voltammograms of  (salen)V(O),  (salen-OMe)V(O), and  V-M (M = Na+, K+,

Ba2+, Nd3+, and La3+) (0.5 mM) in 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) in

MeCN under N2. Scan rate is 100 mV/s. Decamethylferrocene was used as internal reference and

all potentials are reported vs. the (C5H5)2Fe+/0 redox couple.

Table 2. Summary of electrochemical data for vanadyl complexes.

Complex E1/2 V(V/IV)
(V), MeCNa

E1/2 V(V/IV)
(V), DCMa

E1/2 V(V/IV)
(V), DMFa

pKa of
M(OH2)

log(KDMF)
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(aq.)b

(salen)V(O) 0.090 0.045 -0.10 -- 1.75

(salen-OMe)V(O) 0.066 – -0.13 -- --

(salen-crown)V(O) -- -- -0.12 -- --

V-Na 0.23 0.195 -0.050 14.8 --

V-K 0.18 -- -0.036 16.3 1.90

V-Ba 0.53 0.41  0.39, -0.11c 13.4 3.67

V-La 1.1d 0.78d -0.16 9.06 7.42

V-Ce -- -- -0.16 9.3 --

V-Nd 1.09d -- -- 8.4 --

a Reduction potentials referenced to (C5H5)2Fe+/0 couple. b Values from ref. . c The redox events
are irreversible, so in lieu of reporting a E1/2, the values reported here correspond to Epa and Epc

potentials, for the irreversible oxidation and reduction events, respectively. d The redox event is
irreversible, so the reported potentials correspond to an Epa for the irreversible oxidation to the
V(V) species.

To further investigate the effect of solvent on the electrochemical behavior of the vanadyl

complexes, cyclic voltammetry was also performed in dichloromethane (dielectric of 8.93) and

dimethylformamide  (dielectric  of  36.7).  Cyclic  voltammograms  of  V-K,  V-Ba,  and  V-La

measured in dichloromethane exhibited similar positive shifts for the vanadium(V/IV) couple

with  increase  of  cation  charge.  The  vanadium(V/IV)  couple  for  V-K and  V-Ba appeared

reversible,  but  V-La showed  an  irreversible  oxidation,  similar  to  its  behavior  in  MeCN.

However, all three complexes were sparingly soluble in DCM. Still, shifts of 150 mV (V-K), 365

mV (V-Ba) and 735 mV (V-La) more positive than (salen)V(O) were observed (see SI Figure

SX).

The electrochemical  behavior  in dimethylformamide was markedly different  than that

observed in either MeCN or DCM. The vanadium(V/IV) redox couple was insensitive to cation
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bound in the crown, only varying 124 mV across the series (Figure 3).  Say something about

excluding  the  possibility  of  the  cation  falling  out  here.  Titration  studies  of  adding  excess

equivalents  of  triflate  salt  to  solutions  of  either  V-Ka,  V-Ba,  or  V-La  did  not  produce any

changes in the CV (See SI). The effect of anion dissociation in DMF was also explored as a

reasoning  for  the  lack  of  positive  redox  shift  for  V-La by  cyclic  voltammetry.  However,

comparing reduction potentials of [V-La][OTf]3 and [V-La][Cl]3 in DMF with 0.1 M TBABPh4

electrolyte showed no real difference (SI Figure SX). It is expected that the chloride anion could

be more strongly coordinating than triflate. However, the similar reduction potentials indicate

that another interaction must be responsible for the lack of positive shift in DMF.
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Figure 3. Cyclic voltammograms of  (salen)V(O),  (salen-OMe)V(O),  (salen-crown)V(O), and

V-M (M = K+, Ba2+, La3+, Ce3+) (0.5 mM) in 0.1 M TBAPF6 in DMF under N2. Scan rate is 100

mV/s. Decamethylferrocene was used as internal reference and all potentials are reported vs. the

(C5H5)2Fe+/0 redox couple.

Square  pyramidal  salen  vanadium oxo complexes  possess  an empty  coordination  site

trans to the oxo group, and previous studies have investigated association of weakly binding

anions at this position.49–51 Additionally, dimeric or oligomeric chains with V-O-V-O linkages

have been observed.52–55 Upon oxidation, the more electron deficient vanadium(V) should prefer

to be six-coordinate instead of five and thus more likely to bind coordinating solvents or Lewis

bases at the axial position.56 Previous electrochemical studies on salen vanadium oxo complexes

in polar versus non-polar solvents shows that solvent and electrolyte interactions can greatly

impact the redox behavior48 and catalytic oxidation reactivity.37,57–59 The cyclic voltammogram of

V-Ba in  DMF  suggests  chemical  reactivity  on  the  CV  timescale.  Describe  CV  of  barium

complex. Talk  about  solvent  dielectric  and  solvent  screening  of  charge/electric  field?60 The

differences  in the cyclic  voltammograms of the vanadium complexes  in MeCN versus DMF

cannot  be  explained  by  dielectric  constant  because  the  values  are  similar  (37.5  and  36.7,

respectively). Instead, a better descriptor would be to consider the differences in Lewis basicity

of the solvents. Gutman donor number.61,62

To explore the interaction with DMF, cyclic voltammograms of the vanadyl complexes,

(salen)V(O), V-K, V-Ba, and V-La, were taken at different concentration of DMF in MeCN. In

all  cases,  the  vanadium(V/IV)  reduction  potential  shifted  cathodically  with  increasing

concentrations of DMF (Figure 4). Further,  for  V-La,  the redox couple became reversible at
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concentrations  of  0.1 M DMF and above.  This  cathodic  shifting  can be  explained by DMF

binding at the axial position, thus increasing electron density at the metal center and making it

easier to oxidize from vanadium(IV) to (V). Binding constants for DMF (KDMF) can be calculated

using an adaptation of the Nernst equation (eq 1), where a plot of E1/2 vs log[DMF] gives a linear

relationship.63,64

∆ E1/2=q
0.0592

n log [ DMF ]+
0.0592

n log (K DMF ) (1)

In eq 1,  q is  the number of DMF molecules  bound and  n refers to the number of electrons

involved in the redox event. For the one electron oxidation of vanadium(IV) to vanadium(V), the

value of  KDMF  increases as cation charge increases (Table 2). Further, the slope obtained from

these  data  can  be  used  to  determine  the  number  of  DMF molecules  bound.  In  the  case  of

(salen)V(O), there should be only one empty coordination site for DMF and the slope value of

0.05 V/decade is consistent with the binding of one molecule of DMF (See SI Figure SX). For

the V-M complexes, the Lewis acidic metal cation provides an additional binding site. A similar

analysis of the slopes for V-K, V-Ba, and V-La suggests that more than one molecule of DMF

could be binding (q >1) (See SI). Therefore, binding of multiple molecules at these complexes

cannot be ruled out.
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Figure 4. Cyclic voltammetry of (a) (salen)V(O), (b) V-K, (c) V-Ba, (d) V-La with titration of

DMF. Scan rate at 100 mV/s in MeCN and 0.1 M TBAPF6 electrolyte. Redox feature at E1/2 = -

0.51 V is decamethylferrocene (Fc*) used as internal standard.

The interaction of the Lewis acidic metal with the methoxy substituted complex, (salen-

OMe)V(O), was also explored. Interactions with salen vanadium oxo complexes with Rare Earth

metals65 and Group 14 and 15 Lewis acids45 have been observed before. Two different sites of

interaction are possible – through the oxo group or through the methoxy substituents, more akin

to  the  salen-crown  complexes.  A  more  electrophilic  vanadium  oxo  center  would  disfavor
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association through the oxo unit.  Cyclic  voltammograms of  (salen-OMe)V(O) were taken at

different concentrations of M(OTf)n salt (Mn+ = K+, Ba2+, La3+) in MeCN (Figure 5). An anodic

shift  of  the  vanadium(IV/V)  oxidation  feature  was  observed  for  all  salts  with  increasing

equivalents added. However, the potential for the return wave, reduction of the vanadium(V)

back to vanadium(IV), was shifted anodically by a smaller amount (Table 3). The asymmetry

observed in the magnitude of the shift at the two redox features may be attributed to charge

repulsion between the cationic vanadium(V) and the Lewis acidic metal,  leading to a weaker

association.
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Figure 5. Cyclic voltammetry of (salen-OMe)V(O) with titration of (a) KOTf, (b) Ba(OTf)2, or

(c) La(OTf)3 salts. Scan rate at 100 mV/s in MeCN and 0.1 M TBAPF6 electrolyte. Redox feature

at E1/2 = -0.51 V is decamethyl ferrocene (Fc*) used as internal standard.

Table 3. Summary of redox potential  shifts  from tritration  of (salen-OMe)V(O) with triflate

salts.a

Equiv.
salt
added

K(OTf)2 Ba(OTf)2 La(OTf)3

Epa (V) Epc (V) Epa (V) Epc (V) Epa (V) Epc (V)

1 0.020 0.014 0.367 0.122 0.794 0.114

2 0.025 0.030 0.369 0.125 0.794 0.119

5 0.045 0.051 0.374 0.141 0.804 0.136

10 0.058 0.058 0.331 0.158 0.794 0.142

20 0.082 0.069 0.321 0.163 0.794 0.144

Electronic  and vibrational  spectroscopy. The UV-visible  spectra  of  the  V-M complexes

were explored in both MeCN and DMF (See SI for full spectra). There are two major absorption

bands observed for all complexes, with an intense band at ~360 nm corresponding to a mixed π–

π*/charge transfer (CT) transition and a weaker band at ~580 nm corresponding to V(IV) d-d

transitions.56 A  slight  red  shift  was  observed  in  DMF  for  the  π–π*  band  that  was  more

pronounced for complexes containing a cation, and this shift may be due to stabilization by DMF

coordination.

The solid-state infrared spectra show that the V=O stretching frequency increases by 32 cm-1

and the imine C=N bond frequency increases by 42 cm-1 over the series of complexes. Plotting
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the vibrational data against the E1/2 data collected in different solvents show that a positive linear

Stark effect is present in MeCN and DCM, however in DMF no positive correlation is observed,

consistent  with DMF coordination  (Figure SX).  Table  4 lists  a  summary of  UV-visible  and

vibrational spectroscopy.

Table 4. Summary of electronic absorbance and vibrational spectroscopy.

Complex MeCN

/nm (/M-1cm-1)

DMF

/nm (/M-1cm-1)

(V=O) (cm-1) (C=N) (cm-1)

(salen)V(O) 365  (9600),  590
(210)

363  (6075),  587
(123)a

968 1531

(salen-
OMe)V(O)

360  (5600),  600
(200)

-- 976 1522

(salen-
crown)V(O)

-- 376  (3400),  598
(110)

979 1525

V-Na 374  (2500),  592
(60)

378  (2990),  594
(70)

986 1554

V-K 374 (23,500), 584
(160)

376  (3900),  572
(90)

987 1553

V-Ba 366  (4400),  588
(70)

382  (5600),  578
(110)

989 1557

V-La 354  (4000),  610
(60)

378  (6300),  602
(170)

998 1563

V-Ce 354  (3900),  604
(170)

380  (9300),  592
(280)

1000 1564

V-Nd 346  (4700),  596
(180)

386  (3100),  598
(80)

994 1530

a Values from ref 66.

Spectroelectrochemical UV-vis studies were also use to further investigate the stability of the

vanadium  complexes  following  oxidation  in  both  MeCN  and  DMF.  A  controlled  potential
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electrolysis ~200 mV positive of the V(V/IV) reduction potential was applied in 0.2 M TBAPF6

solutions and UV-Vis spectra were collected at 1 second intervals during electrolysis. In MeCN,

(salen)V(O), V-K, V-Ba all showed the growth of a broad absorbance peak between 600-800 nm

corresponding to the growth of a charge transfer band associated with formation of the V(V)

species. Electrolysis of V-La did not result in growth of an absorbance peak indicating formation

of the V(V) complexes, further supporting the instability and inaccessibility of the V(V) complex

for the lanthanum containing complex. In DMF, however, the growth of the charge transfer band

was  observed  for  V-K,  V-Ba,  and  V-La,  indicating  that  bound  DMF  may  be  providing

stabilization  of the V(V) form in line with the reversibility  observed for the V(V/IV) redox

coupling in DMF solutions.

Figure 6. Spectroelectrochemical UV-Vis of vanadium complexes. Left: in MeCN with 0.2 M

TBAPF6 electrolyte. (a) (salen)V(O), (b) V-K, (c) V-Ba, (d) V-La. Right: in DMF with 0.2 M

TBAPF6 electrolyte. (a) V-K, (b) V-Ba, (c) V-La. 

CONCLUSIONS
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These studies indicate that solvation effects and ability of DMF to act as a Lewis base can

effectively quench electrostatic charge effects on reduction potentials. Cyclic voltammetry and

UV-Vis confirmed that DMF can act as a ligand and the binding constant increases as the cation

charge increases and the metal center becomes more electron. In acetonitrile, incorporation of

charge  leads  to  a  shift  in  reduction  potential  for  the  vanadium(V/IV)  couple  by  >900 mV.

However, in DMF the reduction potential only shifts by 124 mV across the series of complexes

investigated.

We have also demonstrated that  addition of exogenous triflate  salt  to (salen-OMe)V(O) in

MeCN produces a positive shift in the V(V/IV) reduction potential, but charge repulsion upon

oxidation to V(V) results in cation dissociation and a loss of reversibility by cyclic voltammetry.

The  impact  of  these  studies  shows  that  electrostatic  effects  are  solvent  and  coordination

environment  dependent  and  inform  future  work  on  considering  these  interactions  to  avoid

electric field quenching and improve catalyst design.
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