
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The Combinatorics of nabla pn and connections to the Rational Shuffle Conjecture

Permalink
https://escholarship.org/uc/item/1bv2r7ns

Author
Sergel, Emily

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1bv2r7ns
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Combinatorics of nabla pn and connections to
the Rational Shuffle Conjecture

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Emily Sergel

Committee in charge:

Professor Adriano Garsia, Chair
Professor Ronald Graham
Professor Russell Impagliazzo
Professor Jeffrey Remmel
Professor Nolan Wallach

2016



Copyright

Emily Sergel, 2016

All rights reserved.



The dissertation of Emily Sergel is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2016

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Background and History . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 A proof of the Square Paths Conjecture . . . . . . . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Schedules for preference functions . . . . . . . . . . . . . 11
2.3 Shifting diagonals and schedules . . . . . . . . . . . . . . 14
2.4 Dealing with Inverse Descents . . . . . . . . . . . . . . . 18

Chapter 3 A new plethystic symmetric function operator and the Ratio-
nal Compositional Shuffle Conjecture at t = 1/q . . . . . . . . 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Commutator properties of our new operators . . . . . . . 29
3.3 Polynomiality and positivity. . . . . . . . . . . . . . . . . 38
3.4 A parking function setting for our Frobenius characteristics 43

3.5 The action of the operators Du,v on the basis
{

sµ

[
X

1−q

]}
µ

53

3.6 The original proof of Theorem 3.1.1 by the partial frac-
tion method . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 4 A new interpretation of ∇pn . . . . . . . . . . . . . . . . . . . 68
4.1 Symmetric function identities . . . . . . . . . . . . . . . 68
4.2 A refinement and a conjecture . . . . . . . . . . . . . . . 71
4.3 A special case . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

iv



LIST OF FIGURES

Figure 1.1: A parking function with 8 cars. . . . . . . . . . . . . . . . . . . 4

Figure 2.1: The labeled paths corresponding to (1, 5, 1, 2, 1) and (3, 5, 3, 2, 3). 9
Figure 2.2: All preference functions with diagonal word 2 3 1 4 5 and devia-

tion 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.3: All preference functions with diagonal word 2 3 1 4 5 and devia-

tion 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2.4: Diagrams of ((3, 3, 2, 1, 0) + δ5) ∪ δ4 and ((3, 2, 2, 1, 0) + δ5) ∪ δ4. 15
Figure 2.5: A decomposition of a preference function by consecutive blocks. 19

Figure 3.1: A path in the 12× 20 lattice rectangle. . . . . . . . . . . . . . . 44
Figure 3.2: The 20× 28 lattice rectangle and main diagonal. . . . . . . . . 48
Figure 3.3: A 6, 9-parking function. . . . . . . . . . . . . . . . . . . . . . . 49
Figure 3.4: The dinv of a Dyck path. . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.1: A square path with diagcomp = (4, 4, 2), retcomp = (1, 3, 2). . . 73

v



ACKNOWLEDGEMENTS

First and foremost, I have to thank my advisor, Adriano Garsia. From the

very beginning, he welcomed me into his mathematical family. He shared numerous

stories, problems, and insights. I learned an incredible amount of mathematics

from him. But, perhaps more importantly, he instilled in me an enthusiasm and

passion for algebraic combinatorics.

Many other people at UCSD also supported me during my graduate studies.

Thank you to my committee members for their time. Special thanks to Jeff Remmel

for being an outstanding teacher. I am also indebted to my mathematical sister,

Angela Hicks, who was a wonderful combination of friend, mentor and collaborator

during the past five years.

Thank you to my family for supporting me all these years. Especially to

my mom, who taught me to work hard and to believe in myself. Thank you to my

high school math coach, Shelby Aaberg, who first encouraged me in mathematics.

And thank you to my undergraduate advisor and close friend, János Komlós. You

showed me how to think like a mathematician and you gave me the confidence to

become one.

I’d also like to acknowledge my funding and collaborators. Much of this

work was supported by NSF grant DGE-1144086. The material from Chapter 3

is a joint paper with Adriano Garsia, Nolan Wallach and Guoce Xin which has

been submitted for publication. My primary contributions form Section 3.4. The

results of Chapter 4 are part of ongoing work with Adriano Garsia. My primary

contributions form Sections 4.2 and 4.3.

vi



VITA

2011 B. S. in Mathematics and Computer Science summa cum
laude, Rutgers University, New Brunswick

2011-2016 Graduate Teaching Assistant, Research Assistant, and Asso-
ciate Instructor, University of California, San Diego

2016 Ph. D. in Mathematics, University of California, San Diego

PUBLICATIONS

E. Sergel Leven, “A proof of the Square Paths Conjecture”, arXiv :1601.06249.

A. Garsia, E. Sergel Leven, N. Wallach, and G. Xin, “A new Plethystic Symmetric
Function Operator and The rational Compositional Shuffle Conjecture at t = 1/q”,
arXiv :1501.00631. Submitted to J. Comb. Theory, Series A.

F. Bergeron, A. Garsia, E. Sergel Leven, and G. Xin, “Some remarkable new
Plethystic Operators in the Theory of Macdonald Polynomials”, arXiv :1405.0316.
To appear in J. Comb.

F. Bergeron, A. Garsia, E. Sergel Leven, and G. Xin, “A Compositional (km, kn)-
Shuffle Conjecture”, Int. Math. Res. Notices (2015) rnr272.

T. Amdeberhan and E. Sergel Leven, “Multi-cores, posets, and lattice paths”, Adv.
Appl. Math. 71 (2015), 1-13.

A. Hicks and E. Leven, “A simpler formula for the number of diagonal inversions
of an (m,n)-Parking Function and a returning Fermionic formula”, Discrete Math.
338.3 (2015), 48-65.

E. Leven, “Two special cases of the rational Shuffle Conjecture”, DMTCS FPSAC
Proceedings (2014), 789-800.

E. Leven, B. Rhoades, and A. T. Wilson, “Bijections for the Shi and Ish Arrang-
ments”, Euro. J. Comb. 39 (2014), 1-23.

A. Hicks and E. Leven, “A refinement of the Shuffle Conjecture with cars of two
sizes and t = 1/q”, J. Comb. 5.1 (2014), 31-50.

P. Richter, E. Leven, A. Tran, J. Jacob, and D. A. Narayan, “Rank numbers for
bent ladders”, Disc. Math. Graph Theory 34 (2014), 309-329.

E. Sergel, “Noncommutative Biorthogonal Polynomials”, Adv. Appl. Math. 48
(2012), 99-105.

E. Sergel, P. Richter, A. Tran, J. Jacob, P. Curran, and D. A. Narayan, “Rank
numbers for some trees and unicyclic graphs”, Aeq. Math. 82.1-2 (2011), 65-79.

vii



ABSTRACT OF THE DISSERTATION

The Combinatorics of nabla pn and connections to
the Rational Shuffle Conjecture

by

Emily Sergel

Doctor of Philosophy in Mathematics

University of California, San Diego, 2016

Professor Adriano Garsia, Chair

The symmetric function operator, ∇, introduced by Bergeron and Gar-

sia (1999), has many astounding combinatorial properties. The (recently proven)

Shuffle Conjecture of Haglund, Haiman, Loehr, Remmel, and Ulyanov (2005) re-

lates ∇en to parking functions. The rational Compositional Shuffle Conjecture of

the author, Bergeron, Garsia, and Xin (2015) relates a whole family of operators

(closely linked to ∇) to rational parking functions. Loehr and Warrington (2007)

conjectured a relationship between ∇pn and preference functions. We prove this

conjecture and provide another combinatorial interpretation in terms of parking

functions. This new formula reveals a connection between ∇pn and an operator

appearing in the rational Compositional Shuffle Conjecture at t = 1/q.

viii



Chapter 1

Background and History

This work explores the relationship between combinatorics and symmet-

ric function theory. A function of n variables f(x1, x2, . . . , xn) is symmetric if

f(x1, x2, . . . , xn) = f(xσ1 , xσ2 , . . . , xσn) for every permutation σ ∈ Sn. Extending

this to infinitely many variables gives the ring Λ of symmetric functions. For an

introduction to symmetric function theory, see Macdonald [Mac95]. Many prop-

erties of symmetric functions can be beautifully expressed using combinatorics.

For example, the Pieri rule gives a way to multiply Schur functions and complete

symmetric functions by counting tableaux.

These two subjects - combinatorics and symmetric function theory - are also

closely related to representation theory. The Frobenius map gives a correspondence

between Schur functions and irreducible representations of Sn. So for any Sn-

module (or bi-module) one can define the Frobenius characteristic - a weighted sum

of Schur functions which gives the multiplicity of each irreducible representation

according to degree (or bi-degree). Any Schur-positive symmetric function is the

Frobenius characteristic of some module. Hence finding combinatorial formulas

for Schur-positive symmetric functions gives information about the representation

theory of the corresponding module.

We can express many useful transformations of symmetric functions with

plethystic notation. Suppose E(t1, t2, . . . , ) is a Laurent polynomial in indeter-

minates t1, t2, etc. We define the plethystic substitution of E into the power

1
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symmetric function pk by

pk[E(t1, t2, . . . )] = E(tk1, t
k
2, . . . ).

Then if f is any symmetric function, we can express it as a polynomial in the

power symmetric functions Q(p1, p2, . . . ). Let

f [E] = Q(p1[E], p2[E], . . . ).

That is, plethystic substitution of a particular expression E is a ring homomor-

phism on Λ.

Note that if X = x1 + x2 + . . . , then f [X] = f for all f ∈ Λ. Further-

more, if A and B are any Laurent polynomials and n ≥ 1, then hn[A + B] =∑n
k=0 hn−k[A]hk[B] and en[A + B] =

∑n
k=0 en−k[A]ek[B]. An introduction to

plethysm can be found in [Mac95]. For further details, see Loehr and Remmel

[LR11].

In 1988, Macdonald [Mac88] introduced a new basis for the ring of sym-

metric functions. This basis was later modified by Garsia and Haiman [GH96b]

to form the modified Macdonald polynomial basis {H̃µ[X; q, t]}. They were also

interested in finding the Frobenius characteristic for a certain Sn bi-module, called

the module of Diagonal Harmonics. They conjectured [GH96a] a formula for the

modified Macdonald expansion of this Frobenius characteristic and Haiman [Hai01]

later proved their conjecture using algebraic geometry. However, this formula is

not obviously Schur positive or even polynomial.

More specifically, let λ be a partition and λ′ the conjugate. Consider the

French Ferrers diagram of λ. For each cell c, let the number of cells North, East,

South, or West of c in λ be denoted leg(c), arm(c), coleg(c), and coarm(c), re-

spectively. Then we have the following expressions, which appear in the theory of
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Macdonald polynomials.

n(λ) =
∑
c∈λ

leg(c) =

l(λ)∑
i=1

λi(i− 1) h̃λ(q, t) =
∏
c∈λ

qarm(c) − tleg(c)+1

Tλ = tn(λ)qn(λ
′) h̃′λ(q, t) =

∏
c∈λ

qleg(c) − tarm(c)+1

Bλ(q, t) =
∑
c∈λ

qcoarm(c)tcoleg(c) wλ(q, t) = h̃λ(q, t)h̃′λ(q, t)

Πλ(q, t) =
∏
c∈λ

c 6=(0,0)

(
1− qcoarm(c)tcoleg(c)

)
Garsia and Haiman’s formula for the Frobenius characteristic of the module

of Diagonal Harmonics can be written as

DHn[X; q, t] =
∑
µ`n

TµH̃µ[X; q, t](1− t)(1− q)Bµ(q, t)Πµ(q, t)

wµ(q, t)
.

Bergeron and Garsia [BG99] noted that this is very close to the modified Macdonald

expansion of en, which is

en =
∑
µ`n

H̃µ[X; q, t](1− t)(1− q)Bµ(q, t)Πµ(q, t)

wµ(q, t)
.

Inspired by this similarity, they defined the linear symmetric function operator ∇,

which acts by ∇H̃µ = TµH̃µ. In this language, DHn[X; q, t] = ∇en. They then

explored ∇’s numerous remarkable properties, some of which we will see in later

chapters.

One way to view problems involving ∇ is as a basis expansion problem. To

find the multiplicity of a particular irreducible character in the module of Diagonal

Harmonics, one may expand en in terms of the modified Macdonald polynomials,

apply ∇, and then expand each modified Macdonald polynomial in terms of Schur

functions. At present, there is no combinatorial formula for completing this last

step.

Another result of Haiman [Hai01] gives a simple formula for the dimension

of the same module: (n + 1)n−1. Both of Haiman’s proofs used deep results from

algebraic geometry. Together they inspired a search for a combinatorial interpre-

tation - a collection of (n + 1)n−1 objects with some statistics giving a weighted
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enumeration of ∇en - that would show the polynomiality of ∇en. Such an in-

terpretation was (conjecturally) found by Haglund, Haiman, Loehr, Remmel and

Ulyanov [HHL+05]. Their conjecture is known as the Shuffle Conjecture, and was

only recently proved. It is still an open problem to find a combinatorial formula

for the Schur expansion of ∇en.

In 1966, Konhiem and Weiss [KW66] studied a combinatorial problem in-

volving cars trying to park on a one-way street. The resulting objects are known as

parking functions. For our purposes, it is more helpful to think of parking functions

as labeled paths. A Dyck path in the n×n lattice is a path (0, 0) to (n, n) of North

and East steps which stays weakly above the line y = x. A parking function is a

Dyck path with labels {1, 2, . . . , n} on North steps which are column-increasing.

We write the labels of a parking function in the cell just East of each North step.

This visualization was introduced by Garsia and Haiman [GH96a]. For example,

see Figure 1.1. Konheim and Weiss [KW66] proved there are (n + 1)n−1 parking

functions of size n. In reference to their origins, the labels of a parking function

are known as cars.

2

1
3

4

5

6
7

8

Figure 1.1: A parking function with 8 cars.

The symmetric function ∇en has weights with indeterminates t and q.

Hence we want to express ∇en as an enumeration of parking functions with two

integer statistics - the power of t and q - and a symmetric function. The most

natural of these statistics is the area - the number of full cells between the main

diagonal y = x and the underlying Dyck path. In Figure 1.1, the area is 8.
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The other two statistics use the notion of diagonals. Let the k-diagonal be

the set of cells cut by the line y = x + k. In particular, the main diagonal y = x

is the 0-diagonal. In Figure 1.1, there are 3 cars in the 0-diagonal, 2 cars in the

1-diagonal, and 3 cars in the 2-diagonal.

The dinv of a parking function counts certain inversions in σ. If two cars

are in the same diagonal and the larger occurs further right, we say they create a

primary dinv. If two cars are in adjacent diagonals so that the larger car is higher

and further left, they create a secondary dinv. The dinv of a parking function is the

total number of primary and secondary dinvs. In Figure 1.1, there is one primary

dinv between 2 and 8, and three secondary dinvs caused by the pairs (1,6), (3,6),

and (5,7). Hence the dinv is 4.

Finally, the word σ of a parking function is the permutation obtained by

reading cars from highest to lowest diagonal and right to left within each diagonal.

In Figure 1.1, σ = 8 2 7 5 6 1 3 4. This statistic will be used to give a symmetric

function weight to each parking function. Recall that the ides of a permutation σ

is the descent set of σ−1. Alternatively, it is the set of i so that i+ 1 occurs left of

i in σ. In the example, ides(σ) = {1, 4, 6, 7}.
One can define a composition of n by looking at successive differences in

an subset of {1, 2, . . . , n− 1} along with the difference between n and the largest

element. Let the composition corresponding to the ides of the word of a parking

function PF be denoted pides(PF ). Then we can weight each parking function

PF with the (Compositional) Schur function spides(PF ). Equivalently, it can be

weighted by the quasi-symmetric function Fides(PF ). Here if S ⊂ {1, 2, . . . , n− 1},
FS is the following degree n fundamental quasi-symmetric function defined by

Gessel [Ges84].

FS =
∑

0≤a1≤a2≤···≤an
i∈S⇒ai<ai+1

xa1xa2 . . . xan

Let PF n be the set of all parking functions on n cars. Then the classical

Shuffle Conjecture states

∇en =
∑

PF∈PFn

tarea(PF )qdinv(PF )Qides(PF ).
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In [HMZ12], Haglund, Morse and Zabrocki refined the Shuffle Conjecture using

the following plethystic symmetric function operators.

Ca P [X] =

(
−1

q

)a−1
P

[
X − 1− 1/q

z

] ∑
m≥0

zmhm[X]
∣∣∣
za

Their conjecture, which is stated below, was recently proved by Carlsson and Mellit

in [CM15]. Here comp(PF ) is the composition of n giving the distances between

points (i, i) on PF ’s underlying path. For example, the parking function in Figure

1.1 has comp = (4, 1, 3).

Theorem 1.0.1 (Carlsson-Mellit). For all compositions ρ |= n,

∇Cρ1 · · ·Cρk1 =
∑

PF∈PFn
comp(PF )=ρ

tarea(PF )qdinv(PF )Fides(PF ).

Let PF be a parking function. Define touch(PF ) to be the number of parts

of comp(PF ), i.e., the number of cars in the main diagonal y = x. For n ∈ N and

1 ≤ k ≤ n, Garsia and Haglund [GH02] defined the symmetric functions En,k so

that

en

[
X

1− z
1− q

]
=

n∑
k=1

(z; q)k
(q; q)k

En,k[X].

where

(z; q)n = (1− z)(1− zq) · · · (1− zqn−1).

Haglund, Morse and Zabrocki [HMZ12] showed

Theorem 1.0.2 (Haglund-Morse-Zabrocki). For all 1 ≤ k ≤ n,

En,k =
∑

ρ|=n, l(ρ)=k

Cρ1 · · ·Cρk1.

Hence Theorem 1.0.1 implies

Corollary 1.0.1. For all n ∈ N and all 1 ≤ k ≤ n,

∇En,k =
∑

PF∈PFn
touch(PF )=k

tarea(PF )qdinv(PF )Fides(PF ).
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In the next chapter, we use this intermediate refinement of the Shuffle

Conjecture to give combinatorial meaning to ∇pn, proving a conjecture of Loehr

and Warrington [LW07]. The following chapter explores an algebra of symmetric

function operators closely related to∇. These operators are used for the symmetric

function side of a family of extended Shuffle Conjectures known as the Rational

Shuffle Conjectures. These conjectures are open at the time of writing, though

there is extensive experimental evidence supporting them. The final chapter gives

a second interpretation for ∇pn which appears as a special case of the formulas in

the previous chapter and connects these seemingly disparate problems.



Chapter 2

A proof of the Square Paths

Conjecture

2.1 Introduction

We prove here that ∇pn can be expressed as a weighted sum of certain

labeled lattice paths (called preference functions or labeled square paths). This

formula for∇pn was originally conjectured by Loehr and Warrington [LW07]. Pref-

erence functions are intimately related with parking functions. Both were intro-

duced by Konheim and Weiss [KW66] in 1966. A preference function is a map f :

[n]→ [n]. For convenience, we will also write it as the vector (f(1), f(2), . . . , f(n)).

A parking function is any preference function such that |f−1([k])| ≥ k for all

1 ≤ k ≤ n. Konheim and Weiss motivated this definition by describing a parking

procedure in which n cars try to park in n spaces on a one-way street according

to a preference function f . The cars will all succeed in parking if and only if the

preference function is a parking function.

For our purposes, it is more helpful to think of the lattice-path interpreta-

tion of preference, which matches the interpretation of parking functions given in

Chapter 1. Start with an empty n × n lattice. Write each car which prefers spot

1 (each i ∈ f−1(1)) in column 1, starting at the bottom, from smallest to largest.

Then move to the lowest empty row and write all the cars which prefer spot 2

8
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(f−1(2)) in column 2 from smallest to largest and bottom to top. Continue this

procedure until all the cars have been recorded. Then draw in the unique smallest

lattice path which consists of North and East steps and stays above each car. For

example, see Figure 2.1.

This gives a bijective correspondence between the nn preference functions

and the set of North-East paths from (0, 0) to (n, n) which (1) have column-

increasing labels adjacent to North steps and (2) end with an East step. The

underlying lattice paths here are also known as square paths and the labels are

known as cars. Furthermore, such a labeled path corresponds to a parking func-

tion if and only if the underlying path stays (weakly) above the line y = x. The

underlying paths here are known as Dyck paths.

1
3

2

4

5

1
3

2
4

5

Figure 2.1: The labeled paths corresponding to (1, 5, 1, 2, 1) and (3, 5, 3, 2, 3).

In [LW07], Loehr and Warrington conjectured a formula for ∇pn as an

enumeration of all preference functions. Their statistics are similar to those used

in the Shuffle Conjecture. The word of a preference function, for example, is

calculated just as the word of a parking function is: the cars are read from highest

to lowest diagonal and from right to left within each diagonal. We will again write

ides(Pr) for the inverse descent set of the word of a preference function Pr. The

preference function on the right of Figure 2.1 has word 5 2 3 1 4 and ides = {1, 4}.
The dinv of a preference function has three components: the usual primary

and secondary dinvs (within any diagonals) and a new component that we will call

tertiary dinv. The tertiary dinv is simply the number of cars strictly below the

main diagonal y = x. For example, the preference function on the right of Figure

2.1 has dinv = 3. That is, it has no primary dinv, one secondary dinv (between

cars 2 and 5), and two tertiary dinvs (contributed by cars 1 and 4).
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To define the area of a preference function, we need to name diagonals. In

particular, we will refer to the diagonal y = x + k as the k-th diagonal. For any

preference function Pr, let l(Pr) be the number of negative diagonals which are

nonempty. This is known as the deviation of the preference function. Note that

Pr is a parking function iff l(Pr) = 0. Then area(Pr) is the sum over all cars of

Pr to which a car in diagonal k contributes k + l(Pr). That is, cars in the lowest

diagonal contribute 0, cars in the next lowest diagonal contribute 1, and so on. In

the left side of Figure 2.1, the deviation is 1 and area = 4.

It is easy to see that the two definitions given for dinv and word coincide

when we view parking functions as (special) preference functions. To see the

equivalence of the two definitions for the area of a parking function, note that a

car in diagonal k lies in a row with k full cells between the underlying path and

the main diagonal.

Let Prefn be the set of all preference functions on n cars.

Conjecture 2.1.1 (Loehr-Warrington).

(−1)n−1∇pn =
∑

Pr∈Prefn

tarea(Pr)qdinv(Pr)Fides(σ(Pr))

The main result of this chapter is a proof of Conjecture 2.1.1. In Section 2.2, we

extend a notion of Haglund and Loehr [HL05] and use it to enumerate, by area

and dinv alone, those preference functions with a fixed set of cars in each diago-

nal. In Section 2.3, we will discuss the effects of shifting cars between diagonals

on the enumeration we obtained in Section 2.2. This will allow us to relate the

enumeration of preference functions by area and dinv to the enumeration of park-

ing functions by area and dinv. Finally, in Section 2.4, we will show how to use

the results of Section 2.3 to relate the full enumerations (using area, dinv, and

ides) of preference and parking functions by extending a result of Hicks [Hic13].

This, combined with a symmetric function identity and the Compositional Shuffle

Conjecture, proves the Square Paths Conjecture.

In fact, we prove something much stronger: a relationship between the full

enumerations of parking and preference functions with the same “diagonal word”

(which we introduce in the next section). This is analogous to Hicks’ [Hic13] con-
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jecture that relations between different incarnations of the Compositional Shuffle

Conjecture may be refined to the level of parking functions with fixed sets of cars

in diagonals. This suggests that there may be quasi-symmetric refinements for the

symmetric functions sides of the Shuffle Conjecture and Square Paths Conjecture

which correspond to these combinatorial enumerations.

2.2 Schedules for preference functions

In this section we make use of the diagonal word statistic and the schedule

of a parking function. These concepts were introduced by Haglund and Loehr in

[HL05] and expanded upon by Hicks in [Hic13]. We follow the latter’s notation.

The diagonal word of a preference function Pr, denoted diagword(Pr), is

a permutation whose runs give the cars in each diagonal of Pr from highest to

lowest diagonal. That is, cars from a single diagonal are listed in increasing order.

This should not be confused with Pr’s word, σ, which lists cars from each diagonal

in the order they actually appear. For example, the two preference functions in

Figure 2.1 have words σ = 4 5 3 2 1 and σ = 5 2 3 1 4, respectively, but diagonal

words 4 5 3 1 2 and 5 2 3 1 4.

This concept was first introduced to enumerate parking functions as follows.

Let τ ∈ Sn. Suppose the last run of τ has length k. Then for 1 ≤ i ≤ k, let wi = i.

For k < i ≤ n, let wi be the number of elements of τn+1−i’s run which are larger

than τn+1−i plus the number of cars smaller than τn+1−i in the next run. If PF

is a parking function with diagonal word τ , then W = (wi) is called its schedule.

We also say that W is the schedule of τ . There are
∏n

i=1wi parking functions with

diagonal word τ and they can be built by inserting the cars of τ from right to left

into an empty parking function.
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Figure 2.2: All preference functions with diagonal word 2 3 1 4 5 and deviation 0.

Hicks [Hic13] introduced a visualization of this as a tree. In Figure 2.2,

we show how parking functions with diagonal word 2 3 1 4 5 are built by inserting.

The schedule numbers of τ are (1, 2, 3, 1, 2). Note that at each level of the tree,

the degree of each node is the schedule number corresponding to the car being

inserted. Furthermore, the children of each node are arranged so that, from left

to right, the change in dinv between parent and child is 0, 1, . . . , wi − 1. This is

essentially the proof of the following theorem, which is due to Haglund and Loehr

[HL05].

Theorem 2.2.1 (Haglund-Loehr). Let τ ∈ Sn with schedule (wi). Then

∑
PF∈PFn

diagword(PF )=τ

tarea(PF )qdinv(PF ) = tmaj(τ)

n∏
i=1

[wi]q.

We extend the notion of schedules to preference functions as follows. Sup-

pose l ≥ 0 and τ ∈ Sn with at least l+ 1 runs. Let 1 ≤ c ≤ n. If c is in one of the

last l runs of τ , then define w(l)(c) to be the number of elements smaller than c in

its own run plus the number of elements larger than c in the previous run. If c is

in the (l + 1)-st from last run, define w(l)(c) to be the number of elements to the

right of c in the same run. Otherwise define w(l)(c) to be the number of elements

larger than c in its own run plus the number of elements smaller than c in the next

run.
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For example, let τ = 2 3 1 4 5. Then τ consists of 2 runs and we have

w(1)(3) = 1, w(1)(2) = 2, w(1)(1) = 2, w(1)(4) = 1, and w(1)(5) = 2. We say that

(w(l)(c)) are the l-schedule numbers of τ . It is easy to see that the original schedule

numbers (wi) correspond to the 0-schedule numbers of τ , but they appear in a

different order. We will use the new schedule numbers (w(l)(c)) to build preference

functions with diagonal word τ and deviation l. See Figure 2.3 for the tree whose

leaves are preference functions with diagonal word 2 3 1 4 5 and deviation l = 1.

Note that w(1)(c) gives degrees of the nodes when car c is inserted.

3

1
1

1
1

3
2 3

2

3
2

3

2 3
2

3

2

1
3
2

1

3

2

4
4 1

1
3

2
3

24
4

1
3
2

4
1
3
2

4
5

5

1

3

2

4
1

3

2

45
5 1

3
2

4

1

3
2

4
5

5

1
3

2

4
1
3

2
45
5

Figure 2.3: All preference functions with diagonal word 2 3 1 4 5 and deviation 1.

Theorem 2.2.2. Let τ ∈ Sn with runs of lengths ρk, . . . , ρ1, ρ0. Let 0 ≤ l ≤ k.∑
Pr∈Prefn

diagword(Pr)=τ
l(Pr)=l

tarea(Pr)qdinv(Pr) = tmaj(τ)qρ0+···+ρl−1

n∏
c=1

[w(l)(c)]q.

Proof. Each element in the i-th from last run of τ will contribute i − 1 to area.

Therefore the factor tmaj(τ) on the right hand side of Theorem 2.2.2 accounts for

the area on the left hand side. It remains to enumerate the desired preference

functions by dinv.

To do this, first insert each car c which occurs in the first k + 1− l runs of

τ from right to left starting in diagonal 0 and moving up a diagonal between runs.

At each step, we will have w(l)(c) choices which, when ordered from right to left,

will contribute 0, 1, . . . , w(l)(c)−1 to primary and secondary dinv. Since these cars

belong to nonnegative diagonals, they contribute nothing to the tertiary dinv.
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Next, insert the cars of the remaining l runs from left to right starting in

diagonal −1 and moving into the next lowest diagonal at the start of each new run.

Such a car c can either appear directly below a larger car from the previous run

(i.e., an element from the next highest diagonal of τ) or directly left of a (previously

inserted, hence smaller) car in the same run (i.e., same diagonal). Therefore we

have w(l)(c) choices. These choices, when ordered from left to right, will contribute

0, 1, . . . , w(l)(c)− 1 to primary and secondary dinv.

Since these cars appear below diagonal 0, they also contribute to tertiary

dinv. There are ρ0 + · · · + ρl−1 such cars, so the tertiary dinv “factors out,” just

as area did. And, as we observed above, each car contributes [w(l)(c)]q to the

enumeration of primary and secondary dinv.

2.3 Shifting diagonals and schedules

This section is devoted to proving the following general result about pref-

erence functions.

Theorem 2.3.1. Let τ ∈ Sn with schedule (wi). Suppose that the runs of τ have

lengths ρr, . . . , ρ1, ρ0. If 1 ≤ l ≤ r, then the multi-set of l-schedule numbers of τ is

equal to {wi : 1 ≤ i ≤ n} ∪ {ρl} \ {ρ0}. Hence

∑
Pr∈Prefn

diagword(Pr)=τ
l(Pr)=l

tarea(Pr)qdinv(Pr) = tmaj(τ)qρ0+···+ρl−1
[ρl]q
[ρ0]q

n∏
i=1

[wi]q.

Our proof of this theorem requires a surprising lemma regarding partitions.

See Figure 2.4 for an illustration of the lemma applied to λ = (3, 3, 2, 1, 0) with

a = 4 and b = 5.
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Figure 2.4: Diagrams of ((3, 3, 2, 1, 0) + δ5) ∪ δ4 and ((3, 2, 2, 1, 0) + δ5) ∪ δ4.

Lemma 2.3.1. Let a, b > 0 and let λ = (λ1 ≥ λ2 ≥ · · · ≥ λb) be a partition,

with nonnegative parts, contained in the rectangle a × b. That is λ1 ≤ a and

l(λ) = b. We will write λ′ for the conjugate of λ considered as a partition in the

b × a rectangle. We also write δn for the sequence (0, 1, . . . , n − 1) for all n ∈ N.

Then the sequences

(λ+ δb) ∪ δa and (λ′ + δa) ∪ δb

have the same multi-set of entries. Here the sum of sequences is coordinate-wise

and ∪ denotes concatenation.

Proof. Note that the claim holds if λ is the empty partition. So let ∅ 6= λ be

contained in the rectangle a × b and suppose the claim holds for all partitions

contained in λ (with b parts). Suppose λ1 occurs k times in λ. Then the k-th

entry of λ+ δb is λ1 + k − 1. Furthermore, the λ1-st entry of λ′ + δa is k + λ1 − 1.

For example, in Figure 2.4, k = 2 and λ1 = 3, so the marked row corresponds to

the k-th entry of λ+ δb and the marked column corresponds to the λ1-st entry of

λ′ + δb, and they have equal length.

Let µ be the partition obtained from λ by reducing its k-th entry from λ1

to λ1− 1. E.g., if λ = (3, 3, 2, 1, 0) then µ = (3, 2, 2, 1, 0). The entries of µ+ δb are

identical to the entries of λ+ δb except that the k-th entry is now (λ1− 1) + k− 1.

Similarly, the only entry of µ′ + δa which differs from λ′ + δa is the λ1-st entry,

which is now (k − 1) + λ1 − 1.

For any sequence σ, let {σ} denote the multi-set of σ’s entries. Then

{(λ+ δb) ∪ δa} = {(µ+ δb) ∪ δa} ∪ {λ1 + k − 1} \ {(λ1 − 1) + k − 1}
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and

{(λ′ + δa) ∪ δb} = {(µ′ + δa) ∪ δb} ∪ {k + λ1 − 1} \ {(k − 1) + λ1 − 1}.

Since the claim holds for µ, it also holds for λ. By induction, it holds for all

partitions.

In Figure 2.4 we can see the geometric intuition behind our proof of the

Lemma. Namely, the marked corner lies in a row and a column of equal length. In

fact all removable corners of λ lie in equal rows and columns. Hence removing any

one of them preserves the correspondence between row parts (i.e., (λ + δb) ∪ δa)
and column parts (i.e., (λ′ + δa) ∪ δb).

Proof of Theorem 2.3.1. We claim that

{w(l−1)(c) : 1 ≤ c ≤ n} \ {ρl−1} = {w(l)(c) : 1 ≤ c ≤ n} \ {ρl}. (2.3.1)

as multi-sets for all 1 ≤ l ≤ r. Note that if c is the leftmost element of the (m+1)-

st from last run, then w(m)(c) = ρm, hence there is no trouble with the multi-set

subtractions above. Once (2.3.1) is shown, we will have

{w(0)(c) : 1 ≤ c ≤ n} \ {ρ0} = {w(m)(c) : 1 ≤ c ≤ n} \ {ρm}.

for each 1 ≤ m ≤ r, which is equivalent to the desired formula.

Let 1 ≤ l ≤ r. Note that w(l−1)(c) = w(l)(c) unless c is in the l-th or

(l+ 1)-st from last run of τ . This is because the calculation of a schedule number

depends only on its place τ and whether the car in question lies in a positive,

zero, or negative diagonal. Shifting the deviation by one only changes the posi-

tive/zero/negative “status” of cars from two runs. For example, consider the case

τ = 3 7 1 5 8 2 6 4 with l = 1, 2, 3.

c = 3 7 1 5 8 2 6 4

w(0)(c) = 2 2 2 2 2 1 1 1

w(1)(c) = 2 2 2 2 2 2 1 1

w(2)(c) = 2 2 3 2 1 2 2 1

w(3)(c) = 2 1 2 2 2 2 2 1
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We can see here that schedule numbers only change within two runs of τ whenever

we shift l. Therefore it is sufficient to prove our claim for τ with a single descent

and l = 1 (that is, for the case when the preference functions in question are

contained in two diagonals).

Suppose τ ∈ Sn with a single descent. For a finite set A, let A↑ denote the

word consisting of the elements of A in increasing order. Then τ = B↑A↑ for some

disjoint A,B. Let λ ⊆ |A| × |B| be the partition whose ith part is the number of

elements of A which are smaller than the i-th largest element of B. Then λ′ is the

partition whose jth part is the number of elements of B which are larger than the

j-th smallest element of A.

Let w
(l)
i = w(l)(c) for c = τn+1−i. Then for i from 1 to |A|, w(0)

i = i, and for

j from 1 to |B|, w(0)
|A|+j = λj + j − 1. Hence the 0-schedule numbers of τ form the

multi-set {(λ + δ|B|) ∪ δ|A|} ∪ {|A|} \ {0}. On the other hand, for i from 1 to |A|,
w

(1)
i = λ′|A|−i+1 + |A| − i, and for j from 1 to |B|, w(1)

|A|+j = j. Then the 1-schedule

numbers of τ form {(λ′ + δ|A|) ∪ δ|B|} ∪ {|B|} \ {0}.
For example, consider τ = 3 4 5 8 1 2 6 7 9. Then A = {1, 2, 6, 7, 9} and

B = {3, 4, 5, 8}. This gives λ = (4, 2, 2, 2) and λ′ = (4, 4, 1, 1, 0). Furthermore, we

have

c = 3 4 5 8 1 2 6 7 9

w(0)(c) = 5 4 3 4 5 4 3 2 1

=
3
+
2

2
+
2

1
+
2

0
+
4

5 4 3 2 1

w(1)(c) = 4 3 2 1 4 5 3 4 4

= 4 3 2 1
0
+
4

1
+
4

2
+
1

3
+
1

4
+
0

If we remove a single copy of ρ0 = |A| from {w(0)
i } and a single copy of

ρ1 = |B| from {w(1)
i } and insert the missing 0’s, then Lemma 2.3.1 applies. Hence

{w(0)
i } \ {ρ0} = {w(1)

i } \ {ρ1} as desired.

Corollary 2.3.1. Let τ ∈ Sn with schedule (wi) and let k be the length of its last

run. We have∑
Pr∈Prefn

diagword(Pr)=τ

tarea(Pr)qdinv(Pr) = tmaj(τ) [n]q
[k]q

n∏
i=1

[wi]q =
[n]q
[k]q

∑
PF∈PFn

diagword(PF )=τ

tarea(PF )qdinv(PF ).
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Proof. We simply note that if τ ’s runs are given by ρr, . . . , ρ1, ρ0 (so that ρ0 + · · ·+
ρr = n and ρ0 = k), then

∑
diagword(Pr)=τ

tarea(Pr)qdinv(Pr) =
r∑
l=0

 ∑
diagword(Pr)=τ

l(Pr)=l

tarea(Pr)qdinv(Pr)


= tmaj(τ) 1

[ρ0]q

(
r∑
l=0

qρ0+···+ρl−1 [ρl]q

)
n∏
i=1

[wi]q

= tmaj(τ) [n]q
[k]q

n∏
i=1

[wi]q.

This gives the first equality. To obtain the second, apply Theorem 2.2.1.

2.4 Dealing with Inverse Descents

In order to address the Square Paths Conjecture, we need to enumerate

preference functions by area, dinv and ides. In her thesis, Hicks [Hic13] shows that

the ides “factors out” of the desired enumeration for parking functions. We follow

her notation here and prove the corresponding result for preference functions.

For any permutation τ , we can partition the set {1, 2, . . . , n} according to

whether i appears directly left of i+1 in τ . Call each such part a consecutive block

of τ . E.g., the consecutive blocks of τ = 8 9 5 4 6 7 1 2 3 are {8, 9}, {5}, {4}, {6, 7},
{1, 2, 3}. Let Yconsec(τ) be the Young subgroup of Sn which permutes elements

in the same consecutive block of τ . In the example, Yconsec(τ) = S{1,2,3}× S{4}×
S{5} × S{6,7} × S{8,9}.

Lemma 2.4.1. Let l ≥ 0. Suppose τ ∈ Sn has at least l + 1 runs. Then∑
Pr∈Prefn

diagword(Pr)=τ
l(Pr)=l

tarea(Pr)qdinv(Pr)Fides(Pr)

=


∑

Pr∈Prefn
diagword(Pr)=τ

l(Pr)=l

tarea(Pr)qdinv(Pr)

 ·


∑
π∈Yconsec(τ)

qinv(π)Fides(τ)∪ides(π)∑
π∈Yconsec(τ)

qinv(π)

 .
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The case l = 0 of this lemma is equivalent to Corollary 74 of [Hic13]. Its proof

extends without issue to this more general setting. However, for the sake of com-

pleteness, we provide a sketch of this proof below.

Proof Sketch. Let Prefτ,l be the set of preference functions with diagonal word

τ and deviation l. Note that ides(τ) ⊆ ides(Pr). This is because i ∈ ides(τ)

iff i + 1 occurs in a higher diagonal of Pr than i, which means that i + 1 will

precede i in σ(Pr). Any other element of ides(Pr) corresponds to some i and i+ 1

in the same consecutive block of τ . Hence, each Pr ∈ Prefτ,l can be uniquely

decomposed into a pair consisting of another preference function Pr′ ∈ Prefτ,l
with ides(Pr′) = ides(τ) and a permutation π ∈ Yconsec(τ) so that if we permute

the cars of Pr′ according to π, we obtain Pr.

3
8

1
6

5

4
7 8

1
6

2
5

4
7

3

, 1 2 5 3 4 6 8 7
2

Figure 2.5: A decomposition of a preference function by consecutive blocks.

For example, consider Figure 2.5. On the left side of the figure, we have a

preference function Pr with diagonal word τ = 3 4 5 7 8 1 2 6 and deviation l = 1.

Furthermore ides(Pr) = {2, 4, 6, 7} and ides(τ) = {2, 6}. On the right we have a

preference function Pr′ with ides(Pr′) = ides(τ) and a permutation π consisting

of a cycle on {3, 4, 5} and a transposition on {7, 8}. The consecutive blocks of τ

are {1, 2}, {3, 4, 5}, {6}, {7, 8}, so π ∈ Y consec(τ).

In general, we have that ides(Pr) = ides(τ) ∪ ides(π) and dinv(Pr) =

dinv(Pr′)+ inv(π). Note that Pr and Pr′ have identical dinv pairs and cars below

the diagonal with one exception. Pr contains primary dinv between consecutive

cars and Pr′ does not. But π encodes the way that consecutive cars within a

diagonal (within a single consecutive block of τ) are interleaved and hence how

many primary dinvs occur between them. Similarly, Pr and Pr′ share ides except
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those caused by pairs i and i+ 1 in the same diagonal, which are recorded by π.

Let Pref idτ,l be the set of preference functions Pr ∈ Prefτ,l which corre-

sponds to itself and the identity permutation under this decomposition. Then we

have

∑
Pr∈Prefτ,l

tarea(Pr)qdinv(Pr) =

 ∑
Pr′∈Pref idτ,l

tarea(Pr
′)qdinv(Pr

′)

 ·
 ∑
π∈Yconsec(τ)

qinv(π)


and ∑

Pr∈Prefτ,l

tarea(Pr)qdinv(Pr)Fides(Pr)

=

 ∑
Pr′∈Pref idτ,l

tarea(Pr
′)qdinv(Pr

′)

 ·
 ∑
π∈Yconsec(τ)

qinv(π)Fides(τ)∪ides(π)

 .

Combining these equations gives the desired result.

Fixing τ , if we sum Lemma 2.4.1 over l and compare with the case l = 0, we

see that the ides-less enumerations of preference functions and parking functions

differ from the full enumeration by the same factor. This fact, combined with

Corollary 2.3.1 gives the following.

Corollary 2.4.1. Let τ ∈ Sn and let k be the length of its last run. Then∑
Pr∈Prefn

diagword(Pr)=τ

tarea(Pr)qdinv(Pr)Fides(Pr) =
[n]q
[k]q

∑
PF∈PFn

diagword(PF )=τ

tarea(PF )qdinv(PF )Fides(PF ).

Now we can relate the right hand side of this equation to∇ using a corollary

of the Compositional Shuffle Conjecture. Summing Corollary 2.4.1 over all τ whose

last run has length k and applying Corollary 1.0.1 gives

Theorem 2.4.1. For all 1 ≤ k ≤ n,∑
Pr∈Prefn

touch(Pr)=k

tarea(Pr)qdinv(Pr)Fides(Pr) =
[n]q
[k]q
∇En,k

where touch(Pr) is the number of cars in diagonal −l(Pr) for any preference func-

tion Pr. (It is also the length of the last run of diagword(Pr).)
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Finally, we need a symmetric function identity relating pn to the polynomi-

als {En,k}. The following identity was proved by Can and Loehr [CL06] in their

proof of a special case of the Square Paths Conjecture. It seems this was known

earlier to Garsia and Haglund [GH02].

Theorem 2.4.2 (Garsia-Haglund). For all n ≥ 1,

(−1)n−1pn =
n∑
k=1

[n]q
[k]q

En,k.

Hence summing Theorem 2.4.1 over k and applying Theorem 2.4.2 gives the Square

Paths Conjecture.

Theorem 2.4.3. For all n ≥ 1,∑
Pr∈Prefn

tarea(Pr)qdinv(Pr)Fides(Pr) = (−1)n−1∇pn.

Acknowledgement. This chapter is a reproduction of a paper with the same

name.



Chapter 3

A new plethystic symmetric

function operator and the

Rational Compositional Shuffle

Conjecture at t = 1/q

3.1 Introduction

The specializations at t = 1/q of all the Shuffle conjectures (including the

classical cases) are still open to this date. What makes this specialization par-

ticularly fascinating is that both sides of the stated identities have combinatorial

interpretations. Nevertheless proving these identities is quite challenging even in

the simplest cases. For instance from the Rational Shuffle Conjecture we can easily

derive the following identity, for any coprime pair (m,n).∑
D∈Dm,n

qcoarea(D)+dinv(D) =
1

[m]q

[
m+ n− 1

n

]
q

(3.1.1)

Here the sum is over Dyck paths in the m × n lattice rectangle, coarea(D) gives

the number of lattice squares above the path and dinv(D) is a Dyck path statistic

that can also be given a relatively simple geometric construction. The identity

obtained by setting q = 1 in (3.1.1) is an immediate consequence of the Cyclic

22
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Lemma, which suggests that this classical result may have a natural q-analogue.

The investigations that yielded the present results have been directed towards

giving a concrete setting to a variety of identities stated or implied in recent work

by the Algebraic Geometers, particularly in [BS12] and [SV13]. Unfortunately most

of this work appears in language that requires considerable algebraic geometrical

background. We have been privileged to have had some of these results translated

into a language that we could understand by Eugene Gorsky and Andrei Negut.

Many of the theorems we prove here have their origin in this algebraic geometrical

literature. Our contribution is to provide proofs that are accessible to the algebraic

combinatorial audience. We hope that in doing so, the new results we obtain may

be conducive to progress in this challenging area of Algebraic Combinatorics.

We will be dealing here with an algebra A of linear operators acting on the

space Λ of symmetric functions in an infinite alphabet X = {x1, x2, x3, . . .} with

coefficients in the field Q(q, t) of Rational functions in the two indeterminates q

and t. Given a symmetric function F [X] ∈ Λ, it will be convenient to denote by

“F” the operator “multiplication by F [X].” As is customary, we will denote by

“F⊥” the operator dual of F with respect to the classical Hall scalar product of

symmetric functions.

For a coprime pair (m,n) the Qm,n operators have an elementary definition

which, as far as we understand, is due to Burban-Schiffmann in [BS12]. By taking

the lattice point (a, b) in them×n rectangle that is closest to and below the segment

(0, 0)→ (m,n) and setting (c, d) = (m,n)− (a, b) we obtain a decomposition

(m,n) = (a, b) + (c, d) (3.1.2)

which here and after will be referred to as “Split(m,n).” The fact that (a, b) is the

closest point forces both pairs (a, b) and (c, d) to be coprime. Therefore we can

recursively set

Qm,n =
1

M
[Qc,d, Qa,b] , (M = (1− t)(1− q)) (3.1.3)

with base cases

Q0,1 = −e1 and Q1,0 = D0. (3.1.4)
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Here e1 is the customary elementary symmetric function and D0 belongs to a family

of operators {Dk}k∈Z introduced in [GHT99] and defined by setting for F [X] ∈ Λ

DkF [X] = F

[
X +

M

z

]∑
r≥0

(−z)rer[X]
∣∣∣
zk
. (3.1.5)

In dealing with the present subject, plethystic notation is absolutely indispensable.

Readers that are not familiar with this device are referred to [GXZ11] for an

introduction to its use. The readers will also find in [BGLX15] and [BGLX14]

elementary proofs of all the auxiliary results that we will need in this writing. Those

papers were written precisely to render this subject accessible to the algebraic

combinatorial audience in a completely self contained manner. In particular it is

shown in [BGLX14] that to compute the action of an operator Qm,n we do not need

to recurse to the base cases in (3.1.4), but rather use as a shortcut the identities

Q1,k = Dk. (3.1.6)

It should be mentioned that the original identities justifying the use of this shortcut

were first given in [GHT99].

The definition of the operator Qu,v for a non coprime pair (u, v) relies on

a truly amazing property of the algebra generated by the operators Dk, certainly

noticed in [BS12] and possibly in other algebraic geometrical literature. To state

it, it will be convenient to write a non coprime pair in the form (u, v) = (km, kn)

with (m,n) coprime and k > 1. This given, we can recursively define the operator

Qkm,kn by choosing any of the lattice points (a, b) in the rectangle km × kn that

are strictly below and closest to the segment (0, 0)← (km, kn) and then setting

Qkm,kn =
1

M
[Qkm−a,kn−b, Qa,b] . (3.1.7)

This definition is made possible because the choice of (a, b) forces both (a, b) and

(km− a, kn− b) to be coprime. Moreover, all the operators resulting from such a

choice of (a, b) can be shown to act identically on symmetric functions.

Another fundamental fact discovered by the Algebraic Geometers is that

the Q operators indexed by collinear vectors do commute. More precisely for any

coprime pair m,n and any two integers k, h we have

[Qkm,kn, Qhm,hn] = 0. (3.1.8)
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Elementary, but by no means simple, proofs of all these properties are given in

[BGLX14]. The complexity of these proofs is due to the recursive nature of the

definition in (3.1.3). Our discovery here is that with the specialization t = 1/q we

can obtain several explicit identities from which these fundamental properties are

immediate.

More precisely let Du,v denote the operator whose action on the symmetric

function F [X] ∈ Λ is defined by setting

Du,vF [X] = F

[
X +

M [u]q
z

]∑
r≥0

(−z)rer [[u]tX]
∣∣∣
zv
, (3.1.9)

where we must set here t = 1/q.

Theorem 3.1.1. If a, b, c, d, u, v are any integers related by the vector identity

(a, b) + (c, d) = (u, v), we have for non vanishing a, c, u

1

M
[Dc,d, Da,b]

∣∣∣
t=1/q

= q1+bc
[a]q [c]q

[u]q

(1− qda−bc)
(1− q)

Du,v

∣∣∣
t=1/q

. (3.1.10)

This identity has the following immediate corollary.

Theorem 3.1.2. For any coprime pair (m,n) and k ≥ 1 we have

q(km−1)(kn−1)/2+(k−1)/2Qkm,kn

∣∣∣
t=1/q

= q(km−1)kn
[k]q

[km]q
Dkm,kn. (3.1.11)

The two identities in (3.1.10) and (3.1.11) have a variety of consequences.

For instance we can immediately see from (3.1.10) that the collinearity of (a, b) and

(c, d) implies that Da,b and Dc,d commute. We thus obtain a much simpler proof of

this commutativity result for the Qu,v operators when t = 1/q. Another immediate

consequence of (3.1.10) is that the algebra generated by the Dk operators at t = 1/q

is spanned by the convex monomials in the Du,v operators. Here a monomial

Du1,v1Du2,v2Du3,v3 · · ·Dul,vl ,

is called convex if and only if we have

v1
u1
≥ v2
u2
≥ · · · ≥ vl

ul
.
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To state an important consequence of (3.1.11), we need some background.

Let us recall that the classical Shuffle conjecture of Haglund, Haiman, Loehr,

Remmel and Ulyanov in [HHL+05] may be stated as the identity

Qn+1,n(−1)n =
∑

PF∈PF

tarea(PF )qdinv(PF )spides(PF )[X] (3.1.12)

where the sum is over parking functions in the n×n lattice square, area(PF ) and

dinv(PF ) are parking function statistics we will define later in a much more general

context, and spides(PF )[X] denotes the Schur function indexed by the composition

which gives the inverse descent set of a permutation naturally associated to a

parking function. In a recent paper [GN15], E. Gorsky and A. Negut formulated

an infinite variety of Shuffle conjectures, one for each coprime pair (m,n). They

may be stated in a form similar to (3.1.12), namely

Qm,n(−1)n =
∑

PF∈PFm,n

tarea(PF )qdinv(PF )spides(PF )[X] (3.1.13)

where the sum is over parking functions in the m × n lattice rectangle, and the

parking function statistics occurring in (3.1.13) are highly non trivial modifica-

tions of the statistics involved in (3.1.11). Now, Theorem 3.1.2 has the following

immediate corollary.

Theorem 3.1.3. For any coprime pair (m,n) and k ≥ 1 we have

q(km−1)(kn−1)/2+(k−1)/2Qkm,kn(−1)kn
∣∣∣
t=1/q

=
[k]q

[km]q
ekn

[
X [km]q

]
. (3.1.14)

In particular, by combining (3.1.14) with the Gorsky-Negut conjectures at

t = 1/q we obtain the identity

1

[m]q
en

[
X [m]q

]
=

∑
PF∈PFm,n

qcoarea(PF )+dinv(PF )spides(PF )[X] (3.1.15)

with coarea(PF ) = (m− 1)(n− 1)/2− area(PF ).

This given, we may ask if the right hand side of (3.1.14), can also be given

a parking function interpretation. It turns out that this is indeed the case. More

precisely we will prove the following theorem.
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Theorem 3.1.4. Upon the validity of the extended Compositional Shuffle Conjec-

ture in [BGLX15] it follows that

[k]q
[km]q

ekn

[
X [km]q

]
=

∑
PF∈PFkm,kn

qcoarea(PF )+dinv(PF ) [ret(PF )]q spides(PF )[X]

(3.1.16)

where ret(PF ) is a statistic which indicates the height of the first return to the

diagonal by the Dyck path of PF in the km× kn lattice rectangle.

The precise definitions of all the parking function statistics occurring in

(3.1.16) will be given in the sequel.

We must mention that it would follow from (3.1.16) combined with the

theory of LLT polynomials that the left hand side is a Schur positive symmetric

polynomial. However, we will show that this particular result can be given a much

more elementary proof.

It is important to notice that operators Du,v can be used for any integral

values of u and v. Now it follows from (3.1.11) for m = 1 and n = 0 that

Qk,0

∣∣∣
t=1/q

= Dk,0. (3.1.17)

It was known to the Algebraic Geometers that the family of operators {Qk,0}k≥1
have the modified Macdonald basis {H̃µ [X; q, t]}µ, introduced in [GH96b], as a

complete set of eigenfunctions. More precisely, we have

Qk,0H̃µ [X; q, t] =
(

1− (1− tk)(1− qk)Bµ(qk, tk)
)
H̃µ [X; q, t] , (3.1.18)

where for a partition µ = (µ1, µ2, . . . , µl) we set Bµ(q, t) =
∑l

i=1 t
i−1∑µi

j=1 q
j−1.

Since it can be shown that the polynomial H̃µ [X; q, t] specializes, at t = 1/q to a

scalar multiple of sµ

[
X
1−q

]
, it follows from (3.1.18) and (3.1.17) that we must also

have the following.

Theorem 3.1.5.

Dk,0sµ

[
X

1− q

]
=
(

1− (1− q−k)(1− qk)Bµ(qk, q−k)
)
sµ

[
X

1− q

]
(3.1.19)
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Proving this identity directly from the definition in (3.1.9) leads to some

highly non trivial combinatorial problems. However, with some effort, as we shall

see, a less direct but still entirely elementary path to (3.1.19) can actually be found.

In fact this particular effort led to the discovery of the following formula for the

action of Du,v on the basis
{
sµ

[
X
1−q

]}
µ
.

Theorem 3.1.6. For any u, v > 0 and any partition µ we have

Du,vsµ

[
X

1− q

]
= (qu − 1)

|µ|+v∑
i=1

qup(µ)i+v−uisp(µ)+vei

[
X

1− q

]
(3.1.20)

where p(µ) is the weak composition of length |µ|+ v obtained by adjoining zeros to

the parts of µ and ei is the ith coordinate vector of length |µ|+ v.

Remark 3.1.1. We should mention that there is another interesting by-product of

our introduction of the operator Du,v. We learned from Eugene Gorsky (see also

Section 6.10 of [Gor13]) that in [Ste10] it is shown that for a suitable constant

factor cm,n(q) we have, for (m,n) a coprime pair

Qm,n

∣∣∣
t=1/q

= cm,n(q)∇
m
n p

n
∇−

m
n

∣∣∣
t=1/q

(3.1.21)

with ∇ the operator introduced in [BG99]. Now it turns out that one can easily

derive (3.1.21) from (3.1.20) for (u, v) = (m,n), directly from the definition of ∇
given in [BG99].

This chapter is divided into five further sections. In Section 3.2 we give

an elementary proof of Theorem 3.1.1. This type of proof has been successfully

used in various similar situations where we needed a straightforward proof of an

identity that was discovered by another path. In this section we also give proofs

of Theorems 3.1.2 and 3.1.3.

In Section 3.3 we give the elementary argument that proves the polynomi-

ality and Schur positivity of the symmetric function in (3.1.14).

In Section 3.4 we give our parking function setting for the symmetric func-

tion in (3.1.14). We also give there a simplified version of the parking function

statistics that occur in the formulation of the Rational Compositional Shuffle Con-

jecture that take account of the most recent developments in this subject.



29

In Section 3.5 we prove Theorems 3.1.5 and 3.1.6 and explore some of their

consequences. What is interesting is that the path to these proofs uses an argument

that may be conducive to the discovery of a variety other identities of similar type.

In Section 3.6 we give an outline of the theoretical steps that led to the

discovery of the operators Du,v and Theorem 3.1.1.

3.2 Commutator properties of our new operators

Our main goal in this section is an elementary proof of Theorem 3.1.1 and

its immediate corollaries. In a later section we will try to give a glimpse of the

machinery that led to the discovery of the operators Du,v and yielded the original

proof of this identity. To give the reader an idea of the basic difference between

these two approaches, we need to recall a device which was extensively used in

all previous work in the theory of Macdonald polynomials. We will refer to it

as the “Ω” notation. The point of departure of plethystic substitutions is the

operation of evaluating the power symmetric function pk at a formal power series

E = E(t1, t2, t3, . . .) containing an unlimited number of indeterminates. We simply

set

pk[E] = E(tk1, t
k
2, t

k
3, . . .) (3.2.1)

Since every symmetric function can be expressed as a polynomial in the power

functions, this definition allows to evaluate F [E] for any given symmetric function

F . This is what we refer to as the plethystic substitution of E in F . In this vein

we set

Ω[E] = exp

(∑
k≥1

pk[E]

k

)
. (3.2.2)

Clearly, this definition implies that for any two expressions A and B we have

Ω [A+B] = Ω[A]× Ω[B] and Ω [A−B] = Ω[A]/Ω[B] (3.2.3)

In particular it also follows from (3.2.1) and (3.2.2), that if X = x1 +x2 +x3 + · · ·
then ∑

r≥0

(−z)rer[X] = Ω [−zX] . (3.2.4)
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Using this device the definition of the operators Dk in (3.1.5) can be rewritten in

the form

DkF [X] = F

[
X +

M

z

]
Ω [−zX]

∣∣∣
zk

(3.2.5)

Successive applications of two operators Da and Db to a symmetric function F [X],

in this notation, leads to the identities

DbDaF [X] = DbF

[
X +

M

z1

]
Ω [−z1X]

∣∣∣
za1

= F

[
X +

M

z1
+
M

z2

]
Ω

[
−z1(X +

M

z2
)

]
Ω [−z2X]

∣∣∣
za1 z

b
2

= F

[
X +

M

z1
+
M

z2

]
Ω [−(z1 + z2)X] Ω

[
−Mz1

z2

] ∣∣∣
za1 z

b
2

= F

[
X +

M

z1
+
M

z2

]
Ω [−(z1 + z2)X]

× (1− z1/z2)(1− qtz1/z2)
(1− tz1/z2)(1− qz1/z2)

1

za1z
b
2

∣∣∣
z01z

0
2

(3.2.6)

where the last equality results from multiple applications of the identities in (3.2.2).

By contrast if we carry out this calculation, the way a computer would do it, we

would end up with the following sequence of identities.

DbDaF [X] = Db

∑
r1≥0

F (r1)[X]
1

zr11
Ω [−z1X]

∣∣∣
za1

= Db

∑
r1≥0

F (r1)[X](−1)r1+aer1+a[X]

=
∑
r1≥0

F (r1)

[
X +

M

z2

]
(−1)r1+aer1+a

[
X +

M

z2

]
Ω [−z2X]

∣∣∣
zb2

=
∑

r1,r2≥0

F (r1,r2)[X]
1

zr22
(−1)r1+a

r1+a∑
s=0

er1+a−s[X]
1

zs2
es [M ] Ω [−z2X]

∣∣∣
zb2

=
∑

r1,r2≥0

F (r1,r2)[X](−1)r1+a
r1+a∑
s=0

er1+a−s[X]es [M ] (−1)r2+s+ber2+s+b[X] (3.2.7)

where for convenience we have set

F (r1)[X] = F [X +Mu1]
∣∣∣
u
r1
1

and F (r1,r2)[X] = F [X +Mu1 +Mu2]
∣∣∣
u
r1
1 u

r2
2

.

We can see from this example that the second calculation of the action

of the operator DbDa is completely elementary and straight forward. But, in
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more complex situations, this approach is not conducive to discovery but only to

delivering the verification of an identity discovered by other means. On the other

hand the calculation of this action carried out in (3.2.6), in several significant

instances, has led to discovery and proof of surprising identities. Nevertheless,

we must add that due care must be taken in expressing the Rational function,

argument of the constant term in (3.2.6), as an appropriate Laurent series in z1, z2.

A systematic way of carrying this out in greater generality has been developed in

[Xin04] and [Xin05].

The proof of Theorem 3.1.1 in this section will use the approach illustrated

in (3.2.7). The proof that follows the approach in (3.2.6) led to the discovery of the

operators Du,v and their commutator identities. This second proof will be given in

Section 3.6.

Recalling that the action of the operator Du,v is defined by setting

Dm,nF [X] = F

[
X + [m]q

M

z

]
Ω [−z [m]tX]

∣∣∣
zn

(3.2.8)

with the convention that t = 1/q, we have the following.

Theorem 3.2.1. If a, b, c, d,m, n are any integers related by the vector identity

(a, b) + (c, d) = (m,n) we have for non vanishing a, c,m, then

1

M
[Dc,d, Da,b]

∣∣∣
t=1/q

= q1+bc
[a]q [c]q

[m]q

1− qda−bc

1− q
Dm,n

∣∣∣
t=1/q

. (3.2.9)

Proof. Using the notation and the sequence of steps outlined in (3.2.7) we get

Da,bF [X] = F

[
X +

M [a]q
z1

]
Ω [−z1 [a]tX]

∣∣∣
zb1

=
∑
r1≥0

F (r1)[X]
1

zr11
Ω [−z1 [a]tX]

∣∣∣
zb1

=
∑
r1≥0

F (r1)[X](−1)r1+ber1+b [[a]tX]
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and consequently

Dc,dDa,bF [X] =
∑

r1,r2≥0

F (r1,r2)[X]
(−1)r1+b

zr22
er1+b

[
[a]t

(
X +

M [c]q
z2

)]
× Ω [−z2 [c]tX]

∣∣∣
zd2

=
∑

r1,r2≥0

F (r1,r2)[X]
(−1)r1+b

zr22

r1+b∑
s=0

er1+b−s [[a]tX] es

[
[a]tM [c]q

]
× 1

zs2
Ω [−z2 [c]tX]

∣∣∣
zd2

=
∑

r1,r2≥0

F (r1,r2)[X](−1)r1+b
r1+b∑
s=0

er1+b−s [[a]tX] es

[
M [a]t [c]q

]
× (−1)r2+d+ser2+d+s [[c]tX] . (3.2.10)

Now we can easily see that

M [a]t [c]q =
(1− q)(1− 1/q)(1− q−a)(1− qc)

(1− 1/q)(1− q)
= −q−a(1− qa)(1− qc).

Thus

es

[
M [a]t [c]q

]
=

(−1)s

qas
hs [(1− qa)(1− qc)] =

(−1)s

qas
(1− qa)(1− qc)1− qsm

1− qm
,

and (3.2.10) becomes

Dc,dDa,b

(1− qa)(1− qc)
F [X] =

∑
r1,r2≥0

F (r1,r2)[X](−1)r1+b
r1+b∑
s=0

er1+b−s [[a]tX]

× (−1)s

qas
1− qsm

1− qm
(−1)r2+d+ser2+d+s [[c]tX]

=
∑

r1,r2≥0

F (r1,r2)[X](−1)r1+r2+n
r1+b∑
s=0

er1+b−s [[a]tX]

× q−as − qcs

1− qm
er2+d+s [[c]tX] .

Or better
(1− qm)Dc,dDa,b

(1− qa)(1− qc)
F [X] = A − B (3.2.11)

with

A =
∑

r1,r2≥0

F (r1,r2)[X](−1)r1+r2+n
r1+b∑
s=0

er1+b−s [[a]tX] q−aser2+d+s [[c]tX]
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and

B =
∑

r1,r2≥0

F (r1,r2)[X](−1)r1+r2+n
r1+b∑
s=0

er1+b−s [[a]tX] qcser2+d+s [[c]tX] .

Simple manipulation allows us to rewrite A and B in the more convenient forms

A = qad
∑

r1,r2≥0

F (r1,r2)[X]qar2(−1)r1+r2+n
r1+b∑
s=0

er1+b−s [[a]tX] er2+d+s
[
q−a [c]tX

]
and

B = qcb
∑

r1,r2≥0

F (r1,r2)[X]qcr1(−1)r1+r2+n
r1+b∑
s=0

er1+b−s
[
q−c [a]tX

]
er2+d+s [[c]tX] .

Carrying out the interchanges a↔ c and b↔ d gives

Ã = qcb
∑

r1,r2≥0

F (r2,r1)[X]qcr2(−1)r1+r2+n
r1+d∑
s=0

er1+d−s [[c]tX] er2+b+s
[
q−c [a]tX

]
and

B̃ = qad
∑

r1,r2≥0

F (r2,r1)[X]qar1(−1)r1+r2+n
r1+d∑
s=0

er1+d−s
[
q−a [c]tX

]
er2+b+s [[a]tX] .

Thus from (3.2.11) we derive that

(1− qm)Da,bDc,d

(1− qa)(1− qc)
F [X] = Ã − B̃

and consequently

(1− qm) [Dc,d, Da,b]

(1− qa)(1− qc)
F [X] = A − B − (Ã − B̃) = (A+ B̃) − (B+ Ã). (3.2.12)

Now we may rewrite A by setting u = r1 + b− s so 0 ≤ u ≤ r1 + b and r2 + d+ s =

r1 + r2 + n− u obtaining

A = qad
∑

r1,r2≥0

F (r1,r2)[X]qar2(−1)r1+r2+n
r1+b∑
u=0

eu [[a]tX] er1+r2+n−u
[
q−a [c]tX

]
.

For B̃ we set u = r2 + b+ s so r2 + b ≤ u ≤ r1 + r2 + n and then make the switch

r1 ↔ r2 to obtain

B̃ = qad
∑

r1,r2≥0

F (r2,r1)[X]qar1(−1)r1+r2+n
r1+r2+n∑
u=r2+b

eu [[a]tX] er1+r2+n−u
[
q−a [c]tX

]
= qad

∑
r1,r2≥0

F (r1,r2)[X]qar2(−1)r1+r2+n
r1+r2+n∑
u=r1+b

eu [[a]tX] er1+r2+n−u
[
q−a [c]tX

]
.
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This gives

A+ B̃ = qad
∑

r1,r2≥0

F (r1,r2)[X]qar2(−1)r1+r2+n

×
r1+r2+n∑
u=0

eu [[a]tX] er1+r2+n−u
[
q−a [c]tX

]
+

∑
r1,r2≥0

F (r1,r2)[X](−1)r1+r2+ner1+b [[a]tX] er2+d [[c]tX]

= qad
∑

r1,r2≥0

F (r1,r2)[X]qar2(−1)r1+r2+ner1+r2+n [[m]tX]

+
∑

r1,r2≥0

F (r1,r2)[X](−1)r1+r2+ner1+b [[a]tX] er2+d [[c]tX]

= qad
∑

r1,r2≥0

F (r1,r2)[X]
qar2

zr1+r2
Ω [− [m]tX]

∣∣∣
zn

+
∑

r1,r2≥0

F (r1,r2)[X](−1)r1+r2+ner1+b [[a]tX] er2+d [[c]tX]

= qadF

[
X +

M [m]q
z

]
Ω [− [m]tX]

∣∣∣
zn

+
∑

r1,r2≥0

F (r1,r2)[X](−1)r1+r2+ner1+b [[a]tX] er2+d [[c]tX] .

With an entirely analogous sequence of steps we obtain the identity

B + Ã = qcbF

[
X +

M [m]q
z

]
Ω [− [m]tX]

∣∣∣
zn

+
∑

r1,r2≥0

F (r1,r2)[X](−1)r1+r2+ner2+d [[c]tX] er1+b [[a]tX] .

Thus (3.2.12) finally yields

(1− qm) [Dc,d, Da,b]

(1− qa)(1− qc)
[Dc,d, Da,b]F [X]

= (qad − qcb)F
[
X +

M [m]q
z

]
Ω [− [m]tX]

∣∣∣
zn

proving the identity

1

M
[Dc,d, Da,b]F [X] =

q [a]q [c]q
[m]q

qcb − qad

1− q
F

[
X +

M [m]q
z

]
Ω [− [m]tX]

∣∣∣
zn
,

which is just another way of writing (3.2.9).
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In the remainder of this section we will derive a number of immediate

consequences of the identity in (3.2.9). We will state and prove them as a succession

of Corollaries, the last two of which are simply restatements of Theorems 3.1.1 and

3.1.2. For convenience we will here and after use the symbol “Qs
u,v” as a short hand

for “Qu,v

∣∣∣
t=1/q

.” We will start with an auxiliary identity that we will use on various

occasions.

Lemma 3.2.1. For integers a, b, c, d, we have

(a− 1)(b+ 1)

2
+

(c− 1)(d+ 1)

2
+ bc+ 1 =

(a+ c− 1)(b+ d+ 1)

2
+
bc− ad+ 1

2
.

Corollary 3.2.1. If m and n are relatively prime, then we have

Qs
m,n = q(n+1)(m−1)/2Dm,n/ [m]q .

Proof. We will proceed by induction on m. The base case m = 1 is easy: we have

Qs
1,n = Dn

∣∣∣
t=1/q

= D1,n, so the corollary holds in this case.

It is best to start by an example. Let us consider Qs
2,n = 1

M

[
Qs

1,d, Q
s
1,b

]
,

where Split(2, n) = (1, b) + (1, d), with d− b = 1. Then by (3.2.9)

Qs
2,n =

1

M
[D1,d, D1,b] = qb+1

[1]q [1]q
[2]q

(1− qd−b)
1− q

D2,n

= q(m−1)(n+1)/2 1

[2]q
D2,n.

One more example: Let us say Split(3, n) = (1, b) + (2, d) with d − 2b = 1. Then

again by (3.2.9)

Qs
3,n =

1

M

[
Qs

2,d, Q
s
1,b

]
= q(d+1)/2 1

[2]q
[D2,d, D1,b] = q(d+1)/2q2b+1 1

[3]q
D3,n

= q(n+1) 1

[3]q
D3,n.

Assume the corollary holds for smaller m. Now suppose

Split(m,n) = (a, b) + (c, d).
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That is we have a+ c = m, b+ d = n, ad− bc = 1. Then

Qs
m,n =

1

M

[
Qs
c,d, Q

s
a,b

]
= q(c−1)(d+1)/2+(a−1)(b+1)/2 1

[a]q [c]q

1

M
[Dc,d, Da,b]

= q(c−1)(d+1)/2+(a−1)(b+1)/2 · qbc+1 1

[a+ c]q

1− qad−bc

1− q
Da+c,b+d

= q(c−1)(d+1)/2+(a−1)(b+1)/2+bc+1 1

[m]q
Dm,n

= q(m−1)(n+1)/2 1

[m]q
Dm,n.

This completes the induction and the proof.

Corollary 3.2.2. For any coprime pair (m,n) we have

q(m−1)(n−1)/2Qs
m,n(−1)n =

1

[m]q
en

[
X [m]q

]
.

Proof.

Qs
m,n(−1)n = q(m−1)(n+1)/2 1

[m]q
Dm,n(−1)n

= q(m−1)(n+1)/2 1

[m]q
(−1)nΩ−zX [m]tz

−n
∣∣∣
z0

= q(m−1)(n+1)/2 1

[m]q
en [X [m]t]

= q(m−1)(n+1)/2q−(m−1)n
1

[m]q
en

[
X [m]q

]
= q−(m−1)(n−1)/2

1

[m]q
en

[
X [m]q

]
.

Corollary 3.2.3. For any coprime pair (m,n) and k ≥ 1 we have

Qs
km,kn = q(km−1)(kn+1)/2−(k−1)/2 [k]q

[km]q
Dkm,kn.

Proof. Suppose Split(m,n) = (a, b)+(c, d). That is a+c = m, b+d = n, ad−bc = 1.

It should be clear that since a and b are also relatively prime, we can choose

Split(km, kn) = (a, b) + ((k − 1)a+ kc, (k − 1)b+ kd) so that it is easily obtained
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by linear algebra that

det

[
a (k − 1)a+ kc

b (k − 1)b+ kd

]
= k and det

[
a+ c (k − 1)a+ kc

b+ d (k − 1)b+ kd

]
= 1.

Thus c′ = (k − 1)a+ kc and d′ = (k − 1)b+ kd are relatively prime. We have

Qs
km,kn =

1

M

[
Qs

(k−1)a+kc,(k−1)b+kd, Q
s
a,b

]
= q(c

′−1)(d′+1)/2+(a−1)(b+1)/2 1

[a]q [c′]q

1

M
[Dc′,d′ , Da,b]

= q(c
′−1)(d′+1)/2+(a−1)(b+1)/2 · qbc′+1 1

[a+ c′]q

1− qad′−bc′

1− q
Da+c′,b+d′

= q(c
′−1)(d′+1)/2+(a−1)(b+1)/2+bc′+1

[k]q
[km]q

Dkm,kn

= q(km−1)(kn+1)/2−(k−1)/2 [k]q
[km]q

Dkm,kn.

Corollary 3.2.4. For any coprime pair (m,n) and k ≥ 1 we have

Qs
km,kn(−1)kn = q−(km−1)(kn−1)/2−(k−1)/2

[k]q
[km]q

en [X [km]] .

Proof. We have

Qs
km,kn(−1)kn = q(km−1)(kn+1)/2−(k−1)/2 [k]q

[km]q
Dkm,kn(−1)kn

= q(km−1)(kn+1)/2−(k−1)/2 [k]q
[km]q

Dkm,kn(−1)kn(−1)knΩ−zX [km]t

∣∣∣
zkn

= q(km−1)(kn+1)/2−(k−1)/2 [k]q
[km]q

en [X [km]t]

= q(km−1)(kn+1)/2−(k−1)/2q−(km−1)n
[k]q

[km]q
en

[
X [km]q

]
= q−(km−1)(kn−1)/2−(k−1)/2

[k]q
[km]q

en

[
X [km]q

]
.
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3.3 Polynomiality and positivity.

The main goal of this section is to prove that the quotient

[k]q
[km]q

ekn

[
X [km]q

]
(3.3.1)

is a Schur positive symmetric polynomial. This will be obtained by combining the

next four auxiliary propositions.

The first fact on which the proof is based is the following classical result.

Proposition 3.3.1. For any n ≥ 1 we have to matrices ‖cλ,ρ‖λ,ρ`n and ‖dλ,ρ‖λ,ρ`n
such that

a) sλ =
∑
ρ`n

cλ,ρpρ and b) pρ =
∑
λ`n

dλ,ρsλ. (3.3.2)

Proof. Frobenius proved that (3.3.2) a) and b) hold with

a) cλ,ρ = χλρ/zρ and d) dλ,ρ = χλρ (3.3.3)

where χλρ is the value of Young’s irreducible Sn character indexed by λ at the

conjugacy class indexed by ρ and where, for ρ = 1α12α2 . . . nαn , we have

zρ = 1α12α2 · · ·nαnα1!α2! · · ·αn!.

This given, our polynomiality result can be stated as follows.

Proposition 3.3.2. If (m,n) = 1 and k ≥ 1 then for all λ ` kn we have

[k]q
[km]q

sλ

[
[km]q

]
∈ Q [q] (3.3.4)

where for any integer s ≥ 0 we set [s]q = 1 + q + · · ·+ qs−1.

Proof. Note that to show (3.3.4) we need only show that every root of

1 + q + q2 + · · ·+ qkm−1 = 0 (3.3.5)

is a root of the polynomial

[k]q sλ

[
[km]q

]
.
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To show this we use (3.3.2) (for n→ kn) and write for ζ a root of (3.3.5).

[k]ζ sλ

[
[km]ζ

]
=
∑
ρ`kn

cλ,ρ [k]ζ pρ

[
[km]ζ

]
(3.3.6)

Thus if the left hand side of (3.3.6) does not vanish we will necessarily have a

ρ ` kn such that

[k]ζ pρ

[
[km]ζ

]
6= 0. (3.3.7)

In particular if for some r we have ρr = i then

1 + ζ i + ζ2i + · · · ζ(km−1)i = pi

[
[km]ζ

]
6= 0. (3.3.8)

Since

(1− qi)
(
1 + qi + q2i + · · · q(km−1)i

)
= 1− q(km)i

from (3.3.8) and ζ is a root of (3.3.5), we derive that

a) ζ i = 1 and b) ζ 6= 1. (3.3.9)

Now note that since the ρ in (3.3.7) may be written in the form ρ =
∏kn

i=1 i
αi with∑kn

i=1 iαi = kn then we must also have

ζkn =
kn∏
i=1

(ζ i)αi = 1.

Now the assumed coprimality of the pair (m,n) gives that k = gcd(km, kn) and

this combined with the fact that ζ is a root of (3.3.5) forces

ζk = 1.

But then b) of (3.3.9) yields

1 + ζ + ζ2 + · · ·+ ζk−1 = 0

which is in plain contradiction with (3.3.7). This contradiction forces every root

of (3.3.5) to be a root of

[k]q sλ

[
[km]q

]
= 0

as desired.
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The next device we use is the following well known fact

Proposition 3.3.3. Any principal evaluation of a Schur Function is unimodal.

More precisely for any λ ` n and any m > 1 the polynomial

sλ

[
[m]q

]
(3.3.10)

is unimodal.

Proof. This is exercise 4 page 137 of Macdonald’s book [Mac95]. Since the solution

in [Mac95] is only sketched, for the sake of completeness we carry out Macdonald’s

exercise in full detail. Macdonald considers the evaluation

sλ

[
xm1 − xm2
x1 − x2

]
= sλ [sm−1 [x1 + x2]] (3.3.11)

as a character of GL2 [C]. Using this he derives that for some weakly positive

integer constants cr1,r2 we must have the expansion

sλ [sm−1 [x1 + x2]] =
∑

r1+r2=d, r1≥r2

cr1,r2s[r1,r2] [x1 + x2] (3.3.12)

where for convenience we have set

d = (m− 1)n. (3.3.13)

Notice that we have

s[r1,r2] [x1 + x2] = xr11 x
r2
2 + xr1−11 xr2+1

2 + · · ·+ xr2+1
1 xr1−12 + xr21 x

r1
2

= xd2

(
(
x1
x2

)r1 + (
x1
x2

)r1−1 + · · ·+ (
x1
x2

)r2
)

= xd2

r1∑
s=r2

qs

where for convenience we have set x1
x2

= q. Thus with a slight change of notation

we may rewrite (3.3.12) in the form

sλ [sm−1 [x1 + x2]] = xd2

bd/2c∑
r2=0

cr2

d∑
s=0

qsχ (r2 ≤ s ≤ d− r2)

= xd2

d∑
s=0

qs
s∧(d−s)∑
r2=0

cr2 (3.3.14)

from which the unimodality assertion immediately follows by setting x2 = 1 and

x1 = q.
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Our positivity result is a consequence of the following simple but powerful

fact.

Proposition 3.3.4. Let g(q) = b0 +b1q+ · · ·+brq
r and assume that, for d = r+s,

the polynomial

f(q) = (1 + q + · · ·+ qs)g(q) =
d∑
l=0

cl q
l (3.3.15)

is unimodal with peak at p and non-negative coefficients. Then g(q) also has non-

negative coefficients.

Proof. We proceed by contradiction. Suppose some of the coefficients of g(b) are

negative. Since c0 = cd ≥ 0 let bi and bj (with 0 < i ≤ j < d) be the leftmost and

rightmost negative coefficients of g(q) respectively. Now if i ≤ p then

ci =
i∑

u=0∨(i−s)

bu and ci−1 =
i−1∑

u=0∨(i−1−s)

bu.

This gives

ci − ci−1 = bi − χ (i− 1− s > 0) bi−1−s < 0,

a contradiction!

If r − j ≤ d − p then do the same argument for f̃(q) = qdf(1/q) and

g̃(q) = qrg(1/q). So we are left with i > p and r − j > d − p. But that cannot

happen since it implies that i > s+ j > j.

As a corollary we obtain our desired goal.

Theorem 3.3.1. For any coprime pair (m,n) and any k ≥ 1 we have that the

symmetric function
[k]q

[km]q
ekn

[
X [km]q

]
(3.3.16)

is a Schur positive symmetric polynomial

Proof. The Cauchy formula gives

[k]q
[km]q

ekn

[
X [km]q

]
=
∑
λ`kn

sλ′ [X]
[k]q sλ

[
[km]q

]
[km]q

.
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Now we have proved that [k]q sλ

[
[km]q

]
is divisible by [km]q, we have also proved

that sλ

[
[km]q

]
is palindromic unimodal. Thus it follows from this that also

[k]q sλ

[
[km]q

]
is palindromic unimodal. We can then apply Proposition 3.3.4 with

f(q) = [k]q sλ

[
[km]q

]
and

g(q) =
[k]q sλ

[
[km]q

]
[km]q

and conclude that g(q) ∈ N [q], proving the Schur positivity of the polynomial in

(3.3.16).

Remark 3.3.1. The polynomiality of the symmetric function in (3.3.16) for the

special case k = 1 was first proved by Mark Haiman in [Hai94]. The question arose

from the discovery in [GH96a] that in the case m = n + 1 (3.3.16) (for k = 1)

is the Frobenius characteristic of an appropriate single grading of the Diagonal

Harmonic Module of Sn. This also prompted Haiman to look for some reason that

justified this polynomial to be Schur positive. With remarkable foresight Haiman

investigates the more general (m,n) case and provided a mechanism for proving

that the symmetric function

en

[
X [m]q

]
[m]q

(3.3.17)

is a polynomial and Schur positive if and only if (m,n) is a coprime pair. However,

the Schur positivity was shown in [Hai94] by constructing a quotient

Q [x1, x2, . . . , xn] /(e1, f2, . . . , fn)

with Frobenius characteristic the polynomial in (3.3.17), where e1 is the ordinary

elementary symmetric function and f1, f2, . . . , fn is a sequence of polynomials sat-

isfying the following properties.

1. Each fi is homogeneous of degree m,

2. they satisfy the identities σfi = fσi (for 1 ≤ i ≤ n and all σ ∈ Sn),

3. f1 + f2 + · · ·+ fn = 0 and
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4. e1, f2, . . . .fn are a regular sequence.

A sequence fi satisfying (1), (2), (3), and (4) was constructed by Hanspeter Kraft

a few years later but never published. More recently a very natural example of such

a sequence was discovered by Dunkl in [Dun98] and used later by Gorsky in his

work [Gor13] on torus knots invariants. The Schur positivity of the polynomial in

(3.3.17) in the coprime case follows from this and Mark Haiman’s result. The chal-

lenge now is to construct an equally natural quotient with Frobenius characteristic

equal to the polynomial in (3.3.16).

3.4 A parking function setting for our Frobenius

characteristics

The main goal of this section is a proof of Theorem 3.1.4. To carry this

out we need to briefly review the statement of the Rational Compositional Shuffle

Conjecture. We will start by introducing the symmetric function tools that are

used in its formulation.

The basic ingredient here is the identity

Q0,k =
qt

qt− 1
hk [X(1/qt− 1)] (for all integers k ≥ 1). (3.4.1)

From this it follows that a basis for the subspace of operators of bi-degrees (0, n)

for n ≥ 1 is given by the collection

{Q0,λ}λ =


l(λ)∏
i=1

Q0,λi


λ

. (3.4.2)

This fact (see [BGLX15] for an elementary treatment) can be used to construct an

operator of bi-degree (km, kn) for any coprime pair (m,n), any integer k ≥ 1 and

any given homogeneous symmetric function F [X] of degree k, by the following two

steps.

1. Compute the expansion

F =
∑
λ`k

cλ

l(λ)∏
i=1

Q0,λi , (3.4.3)
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Figure 3.1: A path in the 12× 20 lattice rectangle.

2. and then set

Fkm,kn =
∑
λ`k

cλ

l(λ)∏
i=1

Qλim,λin. (3.4.4)

The commutativity of the operators Qu1,v1 and Qu2,v2 with (u1, v1) and (u2, v2)

collinear vectors assures that (3.4.4) well defines the operator Fkm,kn. In [BGLX15]

a variety of Shuffle conjectures were formulated based on the above construction

and various choices of the symmetric function F [x]. The simplest one corresponds

to choosing F = ek (the kth elementary symmetric function). The corresponding

operator which we denote ekm,kn has a truly remarkable connection to the Theory

of parking functions.

A single example will suffice to get across this connection. We have dis-

played in Figure 3.1 a 12×20 lattice rectangle with a path that proceeds by North

and East unit steps, always remaining weakly above the diagonal (0, 0)→ (12, 20).

A parking function in the 12 × 20 lattice rectangle is obtained by labeling the

cells immediately to the right of the north steps of such a path by the integers

1, 2, . . . , 20 (referred to as cars) in a column increasing manner. This given, one of

the conjectures formulated in [BGLX15] may expressed as the identity

ekm,kn(−1)k(n+1) =
∑

PF∈PFkm,kn

tarea(PF )qdinv(PF )Fpides(PF ) (3.4.5)

where the sum is over all parking functions in the km× kn lattice rectangle, and

the parking function statistics occurring in (3.4.5) are as will be defined shortly.

Here the symbol “Fpides(PF )” stands for the Gessel’s [Ges84] fundamental quasi-

symmetric function indexed by the composition “pides(PF )”.
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Now the Extended Compositional Shuffle Conjecture states a refined ver-

sion of (3.4.5) where the symmetric function F in the above construction of the

operator Fkm,kn, is chosen to assure that the sum in (3.4.5) is restricted to be over

an appropriately selected subfamily of parking functions in the km × kn lattice

rectangle. These special choices of F are obtained by means of the modified Hall-

Littlewood operators Ca whose action on a symmetric function F [x] is defined by

setting

CaP [X] = (−1

q
)a−1P

[
X − 1− 1/q

z

]∑
m≥0

zmhm[X]
∣∣∣
za

(3.4.6)

Again, a single example will suffice to illustrate our choices. Suppose that we want

to restrict the sum in (3.4.5) to be carried out only over the parking functions

whose supporting Dyck path hits the diagonal precisely at the first and third and

fourth possible places, as the path depicted in the above display. To achieve this

we simply choose the symmetric function F = C1C2C1 1. More generally, given

a composition p = (p1, p2, . . . , pl) of the integer k, let us denote by C(p)
km,kn the

operator obtained by choosing F = Cp1Cp2 · · ·Cpl 1 in the above construction.

This given, the Extended Compositional Shuffle Conjecture states that

C(p)
km,kn(−1)k(n+1) =

∑
PF∈PFkm,kn(p)

tarea(PF )qarea(PF )Fpides(PF ) (3.4.7)

where the sum is over parking functions whose path hits the diagonal precisely

in l of the k possible places, as prescribed by the parts of the composition p =

(p1, p2, . . . , pl). The reason (3.4.7) refines (3.4.6) is due to the remarkable identity

ek =
∑
p|=k

Cp1Cp1 · · ·Cpl(p) 1.

Here the sum is over all compositions of k

Keeping all this in mind, we are now in a position to show that the identity

in (3.1.16) is one of the many consequences of the identity in (3.4.7). More precisely

we will show that Theorem 3.1.4 is a corollary of the following stronger result.

Theorem 3.4.1. The validity of (3.4.7) for any coprime pair (m,n), k ≥ 1 and

any composition p |= k implies the identity

Qkm,kn(−1)kn =
∑

PF∈PFkm,kn

tarea(PF )−ret(PF )+1 [ret(PF )]t q
dinv(PF )Fpides(PF ) (3.4.8)
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where all the parking function statistics are as in the Extended Shuffle Conjectures.

The “ret(PF )” statistic gives the smallest positive i such that the supporting path

of PF goes through the point (im, in).

Proof. For brevity we will start with the following identity, valid for any integer

1 ≤ d ≤ k and p |= k − d∑
p|=k−d;

CdCp1Cp2 · · ·Cpl(p)1 = (−1

q
)d−1sd,1k−d − (−1

q
)d s1+d,1k−d−1 (3.4.9)

(see [HMZ12] for a proof). Note next that it follows from (3.4.9) that

k∑
d=a

∑
p|=k−d;

CdCp 1 =
k∑
d=a

(−1

q
)d−1sd,1k−d −

k∑
d=a+1

(−1

q
)d−1 sd,1k−d = (−1

q
)a−1sa,1k−a

(3.4.10)

Our next step is to rewrite (3.4.1) in a more suitable form. Now a use of the

Cauchy identity gives

Q0,k =
(qt)1−k

qt− 1
hk [X(1− qt)] =

(qt)1−k

qt− 1

∑
µ`k

sµ[X]sµ [1− qt]

=
(qt)1−k

qt− 1

k−1∑
r=0

sk−r,1r [X](−qt)r(1− qt) = −(qt)1−k
k−1∑
r=0

sk−r,1r [X](−qt)r

= (−1)k
k∑
a=1

sa,1k−a [X](−qt)1−a, (3.4.11)

where for the third equality we use the following, easily verified, special evaluation

of a Schur function

sµ [1−m] =

(−m)a(1−m) if µ = k − r, 1r for 0 ≤ r ≤ k − 1

0 otherwise,
(3.4.12)

valid for any monomial m.

Hence by combining (3.4.10) and (3.4.11) we derive that

(−1)kQ0,k =
k∑
a=1

(−qt)1−asa,1k−a =
k∑
a=1

t1−a
k∑
d=1

χ(d ≥ a)
∑
p|=k−d

CdCp1

=
k∑
d=1

∑
p|=k−d

CdCp1
d∑
a=1

(1/t)a−1 =
k∑
d=1

∑
p|=k−d

[d]1/t CdCp1.

(3.4.13)
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This given, the particular case F = Q0,k of the above construction gives that for

any coprime pair (m,n) we have

Q0,kkm,kn = Qkm,kn. (3.4.14)

Likewise by choosing F = CdCp1 for p |= k− d we obtain the operator Cd,p1km,kn

which, by the Rational Shuffle Compositional conjecture, satisfies

Cd,p1km,kn(−1)k(n+1) =
∑

PF∈PFkm,kn(d)

tarea(PF )qdinv(PF )Fpides(PF ) (3.4.15)

where the sum is over parking functions in the km×kn rectangle whose supporting

path returns to the diagonal for the first time in row dn. Thus combining (3.4.15)

with (3.4.14) and (3.4.13) we obtain that

Qkm,kn(−1)kn =
k∑
d=1

∑
p|=k−d

[d]1/t
∑

PF∈PFkm,kn(d)

tarea(PF )qdinv(PF )Fpides(PF )

which is only another way of writing (3.4.8).

We can now finally give our

Proof of Theorem 3.1.4. We will show here the identity in (3.1.16), written in

the form

[k]q
[km]q

ekn

[
X [km]q

]
=

∑
PF∈PFkm,kn

qcoarea(PF )+dinv(PF ) [ret(PF )]q Fpides(PF )[X]

(3.4.16)

To this end, notice that setting t = 1/q in (3.4.8) gives

Qkm,kn(−1)kn
∣∣∣
t=1/q

=
∑

PF∈PFkm,kn

qret(PF )−area(PF )−1 [ret(PF )]q q
−(ret(PF )−1)qdinv(PF )Fpides(PF ) (3.4.17)

But we can now use (3.1.14) which can be rewritten in the form

[k]q
[km]q

ekn

[
X [km]q

]
= q(km−1)(kn−1)/2+(k−1)/2Qkm,kn(−1)kn

∣∣∣
t=1/q

(3.4.18)
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Figure 3.2: The 20× 28 lattice rectangle and main diagonal.

This given, a comparison of the combination of (3.4.18) and (3.4.17) with (3.4.16)

shows that we need only to show the equality

coarea(PF ) + area(PF ) = (km− 1)(kn− 1)/2 + (k − 1)/2 (3.4.19)

This can be easily justified by the following geometric argument. We have

depicted in Figure 3.2 the km × kn lattice rectangle for k = 4 and (m,n) =

(5, 7). Now by the definition area(PF ) gives the number of lattice cells below

the supporting path of PF and weakly above the diagonal (0, 0) → (km, kn)

and coarea(PF ) gives the number of lattice cells above the path. Thus to show

(3.4.19) we need only verify that the right hand side gives the number of lattice

cells weakly above the diagonal (0, 0) → (km, kn). Now it is easy to see from

the display that the number of lattice cells cut by the diagonal in any one of the

diagonal 4 × 7 blocks is by one short of 4 + 7. This implies that the number of

uncut lattice cells above the diagonal within each diagonal block is none other than

(mn −m − n + 1)/2 = (m − 1)(n − 1)/2. Moreover, the total number of lattice

cells within the upper non-diagonal blocks is mn×
(
k
2

)
. Thus (3.4.19) is none other

than a consequence of the equality

k
(m− 1)(n− 1)

2
+ mn

(
k

2

)
=

(km− 1)(kn− 1)

2
+
k − 1

2
.

This completes our proof of (3.4.16).
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Figure 3.3: A 6, 9-parking function.

In the remainder of this section we will present the latest version of the

parking function statistics that occur in the various formulations of the Rational

Compositional Shuffle Conjecture.

Let (m,n) be coprime pair of positive integers and let k ≥ 1. Recall that

a km, kn-Dyck path is sequence of north and east steps in the km × kn lattice

rectangle which starts in the southwest corner, ends in the northeast corner, and

stays weakly above the main diagonal y = n
m
x. A km, kn-parking function is

a km, kn-Dyck path with labels {1, 2, . . . , kn}, known as cars, adjacent to north

steps and increasing within each column. For example, see Figure 3.3. Let PF km,kn

denote the set of all km, kn-parking functions.

The original Rational Shuffle Conjecture of [GN15] states that for coprime

m,n, we can express Qm,n(−1)n as a weighted sum of m,n-parking functions. This

enumeration involves the statistics area(PF ), dinv(PF ), and the word σ(PF ). The

simplest of these is area(PF ), which is the number of full cells between the path

and the main diagonal y = n
m
x. In the adjacent example, the area is 5 and the

corresponding cells are shaded.

The dinv and word statistics both make use of a rank function defined by

rank(x, y) = kmy−knx+b x
m
c. This causes the points weakly above the diagonal to

have distinct nonnegative ranks, with points further from the main diagonal having

higher rank. This way, the rank function generalizes the notion of diagonals from

classical parking function theory [HHL+05]. Let the rank of a car be the rank of the



50

southwest corner of that car’s cell. Then the word, σ(PF ), is just the permutation

of {1, 2, . . . , kn} obtained by listing the cars from highest to lowest rank. In the

example above, the ranks of cars 1 through 9 are 9, 0, 6, 13, 2, 8, 14, 15, and 12,

respectively. Hence the word of that parking function is σ(PF ) = 8 7 4 9 1 6 3 5 2.

We set

tdinv(PF ) =
∑

cars i<j

χ(rank(i) < rank(j) < rank(i) + km). (3.4.20)

Here tdinv is short for “temporary dinv” because we will modify this statistic to

obtain dinv(PF ). In the example above, tdinv(PF ) = 9 because the inequalities

in (3.4.20) are satisfied for the pairs (1, 4), (1, 7), (1, 9), (2, 5), (3, 6), (4, 7), (4, 8),

(6, 9) and (7, 8).

The original formulation of Hikita [Hik14] as modified by Gorsky-Mazin

[GM13], [GM14] expressed the dinv statistic as a combination of tdinv and two

other statistics. However, Hicks and Leven [HL15] showed that this can be simpli-

fied as follows. Let λ(PF ) be partitions whose english Ferrers diagram is formed

by the cells above PF . In the example above, λ(PF ) = (4, 4, 4, 2, 1, 1). This given,

for an m,n-Parking Function we set

dinv(PF ) = tdinv(PF )−#

{
c ∈ λ(PF ) :

arm(c)

leg(c)
≤ m

n
<
arm(c) + 1

leg(c) + 1

}
if m < n and

= tdinv(PF ) + #

{
c ∈ λ(PF ) :

arm(c)

leg(c)
>
m

n
≥ arm(c) + 1

leg(c) + 1

}
if m > n.

(3.4.21)

Here we must use the conventions 0
0

= 0 and x
0

=∞ when x 6= 0.

In the example above, we have m < n, thus dinv(PF ) = tdinv(PF )− 4 = 5, since

there are 3 cells with arm = 0 and leg = 0 and one cell with arm = 2 and leg = 3.

We now have all the ingredients that occur in any of the Rational Shuffle

Conjectures including the Compositional ones in [BGLX15]. In particular, (3.4.5)

conjectures the equality

ekm,kn(−1)k(n+1) =
∑

PF∈PFkm,kn

tarea(PF )qdinv(PF )Fpides(PF ) (3.4.22)
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arm

leg

Figure 3.4: The dinv of a Dyck path.

where pides(PF ) is the composition that gives the descent set of the inverse of the

permutation σ(PF ) defined above, and Fpides(PF ) is the Gessel [Ges84] fundamental

quasi-symmetric function indexed by the composition pides(PF ). Here we use the

convention that for a composition p |= u if S(p), is the subset of {1, 2, . . . , u− 1}
that corresponds to p, then we set

Fp(x1, x2, . . . , xv) =
∑

1≤a1≤a2≤···≤av≤v, i∈S(p)→ai<ai+1

xa1xa2 · · · xav .

The same conventions apply to the statistics occurring in (3.4.8), namely our con-

jecture that

Qkm,kn(−1)kn =
∑

PF∈PFkm,kn

tarea(PF )−ret(PF )+1 [ret(PF )]t q
dinv(PF )Fpides(PF ).

(3.4.23)

Remark 3.4.1. We must mention that the conjectured equality in (3.4.16) has a

specialization that extends the equality in (3.1.1) to the non coprime case. More

precisely, we have

∑
D∈Dkm,kn

[ret(PF )]q q
coarea(D)+dinv(D) =

[k]q
[km]q

[
kn+ km− 1

kn

]
q

. (3.4.24)
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In fact, scalar multiplication of both sides of (3.4.16) by ekn[X] gives∑
D∈Dkm,kn

[ret(PF )]q q
coarea(D)+dinv(D) =

[k]q
[km]q

〈ekn
[
X [km]q

]
, ekn[X]〉

=
[k]q

[km]q
〈hkn

[
X [km]q

]
, hkn[X]〉

and (3.4.24) then follows from the identities

〈hkn
[
X [km]q

]
, hkn[X]〉 = hkn

[
[km]q

]
=

[
kn+ km− 1

kn

]
q

.

We should mention that, for Dyck paths, the dinv statistic is obtained by

counting the number of cells c of the english partition above the path (see Figure

3.4) whose arm and leg satisfy the inequalities

arm(c)

leg(c) + 1
≤ m

n
<
arm(c) + 1

leg(c)
.

In the figure we have placed a green square in each of the cells that contribute to

the dinv.

Remark 3.4.2. This should complete our presentation of the combinatorial side

of the Rational Shuffle Conjectures except for two important observations. Firstly

we should notice that (3.4.16) and (3.1.16) differ in that (3.1.15) has “spides(PF )”

replacing “Fpides(PF )” in (3.4.16). We stated (3.1.15) and various analogous iden-

tities in the introduction in this manner, since this makes them easier to verify on

a computer. In fact, the validity of this replacement, is one of the surprising con-

sequences of a result of Egge, Loehr and Warrington [ELW10] concerning Gessel

fundamental expansions of symmetric functions.

The second observation results from a direct comparison of (3.4.22) and

(3.4.23). Notice that we have 1 ≤ ret(PF ) ≤ k since the path must end at the

point (km, kn). Furthermore, area(PF ) ≥ ret(PF )− 1. This is because each time

PF fails to touch the point (im, in), a cell must fall between the path and the main

diagonal. Therefore all the powers of t appearing in (3.4.23) when ret(PF ) > 1

are non-negative. It follows from this that the difference of the right and sides
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of (3.4.23) and (3.4.22) can be shown to be positive linear combination of LLT

polynomials which have in turn been shown to be Schur positive. So another strong

evidence supporting the validity of these conjectures is that computer data confirms

the Schur positivity of the difference of the left hand sides of (3.4.23) and (3.4.22).

3.5 The action of the operators Du,v on the basis{
sµ

[
X

1−q

]}
µ

Our main goals in this section are the proofs of Theorems 3.1.5 and 3.1.6.

To carry this out we need auxiliary notation and some preliminary identities which

may initially appear only remotely connected with these goals.

Our basic tool here is a new variant of the Macdonald operator “D1
n” of

[Mac95]. We will denote it “Rv.” Its action on a symmetric polynomial P [Xn] is

obtained by setting

RvP [Xn] =
1

∆ [Xn]

n∑
i=1

T qxix
v
i∆ [Xn]P [Xn] , (3.5.1)

where “T qxi” is the linear operator which carries out the substitution xi → qxi.

Here ∆ [Xn] is the Vandermonde determinant

∆ [Xn] =
∏

1≤i<j≤n

(xi − xj) =
∑
σ∈Sn

ε(σ)σxδ, (3.5.2)

with ε(σ) the sign of σ and δ = (n − 1, n − 2, . . . , 1, 0). The actual value of n in

both (3.5.1) and (3.5.2) is immaterial provided that we choose it greater than v

plus the degree of P . The following identity, which in particular shows that Rv

preserves symmetry, will play a crucial role.

Proposition 3.5.1. For any integral vector µ = (µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0) we

have

Rvsµ [Xn] =
n∑
i=1

qv+µi+n−isµ+vei [Xn] (3.5.3)

with ei the n dimensional coordinate vector with ith component equal to 1.
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Proof. Since by definition

sµ [Xn] =
1

∆ [Xn]

∑
σ∈Sn

ε(σ)σxµ+δ

we may write

Rvsµ [Xn] =
1

∆ [Xn]

n∑
i=1

T qxix
v
i

∑
σ∈Sn

ε(σ)σxµ+δ

=
1

∆ [Xn]

n∑
i=1

∑
σ∈Sn

ε(σ)T qxσix
v
σi
σxµ+δ

=
1

∆ [Xn]

n∑
i=1

qv+µi+n−i
∑
σ∈Sn

ε(σ)σxµ+vei+δ.

This proves (3.5.3).

The next identity shows that Rv may be given an expression that is similar

to the one obtained by Macdonald for his D1
n operator.

Proposition 3.5.2. We have

Rv = qv
n∑
i=1

Ai(x; q)xviT
q
xi

(3.5.4)

with

Ai(x; q) =
n∏
j=1
j 6=i

qxi − xj
xi − xj

. (3.5.5)

Proof. The definition in (3.5.1) may also be rewritten as

RvP [Xn] = qv
n∑
i=1

( 1

∆ [Xn]
T qxi∆ [Xn]

)
xviT

q
xi
P [Xn] .

This shows 4.4 with

Ai(x, q) =
1

∆ [Xn]
T qxi∆ [Xn] .

However, we see that

1

∆ [Xn]
T qxi∆ [Xn] =

∏
r,s 6=i

xr − xs
xr − xs

∏
i<s

qxi − xs
xi − xs

∏
r<i

xr − qxi
xr − xi

=
n∏
j=1
j 6=i

qxi − xj
xi − xj

,

as desired.
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One of the difficulties in using Macdonald’s original definition of the op-

erators Dk
n stems from the fact that formulas expressing a symmetric polynomial

P [Xn] in terms of the variables themselves are quite impractical for significant val-

ues of n. For this reason, neither the definition in (3.5.1) nor its alternate form in

(3.5.4) are much help in computing the action the operators Dk
n when it matters.

However, for any of the operators Rv, we do have a plethystic formula which is

computationally as well as theoretically very convenient. To state and prove this

result we need some auxiliary identities.

Proposition 3.5.3. For any formal series F (x) =
∑

k≥0 ckx
k and for all integers

v ≥ 0 we have

F (1/z)Ω [(q − 1)zXn]
∣∣∣
zv

=
χ(v = 0)

qn
F (0) +

q − 1

qn

n∑
i=1

( n∏
j=1
j 6=i

qxi − xj
xi − xj

)
(qxi)

vF (qxi). (3.5.6)

Proof. Starting from the partial fraction expansion

Ω [(q − 1)zXn] =
n∏
i=1

1− zxi
1− zqxi

=
1

qn
+
q − 1

qn

n∑
i=1

( n∏
j=1
j 6=i

qxi − xj
xi − xj

) 1

1− zqxi
,

we get

F (1/z)Ω [(q − 1)zXn]
∣∣∣
zv

=
F (1/z)

qn

∣∣∣
zv

+
q − 1

qn

n∑
i=1

( n∏
j=1
j 6=i

qxi − xj
xi − xj

) 1

1− zqxi
F (1/z)

∣∣∣
zv

=
χ(v = 0)

qn
F (0) +

q − 1

qn

n∑
i=1

( n∏
j=1
j 6=i

qxi − xj
xi − xj

)(∑
r≥0

(zqxi)
r
)(∑

s≥0

Fs/z
s
)∣∣∣

zv

=
χ(v = 0)

qn
F (0) +

q − 1

qn

n∑
i=1

( n∏
j=1
j 6=i

qxi − xj
xi − xj

)( ∑
r−s=v,
r,s≥0

(qxi)
rFs

)

=
χ(v = 0)

qn
F (0) +

q − 1

qn

n∑
i=1

( n∏
j=1
j 6=i

qxi − xj
xi − xj

)(∑
s≥0

(qxi)
s+vFs

)
.

This proves our proposition.
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As a corollary we obtain the following basic identity.

Theorem 3.5.1. For any symmetric polynomial P [Xn] we have

RvP [Xn] =
χ(v = 0)

1− q
P [Xn] +

qn+v

q − 1
P [Xn − (1− q)/z] Ω [(1− 1/q)zXn]

∣∣
zv
.

(3.5.7)

Proof. Notice that in view of (3.5.4) we can rewrite (3.5.1) in the form

RvP [Xn] = qv
n∑
i=1

Ai(x; q)xviP [Xn − (1− q)xi]

= qv
n∑
i=1

( n∏
j=1
j 6=i

qxi − xj
xi − xj

)
xviP [Xn − (1− q)xi] .

(3.5.8)

On the other hand Proposition 3.5.3 for F (z)→ F (z/q) yields

F (1/qz)Ω [(q − 1)zXn]
∣∣∣
zv

=
χ(v = 0)

qn
F (0) +

q − 1

qn

n∑
i=1

( n∏
j=1
j 6=i

qxi − xj
xi − xj

)
(qxi)

vF (xi).

Or better

qv
n∑
i=1

( n∏
j=1
j 6=i

qxi − xj
xi − xj

)
xviF (xi)

=
χ(v = 0)

1− q
F (0) +

qn

q − 1
F (1/qz)Ω [(q − 1)zXn]

∣∣
zv
.

Using this with F (z) = P [Xn − (1− q)z] and using (3.5.8) gives

RvP [Xn] = qv
n∑
i=1

( n∏
j=1
j 6=i

qxi − xj
xi − xj

)
xviP [Xn − (1− q)xi]

=
χ(v = 0)

1− q
P [Xn] +

qn

q − 1
P [Xn − (1− q)/qz] Ω [(1− 1/q)qzXn]

∣∣
zv
.

(3.5.9)
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Notice next that for any two formal power series A(z), B(z) we have the identity

A [1/qz]B [qz]
∣∣∣
zv

=
∑
r,s

ArBs(
1

qz
)r(qz)s

∣∣∣
zv

=
∑
r,s

(zq)s−rArBs

∣∣∣
zv

=
∑
s−r=v

qvArBs = qv
∑
r

ArBr+v = qvA [1/z]B [z]
∣∣∣
zv

and thus (3.5.9) becomes

RvP [Xn] =
χ(v = 0)

1− q
P [Xn] +

qn+v

q − 1
P [Xn − (1− q)/z] Ω [(1− 1/q)zXn]

∣∣
zv
.

This proves (3.5.7).

In particular, setting P [Xn] = sµ [Xn] and using (3.5.3) we obtain

n∑
i=1

qv+µi+n−isµ+vei [Xn]

=
χ(v = 0)

1− q
sµ [Xn] +

qn+v

q − 1
sµ [Xn − (1− q)/z] Ω [(1− 1/q)zXn]

∣∣
zv
.

or better yet

qn+vsµ [Xn − (1− q)/z] Ω [(1− 1/q)zXn]
∣∣
zv

= χ(v = 0)sµ [Xn] + (q − 1)
n∑
i=1

qv+µi+n−isµ+vei [Xn] (3.5.10)

At this point it is more convenient to separate the cases v > 0 and v = 0.

We will begin with the following immediate corollary of Theorem 3.5.1.

Proposition 3.5.4. For any u, v > 0 and any partition µ we have

quvsµ [X − (1− qu)/z] Ω
[
(1− q−u)zX

] ∣∣∣
zv

= (qu − 1)

|µ|+v∑
i=1

qu(p(µ)i+v−i)sp(µ)+vei [X]

(3.5.11)

where p(µ) is the weak composition of length |µ|+ v obtained by adjoining zeros to

the parts of µ and ei is the ith coordinate vector of length |µ|+ v.

Proof. For v > 0 (3.5.10) can be rewritten in the form

sµ [Xn − (1− q)/z] Ω [1− 1/q)zXn]
∣∣
zv

= (q − 1)
n∑
i=1

qµi+v−isµ+vei [Xn]
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and the replacement q → qu gives

quvsµ [Xn − (1− qu)/z] Ω
[
(1− q−u)zXn

] ∣∣∣
zv

= (qu − 1)
n∑
i=1

qu(µi+v−i)sp(µ)+vei [Xn]

This given, (3.5.11) follows since the Schur functions involved in this expression

stabilize after n ≥ |µ|+ v.

Keeping this in mind let us recall that our goal here is to work out the action

of the operator Du,v on the basis
{
sµ

[
X
1−q

]}
µ
. The following identity provides the

link that ties this goal with the identities in (3.5.7) and (3.5.11).

Proposition 3.5.5. Suppose that for some v ≥ 0 we have

sµ [X − (1− qu)/z] Ω
[
(1− q−u)zX

] ∣∣∣
zv

= G [X; q] (3.5.12)

then

Du,vsµ

[
X

1− q

]
= qvG

[
X

1− q
; q

]
(3.5.13)

Proof. Notice first the following sequence of equalities.

qvG [X; q] = qvsµ [X − (1− qu)/z] Ω
[
z(1− q−u)X

] ∣∣∣
zv

= sµ [X − (1− qu)/qz] Ω
[
qz(1− q−u)X

] ∣∣∣
zv

= sµ

[
X +

(q − 1)

1− q
(1− qu)/qz

]
Ω

[
−qz1− q−u

q − 1
X(1− q)

] ∣∣∣
zv

= sµ

[
X +

(1− 1/q)

1− q
(1− qu)/z

]
Ω

[
−z1− q−u

1− q−1
X(1− q)

] ∣∣∣
zv

Next the replacement X → X
1−q gives

qvG

[
X

1− q
; q

]
= sµ

[
X

1− q
+

(1− 1/q)

1− q
(1− qu)/z

]
Ω

[
−z1− q−u

1− q−1
X

] ∣∣∣
zv

= sµ

[
X + (1− 1/q)(1− qu)/z

1− q

]
Ω

[
−z1− q−u

1− q−1
X

] ∣∣∣
zv

= sµ

[
X + (1− q)(1− 1/q) [u]q /z

1− q

]
Ω

[
−z1− q−u

1− q−1
X

] ∣∣∣
zv
.

(3.5.14)

Now recalling that by definition we have (for t = 1/q)

Du,vF [X] = F
[
X +M [u]q /z

]
Ω [−z [u]tX]

∣∣∣
zv
,

we see that (3.5.14) proves (3.5.13).
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We are thus able to obtain our

Proof of Theorem 3.1.6. By combining Propositions 3.5.4 and 3.5.5 with

G [X; q] = q−uv(qu − 1)

|µ|+v∑
i=1

qu(p(µ)i+v−i)sp(µ)+vei [X]

we obtain

Du,vsµ

[
X

1− q

]
= (qu − 1)

|µ|+v∑
i=1

qup(µ)i+v−uisp(µ)+vei

[
X

1− q

]
as desired.

Our next task is to take care of the case v = 0 of (3.5.7). This may be

rewritten as

qnP [Xn − (1− q)/z] Ω [(1− 1/q)zXn]
∣∣
z0

= P [Xn] − (1− q)R0P [Xn] .

Choosing P [Xn] = sµ [Xn] and using (3.5.3) for v = 0 we get

qnsµ [Xn − (1− q)/z] Ω [1− 1/q)zXn]
∣∣
z0

=
(

1 − (1− q)
n∑
i=1

qµi+n−i
)
sµ [Xn] .

(3.5.15)

Our next step is to transform (3.5.15) into a relation which contains no

explicit dependence on n. To this end, recalling that we write a partition of n in

the form µ = (µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0) we set

Bµ(q, t) =
∑
µi>0

ti−1(1 + q + · · ·+ qµi−1) =
n∑
i=1

ti−1
1− qµi
1− q

. (3.5.16)

This polynomial, usually called the biexponent generator of µ, plays an essen-

tial role in the Theory of Macdonald polynomials, in our case this results in the

following basic identity.

Proposition 3.5.6.

sµ

[
Xn −

1− q
z

]
Ω
[
(1− q−1)zXn

] ∣∣∣
z0

=
(

1 − (1− q−1)(1− q)Bλ(q, q
−1)
)
sµ [Xn]

(3.5.17)
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Proof. Changing t into 1/q in (3.5.16) and multiplying both sides by qn we can

rewrite it in the form

qn
(

1− (1− q−1)(1− q)Bµ(q, t)
)

= 1 − (1− q)
n∑
i=1

qµi+n−i. (3.5.18)

Using this in (3.5.15) gives

qnsµ

[
Xn −

1− q
z

]
Ω
[
(1− q−1)zXn

] ∣∣
z0

= qn
(

1− (1− q−1)(1− q)Bµ(q, t)
)
sµ [Xn] .

Canceling the factor qn proves (3.5.17) as desired.

Remark 3.5.1. By setting v = 0 in (3.5.3) and (3.5.4) we derive that

n∑
i=1

Ai(x; q)T qxisµ [Xn] =
( n∑
i=1

qµi+n−i
)
sµ [Xn]

This identity was used by Macdonald in [Mac95] to prove that his polynomial

Pµ(Xn, q, t) reduces to sµ [Xn] at t = q. Now the original definition of the modified

Macdonald polynomial H̃µ [X; q, t] was obtained by setting

H̃µ [X; q, t] = cν(q, t)Pµ [X/(1− 1/t); q, 1/t] (3.5.19)

where Pµ [X; q, t] is none other than Pµ [Xn; q, t] (for µ ` n) with Xn replaced by

the infinite alphabet X = x1 + x2 + · · · . and cν(q, t) is a polynomial in q, t whose

nature is immaterial here. Thus it follows from (3.5.19) that

H̃µ [X; q, 1/q] = cν(q, q
−1)Pµ [X/(1− q); q, q] = cν(q, q

−1)sµ

[
X

1− q

]
.

Thus for all practical purposes, in the present context, which arises from our setting

t = 1/q in all our Qu,v and their identities, the basis {H̃µ [X; q, t]}µ need only be

replaced by the basis
{
sµ

[
X
1−q

]}
µ
. In this vein we can easily obtain an alternate

way of interpreting the identity in (3.5.17).

Theorem 3.1.5. For all integers u ≥ 1 we have

Du,0sµ

[
X

1− q

]
=
(

1 − (1− q−u)(1− qu)Bµ(qu, q−u)
)
sµ

[
X

1− q

]
. (3.5.20)
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Proof. Making the replacements Xn → X and q → qu in (3.5.16) gives

sµ

[
X − 1− qu

z

]
Ω
[
(1− q−u)zX

] ∣∣∣
z0

=
(

1 − (1−q−u)(1−qu)Bµ(qu, q−u)
)
sµ [X] .

Next we do X → X
1−q and get

sµ

[
X

1− q
− 1− qu

z

]
Ω

[
−1− q−u

1− 1/q
(z/q)X

] ∣∣∣
z0

=
(

1 − (1− q−u)(1− qu)Bµ(qu, q−u)
)
sµ

[
X

1− q

]
and this (with t = 1/q) may be rewritten as

sµ

[
X + (1− 1/q)(1− q) [m]q /(z/q)

1− q

]
Ω [− [m]t (z/q)X]

∣∣∣
z0

=
(

1 − (1− q−u)(1− qu)Bµ(qu, q−u)
)
sµ

[
X

1− q

]
or better

sµ

[
X +M [m]q /z

1− q

]
Ω [− [m]t zX]

∣∣∣
z0

=
(

1 − (1− q−u)(1− qu)Bµ(qu, q−u)
)
sµ

[
X

1− q

]
. (3.5.21)

Recalling that by definition we have

Du,vF [X] = F
[
X +M [u]q /z

]
Ω [− [u]t zX]

∣∣∣
zv
,

we see that (3.5.20) is simply another way of writing (3.5.21). This completes our

proof.

Remark 3.5.2. If we follow the sequence of steps that yielded the identity in

(3.5.20) we will notice that this identity is but a direct consequence of the identity

in (3.5.17) with the replacement Xn → X, that is

sµ

[
X − 1− q

z

]
Ω
[
(1− q−1)zX

] ∣∣∣
z0

=
(

1 − (1− q−1)(1− q)Bµ(q, q−1)
)
sµ [X] .

(3.5.22)

Thus in principle, a shortcut in the proof of Theorem 3.1.5, may appear to be the

verification of (3.5.22).



62

To better appreciate the power of the path we followed in the proof of

(3.5.20), it will be instructive to see what kind of combinatorial identities we are

led to in trying to carry this out. Now working first on the left hand side of (3.5.22)

gives

LHS = sµ[X] +
∑
k≥1

∑
ν=(k−a,1a)

sµ/ν′ [X](−1/z)ksν [1− q] Ω
[
(1− q−1)zX

] ∣∣∣
z0

= sµ[X] + (1− q)
∑
k≥1

(−1)k
k−1∑
a=0

sµ/(a+1,1k−a−1)[X](−q)ahk
[
1− q−1)X

]
(3.5.23)

and since

hk
[
1− q−1)X

]
= (1− q−1)

k−1∑
b=0

(−q)bsk−b,1b [X]

(3.5.23) becomes

LHS = sµ[X] + (1− q)(1− q−1)
∑
k≥1

(−1)k
k−1∑
a,b=0

(−q)q+bsµ/(a+1,1k−a−1)[X]sk−b,1b [X].

(3.5.24)

Taking the scalar product of both sides of (3.5.22) by sλ[X] and using (3.5.24),

routine manipulations reduce (3.5.22) to the equivalent identity

∑
k≥1

(−1)k
k−1∑
a,b=0

(−q)a+b〈sµ/(a+1,1k−a−1) , sλ/(k−b,1b)〉 = −χ(λ = µ)Bµ(q, q−1).

(3.5.25)

A standard result on scalar products of skew Schur functions (see [GR85]), asserts

that the scalar product summand is none other than the number of permutations

that fit the shape µ/(a+ 1, 1k−a−1) whose inverse fits the shape λ/(k− b, 1b). This

given, the only conclusion we can draw from this calculation is that (3.5.25) is one

truly remarkable combinatorial consequence of Theorem 3.1.5.
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3.6 The original proof of Theorem 3.1.1 by the

partial fraction method

In this section we explain how we discovered Theorem 3.1.1. Indeed Theo-

rem 3.1.1 involves different series expansions of a single Rational function, which is

best understood by using the partial fraction method of the fourth named author.

To this end we need to work in the field K = Q((zN))((zN−1)) · · · ((z1)) of iterated

Laurent series to obtain series expansion of Rational functions. The readers are

referred to [Xin04] for the original development of the field of iterated Laurent

series. Here we only recall that K defines a total group order on its monomials

given by

za11 · · · z
aN
N


<K 1, if a1 = · · · = ai−1 = 0 & ai > 0

= 1, if a1 = · · · = aN = 0

>K 1, if a1 = · · · = ai−1 = 0 & ai < 0.

We shall simply write this order by z1 < z2 < · · · < zN < 1. The series expansion

of (1− w)−1 for a monomial w 6= 1 (called small or large) is thus given by

1

1− w
=


∑

n≥0w
n, if w <K 1

1
−w(1−1/w) = −

∑
n≥0w

−n−1, if w >K 1.

To start with, let us recall that for any Laurent polynomials L(z1, z2) ∈ Q
[
z±11 , z±12

]
,

we always have that

L(z1, z2)
∣∣∣
z01z

0
2

= L(z2, z1)
∣∣∣
z01z

0
2

holds in Q
[
z±11 , z±12

]
.

In particular, antisymmetric Laurent polynomials have constant term 0. Such

properties no longer hold for Rational functions in K1 = Q((z1))((z2)). For exam-

ple, f(z1, z2) = z1+z2
z1−z2 is clearly antisymmetric, but in K1 we have

z1 + z2
z1 − z2

∣∣∣
z01z

0
2

=
1 + z2/z1
1− z2/z1

∣∣∣
z01z

0
2

= (1 + z2/z1)
∑
n≥0

(z2/z1)
n
∣∣∣
z01z

0
2

= 1.

Indeed, the exchanging of the two variables z1, z2 transforms the constant term in

K1 to a constant term in K2 = Q((z2))((z1)). We shall have

f(z1, z2)
∣∣∣K1

z01z
0
2

= f(z2, z1)
∣∣∣K2

z01z
0
2
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where the left hand side is a constant term in K1, but the right hand side is a

constant term in K2. This type of exchanging of variables would be sufficient for

us to prove Theorem 3.1.1. See [Xin05] for general formulation on the change of

variables in a field of Malcev-Neumann series.

Proof of Theorem 3.1.1. With t = 1/q, we have

Dc,dDa,b F [X] = Dc,d F
[
X + [a]q

M

z1

]
Ω
[
−z1X[a]t

]
z−b1

∣∣∣
z01

= F
[
X + [c]q

M

z2
+ [a]q

M

z1

]
Ω
[
−z1[a]t

(
X + [c]q

M

z2

)]
Ω
[
−z2X[c]t

]
z−b1 z−d2

∣∣∣
z01z

0
2

= F
[
X + [c]q

M

z2
+ [a]q

M

z1

]
Ω
[
−X

(
z1[a]t + z2[c]t

)]
Ω
[
−M [a]t[c]q

z1
z2

]
z−b1 z−d2

∣∣∣
z01z

0
2

= F
[
X + [c]q

M

z2
+ [a]q

M

z1

]
Ω
[
−X

(
z1[a]t + z2[c]t

)](1− z1
z2

)(1− qcta z1
z2

)

(1− qc z1
z2

)(1− ta z1
z2

)
z−b1 z−d2

∣∣∣
z01z

0
2

where in the last step we have used the fact that M [a]t [c]q = (1 − ta)(1 − qc) =

1− ta− qc + qcta. This constant term has to be understood as in a field of iterated

Laurent series where qcz1/z2 and taz1/z2 are small. In the general q, t case, we can

set q < t < z1 < z2 < 1. But here we can not set q to be small, since that will

force t = 1/q to be large. We choose to work in the field of iterated Laurent series

K1 defined by the order z1 < z2 < q < 1 (one can take q as a constant). More

precisely, we can set, for example, K1 = Q(q)((z2))((z1)) [[x1, x2, . . . ]].

Let us write

Dc,dDa,bF [X] = F
[
X + [c]q

M

z2
+ [a]q

M

z1

]
× Ω

[
−X

(
z1[a]t + z2[c]t

)]
G(z1, z2; c, d, a, b)

∣∣∣K1

z01z
0
2

, (3.6.1)

where

G(z1, z2; c, d, a, b) =
(1− z1

z2
)(1− qcta z1

z2
)

(1− qc z1
z2

)(1− ta z1
z2

)
z−b1 z−d2 .

Now switching (c, d) and (a, b) gives

Da,bDc,dF [X] = F
[
X + [a]q

M

z2
+ [c]q

M

z1

]
Ω
[
−X

(
z1[c]t + z2[a]t

)]
×G(z1, z2; a, b, c, d)

∣∣∣K1

z01z
0
2

.
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Observe that when t = 1/q, we have

G(z2, z1; a, b, c, d) =
(1− z2

z1
)(1− tcqa z2

z1
)

(1− tc z2
z1

)(1− qa z2
z1

)
=

(1− z1
z2

)(1− qcta z1
z2

)

(1− qc z1
z2

)(1− ta z1
z2

)

= G(z1, z2; c, d, a, b).

By exchanging z1 and z2, we obtain that Da,bDc,dF [X] is the same constant

term as in (3.6.1), but working in the field of iterated Laurent series K2 defined

by the order z2 < z1 < q < 1. So we are indeed computing the difference of the

constant terms of a single “Rational function” in two different working fields.

By partial fraction decomposition in z1, applied to the coefficients in the

x’s and then sum, we have

F
[
X + [c]q

M

z2
+ [a]q

M

z1

]
Ω
[
−X

(
z1[a]t + z2[c]t

)]
G(z1, z2; a, b, c, d) =

= p≥0(z1) + p<0(z1) +
A1

1− qc z1
z2

+
A2

1− ta z1
z2

,

where when we restrict to each coefficient of the x’s, p≥0(z1) is a polynomial in z1,

p<0(z1) is a Laurent polynomial that only contains negative powers in z1, and A1

and A2 are free of z1 given by

A1 = F
[
X + [c]q

M

z2
+ qc[a]q

M

z2

]
Ω
[
−X

(
z2t

c[a]t+z2[c]t
)](1−tc)(1−ta)

(1−tatc)
z−b2 t−bcz−d2 ,

= −qbc (1− q
c)(1− qa)

(1− qa+c)
F
[
X + [a+ c]q

M

z2

]
Ω
[
−Xz2[a+ c]t

]
z−b−d2 ;

(3.6.2)

A2 = F
[
X + [c]q

M

z2
+ ta[a]q

M

z2

]
Ω
[
−X

(
z2q

a[a]t+z2[c]t
)](1−qa)(1−qc)

(1−qaqc)
z−b2 q−baz−d2

=
(1− qa)(1− qc)

(1− qaqc)
F
[
X + [a+ c]q

M

z2qa

]
Ω
[
−Xz2qa[a+ c]t

]
z−d−b2 q−ba.

We need the following formula (obtained by the change of variables z2 → z2t
a).

A2

∣∣∣
z02

= qda
(1− qa)(1− qc)

(1− qa+c)
F
[
X + [a+ c]q

M

z2

]
Ω
[
−Xz2[a+ c]t

]
z−d−b2

∣∣∣
z02

(3.6.3)
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Now we take the constant term in z1 first, working in K1 and K2 separately.

Since the two monomials qcz1/z2 and taz1/z2 are both small in K1 but large in K2,

we have

Dc,dDa,bF [X] = p≥0(0)
∣∣∣
z02

+ A1

∣∣∣
z02

+ A2

∣∣∣
z02

,

Da,bDc,dF [X] = p≥0(0)
∣∣∣
z02

.

It follows that
1

M
[Dc,d, Da,b]F [X] =

1

M

(
A1

∣∣∣
z02

+ A2

∣∣∣
z02

)
.

Applying formulas (3.6.2) and (3.6.3) gives the desired result.

The idea of the proof of Theorem 3.1.1 can be generalized as follows, which

is easy to prove but turns out to be very useful.

Proposition 3.6.1. Let K1 and K2 be two different field of iterated Laurent series.

Suppose that we have the following partial fraction expansion.

F (z) = p0(z) +
p−1(z)

zm
+

p1(z)

(1− u1z)k1
+ · · ·+ pN(z))

(1− uNz)kN

Then we have

F (z)
∣∣∣K1

z0
− F (z)

∣∣∣K2

z0
=

∑
uiz<K1

1 & uiz>K2
1

pi(0)−
∑

ujz>K1
1 & ujz<K2

1

pj(0).

In words, the difference of the two constant terms only came from those denomi-

nators that are contributing (i.e., with uiz < 1) in one field but dually contributing

(i.e., with uiz > 1) in the other field.

Proof. With the given partial fraction decomposition, taking constant term in z

under K1 gives

F (z)
∣∣∣K1

z0
= p0(0) +

∑
uizki<K1

1

pi(0).

A similar result holds for K2. Subtracting gives the desired formula.

Remark 3.6.1. The proposition applies whenever F (z) includes something like

Ω [X +M/z] or Ω [−zX] as factors. In that case m or p0(z) does not exist. But

F (z) can be first expanded as a power series in the x’s, and then apply the propo-

sition to the coefficients in the x’s.
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Remark 3.6.2. If we take K1 = C((z)) and K2 = C((z−1)), then the proposition

gives

F (z)
∣∣∣K1

z0
− F (z)

∣∣∣K2

z0
=
∑
i

pi(0).

This can be shown to be equivalent to the well-known fact that for any given Ra-

tional function, its residues at all points (including ∞) sum to 0.
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Chapter 4

A new interpretation of ∇pn

4.1 Symmetric function identities

The main result of this chapter a new combinatorial interpretation for ∇pn.

In particular, we show the following.

Theorem 4.1.1. For all n ≥ 1,

(−1)n−1∇pn =
∑

PF∈PFn

[ret(PF )]q t
area(PF )qdinv(PF )Fides(PF ).

This is obtained by rewriting pn as a positive sum of the functions Cα1 which appear

in the Compositional Shuffle Conjectures. We begin with a direct consequence of

the definition

Ca P [X] =

(
−1

q

)a−1
P

[
X − 1− 1/q

z

] ∑
m≥0

zmhm[X]
∣∣∣
za

and build up to the desired identity. Several of our intermediate equations were

already known, but we prove them here both for the sake of completeness and

because, in many cases, our proofs are much simpler than those previously known.

Theorem 4.1.2. For a,m ≥ 1,

a) Caem[X] =
(−1
q

)a−1
sa,1m −

(−1
q

)a
sa+1,1m−1 , and b) en =

∑
ρ|=n

Cρ1.

68
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Hence

c)
∑
ρ|=n−a

CaCρ1 =
(−1
q

)a−1
sa,1n−a −

(−1
q

)a
sa+1,1n−a−1 for n > a

and d) Cn1 =
(−1
q

)n−1
sn[X].

Proof. First note that d) is immediate from the definition of Cn and that c) follows

from a) and b). Now we can directly compute a) by applying the addition formula

(for both h and e plethystic substitutions) and Pieri’s formula.

(−q)a−1Caem[X] =
m∑
r=0

em−r[X](−1)rer

[
1−1/q
z

]
Ω[zX]

∣∣∣
za

= emha + (1−1
q
)

m∑
r=1

(−1)rem−rhr+a

= emha + (1−1
q
)

m∑
r=1

(−1)r
(
sr+a,1m−r + χ(r < m) sr+a+1,1m−r−1

)
= sa,1m + sa+1,1m−1 + (1−1

q
)sa+1,1m−1

= sa,1m + 1
q
sa+1,1m−1 .

Since b) is trivial for n = 1, we can proceed by induction on n.∑
ρ|=n

Cρ1 =
n∑
a=1

Caen−a

=
n−1∑
a=1

((−1
q

)a−1
sa,1m −

(−1
q

)a
sa+1,1m−1

)
+
(−1
q

)n−1
sn

= s1n −
(−1
q

)n−1
sn +

(−1
q

)n−1
sn = en.

Theorem 4.1.3. For all 1 ≤ b ≤ n,

sb,1n−b = (−q)b−1
∑
ρ|=n

χ(ρ1 ≥ b)Cρ1.

Proof. Summing Theorem 4.1.2 d) and c) for b ≤ a < n, we get

n∑
a=b

∑
ρ|=n−a

CaCρ1 =
(−1
q

)b−1
sb,1n−b .
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But this can be rewritten as∑
ρ|=n

χ(ρ1 ≥ b)Cρ1 =
(−1
q

)b−1
sb,1n−b .

Theorem 4.1.4. For all n ≥ 1,

(−1)n−1pn =
∑
ρ|=n

[ρ1]q Cρ1.

Applying ∇ and the Compositional Shuffle Theorem, we obtain Theorem 4.1.1.

Proof. By the Murnaghan-Nakayama rule, we have

(−1)n−1pn =
n∑
b=1

(−1)b−1sb,1n−b .

Then by Theorem 4.1.3,

(−1)n−1pn =
n∑
b=1

qb−1
∑
ρ|=n

χ(ρ1 ≥ b)Cρ1.

Interchanging the order of summation gives

(−1)n−1pn =
∑
ρ|=n

(
n∑
b=1

qb−1χ(ρ1 ≥ b)

)
Cρ1

which is another way of writing the desired equation.

By taking t = 1/q, (3.4.13) gives a direct connection between Qkm,kn(−1)kn

and (−1)k−1∇pk. This is also reflected in the combinatorial similarity between

Theorems 3.4.1 and 4.1.1. Unfortunately, there is no expansion of Q0,k 1 of a sum

of {Ek,l}1≤l≤k with rational coefficients in t and q. This impossibility of such an

expansion can already be seen when k = 4. If some other analog of Theorem

4.2.1 can be found, it may give a hint as to a new combinatorial interpretation

of Qkm,kn(−1)kn in terms of some sort of “rational preference functions.” The

main challenge would be to define an appropriate notion of dinv for these rational

preference functions.
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4.2 A refinement and a conjecture

In Chapter 2, we made use of the following (known) symmetric function

identity. We provide a new, simplified proof below.

Theorem 4.2.1. For n ≥ 1,

(−1)n−1pn =
n∑
k=1

[n]q
[k]q

En,k.

Proof. Recall that the symmetric functions En,k are implicitly defined by

en

[
X

1− z
1− q

]
=

n∑
k=1

(z; q)k
(q; q)k

En,k[X]

=
n∑
k=1

(1− z)(1− zq) . . . (1− zqk−1)
(1− q)(1− q2) . . . (1− qk)

En,k

Note that if we expand en

[
X 1−z

1−q

]
in terms of the power symmetric basis, the

coefficient of pλ will be divisible by
∏l(λ)

i=1(1−zλi), and hence divisible by (1−z)l(λ).

Therefore, dividing by (1− z) and letting z → 1 gives

(−1)n−1pn
1

1− qn
=

n∑
k=1

1

1− qk
En,k.

Multiplying both sides by (1− qn) gives the desired equation.

The commutativity relations between the C operators imply that every

symmetric function Cρ1 for µ |= n can be uniquely “straightened” and expanded

in the basis {Cλ}λ`n. Hence Theorem 4.1.4 and Theorem 4.2.1 give

Theorem 4.2.2. For 1 ≤ k ≤ n,

[n]q
[k]q

En,k =
∑

ρ|=n, l(ρ)=k

Cρ1.

Then, by Theorem 2.4.1, we have

Theorem 4.2.3. For 1 ≤ k ≤ n,∑
Pr∈Prefn

touch(Pr)=k

tarea(Pr)qdinv(Pr)Fides(Pr) =
∑

PF∈PFn
touch(PF )=k

[ret(PF )]q t
area(PF )qdinv(PF )Fides(PF ).
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It would be interesting to find a bijective proof of this theorem. This is

trivial when k = n. At the other extreme, k = 1, the return is always n and

Corollary 2.4.1 provides a combinatorial (enumerative) proof, but not a bijective

one. Even a proof of this type is not known currently to the author for other values

of k.

Furthermore, experimental evidence supports the following refinement.

Conjecture 4.2.1. For τ ∈ Sn,∑
Pr∈Prefn

diagword(Pr)=τ

tarea(Pr)qdinv(Pr)Fides(Pr) =
∑

PF∈PFn
diagword(PF )=τ

[ret(PF )]q t
area(PF )qdinv(PF )Fides(PF ).

As noted above, if τ ’s last run has length 1, this corresponds to the case k = 1 of

Corollary 2.4.1. If τ ’s last run has length 2, the problem is already very interesting.

4.3 A special case

We identify each unlabeled square path SQ with the preference function Pr

which has underlying path SQ and word nn− 1 . . . 1. (As a special case, a Dyck

path D corresponds to the parking function PF with underlying path D and word

nn− 1 . . . 1.) With this in mind, we see that the square paths (resp. Dyck paths)

with the same diagonal word are precisely those with the same number of cars in

consecutive diagonals. E.g. the Square Paths sharing diagonal word τ = 3 4 5 1 2

are those which have five cars where two in the lowest diagonal and three are in the

second lowest diagonal. Let the area, dinv, and deviation l of a square path be the

area, dinv, and deviation l of the corresponding preference function. Additionally,

let the ret of a Dyck path be the ret of the corresponding parking function.

In this section, we prove the unlabeled version of Conjecture 4.2.1. Taking

the inner product of both sides with s1n yields 0 = 0 for most permutations τ .

Each remaining case corresponds to a composition of n. For a square path SQ,

let diagcomp(SQ) be the composition whose ith part gives the number of cars in

the i+ 1st lowest diagonal of SQ. Let SQn and Dn be the sets of all square paths

and Dyck paths, respectively, in the n × n lattice. Then for any composition α,
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Conjecture 4.2.1 implies∑
SQ∈SQn

diagcomp(SQ)=α

tarea(SQ)qdinv(SQ) =
∑
D∈Dn

diagcomp(D)=α

[ret(D)]qt
area(D)qdinv(D).

We will see below that a much stronger refinement holds in this case, but not in

general.

Given a square path SQ with deviation l = l(SQ) (hence lowest diagonal

−l), we define a composition retcomp(SQ) = β as follows. Let β0 = 1. For

0 ≤ i < l, define βi+1 so that there are βi+1 − 1 cars in the (i+ 1− l)-th diagonal

which are left of the (βi + 1)-st car in the (i − l)-th diagonal in SQ. For i ≥ l,

let βi+1 be the number of cars in the (i + 1 − l)-th diagonal which are left of the

(βi + 1)-st car in the (i − l)-th diagonal in SQ. In both cases, if the (i − l)-th

diagonal doesn’t have βi + 1 cars, simply count all the cars in the (i + 1 − l)-th
diagonal.

0

0

0

0

-1

-1

-1

-1

1

1

Figure 4.1: A square path with diagcomp = (4, 4, 2), retcomp = (1, 3, 2).

For example, see Figure 4.1. There are 0-diagonal cars left of the second car

from the (−1)-diagonal. Since these are in nonpositive diagonals, we get β1 = 2+1.

There are two 1-diagonal cars left of the fourth 0-diagonal car. Since these are in

nonnegative diagonals, we get β2 = 2. Note that if the path has deviation 0, i.e.

it is a Dyck path, then this gives the number of cars within each diagonal to the

left of the path’s first return to y = x. Hence |β| generalizes the return statistic to

square paths (and preference functions).
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Theorem 4.3.1. For all compositions α, β and l ≥ 0,∑
SQ∈SQn, l(SQ)=l
diagcomp(SQ)=α
retcomp(SQ)=β

tarea(SQ)qdinv(SQ) = q(
∑l−1
i=0 βi)[βl]q

∑
D∈Dn

diagcomp(D)=α
retcomp(D)=β

tarea(D)qdinv(D).

Proof. First, we note that the power of t is fixed in each term of the desired

equation. In particular, the area of a square path with diagcomp = α is
∑

k kαk.

Furthermore, since the cars in each diagonal are in increasing order (from left to

right), any two cars in the same diagonal contribute to primary dinv. This gives

a total primary dinv of
∑

i

(
αi
2

)
for any square path with diagcomp = α. Finally,

there is no tertiary dinv for Dyck paths, but each square path on the left hand

side contributes q
∑l−1
i=0 αi due to tertiary dinv. This matches the additional power

of q on the right hand side. So it remains to show∑
SQ∈SQn, l(SQ)=l
diagcomp(SQ)=α
retcomp(SQ)=β

qsecdinv(SQ) = [βl]q
∑
D∈Dn

diagcomp(D)=α
retcomp(D)=β

qsecdinv(D)

where secdinv is secondary dinv.

Recall that secondary dinv only depends on the relative positions of cars

in adjacent diagonals. This is determined by the inversions in the word of i’s and

(i + 1)’s which represent cars in the i-th and (i + 1)-st diagonal as they appear

from left to right. So each square path SQ with diagcomp(SQ) = α corresponds

to a sequence of words SQi,i+1 consisting of αl+i i’s and (i + 1)’s with i ≥ −l. If

i < 0, then the last element of SQi,i+1 must be i+ 1. If i ≥ 0, the first element of

SQi,i+1 must be i.

Furthermore, suppose retcomp(SQ) = β. Then for i < 0, then SQi,i+1

consists of a word with βl+i i’s and βl+i+1 − 1 (i + 1)’s followed by a word with

αl+i − βl+i i’s and αl+i+1 − βl+i+1 (i + 1)’s and finally an (i + 1). If i ≥ 0, then

SQi,i+1 consists of an i followed by a word with βl+i−1 i’s and βl+i+1 (i+ 1)’s and

then a word with αl+i − βl+i i’s and αl+i+1 − βl+i+1 (i+ 1)’s.

Now let W(a, b) be the set of all words consisting of a small elements and
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b large elements. Let · denote concatenation. We will use the fact that∑
w1∈W(a,b)
w2∈W(c,d)

qinv(w1·w2) = qbc

[
a+ b

a

]
q

[
c+ d

c

]
q

.

We will also make small tweaks to this formula to account for a forced small or

large element at the beginning or end.

∑
SQ∈SQn, l(SQ)=l
diagcomp(SQ)=α
retcomp(SQ)=β

qsecdinv(SQ) =
∑
SQ

(∏
i≥0

qinv(SQi,i+1)

)

=
−1∏
i=−l

q(βl+i+1−1)(αl+i−βl+i)

[
βl+i+βl+i+1−1

βl+i

]
q

[
αl+i+αl+i+1−βl+i−βl+i+1−1

αl+i−βl+i−1

]
q

×
l(β)−l∏
i=0

qβl+i+1(αl+i−βl+i)

[
βl+i+βl+i+1−1

βl+i−1

]
q

[
αl+i+αl+i+1−βl+i−βl+i+1−1

αl+i+βl+i−1

]
q

×
l(α)−l−1∏
i=l(β)−l+1

[
αl+i+αl+i+1−1

αl+i−1

]

=
−1∏
i=−l

q(βl+i−αl+i)
[βl+i+1]q
[βl+i]q

×
l(β)−l∏
i=−l

qβl+i+1(αl+i−βl+i)

[
βl+i+βl+i+1−1

βl+i−1

][
αl+i+αl+i+1−βl+i−βl+i+1−1

αl+i+βl+i−1

]
q

×
l(α)−l−1∏
i=l(β)−l+1

[
αl+i+αl+i+1−1

αl+i−1

]

= q(
∑l−1
i=0 βi−αi) [βl]q

∑
D∈Dn

diagcomp(D)=α
retcomp(D)=β

qsecdinv(D)

The last equality follows by comparing the previous equation for general l and the

case l = 0, which corresponds to Dyck paths.

Corollary 4.3.1. For all compositions α and β,∑
SQ∈SQn

diagcomp(SQ)=α
retcomp(SQ)=β

tarea(SQ)qdinv(SQ) =
∑
D∈Dn

diagcomp(D)=α
retcomp(D)=β

[ |β| ]qtarea(D)qdinv(D)
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Summing over all β gives〈 ∑
Pr∈Prefn

diagword(Pr)=τ

tarea(Pr)qdinv(Pr)Fides(Pr), s1n

〉

=

〈 ∑
PF∈PFn

diagword(PF )=τ

[ret(PF )]q t
area(PF )qdinv(PF )Fides(PF ), s1n

〉
,

which is a special case of Conjecture 4.2.1.

Acknowledgement. This chapter contains ongoing joint work with Adriano Gar-

sia, which will be published separately at a later date. The present author’s primary

contributions form Sections 4.2 and 4.3.



Bibliography

[BG99] F. Bergeron and A. M. Garsia. Science Fiction and Macdonald’s Poly-
nomials. CRM Proc. & Lecture Notes, Amer. Math. Soc., 22:1–52, 1999.

[BGLX14] F. Bergeron, A. M. Garsia, E. Sergel Leven, and G. Xin. Some remark-
able new Plethystic Operators in the Theory of Macdonald Polynomials.
arXiv preprint arXiv:1405.0316, to appear in J. Comb, 2014.

[BGLX15] F. Bergeron, A. M. Garsia, E. Sergel Leven, and G. Xin. A Composi-
tional (km, kn)-Shuffle Conjecture. Int. Math. Res. Not., rnr272, 2015.

[BS12] I. Burban and O. Schiffmann. On the Hall algebra of an elliptic curve,
I. Duke J. Math., 161(7):1171–1231, 2012.

[CL06] M. Can and N. Loehr. A proof of the q, t-square conjecture. J. Comb.
Theory Series A, 113(7):1419–1434, 2006.

[CM15] E. Carlsson and A. Mellit. A proof of the shuffle conjecture. arXiv
preprint arXiv:1508.06239, 2015.

[Dun98] C. Dunkl. Intertwining operators and polynomials associated with the
symmetric group. Monatsh. Math., 126(3):181–209, 1998.

[ELW10] E. Egge, N. Loehr, and G. Warrington. From quasisymmetric expan-
sions to Schur expansions via a modified inverse Kostka matrix. Euro.
J. Comb., 1:2014–2027, 2010.

[Ges84] I. Gessel. Multipartite P-partitions and inner products of skew Schur
functions. Contemp. Math., 34:289–301, 1984.

[GH96a] A. M. Garsia and M. Haiman. A remarkable q, t-Catalan sequence and
q-Lagrange inversion. J. Alg. Comb., 5(3):191–244, 1996.

[GH96b] A. M. Garsia and M. Haiman. Some Natural Bigraded Sn-Modules and
q, t-Kostka Coefficients. Electron. J. Combin., 3(2):561–620 (The Foata
Festschrift, paper R24), 1996.

[GH02] A. M. Garsia and J. Haglund. A proof of the q, t-Catalan positivity
conjecture. Discrete Math., 256:677–717, 2002.

77



78

[GHT99] A. M. Garsia, M. Haiman, and G. Tesler. Explicit plethystic formulas for
Macdonald (q, t)-Kostka coefficients. Sem. Lothar. Combin, B42m:1–45,
1999.

[GM13] E. Gorsky and M. Mazin. Compactified Jacobians and q, t-Catalan
Numbers I. J. Comb. Theory, Ser. A, 120:49–63, 2013.

[GM14] E. Gorsky and M. Mazin. Compactified Jacobians and q, t-Catalan
Numbers II. J. Alg. Comb., 39(1):153–186, 2014.

[GN15] E. Gorsky and A. Negut. Refined knot invariants and Hilbert schemes.
J. Math. Pures et Appl., 104(3):403–435, 2015.

[Gor13] E. Gorsky. Arc spaces and DAHA representations. Selecta Math.,
19(1):125–140, 2013.

[GR85] A. M. Garsia and J. Remmel. Shuffles of permutations and the Kro-
necker product. Graphs and Comb., 1(1):217–263, 1985.

[GXZ11] A. M. Garsia, G. Xin, and M. Zabrocki. Hall-Littlewood Operators in
the Theory of Parking Functions and Diagonal Harmonics. Int. Math.
Res. Not., rnr060, 2011.

[Hai94] M. Haiman. Conjectures on the Quotient Ring by Diagonal Invariants.
J. Alg. Comb., 3:17–76, 1994.

[Hai01] M. Haiman. Vanishing theorems and character formulas for the Hilbert
scheme of points in the plane. Invent. Math., 149:371–407, 2001.

[HHL+05] J. Haglund, M. Haiman, N. Loehr, J. Remmel, and A. Ulyanov. A
combinatorial formula for the character of the diagonal coinvariants.
Duke J. Math., 126:195–232, 2005.

[Hic13] A. Hicks. Parking Function Polynomials and Their Relation to the
Shuffle Conjecture. PhD thesis, University of California, San Diego,
2013.

[Hik14] T. Hikita. Affine springer fibers of type A and combinatorics of diagonal
coinvariants. Adv. Math., 263:88–122, 2014.

[HL05] J. Haglund and N. Loehr. A conjectured combinatorial formula for the
Hilbert series for diagonal harmonics. Discrete Math., 298(1):189–204,
2005.

[HL15] A. Hicks and E. Leven. A simpler formula for the number of diago-
nal inversions of an (m,n)-Parking Function and a returning Fermionic
formula. Discrete Math., 338(3):48–65, 2015.



79

[HMZ12] J. Haglund, J. Morse, and M. Zabrocki. A compositional refinement of
the shuffle conjecture specifying touch points of the Dyck path. Canad.
J. Math., 64:822–844, 2012.

[KW66] A. G. Konheim and B. Weiss. An occupancy discipline and applications.
SIAM J. Appl. Math., 14(6):1266–1274, 1966.

[LR11] N. Loehr and J. Remmel. A computational and combinatorial expose
of plethystic calculus. J. Alg. Comb., 33:163–198, 2011.

[LW07] N. Loehr and G. Warrington. Square q, t-lattice paths and∇(pn). Trans.
Amer. Math. Soc., 359(2):649–669, 2007.

[Mac88] I. G. Macdonald. A new class of symmetric functions. Actes du 20e
Seminaire Lotharingien, Publ. I.R.M.A. Strasbourg:131–171, 1988.

[Mac95] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford
Mathematical Monographs, New York, 2nd edition, 1995.

[Ste10] S. Stevan. Chern-Simons invariants of torus links. Ann. Henri Poincare,
11(7):1201–1224, 2010.

[SV13] O. Schiffmann and E. Vasserot. The elliptical Hall algebra and the
equivariant K-theory of the Hilbert scheme of A2. Duke J. Math.,
162(2):279–366, 2013.

[Xin04] G. Xin. A fast algorithm for MacMahon’s partition analysis. Electron.
J. Combin., 11(1):R58, 2004.

[Xin05] G. Xin. A residue theorem for Malcev-Neumann series. Adv. Appl.
Math., 35(3):271–293, 2005.


	Signature Page
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Background and History
	A proof of the Square Paths Conjecture
	Introduction
	Schedules for preference functions
	Shifting diagonals and schedules
	Dealing with Inverse Descents

	A new plethystic symmetric function operator and the Rational Compositional Shuffle Conjecture at t=1/q
	Introduction
	Commutator properties of our new operators
	Polynomiality and positivity.
	A parking function setting for our Frobenius characteristics
	The action of the operators Du,v on the basis { s[X 1-q ]}
	The original proof of Theorem 3.1.1 by the partial fraction method

	A new interpretation of pn
	Symmetric function identities
	A refinement and a conjecture
	A special case

	Bibliography



