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Abstract of the Dissertation

Topics in Non-Equilibrium Dynamics

and the Emergence of Spacetime

by

Dalit Engelhardt

Doctor of Philosophy in Physics

University of California, Los Angeles, 2016

Professor Per J. Kraus, Chair

The Anti-de Sitter / Conformal Field Theory (AdS/CFT) correspondence that arises in

string theory has had implications for the study of phenomena across a range of subfields in

physics, from spacetime geometry to the behavior of condensed matter systems. Two major

themes that have featured prominently in these investigations have been the behavior of

systems out of equilibrium, and the emergence of spacetime. In this thesis, aspects of these

themes are considered and analyzed.

The question of equilibration and thermalization in 2D conformal field theories is ad-

dressed and refined via a number of observations about local versus global thermalization

in such systems, the validity of particular diagnostics of thermalization, the dependence of

the equilibration behavior of a conformal field theory on its operator spectrum, and the

holographic dual of the generalized Gibbs ensemble that is of interest in studies of equili-

bration in systems with a large number of conserved quantities. A formalism for analyzing

the non-equilibrium dynamics of 1+1-dimensional conformal field theories is discussed, and

its physical relevance is motivated with an example connecting such a system to an ex-

perimental system that exhibited unusual equilibration behavior. Qualitative agreement is

demonstrated between the CFT picture and the experimental observations.

The emergence of spacetime geometry from quantum entanglement, while largely a
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byproduct of considerations from holographic dualities, has also been proposed to have a

direct, non-holographic manifestation. Here a particular realization of such a direct emer-

gence is presented through a demonstration that, in the presence of quantum entanglement

alone, certain observations of electric fields in the entangled system appear qualitatively

the same as the corresponding observations in a physically-connected geometric spacetime,

so that the entanglement effectively mimics particular features associated with geometric

connectivity.
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CHAPTER 1

Introduction

The nearly two decades that have passed since the discovery of the Anti-de Sitter / Conformal

Field Theory (AdS/CFT) correspondence [1] have brought about a veritable revolution in our

perception of concepts at the heart of both quantum and gravitational phenomena. While

a theory of quantum gravity remains elusive, developments ensuing from the implications of

the AdS/CFT correspondence have fundamentally altered our understanding of the nature

of spacetime, locality, causality, the role of quantum information in a unified theory of

quantum gravity – and the connections between these concepts and others. They have further

contributed to an improved ability to describe systems that defy the tools of perturbation

theory due to their strong coupling, leading to a flourishing research effort into condensed

matter systems through the use of tools from general relativity.

In this thesis, two major themes that have emerged from research into holograpic dualities

are considered. The first of these – the behavior of systems out of equilibrium – is a subject

that extends far beyond holography and is of interest for practically any physical system,

as our world by and large is not in equilibrium. As pervasive as non-equilibrium behavior

is, however, there are surprisingly few tools at our disposal for analyzing and modeling

such systems. Holography has given us new perspectives on and tools for investigating non-

equilibrium behavior and has given rise to a large research effort employing gravitational

setups for studying non-equilibrium quantum field theories. The focus of this thesis is on the

non-equilibrium behavior of certain systems in one spatial dimension, and to that purpose

both holographic and non-holographic considerations will be employed. One-dimensional

systems have been shown both theoretically and experimentally to exhibit rather diverse
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behavior out of equilibrium, and research into these systems continually reveals new and

interesting physics.

The second theme is at the core of efforts designed to understand the fundamental nature

of a unified quantum theory of gravity. The implication of the holographic duality that –

at least in principle – all information about a gravitational theory in a higher-dimensional

spacetime is contained within a lower-dimensional quantum field theory has led to the idea

that spacetime geometry and hence gravitational dynamics emerge from the quantum the-

ory in a similar spirit to the emergence of complex dynamics from elementary interactions.

In particular, there has been accumulating tantalizing evidence that quantum information

may hold the key to understanding this emergence, as particular properties and objects of

quantum information in field theory have been shown to be dual to constructs in the corre-

sponding gravitational theory [2–4]. Many recent efforts have centered on “reconstructing”

the gravitational theory in the bulk and hence the bulk geometry by studying quantum

entanglement and other information theoretic objects in the dual quantum field theory1. In-

terestingly, there may also be a very direct, non-holographic way in which spacetime emerges

from quantum behavior. This type of non-holographic emergence was first suggested in the

work of Maldacena and Susskind [12]; in this thesis a specific manifestation of this type

of emergence is shown. This direct type of emergence may provide profound clues for the

connections between spacetime geometry, quantum theory, and a unified framework encom-

passing the two.

1.1 The AdS/CFT duality and spacetime emergence

Recent work in string theory has advanced our understanding of the connection between

quantum theory and gravity through the idea of holography. The holographic principle is the

idea that in a quantum theory of gravity, all information about a particular region is encoded

in the boundary of that region. This idea has its origins in black hole thermodynamics and

1There is a vast literature dedicated to this subject; for some earlier references see, e.g., [5–11].
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the realization that the entropy of a black hole scales as its horizon area A [13, 14]

SBH =
c3A

4G~
,

rather than its volume, as would be expected from statistical mechanics2. In other words,

the scaling of the entropy in the d-dimensional gravitational theory is that which would be

expected for a d−1-dimensional local quantum field theory instead. The interpretation that

phenomena in the higher-dimensional theory should have a complete description in terms of

the degrees of freedom of a lower-dimensional theory, the so-called holographic principle for

its analogy with the workings of a hologram, was elucidated by ‘t Hooft [15] and Susskind [16]

(see also [17]) and has had a profound effect on subsequent work in quantum gravity.

Still two decades earlier than these developments, it was suggested by ‘t Hooft [18] that

large-N gauge theory, where N is the rank of the gauge group, is equivalent to a string

theory. The idea behind this equivalence is that any diagram in the gauge theory can be

expanded as
∞∑
g=0

N2−2gfg(λ) (1.1.1)

where the ‘t Hooft coupling λ is defined as λ ≡ g2
YMN , where gYM is the coupling constant

(the subscript YM denoting Yang-Mills), g is the genus of the surface corresponding to the

diagram, and fg is some polynomial in λ. By identifying the string coupling constant gs with

1/N the form of the expansion (1.1.1) is seen to be the same as that of the perturbative

expansion in string theory with closed oriented strings. Note that at large N the expansion

(1.1.1) will be dominated by surfaces of small g, i.e. by planar diagrams, proportional to

N2. This large N limit would correspond to small gs, i.e. a weakly-coupled string theory.

The holographic principle and ‘t Hooft’s equivalence of gauge and string theory found

specific manifestation in Maldacena’s groundbreaking proposal in 1997, arrived at by exam-

ining a particular limit of string theory, of a duality in the large-N limit between type IIB

supergravity compactified on a direct product of five-dimensional Anti-de Sitter space with a

2
√
G~/c3 is the Planck length.
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sphere, AdS5×S5 andN = 4 supersymmetric Yang-Mills (SYM) SU(N) gauge theory in four

dimensions. Anti-de Sitter (AdS) space is a maximally-symmetric spacetime with negative

cosmological constant, and N = 4 SYM SU(N) gauge theory is a quantum field theory that

is invariant under a type of transformations known as conformal (angle-preserving) transfor-

mations. This dual field theory lives on a spacetime conformal to that of the AdS boundary

and hence can be regarded as “living on the boundary” of the AdS spacetime. Constructs in

the “bulk” of AdS are thus dual to constructs in the boundary theory. The string coupling

gs, string length ls, and the curvature radius L of AdS are identified in this correspondence

with the gauge theory parameters gYM and N as gs = g2
YM and (L/ls)

4 = 4πg2
YMN = 4πλ.

The AdS/CFT is a strong/weak duality: SYM theory can be treated perturbatively if

g2
YMN � 1 and hence λ � 1, but this is also the regime at which stringy effects become

very strong in the bulk, since L� ls; conversely, taking λ� 1 reduces to a classical gravity

theory in the bulk and a strongly-coupled gauge theory on the boundary. In its weakest form,

the duality holds in the limit of N →∞ and λ→∞, so that the equivalence is between type

IIB supergravity and the gauge theory at strong coupling. A somewhat less strong form is

obtained by taking N →∞ but keeping λ finite. In its strongest form, this exact equivalence

is conjectured to hold for any N and gs and hence for a fully quantum string theory on the

(asymptotically) AdS bulk spacetime. While the duality has successfully undergone various

checks to date, its strong form is difficult to prove due to the present lack of a description

of non-perturbative string theory.

Since Maldacena’s proposal of the AdS/CFT correspondence this duality has expanded

to include a larger class of spacetimes and boundary field theories in other dimensions that

are conjectured to be dual to each other, leading to the more general term of “gauge/gravity

duality.” The power of these dualities is in their potential to use gravitational objects

in a higher-dimensional theory with dynamical gravity to compute quantities in a lower-

dimensional quantum field theory that cannot normally be computed by methods available

to quantum field theory; conversely, the duality has the potential to uncover ill-understood

phenomena in string theory via gauge theory calculations.
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In principle, since all information in the bulk spacetime in which the gravitational theory

lives is believed to be encoded in the dual field theory, it should be possible to reconstruct

the gravitational theory of the bulk from known quantities in the dual field theory, and vice

versa. Work subsequent to the original AdS/CFT proposal established a dictionary relating

fields in the bulk gravitational theory to operators in the boundary field theory [19,20]. The

statement of the duality was cast as an equivalence between the partition functions of the

bulk gravitational theory and the boundary quantum field theory: for a massless scalar field

φ in AdSd+1 whose restriction to the boundary of AdS is φ0 we have that

Z(φ0) =

〈
exp

∫
Sd
φ0O

〉
CFT

, (1.1.2)

where Z(φ) is the partition function of the gravitational theory in AdS and on the right-hand

side we have the generating functional for correlation functions in the CFT on the boundary

Sd, where O is a field in the CFT. In this expression, the boundary field φ0 acts as a source

for the operator O, and bulk fields are thus in one-to-one correspondence with boundary field

theory operators. In principle, the equivalence (1.1.2) can be used to compute various cor-

relation functions, permitting a direct translation between the observables of a given theory

and its holographic dual [19,20]. The equivalence of this relation, referred to as the GKPW

dictionary, to the “extrapolate” version of the AdS/CFT dictionary [21] was conjectured

in [21] and shown in [22, 23]. The extrapolate dictionary gives the correlation functions of

operators in the CFT in terms of the asymptotic behavior of bulk field correlators:

〈O(x1)...O(xn)〉CFT = lim
z→0

z−n∆ 〈φ(x1, z)...φ(xn, z)〉bulk

where xi are boundary coordinates and the bulk coordinate z → 0 at the AdS boundary. ∆

is the conformal dimension of the CFT operator and is related to the mass of the scalar field

φ as

∆ =
d

2
+

√
d2

4
+m2.
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Note, however, that both of these dictionaries involve the asymptotic behavior of bulk

fields, and, in fact, a direct relation between bulk fields and boundary operators is only

well-understood near the boundary of the bulk spacetime, i.e. only in the regime in which

the location of the bulk field approaches the boundary where the field theory lives. In other

words, the dictionary is “sharp” near the boundary of the spacetime, but, in general cases3,

further into the bulk it becomes less clear how fields can be related to boundary operators.

This difficulty arises because the boundary is not a Cauchy surface for the bulk, and evolving

the boundary fields into the bulk is therefore a nonstandard Cauchy problem [25,26]. While

obtaining a dictionary that extends this relation into the bulk would be an ideal goal, it

remains elusive in all but the simplest spacetimes. As a result, much of the effort on relating

the bulk gravitational theory to the dual field theory has focused on the use of probe objects

that have a dual interpretation in both theories. Examples of such probe objects include

types of geodesics that are related to field theory correlators and extremal surfaces that are

related to entanglement entropy [2–4] in the boundary field theory. This latter work, in

particular, has been critical in driving forward the idea that spacetime geometry emerges

from quantum entanglement.

Quantum entanglement is the presence of non-trivial correlations between different sys-

tems that are spatially arbitrarily far apart. It is a quantum mechanical phenomenon that has

no classical counterpart and is an active area of research in multiple disciplines, including the-

oretical high energy physics, quantum information theory, and quantum cryptography. The

idea that the entanglement of quantum fields is connected to a physical emergent spacetime

geometry arose both in the context of holographic dualities as well as non-holographically.

The general idea of emergence of a higher-dimensional theory from a lower-dimensional the-

ory naturally follows from the holographic principle, but the specific role of entanglement

in this emergence was not immediately apparent in the early years of the AdS/CFT corre-

spondence. This connection was illuminated by Van Raamsdonk in [5, 6] and was followed

in subsequent years by a flurry of literature aimed at developing a better understanding of

3In pure global AdS a map between bulk and boundary fields has been found explicity [24].

6



this connection, including efforts at perturbative derivations of the Einstein equations of the

bulk gravitational theory from relations satisfied by the entanglement in the dual quantum

field theory [11, 27, 28]. While research efforts have shown to date that there are remark-

able connections between entanglement and spacetime geometry, an understanding of the

underlying mechanism of emergence so far remains elusive.

A recent proposal by Maldacena and Susskind [12], made in the context of the black

hole information paradox debate, suggested that any entangled matter is connected by some

type of wormhole, which is classically an Einstein-Rosen bridge but that in general may be a

highly quantum object. This type of emergence is non-holographic; in this thesis such non-

holographic emergence is considered and a direct sense is shown in which a setup consisting of

purely entanglement rather than any geometric connection reflects certain features that are

normally expected only in a connected spacetime. More precisely, there is a particular sense

in which a theoretical observation of an electric field penetrating a geometrical wormhole

and that of an electric field threaded through a disconnected configuration of two entangled

systems that are arbitrarily far apart appear very similar. This presents an intriguing finding

regarding the behavior of entangled matter and the notion of the emergence of spacetime

geometry from quantum mechanical behavior.

1.2 Non-equilibrium dynamics

Holographic dualities have given us a window into the physics of systems perturbed away

from equilibrium, whose modeling is a challenging problem in all but a limited number of

cases. The time evolution of systems out of equilibrium has been shown to exhibit a rich

array of behaviors that depend on the type of initial perturbation and the characteristics

of the systems. At asymptotically late times, however, they are generically expected to

exhibit behavior characteristic of thermal equilibrium, regardless of the short-time behavior

following the perturbation, so long as the perturbation injects sufficient energy into the

system. This process of “thermalization” is central to research in both high energy physics
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and statistical mechanics. One of the successes of holography has been the recasting of the

investigation of this process as the study of dual gravitational phenomena. In particular,

a finite temperature in the boundary field theory is understood to be dual to a black hole

in the asymptotically-AdS bulk spacetime, though this statement should be qualified by

noting that the gravitational solution may be thermal AdS rather than a black hole. The

equivalence between a thermal state in the CFT and black holes in the bulk can be seen

by observing that taking the time direction of the boundary manifold to be a circle of size

β, the inverse temperature, puts the CFT at finite temperature. This boundary manifold

structure imposes a boundary condition on the bulk metric, and in the classical gravity

limit the bulk solutions to Einstein’s equations satisfying this boundary condition can be

found. In AdS5 these may be large black holes, small black holes, or thermal AdS (i.e. AdS

filled with thermal radiation). It can be shown that the large black hole solutions have

a lower free energy and therefore dominate over small black holes at any temperature; on

the other hand, whether the large black hole or thermal AdS is dominant depends on the

temperature. At a certain critical temperature there is a first order phase transition, the

Hawking-Page phase transition [29], between the low-temperature thermal AdS phase and

the higher-temperature black hole phase. On the dual CFT side, this transition has been

interpreted as a confinement/deconfinement phase transition [30]. This picture qualitatively

also carries over to other dimensions. In AdS3/CFT2, which will be of special interest to

the discussion of Chapter 2, the transition is between thermal AdS3 and the BTZ black

hole [31, 32].

The process of thermalization in the field theory is thus dual to the formation of a black

hole in the bulk, and sudden changes in the system’s Hamiltonian parameters – known as

quantum quenches – result in the injection of energy into the bulk. Since the boundary

conditions of AdS spacetime are such that AdS is essentially a “closed box,” this energy

cannot dissipate at the asymptotic boundaries and is instead reflected at the boundaries.

The general expectation is thus that when energy is injected into the bulk sufficiently large

gravitational backreaction will eventually be built up to induce black hole collapse [33, 34].
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While research into the possibility that stable, oscillating matter configurations in AdS

that do not collapse to a black hole may exist is ongoing (this is discussed further in Chap-

ter. 2), analytical solutions above the BTZ mass threshold that do not rely on highly simpli-

fying assumptions and that exhibit undamped oscillations at asymptotically late times have

not yet been found. Rather, as noted above, the generic expectation from AdS physics is that

systems dual to classical gravitational asymptotically-AdS spacetimes should thermalize. On

the other hand, the past decade has seen accummulating experimental and theoretical ev-

idence that the expectation that all systems equilibrate to a simple thermal state may be

misleading in 1+1-dimensional systems, where in some cases thermalization appears to be

inhibited entirely, and the systems instead appear to retain memory of their initial state4.

Such an absence of thermalization has been attributed to the presence of a large number of

conserved charges in those systems and the associated notion of “quantum integrability,” and

much work has been devoted in recent years toward understanding the out-of-equilibrium

behavior of such systems.

A classical system with n degrees of freedom is (Liouville) integrable if it has n inde-

pendent first integrals of motion that all Poisson-commute with each other. This implies

that the differential equations describing the system can be solved analytically; their solu-

tions form phase-space trajectories on invariant tori and remain quasi-periodic for all time.

Such systems are therefore non-ergodic as they fail to explore their full phase space even at

asymptotically late times; this is in contrast to the usual case, where the nonlinear differential

equations cannot be solved analytically and generally exhibit chaotic behavior. Translating

the notion of classical integrability to the quantum case is far from straightforward and there

is no standard definition of what it means for a system to be quantum integrable [39, 40].

Among properties that have generally been associated with quantum integrability in the lit-

erature are that the system possesses a maximal set of independent commuting operators (in

direct analogy to the classical case)5, it is exactly solveable (e.g. via the Bethe ansatz [41]),

4See [35–38] for reviews.

5However, it was argued in [39, 40] that this definition effectively leads any quantum system to be char-
acterized as integrable and that it is therefore inadequate.
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or that it exhibits non-diffractive scattering.

The large number of local conserved quantities that these systems possess is believed

to prevent their thermalization to the canonical (Gibbs) ensemble. However, it has been

proposed [42] that relaxation to a maximal entropy state still occurs, and that the resulting

ensemble is instead a generalized Gibbs ensemble with density matrix

ρ̂ =
1

Z
exp

[
−
∑
m

λmÎm

]
(1.2.1)

where
{
Îm
}

is the full set of integrals of motion, Z = Tr
[
exp

[
−
∑

m λmÎm
]]

is the partition

function, and λm are Lagrange multipliers that are fixed by the requirement that expectation

values of conserved quantities remain constant at their initial values. When there are very

few conserved quantities this ensemble reduces to the usual canonical (if the only conserved

quantity is energy) or grand-canonical ensemble (if both energy and particle numbers are

conserved).

Much of the research regarding integrability and experimental observations of non-therma-

lization have been in 1+1-dimensional systems. The behavior of many 1+1-dimensional sys-

tems at criticality is described by CFTs, leading to the natural question of whether such

non-thermalization is observed for those CFTs, and, if so, whether there is a potential conflict

with the expectation from holography of generic thermalization in the CFT. This is addressed

in this thesis via a combination of techniques from CFT and from holography. Notably, CFTs

with classical holographic duals are expected to have very large central charge c, whereas

integrable systems have traditionally been discussed in the context of specific perturbations

of conformal minimal models, for which c < 1. These differences, and their implications for

thermalization, are discussed in this thesis, along with several other aspects of thermaliza-

tion in 2D CFT that are crucial for an understanding of non-equilibrium behavior in these

theories.
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1.3 Outline of thesis

These issues are considered in Chapters 2 and 3. In Chapter 2 several aspects of thermaliza-

tion in 2D CFT are addressed via tools from both holography and the CFT boundary state

formalism (which is reviewed in that chapter). The distinction between global and local

thermalization is considered and sharpened, and the CFT stress tensor is shown to be an

insufficient diagnostic of global thermalization. The question of revivals and thermalization

in CFTs of different central charges is then addressed by examining the time dependence of

correlation functions in various states in rational and non-rational CFTs. Since all 2D CFTs

have an infinite set of commuting conserved charges, generic initial states might be expected

to give rise to a generalized Gibbs ensemble as described above (1.2.1). The holographic

dual of the GGE is constructed and shown, to leading order, to still be described by a BTZ

black hole.

In Chapter 3 the physical relevance of the CFT boundary state quench setup is addressed

through a compelling physical example of the applicability of boundary states to realistic

systems. A model is presented of the conformally-invariant analog of the “Quantum Newton’s

Cradle” experiment [43]. This near-integrable system was observed not to thermalize on

experimental time scales, and the results from the CFT model are shown to qualitatively

agree with the experimental observations in revival times and distributions. Beyond ascribing

physical significance to the boundary state model, the demonstrated success of this approach

is suggestive of special features of integrable systems with respect to their conformally-

invariant counterparts.

Chapter 4 is concerned with the question of spacetime emergence in a direct, rather than

holographic, sense as discussed above. It is demonstrated within low-energy effective field

theory how entanglement alone can in fact mimick a particular feature that is unique to a

wormhole geometry. The sense in which the geometry emerges is in the manner in which

the entanglement between charged scalar fields in disconnected configurations gives rise to

behavior that is shown to be indicative of geometric connectivity. In particular, the ability

11



to pass an electric field through a wormhole is such an indication; this notion is quantified by

defining a “wormhole susceptibility” that measures the ease of passing through an electric

field, and this quantity is shown to exhibit qualitatively the same behavior in the purely

entangled (and geometrically disconnected) configuration as in the gravitational geometric

(Einstein-Rosen bridge) case. In other words: electric fields can thread quantum wormholes.
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CHAPTER 2

Comments on Thermalization in 2D CFT

2.1 Introduction

In this chapter, we consider several aspects of thermalization in 2D CFTs. Thermalization

can be investigated from the point of view of a subsystem, where the system is defined to

have thermalized if its reduced density matrix is equal to that of a thermal (mixed) state;

however, isolated quantum systems starting from a pure quantum mechanical state can also

be described as “thermalized” if the expectation values of observables at late times are in

agreement with those of a thermal ensemble [47–50].

As discussed in Chapter 1, systems in 1+1 dimensions exhibit varied equilibration behav-

iors, and whereas generically we expect systems to asymptote at late times to a description in

terms of a thermal ensemble, it is clear that certain classes of systems in 1+1 dimensions defy

this expectation. The fact that the critical behavior of many 1+1-dimensional systems is de-

scribed by conformal field theories (CFTs) suggests that there may be qualitative differences

between the thermalization behavior of 2D CFTs with their infinite dimensional conformal

symmetry as compared to that of higher-dimensional CFTs, where the stress tensor and its

descendants are the only conserved currents to be found.

Nonetheless, even for unitary 2D CFTs there are important differences between the be-

havior of CFTs whose central charge is below or above some critical value ccrit, where ccrit

depends on the chiral algebra of the 2D CFT and determines whether the CFT is rational

(c < ccrit) or not1 (c > ccrit). For CFTs whose symmetry is only the Virasoro algebra, i.e.

1While this appears to be the case in known examples, we are not aware of a rigorous proof of this
statement.
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with no additional extended symmetries, ccrit = 1. In the rational case, the spectrum of the

theory consists of a finite number of primaries for the chiral algebra with rational confor-

mal dimensions of the form p
q
, with integer p, q. For a CFT on a circle of radius R, time

translations are thus generated by U(t) = exp
(
−it

(
L0 + L̄0 − c

12

)
/R
)
, so that all correla-

tion functions will be periodic in time2, where the existence of such revivals follows from

the rationality of the conformal dimensions in the CFT, and their period depends on the

operator spectrum and on the size R of the system. Clearly, theories with c < ccrit do not

thermalize, although it is still in principle possible for subsystems to behave approximately

as thermal systems for times t that are much smaller than the revival time of the system.

For c > ccrit, this argument no longer applies, and there is no a priori mechanism to

prevent thermalization for generic perturbations. There are nonetheless special states that

fail to thermalize in any CFT, the simplest examples being states that are built from descen-

dants of the ground state only. These states are linear superpositions of states with integer

conformal dimension, and their period is proportional to the system size L alone. Even in

such states, sufficiently small subsystems will exhibit approximately thermal behavior for

times t� L, however globally the system undergoes periodic revivals.

Special descendants of the ground states, coherent states, have a geometric interpretation

as conformal transformations of the CFT on the plane or a subspace thereof. In the case

of a bounded subspace, such boundary states in the form of a strip or a rectangle have

been used to analyze certain quantum quenches and CFT non-equilibrium behavior (see,

e.g., [51–58] and the work presented in Chapter 3 of this thesis). In such setups conditions

on the Euclidean boundary define the initial conditions of the system, whose time-evolved

correlation functions are computed by analytic continuation from Euclidean time. Such

states can be understood to define an initial state via a Euclidean path integral over a

portion of the boundary, with correlation functions computed by joining together domains

representing an in- and an out-state. For example, a path integral over a rectangle with

2It should be emphasized that these revivals are different from Poincaré recurrences and occur on far
shorter time scales.
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suitable boundary conditions on three sides provides a state in the CFT on the interval

formed by the remaining side; a correlation function in this state can be computed by joining

together such an in-state with an out-state, resulting in a full rectangle3. Similarly, in the

case of the strip opposite halves represent the in- and out-states. While strip states have been

shown to exhibit behavior consistent with thermalization, one has to be careful with CFTs

defined on the entire real line. Paraphrasing the result of [56], a conformal compactification

of the real line maps it to a finite interval4, and it maps all of Minkowski spacetime to a

causal diamond based on the finite interval. Therefore, measurements in Minkowski space

are insensitive to the presence of the boundaries of the interval, which introduce a finite size

in the system that determines the period of revivals. The restriction of strip observations

to a causal subset thus prevents non-thermal features of such states from being detected.

This paper therefore made it clear that the apparent thermalization in strip states observed

in [51–54] is due to the restriction to a limited amount of time.

These observations can be further motivated by noting that many features of global ther-

malization of a CFT, such as the appearance of a suitable coarse-grained entropy, should be

conformally invariant. In fact, one could argue that a better (and conformally invariant) def-

inition of thermalization would be to require that expectation values at late times approach

those of a thermal state or those of a conformally transformed thermal state. In particu-

lar, in holographic theories, where conformal mappings are dual to bulk diffeomorphisms,

thermalization invariance under conformal mappings is equivalent to the evident statement

that black hole formation (or lack thereof) is diffeomorphism invariant. Since black hole

formation following an injection of energy is rather generic in AdS, this calls into question

which CFT states do in fact thermalize. As we show here, in non-rational CFTs, i.e. where

c > ccrit, no revivals would be observed in expectation values of primary operators in general

states constructed as linear superpositions of states obtained by local operator insertions.

3This is discussed in more detail in Sec. 2.3.

4The precise map is eiz̃ = (ez−1)/(ez +1), where z ∈ [−∞,∞]× [0, π] is the coordinate on the Euclidean
strip of infinite spatial extent, and z̃ ∈ [0, π]× [−∞,∞] a coordinate on a finite strip with infinite extent in
Euclidean time.
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To the extent that the absence of revivals in the system is indicative of its thermalization,

this is in line with the expectation from holography.

An interesting additional feature of 2D CFTs is the existence of an infinite number of

commuting conserved charges, even when the chiral algebra is just the Virasoro algebra.

The lowest two charges are L0, the zero mode of T , and the zero mode K0 of : TT :. These

charges are a quantum version of the infinite number of conserved charges that appear in

the KdV hierarchy [59]. One would more generally expect that generic states in a 2D CFT

at late times should be describable in terms of a generalized Gibbs ensemble with chemical

potentials for all conserved charges instead of the thermal ensemble (see Sec. 1.2). This has

indeed been confirmed in [60–62].

A nice heuristic picture of some of the features of thermalization in 2D CFTs arises by

assuming that all excitations can be described in terms of free quasi-particles [51,52,63,64].

If after a quench correlated pairs of quasi-particles are locally emitted, the entanglement

between an interval of length L and its complement will increase until time T ∼ L/2 and

then remain constant. This picture of growth and saturation is qualitatively in keeping with

the holographic predictions [65–68]. In the case of a union of disjoint intervals, on the other

hand, the post-quench behavior of the entanglement entropy given by the quasi-particle

picture only correctly corresponds to the behavior for c < ccrit [57] systems. There therefore

appear to be close connections between integrability, rational conformal dimensions, and the

validity of the quasi-particle picture for c < ccrit on the one hand, and between irrational

conformal dimensions, lack of integrability, and the breakdown of the quasi-particle picture

for c > ccrit.

The inhibition of thermalization that we find in rational CFTs by contrast to general

CFTs thus further asserts such connections. In this chapter, we clarify some additional

aspects of these connections and make contact with the dual holographic picture that they

provide. We begin by discussing the holographic dual picture of local thermalization in a

pure state and analyze the capacity of the CFT stress tensor for serving as a thermalization

diagnostic (Sec. 2.2). We then exploit the conformal invariance of global thermalization
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in a CFT by evaluating whether local perturbations of the rectangle state are followed by

initial-value revivals of observables at asymptotically-late times; such revivals are indicative

of the system’s inability to establish an asymptotic thermal state, and we show that as

is expected from holography, they naively do not take place for a general (non-rational)

CFT (Sec. 2.4). This discussion is preceded by a review of the boundary-state setup and

the strip and rectangle states (Sec. 2.3). Finally, we consider the holographic dual of the

generalized Gibbs ensemble with chemical potentials for all conserved charges and show that

it is still described by the BTZ black hole (Sec. 2.5). We conclude with a discussion of future

directions.

2.2 Probes of local and global thermalization

The general thermalization setup is to consider a CFT in a pure state |ψ〉, let the system time

evolve, and ask to what extent the state of system can be well approximated by a thermal

state (global thermalization) and to what extent a subsystem can be well approximated by

a subsystem of a thermal system (local thermalization).

A unique feature of 2D CFTs is that they have an infinite symmetry algebra that creates

new states |ψ′〉 ∼
∑∏

L−ki |ψ〉 from |ψ〉. We would expect that these symmetries do not

affect whether or not a system globally thermalizes, but it is not a priori clear in what way

these symmetry generators affect local thermalization. The example of the rectangle state

(which is related to the ground state by symmetries) shows that local thermalization can

occur even in states that are descendants of the ground state: by restricting observations to

a small interval on the rectangle, the geometry observed is effectively that of the infinite strip

and therefore thermalization is observed. It would be quite interesting to develop a more

quantitative theory explaining to what extent subsystems in states that are descendants

of the ground state are approximately thermal. Given that the behavior of the systems of

interest seems to be fixed by geometry and symmetries alone, such a quantitative description

should be possible, and we hope to report on it elsewhere. In the meantime we will present
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the holographic dual point of view.

In holography, states that are descendants of the ground state and that have a semiclas-

sical gravitational dual are described by geometries that are diffeomorphic to global AdS3.

General descendants of the ground state are described by AdS3 with many graviton excita-

tions, and different semiclassical AdS3 geometries correspond to various Virasoro coherent

states. Diffeomorphisms that preserve a convenient Fefferman-Graham gauge choice act on

AdS3 as follows. We start with vacuum AdS with metric ds2 = (dw2+dzdz̄)/w2, and perform

the following coordinate transformation

w → w
√
∂f∂̄f̄

N
, z → f(z)− w2

2

∂f∂̄2f̄

∂̄f̄N
, z̄ → f̄(z̄)− w2

2

∂̄f̄∂2f

∂fN
, (2.2.1)

where

N = 1 +
w2

4

∂2f∂̄2f̄

∂f ∂̄f̄
. (2.2.2)

We then obtain a metric of the form

ds2 =
dw2 + dzdz̄

w2
− 6

c
T (z)dz2 − 6

c
T̄ (z̄)dz̄2 +

36

c2
w2T (z)T̄ (z̄)dzdz̄ (2.2.3)

where

T (z) =
c

12
{f, z}, T̄ (z̄) =

c

12
{f̄ , z̄}, (2.2.4)

and the Schwarzian derivative is as usual

{f, z} =
∂3f

∂f
− 3

2

(
∂2f

∂f

)2

. (2.2.5)

If we restrict to an interval where T (z) and T̄ (z̄) are approximately constant, then the

bulk geometry in the neighborhood of that interval will be close to the BTZ geometry5 [69],

and correlation functions computed there are approximately the same as the finite temper-

ature correlation functions obtained from the BTZ geometry. Thus in order to obtain local

5The metric 2.2.3 corresponds to the metric of [69] under the variable change ρ = − lnw and upon setting
c = 3`

2G .
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thermalization we should apply a diffeomorphism that produces a locally constant T (z) and

T̄ (z̄). An example of such a diffeomorphism is one that is locally approximately an ex-

ponential f(z) = exp(αz) as this has a constant Schwarzian derivative. This is not too

surprising as an exponential map essentially produces a local version of the Unruh effect

whereby accelerated observers observe a thermal state.

Globally, then, these diffeomorphisms produce what would appear as a local concentration

of energy-density repeatedly oscillating (due to the global periodic time-dependence) in AdS,

but that does not form a black hole even at arbitrarily late times. It is therefore clear that

diffeomorphisms alone, absent additional energy injections into AdS, never produce global

thermalization. This leads to an interesting reverse question: given the expectation values of

T (z) and T̄ (z̄) in some state, is it possible to come up with a diagnostic for whether or not

the dual description of this state involves a black hole? In order to find such a diagnostic,

we need to make sure that our diagnostic is not sensitive to diffeomorphisms, as the question

of whether or not there is a black hole is clearly diffeomorphism invariant.

Perhaps the simplest way to analyze this problem is to find a diffeomorphism that makes

T (z) and T̄ (z̄) constant and to read off the relevant constant values6. If both are larger than

0 in the planar case (or larger than c/24 in the global case) then the dual description can

possibly involve a black hole, whereas for smaller values this is impossible and the system does

not exhibit global thermalization. Note that this is a necessary, not a sufficient, condition

for the existence of a black hole, as a large amount of dilute matter could also produce the

relevant energy densities without there being a black hole.

The Chern-Simons description of three-dimensional gravity suggests a different way to

do this computation. Diffeomorophisms act as gauge transformations on the SL(2,R) gauge

6There is a subtlety here, as such a diffeomorphism may not always exist. As nicely reviewed in [70],
one can classify the T (z) that are inequivalent under diffeomorphisms of the circle, which is the same as
the classification of the so-called Virasoro coadjoint orbits. Besides the orbits which contain a point with
constant T (z), there are several other orbits, but all of these orbits except one have an energy L0 which
is unbounded from below and are therefore most likely unphysical. The one remaining orbit, labeled P−

1

in [70], has energy bounded from below, and its physical relevance (if any) is not clear to us. In any case, if
we use the Chern-Simons description, and use SL(2,R) gauge transformations instead of diffeomorphisms,
we can always achieve constant T . We will ignore this subtlety in the remainder of this chapter and would
like to thank Glenn Barnich for drawing our attention to this issue.
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field

A =

 0 1

6
c
T 0

 (2.2.6)

and therefore the relevant constant values of T can also be read off from the Wilson loop [71]

cosh
6

c
Tconst =

1

2
TrP exp

∮
Adx. (2.2.7)

One can think of the coordinates that yield constant values for T (z) as the AdS3 analogue

of the “center of mass” frame.

As a side remark, the geometries (2.2.3) have recently been used to study gravitational

hair for black holes, see e.g. [72–74], with T (z) and T̄ (z̄) playing the role of the gravitational

hair. From the Chern-Simons point of view the only gauge-invariant observables in the theory

are the Wilson loops (2.2.7), which commute with all the Virasoro generators and which can

be viewed as a Casimir for the Virasoro generators. These measure the invariant mass and

angular momentum of the black hole. By contrast, there is no gauge-invariant observable in

Chern-Simons theory that measures the gravitational hair away from the boundary of AdS or

near the horizon of the black hole. In particular, there is no observable in the interior of AdS

in Chern-Simons theory that would allow one to detect the gravitational hair, suggesting

that the hair has nothing to do with the degrees of freedom making up the black hole7.

The above considerations are meant to illustrate that while the stress tensor alone may

provide some indication of thermalization, it is not a sufficiently sensitive diagnostic. This

can be further motivated by observing that in theories with holographic duals the stress

tensor only captures the behavior of the metric near the boundary of AdS. The analysis of

physics deep inside the bulk, including whether or not a black hole is present, in general

requires a knowledge of the expectation values of other operators in the theory as well.

More generally, in arbitrary CFTs the expectation values of all the higher conserved

charges can be rendered constant by acting with more complicated Virasoro symmetries

7We would like to thank the participants of the Workshop on Topics in Three Dimensional Gravity (ICTP,
Trieste) for useful discussions of these points.
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(beyond diffeomorphisms). However, these higher conserved charges do not appear to play

an important role in AdS/CFT, which we shall see for the case of 2+1 dimensions in Sec. 2.5.

Finally, we note that the holographic bulk geometries obtained via (2.2.3) are dual to

conformal transformations of the CFT on the full plane. In order to apply this approach

to find the holographic dual of arbitrary bounded subsets of this CFT, i.e. BCFTs, it is

necessary to equip this description with an appropriately-chosen extension of the boundary

of the CFT to the bulk - a bulk brane that bounds the spacetime region dual to this BCFT

in the spirit of the AdS/BCFT correspondence of [75,76]. Applying (2.2.3) to such setups in

order to describe holographically a large class of holographic duals to BCFTs is an interesting

direction that we leave to future work. Importantly, however, the presence of such a bulk

brane is not expected to affect the local bulk physics in the deep interior (far away from the

brane) of this spacetime, so that the above statements regarding local thermalization should

carry over in the BCFT regime as well so long as the subsystem considered is sufficiently far

from the boundary endpoints of the CFT.

2.3 Non-equilibrium behavior from CFT boundary states

The setup underlying the CFT non-equilibrium dynamics approaches of [51–57] and the work

presented in Chapter 3 of this thesis – and which lends a physical interpretation to the strip

and rectangle states – is that of the Calabrese and Cardy (CC) boundary state model for non-

equilibrium evolution in CFTs [51, 52]. This boundary state setup relies on the existence

of a well-defined analytic continuation from Lorentzian to Euclidean time in the system.

This allows an initial state of the system |ψ0〉 to be described as a Euclidean boundary state

|B〉. The system is taken to have a Hamiltonian H, and the initial state |ψ0〉 is assumed

to be an eigenstate of a different Hamiltonian H0. Conformal boundary states are in fact

non-normalizable, and in practice the quench is taken to be from a gapped Hamiltonian, so

that the actual Euclidean boundary state is given by a state that is irrelevantly perturbed
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from the conformal boundary state |B〉; by convention it is taken to be

|ψ0〉E ∝ e−τ0H |B〉 , (2.3.1)

where τ0 is on the order of the correlation length of the gapped Hamiltonian H0. We note

that H ∝
∫
Tttdx, where Ttt ∝ T (z)+ T̄ (z̄), and in general additional irrelevant operators are

expected to contribute. More general forms of boundary states where additional conserved

charges or boundary operators are introduced in the exponential and act on the conformal

boundary state were considered in [60–62]. The restriction to Ttt in (2.3.1) was motivated

in [55] by noting that Ttt is often the leading irrelevant operator acting on the boundary

state, and here we restrict our analysis to this form.

At t = 0 the system is put in the state |ψ0〉, and it is thereafter allowed to evolve unitarily

as e−iHt |ψ0〉. Correlation functions of observables O(t, x) are therefore given by

〈O(t, x)〉 =
〈
ψ0

∣∣eiHtO(x)e−iHt
∣∣ψ0

〉
,

and upon analytic continuation to Euclidean time can be computed via a path integral over

a strip, of width 2τ0, with the operator O inserted at τ = τ0 and analytically continued as

τ → τ0 + it.

In a 2D CFT, where the strip of width 2τ0 can be conformally mapped to the upper-

half plane (UHP) as w → z(w) = e
π

2τ0
w

, correlation functions in this setup can simply be

computed by conformal transformations from the correlation functions of a boundary CFT

(BCFT) on the UHP. This setup was used by CC to show that one-point functions decay

exponentially for t � τ0 and to compute the time evolution of correlations between two

primary operators (via the two-point function).

Since the restriction of the CFT to the UHP reduces the symmetry group of the CFT,

boundary conditions must be enforced at the interface such that the conformal symmetry

group is retained under conformal maps from the UHP. These are given by the condition
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that there should be no energy or momentum flow across the boundary, Txy|y=0 = 0, or

T (z) = T̄ (z̄)
∣∣
z=z̄

. (2.3.2)

In the presence of additional symmetries in the CFT, boundary conditions that retain these

symmetries may be imposed; however, the specification of the BCFT alone does not require

the boundary to respect these additional symmetries.

The implication of this conformal boundary condition is that the holomorphic and anti-

holomorphic sectors of the CFT are no longer independent. In particular, n-point bulk cor-

relators
〈
φh1,h̄1

(z1, z̄1)φh2,h̄2
(z2, z̄2) ...φhn,h̄n (zn, z̄n)

〉
on the upper-half plane obey the same

Ward identities as the formal 2n-point correlators of holomorphic fields on the full plane [77],

〈
φh1 (z1)φh̄1

(z∗1)φh2 (z2)φh̄2
(z∗2) ...φhn (zn)φh̄n (z∗n)

〉
.

The presence of the boundary thus implies that, e.g., one-point functions of primary operators

no longer vanish in general on the UHP and are determined by conformal invariance up to

a constant to have the form
〈
φh,h̄(z, z̄)

〉
∼ (z − z̄)−2h for h = h̄.

The infinite conformal symmetry of 2D CFTs allows a boundary state defined on the

upper-half plane to be mapped to an effectively unlimited range of bounded domains, with

the strip only one particular example; as noted earlier, such mappings do not affect the

thermal behavior of the system, and whether or not the system reaches a global thermal state

is invariant under these transformations. Consequently, the out-of-equilibrium behavior of

a system from a particular boundary state can be investigated in any of the conformally-

equivalent boundary states. In the absence of additional operator insertions, these states

are simple conformal mappings of the ground-state on the UHP and do not exhibit global

thermalization. As noted earlier, any of these boundary states can be mapped to the strip

geometry, where the expectation value of the stress tensor is a constant Casimir value due

to the vanishing of 〈T (z)〉 on the ground-state on the UHP. The simplest modifications of

the boundary states that potentially exhibit global thermalization are those obtained by
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local operator insertions. As we show below, to diagnose thermalization of such systems,

it is necessary to consider more refined observables. If additional operators are inserted on

the boundary of the domain, conformal mappings do not affect the nature of these fields

as boundary fields, since the boundary of a given system (e.g. the x-axis on the UHP) is

mapped to the boundary of the conformally transformed system.

2.3.1 Revivals in finite-length systems

The finite-length equivalent of the CC setup is a boundary state defined on a strip with spatial

boundaries. Such bounded domains, with a vast array of differently-shaped boundaries,

can be obtained by Schwarz-Christoffel maps [78] from the UHP to bounded polygonal

geometries. These transformations map a set of designated prevertices on the real line of

the complex plane to the vertices of a new polygonal domain, with the real line mapped to

the boundary of the domain. In particular, we can consider the map to a rectangle. For

τ

x-1/k -1 1

w(1/k)

w(1)

w(-1/k)

L/2

H
z w(z)

t

1/k
w(-1)

-L/2
σ

η

Figure 2.1: The Schwarz-Christoffel conformal transformation that maps the UHP with designated
prevertices to a rectangle.

prevertices at x = ±1,± 1
k
, the general form of the map z → f(z) = w to the rectangle is

given by the integral expression

w(z) = A

∫ z

0

dζ

(ζ − 1)
1
2 (ζ + 1)

1
2
(
ζ − 1

k

) 1
2
(
ζ + 1

k

) 1
2
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where A is a constant that can be freely chosen. With a choice of A = − L
2kK1(k2)

, where

K1 (k2) is the complete elliptic integral of the first kind and k ∈ [0, 1], w(z) is given by

z → w(z) =
L

2K1 (k2)
F
(
arcsin z, k2

)
, (2.3.3)

an elliptic integral of the first kind, and maps the UHP to a rectangle with vertices at
(
±L

2
, 0
)

and
(
±L

2
, H
)
, where H =

K1(1−k2)
2K1(k2)

is the height of the rectangle (Fig. 2.1). The geometry

of the rectangle is fully determined by the ratio L/H. The limit of k → 1 corresponds to

the zero-height rectangle, and in this limit the system appears infinite in length. The limit

of k → 0 corresponds to the semi-infinite strip with width L.

The inverse map from the rectangle to the UHP is given by the elliptic Jacobi function

w → z(w) = sn

(
2K1 (k2)

L
w, k2

)
, (2.3.4)

which is periodic in its argument as

sn

(
2K1 (k2)

L
(w +mL+ 2inHL) , k2

)
= (−1)m sn

(
2K1 (k2)

L
w, k2

)
.

We will denote the complex coordinate on the rectangle by w = x+ iτ , with τ the Euclidean

time direction along the height of the rectangle and x the direction along its width. Observ-

ables in this geometry are inserted on the rectangle and analytically continued to Lorentzian

times as τ → H
2

+ it, where t denotes the Lorentzian time coordinate. As a result, (2.3.4) is

periodic in Lorentzian time with period equal to 2L. Since correlation functions on the rect-

angle are calculated from their counterparts on the UHP, every argument z of a Lorentzian

operator assumes an inherent periodicity; e.g. one-point functions of primary operators of

conformal dimension h in the conformal mapping of the UHP ground-state are given by

〈O(t, x)〉 ∼
(
dz(w)

dw

dz̄(w̄)

dw̄

)h
(z(w)− z̄(w̄))−2h

∣∣∣∣∣ w → x− t+ iH/2

w̄ → x+ t− iH/2

(2.3.5)
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(a) Profile of the expectation value of the holomorphic
stress tensor T (t, x) across the rectangle.
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(b) One-point functions 〈O(t, x)〉
at sample points x = 0.1 (top) and
x = 0.4 (bottom).

Figure 2.2: Periodicity in observables in the rectangle ground state. Plot parameters are k = 0.5
and L = 1.

and the stress tensor is given by

〈T (t, x)〉 =
c

12
{z(w), w}, (2.3.6)

where c is the central charge and {z(w), w} = z(3)(w)
z′(w)

− 3
2

(
z(2)(w)
z′(w)

)2

is the Schwarzian deriva-

tive. The periodicity of (2.3.5) and (2.3.6) in Lorentzian time is therefore evident (Fig. 2.2).

The periodicity of these observables as resulting from the nature of the conformal mapping

and the implication that the rectangle state features non-thermal behavior was also pointed

out in [56].

As we reviewed, conformal transformations of the vacuum state on the upper-half plane

do not thermalize, but one might expect that perturbations of this boundary state should

eliminate the non-thermal behavior. Rectangle states perturbed by operator insertions in

c = 1 CFT were first considered in a somewhat different context in the work presented

in the next chapter of this thesis. The setup described in that chapter ascribes a physical
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interpretation to these types of perturbed states by drawing an analogy with the experimental

system of the “Quantum Newton’s Cradle” experiment [43]. Below we investigate how the

time evolution of similar states is affected by the spectrum of the CFT (rational vs. non-

rational), and whether a given system may exhibit periodic revivals at asymptotically late

times. Recall that, as was pointed out in Sec. 2.2, the expectation value of the stress tensor

itself is in general an insufficient diagnostic of thermalization. In particular, in a state

perturbed by Euclidean-time operator insertions Oi with conformal dimensions hi, the time

dependence in the expectation value of the stress tensor is determined purely by conformal

invariance: 〈
T (z)

∏
i

Oi(ζi)

〉
=
∑
i

[
hi

(zi − ζi)2 +
∂ζi

zi − ζi

]〈∏
i

Oi(ζi)

〉
,

since only the stress tensor coordinate z is continued to Lorentzian time. As a result, the

time evolution of this expectation value is qualitatively identical regardless of the spectrum

of the CFT and cannot be used to resolve any potential differences for CFTs with c < ccrit

versus those with c > ccrit. In the next section we therefore probe perturbations of boundary

states using one-point functions of generic operators that do not correspond to conserved

currents, focusing on the different behaviors of rational vs. non-rational CFTs.

2.4 Operator spectrum dependence of thermalization

In this section we consider expectation values of primary operators in perturbed states. The

simplest perturbed states are those produced by a path integral over a suitable Euclidean

domain with a single operator insertion on the boundary of the domain. The expectation

value of a single operator in such a state will then be given by the analytic continuation of

a three-point function with two operators on the boundary (one for the in-state and one for

the out-state) and one operator in the interior. Conformal invariance fixes the form of these

three-point functions up to a single unknown function of a suitable cross-ratio. Even without

knowing the explicit form of this function (which would involve knowledge of the structure

constants and conformal blocks of the theory) one can already see a qualitative change in the
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behavior of the part of the three-point function that is determined by conformal invariance

(and that we henceforth refer to as the “universal” part of the correlation function) as one

moves from rational to non-rational theories. In particular, exact periodicity of the expec-

tation value appears to be lost8, in agreement with the picture that rational theories should

not display global thermalization and irrational theories should. However, without more

detailed knowledge of the exact correlation function, it is not possible to see the destructive

interference which leads to exponential decay to the thermal value of one-point functions,

and, while suggestive, our analysis is by no means to be taken as a proof of thermalization

in irrational CFTs.

2.4.1 General setup

It is in principle possible to consider very general classes of states created by a path integral

over arbitrary bounded domains with a particular boundary state on the boundary and arbi-

trary insertions of operators in the interior of the domain and on its boundary. Even in the

absence of operator insertions, correlation functions computed in states of this type are in

general time dependent. As we discussed in section 2.2, the time dependence in the expecta-

tion value of the energy momentum tensor can in general be removed by applying a suitable

diffeomorphism, and we will therefore focus on the geometries with a time-independent ex-

pectation value for the energy-momentum tensor, which are infinite strip geometries.

We consider an infinite Euclidean strip of the form w = x + iτ with (x, τ) ∈ [0, 2L] ×

(−∞,∞), which can be mapped to the upper half plane via the map z(w) = e
πiw
2L , with

z the coordinate on the upper half plane. Such an infinite strip can be interpreted in two

different ways, either as providing an in- and an out-state on the theory on a finite interval

of length 2L, but also as providing an in- and an out-state on an infinite spatial interval. In

the latter case, the roles of space and time should be exchanged9, so that Euclidean time

8To see this, as we discuss below, we in fact need to consider linear superpositions of states obtained by
operator insertions.

9This is the strip state of CC [51,52].
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runs from 0 to 2L and space from −∞ to +∞. Moreover, the relevant analytic continuation

to Lorentzian time is w = x− t in the first case, and w = L+ it+ iτ in the second case. We

will mostly take the point of view of the finite strip in what follows, but the infinite strip

can be treated in exactly the same way.

We insert n1 boundary operators OB on the left boundary of the strip at wa = iτa, and n2

bulk operators O at positions wp = xp + iτp. For simplicity, we will not insert any operators

on the right boundary of the strip, but this is a straightforward generalization. In order to

be able to interpret the boundary insertions as corresponding to an in- and an out- state,

the boundary operators should be distributed symmetrically around τ = 0. However, if we

are interested in studying linear superpositions of states, we should also consider asymmetric

distributions of operators.

2.4.2 Periodicity in correlation functions

The general form of the correlation function can be obtained by mapping it to the upper-half

plane and using SL(2,R) Ward identities. To write the result we denote

(ξ1, . . . , ξN) = ({za(wa)}, {zp(wp)}, {z̄p(w̄p)}), N = n1 + 2n2, (2.4.1)

in term of which the correlator is, up to an overall constant factor,

〈∏
a

OB,a(wa)
∏
j

Op(wp)

〉
=

N∏
i

ξhii F

(
ξijξkl
ξikξjl

)∏
i<j

ξ
2

N−2
(hΣ/(N−1)−hi−hj)

ij (2.4.2)

where hΣ =
∑
hi and ξij = ξi− ξj, and F a function of cross ratios. Note that the conformal

dimensions hi refer to both those of the bulk operator, h, h̄ as well as those of the boundary

operators, hB. The prefactor
∏
ξhii is due to the map from the strip to the upper-half plane

and includes contributions from the coordinates of all operators10. It can be absorbed in a

10This prefactor is given by
∏
i

(
dwi(zi)
dzi

)−hi

, which on the strip becomes
∏
i (zi(wi))

hi up to a constant

factor.
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nice way in the rest of the expression by defining

ξ̃ij =
ξi − ξj√
ξiξj

= 2i sin
[ π

4L
(wi − wj)

]
, (2.4.3)

in terms of which the general correlator is of the form〈∏
a

OB,a(wa)
∏
p

Op(wp)

〉
= F

(
ξ̃ij ξ̃kl

ξ̃ikξ̃jl

)∏
i<j

ξ̃
2

N−2
(hΣ/(N−1)−hi−hj)

ij . (2.4.4)

Note that because the exponential map that we employ here has an explicit dependence on

i in it,

(w1, . . . , wN) = ({wa}, {wp}, {−w̄p}). (2.4.5)

Upon analytic continuation of a particular bulk operator to Lorentzian time, w → x− t,

it is clear from (2.4.3) that the correlation function will contain contributions of the form

f(t) = (sin( π
4L

(t − c)))s, with complex c, which might appear to be periodic with period of

at most 8L, except that s is in general not an integer and f(t) has to be defined through

analytic continuation. For complex c, the function z(t) = sin( π
4L

(t − c)) follows a contour

around the origin in the complex plane that we can write as z(t) = r(t)eiφ(t), with both r(t)

and φ(t) periodic with period 8L. The analytic continuation of z(t)s is clearly r(t)seisφ(t),

which is now no longer periodic unless s is rational. This is an indication that the time-

dependence of correlation functions in rational theories will have special properties and tend

to be periodic.

We will consider pure states of the form
∑

i |ψi〉 where each |ψi〉 is obtained through a

path integral on the half-strip with suitable operator insertions. Expectation values of bulk

operators in such states require us to compute matrix elements 〈ψi|
∏

kOk|ψj〉.

We first focus on the diagonal matrix elements. For those, it turns out that the universal

part of the correlation function will always be periodic. To see this, we observe that the
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correlation function will contain a product of terms of the form

[
sin
( π

4L
(t− x+ iτ0)

)
sin
( π

4L
(t− x− iτ0)

)]s
, (2.4.6)

which can be rewritten as the purely real expression

2−s
[
cosh

( π
2L
τ0

)
− cos

( π
2L

(t− x)
)]s

, (2.4.7)

which is well-defined with period 4L.

Any possible breakdown of periodicity in diagonal matrix elements therefore has to orig-

inate from the function F of the cross-ratios that appears in the correlation function as well.

Unfortunately, it is much more difficult to analyze this function in general. If we take the

simplest example with two boundary insertions at ±iτ0 and one bulk operator, the cross-ratio

(after analytic continuation) takes the form

y =
ξ̃w,w̄ξ̃w1,w2

ξ̃w,w1 ξ̃w̄,w2

=
sin
[
π

2L
x
]

sin
[
πi
2L
τ0

]
sin
[
π

4L
(t− x− iτ0)

]
sin
[
π

4L
(t+ x+ iτ0)

] . (2.4.8)

We see that y does not go around one of the singularities at y = 0, 1,∞ and that therefore

the unknown function of the cross ratio will remain periodic11 with period 4L. Finally, for

boundary operators inserted at ±∞ (τ0 →∞), the cross ratio becomes time independent:

y = e
πix
L − 1, (2.4.9)

so that no decay in time can be seen for such operator placement. There may be an argument

as to why diagonal matrix elements always remain periodic based on the symmetry τ ↔ −τ ,

but we have not explored this in detail.

Off-diagonal matrix elements, on the other hand, appear to lose their periodicity in

11We can also see this by observing that the denominator of (2.4.8) can be expanded as
1
2

((
a2 + b2

)
cos
(
πx
2L

)
− 2iab sin

(
πx
2L

)
− cos

(
πt
2L

))
where a = cosh

(
πτ0
4L

)
and b = sinh

(
πτ0
4L

)
, so that it is

given by the sum of a real time-periodic and a complex time-independent function.
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general. This is already clear at the level of the universal part of the correlation function,

where factors of the form [sin π
4L

(t − c))]s, c = x + iτ0, are no longer paired with factors

[sin π
4L

(t − c∗)]s as in (2.4.6), resulting in an expression consisting of powers of periodic

functions that are complex in the time argument. If s is rational, these factors will remain

periodic but with a longer period, but if s is irrational periodicity is lost altogether. Of course,

for a complete analysis it is necessary to also consider the in general unknown functions of

the cross-ratios12. The analytic properties of correlation functions, and more generally the

analytic properties of conformal blocks, are typically closely related to the braiding and

fusion properties of the theory. For rational theories the space of conformal blocks form

finite dimensional representations under fusion and braiding, which in turn is closely related

to the periodicity of correlation functions13. One would therefore expect to see periodicity

in the case of rational theories, and a breakdown of periodicity in irrational theories. As we

have explained, we already see signs of this breakdown in simple correlation functions, and

it would be interesting to explore this further.

2.5 The holographic dual of the generalized Gibbs ensemble

As mentioned in the introduction, conformal field theories have a large number of conserved

currents. For example, any polynomial made out of the stress tensor T (z) and its derivatives

is a conserved current. Similarly, if there are additional higher spin currents, any polynomial

involving those leads to conserved currents as well. Given such large sets of conserved

currents, one can ask what the maximal set of conserved and commuting charges is. For the

case of the Virasoro algebra, there exists a conserved current, unique up to total derivatives,

12One can easily check in examples of c = 1 theories where correlation functions of primaries can be
explicitly written down that these conclusions indeed hold for the full correlation functions: for rational
c = 1 theories periodicity is maintained, while for irrational c = 1 theories periodicity is lost. (Note that
periodicity is maintained if we take as our operators to be ∂φ or ∂̄φ, but since these operators correspond
to conserved currents they should not be considered for diagnosing whether the system experiences revivals
as previously explained.) Because c = 1 theories are exactly solvable we do expect these theories to be
described by a suitable generalized Gibbs ensemble at late times under generic perturbation, see [61,62].

13which we already knew to be periodic in time anyway in view of the straightforward argument in the
introduction.
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whose zero modes all commute. In the semi-classical case, where we replace OPEs by Poisson

brackets, the construction of these conserved currents and corresponding conserved charges

is captured by the KdV hierarchy. The KdV hierarchy does in fact also describe the flows

generated by the complete set of commuting conserved charges. A conformal field theory

contains a quantum deformation of the KdV hierarchy, the quantum KdV hierarchy, see [59].

Since the stress tensor is a single trace operator, adding polynomials of the stress tensor

and its derivatives with chemical potentials to the action (in order to describe a generalized

Gibbs ensemble) corresponds to multitrace deformations in the CFT. Multitrace deforma-

tions both in pure gravity as well as in its higher spin extensions can be conveniently studied

in the Chern-Simons formulation, and a detailed discussion will appear elsewhere [79]. Here

we simply summarize a few key ingredients using the notation from [80].

In general, if we add a multitrace deformation of the form
∫

Ω ≡
∑

i νiFi(Ws), with the νi

chemical potentials which we will take to be constant, and F (Ws) polynomials in the higher

spin fields and their derivatives, all we need in Chern-Simons theory is a boundary term of

the form

I
(E)
B = −kcs

2π

∫
∂M

d2zTr [(az + az̄)az̄ − 2Ω] (2.5.1)

plus a similar result for the right movers. Moreover, whereas az̄ usually contains the

sources µs for the higher spin fields Ws, we now need to replace these sources µs by

∂Ω/∂Ws. We therefore in general have a non-linear relation between the normalizable and

non-normalizable modes, which is typical for multitrace deformations [81,82]. The variation

of the on-shell action consisting of standard Chern-Simons theory plus the boundary term

can be written as

δ(I
(E)
CS + I

(E)
B ) =

kcs
π

∫
∂M

d2zTr
∑
i

δνiFi(Ws), (2.5.2)

which indeed has the right structure.

Although we could continue our discussion in the language of Chern-Simons theory, from

the above it should be clear that the bulk field equations are not modified, and that once

we restrict to translationally invariant solutions, in the bulk the solution looks just like the
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BTZ black hole and its higher spin generalizations. This is also immediately the main point

of this section: classically there are no hairy black holes corresponding to the generalized

Gibbs ensemble, the bulk geometry is still the BTZ geometry. The free energy or partition

function is however different from that of the usual BTZ black hole, because of the additional

boundary terms that one needs. In fact, looking carefully at the Chern-Simons formulation,

one finds that the contribution of the left-movers to the partition function for the pure

gravity case with a deformation ∫
dσ
∑
i

µiFi(T )

is equal to

Z = Tr(e−
∫
dσ

∑
i µiFi(T )) = e2π

√
c
6
L0−

∑
i 2πµiFi(L0) |saddle . (2.5.3)

Here, saddle means that we have to extremize the right hand side with respect to L0, and

the answer therefore looks like a generalized Legendre transform of the expression of the

black hole entropy. Here, because we restrict to translationally invariant solutions, all terms

containing derivatives of T drop out of Fi(T ), and these functionals become ordinary func-

tions of the zero mode L0. Thus, using the bulk gravitational description simplifies the GGE

dramatically, the zero modes of the higher spin conserved currents are polynomials in terms

of L0 and no longer take on independent values.

It is straightforward to see that

∂ logZ

∂µi
= −2πFi(L0)|saddle.

If we identify the Fi(T ) with the conserved charges of the KdV hierarchy, then the partition

function is precisely a tau-function for the KdV hierarchy14.

Though this is perhaps a somewhat trivial example of a tau-function, we can extend

it to the case where T is no longer constant. For this we need to use the gauge invariant

14See, e.g. [83, 84] for the tau-function and [85] for the KdV hierarchy.
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generalization of the entropy given by the appropriate Wilson line operator. The result is

Z = Tr(e−
∫
dσ

∑
i µiFi(T )) = exp

 c

6
cosh−1 1

2
TrP exp

∮  0 1

6T
c

0

− ∫ dσ
∑
i

µiFi(T )

 |saddle
(2.5.4)

where now saddle means that we should find the saddle point of the expression on the right

hand side for the functional T (σ). This provides a more interesting class of tau-functions

for the KdV hierarchy if the Fi(T ) are the corresponding charges, but at this level the Fi(T )

can in principle still be arbitrary, which is probably an artifact of the large c (or large k)

limit. We expect that once we start quantizing Chern-Simons theory with matter we should

see a more interesting structure emerge, and, in particular, we expect gravitational solutions

that depend non-trivially on the chemical potentials µi. It would be interesting to explore

the construction of such “black holes with quantum hair” in more detail.

Finally, we note that while it is tempting to assume a connection between the conserved

charges considered here and the conserved charges that appear in studies of integrability in

AdS/CFT, the latter are generically non-local and are supposed to already be relevant at

the semi-classical level. Therefore, an obvious connection is lacking, but it would also be

interesting to explore this in more detail, as would be the role that the various conserved

charges can possibly play in studying geon solutions and instabilities of AdS.

2.6 Discussion

In this paper we studied some properties of the non-equilibrium behavior of 2D CFTs as well

as the distinction between local and global thermalization. We provided arguments that there

are no revivals in generic states in irrational theories, which one could take as an indication

that the system thermalizes. To actually see thermalization probably requires one to choose

very complicated initial states for which explicit computations rapidly become intractable.

One-point functions of light probes in very complicated, heavy states can presumably be

well-approximated by the light-light-heavy-heavy conformal block derived in [86], although
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these computations have to our knowledge not been extended to a situation with boundaries.

Ultimately this is just another illustration of the usual problem that we can either do explicit,

weakly coupled computations where unitarity is manifest but thermalization difficult to see,

or we can do strongly coupled (e.g. gravitational) computations where thermality is easy to

see but manifest unitarity is lost.

We note that there has been much research in recent years, starting with [33, 34, 87, 88],

into the possibility of time-periodic solutions in AdS that avoid collapse into a black hole;

however, exact solutions involving stable oscillating matter known to exceed the BTZ black

hole mass threshold (in AdS3) and yet exhibiting revivals to t→∞ (undamped oscillations)

have so far not been found. If such solutions do exist, they appear likely to occupy a very

small phase space and/or involve considerable simplifications of the physical setup.

In a similar spirit, we have shown that the holographic dual of the generalized Gibbs

ensemble is still a BTZ black hole. The GGE has been central to the discussion of 1+1-

dimensional integrable systems away from a conformal fixed point. Such integrable field

theories can be obtained as massive deformations of a CFT, and – at least in principle –

the analysis that was carried out here could be applied to them via conformal perturbation

theory, where transformations to a frame of constant stress tensor can still be applied at

every order.

We note several additional avenues that are of interest in light of our findings. The

holographic picture of Sec. 2.2 for diffeomorphisms of the CFT ground state can be used to

generalize the AdS/BCFT setup of [75,76] to arbitrary forms of boundary states by finding

the appropriate bulk brane corresponding to the extension into the bulk of the dual BCFT’s

boundary. In particular, the holographic dual of the rectangle state can thus be found,

and Lorentzian-time correlators from the corresponding initial state can be computed via a

formalism such as [89, 90]. The holographic implementation of such a setup would likely be

a useful tool in evaluating general non-equilibrium behavior in systems with boundaries, not

only in classical AdS geometries, but also to 1/N corrections. Finally, we note that while

in classical SL(2,R) Chern-Simons theory expectation values of Wilson lines in different
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representations are related to each other in a simple way, this is no longer the case in quantum

Chern-Simons theory. It would be interesting to explore these quantum expectation values

in more detail and establish their relationship to the quantum KdV hierarchy and the GGE

at finite values of the central charge.
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CHAPTER 3

Non-equilibrium behavior in 1+1 dimensions from

CFT boundary states and the “Quantum Newton’s

Cradle” experiment

In this chapter, a framework is presented for investigating the response of conformally-

invariant confined 1+1-dimensional systems to a quantum quench. While conformal invari-

ance is generally destroyed in a global quantum quench, systems that can be described as or

mapped to integrable deformations of a CFT may present special instances where a confor-

mal field theory-based analysis could provide useful insight into the non-equilibrium dynam-

ics. The connections between systems that are integrable and those that are conformally-

invariant have been subject to ongoing investigation; in particular, certain integrable field

theories can be obtained from massive deformations of particular models of conformal field

theory (CFT) [91], rendering the understanding of thermalization within a CFT framework a

potentially powerful tool for testing some of the ideas arising in the study of the connections

between conformal invariance and integrability [59,92,93]. In principle, if it is known how a

particular integrable model arises as a perturbation at a conformal fixed point, conformal per-

turbation theory (see, e.g., [94]) can be used to compute observables of the integrable theory

up to arbitrary order. While this approach may often become computationally cumbersome

beyond the lowest orders, it raises the question of whether out-of-equilibrium analyses of

certain CFTs may shed light on the post-quench behavior of related integrable models. We

investigate this possibility by considering a quench analogous to that of the “Quantum New-

ton’s Cradle” experiment [43] and demonstrating qualitative agreement between observables
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derived in the CFT framework and those of the experimental system. We propose that this

agreement may be a feature of the proximity of the experimental system to an integrable

deformation of a c = 1 CFT.

Much of the discussion of non-thermalization and integrability in 1+1 dimensions in the

past decade has been motivated by the 2006 “Quantum Newton’s Cradle” experiment [43] at

Pennsylvania State University. In that experiment, an effectively one-dimensional system of

interacting harmonically-confined bosons was split into two oppositely-moving momentum

groups. Following this quench, the system failed to demonstrate any apparent thermalization

within experimental time scales. While some experimental effects, such as the presence of a

confining trapping potential in the setup, may introduce weak integrability-breaking effects,

the system is believed to be well-described by the integrable Lieb-Liniger model [95] of

delta-interacting bosons, and the failure of the experimental system to thermalize has been

attributed to the integrability of this model.

To motivate the relation to the CFT picture, we note that the non-relativistic Lieb-

Liniger model can be exactly mapped to the relativistic sinh-Gordon model in an appropriate

limit. In particular, under this mapping the S-matrix and Lagrangian of the two models

coincide [96,97]. The sinh-Gordon model is a massive integrable deformation of a free scalar

field Lagrangian, and correlation functions in this model can in principle be computed order-

by-order in a conformal perturbation expansion.

By constructing a quench in the CFT boundary state model (see Chapter 2) that we argue

is analogous to that performed in the experiment, we show that the “Quantum Newton’s

Cradle” system exhibits the behavior characteristic of a conformally-invariant system. We

proceed as if this system were a c = 1 CFT, which is an accurate effective description of

the Lieb-Liniger model in the limit of either low momenta or hard-core boson interactions

(the latter which map to free fermions [98]). This amounts to neglecting higher order terms

in a perturbative expansion of correlation functions of the sinh-Gordon model and hence its

non-relativistic Lieb-Liniger limit. An important issue when truncating such a perturbative

expansion is whether higher-order perturbative effects, which may not qualitatively change
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the behavior in equilibrium, could have significant effect in a non-equilibrium setting on the

asymptotic (long-time) behavior of observables. As we show, this does not appear to be the

case in a qualitative analysis; we comment on this and suggest how a quantitative analysis

may be performed in order to detect potential deviations.

In the free boson CFT analyzed here, the harmonic confinement of the system implies that

(up to an overall rescaling) there is a full equivalence up to a phase lag of half the system’s

size between the position-space energy density expectation value (given by 〈Ttt〉) and the

momentum-space expectation value. The latter is the CFT observable corresponding to the

momentum distributions observed in the experiment. Although the experimental setup was

in principle not limited to the low momenta or hard-core interactions regimes, we show that

the experimental momentum distributions and this CFT observable qualitatively agree.

3.1 Implementation of confinement through the rectangle state

To make contact with the realistic system we take the system to be on a finite interval

and employ the rectangle state discussed in Chapter 2. To obtain regulated expressions we

will transform the right-half plane to the rectangle (rather than the upper-half plane as in

(2.3.3)), using the mapping employed in [56] and given by the elliptic Jacobi function1

w → z(w) = sc

(
K1 (k)

L

(
w +

L

2

)
, k

)
. (3.1.1)

where k is the elliptic modulus, k ∈ [0, 1] and K1(...) is the complete elliptic integral of

the first kind. Its inverse is a Schwarz-Christoffel transformation [78] given by the elliptic

integral of the first kind

w(z) =
L

K1(k)
F
(
tan−1(z), k

)
− L

2

and that maps a set of designated points y = ±1,±1/
√

1− k on the imaginary (x = 0) axis

to the vertices of a rectangle as shown in Fig. 3.1 with height 2τ0 = 2K1

(√
1− k

)
/K1 (k),

1The modification by an additive constant here from [56] centers the resulting rectangle on the origin of
the transformed coordinates.

40



σ

η

x = L/2

τ = τ0

-L/2

a

b

-a

-b

z → w(z)

b

-b

a

-a

V(z)V(z)

 -τ0

Figure 3.1: The Schwarz-Christoffel tranformation taking the right-half plane to the rectangle with
chiral and antichiral vertex operators inserted on the vertical midline, τ = 0

where τ0 is the extrapolation length of the previous section. As in the case of the map

(2.3.4) from the UHP, the mapping (3.1.1) is doubly-periodic2 (i.e. with one period equal

to 2L) in the (real) argument3 for τ0 > 0, though the period may change with operator

insertions. This makes this choice of boundary state geometry particularly well-suited for

modeling harmonically-confined systems.

In what follows we consider perturbations of this state obtained by vertex operator in-

sertions in order to draw an analogy with the quench of the “Quantum Newton’s Cradle”

system [43] and examine the behavior of the corresponding observable. It is important to

note that unlike in the previous chapter, the intent here is not to determine whether or

not this system thermalizes; rather, it is to draw a parallel between the CFT behavior and

that of a realistic system away from this critical point and present a compelling case for the

physical significance of CFT boundary states in the study of quench dynamics away from

the critical point.

2As shown in [56] and in Chapter 2, the ground-state stress tensor expectation value has periodicity L as
the Jacobi elliptic functions only appear squared.

3As a result of the continuation to Lorentzian time all arguments considered here are real.
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3.2 Vertex operator insertions and the split momentum quench

We note that while the analysis here is carried out for c = 1 CFT (free boson), the formalism

described below carries over with minor modifications to c < 1 minimal models through the

addition of screening charges to all correlation functions. We consider the free boson action

S =
g

2

∫
d2x (∇φ(~x))2 , (3.2.1)

where φ is a bosonic field, which we take to be compactified on a circle of radius R, φ ∼

φ + 2πR, which we henceforth set to R = 1. Highest-weight states are given by the action

of vertex operators on the vacuum state, |n,m〉 = limz,z̄→0 Vnm(z, z̄) |0〉, where Vnm(z, z̄) =

Vnm(z) ⊗ Vn̄m̄(z̄), and the chiral and antichiral vertex operators are given respectively as

Vnm(z) =: eiαnmφ(z) : and Vn̄m̄(z̄) =: eiᾱnmφ̄(z̄) :, where m is the winding number and n is the

wave number [77].

Their holomorphic and antiholomorphic conformal dimensions are given by

hnm =
α2
nm

8πg
=

1

8πg

(
n+

m

2

)2

,

h̄nm =
ᾱ2
nm

8πg
=

1

8πg

(
n− m

2

)2

.

A Luttinger liquid CFT, for instance, is obtained by setting the normalization g = K in

(3.2.1), where K is the Luttinger parameter. The bosonic field φ now represents propagating

density fluctuations and is related to the dual variable θ under the T-duality transformation

φ ↔ θ and K ↔ 1/K, n ↔ m. For the comparison with the experimental data in the

following section we will set g = K in subsequent calculations.

To implement the split-momentum quench we insert in the rectangle boundary state

geometry a pair of chiral Vnm(z) and antichiral Vn̄m̄(z̄) vertex operators of the compactified

free boson (Fig. 3.1). The opposite-chirality vertex operators act to excite the ground state

in analogy to the experimental setup of two excited oppositely-moving clouds of bosons. In

the CFT analogy, each such cloud is represented as a peak given by the location of the vertex
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operator; in reality the clouds have a certain spread, and we later discuss how this spread

can be accounted for in the CFT analysis. The Dirichlet conditions in conjunction with

the inherent periodicity of the conformal mapping are implemented to mimick the harmonic

trapping potential of the experimental setup.

The Dirichlet condition selects the type of boundary states allowed [99–101], which are

given by [102,103]

||D〉〉 = (4πK)−
1
4

∑
n∈Z

e
i
nφ0√
4πK |(n, 0)〉〉D (3.2.2)

where φ0 is canonically conjugate to the zero mode of the free boson and takes values

in a circle of radius R = 1. The normalization (4πK)−
1
4 [104] is the g-factor (boundary

entropy) [105] for the Dirichlet boundary condition for the action (3.2.1) with g = K. Unlike

in the boundary-less case, expectation values of primary operators do not in general vanish

in a BCFT (see, e.g. (2.3.5)); in the case of the compactified boson the expectation value

can be obtained from the boundary states above as

〈Vnm(z, z̄)〉D =
1√
K0

e
i
nφ0
K0 |z − z̄|

− n2

K2
0 (3.2.3)

where K0 =
√

4πK.

The energy density expectation value 〈ψ0 |Ttt (t, x)|ψ0〉 at time t for the initial state of

the split-momentum quench is given, upon analytic continuation t→ iτ , by

1

2π

〈〈
Drec

∣∣∣∣(T (w) + T̄ (w̄)
)
Vnm (w′)Vn̄m̄ (w̄′)

∣∣∣∣Drec

〉〉
(3.2.4)

where ||Drec〉〉 is the boundary state state (3.2.2) following the conformal transformation

to the rectangle, and we have used the decomposition of the energy density as the sum of

holomorphic and antiholomorphic components. Coordinates on the rectangle will be denoted

by w = x + iτ and on the half-plane by z = σ + iη. Recall that it is the Euclidean time

coordinate of the stress tensor, Tττ , rather than the time coordinates of the vertex operators,

that is analytically continued to Lorentzian time. The coordinates w′ = x′+iτ ′, where τ ′ = 0,
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denote the location of the vertex operator insertion on the rectangle. The equivalence of

(3.2.4) with the time-evolved expectation value of the energy density from the given initial

state can be understood by noting that the right-hand side can be formally expressed as a

Euclidean path integral with an operator insertion.

The expectation value (3.2.4) can be computed by conformally transforming both the

vertex operators and the stress tensor to the half-plane. The vertex operators transform

under the conformal transformation as primary fields, Vnm (w′) =
(
dw′

dz′

)−hnm
Vnm (z′) and

Vnm (w̄′) =
(
dw̄′

dz̄′

)−h̄nm
Vnm (z̄′), whereas the stress tensor acquires the anomalous Casimir

term,

T (w) =

(
dw

dz

)−2

T (z) +
c

12
{z;w},

where {z;w} is the Schwarzian derivative as before. Note that the finite value of k, i.e. the

presence of spatial boundaries, implies that the Casimir term proportional to the Schwarzian

derivative that is produced by the Jacobi elliptic transformation (3.1.1) is non-constant, and

it has a significant qualitative effect on the energy distribution. Employing the Ward identity

on the upper-half plane [106]

〈T (z)Vnm(z′)Vn̄m̄(z̄′)〉 ∼
(

∂z′

z − z′
+

hnm
(z − z′)2

+
∂z̄′

z − z̄′
+

h̄nm
(z − z̄′)2

)
〈Vnm(z′)Vn̄m̄(z̄′)〉

we arrive at the expression for (3.2.4)

〈Tττ (w, w̄)〉 =
1

2π
√
K0

(
dw′

dz′
dw̄′

dz̄′

)− n2

2K2
0
e
i
nφ0
K0 |z′ − z̄′|

− n2

K2
0

×

{
n2

2K2
0

(
dw

dz

)−2 [
2

|z′ − z̄′|

(
−1

z − z′
+

1

z − z̄′

)
+

1

(z − z′)2 +
1

(z − z̄′)2

]
+

1

12
{z(w), w}+ a.h.

}
(3.2.5)

where a.h. refers to the antiholomorphic part of the expression, i.e. z → z̄, w → w̄, and

as a result of the Dirichlet boundary condition we have set h = hnm = h̄nm = n2

2K2
0
, where

as before K2
0 = 4πK, and made use of (3.2.3) in computing the chiral-antichiral vertex
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operator correlator. We stress that the coordinates z in (3.2.5) must be read as functions of

the rectangle coordinates w, related via (3.1.1).

Since the transformation (3.1.1) is from the right-half plane, the antiholomorphic coordi-

nates z̄ are rotated from the usual upper-half plane ones, i.e. z̄ = −z∗. Finally, the Lorentzian

energy expectation value 〈Ttt(t, x)〉 is obtained via a Wick rotation w = x+ iτ → x+ t and

w̄ = −x+ iτ → −x+ t.

We note that while there appear to be four divergences in (3.2.5) for all times t > 0, in

fact two of these divergences fall outside of the rectangle boundaries at any given time, so

that there are effectively only two remaining divergences. These divergences oscillate within

the confines of the system, coinciding twice within each period of the full energy distribution

〈Ttt(t, x)〉, which is 2L as a result of (3.1.1). These divergences are a feature of an analysis

that – despite the conformal transformation to a finite geometry – has been carried out in

the thermodynamic limit. They are a consequence of the divergence of the correlation length

in the thermodynamic limit: since the system that we consider here is finite of length L, the

divergences are rounded off owing to the effects of finite size scaling [107] (see Appendix A

for regulation scheme).

3.3 Results and comparison to experimental observations

The physical picture that emerges from (3.2.5) is that of the non-constant Casimir term,

c
12
{z(w), w}+a.h., owing to the special type of confinement imposed, competing in strength

with the two oscilating bumps (regulated divergences) of the terms involving the momentum

excitations given by the vertex operator insertions. The strength of these bumps is given

by the vertex operators’ conformal dimension h = n2

2K2
0
, so that the relative strength of

these momentum packets to the Casimir term increases with lower values of the Luttinger

parameter K. Since decreasing values of K correspond to increasing values of the Lieb-

Liniger parameter γ [108], their strength increases with γ.

The elliptic Jacobi transformation with Dirichlet boundary conditions thus mimicks the
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behavior observed in the “Quantum Newton’s Cradle”’ experiment [43], where the two mo-

mentum packets repeatedly oscillate within the harmonic trap with a periodicity such that

the two packets coincide twice per period. As a result of the harmonic symmetry of the setup,

in the case of the non-interacting system assumed in the CFT analysis a direct comparison

is possible between position-space and momentum-space distributions: at any time tp the

momentum-space distribution is seen to be equivalent (up to an overall scale factor) to the

position-space distribution at tx = tp +L/2. In the CFT analysis we have assumed that the

two packets are highly localized; a realistic spread in the momentum may be accounted for

by shifting the spatial coordinate away from the endpoints of the interval and closer to the

middle.

Fig. 3.2 shows the regulated 〈Ttt〉 plots for two such shifts corresponding to a 30% spread

and a 50% spread respectively at tx intervals corresponding to integer-period tp intervals,

and at increasing values of the Luttinger parameter. We thus see the characteristic behavior

of the experimental momentum-space distributions of [43], shown for comparison for de-

creasing initial (input) Lieb-Liniger interaction strengths in Fig. 3.3. The red curves in the

experimental plots are expanded momentum distributions at single periodic times and are

the observable most closely expected to correspond to the derived distributions.

3.4 Discussion

The intriguing qualitative agreement between the experimental distributions of [43] and the

corresponding distributions for the analogous CFT system is not expected for a general

system following a quantum quench that injects high energy into the system. It may be

that the experimental parameters are such that the c = 1 CFT is still an approximate

description of the system at the energies used in the experimental setup. However, the

momenta injected during the quench are in principle above those that yield a post-quench

Luttinger liquid. The findings of our analysis therefore call into question whether special

features of the experimental system — possibly relating to the integrability of the system —
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Figure 3.2: Derived regulated (see Appendix A) plots for 〈Ttt〉 as a function of position x from
the analysis presented here for increasing values of Luttinger parameter K at tx = L

2 and subse-
quent periodic intervals (2Lm). Up to an overall scale factor they correspond to momentum-space
distributions at tp = 0 and subsequent periodic intervals. Blue: full fitted distribution; dashed red:
Casimir energy contribution. Top two rows: separation of vertex operators is ∆x = 0.5; bottom two
rows: ∆x = 0.3. Parameters used were L = 1 and extrapolation length τ0 ≈ 0.278, i.e. k = 0.9999.
The charge of the vertex operators was set to n = 1. In the plots we have set φ0 = 0 in (3.2.5).
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All the curves in Fig. 3 are non-gaussian. For comparison, we have
created equilibrium 1D Bose gases with the same r.m.s. momentum
as the non-equilibrium distributions we study here. To do so, we start
with an equilibrium 3D Bose gas at an elevated temperature and
adiabatically turn on the 2D lattice. The resultant f(p ex) are nearly
perfectly gaussian. Thus, to the extent that an observed f(p ex) is not
gaussian, it has not thermalized.
Heating and loss affect the evolution of the distribution. We have

studied these processes by watching how f(p ex) evolves without any
grating pulses (see Supplementary Information). Some loss (20% or
less, depending on go) comes in the first couple of hundred milli-
seconds from three-body inelastic collisions. There is also 15% per
second loss to background gas collisions. Spontaneous emission
caused by the lattice light heats some atoms, and by leaving some
atoms in unlevitated magnetic sublevels, causes a 30% per second
loss. This last loss in turn causes most of the heating, as exiting atoms
transfer some of the momentum they pick up on their way out to
atoms that remain.
To account for loss and heating in the time evolution shown in

Fig. 3, we project how already dephased distributions would evolve

without thermalization. Specifically, we take f(p ex) at a time
to ¼ 15t, rescale it to account for loss during an observation time,
tobs, and convolve it with gaussian widths to capture the effect of the
independently measured heating during tobs (see Supplementary
Information). The blue curves in Fig. 4 were projected with a two-
component model that accurately reflects the measured heating, for
go (gd) ¼ 4 (18), 1 (3.2) and 0.62 (1.4), where the coupling strength
after dephasing, gd, is calculated using the reduced n1D that prevails
at to. The green curves are the result of a simpler single-component
projection. The similarity of the blue and green lines illustrates the
robustness of our projections (see Supplementary Information). The
red curves show the actual distributions after tobs.
The actual and projected curves overlap reasonably well, with

reduced x2 values of 1.2, 1.35 and 2.5 for Fig. 4a, b and c, respectively
(using the blue curves). In each case, the difference between the
projected and actual curves is far smaller than the difference between
either of them and a thermal distribution. To highlight the non-
gaussian shape of Fig. 4c, we have superimposed a gaussian with the
same atom number and r.m.s. width as the data. The slight discre-
pancies that exist between the actual and projected curves may result
from the ,25% loss of atoms during tobs, which reduces the inter-
action energy contribution to f(pex). By assuming that any deviation
between the projected and actual distributions is a step along the way
to thermalization, we conservatively determine a lower bound on the
thermalization time constant, t th (see Methods). t th is at least 390t,
1,910t and 200t for gd ¼ 18, 3.2 and 1.4, respectively. The data imply
that each atom continues to oscillate in the trap with the same peak
momentum it was given initially, as if there were no collisions.
Although collisions have no dynamical effect, we would like to

roughly keep track of how many have occurred. Each atom passes
N tube/2 atoms every half cycle. The probability of reflection, R, in a
pairwise collision of 1D bosons with centre of mass momentum 2"k
was calculated in ref. 22. In the limit where (2ka 1D)

2 .. 1,
R ¼ (2ka1D)

22. For our confinement parameters, R ¼ 1/22. There-
fore, in the first full cycle, the number of 2"k collisions is N tube, with
r ¼ N tube/22 reflections. After dephasing within a tube, each atom
has as many collisions, but at centre of mass momenta that range
from 2"k to near 0. As the relative velocity decreases, R increases
quadratically (until it saturates), but the ability of a collision to
redistribute momentum is reduced roughly quadratically. Accord-
ingly, we use the r derived above to keep track of reflections even after
the atoms have dephased. For the conditions in Fig. 4a, b and c, the
average number of collisions that have occurred per atom during tobs
are 600, 2,750 and 6,250, respectively, and the average number of
reflections are 27, 125 and 285. Using the results from Fig. 4, we can
set lower limits on the number of reflections required for thermal-
ization of 710, 9,600 and 2,300 for gd ¼ 18, 3.2 and 1.4, respectively.
These limits are obviously much larger than the 2.7 collisions that
characterize thermalization in a 3D gas23.
To experimentally confirm the existence of collisions in this

system, despite their lack of consequence in one dimension, we
apply the grating pulses without ever having turned on the 2D optical
lattice, and so create non-equilibrium momentum distributions in
three dimensions. Two BECs with different centre of mass velocities
collide every half cycle. At the quarter cycle times, the two BECs are
well separated spatially. This implies that collisions occur well above
the Landau critical velocity, allowing particles to scatter out of the
macroscopically occupied states24. We observe thermalization in a
two-step process. Atoms first scatter into a spherical shell in velocity,
which corresponds to the outgoing s-wave. They then scatter into a
broad range of final states. Even though the 3D densities are nearly an
order of magnitude lower than in the 1D tubes, thermalization
occurs on a ,2t timescale.
The absence of damping in 1D Bose gases has several potential

applications. Atoms undergoing Bloch oscillations in quantum
degenerate gases are candidate force sensors25. Fermions have
emerged as better for this purpose than bosons, because the absence

Figure 4 | Projected versus actual f(pex) for various gd, the dephased
average peak coupling strength. The blue and green curves are f(p ex) for
to ¼ 15t, rescaled to account for loss and convolved with the known heating
during tobs. The blue curve’s heating model is more sophisticated than that
of the green curve, but the results are insensitive to the details. The red
curves are the actual distributions at to þ tobs. a, gd ¼ 18 and tobs ¼ 15t.
b, gd ¼ 3.2 and tobs ¼ 25t. c, gd ¼ 1.4 and tobs ¼ 25t. The dashed line in c
is a gaussian with the same number of atoms and r.m.s. width as the actual
distribution. To the extent that the actual distribution conforms to the
projected distribution rather than to a gaussian, the atoms have not
thermalized.
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the problem, and there is negligible tunnelling among the tubes. We
can vary the weighted average number of atoms per tube, N tube, and
the axial oscillation period, t. For a given array, t is the same to within
6% for all 1,000–8,000 tubes. The 1D coupling strength is given by
g ¼ j2/a1Dn1Dj, where n1D is the 1D density, ja1Dj < a r

2/2a is the 1D
scattering length, a ¼ 5.3 nm is the three-dimensional (3D) scattering
length, a r ¼ ("/mq r)

1/2 ¼ 41.5 nm is the transverse oscillator width,
and m is the Rb mass18.
To study the 1D Bose gases, we turn off the crossed dipole trap and

allow the atoms to expand in one dimension for 27ms before taking
an absorption image from the transverse direction. When we inte-
grate the image transverse to the tubes, we get a 1D spatial distri-
bution that corresponds to the momentum distribution after
expansion, f(p ex). Although the individual 1D gases have Thomas–
Fermi or Tonks–Girardeau f(p ex) profiles, we measure gaussian
f(p ex) distributions, as expected when the f(p ex) for many 1D Bose
gases with different N tube are summed.
To create non-equilibrium momentum distributions, we pulse

on a 3.2 THz detuned 1D lattice along the tubes, which acts as a
phase grating for the atoms. Two pulses, with intensity 11Wcm22

and pulse widths of 23 ms separated in time by 33 ms, can deplete the

zero momentum state and transfer atoms to^2"k peaks19,20 where k
is the wavevector of the 1D lattice light. We wait after the grating
pulses for a variable time, t, beforemeasuring f(p ex). Figure 2 shows a
time series of absorption images spanning a full oscillation in the
crossed dipole trap, when the weighted average of the initial peak g in
each tube, go, is 1.0. The two momentum groups collide with each
other in the centre of the crossed dipole trap twice each full cycle, for
instance at t ¼ 0 and t/2, as illustrated in Fig. 1b. The total collision
energy is 8("k)2/2m ¼ 0.45"q r, less than one-quarter the energy
needed for transverse vibrational excitation21, so the colliding gases
remain 1D.
The first and last images in Fig. 2 differ because the oscillating

atoms dephase. Illustrated conceptually in Fig. 1b, there is dephasing
due to the gaussian crossed dipole trap anharmonicity, which gives an
,8% spread of t across the full-width at half-maximum of each of the
colliding clouds. The top curves in Fig. 3a–c show the time-averaged
f(pex) over the first cycle for different go. Differences in shape among
them reflect the initial energy per particle, which increases with n1D,
and hence go

21. Within 10t to 15t, f(p ex) stops changing noticeably
during an oscillation period. The central observations in this letter
are of the evolution of f(p ex) that are dephased, like the lower curves
of Fig. 3a–c. Comparing only dephased distributions avoids the
complication of how the momentum distribution in the trap evolves
into f(p ex) during expansion, which may slightly depend on the
initial spatial distributions. As atoms have clearly dephased within
each tube, dephasing among tubes is irrelevant.

Figure 2 |Absorption images in the first oscillation cycle for initial average
peak coupling strength go 5 1. Atoms are always confined to one
dimension, in this case in 3,000 parallel tubes, with a weighted average of
110 atoms per tube. After grating pulses put each atom in a superposition of
^2"k momentum, they are allowed to evolve for a variable time t in the
anharmonic 1D trap (crossed dipole trap), before being released and
photographed 27ms later. The false colour in each image is rescaled to show
detail. These pictures are used to determine f(p ex). The first image shows
that some atoms remain near pex ¼ 0 at t ¼ 0. How many remain there
depends on n1D, implying that these remnant atoms do not result from an
imperfect pulse sequence, but rather from interactions during the grating
pulses or evolution of the momentum distribution during expansion. The
relative narrowness of the peaks in the last image compared to the first is
indicative of the reduction in spatial density that results from dephasing
(Fig. 1b). The transverse spatial width of each of the 14 image frames is
70 mm. Horizontal in the figure corresponds to vertical in the experiment, a
minor distinction because a magnetic field gradient cancels gravity for the
atoms.

Figure 3 | The expanded momentum distribution, f(pex), for three values
of go. The curves are obtained by transversely integrating absorption
images like those in Fig. 2. The spatial position, z, is approximately
proportional to the expanded momentum, p ex. The vertical scale is
arbitrary, but consistent among the curves. a, go ¼ 4; b, go ¼ 1; and
c, go ¼ 0.62. The highest (green) curve in each set is the average of f(p ex)
from the first cycle, that is, from the images like those in Fig. 2. The lower
curves in each set are f(p ex) taken at single times, t, after the atoms have
dephased: a, t ¼ 34ms, t ¼ 15t (blue) and 30t (red); b, t ¼ 13ms, t ¼ 15t
(blue) and 40t (red); and c, t ¼ 13ms, t ¼ 15t (blue) and 40t (red). The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information for a discussion of the fine spatial
structure in these curves.)
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Figure 3.3: Left: Experimental projections [43] of the evolution of dephased momentum distri-
butions without thermalization (based on observations after 15 oscillation periods) versus actual
expanded momentum distributions for different dephased peaks coupling strengths γd after an in-
teger number of periods. From top to bottom: γd = 18, γd = 3.2, γd = 1.4. The dashed line
represents a gaussian distribution with the same number of atoms and r.m.s. width as the actual
distribution. Right: Momentum distributions for different coupling strengths obtained by trans-
versely integrating absorption images. Top to bottom: γ = 4, γ = 1, γ = 0.62. Reprinted by
permission from Macmillan Publishers Ltd, Nature 440 900903, c©2006.

lead to a post-quench relaxation towards a conformal fixed point.

It would be instructive to investigate whether a more quantitative analysis could reveal

deviations from the CFT description. This can be done by placing the CFT parameters in

correspondence with the analogous experimental ones, such as putting the Luttinger param-

eter K in numerical correspondence with the Lieb-Liniger interaction strengths [108] used

in the experiment. The rectangle width, L, is representative of the horizontal momentum

scale - but a proper fitting of the experimental plots necessitates knowledge of the original

unscaled height of the experimental plots, to be compared with 〈Ttt〉 after rescaling by the

appropriate constant to momentum space values. The extrapolation length τ0 is system-
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dependent, and the ability to fit this parameter could in and of itself provide interesting

insight into the physics that it models. The spread of momentum in the initial peaks must

also be taken into account for a proper fitting, as demonstrated in Fig. 3.3.

It is important to note that the observations of revivals in the analysis here do not in and

of themselves suffice to determine whether or not the system thermalizes, as was discussed

in the previous chapter. Rather, the goal of the analysis here has been twofold: (1) to

motivate the physical significance of quench setups that are given by geometric forms of

perturbed CFT boundary states, and (2) to demonstrate a provocative connection between

the behavior of an integrable system and its conformally-invariant analog. Such a connection

can be further investigated by exploring the behavior of the CFT system analyzed here as

it is perturbatively deformed away from the critical point via deformations that have been

shown to retain the integrability of the deformed theory (see [91,109]).
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CHAPTER 4

Electric Fields and Quantum Wormholes

The past decade has seen accumulating evidence of a deep connection between classical

spacetime geometry and the entanglement of quantum fields. As described in Chapter 1, in

the AdS/CFT context there appears to be a precise holographic sense in which a classical

geometry is “emergent” from quantum entanglement in a dual field theory (see e.g. [2–6,11,

27,28,110,111]).

Recently, Maldacena and Susskind have made a stronger statement: that the link be-

tween entanglement and geometry exists even without any holographic changes of duality

frame [12]. They propose that any entangled perturbative quantum matter in the bulk of

a dynamical theory of gravity, such as an entangled Einstein-Podolsky-Rosen (EPR) [112]

pair of electrons, is connected by a “quantum wormhole,” or some sort of Planckian, highly

fluctuating, version of the classical Einstein-Rosen (ER) [113] bridge that connects the two

sides of an eternal black hole. Notably, while it clearly resonates well with holographic

ideas [114–129], this “ER = EPR” proposal is more general in that it makes no reference

to gauge-gravity duality. The entangled quantum fields here exist already in a theory of

dynamical gravity rather than in a holographically dual field theory.

It is not at all obvious that quantum wormholes so defined – i.e. just ordinary entangled

perturbative matter – exhibit properties similar to those of classical wormholes. For example,

if we have dynamical electromagnetism, then the existence of a smooth geometry in the

throat of an Einstein-Rosen bridge means that there exist states with a continuously tunable1

1Note that here and throughout the rest of the chaper, the word “tunable” means only that there exists
a family of states where the expectation value of the flux is continuously tunable. The flux cannot actually
be tuned by any local observer, as the two sides of the wormhole are causally disconnected. There does exist
a quantum tunneling process in which such flux-threaded black holes can be created from the vacuum in the
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electric flux threading the wormhole, as shown in Figure 4.1. Wheeler has described such

states as “charge without charge” [131].

On the other hand, the two ends of a quantum wormhole may be entangled but are not

connected by a smooth geometry. One might naively expect that Gauss’s law would then

preclude the existence of states with a continuously tunable electric flux through the worm-

hole. The main point of this paper is to demonstrate that this intuition is misleading: we

will show that a quantum wormhole, made up of only entangled (and charged) perturbative

matter, also permits electric fields to thread it in a manner that to distant observers with

access to information about both sides appears qualitatively the same as that for a classical

ER bridge. As we will show, for this equivalence to hold, it is crucial that there exist suffi-

ciently light perturbative matter that is charged under the U(1) gauge field. It is interesting

to note that similar constraints on the charge spectrum in theories of quantum gravity have

been conjectured on different grounds [132].

!"
+"

Figure 4.1: Left: a classical Einstein-Rosen bridge with an applied potential difference has a
tunable electric field threading it. Right: A “quantum wormhole”, – i.e. charged perturbative
matter prepared in an entangled state, with no explicit geometric connection between the
two sides also has a qualitatively similar electric field threading it.

To quantify this, for any state |ψ〉 of either system we define a dimensionless quantity

called the wormhole electric susceptibility χ∆,

χ∆ ≡ 〈ψ|Φ2
∆|ψ〉 (4.0.1)

with Φ∆ the electric flux through the wormhole. This quantity clearly measures fluctuations

of the flux, and we show below that through linear response it also determines the flux

presence of a strong electric field [130].
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obtained when a potential difference is applied across the wormhole. This susceptibility is a

particular measure of electric field correlations across the two sides that can be interpreted

as measuring how easily an electric field can penetrate the wormhole. We note that it is

a global quantity that requires knowledge of the entire state: as we show explicitly below,

measuring the wormhole susceptibility requires access to information about the flux on both

sides, and therefore no information is transmitted across the wormhole with this electric

field.

In Section 4.1 we compute this susceptibility for a classical ER bridge and in Section 4.2

for EPR entangled matter and compare the results. In Section 4.3 we discuss how one might

pass a Wilson line through a quantum wormhole. In Section 4.4 we discuss what conditions

the quantum wormhole should satisfy for its throat to satisfy Gauss’s law for electric fields

and conclude with some implications and generalizations of these findings.

Our results do not depend on a holographic description and rely purely on considerations

from field theory and semiclassical relativity.

4.1 Classical Einstein-Rosen bridge

We first seek a precise understanding of what it means to have a continuously tunable electric

flux through a classical wormhole. We begin with the action

S =

∫
d4x
√
−g
(

1

16πGN

R− 1

4g2
F

F 2

)
. (4.1.1)

where gF denotes the U(1) gauge coupling. On general grounds we expect that in any

theory of quantum gravity all low-energy gauge symmetries, including the U(1) above, should

be compact [132, 133]. This implies that the specification of the theory requires another

parameter: the minimum quantum of electric charge, q. Throughout this paper we will

actually work on a fixed background, not allowing matter to backreact: thus we are working
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in the limit2 GN → 0.

4.1.1 Wormhole electric susceptibility

This action admits the eternal Schwarzschild black hole as a classical solution. It has two

horizons which we henceforth distinguish by calling one of them “left” and the other “right”.

They are connected in the interior by an Einstein-Rosen bridge [113]. On each side the

metric is

ds2 = −
(

1− rh
r

)
dt2 +

dr2(
1− rh

r

) + r2dΩ2 r > rh, (4.1.2)

and at t = 0 the two sides join at the bifurcation sphere at r = rh. The inverse temperature

of the black hole is given by β = 4πrh.

We now surround each horizon with a spherical shell of (coordinate) radius a > rh.

Consider the net electric field flux through each of these spheres:

ΦL,R ≡
1

g2
F

∫
S2

d ~A · ~EL,R, (4.1.3)

where the orientation for the electric field on the left and right sides is shown in Figure 4.2.

�L �R

Figure 4.2: Electric fluxes for an Einstein-Rosen bridge. Black arrows indicate sign con-
vention chosen for fluxes. Electric field lines thread the wormhole, changing the value of
Φ∆ ≡ (ΦR − ΦL)/2, when a potential difference is applied across the two sides.

There is an important distinction between the total flux and the difference in fluxes,

2If we studied finite GN , allowing for the back-reaction of the electric field on the geometry, then at the
non-linear level in µ we would find instead the two-sided Reissner-Nordstrom black hole. For the purposes
of linear response about µ = 0 this reduces to the Schwarzschild solution studied here.
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defined, respectively, as

ΦΣ ≡ ΦR + ΦL Φ∆ ≡
1

2
(ΦR − ΦL) . (4.1.4)

Via Gauss’s law, the total flux ΦΣ simply counts the total number of charged particles inside

the Einstein-Rosen bridge. It is “difficult” to change, in that changing it actually requires

the addition of charged matter to the action (4.1.1). Furthermore it will always be quantized

in units of the fundamental electric charge q.

On the other hand, Φ∆ measures instead the electric field through the wormhole. It

appears that it can be continuously tuned.

We present a short semiclassical computation to demonstrate what we mean by this.

We set up a potential difference V = 2µ between the left and right spheres by imposing

the boundary conditions At(rR = a) = µ, At(rL = a) = −µ. This is a capacitor with

the two plates connected by an Einstein-Rosen bridge. The resulting electric field in this

configuration can be computed by solving Maxwell’s equations, which are very simple in

terms of the conserved flux

Φ =
1

g2
F

∫
d2Ω2 r

2Frt ∂rΦ = 0 . (4.1.5)

As there is no charged matter all the different fluxes are equivalent: ΦR = −ΦL = Φ∆. By

symmetry we have At(rh) = 0, and so we have

µ = At(rR = a) =

∫ a

rh

drFrt = Φ
g2
F

4π

(
1

a
− 1

rh

)
. (4.1.6)

We now take a→∞ for simplicity to find:

Φ∆ =

(
4πrh
g2
F

)
µ (4.1.7)

As we tune the parameter µ, Φ∆ changes continuously as we pump more electric flux through
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the wormhole. There is thus a clear qualitative difference between Φ∆ and the quantized

total flux ΦΣ. In this system the difference arose entirely from the fact that there is a

geometric connection between the two sides.

We now seek a quantitative measure of the strength of this connection. The prefactor

relating the flux to small fluctuations of µ away from zero in (4.1.7) is a good candidate. To

understand this better, we turn now to the full quantum theory of U(1) electromagnetism on

the black hole background. The prefactor is actually measuring the fluctuations of the flux

Φ∆ around the µ = 0 ground state of the system and is equivalent to the wormhole electric

susceptibility defined in (4.0.1):

χ∆ ≡ 〈ψ|Φ2
∆|ψ〉 . (4.1.8)

To see this, recall that we are studying the Hartle-Hawking state for the Maxwell field. When

decomposed into two halves this state takes the thermofield double form [110,134]:

|ψ〉 ≡ 1√
Z

∑
n

|n∗〉L|n〉R exp

(
−β

2
En

)
. (4.1.9)

Here L and R denote the division of the Cauchy slice at t = 0 into the left and right sides of

the bridge, n labels the exact energy eigenstates of the Maxwell field, En denotes the energy

with respect to Schwarzschild time t, and |n∗〉 is the CPT conjugate of |n〉 3.

The two-sided black hole has a non-trivial bifurcation sphere S2. The electric flux through

this S2 is a quantum degree of freedom that can fluctuate. In the decomposition above we

have two separate operators ΦL,R, both of which are conserved charges with discrete spectra,

quantized in units of q: Φ = qZ. Each energy eigenstate can be picked to have a definite

flux Φn: |n,Φn〉. Importantly, CPT preserves the energy but flips the sign of the flux.

Schematically, we have:

CPT|n,Φn〉 = |n,−Φn〉 . (4.1.10)

This means that each L state in the sum (4.1.9) is paired with an R state of opposite flux,

3The pairing of a state |n〉 with its CPT conjugate |n?〉 can be understood as following from path-integral
constructions of the thermofield state by evolution in Euclidean time.
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and so the state is annihilated by ΦL + ΦR:

(ΦL + ΦR)|ψ〉 = 0 (4.1.11)

This relation is Gauss’s law: every field line entering the left must emerge from the right.
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Figure 4.3: Wavefunction of the Maxwell state as a function of discrete fluxes Φ∆ and ΦΣ.
The spread in Φ∆ is measured by the wormhole susceptibility χ∆. The wavefunction has no
spread in ΦΣ.

On the other hand, Φ∆ does not have a definite value on this state: as Φ∆ does not

annihilate |ψ〉, the wavefunction has a spread centered about zero, as shown in Figure 4.3.

The spread of this wavefunction is measured by the wormhole susceptibility (4.1.8). The

intuitive difference between ΦΣ and Φ∆ discussed above can be traced back to the fact that

the wavefunction is localized in the former case and extended in the latter.

The location of this maximum is not quantized and can be continuously tuned. For

example, let us deform (4.1.9) with a chemical potential µ:

|ψ(µ)〉 ≡ 1√
Z

∑
n

|n∗〉L|n〉R exp

(
−β

2
(En − µΦn)

)
. (4.1.12)

Similarly deformed thermofield states and the existence of flux through the Einstein-Rosen

bridge have been recently studied in [135–137]. Expanding this expression to linear order in

µ we conclude that

〈ψ(µ)|Φ∆|ψ(µ)〉 = βµχ∆ + · · · (4.1.13)

with χ∆ the wormhole susceptibility (4.1.8) evaluated on the undeformed state (4.1.9)4. This

4The discussion in the bulk of the text assumes that we work only to linear order in µ. If we relax this
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expectation value is the precise statement of what was computed semiclassically in (4.1.7)5:

comparing these two relations we see that the wormhole susceptibility for the black hole is

χER
∆ =

1

g2
F

. (4.1.15)

4.1.2 Quantization of flux sector on black hole background

It is instructive to provide a more explicit derivation of (4.1.15) by computing the full

wavefunction as a function of Φ∆. This requires the determination of the energy levels En in

(4.1.12). We study the free Maxwell theory on a fixed background, neglecting gravitational

backreaction. As we are interested in the total flux, we need only determine an effective

Hamiltonian describing the quantum mechanics of the flux sector. We ignore fluctuations in

Aθ,φ and any angular dependence of the fields, integrating over the S2 in (4.1.1) to obtain

the reduced action:

S = −2π

g2
F

∫
drdt
√
−ggrrgtt(Frt)2 . (4.1.16)

To compute the En we pass to a Hamiltonian formalism with respect to Schwarzschild time

t. We first consider the Hilbert space of the right side of the thermofield double state (4.1.9).

The canonical momentum conjugate to Ar is the electric flux:

Φ ≡ δL
δ∂tAr

=
4π

g2
F

√
−gF rt . (4.1.17)

assumption then (4.1.13) is replaced by

d

dµ
〈Φ∆〉µ = β

(
〈Φ2

∆〉 − 〈Φ∆〉2
)
µ
, (4.1.14)

where the right-hand side is now the appropriate generalization of the wormhole electric susceptibility to
nonzero µ, reducing to (4.1.8) in the limit that µ→ 0.

5More precisely: the classical relation (4.1.7) amounts to a saddle-point evaluation of a particular func-
tional integral which evaluates expectation values of (4.1.9).
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At does not have a conjugate momentum. The Hamiltonian is constructed in the usual way

as H ≡ Φ∂tAr − L and is

H =

∫ ∞
rh

dr

(
− g2

F

8π
√
−ggrrgtt

Φ2 − (∂rΦ)At

)
+ Φ(At(rh)− At(∞)) (4.1.18)

where we have integrated by parts. The equation of motion for At is Gauss’s law, setting

the flux to a constant: ∂rΦ = 0.

There are two boundary terms of different character. The value of At(∞) ≡ µ at infinity

is set by boundary conditions. If µ is nonzero, then the Hamiltonian is deformed to have

a chemical potential for the flux as in (4.1.12). Recall, however, that the susceptibility is

defined in the undeformed state, as in (4.0.1). For the remainder of this section we therefore

set µ to zero. On the other hand, At(rh) is a dynamical degree of freedom. We should thus

combine this Hamiltonian with the corresponding one for the left side of the thermofield

state; demanding that the variation of the horizon boundary term with respect to At(rh)

vanishes then requires that ΦL = −ΦR, as expected from (4.1.11).

As the flux is constant we may now perform the integral over r to obtain the very simple

Hamiltonian

H = GΦ2 G ≡ −
∫ ∞
rh

dr
g2
F

8π
√
−ggrrgtt

=
g2
F

8πrh
(4.1.19)

This Hamiltonian describes the energy cost of fluctuations of the electric field through the

horizon of the black hole.

The flux operator in the reduced Hilbert space6 of the flux sector acts as

Φ|m〉 = qm|m〉 m ∈ Z (4.1.20)

where m ∈ Z denotes the number of units of flux carried by each state |m〉. The Hamiltonian

(4.1.19) is diagonal in this flux basis, with the energy of a state with m units of flux given

6Where, as above, we neglect fluctuations along the angular directions.
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by

Em =
g2
F

8πrh
(qm)2 m ∈ Z (4.1.21)

Though we do not actually need it, for completeness we note that the operator that changes

the value of the flux through the S2 is a spacelike Wilson line that pierces it carrying charge

q:

W = exp

(
iq

∫
drAr

)
. (4.1.22)

Indeed from the fundamental commutation relation [Ar(r),Φ(r′)] = iδ(r − r′) we find the

commutator

[W,Φ] = −qW, (4.1.23)

meaning that a Wilson line that pierces the S2 once increases the flux by q. In our case any

Wilson line that pierces the left sphere must continue to pierce the right: thus if it increases

the left flux it will decrease the right flux, and we are restricted to the gauge-invariant

subspace that is annihilated by ΦL + ΦR.

Thus we see that the thermofield state (4.1.9) in the flux sector takes the simple form:

|ψ〉 =
1√
Z

∑
m∈Z

| −m〉|m〉 exp

(
−g

2
F

4
(qm)2

)
, (4.1.24)

where we have used β = 4πrh. Since Φ∆ = ΦR on this state, the probability of finding any

flux Φ∆ through the black hole is simply

P (Φ∆) =
1

Z
exp

(
−g

2
F

2
Φ2

∆

)
. (4.1.25)

This is the (square of the) wavefunction shown in Figure 4.3: even though Φ∆ has a discrete

spectrum, the wavefunction is extended in Φ∆. In the semiclassical limit (gF q) → 0 the

discreteness of Φ∆ can be ignored and the spread χ∆ = 〈Φ2
∆〉 is again χER

∆ = g−2
F , in

agreement with the result found from the classical analysis (4.1.15). This result is exact

only for the free Maxwell theory on a fixed background: if we study an interacting theory
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(e.g. by including gravitational backreaction or charged matter) then the wavefunction will

no longer be a pure Gaussian and (4.1.25) will receive nonlinear corrections in Φ∆.

The probability distribution exhibited in (4.1.25) may be surprising as it shows that

an observer hovering outside an uncharged eternal black hole nevertheless finds a nonzero

probability of measuring an electric flux through the horizon. However, due to (4.1.11)

the flux measured by the right observer will always be precisely anti-correlated with that

measured by the left observer. These observers are measuring fluctuations of the field through

the wormhole, not fluctuations of the number of charges inside. Through (4.1.13) we see that

it is actually the presence of these fluctuations that makes it possible to tune the electric

field through the wormhole. In the above analysis, we have computed the fluctuations in the

Hartle-Hawking state; more generally, any nonsingular state of the gauge fields in the ER

background will have correlated fluctuations in the flux, arising from the correlated electric

fields near the horizon.

4.2 Quantum wormhole

We now consider the case of charged matter in an entangled state but with no geometrical,

and hence no gravitational, connection. We will show below that when we apply a potential

difference, an appropriate pattern of entanglement between the boxes is sufficient to generate

a non-vanishing electric field even though the two boxes are completely noninteracting.

The configuration that we study here is that of a complex scalar field φ charged under

a U(1) symmetry (with elementary charge q), confined to two disconnected spherical boxes

of radius a, as shown in Figure 4.4. The confinement to r < a is implemented by imposing

Dirichlet boundary conditions for the fields. These boundary conditions still allow the radial

electric field to be nonzero at the boundary, so our main observable, the electric flux, is not

constrained by the boundary conditions.
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Figure 4.4: Setup for the quantum wormhole. The two boxes are geometrically disconnected
but contain a scalar field in an entangled state. Correlated charge fluctuations effectively
allow electric field lines to travel from one box to the other when a potential difference is
applied.

The action in each box is

S =

∫
d4x
√
−g
(
−|Dφ|2 −m2φ†φ− 1

4g2
F

F 2

)
. (4.2.1)

where Dµφ = ∂µφ − iqAµφ. This is now an interacting theory where the perturbative

expansion is controlled by (gF q)
2.

Gauss’s law relates the electric flux to the total global charge Q. Thus we have the

following operator equation on physical states:

Φ =
1

g2
F

∫
d3x (∇ · E) = Q. (4.2.2)

At first glance this situation is rather different from the classical black hole case. ΦL and

ΦR simply measure the number of particles in the left and right boxes respectively. There

appears to be no difference between ΦΣ and Φ∆ and thus no way to thread an electric

field through the boxes. This intuition is true in the vacuum of the field theory, which is

annihilated by both ΦL and ΦR. As it turns out, it is wrong in an entangled state.

Let us now perform the same experiment as for the black hole: we will set up a potential

difference of 2µ between the two spheres by studying the analog of the deformed thermofield

state (4.1.12). We will work at weak coupling: the only effect of the nonzero coupling is

to relate the flux to the global charge as in (4.2.2). We are thus actually studying charge
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fluctuations of the scalar field. These charge fluctuations source electric fields which cost

energy, but this energetic penalty can be neglected at lowest order in the coupling7.

The full state for the combined Maxwell-scalar system is formally the same as (4.1.12).

We schematically label the scalar field states by their energy and global charge as |n,Qn〉.

Due to the constraint (4.2.2), the scalar field sector of the thermofield state can be written:

|ψ(µ)〉 ≡ 1√
Z

∑
n

|n,−Qn〉L|n,Qn〉R exp

(
−β

2
(En − µQn)

)
(4.2.3)

This state corresponds to having a constant value of At = µ in the right sphere and At = −µ

in the left sphere. Note that we have

(ΦL + ΦR)|ψ(µ)〉 = (QL +QR)|ψ(µ)〉 = 0 . (4.2.4)

We now seek to compute 〈Φ∆〉µ = 〈Q∆〉µ = 〈QR〉µ where the second equality follows from

(4.2.4). However to compute QR(µ) we can trace out the left side. Tracing out one side of

the thermofield state results in a thermal density matrix for the remaining side: thus we

are simply performing a standard statistical mechanical computation of the charge at finite

temperature and chemical potential. Details of this computation are in Appendix B, and

the result is:

〈Φ∆〉µ = q2
∑
n

(
1

1− cosh(βωn)

)
(βµ) +O(µ2), (4.2.5)

where the ωn are the single-particle energy levels. The sum can be done numerically.

We conclude that the wormhole susceptibility for this state is:

χEPR
∆ = q2f (mβ,ma) (4.2.6)

with f a calculable dimensionless function that is O(1) in the couplings and is displayed for

illustrative purposes in Figure 4.5. Crudely speaking it measures the number of accessible

7It is interesting to note that in the black hole case the key difference is that the energy cost associated
to the gauge fields – which we neglect in this case – is the leading effect.
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charged states. If we decrease the entanglement by lowering the temperature, the suscep-

tibility vanishes exponentially as f ∼ exp(−ω0β), with ω0 the lowest single-particle energy

level. Its precise form – beyond the fact that it is nonzero in the entangled state – is not

important for our purposes.
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Figure 4.5: Numerical evaluation of the logarithm of the dimensionless function f(mβ,ma)
appearing in wormhole susceptibility for complex scalar field. From bottom moving upwards,
three curves correspond to ma = 1, 1.5, 2. Dashed line shows asymptotic behavior for ma = 1
of exp (−ω0β).

We see then that as a result of the potential difference that we have set up between the

two entangled spheres, we are able to measure flux fluctuations across the wormhole that

are both continuously tunable and fully correlated with each other: this is observationally

indistinct from measuring an electric field through the wormhole. This field exists not

because of geometry, but rather because the electric field entering one sphere attempts to

create a negative charge. Due to the entanglement this results in the creation of a positive

charge in the other sphere, so that the resulting field on that side is the same electric field

as the one entering the first sphere. This appears rather different from the mechanism at

play for a geometric wormhole, but the key fact is that the wavefunction in the flux basis

takes qualitatively the same form (i.e. that shown in Figure 4.3) for both classical and

quantum wormholes, meaning that the universal response to electric fields is the same for

both systems.

Quantitatively, however, there is an important difference. If the function f that measures

the number of charged states is of O(1), then the wormhole susceptibility for the quantum

wormhole (4.2.6) is smaller than that for the classical wormhole (4.1.15) by a factor of
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(gF q)
2. It is much harder – i.e. suppressed by factors of ~ – to push an electric field

through a quantum wormhole. Alternatively, we can view (4.1.15) as defining the value

of the U(1) gauge coupling in the wormhole region. In the quantum wormhole we have

succeeded in creating a putative region through which a U(1) gauge field can propagate, but

its coupling there (as measured by (4.2.6)) is large, and becomes larger as the entanglement

is decreased. Notwithstanding these large “quantum fluctuations”, the quantum wormhole

does nevertheless satisfy topological constraints such as Gauss’s law.

Despite this suppression, there is no obstruction in principle to making f sufficiently

large so that the susceptibilities can be made the same. Increasing the temperature or the

size of the box will increase the number of charged states and thus increase f , as can be seen

explicitly in Figure 4.5. Thus even the numerical value of the EPR wormhole susceptibility

can be made equal or even greater than that of the ER bridge, although we will require a

large number of charged particles to do it in a weakly coupled regime.

4.3 Wilson lines through the horizon

It was argued above that electric flux measurements behave qualitatively the same for a

classical and for a quantum wormhole. It is interesting to consider other probes involving

the gauge field. For example, the classical eternal black hole also allows a Wilson line to

be threaded through it. Such Wilson lines have recently been studied in a toy model of

holography in [137]. For the black hole, consider extending a Wilson line from the north

pole of the left sphere at r = a through the horizon to the north pole of the right sphere:

WER =

〈
exp

(
iq

∫ R

L

A

)〉
≈ 1 (4.3.1)

Since we assume that the gauge field is weakly coupled throughout the geometry, to

leading order we can simply set it to 0, leading to the approximate equality above.

On the other hand, in the entangled spheres case where there is no geometric connection it
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is not clear how a Wilson line may extend from one box to the other. However, an analogous

object with the same quantum numbers as (4.3.1) is

WEPR =

〈
exp

(
iq

∫ 0

L

AL

)
φL(0)φ†R(0) exp

(
iq

∫ R

0

AR

)〉
, (4.3.2)

where each Wilson line extends now from the skin of the sphere to the center of the sphere

at r = 0, where it ends on a charged scalar field insertion.

While the gauge field may be set to zero as in the black hole case above, we must

furthermore account for the mixed correlator of the scalar field, which is nonzero only due to

entanglement. Details of the computation and a plot of the results can be found in Appendix

B. The leading large β behavior is

WEPR ∼ exp

(
−ω0β

2

)
. (4.3.3)

As the temperature is decreased the expectation value of the Wilson line vanishes, consistent

with the idea put forth above that the gauge field living in the wormhole is subject to

strong quantum fluctuations which become stronger, washing out the Wilson line, as the

entanglement is decreased.

4.4 Discussion

A classical geometry allows an electric field to be passed through it. We have demonstrated

here that we can mimic this aspect of a geometric connection using entangled charged matter

alone. We also introduced the wormhole susceptibility, a quantitative measure of the strength

of this connection. For quantum wormholes this susceptibility is suppressed relative to that

for classical wormholes by factors of the dynamical U(1) gauge coupling, i.e. by powers of ~,

but, as we argued in Section 4.2, there is in principle no impediment for the susceptibilities

to be of the same order. The susceptibility is defined for any state, but for the thermofield

state it directly measures the electric field produced when a potential difference is applied
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across the wormhole.

We stress that we are not claiming that there is a smooth geometry in the quantum

wormhole; however, there is a crude sense in this setup in which a geometry emerges from the

presence of entanglement. We showed that by adjusting the parameters, two boxes of weakly

coupled, entangled charged particles can mimic an Einstein-Rosen bridge in their response

to electric potentials. The structure we have found in this highly excited state is similar to

that of the vacuum of a two-site U(1) lattice gauge theory, where entanglement between the

sites allows the electric flux between them to fluctuate. This is enough to allow for a nonzero

susceptibility and is somewhat reminiscent of ideas of dimensional deconstruction [138].

The equivalence is only at the coarse level of producing the same electric flux at the

boundary of the boxes; more detailed observations inside the boxes would quickly reveal

that charged matter rather than black holes are present. However, the presence of a nonzero

wormhole electric susceptibility already at weak coupling, along with the fact that the two

susceptibilities become similar as the coupling is increased, is compatible with the idea that

as we go from weak to strong coupling entangled matter becomes an ER bridge.

It is worth noting that the quantum wormholes considered still satisfy Gauss’s law (4.2.4)

in that every field line entering one side must exit from the other. This is due to the correlated

charge structure of the states considered:

|ψ〉 ∼
∑
Q

| −Q〉|Q〉 (4.4.1)

If we coherently increase the charge of the left sector relative to the right, then this would

correspond to having a definite number of charged particles inside the wormhole.

Alternatively, we could consider a more generic state, involving instead an incoherent

sum over all charges. This type of generic quantum wormhole does not satisfy any analog

of Gauss’s law. At first glance, this appears non-geometric, in agreement with the intuition

that a generic state should not have a simple geometric interpretation [139, 140]. On the

other hand, we could also simply state that we have filled the wormhole with matter that is
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not in a charge eigenstate, i.e. a superconducting fluid. Thus some “non-geometric” features

nevertheless have an interpretation in terms of effective field theory, and a two-sided analog

of the holographic superconductor [141–143] might capture universal aspects of the gauge

field response of such a state.

We note also that the susceptibility is constructed from conserved charges, and so it

commutes with the Hamiltonian. Thus the time-evolved versions of the thermofield state

(which have been the subject of much recent study as examples of more “generic” states [12,

54,122,129,144,145]) do not scramble charges: they all have the same wormhole susceptibility

as the original thermofield state and precisely satisfy Gauss’s law. We also find that the

wormhole susceptibility must be conserved if two disconnected clouds of entangled matter

are collapsed to form two black holes, which presumably then must have an Einstein-Rosen

bridge between them. This provides a crude realization of the collapse experiment proposed

in [12].

It is of obvious interest to generalize our considerations to gravitational fields. In that

case the wormhole gravitational susceptibility corresponding to (4.1.15) directly measures

Newton’s constant in the wormhole throat. Note also that the form of the “ER = EPR” cor-

respondence studied here requires the existence of perturbative matter charged under every

low-energy gauge field: e.g. to form a quantum wormhole to have a nonzero wormhole mag-

netic susceptibility and thus to admit magnetic fields, we would require entangled magnetic

monopoles. If the charge spectrum were not complete, one could certainly tell the differ-

ence between an ER bridge and an EPR one. Precisely such a completeness of the charge

spectrum in consistent theories of quantum gravity has been conjectured on (somewhat)

independent grounds [132,133,146].

Finally, we find it intriguing that the two computations performed here result in qual-

itatively similar answers, but arising from different sources and at different orders in bulk

couplings. One might be tempted to speculate that in a formulation of bulk quantum gravity

that is truly non-perturbative these two very different computations could be understood

as accessing a more general concept that reduces in different limits to either perturbative
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entanglement or classical geometry. It remains to be seen what this more general concept

might be.
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APPENDIX A

Divergence regulation scheme
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Figure A.1: Fitting scheme for divergence regulation. Left: K = 2, Right: K = 4; ∆x = 0.5.
Curves shown are unregulated 〈Ttt〉 plot (solid blue), Casimir hump (dashed red), location of
singularities (dashed orange), lower bound on critical region (dashed purple), corresponding vertical
cutoff (dashed black straight line), data points used for fitting (green), and numerically fitted plots
(dashed black) using a normal distribution multiplied by an error function for skewness..

In the thermodynamic limit, the correlation length ξ ∼ t−ν , where t = |T−Tc|
TC

, diverges at

the critical temperature1 T = Tc. The size of the critical region is then given by t ∼ ξ−
1
ν . In

a finite-size system the correlation length is limited by the system size; the expected scaling

in a trap of size L is ξ ∼ Lθ [147–150], where θ is the trap critical exponent. Experimental

systems of trapped ultracold bosons in optical lattices in one dimension are well-described by

the Bose-Hubbard Hamiltonian [151] and for that model it is given by θ = p
p+1/ν

in the case

of a power-law potential. This implies that the size of the critical region is given by t ∼ L−
θ
ν .

For divergences occurring at x = x0 we therefore place a cutoff at the height corresponding

to the left boundary of the critical region, x = x0 − 1
2
aL−

θ
ν , where a is an arbitrary but

consistent choice of constant (a = 0.1 in Fig. A.1), and round off the divergences at the

1We note that we use Tc here for illustrative purposes; in general the particular critical parameter relevant
to the system should be employed to determine the critical region of the system.
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corresponding height by finding a best-fit function (skewed exponential ansatz) for a set of

representative points such that a smooth choice is ensured for a given choice of K. We set

ν = 1 and p = 2 (harmonic potential) for the distributions derived here.
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APPENDIX B

Charged scalar field computations
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Figure B.1: Numerical evaluation of the logarithm of 〈φL(0)φ†R(0)〉, which contributes the
interesting dependence of the Wilson line (4.3.2). From bottom moving upwards, curves
correspond to ma = 1, 1.5, 2. Dashed line corresponds to asymptotic behavior for ma = 1 of

exp
(
−ω0

2β

)
with ω0 the lowest single-particle energy level.

Here we present some details of the charged scalar field computations presented in the

main text. Similar results would be obtained for essentially any system in any geometry, but

for concreteness we present the precise formulas for the charged scalar field in a spherical

box. The relevant part of the action is

Sφ = −
∫
d4x

(
|Dφ|2 +m2|φ|2

)
(B.0.1)

The scalar field is confined to a spherical box of radius a with Dirichlet boundary conditions

φ(r = a) = 0. We first compute the single-particle energy levels.

Expanding the field in spherical harmonics as φ =
∑

lmp φlp(r)e
−iωt Ylm(θ, φ) we find the

mode equation for φlp(r) to be

1

r2
∂r
(
r2∂rφlp(r)

)
− l(l + 1)

r2
φlp(r) = (m2 − ω2)φlp(r), (B.0.2)
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Here p is a radial quantum number and l is angular momentum as usual. The normalizable

solutions to the radial wave equation are spherical Bessel functions of order l:

φlp(r) = clpjs(l, λlpr) clp =
2√
a3π

(
Jl+ 3

2
(λlpa)

)−1

(B.0.3)

The normalization clp has been picked such that

∑
p

φlp(r)φlp(r
′) =

δ(r − r′)
r2

(B.0.4)

In clp, Jν(x) is an ordinary Bessel function of the first kind. Imposing the Dirichlet boundary

condition fixes λp =
xlp
a

, where xlp is the p-th zero of the l-th spherical Bessel function. This

determines the energy levels to be

ωlp =

√
m2 +

(xlp
a

)2

, (B.0.5)

We are now interested in computing the charge susceptibility at finite temperature T and

chemical potential µ. From elementary statistical mechanics we have the usual expression

for the charge

〈Q〉 = q
∑
lp

(2l + 1)

(
1

1− eβ(ωlp+qµ)
− 1

1− eβ(ωlp−qµ)

)
, (B.0.6)

where we have included the degeneracy factor (2l + 1). Linearizing this in µ we obtain

(4.2.5), where it is understood that the sum over single-particle states there includes a sum

over angular momentum eigenstates:
∑

n →
∑

lp(2l + 1).

Next we compute the correlation function 〈φ†L(0)φR(0)〉 across the two sides of the ther-

mofield state (4.2.3) (with µ → 0). The fastest way to compute this is to note that the

two sides of the thermofield state can be understood as being connected by Euclidean time

evolution through β
2
. Thus the mixed correlator can be calculated by computing the usual

Euclidean correlator between two points separated by β
2

in Euclidean time (see e.g. [110]).

If the single-particle energy levels are given by ωpl, then the Euclidean correlator between
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two general points is

G(τ, r, θ, φ; τ ′, r′, θ′, φ′) =
∑
lmp

1

2ωlp

cosh
(
ωlp
(
τ − τ ′ − β

2

))
sinh

(
βωlp

2

) ×

φpl(r)φpl(r
′)Ylm(θ, φ)Y ∗lm(θ′, φ′), (B.0.7)

where in this expression the normalization of the mode functions (B.0.4) is important.

For our application to the Wilson line in (4.3.2) we care about the specific case τ−τ ′ = β
2

and r = r′ = 0. The spherical Bessel functions with nonzero angular momentum l 6= 0 all

vanish at the origin r = 0. Thus the sum is only over the l = 0 modes. The result of

performing this sum numerically is shown in Figure B.1, but it is easy to see that at small

temperatures the answer will be dominated by the lowest energy level and is:

〈φL(0)†φR(0)〉 ∼ exp

(
−ω0β

2

)
. (B.0.8)
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