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EPIGRAPH

We see the world clearly when were children,

and we spend the rest of our lives,
trying to remember what it was we saw.

—Garrison Keillor



TABLE OF CONTENTS

SignaturePage . . . . . .. e i
Dedication . . . . . . . . . . . e v
Epigraph . . . . . . . e v
Tableof Contents . . . . . . . . . . . . .. Vi
Listof Figures. . . . . . . . . . . . e iX
Listof Tables . . . . . . . . . . . . e XXiii
Acknowledgements . . . . . . . ... XXiV
Vitaand Publications . . . . . ... ... ... ... XXViii
Abstract of theDissertation . . . . . . . . ... ... ... .. . . ... XXX
1 SiliconPhotonics . . . . . . . . .. . . 1
1.1 Introductionto Silicon Photonics . . . . . . ... ... ... ...... 1
111 TheSiliconLaser . . . ... ... ... ... ... ... 3
1.1.2 TheSiliconModulator . . . ... ................ 5
1.1.3 Detectinglight . ... ... ... ... .. ........... 7
1.2 Fundamentalsof Optical Waveguiding . . . . ... ........... 8
1.3 Outlineof theDissertation . . . ... ... ... ............ 10
References. . . . . . . . . . e 12
2 Coupled Resonator Optical Waveguides(CROWS) . . . . . ... ... .. .. 16
2.1 Dependenceonthe Silicon Nanowire. . . . . .. ... ... ...... 17
22 Expeimenta Results . . ... ... ... ... ... .. ........ 19
2.3 Band Dependence on the Composite
Directional Couplers . . . . . .. . . .. ... .. 24
2.4 Strongly Coupled Nanowiresfor Apodization . . . ... ... ... .. 26
2.5 Limitations Imposed by Disorder and
the Motivationfor StrongCoupling . . . . . . ... .. .. ... .... 27
2.6 Statisticsof Light Transport for
Increasing Number of Resonators. . . . . . .. ... ... ....... 28
2.7 SUMMAY . . . o e e 38
References. . . . . . . . . e 39

Vi



3 Strongly-Coupled Arrayed Waveguides. . . . . . . .. . ... ... ..... 44

3.1 Supermodes and their Probability of Excitation . . . ... ... .... 44
3.2 Giant Birefringencein Multislot Waveguides. . . . . .. ... ... .. 45
3.3 Horizontal vs. Vertical Slots . . . . . ... 51
34 The"Sot” Waveguideand itsApplications. . . . . ... ........ 53
35 Summary . ... 55
References. . . . . . . . . . e 57
4 Modeling Techniques for Nano-photonic Devices . . . . . .. .. ... ... 59
4.1 Numerical Solutionsto Maxwell’sequations . . . . . . ... ... ... 59
4.2 Dispersion Engineering of SOl Waveguides . . . . .. ... ... ... 69
4.3 Dispersionof Directional Couplers . . . . . . ... ... ... ... .. 72
4.3.1 TheDirectional Couplersof the CROWs. . . . ... ... ... 78
4.3.2 Dispersonof Fused Waveguides . . . . . . ... ... ..... 80
4.4 Simulation of aDisordered CROW . . . . . . . .. ... ... ... .. 83
441 Transfer Matrices . . . . . . . . . 83
442 Reconstructing FieldPatterns. . . . . ... ... ... L. 84

4.4.3 Sending Numerical Data
ThroughaNumericad CROW . . . . ... ... ... ...... 88
45 SUMMAY . . . o e e e e e e 91
References. . . . . . . . . e 92

5 Breakdown of CMT:

Strong Coupling Perturbations . . . . . . . ... .. ... .. ... . ..., 94
5.1 Coupled-Mode Theory (CMT) of the
Modesof Multi-slot Waveguides . . . . . . .. .. ... ... ..... 95
5.2 Numericaly-assisted CMT:
the“lnverseProblem” . . . . . . . ... L 101
5.2.1 Asymptotic Accuracy of
Numerically-assistedCMT . . . . ... ... ... ....... 102
5.2.2 Next-to-nearest-neighbor Coupling. . . . . .. .. ... .... 105
5.2.3 Eigenvalue Fanout: Effective Index of the Supermodes versus
SeparationDistance. . . . . . ... .. ... 107
5.3 Electric Field Perturbations from
StrongCoupling . . . . . . . . ... 110
531 EvanescentTaill Fanout . . . . ... ... ............ 114
5.3.2 Effectsof Modal Confinement
onthelsolated Waveguide . . . . ... ... .......... 115
5.3.3 Effectsof Modal Confinement
ontheArrayed Waveguide . . . . . ... ... ... .. .... 116

Vii



5.4 Modifying the CMT Basis

for Reconstruction. . . . . . . . .. . ... 117

5.4.1 Caculating the Transverse Field Profile . . . .. ... ... .. 121

54.2 Cadculatingthe2-D FieldProfile . . . . . ... ... ...... 123

55 Summary . ... 123
References. . . . . . . . . 125
6 Characterization of NanophotonicDevices . . . . . . ... ... ... .... 129
6.1 QuantitativelnfraredImaging. . . . . ... ... ... .. ... .... 129
6.1.1 Cadlibrationof thelmagingSetup . . . . . ... ... ... ... 132

6.1.2 Multi-ring Structures . . . . ... .. 134

6.1.3 Resonant Frequency LocationsMeasuredonChip. . . . . . .. 136

6.14 WaveguideBends . . . ... ... ... ... ... . ...... 139

6.1.5 ImagingCROWS . . . . . . . . . . .. .. .. 140

6.2 GroupDelay Measurements . . . . ... ... .. ... .. ...... 145
6.21 Introduction. . . .. ... ... .. ... 146

6.22 CouplingMeasurements . . . . . ... .. ... ... ..... 148

6.2.3 Amplified Waveguide Measurements. . . . . . . ... ... .. 149

6.24 DISCUSSION . . . . . . 152

6.3 SUMMAY . . . . . e 155
References. . . . . . . . . 157
A Graphical UserInterfaces . . . . . . ... . ... ... . ... ... . ..., 163
Al Efied . ... 164
A2 IRCAMandLScan . . . ... .. . . 165
A3 SNIPER26. . . . . . . 166

B Fnalnotes. . . ... ... . . . . . e 167

viii



Figure 1.1:

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

LIST OF FIGURES

(@) Infrared image of light propagating through a silicon nanowire,
coupled into the waveguide using lens-tipped fibers. (b) Scanning
el ectron microscope image of the cross-section of asilicon nanowire,
which consists of a silicon core (n = 3.47), a SIO, substrate (n =
1.46), and an air superstrate (n = 1). The height of the waveguide
is 250 nm and the width 500 nm. (c) Finite element simulation of
the transverse electric mode E,, with an effective index of 2.49. (d)
Finite element simulation of the transverse magnetic mode E,;, with
aneffectiveindexof 1.83. . . . . ... ... ... ... ... ...

Coupled resonator optical waveguide (CROW), periodic chains of

microresonators, with radius R, and track-length L, where light

propagates through the structure by tunneling from resonator to res-

ONator. . . . .
CROWSswerefabricated at the IBM Microel ectronics Research Lab-

oratory on 200 mm SOI wafers wafers where the waveguide dimen-

sions and gaps were varied from their nominal values as a result

of dose-striping. High dose results in an increased gap between

the directional couplers of the racetrack resonators, but the center-

to-center separation distance remains the same compared with the

[OW-doseregions. . . . . . . . o oo
Silicon microring CROWS ranging from 35 to 235 microrings, fab-

ricated on 200 mm wafers and cleaved into 4 mm-long chips. (Inset)

Scanning electron microscope image of the region indicated by the

dashedbox. . . .. ... ... ... ... ...
(Top) Group index (n,) of the CROW’s constituent waveguides,

derived from the free spectral range of the CROW (markers) and

(light-gray) group index data determined from (Bottom) the group

delay of four straight waveguides of varying lengths, L. . . . . . .
(a) Transmission and group delay spectra for eleven bands of a 35-

ring CROW, aong with each band’s center wavelength. (b) (Mark-

ers) Band-center group delay for different length CROWs acrossthe
measured eleven bands. (Solid-line) Prediction of the group delay

of aCROW usingEQ. (25). . .. ... ... ... ... . .....
(Blue Markerg Band-center group delay measured for different length
CROWs across the eleven bands, for seven different chips. (black-

line) Prediction of the group delay of a CROW using Eq. (2.5). The
(red-line) shows previously derived results, which did not account

for thewaveguidedispersion[1].. . . . . . .. ... ... ... ..
Coupled resonator optical waveguides may be broken down and

characterized in terms of their composite directional couplers
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Figure 2.8:

Figure 2.9:

Figure 2.10:

Figure 2.11:

Figure 2.12:

(a) Sample band around 1550 nm of a 35-ring CROW at the top,
middle, and bottom of the double oxidized, and (b) hydrogen an-
nealed wafers. Waveguide dimensions were varied from their nom-
inal values as a result of dose-striping, demonstrated in Fig. 2.2,
which results in thinner waveguides at the top of the wafer, and
wider waveguides at the bottom. The double oxidation process fur-
ther thinned the waveguide dimensions, height and width, by 20 nm.
(c) Experimentally derived coupling coefficients using Eq. (2.10),
for eight chips across each wafer, where the waveguide dimensions
and gaps were varied from their nominal values as a result of dose-
SIPING. . . . .
Scanning electron microscope (SEM) image of the waveguide cross-
section and first four directional couplersfor both the hydrogen an-
nealed and double oxidizedwafers. . . . ... ... ... .....
Transmission (insertion 10ss) spectrawere measured with resolution
1.4 pm, for 35, 65, 95, 135, and 235 ring waveguides. Shown here
are the averages of 128 measured traces. Relative to the 35-ring
CROW, measurements for 65, 95, 135 and 235 ring CROWSs were
amplified by 7, 4, 3, and 7 dB, respectively in order to boost the
power level detected at the photoreceiver. . . . . . . ... ... ..
Group delay spectrawere measured with resolution 1.4 pm, for 35,
65, 95, 135, and 235 ring waveguides, over the same range of wave-
lengths asin Fig. 2.10. Spectral regions of large variation in delay
correspond exactly to the stopbands of the intensity spectrum shown
INFIg. 220 . . . . .
(@) Transmission (insertion loss) spectrum for a single passband of
a 235 ring CROW, with measurements at selected wavelengths la-
beled (i)-(v). (b) Intensity profiles of the eigenmodes at the wave-
lengths (ii)-(iv) measured with an infrared camera, show that non-
localized excitations (extended throughout the entire waveguidelength)
were observed throughout the passband, in contrast with out-of-
band (i) and band-edge (v) wavelengths. No correction was made
in these images for the absorptive decay of intensity with length of
thepropagatingmodes. . . . . . . . .. ... ...
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Figure 2.13:

Figure 2.14:

Figure 2.15:

Figure 3.1:

(8 The mid-band average of the transmitted intensity (in dB), mea-
sured without amplification, decreased linearly with length (-0.08
dB/resonator), except for one anomalous waveguide on the mea-
sured chip (65 rings) as discussed in the text. The errorbars repre-
sent the standard deviation, i.e., ripple, in the measured delay over
theflat portion of the band. (b) The probability distribution function
(PDFs) of the normalized intensity transmission (/ = %) for theall
the CROWSs show agreement with the Rayleigh distribution, shown
by the dashed lines, indicating non-localized transport through the
waveguide. In contrast, the localized regime would show consider-
ably different (long-tailed) statistics[15,33,39]. . . ... ... ..
() The measured propagation delay averaged over the middle of
a transmission band (7) (units of picoseconds) increased linearly
with length (L = 35, 65, E, 235 rings). The errorbars represent the
standard deviation, i.e., ripple, in the measured delay over the flat
portion of the band. (b) The probability distributions of normal-
ized delay 7 = 75 were peaked at unity (i.e,, 7=()). The dashed
line is a Gaussian (normal distribution) fit to the data, which indi-
cates ballistic propagation statistics and the absence of localization,
previously estimated to be a severe constraint on achieving > 100
resonator lengths of CROWSs. In fact, the self-averaging properties
of longer chains of resonators yielded better fitsto normal statistics
than for the shorter waveguides, where finite-size effects caused an
asymmetric lineshape in the tails of the distributions. . . . . . . ..
(a) The measured probability distribution functions (PDFs) of the
normalized group delay 7 = 7/(r) are shown, using a logarithmic
scale on the vertical axisfor clarity, for the waveguides labeled (3)-
(5) in Fig. 2.10(a). With increasing length, the distributions con-
verged to a single-parameter Gaussian distribution, shown by the
dashed black line. (b) The variance of the measured delay (ps2) in-
creased with the square of the number of resonators (N), as shown
by the dashed fit, var(r) = 0.0346 N2+(12.9 ps)? where the second
term was the typically measured group delay ripple of the measure-
ment apparatus. This scaling behavior was different from that of
conventional waveguides or cascaded fiber Bragg gratings, and as
discussed in the text, demonstrated that the individual resonator ex-
citationsare mutually correlated. . . . . . . . ... ... L. L.

Transverse Electric Polarization: Supermodes of five silicon-on-
insulator arrayed waveguides of 500 nm height, 200 nm width, at a
separation distanceof 200nm. . . . . . ... ... L
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Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Transverse Magnetic Polarization: Supermodes of five silicon-on-
insulator arrayed waveguides of 500 nm height, 200 nm width, at a
separation distanceof 500nm. . . . . . ... ... L. L.
An arrayed waveguide consisting of an SIO, substrate and an air
superstrate, with 500 nm high silicon rib waveguides, each 150 nm
wide, and separated by 100 nm “slots’. Both the effective index and
group index of thisstructureis very different for each polarization. .
The modes of the multi-slot waveguide shown in Fig. 3.3 for each
polarization, as well as the modes of the feeder waveguide. Note
that for the TM,, polarization the light is mostly guided in the slot
region, allowing for a high birefringence between the two polariza-
tions. By numerically solving Eg. (3.1), one can see that there will
be a modal mismatch loss of 3.75 dB with the feeder waveguide.
As no other modes are supported for this structure for the transverse
magnetic polarization, this“lost” light is radiated into free space.
(a) Schematic of the cross-section of the giant birefringence multi-
slot waveguide. (b) Using afinite difference frequency domain al-
gorithm, the maximum filling fraction was cal cul ated to be g = 0.38.
For filling fractions larger then q = 0.43, the effective index of the
transverse magnetic mode drops below that of the oxide substrate.
(c) Plot of the effective indices for both polarization for different
values of N. (d) Calculation of the birefringence, showing that it
asymptotes to a constant value for increasing N, and that N = 5, as
fabricated, is the smallest value of N for which the birefringence
saturates. The physical reason behind the saturation isthat for N <
5, the mode mostly resides in the oxide. By continuously adding
more high-index regionslight is pulled out of the substrate. Once N
=5, light has been pulled out of the substrate, and adding additional
waveguides has no effect on the structure’s birefringence. . . . . . .
Group velocity dispersion for the (a) transverse magnetic and (b)
transverse electric polarization. . . . . ... . ... ... ... ..
(8) Measurement setup for experimentally determining the group
indicies of the multi-slot waveguide. A C+L band narrow-spectrum
mode-hop free turnable laser source was coupled into the chip us-
ing tapered and lensed polarization maintaining fibers. The air gaps
form aFabry-Perot resonator of precisely knownlength. By bandpass-
filtering the measured transmission spectrum, one may extract the
frequency component which corresponds to the Fabry-Perot reso-
nances of length L. (b) Cross-section of the transverse magnetic and
transverse el ectric modes of the multi-slot waveguide. () Using the
definition of the free spectra range, the group index was obtained.
The experimental values shown are in good agreement with the pre-
dictedvalues. . . ... ... . ... ...
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Figure 3.8:

Figure4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure4.7:

(8) Schematic of the horizontal multi-slot waveguide consisting of
500 nm wide and 150 nm tall silicon waveguides stacked vertically
and separated by 100 nm of SiO,. (b) Using afinite difference fre-
guency domain, the effective index of both modes are calculated as
thefilling fraction, q, isvaried. (c) The birefringence of the horizon-
tal multi-slot waveguide. The maximum value that can be obtained
is considerably less then for the vertical multi-slot waveguide. . . .

(a) Typica silicon-on-insulator waveguide (b) In the finite differ-
ence frequency domain algorithm the dielectric permittivity, e, of
the piecewise homogeneous layers of the waveguide are discretized
into amatrix. Note that the refractive index matrix is readily calcu-
lated as n = €'/2. (c) Numbering scheme used to label the individ-
ual elementsof thematrix shownin(b). . . . . ... ... ... ..
A single point shown in Fig. 4.1, labeled here as P, is characterized
and differentiated using its cardinal and inter-cardinal terms. . . . .
Numbering scheme for a 12 point matrix. The numerical values of
this matrix would represent a discretized refractive index profile of
awaveguide, such astheoneshowninFig.4.1(@ . . . ... .. ..
(a8) Comparison between solving for the group velocity dispersion
using numerical derivatives, and increasing order of polynomia fits.
(b) For higher order polynomialsthe two methods produce identical
FeSUltS. . . .
Changein group velocity dispersion (GV D) of three silicon nanowires
of different width, w, as the thickness, t, of athin film of SisN, re-
siding on top of the waveguide is varied. The height of each of the
silicon nanowires is 250 nm, and the wavelength is 1550 nm. The
slope of the GVD vs thin film thickness in alocal region describes
the device sengitivity to fabrication irregularities. . . . . .. .. ..
Schematic of a butt-coupled directional coupler. When light enters
the directional coupler it splits into the even and odd supermodes,
which then propagate down the waveguide shifting in and out of
phase with one another. At the transition plane, the superposition
of the symmetric and antisymmetric supermodes of the directional
coupler have a high degree of overlap with the feeder mode. . . . .
Superposition of the exact even and odd supermode obtained from a
finite element mode solver and propagated as EqQ. (4.22) at awaveg-
uideheightof 100nm. . . . . . . . . . .. ... ...
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Figure 4.8:

Figure 4.9:

Figure 4.10:

Figure 4.11:

Figure 4.12:

Figure 4.13:

Figure 4.14:

Figure 4.15:

Figure 4.16:

Dispersion of the coupling coefficient equi-spaced from 1530 nm to
1610 nm, calculated with Eq. (4.23) and the first term of Eq. (4.25),
for a waveguide of dimensions 538 x 236 nm and separation dis-
tance of (@) 250 nm, (b) 150 nm, and (c) 50 nm. Also included is
the percentage of the power coupled into each mode, (a2, a?), for A
=1530nmand A =1610nm.. . . . . . . .. ... ...
(a) Dependence of coupling length on the waveguide separation and
wavelength. (b) The additional coupling length due to the contribu-
tion of thewaveguidebends. . . . . . . ... .. .. ... .....
Scanning electron microscope (SEM) image of the waveguide cross-
section and first four directional couplersfor both the hydrogen an-
nealed and double oxidizedwafers. . . . ... ... ... ... ..
Wavelength dependent coupling coefficient for the hydrogen an-
nealed for the first three couplers as the coupler pitch is held con-
stant and the waveguidewidthisvariedby +£ 50nm. . . . . .. ..
Wavel ength dependent coupling coefficient for the double oxidized
wafer for thefirst three couplers as the coupler pitch isheld constant
and the waveguide widthisvariedby = 50nm. . . . . . . ... ..
Superposition of the first three modes of a multimode waveguide,
obtained from afinite element mode solver and propagated as Eq. (4.31)
at awaveguideheightof 100nm. . . . .. .. ... ... .....
(a) Dispersion of the coupling coefficient of the fused waveguidefor
different widths. (b) The percentage of overlap between the feeder
waveguide and each of the modes of the multimode waveguide for
differentwidths. . . . . . .. . ... . .
In the transfer matrix technique a CROW is decomposed into sub-
matrices which characterize the coupling regions S,,,,, and phase
regions P,,,,. The periodicity of the CROW, A, is defined in terms
of the ring radius, R, the waveguide width, w, and the separation
distanceg. . .. .. ... .
Intensity maps for both an apodized and a non-apodized 35-ring
CROW. Note that for the individual rings, the resonators may un-
dergo significantly different enhancements . . . . . . ... .. ..
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Figure4.17:

Figure 4.18:
Figure 4.19:

Figure 4.20:

Figure 4.21:

Figure 4.22:

(a8 Simulation of the transmission spectrum of a disordered 235-
ring CROW composed of silicon nanowires of 200 nm height at
500 nm width, with 3 dB/cm propagation losses. The disorder was
simulated by adding random Gaussian noise to the inter-resonator
couping coefficients of Eq. (4.32) such that their standard deviation
(STD) was defined by, 6« = 0.02. Similarly the resonator size was
perturbed such that the STD in the phase was 6¢ = 0.01. (b) The
simulated group delay of the disordered CROW. (c) Intensity vari-
ations of the individual micro-resonators. For a given wavelength,
neighboring resonators in a CROW may undergo significantly dif-
ferent responses. The section outlined by the dashed-white box is
shown in Fig. 4.18. In Chapter 6, using infrared imaging, the inten-
sity map of a 235-ring CROW isdirectly measured. . . . . . . . ..
Zoomed in region of the white-dashed box in Fig. 4.18(c), showing
the high spectral dependence of theindividual resonators. . . . . .
Comparison of simulated and measured, transmission and group de-
lay, spectraof a35-ringCROW . . . . .. .. ... ... .....
Simulation of the impulse response of a disorder free CROW asthe
attenuation of the constituent silicon nanowireswas ramped up. The
location in time of the peak response is a measure of the CROW’s
“band-center” delay. . . . ... ... ...
Simulation of the response of a 35-ring CROW on an incoming data
stream as the carrier wavelength is tunned throughout the CROW'’s
passband. (@) (Black) Initia data stream to be sent through the
CROW. (Blue) The data stream after it has propagated through the
CROW, where the carrier frequency is tuned to different locations
in the band of the CROW. (b) The frequency domain response of the
CROW (green), aong with the frequency domain representation of
the data stream (blue) at different carrier locations. . . . . . .. ..
Simulation of the eye diagram for a RZ data stream propagating
through a 35-ring CROW, tuned to band center. The data stream
is shown in blue, and the CROW in green. Disorder was increased
in the CROW by increasing the STD between the inter-resonators
coupling coefficients and propagation lengths by: (a) dx =0, d¢ =
0,(b) 6x = 0.02, 6¢ = 0.008,(c) x = 0.06, 6¢ = 0.02,(d) 6x = 0.1,
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Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure 5.4

(8) Refractive index profile in the transverse plane n(x,y) for an N

arrayed-waveguide structure. (b) The same refractive index profile

may be decomposed, mathematically, into the sum of parts, An? =

n? —n?, each of which appearsin integrals equation for the coupling

coefficients. For the structures considered in here, h = 500 nm, w

= 200 nm, and s varies over the range 50 nm to 1m. For these

waveguide widths and heights (similar to those in Ref. [19]), the

polarization direction of the principal transverse component of the

electric field isindicated for the (quasi) TE and TM modes.

TE Polarization E,: The modes of an N = 5 coupled waveg-

uide array for A = 1550 nm, calculated using coupled-mode theory

(blue solid lines), and a finite-difference frequency-domain algo-

rithm (black crosses). The coupled-mode theory calculations were

done by using the effective index method, calculating the overlap

integrals, solving Eqg. (5.9), and reassembling the field. Waveguide

height = 500 nm, width = 200 nm, separation = 200 NM, N =

3.47, and n.,q =1.46. Under nearest neighbor coupling, the scaling

relationship predicted by Eq. (5.11) adequately predicts the field

amplitudeswithineachwaveguide. . . . ... ... ... ... ..
TM Polarization F,: The modes of an N = 5 coupled waveguide
array, calculated using coupled-mode theory (blue solid lines), and

afinite-difference frequency-domain algorithm (black crosses). The
coupled-mode theory calculations were done by using the effective
index method, calculating the overlap integrals, solving Eq. (5.9),

and reassembling the field. Waveguide height = 500 nm, width =

200 nm, separation = 1um, ng.. = 3.47, and n..q =1.46. Under

nearest neighbor coupling, the scaling relationship predicted by Eqg.

(5.11) adequately predictsthe field amplitudes within each waveguide.
Error versus N: Exact eigenvalues of atridiagonal symmetric ma-

trix of size N were perturbed by values chosen from a uniform ran-

dom distribution with variance chosen to be ten percent of the first

eigenvalue. The variance and mean of the reconstructed nearest-

neighbor coupling and next-to-nearest-neighbor coupling coefficients

are plotted, calculated from a distribution of coupling matrices gen-

erated by 10° iterations, showing that Eq. (5.18) is a good predictor

of thereconstructionaccuracy. . . . . . . ... ... ... .....
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Figure 5.5:

Figure 5.6:

Figure 5.7:

Figure 5.8:

Ratio of coupling coefficients for different separation distances ex-
tracted from Eqg. (5.9), which was reconstructed using an algo-
rithm described in the text. (&) TE Polarization An exponential
fit expected from a simple nearest-neighbor-coupling theory holds
throughout this regime. (b) TM Polarization At a separations less
than 450 nm, the ratio deviates significantly from the predicted be-
havior. (c) TE Polarization The ratio of cross coupling coefficients
show that the reconstructed coupling matrix M becomes asymmet-
ric asthe waveguide separation is reduced. (d) TM Polarization The
asymmetry of the coupling matrix begins at alarger separation.
Left column: TE Polarization, and Right column: TM polarization.
Effective index of the five supermodes for different separation dis-
tances with n.,,. = 3.47, and (a,b) ng.q =1.46, (c,d) no.q = 1 (ef)
n..q = 2.05. For each case as the separation between the waveg-
uides increases, the effective indexes of the modes converge to that
of the singlewaveguide. Thesevaluesare (@) n.g = 2.36 and (b) n.g
= 1.66 for oxide cladding, (C) n.g = 2.24 and (d) n.s = 1.07 for air
cladding, (€) n.g = 2.56 and (f) n.¢ = 2.26 for nitride cladding. The
shaded regions indicate > 5% deviation of nes for the m=3 super-
mode from its theoretical value, which as discussed in the text, is
predicted by CMT to be independent of the separation distance.
TM Polarization E,.: The field profile of the fifth eigenmode in the
first waveguide. When the separation is decreased below 450 nm,
the peak of the field in the high-index rib indicated by the dotted red
linein (a) isno longer centered, and the mode shape is considerably
altered, thereby changing both x and ngs. Consequently, CMT can
no longer accurately predict the modecoupling. . . . . . . .. ...
TE Polarization £,: Using the exact solution from a FDFD simula-
tion of a single waveguide, the horizontal cross section is extracted
and five copies are shifted from one another so that their separation
corresponds to a waveguide separation of 80 nm. (a) These individ-
ual waveguide modes are scaled in accordance with Eqg. (5.11) for
the fundamental mode (m=1). (b) The summation of the individual
waveguide modes; superimposed isthe FDFD solution of the entire
five waveguide structure. (c) Zoomed in to just the first waveguide.
CMT and FDFD show a shift of the mode towards the center of the
waveguide structure. (d-e) The fifth mode, both CMT and FDFD
show a shift towards the edge of the waveguide structure however
FDFD shows ashift of greater magnitude. . . . . . . ... ... ..
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Figure 5.9:

Figure 5.10:

Figure 5.11:

Figure 5.12:

Figure 5.13:

Figure 5.14:

Figure 5.15:

Displacement of the field peaks for each of the five supermodes
shown in Fig. 1 as the separation distance is varied. As the sep-

aration is reduced, the modal profiles become strongly perturbed,

while at large separations each of the field peaksis exactly centered

within its dielectric boundaries. The modal profiles were obtained

from afinite difference frequency domain algorithm [24]. . . . . .
Decay constant of the five supermodes for different separation dis-
tances with height 500 nm and width 200 nm. The evanescent tail is
fitted around 50 nm from the edge of the waveguide. Also included
is the dlab waveguide predictions (solid-line) for each of the five
supermodes, offset by a constant, p, as described in the text.

(a8 Method of extracting the spatially dependent decay constant:
The evanescent tail isfitted at the center cross section of an isolated
single waveguide (height = 250 nm), every 25 nm around 50 nm to
an exponential form, e?®*, (b) A spatial dependence of the decay
rate is introduced due to the vertical confinement of the waveguide.
(c) Asthe height of the waveguideisincreased, the maximum decay
rate, po, approaches the slab waveguide solution, po. . . . . . . . .
Spatially-dependent decay rate of the five supermodes at a separa-

tion distance of 80 nm, showing the super-exponential decay of the

fields close to the high-index contrast dielectric boundaries. Far-

ther away from the boundaries, the fields are well described by an

exponential decay constant p'7” (dashed-ling). The isolated, single
waveguide solution (black crosses) is located dlightly below the m

=3supermode. . . .. ..
(a) Spatially-dependent decay rate of the five supermodes at a sep-

aration distance of 80 nm, and a height of 500 nm. Note that the

supermodes decay to different assymptotic values. (b) By increas-

ing the separation between the waveguides, the spatial dependence

of the decay rate remains—that of the single isolated waveguide—

however, each mode decays to the same asymptoticvalue. . . . . .
(a) By increasing the height of the waveguide, each of the five su-

permodes no longer has a spatially dependent decay rate, however,

at a separation of 80 nm each of the supermodes decays at a differ-

ent (constant) rate. (b) For a 400 nm separation and a4 pm height,

the supermodes have no spatial dependence, and decay at the same

rate (and thus satisfy therequirementsof CMT) . . . . . ... ..
Comparison of the modes generated at a separation of 80 nm from

both traditional CMT and the new basis set; the latter accounts for

the spatial dependence of the field decay coefficients. To obtain the

composite field, five copies are made of an individual waveguide

mode, laterally shifted from one another, scaled according to the

usual supermode ratios[25, Eq. (13)], and summed. . . . . . . . ..
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Figure 5.16:

Figure 6.1:

Figure 6.2:

Figure 6.3:

Figure 6.4:

Figure 6.5:
Figure 6.6:

Figure 6.7:

(8) FEM solution of the fundamental supermode of a silicon-on-
insulator arrayed waveguide at a separation distance of 80 nm. The
solid black line representsthefield profiles shownin Fig. 6, whereas
the region indicated by the white dashed lines represents the decay-
ing region of the supermode. (b) Therate of decay of the fundamen-
tal supermode in the region indicated by the white dashed lines in
(a), comparing the accuracy of CMT, NA-CMT with that of FEM.
(c) FEM solution of the fifth supermode. (d) Calculated decay rate
of the region indicated by the dashed linesin (c), showing the im-
proved accuracy of NA-CMT compared withCMT. . . . . ... ..

Typically resonator structures, such as this side coupled integrated
spaced sequence of resonators, are probed by measuring each of
the ports separately, where the structure itself is treated as a “ black
box,” whereit is unknown if measured resonance variations are due
to a defective resonator, output coupler,etc. . . . .. ... ... ..
(@) A typical ring resonator: light within the resonator will become
enhanced for wavelengths on resonance. (b) Infrared image of the
resonator when excited by aresonant wavelength. . . . . . . .. ..
(a) Finite difference time domain simulations at four different time
steps, showing the enhancement of energy in the ring for resonant
wavelengths. (b) Infrared image of a circuit, excited with the reso-
nant wavelength of threeringresonators. . . . . . .. ... .. ..
Using the camera settings reported here, light was collimated onto
the infrared camera for different (known) power levels. Dividing
each pixel by the sum of all pixels gives the percentage of power
falingontoeachpixel. . . . .. .. ... ... ... ........
Correlation between camera ADU to the power hitting each pixel
(a) Optical microscope image of 10-ring SCISSOR. (b) IR image of
SCISSOR when excited by broadband source. (c) Using a tunable
laser source, comparison of spectra obtained at the ten drop ports
using IR images (blue line) and spectra obtained from detected drop
port power using fiber-coupling (green line). The spectrum for Ring
10 was obtained by measuring at the encircled waveguide defect. . .
Top: Fabrication error that resulted in only a few nanowatts being
measured using a lens-tipped fiber at the end-facet. Middle: The
fabrication error “lights up” when light is coupled into the device
and then imaged using an infrared camera. Bottom: Comparison of
the spectral characteristics probed with theinfrared camera, withthe
nano-Wattpowerl evel sthatweremeasuredusi ngthel ens-ti ppedfiber.

XiX

134

135



Figure 6.8:

Figure 6.9:

Figure 6.10:

Figure 6.11:

Figure 6.12:

Figure 6.13:
Figure 6.14:

Figure 6.15:

(a) Spatial dependence on the transmission spectrum of a resonator
on the coupling alignment using alenstipped fiber and aprogrammable
piezo controller. The piezo controller was trandlated a few hundred
nanometers, where a wavel ength scan was then performed, and the
process repeated. (b) Modal size of the radiated mode. Measured
by fixing the laser at a single frequency, and taking power mea-
surements while two piezo controllers were scanned in the plane
perpendicular tothewaveguide. . . . . . ... ... ... .....
Binary Matrix used to mask and average over each of the rings sep-
arately. ... e
(@) IR image of Rings 1 and 2, at an input wavelength of 1533.90
nm, used towards obtaining spectra for through port, drop port and
circulating (' Ring’) powers, normalized by the input, for (a) Ring 1
and(b)Ring2. . .. ... ... . ...
Infrared image of a4.15 cm long straight waveguide that folds upon
itself seven times. As discussed in the text, the waveguide bends
scatter a significant amount of light compared with the straight sec-
tions. Also, the inverse taper coupler shows significant scattering at
the silicon/SU8 transition regions. The bottom right corner shows
light being scattered off of the output coupler due to reflections and
mode-missmatch. . . . . . . ...
(d) Method of extracting the spectral characteristics of a 35-ring
CROW. 35 single-ring binary matrices (shown is their summeation),
are superimposed onto the wavelength resolved infrared imaging
dataset. (b) Enlarged image of a semi-transparent mask superim-
posed onto the 35-ring CROW. (c) Simulation of how the field pro-
files of adisorder-free CROW would look. (d) Wavelength resolved
IR image of a35-ring CROW: each of the maskswere averages over
their corresponding ring at each wavelength to produce the image
SNOWN. . . . e
Wavelength resolved infrared image of a 235-ring CROW. . . . . .
Typical dataset, measured near the beginning of the CROW shown
in Fig. 6.13. Asshown, one may extract the response of theindivid-
ua microrings of a CROW using infrared imaging. Comparing the
4th and 14th ring in this dataset, one can that the individual ringsin
a CROW undergo very different spectral responses. . . . . . . . ..
(@) Transmission spectraa 35-ring CROW on chip W2F9. (b) Band-
edge transmission response of the CROW as outlined by the green-
box in (a). (c) Wavelength resolved infrared image at the band-edge
using an ultra-fine 1 pm step-size. (d) Response of the CROWSs for
the localized mode outlined by the green box in (c). Shown in the
top isthe actual IR image of the CROW at thiswavelength. . . . . .
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Figure 6.16:

Figure 6.17:

Figure 6.18:

Figure 6.19:

Figure A.1:

(&) Top Axis: Measurement of the group delay ripple (ps) of al.2m
long fiber patchcord, over a 40 nm wavelength span in the L-band,
for increasing number of averaged scans. Bottom axis: Group delay
ripple (ps) a device-under-test consisting of 76 m of single-mode
fiber and Erbium doped fiber, and a programmabl e attenuator (JDS
Uniphase HA9), whose setting was increased sequentially to sm-
ulate the effect of decreased coupling efficiency. (b) Measurement
of the group delay ripple (ps) of a4.15 cm single-mode silicon-on-
insulator waveguide over a 40 nm wavel ength span in the L-band.
(@) Light was coupled on and off the chip using a pair of lensed
tapered optical fibers mounted on piezoelectrically actuated align-
ment stages. Asin Fig. 1, the programmable attenuator setting was
increased in steps of 10 dB to simulate the effect of decreased cou-
pling efficiency. (b) Table of of the averaged GD rippleincrease, as
aconsequenceof usingtheEDFA. . . . . . . . ... ... ... ..
(a) Improvement in the standard deviation and of measured group
delay, i.e. the group delay ripple, as a consequence of using the
EDFA to boost the detected signal power. (b) Histograms of the
normalized group delay 7 = GD/(GD), in three cases. (1) un-
amplified measurement at 0.5 nW, (2) which is then boosted, using
an EDFA, to 20 nW, and (3) compared with a measurement that
was neither amplified nor attenuated. The comparison shows that
amplification is successful at measuring the correct group delay rip-
ple statistics of a waveguide that would otherwise be too lossy to
measureaccurately. . . . ...
Example of measurementsof (a) the amplitude and (b) the group de-
lay versus wavel ength of asilicon microring coupl ed-resonator opti-
cal filter which has adelay of about 135 ps at band-center [25]. No-
tice that poor coupling through the device affects the amplitude and
group delay response differently. Whereas the unamplified inser-
tion loss measurement is mostly spectrally accurate but dynamically
compressed, i.e., the peaks and valleys line up with the more accu-
rate amplified measurement versus wavelength, meaningful mea-
surements of group delay are nearly impossible without amplifica-
tion, inaccordancewithFig. 3.. . . . . . ... ... ... .....

Users input waveguide (array or single) device dimensions, materi-
as, wavelength, desired discretization, and program solves for the
transverse eigenvectors and eigenvalues, (electric field and propaga-
tion constant), with Dirichlet boundary conditions. Also calculates
waveguide group index, field concentration, and group velocity dis-
persion with built in Sellmeier equationsfor Oxide, Silicon Nitride,
PMMA, and Silicon. For a mathematical description, see Section 3.1
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Figure A.2:

Figure A.3:

Usersinput slot location of the tunablelaser source (Agilent 81640A),
power sensor (Agilent 81633A or Agilent 81634B), and desired
wavelength range, step size, integration time, input power, scan
speed, and scan type (step or continuous). The program then runs
the scan and returns wavelength and power data into an array in
Matlab. Has the option in step scan to record 12-bit images at each
wavelength, follow the TLS with an optical tunable filter (Santec
OTF-910 (RS232)) for use with an inline EDFA, program Piezo
controllers (RS232) for micron scale position vs. wavelength scan,
and send the user a text message to his cell phone when scan com-
pletes. . . . ..
The program facilitates analyzing >5 Gb of spectradata of 22 chips
each with 5 sets of coupled resonator optical waveguides, returned
from the LUNA OVA. It aso displays user comments noted while
the devices were being measured, the amplified spontaneous emis-
sion source (ASE) measurements, and the device length of each
MeasUurement. . . . . . . . o e
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Table5.1:

Table 6.1:

LIST OF TABLES

An example of areconstructed coupling (M) matrix from FDFD cal-
culations of eigenmodes and eigenvalues. Si/SiO,, TE polarization,
separation s = 350 nm, By, = 2.26128 (27/\). Although the nearest-
neighbor coupling coefficients dominate, the self-coupling and off-
tridiagonal coupling terms are non-zero.

Extracted Resonator Parameters
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Silicon-on-insulator Nanophotonic Devices
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Silicon photonicsistechnol ogically attractive because of the possibility of mono-
lithically integrating multi-element photonic waveguide circuits with complex electronic
circuits. To reduce the footprint of the photonic components, it is possible to fabricate
strongly-coupled waveguides and resonators, e.g., with sub-100 nm separation gaps.
The most insightful design tool used for photonic devices, coupled mode theory (CMT),
is considered suspect for high-index contrast strongly coupled waveguides. Using a nu-
merically assisted coupled mode theory (NA-CMT) developed for arrayed waveguides,
it was shown how one may modify the basis parameters within CMT to calculate more
accurate modal profiles and more accurate estimates of the value and the wavelength
dependency (i.e., dispersion) of coupling coefficients. Traditional CMT inaccurately
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predicts both the field peak locations and the exponential decay rates of the field en-
velopesin the cladding regions.

Examples of strongly-coupled silicon photonic devices based on waveguides
and couplers include giant birefringence multi-slot waveguides, and large-bandwidth
coupled-resonator optical waveguides (CROWS) consisting of several hundred coupled
silicon microring resonators. Numerical techniques will be reported for accurately sim-
ulating the transmission properties of strongly coupled arrayed waveguides and disor-
dered CROWS in excellent agreement with experimental measurements on fabricated
devices.

Experimental methods were developed for the accurate measurement of trans-
mitted intensity and group delay of silicon nanophotonic waveguides and multi-resonator
circuits including CROWSs and side-coupled integrated spaced sequence of resonators
(SCISSORS). Therole of external amplification in reliably measuring waveguide trans-
mission using the method of swept wavelength interferometry was studied in detail.
Also, atechnique of swept-wavelength infrared imaging was developed and applied for
guantitative diagnostics of multi-resonator circuits which need not have accessible drop
ports on every device.
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1 Silicon Photonics

| believe there will be a world market for approximately five computers.
—Thomas Watson, President of IBM, 1943

Within the coming decade, the circuitry embodied by a rack of today’s network
serverswill in theory fit onto a single silicon chip half the size of a postage stamp.
—Michal Lipson, Nature Photonics, 2007

1.1 Introduction to Silicon Photonics

Photonics is suitable for energy-efficient interconnects in large-scale computer
systems, including future multi-processor chips. The past decade has seen considerable
progress with regard to demonstrating most of the active and passive components nec-
essary for afully integrated silicon-on-insulator photonic network on a chip [1]. Such
a network would require access to a suitable light source, an on-chip electrically driven
modulator for encoding an electrical data stream onto optical packets of energy, a net-
work of passive and active devices responsible for switching, buffering, routing and
possibly regenerating photonic signals, and finally efficient and large gain-bandwidth
product on-chip detectors to detect and convert the optical energy back into electrical
data.

Research in silicon photonics is motivated by the fundamental limitations and
performance costsimposed by the current method of using copper interconnectsto trans-
port information [2, 3, 4]. In modern computing, interconnects consume 80% of a mi-
croprocessor’s power [5], and while both optical and electrical interconnects transport
information on electromagnetic waves (using photons), electrical interconnections on



chips are currently limited in providing adequate speed and performance—determined
by the resistance, inductance, and capacitance of the line [6, 7]. The bit rate for send-
ing information in electrical transmission lines is thus being fundamentally limited by
material constants, imposing a prohibitive scaling relationship determined by the aspect
ratio and length of thewire, B ~ ByA/I?, where B, ~ 10", [ corresponds to the length
of the wire, and A the area [8]. As such, optical interconnects—which do not have
an equivalent aspect ratio scaling—are poised to first replace longer interconnects for
transporting larger bandwidths[5].

This isn't the first time in which an alternative interconnect has been needed
to meet the demands of increased computing speeds. From the 1960s to the 1990s
aluminum was considered the conductor of choice, even though it was well understood
that copper provided lower resistance, higher current density, and increased scalability.
It wasn't until the 1990s that many of the fabrication hurdles preventing copper from
being used on a CMOS line were overcome [9, 10, 11]. And while research in waysto
improve the transmission characteristics of copper interconnects is still very much an
active field [12], researchers are again running into fundamental limitations as copper
interconnects reach their maximum potential, again requiring the development of new
methods of transporting data.

The use of high-index contrast silicon-on-insulator optical waveguidesis partic-
ularly appealing in this role, as undoped silicon has very low intrinsic material |osses
at telecommunication wavelengths (0.004 dB/cm), and a silicon waveguide intercon-
nect would have higher bandwidth, smaller interconnect delays, and better resistance
to electromagnetic interference, than a copper interconnect. Also, the large index con-
trast between the core and the cladding allows for increased device density, strong con-
finement, and sharp bending radii, compared to other types of waveguides, e.g., doped
glass, or polymeric waveguides. But perhaps the most appealing aspect of the silicon-
on-insulator photonics platform is its compatibility with the CMOS process used for
fabricating electrical devices, allowing optics and electronics to be realized on the same
chip[13].

This dissertation focuses on novel forms of strongly coupled waveguides, how-
ever, operation of optical interconnects with these added benefits requires several other



mandatory additional optical components which will be breifly reviewed. Foremost, in
order to transport optical signals from one location on a chip to another, they must first
be generated via a coherent optical light source.

1.1.1 The Silicon Laser

By far the most illusive optical device to realize in silicon has been the laser
[14]. The reason being that, unlike direct-bandgap semiconductors such as GaAs and
InP where radiative recombination can occur as a two particle process, silicon’s indi-
rect bandgap only allows for emission to occur as a result of a three-particle process,
requiring a third particle—usually a vibrational wave of the silicon’s crystal |attice—
to balance the conservation of momentum requirement. As such, only about one in a
million excited electrons in bulk silicon will release a photon, compared with GaAs
(used in DVD players), where the efficiency is approximately 10,000 times larger due
to its direct-bandgap and steep upper bands [15]. While aggressive efforts have been
made to demonstrate lasing in erbium-doped silicon and aso silicon nanocrystals—
where quantum confinement is used to relax momentum conversation requirements—
the first demonstration showing lasing in silicon utilized the Raman effect, which is
10* times larger in silicon compared with optical fibers [16, 17, 18]. The Raman &f-
fect involves adding energy to the vibrational modes of the silicon lattice via an optical
pump—which allows a weak beam at a frequency resonant with the Stokes transition,
propagating through the silicon, to then become amplified.

In 2004, thefirst silicon Raman laser emitted light at 1675 nm with a 30 ps pulse
width, a 25 MHz repetition rate, using a9 W pump at 1540 nm [18]. The silicon laser
consisted of a 2 cm long rib waveguide, where feedback was provided by an optical
fiber. While the pump and lasing wavelength was insufficient to excite electronsinto the
conduction band—the bandgap of siliconis 1.1 eV—afew electrons do become excited
from a process called two-photon absorption (TPA). TPA isacommon source of lossin
nonlinear silicon photonics and involves the combination of energies from two photons
to excite electrons into the conduction band. Once excited, these electrons contribute
to another deleterious effect common to silicon: free carrier absorption (FCA). FCA is
a non-radiative process in which electrons in the conduction band may simply absorb



photons by being excited to a higher energy level within the conduction band [19, 20].
Avoiding this additional FCA loss term was the motivation behind using such a low
repetition rate—requiring that the pulse period be larger then the recombination time—
and a pulse width shorter then the carrier lifetime, so asto render FCA effectsirrelevant.
However, such a technique merely avoids the problem, which had to be adequately
addressed for continuous wave operation.

In 2005 Intel demonstrated the first continuous wave Raman laser operating at
1686 nm and pumped at 1550 nm [21]. The laser cavity was formed by a 4.8 cm long
waveguide, with a broadband back reflector with a reflection coefficient of 90%. The
front reflector was a dielectric layered stack that provided 71% reflectivity for the lasing
wavelength and 24% for the pump. In order to overcome losses associated with TPA
induced FCA, ap-i-n diode was formed by implanting boron and phosphorous atoms on
opposite sides of the silicon ridge waveguide, separated by 6 xm. Then, when avoltage
is applied to aluminum contacts residing above these doped regions, an electric field
is generated between the p- and n-doped regions, sweeping out the electron-hole pairs
in the silicon waveguide created by TPA and effectively reducing the carrier lifetime
from approximately 10 nsto 1 ns. While it was shown that this number can be reduced
further by proper device design [22], it is fundamentally limited by the speed in which
electrons can move (one thousandths of the speed of light). The first continuous wave
silicon Raman laser had a threshold of 280 mW of pump power when a5 V bias was
applied, and 180 mW with a25V bias.

Both the pulsed and continuous-wave silicon Raman lasers constituted a signif-
icant advancements in the field of silicon photonics, however, they suffered from not
being directly applicable to modern silicon-on-insulator photonic circuits. Thisis be-
cause both lasersrequire an external coherent optical pump to be coupled into the silicon
waveguide, which resides off the chip.

The huge demand for compact electrically pumped lasers on a SOI chip, com-
pounded with the incredible obstacles imposed by the silicon materia platform, has
led many researches to avoid the “silicon problem” altogether [23]. Perhaps the most
promising and advanced device functionality has been demonstrated using “hybrid sil-
icon lasers,” which consist of wafer bonding compound semiconductors to silicon-on-



insulator substrates [14]. The compound semiconductors provide the necessary gain
medium, while the optical mode is guided in the silicon waveguide. Both Fabry-Perot
and micro-resonator based hybrid lasers have been demonstrated [24, 25]. Recently, in-
dium phosphide hybrid lasers provided the optical source for the first demonstration of
a 50 Gb/sintegrated link, which consisted of four lasers modulated at 12.5 Gb/s, where
the individual wavel engths were determined by etching lithographically defined grating
periods into the silicon waveguides [26]. Each hybrid laser measures about 1 m wide
and 800 m long. Once a coherent light source is generated, it must then be transformed
into discrete packets of energy for transporting information.

1.1.2 The Silicon Modulator

Perhaps the biggest power penalty for switching from electrical to optical inter-
connects is the need to perform electrical to optical conversion at both the transmitter
and receiver. In order to compete with electrical interconnects, power consumption
should reach levels comparable to 1 pJ per bit [5].

The most common commercial modulators for telecommunications rely on ei-
ther the Pockles effect or the Franz-Keldysh effect. For the former, an applied electric
field on a material induces a change in the rea part of its refractive index, and for
the latter, an applied electric field changes the band-gap energy. For photons near the
band-edge this leads to an increase in the absorption coefficient (the applied electric
field, however, does not usually excite carriers). Modulators based on the Pockles effect
are usually incorporated in a Mach-Zehnder configuration, in which a refractive index
change from an applied voltage induces a phase shift in one arm or both arms (push
pull), causing the electric field in one arm to become in phase or out of phase with re-
spect to the other arm. As such, when the two waves recombine, they will continuein the
waveguide if they are in phase, and form a radiation mode—Ileaving the waveguide—if
they are out of phase. Another common technique for achieving intensity modulation
using the real part of the refractive index is by changing the resonant wavelength or the
coupling coefficient of micro-cavities, thus allowing a fixed frequency to be switched
on and off resonance, varying the optical intensity at the through and drop port of the
resonator [27].



At telecommunication wavelengths, both of these effects in silicon are very
weak, and have led researchersto look for alternative methods of electrically manipul at-
ing awaveguide's effective index. Silicon does provide alarge thermo-optic coefficient,
dn/dT = 1.86x10~* /K at 300 K, which has proven useful for many advanced active
silicon devices [28]; however, its modulation rate is too slow for the data speed require-
ments of modern interconnects. In 1987 Richard Soref and Brian Bennett evaluated the
change in both the real and imaginary parts of the refractive index in crystaline-silicon
for different carrier concentrations [29]. This eventualy led to the realization of many
different devices that electrically manipulate the free carrier concentration within asili-
con optical waveguide, known as the plasmadispersion effect. This effect enabled some
of the first silicon modulators capable of realizing speedsin the GHz regime.

In 2007, IBM demonstrated an ultra-compact silicon modulator occupying a
length of only 200 pm, capable of operating at 10 Gb/s and consuming only 5 pJbit
[30]. The device consisted of 550 x 220 nm silicon nanowires which composed a Mach-
Zehnder, allowing for broadband spectral operation, where one arm was doped on both
sidestoformap™-i-n* diodealowingfor carrier injection. Compared with significantly
larger predecessors [31], operation was realized for such a small device length by uti-
lizing the high optical confinement provided by silicon nanowires, allowing for strong
overlap between the optical mode and the injected free carriers.

While the device footprint size may still be aggressively scaled down further
using ring resonators, there is a significant price to pay in terms of operational band-
width [32], as the Lorentzian response of a typical micro-resonator is on the order of
only a few hundred pico meters. Whereas Mach-Zehnder configurations usually allow
for operations encompassing approximately 20 nm. Further, the resonant wavel ength of
amicro-resonator is incredibly sensitive to temperature fluctuations, requiring thermal
stabilization or atunable laser source to compensate. While state of the art silicon mod-
ulators using the plasma dispersion effect operating at 40 Gb/s have been demonstrated,
using atraveling wave design [ 33], the need for higher and higher communi cation speeds
will continueto drive researchersto find new and creative methods of modulating optical
sources.

Once information has been encoded onto an optical stream of pulses, advanced



functionality responsible for routing and manipulating optical signals will be required
to deliver the signal to its desired location, where it then must be converted back into an
electrical data stream.

1.1.3 Detecting light

Likethe silicon laser and the silicon modulator, silicon imposes prohibitive con-
straints when it comes to optical detection at telecommunication wavelengths. The rea-
son being, that silicon absorbsvery few photonsin thisregion, which isalso what allows
it to perform so proficiently as an optical waveguide. In order to realize optical detection
on a SOI chip, necessary for any transmission link, researches had to once again ook
towards hybrid solutions.

There is currently a significant amount of interest in graphene as a candidate
for the next generation of photodetectors, and the first optical link using graphene was
recently demonstrated operating at 1550 nm with a responsivity of 6.1 mA/W [34].
Graphene consists of only a single layer of carbon atoms arranged in a honeycomb
lattice, and is expected to allow optical detection at speeds as high as 500 GHz [35].
However, research in photodetectors for silicon optical interconnects is currently being
dominated by germanium photodetectors [36].

While germanium is significantly easier to integrate with silicon, compared with
many other common detectors, numerous obstacles had to be overcomein order to com-
pensate for germanium’s 4.2% lattice miss-match with silicon. Progress in this area
has allowed the development of many high quality films and devices free of dislocation
defects [37, 38, 39]. Recently, significant advances in germanium avalanche photode-
tectors were made at IBM [40]. Using a rapid melting growth technique, a 140 nm
germanium layer was grown on top of athin layer of SION, which resides on 100 nm
of silicon. As germanium is one of the few materials with a refractive index higher then
silicon (n = 4), light is pulled up into the thin gemanium layer alowing for high modal
overlap. Thisthin layer thus allows for operational speeds greater then 30 Ghz, at alow
bias voltage of 1.5 V. For thisdevice, light is coupled into the detector directly from the
routing waveguide, and an avalanch gain of 10 dB was obtained.

This past decade has indeed seen tremendous progress in developing the nec-



Figure 1.1: (a) Infrared image of light propagating through a silicon nanowire, coupled
into the waveguide using lens-tipped fibers. (b) Scanning electron microscope image
of the cross-section of a silicon nanowire, which consists of asilicon core (n = 3.47), a
SiO, substrate (n = 1.46), and an air superstrate (n = 1). The height of the waveguideis
250 nm and the width 500 nm. (c) Finite element simulation of the transverse electric
mode E,., with an effective index of 2.49. (d) Finite element ssmulation of the transverse
magnetic mode E,,, with an effective index of 1.83.

essary components for optical computing. The next section, and the majority of this
dissertation, will be focused on novel forms of waveguides. Before embarking on adis-
cussion of new strongly coupled waveguides, and deviations from previous theories, it
isbeneficial to first give areview of afew fundamental concepts.

1.2 Fundamentals of Optical Waveguiding

Once a coherent light source has been transformed into binary packets of energy,
they must be guided and routed from one destination to another. The last sections laid
out several prohibitive constraints imposed by the silicon materia platform for active
devices, however, guiding electromagnetic fields at telecommunication wavelengths is
where silicon truly shines. The incredibly low material losses at telecommunication
wavel engths, compounded with one of the highest index contrasts available, makes sili-
con an excellent material for guiding photonic signals, allowing for bending radiuses on
the order of just afew microns[41].

Fig. 1.1(a) shows an infrared image of a 5.9 mm long silicon waveguide with a



500 x 250 nm cross-section, guiding light around two 180 degree bends with an 80 um
radius. Light is coupled into and out of the chip using lens-tipped fibers. A scanning
electron microscope image of the cross-section of the silicon rib waveguide is shown
in Fig. 1.1(b). For silicon nanowires, guiding light is achieved through total internal
reflection.

In general form, optical waveguides and resonant structures are often charac-
terized in the frequency domain, where the electromagnetic fields are described as sinu-
soidal functionsof time at asingle optical frequency w, and that the structure is assumed
invariant in the direction of propagation, z:

E = E(x,y)e'“72). (1.2)

—

E(z,y) describes the confinement of the light for a given mode within the pro-
vided waveguide's refractive index profile. S is the propagation constant of the elec-
tromagnetic mode, defined as 5 = MT“ where ) is the free-space wavelength. The
effective index, n. s, represents the wavel ength scaling of the propagating mode due to
the waveguide, whichisdirectly proportional to the mode’s phase velocity, v, = ¢/n.ys.
To first order, one may think of the effective index as an average of the waveguide'sre-
fractive index profile, weighted by the concentration of light in each of the dielectric
regions. For example, optical modes in which the light is mostly confined in the silicon
waveguide will have a higher effective index, closer to that of silicon (ng; =3.47 a A =
1550 nm), compared to a mode near cutoff, which will have an effective index close to
that of oxide (ng;o, = 1.46). In general, for an optical mode to be guided it’'s effective
index must reside in between that of the core and the cladding, ng,o, < N.rs < Ng;.

Aswill be detailed in Chapter 4, one obtains the dispersion relationship, 5 (w),
of an optical waveguide's mode by calculating the propagation constant as a function of
the normalized frequency. For high-index contrast waveguides, calculation of an opti-
cal mode’s electric field profile, E(a:, y), and the corresponding propagation constants,
3, is typically done by numerically solving the full or semi-vectorial wave equation
(Helmholtz equation)—derived from Maxwell’s equations (Section 4.1). Once the dis-
persion relationship is known, cal culation of higher order terms such as the group delay—
ameasure of the transit time of a pulse, and the group velocity dispersion—-ameasure of
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the tendency of a pulse to broaden, is straight forward (see Section 4.2).

Larger waveguides will support multiple higher order modes, however, atypical
silicon nanowire will guide only a single quasi-transverse electric mode, and a single
guasi-transverse magnetic mode (while the waveguide technically guides two modes,
one for each polarization, it istypically referred to as a*“ single-mode waveguide’). Fig.
1.1(c) showsthe quasi-TE mode, F,, of the silicon nanowire with an effective index of
2.49; as can be seen, the light mostly resides within the silicon core. Fig. 1.1(d) shows
the more weakly confined quasi-TM mode, E,, with an effective index of 1.83. The
dispersion properties of these modes strongly depend on the waveguide's aspect ratio
[42, 43].

It is important note that when light goes around a bend, the mode shifts away
from the radial center lowering its effective index [44]. This causes two deleterious ef-
fects to its propagation: firstly, it causes a mode mismatch between the plane joining
the bending and straight waveguide regions, which results in optical losses. Methods
of offsetting the straight regions and the bent regions to achieve higher modal overlap
have shown reduced losses in lower index contrast structures, but require nanometer
scale precision for SOI [45]. Secondly, as the mode peak has shifted towards the di-
electric boundary, the mode will undergo higher scattering losses [46], and may be
completely radiated if the effective index drops below the refractive index of the sur-
rounding medium. In fact, it is quite common to use thinner silicon waveguides (height
= 200 nm), to completely strip off the quasi-TM polarization as it propagates around a
few bends [47].

1.3 Outline of the Dissertation

This dissertation is concerned with novel strongly coupled silicon-on-insulator
waveguidesthat fall well outside the domain of coupled mode theory. The new function-
ality provided by these strongly coupled waveguides will be presented, along with the
needed numerical mode solversfor accurate design. Chapter 2 and 3 present experimen-
tal results of strongly coupled arrayed waveguides and coupled resonator optical waveg-
uides. It will be shown that for the former, numerous new device functionalities can be
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realized, including a device with a giant birefringence of n, ~ 1.5. For the latter, it will
be demonstrated that Gaussian distributions of time delay statistics, indicating ballistic
transport, can be obtained for CROWSs consisting of as many as 235-rings. Chapter 4 is
concerned with numerical methods of simulating the optical properties of such devices,
including the effects of disorder on the eigenvectors and eigenvalues of periodic waveg-
uide structures. In Chapter 5, a numerically assisted coupled mode theory is presented,
and used to point out precisely where coupled mode theory failsin characterizing the su-
permodes of a strongly coupled arrayed waveguide. Finally, in Chapter 6 experimental
methods of measuring propagation time will be outlined, and also a method of wave-
length resolved infrared imaging, which allows the exact disordered eigenvectors of a
coupled resonator optical waveguide to be observed.
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2 Coupled Resonator Optical
Waveguides (CROWs)

Decades of research inthe CMOS process has allowed silicon devicesto befabri-
cated with sub-100 nanometer features. At such separation distances, the characteristics
of an individual isolated waveguide does not provide sufficient information, using tradi-
tional theories, to accurately describe the functionality of a strongly coupled composite
structure. In Chapter 5, methods to improve on existing analytical theories for describ-
ing the optical modes of such strongly coupled waveguides will be presented; however,
for the most part, their modal properties must be characterized through robust numerical
techniques. Despite the lack of time-efficient analytical tools for describing strongly
coupled high-index contrast waveguides, such coupled waveguides have shown them-
selves to be indispensable in providing the necessary apodization of CROWSs, and also
allowing light to be guiding in alow index material, provided by a single-mode “slot”
waveguide. In the next two chaptersthe incredible functionality of two strongly-coupled
photonic devicesin particular will be detailed: coupled resonator optical waveguidesand
strongly coupled arrayed waveguides.

Coupled resonator optical waveguides (CROWS) consist of long chains of res-
onators where light is guided by tunneling between adjacent resonators, which may be
micro-rings, micro-disks, or photonic crystals[1, 2, 3, 4]. These devices have been pro-
posed for applications in slow light, temperature insensitive high-order optical filters,
dispersion compensation, etc. [5, 6, 7, 8, 9, 10].

For an infinite chain of equally spaced identical resonators, the fields will be pe-
riodic at twice the lattice constant, A. This formalism is identical to the tight-binding
formalism, where the potential barriers are represented by the inter-resonator coupling

16
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Unit Cell

Figure 2.1: Coupled resonator optical waveguide (CROW), periodic chains of microres-
onators, with radius R, and track-length L, where light propagates through the structure
by tunneling from resonator to resonator.

coefficient (numerical methods for calculating the wavelength dependence of this cou-
pling coefficient will be presented in Chapter 4). Fig. 2.1 showsa CROW aong with the
corresponding unit-cell, composed of asingle racetrack resonator with bending radius R
and track length L. For finite, “large” number of resonators, a CROW may be regarded
as awaveguide with its own dispersion characteristics [11], which strongly depends on
the nanowires of which it is composed [12].

The dispersion relationship of a CROW has been derived elsewhere using the
tight binding formalism and transfer matrix techniques[11],

cos(BmR) = £k cos(KA) (2.2)

where S(w) = net(w)w/c, K represents the magnitude of the dimensionless cross-
coupling coefficient between two resonators, A and K represent the periodicity and
propagation constant of the CROW respectively, and R isthe “effective” radius, defined
for racetrack resonators as the ring radius plus L /7.

2.1 Dependence on the Silicon Nanowire

In order to derive the effects of waveguide dispersion on the CROW, we recall
that EqQ. (2.1) is used to describe arelatively narrow band of radial frequenciesw in the
vicinity of the single-resonator eigen-frequency, 2. Therefore, writing w = Q + dw
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where |dw| < 2, we approximate ne by the following,

d
neﬁ(w) = neﬁ(Q) + 5(4} ﬂ

e (2.2)

w=

and re-write the left-hand side of Eqg. (2.1), discarding terms of higher order than dw,

sin(frR)
A sin |:7Tneff(Q)§Q +7 (neﬁ(Q) + dne ) Eéw]
c dw | _q/ ¢
—_—— - w (2.3)

m

= (—1)™sin [Wm ng($) 5—”],

neff(Q) Q
using the standard definitions of the mode number m and group index n4(£2). We can

thus rewrite Eq. (2.1),

ng(§2) dw
neff(Q) Q

sin {Wm } = +(—1)"k cos(KA). (2.4)
We see that the bandwidth dw is scaled by the factor net/ng. For these SOI waveguides,
thisratio represents a 42% reduction of the bandwidth.

The average group delay 7, of an NV-element CROW is defined by the length of

the structure (AN) divided by the group velocity, dw/d K, evaluated at (2,

mngRN
Tg =

e (2.5)

Therefore, a high value of the waveguide group index actually causes increased
delay in a CROW—the enhancement is about 73% for these SOI microring CROWS. In
genera, the delay can be precisely modified by adjusting the aspect ratio of the con-
stituent waveguides in order to vary n, [13, 14].

The dispersion relationship can also be used to estimate the coupling coefficient
between adjacent microrings from ameasurement of the full-width (2 6, /,) of aCROW
transmission band. Since dw/Q = —3d\/ )\, where Q and )\, are the resonance radia
frequency and wavelength of a single resonator, at the band edge, A\ = A\ £ 02, and
the cosine term on the right hand side of Eq. (2.4) takes on the value —1. Therefore,

I
|K| = sin 27T2ng()\0))\£; )\2/2

R A1
z27r2ng(/\0)>\—0 N

(2.6)
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the approximation being valid in the limit of small bandwidth, and shown by values of
k| < 1.

As with most slow light structures, the increased delay in a CROW is achieved
by alowing light to retrace a circuitous path. The loss of a CROW, acgrow, iS given
by the product of the effective distance traveled (the product of the group delay of the
CROW and group velocity of the constituent waveguide), and the loss per unit length.
At band center, thelossisreadily calculated as[1],

e NTR

2.7)
K]

QCROW =

where o, istheloss per unit length of the waveguides.

2.2 Experimental Results

A single CROW waveguide can readily achieve multiple bands of slow and fil-
tered light in the same physical structure, unlike band-edge photonic crystal slow light
waveguides[15, 16, 17]. Thischaracteristicisparticularly useful for on-chip wavelength
divison multiplexing, temperature-insensitive optical filters, and nonlinear optics, in
which several wavelengths of light are often used simultaneously.

CROWSs were fabricated at the IBM Microelectronics Research Laboratory on
200 mm SOI wafers wafers where the waveguide dimensions and gaps were varied from
their nominal values as aresult of dose-striping. Fig. 2.2 shows a schematic of atypical
wafer, also shown is the effect dose-striping has on the CROW’s composite directional
couplers. High dose yields an increased gap, but the center-to-center separation distance
remains the same compared with the low-dose regions. The wafers were post-processed
with two different surface roughness reduction techniques: hydrogen annealing and dou-
ble oxidation. A typical chip is shown in Fig. 2.3, which consists of five CROWSs, with
35, 65, 95, 135 and 235 coupled microrings. Group delay measurements were carried
out using a single-scan, Jones matrix-based, interferometric spectral measurement in-
strument (Luna Tech. Optical Vector Analyzer CTe [18]). Light was coupled into and
out from the chip using polarization maintaining lensed tapered fibers (Oz Optics) that
have been measured to achieve >20 dB polarization selectivity. The TE-polarized light
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200 mm SOI Wafer (100) Surface

High Dose

Medium Dose

10

Figure 2.2: CROWSs were fabricated at the IBM Microel ectronics Research Laboratory
on 200 mm SOI wafers wafers where the waveguide dimensions and gaps were varied
from their nominal values as a result of dose-striping. High dose resultsin an increased
gap between the directional couplers of the racetrack resonators, but the center-to-center
separation distance remains the same compared with the low-dose regions.

35 ... 235 microring CROWs

Figure 2.3: Silicon microring CROWs ranging from 35 to 235 microrings, fabricated on
200 mmwafers and cleaved into 4 mm-long chips. (Inset) Scanning el ectron microscope
image of the region indicated by the dashed box.

(in the plane of the silicon) was used and the waveguide |oss was measured to be about
-3.2 dB/cm. For the CROWSs considered here, aloss of 0.074 dB/ring was measured.
The (TE) group index of the composite silicon nanowires, n4, was measured in
two separate ways. First, ng was measured from the relative group delay of a set of
four waveguides (without resonators) on the same chip, ranging in length from 0.35 cm
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to 4.15 cm. Second, ng was determined from the free spectral range, A frsr, of the
CROW,

C
~ 27rRAfrsi’
where A frsr Was calculated from the center-to-center spacing of each CROW band.

Fig. 2.4 shows the group index data obtained from each method. The figure illustrates

g

(2.8)

that excellent mutual agreement with a value ng = 4.25 is obtained for both types of
measurement. We expect the fluctuations around the average group delay to be due to
the high index contrast and high confinement nature of these SOI waveguides.

Fig. 2.5(a) shows the experimentally measured transmission and group delay
spectrafor eleven bands of a 35-ring CROW, along with each band’s center wavelength.
Conventionally, the* usable” bandwidth of a CROW for purposes of spectrally-flat group
delay is defined as the central half of the total bandwidth [19]. In Fig. 2.5(b), we plot
the measured group delay averaged over the center half of each band for the 35, 65, 95,
135, and 235-ring CROWSs. The solid black line isthe prediction of Eq. (2.5), in which
the value of « is obtained from the bandwidth of the 35-ring CROW, using Eqg. (2.6).

5
cm4xxxxxxxxxxx
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[72]
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%‘ a00h L=2.63cm|
a
o
>
© 200} L=1.10cm-
O
L=0.35cm

1540 1560 1580 1600
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Figure 2.4: (Top) Group index (n,) of the CROW'’s constituent waveguides, derived
from the free spectral range of the CROW (markers) and (light-gray) group index
data determined from (Bottom) the group delay of four straight waveguides of varying
lengths, L.
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Figure 2.5: (@) Transmission and group delay spectra for eleven bands of a 35-ring
CROW, aong with each band's center wavelength. (b) (Markers) Band-center group
delay for different length CROWSs across the measured eleven bands. (Solid-line) Pre-
diction of the group delay of a CROW using Eq. (2.5).
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Figure 2.6: (Blue Markers) Band-center group delay measured for different length
CROWSs across the eleven bands, for seven different chips. (black-line) Prediction of
the group delay of a CROW using Eq. (2.5). The (red-line) shows previously derived
results, which did not account for the waveguide dispersion [1].
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Since Fig. 2.4 showsthat the group index n4 does not vary appreciably over the spectral
range characterized, Eq. (2.5) indicates that any band-to-band variation in group delay
is due to the wavelength dependence of the coupling coefficient. We see that thereisan
excellent fit to the measured data, from which we can infer a range of delays of about
0.77 to 1.05 ps per unit cell of length A = 14.3 pm. The slowing factor, ¢/vg, where vg
isthe group velocity, thus ranges from 16.0 to 22.1 over the measured bands.

With increasing center wavelength, as the delay per ring decreases, the band-
width of the CROW increases. The linear scaling of group delay with N was confirmed
for over eight chips, as shownin Fig. 2.6.

2.3 Band Dependence on the Composite

Directional Couplers

AsshowninFig. 2.4, coupled resonator optical waveguides can be broken down
into their composite directional couplers. By substituting into Eg. (2.6) the definition of
free spectral range of amicroring,

/\2
2mn,R’
we obtain the dimensionless coupling coefficient, which can be measured from asingle-

Alpsp = (2.9)

scan of the transmission spectrum,

OAi/2 } . (2.10)

AXrsr
By using Eq. 2.10 at each band of the CROW, one may extract the wavel ength dependent

|k| = sin |:’/T

coupling coefficient of the composite directional couplers using a CROW.

Fig. 2.8(a) and (b) shows sample bands each around 1550 nm of a 35-ring
CROWSs measured at the top, middle, and bottom of the double oxidized and hydro-
gen annealed wafers, respectively. It can be seen that the bandwidth varies from chip to
chip due to the change in lithography exposure, and hence waveguide width. Fig. 2.8(c)
shows the experimentally derived coupling coefficients using Eq. (2.10), for eight chips
across each wafer, where the waveguide dimensions and gaps were varied from their
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Coupled Resonator Optical Waveguide

Directional
Coupler

Figure 2.7: Coupled resonator optical waveguides may be broken down and character-
ized in terms of their composite directional couplers

nominal values as a result of dose-striping.

While it has been previously shown that disorder between the individua res-
onators may also have perturbative effects on the transmission spectrum of a CROW
[20], Fig. 2.8(c) nevertheless shows a strong correspondence between the experimen-
tally derived coupling coefficients using Eg. (2.10) as the waveguide widths and height
were varied. Waveguides with smaller widths due to dose-striping resulted in an in-
creased coupling coefficient, due to the mode being less confined. Compared with the
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Figure 2.8: (@) Sample band around 1550 nm of a 35-ring CROW at the top, middle, and
bottom of the double oxidized, and (b) hydrogen annealed wafers. Waveguide dimen-
sionswere varied from their nominal values as aresult of dose-striping, demonstrated in
Fig. 2.2, which results in thinner waveguides at the top of the wafer, and wider waveg-
uides at the bottom. The double oxidation process further thinned the waveguide di-
mensions, height and width, by 20 nm. (c) Experimentally derived coupling coefficients
using Eq. (2.10), for eight chips across each wafer, where the waveguide dimensions
and gaps were varied from their nominal values as aresult of dose-striping.



26

g
co
=]
by =
| =
-

Annealed

Coupler 1 Cuuller 2 Coupler 3 Coupler 4
- lllE “ﬁ

Figure 2.9: Scanning electron microscope (SEM) image of the waveguide cross-section
and first four directional couplers for both the hydrogen annealed and double oxidized
wafers.

Oxidized

hydrogen annealed wafer, it can be seen that the double oxidation processes resulted in
a higher coupling coefficient between the resonators and increased sensitivity to varia-
tions in waveguide width due to dose-striping. We will confirm, through simulation in
(Section 4.3), that this was due to the nature of the double oxidation process, in which
approximately 20 nm of silicon (ng = 3.47) isreplaced by oxide (ngo,=1.44). Thisalso
resultsin less confinement, and thus increased overlap, of the waveguide modes.

2.4 Strongly Coupled Nanowires for Apodization

In order to reduce the group delay and insertion loss ripple of a CROW, apodiza-
tion of the directional couplersis performed by tapering the spacing (coupling coeffi-
cients) of thefirst rings at the input and output of the CROW. Fig. 2.9 shows a scanning
electron microscope image of the first four couplers of a 35-ring CROW, aong with
the waveguide widths and center-to-center spacing, p. These strongly coupled direc-
tional couplers allow for a high coupling coefficient leading into the CROW, and for
it to be gradually ramped down to the value of the CROW where it remains constant
(thisis similar to impedance matching in electronics). However, as the separation dis-
tance between the directional couplersisreduced, the propagation constants of the even
and odd supermodes will fan out [21]. As will be shown in Section 4.3, the coupling
coefficient of these sub 100-nm directional couplers can become very dispersive, re-
sulting in strong apodization variations with wavelength, as can be seen by analyzing
the increased insertion loss ripple and group delay ripple for the higher bands shownin
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Fig. 2.5. Further effects resulting from wavel ength dependent apodization on the CROW
will be discussed in Section 4.4.

2.5 Limitations Imposed by Disorder and

the Motivation for Strong Coupling

Practical applications require relatively long CROWS, consisting of hundreds
of coupled resonators [2, 3, 4, 22], while maintaining good performance. In spite of
great theoretical interest in this novel form of waveguiding, the practical applications
requirement that several hundreds of resonators must be chained together in a disorder-
free manner has constituted a technological challenge[22, 2].

Disorder in CROWSs has thus far been a severe practical problem, since in a
multi-resonator ensemble, the resonance frequencies of the constituent resonators must
be precisely aligned. Active resonance tuning mechanisms, e.g., thermal heaters placed
over each ring [23, 24], are impractical for ensembles consisting of hundreds or thou-
sands of rings. Moreover, athough the benefit of microrings and CROWS increases
for higher quality factors (lower coupling coefficient, increased resonator separation),
such resonators are also harder to align. In fact, coupled-resonator and photonic crys-
tal waveguides that are about a hundred lattice periods in length have shown disorder-
induced localization of light [25, 26], which though fundamentally interesting and po-
tentially useful for some applications[15], is generally considered problematic for most
device applications. As such, a high coupling coefficient is needed to relax the con-
straints on the fabrication process, that the resonators be exactly identical, by broadening
the Lorentzian response of the composite resonators.

Indeed, there have been few reports of long CROWS, in each case with trans-
mission characteristics that show considerableripple [4, 3, 23]. Moreover, the recently-
demonstrated disorder-induced localization of slow light in CROWSs and photonic crys-
tal waveguides indicates serious challenges to making long structures, since al the
eigenmodes of a one-dimensional waveguide are localized in theory for any value of
disorder [27, 28]. Scaling up the number of resonators within a single CROW waveg-
uide, while maintaining suitable “ballistic” [29, 30] propagation characteristics, poses a
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significant technical challenge, as failure rates of such series-coupled structures may be
thought to scale as a power law with the number of unit-cells in the exponent.

2.6 Statistics of Light Transport for

Increasing Number of Resonators

To overcome the fiber-to-waveguide coupling losses and maintain a high signal
to noise ratio at the detector for accurate statistical analysis, the output of the OVA (av-
erage power 200 W) was then amplified (before the chip) by an L-band EDFA, which
was used in the saturation regime (constant current mode, output power +18 dBm), fol-
lowed by a programmable passive attenuator to reduce the power level incident on the
silicon chip to asufficiently low level to avoid nonlinearities. No amplification was per-
formed after the chip. In this way, it was ensured that the amplifier noise contribution
remained constant, regardless of the spectral variationsin the CROW response. Calibra-
tion measurements showed that the EDFA and attenuator combination added only 0.14
ps RM S noise to the measured propagation delay data (Section 6.2).

Propagation delay measured data were corrected for the shorter “input” and
“drop” straight waveguide sectionsin longer structures, as can beseeninFig. 2.3. Based
on the measured group index in the straight waveguides, Fig. 2.4, this length difference
tranglated to 40.5 ps difference in the measured propagation time. Similar relative dif-
ferences were calculated for the 65, 95 and 135 ring CROWSs to be 6.1 ps, 12.2 ps, and
20.3 ps, respectively.

Transmission (insertion loss) spectra

Fig. 2.10 shows a typical set of transmission spectra from a group of 5 CROWs
consisting of 35, 65, 95, 135, and 235 microrings on asingle chip, showing well-aligned
passbands over a wide range of wavelengths. The width of the passbands increased
dlightly with wavelength for all the chips measured because of the dispersion of the
silicon waveguides [29]. However, the average level of transmission in the passband, as
well as high on-off extinction, remained approximately the same for each CROW, thus
showing the high level of ring-to-ring uniformity achieved in these CROW structures.
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Figure 2.10: Transmission (insertion loss) spectra were measured with resolution 1.4
pm, for 35, 65, 95, 135, and 235 ring waveguides. Shown here are the averages of 128
measured traces. Relative to the 35-ring CROW, measurements for 65, 95, 135 and 235
ring CROWSs were amplified by 7, 4, 3, and 7 dB, respectively in order to boost the
power level detected at the photoreceiver.

Group delay spectra

Fig. 2.11 shows the group delay spectra for the CROWSs over the same range of
wavelengths asin Fig. 2.10. The band-edge and stop-band regions, clearly indicated by
the significantly increased group delay ripple at those wavelengths, are excluded from
the statistical analysis. Within the central region of the passband (approximately two-
thirds of the edge-to-edge span), spectrally-dependent properties such as the density of
states and the localization length should be approximately constant [25] and therefore,
the variation of measured group delay with wavelength can be used as a statistical vari-
able.

Group delay ripple (GDR) here is defined as the difference between the mea-
sured group delay 7(\) and 7,.,,5, the root-mean-squared group delay over the central
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Figure 2.11: Group delay spectra were measured with resolution 1.4 pm, for 35, 65,
95, 135, and 235 ring waveguides, over the same range of wavelengths asin Fig. 2.10.
Spectral regions of large variation in delay correspond exactly to the stopbands of the
intensity spectrum shown in Fig. 2.10

portion of the passband. GDR is an important parameter in the study of devices for
optical communications, since spectral components of GDR that are on the order of the
signal bandwidth affect the signal spectrum by imposing an average chromatic disper-
sion, which can be compensated at the receiver. Therefore, in the study of fiber Bragg
gratings, the average dispersion over the (narrow) band of interest is usually subtracted
out from the phase variations, and the residual phase variation is used as the noise statis-
tic which determines performance degradation [31]. The averaging bandwidth depends
on the spectral width of the pulses used in data transmission. For example, 40 Gbps
modulated optical data streams will average over ripple with spectral components less
than 100 pm, effectively sensing them as a constant group delay [32].

In the next section, we use ripple statistics not to investigate the performance
degradation of data transmission but the nature of light propagation in the CROWSs. The
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band-to-band variation in average group delay is less than 0.1 ps/Ring over 20 nm. As
shown in Section 6.2, alinear slope imposed on the spectral variation of the measured
group delay by the EDFA of -1.81 ps/nm iswas subtracted from all the data. Calibration
measurements showed that the EDFA added only 0.14 ps RMS noise to the measured
propagation delay data, which is negligible in the context of approximately 30-200 ps
of group delay ripple that characterizes the CROWS.

Statistical analysis

In aregime where disorder may play asignificant role, it isvery important to re-
alize that measurement of only the average transmission properties of along waveguide
constitutes an incomplete story of transport. This is because: (a) absorption reduces
the average transmission of light in a similar way as does localization (exponentially
with length), [33, 34, 35] and (b) the average propagation time through the waveguide
scales similarly in both the localized and non-localized regimes (linearly with length)
[36, 37]. A distinction between the localized and non-localized transport regimes can be
obtained only through an analysis of the statistical properties of the transmission inten-
sity and propagation time and further, by directly imaging the light propagating through
the structure.

IR imaging

Eigenmodes of light propagation in a 235-ring waveguide were imaged using an
infrared camera diagnostic method developed for multi-ring waveguides, described in
detail in Chapter 6. Selected wavelengths in the stop-band, band-edge, and at locations
throughout the passband, as indicated in Fig. 2.12(a), were imaged under cw excitation
from a narrow-linewidth tunable laser, using a microscope fitted with an infrared cam-
era. Severa image fields were stitched together laterally, but no data correction was
made for the absorptive decay of intensity with length, thus showing clearly the low in-
trinsic loss of the propagating modes, quantified to be -0.08 dB/ring. Since the chip was
imaged through a semi-transparent and scattering polymeric cladding layer, the cam-
era did not resolve individual microrings, but nevertheless clearly showed the general
trends of propagation. Although modes at only afew selected wavelengths are shownin
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Figure 2.12: (a) Transmission (insertion loss) spectrum for a single passband of a 235
ring CROW, with measurements at selected wavelengths labeled (i)-(v). (b) Intensity
profiles of the eigenmodes at the wavelengths (ii)-(iv) measured with an infrared camera,
show that non-localized excitations (extended throughout the entire waveguide length)
were observed throughout the passband, in contrast with out-of-band (i) and band-edge
(v) wavelengths. No correction was made in these images for the absorptive decay of
intensity with length of the propagating modes.
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Figure 2.13: (a) The mid-band average of the transmitted intensity (in dB), measured
without amplification, decreased linearly with length (-0.08 dB/resonator), except for
one anomal ous waveguide on the measured chip (65 rings) as discussed in the text. The
errorbars represent the standard deviation, i.e., ripple, in the measured delay over the
flat portion of the band. (b) The probability distribution function (PDFs) of the nor-
malized intensity transmission (I = %) for the all the CROWSs show agreement with
the Rayleigh distribution, shown by the dashed lines, indicating non-localized trans-
port through the waveguide. In contrast, the localized regime would show considerably
different (long-tailed) statistics[15, 33, 39].

Fig. 2.12(b) for clarity, theresultsfor other wavelengthswere very similar, except at two
sharp disorder-induced notches in the passband. Based on Fig. 2.12(b), panels (i)-(v), it
is clear that light can be transmitted throughout the entire length of a 235-ring CROW
without localization.

It is also important to point out the increased intensity shown for the local res-
onators at the band-edge wavelengthsin Fig. 2.12, where it isawell known property for
coupled resonator optical waveguides that group delay increases at band-edge, caused
by an increased number of circulations within the resonators before coupling to an ad-
jacent resonator—thus higher intensity enhancement, and radiated intensity [38].



Transmission scaling

High-resolution spectral measurements (Fig. 2.10 and 2.11) reveal strong, well-
resolved transmission passbands for CROWSs composed of 35 to 235 coupled micror-
ings. The high-frequency transmission “ripple” bears the signature of random disor-
der in the fabrication of CROWS, and can be seen to increase with the number of unit
cells. Both disorder and loss contribute to a bandwidth narrowing with increasing length
of only 0.2% per ring, i.e., 100 additional rings reduced the bandwidth by 20% com-
pared to the bandwidth of the 35 ring structure. A wide passband exceeding 380 GHz
(in each band) was therefore maintained even in the 235 ring structure, sufficient for
many high-speed optical signal applications. As shown in Fig. 2.13(a), a linear fit to
the spectrally-integrated power transmitted at mid-band for CROWSs of different length
indicated an average loss per ring of only -0.08 dB/ring, i.e., the insertion loss of a 35
ring CROW by itself was lessthan -3 dB. The 65 ring CROW may have had a defective
input coupler or damaged cleaved facet, which lowered the overall transmission through
the device, but did not affect the transmission statistics. As shown in Fig. 2.13(b), the
measured probability distribution of the normalized intensity agreed with the Rayleigh
distribution [dashed line, P(I) = exp(]) ] which indicates transport occurred in the
non-localized regime even in the longest CROW. This negative-exponential statistical
signature of non-localized propagation is significantly distinct from the long-tailed log-
normal distributions reported for diffusive and localized light [15, 33, 39].

Group delay scaling

Further evidence of non-localized transport was obtained from measurements
of the transmission delay, which comprises the summed contributions from each of the
rings encountered by photons traveling from input to output ports, and is therefore the
sum of alarge number of random variables. The average delay value (7) (units of pi-
coseconds, ps), shownin Fig. 2.14(a), was obtained by the root-mean-squared average of
the measured group delay data over the central one-half region of the transmission band.
As expected [8, 2], the average delay increased linearly with the number of resonators,
N, with aslope (7)/N = 0.73 ps/ring. This linear scaling was confirmed by additional
measurements on more than 800 CROW bands measured over 16 different chips. How-
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Figure 2.14: (a) The measured propagation delay averaged over the middle of atrans-
mission band (7) (units of picoseconds) increased linearly with length (L = 35, 65, E,
235rings). The errorbars represent the standard deviation, i.e., ripple, in the measured
delay over the flat portion of the band. (b) The probability distributions of normalized
delay 7 = % were peaked at unity (i.e., 7=(7)). The dashed lineis a Gaussian (normal
distributi ons fit to the data, which indicates ballistic propagation statistics and the ab-
sence of localization, previously estimated to be a severe constraint on achieving > 100
resonator lengths of CROWS. In fact, the self-averaging properties of longer chains of
resonators yielded better fits to normal statistics than for the shorter waveguides, where
finite-size effects caused an asymmetric lineshape in the tails of the distributions.

ever, as mentioned before, the average propagation time through the waveguide does
not by itself provide conclusive evidence that transmission occurs in the non-localized
regime; the average delay is indeed expected to scale linearly with length in both the
localized and non-localized regimes [34]. Therefore, we examined the distributions of
the normalized time delay of propagation (7 = 7/(r), where T represents the raw group
delay data, and the denominator (7) is linearly proportional to N as discussed in the
earlier paragraph), which are plotted in Fig. 2.14(b), using a logarithmic scale on the
vertical axis for clarity. As shown by the dashed lines in Fig. 2.14(b), the delay time
distributions were well described by Gaussian statistics, characteristic of the ballistic,
i.e.,, non-localized , propagation regime only [36]. In contrast, diffusive or localized
propagation would result in much wider (polynomial) tails to the distribution, as has
been previously demonstrated for disordered microwave waveguides [35, 40].
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Figure 2.15: (a) The measured probability distribution functions (PDFs) of the normal-
ized group delay 7 = 7/(r) are shown, using a logarithmic scale on the vertical axis
for clarity, for the waveguides labeled (3)-(5) in Fig. 2.10(a). With increasing length,
the distributions converged to a single-parameter Gaussian distribution, shown by the
dashed black line. (b) The variance of the measured delay (ps2) increased with the
sguare of the number of resonators (N), as shown by the dashed fit, var(7) = 0.0346
N2+(12.9 ps)? where the second term was the typically measured group delay ripple
of the measurement apparatus. This scaling behavior was different from that of con-
ventional waveguides or cascaded fiber Bragg gratings, and as discussed in the text,
demonstrated that the individual resonator excitations are mutually correlated.

Ballistic transport

In fact, the self-averaging properties of longer chains of resonators yielded bet-
ter fitsto normal statistics (i.e. Fig. 2.14(b), panels 3-5) than for the shorter waveguides
(i.e. Fig. 2.14(b), panels 1-2), where finite-size effects caused an asymmetric lineshape
[1]. As shown in Fig. 2.15(a), in the case of the three longest waveguides with 95,
135, and 235 coupled microrings, the normalized delay distributions converged to a
single-parameter distribution [36] whose width describes the average level of group de-
lay ripple per ring, equal to 0.19 ps/ring. This value can potentially be reduced with
further improvements in fabrication, or by post-fabrication trimming [41]. Moreover,
since Fig. 2.15(a) shows that the width of the distribution of normalized delay was a
constant, i.e., independent of N, it follows that the variance of the delay itself, var(7),
scaled as N2, as shown by the dotted linein Fig. 2.15(b). This prediction wasin excellent
agreement with var(7) extracted directly from the measured data, shown by the squares
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in Fig. 2.15(b), and moreover agrees with numerical ssmulations. This behavior wasin
contrast to what is expected from conventiona photonic waveguides, or a sequence of
cascaded fiber Bragg gratings, in which cases var(7) scales linearly with N [42, 32, 43].

To explain this behavior, we recall that according to statistical theory, the vari-
ance of the mean of an ensemble of uncorrelated random variables of sample size N
decreases as N~!, which is commonly called the law of large numbers [44]. For an
ensemble of correlated random variables, however, theory dictates that the variance of
the sample mean (i.e., average delay per ring) reaches a constant value, independent
of N, and is equal to the degree of correlation [44], so that the total delay variance of
an N-ring waveguide thus scales as N2. This latter case is indeed the behavior shown
in Fig. 2.15(b), and can be explained by the physical nature of light propagation in a
CROW, in which coherent oscillations of all N coupled resonators constitute each of the
propagating eigenmodes. The delay values measured across the passband are therefore
shown to be correlated random variables, with a sample space increasing linearly with
the length of the waveguide. Therefore, Fig. 2.15 provides experimental evidence of the
mutually-correlated physical mechanism by which light propagatesin a CROW. Under-
standing the statistical scaling behavior with length is particularly relevant for phase-
sensitive applications e.g., in coherent optics, power combining, waveguide quantum
light circuits and slow light.

Moreover, the fact that only nearest neighbors are directly coupled fulfills the
criterion for applicability of the generalized Central Limit Theorem [45] and thus, the
distribution of total delay will tend to a Gaussian probability distribution as N becomes
large, exactly as shown by Fig. 2.15(a). The Gaussianfit is characteristic of only the bal-
listic propagation regime [37]; the statistics in the near-localization (diffusive) regime
would show distributions with wider polynomially-decaying tails [46], becoming even
wider in the localized regime, in fact, with exponentia divergence of the higher mo-
ments [36]. Furthermore, localization would destroy any long-range phase correlation
across the 235-ring length of the structure. Therefore, increasing the length of a waveg-
uide structure wherein transport occursin the localized regime would decrease the num-
ber of resonators that are mutually coupled [25, 47], leading to an entirely different
scaling behavior (exponentially growing with N) from Fig. 2.15(b) [36].
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2.7  Summary

The directional couplers which constitute microring resonators of a CROW can
considerably affect the dispersion characteristics of coupled-resonator optical waveg-
uides (CROWSs). Strongly coupled waveguides, on the order of a 100 nm, are necessary
for properly apodizing the CROW, achieving the desired bandwidth and group delay of
the pass band, and allowing for ballistic transport through a 235-ring structure.
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3 Strongly-Coupled Arrayed
Waveguides

The difference between a directiona coupler and an N = 2 arrayed waveguide
comes down to excitation. For a directiona coupler, such as those discussed in the
previous sections, light begins by entering one arm of the directional coupler where it
then begins to couple to the adjacent arm. Arrayed waveguides, however, are charac-
terized by their supermodes (eigenvectors), which propagate down the waveguide with
only sinusoidal variations in amplitude. 1t will be detailed in Chapter 4, that these two
phenomena are one in the same. When light enters one arm of a directional coupler it
splits (not necessarily equally), into the even and odd supermodes of the N = 2 arrayed
waveguide. These supermodes then propagate down the coupler shifting in and out of
phase with one another; causing the concentration of light in the directional coupler to
oscillate back and forth between the separated waveguides. Here, we are concerned with
the shape of these modes as the separation distance between the waveguides is varied.
At sub-100 nanometer separation distances, it will be shown that these waveguides have
unigue properties, such as the ability to guide light in alow index medium.

3.1 Supermodes and their Probability of Excitation

Coupled mode theory predicts that when N single-mode waveguides are weakly
coupled together, the modes of the cascaded waveguide structure will split into N su-
permodes. Fig. 3.1 and Fig. 3.2 show finite difference frequency domain simulations
(Section 4.1) of the supermodes of five coupled rib waveguides surrounded by oxide,
for the transverse electric and transverse magnetic polarization respectively. Each indi-
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vidual single-mode waveguide measures 500 nm x 200 nm.

Boundary conditions require the continuity of the dielectric displacement. As
can be seen for the TE polarization, this results in a jump discontinuity of the electric
field at the top and bottom of each of the silicon rib waveguides, where the mode then
decays into the cladding. For the TM polarization light undergoes the jump disconti-
nuity at the waveguide edge within the coupling region. The magnitude of this jump
discontinuity at the waveguide boundary is determined by the dielectric permittivity, e,
I8, Ecladl = - FEcorer aNd Eclag) = Ecore|- FOr asilicon/air interface this discon-

€Si0,

tinuity isafactor of 12, and for silicon/oxide, 5.6. The premise behind slot waveguides

isthat for the TM polarization if the waveguide separation is sufficiently close the elec-
tric field will not have ample room to decay, and will thus remain high in the dlot. As
the magnetic field is continuous in the coupling region, this results in a higher optical
intensity in the low index material between the waveguides.

Light istypically coupled into the multi-slot waveguide by awaveguide (without
sots) of equal width, asshownin Fig. 3.3. There can be a significant difference between
the shape of the feeder mode with that of each supermode of the arrayed waveguide. The
percent of power, a2, that couplesinto each of the supermodes by the feeder waveguide
can be determined from the overlap integral of the corresponding supermode, E*™,
with the mode of the feeder waveguide, £eeder:

2

‘ <EFeederEs.m.>
a’ = —— - - - ) (3.2
<EFeederEFeeder> <EsmE5m>

3.2 Giant Birefringence in Multislot Waveguides

The guided modes of the multi-slot waveguidein Fig. 3.3 are shown in Fig. 3.4;
also shown, is the fundamental mode for each polarization for the multimode feeder
waveguide. This multi-slot waveguide consist of five silicon nanowires of 500 nm
height, 150 nm width, and separated by 100 nm, with an air cladding that allows for
an ultra-high birefringence [1]. For the TM-polarization, the multi-slot waveguide is
single-mode. Numerically solving Eg. (3.1) we note a mode mismatch of 42%, result-
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Figure 3.1: Transverse Electric Polarization: Supermodes of five silicon-on-insul ator
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Figure 3.2: Transverse Magnetic Polarization: Supermodes of five silicon-on-insul ator
arrayed waveguides of 500 nm height, 200 nm width, at a separation distance of 500
nm.

inginalossof ~ 3.75 dB—which is coupled to radiation modes (thisdoesn’t include the
additional losses due to the silicon/air reflections caused by the Fabry-Perot gap shown
in Fig. 3.3). For the TE Polarization, one can readily calculate that the multi-slot waveg-
uide supports three guided modes, where 95% of the light from the feeder waveguide
will coupleinto the fundamental mode, ~0% for TE; and 1.6% for TE,.
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Figure 3.3: An arrayed waveguide consisting of an SiO, substrate and an air superstrate,
with 500 nm high silicon rib waveguides, each 150 nm wide, and separated by 100 nm
“dots’. Both the effective index and group index of this structure is very different for
each polarization.

As shown in Fig. 3.4, for the TM polarization of the multi-slot waveguide most
of thelightisbeing guided in air, while, for the TE polarization most of the light isbeing
guided in the silicon. Recalling the discussion of the effective index from Section 1.2,
thiswill result in avery high effective index for the TE polarization—qguided in silicon,
and avery low effectiveindex for the TM polarization—gquided in air.

This type of birefringence is referred to as “form birefringence”, and is used to
describe periodic layered media where the periodicity is smaller then the wavelength
of the light. The ability to engineer birefringence is useful in nonlinear optics, which
requires phase matching between different optical waves. In contrast to earlier studies
wherelight isincident in asurface normal configuration, for the device showninFig. 3.3
light propagates axially along the length of the etched ribs. Previous values of birefrin-
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Feeder: TE, Feeder: TM, Multi-Slot: TM,
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woe K NN LS

Figure 3.4: The modes of the multi-slot waveguide shown in Fig. 3.3 for each polariza-
tion, as well as the modes of the feeder waveguide. Note that for the TM polarization
the light is mostly guided in the slot region, allowing for a high birefringence between
the two polarizations. By numerically solving Eg. (3.1), one can see that there will be
a modal mismatch loss of 3.75 dB with the feeder waveguide. As no other modes are
supported for this structure for the transverse magnetic polarization, this “lost” light is
radiated into free space.

gence have been on the order of An ~ 0.04 [2]. The structure shown in Fig. 3.3 was
optimized to achieve arecord birefringence of Ang,q,, ~ 1.5 and Angsp ~ 1.
Thefraction of the dlot-to-slot width (period) occupied by the low-index cladding
defines the filling fraction, g, of an arrayed waveguide. A schematic of the transverse
cross-section of the multi-slot waveguide is shown in Fig. 3.5(a). Using a finite dif-
ference frequency domain algorithm (Section 4.1), the effective index is calculated for
each polarization as the filling fraction is varied. Fig. 3.5(b) shows the difference be-
tween these two effective indices as afunctions of g. The shape of the curveissimilar to
that derived using effective medium theories for plane waves incident on an infinitely-
wide periodically stratified grating [2]. As shown, a maximum birefringence occurs at
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Figure 3.5: (@) Schematic of the cross-section of the giant birefringence multi-slot
waveguide. (b) Using a finite difference frequency domain algorithm, the maximum
filling fraction was calculated to be g = 0.38. For filling fractions larger then q = 0.43,
the effective index of the transverse magnetic mode drops below that of the oxide sub-
strate. (c) Plot of the effective indices for both polarization for different values of N.
(d) Calculation of the birefringence, showing that it asymptotes to a constant value for
increasing N, and that N = 5, as fabricated, is the smallest value of N for which the
birefringence saturates. The physical reason behind the saturation is that for N < 5,
the mode mostly resides in the oxide. By continuously adding more high-index regions
light is pulled out of the substrate. Once N = 5, light has been pulled out of the substrate,
and adding additional waveguides has no effect on the structure’s birefringence.

g = 0.38, a0, there exists a value of q beyond which no transverse magnetic modes
are supported. The physical reason behind this cut-off isthat large filling fractions have
very little silicon. As such the potential-well defined by the silicon waveguide thus has
a higher energy compared to the ocean of oxide below it, forcing the mode to dive into
the substrate. Fig. 3.5(c) plots the effective indices for the two polarizations for an in-
creasing number, N, of silicon ribs. From this figure, one may readily calculate the
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Figure 3.6: Group velocity dispersion for the (@) transverse magnetic and (b) transverse
electric polarization.

corresponding birefringence shown in Fig. 3.5(d). It can be seen that the birefringence
asymptotes to a constant value for increasing N, and that N = 5, as fabricated, is the
smallest value of N for which the birefringence saturates. The physical reason behind
this saturation is that N < 5, the mode mostly resides in the oxide. By continuously
adding more high-index regions light is pulled out of the substrate. Once N =5, light
has been fully pulled out of the substrate, and adding additional waveguides has no effect
on the structure’s birefringence.

The finite difference frequency domain algorithm may be further used to givean
estimate of the dispersive nature of these corresponding modes. As shown in Fig. 3.6,
the slot-mode has significantly higher dispersion compared with the transverse electric
polarization—which has awavel ength crossing the telecommuni cations band of 0 GVD.
This will result in more broadening of a pulse as it propagates through this device for
the TM polarization compared with the TE polarization.

AsshowninFig. 3.3, in order to measure the group indices the multi-slot waveg-
uide was separated by the feeder and output waveguide (that have no slots) by 50 nm air
gaps. A C+L band narrow-spectrum mode-hop free turnable laser source was coupled
into the chip using tapered and lensed polarization maintaining fibers. The air gapsform
a Fabry-Perot resonator of precisely known length. By bandpass-filtering the measured
transmission spectrum, one may extract the frequency component which correspondsto
the Fabry-Perot resonances of length L, shown in Fig. 3.7. Using the definition of the
free spectral range, one may then determine the group index for both polarizations. The
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experimental values shown in Fig. 3.7 agree very well with simulation.
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Figure 3.7: (@) Measurement setup for experimentally determining the group indicies
of the multi-slot waveguide. A C+L band narrow-spectrum mode-hop free turnable
laser source was coupled into the chip using tapered and lensed polarization maintain-
ing fibers. The air gaps form a Fabry-Perot resonator of precisely known length. By
bandpass-filtering the measured transmission spectrum, one may extract the frequency
component which corresponds to the Fabry-Perot resonances of length L. (b) Cross-
section of the transverse magnetic and transverse el ectric modes of the multi-slot waveg-
uide. (c) Using the definition of the free spectral range, the group index was obtained.
The experimental values shown are in good agreement with the predicted values.

3.3 Horizontal vs. Vertical Slots

By way of comparison, simulations were done to optimize a similar structure
composed of horizontal slot waveguides. The horizontal multi-slot waveguide would
be expected to have reduced losses, as the dominant source of scattering losses for the
vertical-slot waveguide is due to the surface roughness created by the etching process.
It was shown in the previous section that a vertical slot waveguide could obtain a giant
birefringence as high as An,..,, ~ 1.5 and An.;; ~ 1. Thiswas achieved by guiding
lightin the air-slot for one polarization, and silicon for the other. Thisisnot practical for
the horizontal slot-waveguide shown in Fig. 3.8, where a supporting medium isrequired
to keep the device from collapsing. Fig. 3.8 showssimilar calculationsfor the horizontal
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slot waveguide, where the slot material was filled with SIO,. Similar to the vertical
multi-slot waveguide, the birefringence peaks for a given filling fraction, and for high
filling fractions the modes are no longer guided. However, as the slot-mode is now
located in ahigher index, ng;o, = 1.46, the maximum birefringence that can be obtained
is An. s = 0.64, significantly less then the vertical multi-slot waveguide.
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Figure 3.8: (a) Schematic of the horizontal multi-slot waveguide consisting of 500 nm
wide and 150 nm tall silicon waveguides stacked vertically and separated by 100 nm of
SiO;,. (b) Using afinite difference frequency domain, the effective index of both modes
are calculated as the filling fraction, g, is varied. (c) The birefringence of the horizontal
multi-slot waveguide. The maximum value that can be obtained is considerably less
then for the vertical multi-slot waveguide.
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3.4 The “Slot” Waveguide and its Applications

In addition to giant birefringence, slot waveguides have proven useful for anum-
ber of additional applications:

Modulators

Most modulators on the market today require voltage shifts on the order of one
volt to achieve full extinction. In order to maximize the shift in effective index of an
electro-optic waveguide, M. Hochberg et a. [3] proposed a modulator that uses the two
silicon ridges of aslot waveguide asapair of very closely spaced but electrically isolated
electrodes. These closely spaced electrodes allow for a strong interaction between the
electric field and the non-linear polymer. They found that the modulation strength was
inversely proportional to the width of the slot; and with anonlinear polymer of r33 = 500
pm/V, a Mach-Zehnder modulator with aV .-L of 4 mV-cm may be realized.

Detectors

T. Baehr-Jones et a. [4], demonstrated a slot waveguide filled with nonlinear
electro optic polymersthat could detect low power optical signals. Due to the nanoscale
high intensity confinement of light in the slot waveguide a standing DC field is created.
Thisfield induces a potential difference between the silicon electrodes resulting in cur-
rent flow which allows for optical to electrical conversion. They were able to measure
conversion with less than ImwW of non-pulsed input.

Polarization independent couplers

Making use of the distinctiveness of the TE and TM mode profiles of the slot
waveguide, Fujisawa et al. [5] were able to overcome the high polarization dependence
known to exist for SOI optical waveguide directional couplers. For two slot waveguides,
they observed that the coupling length of the TM mode shows a greater dependence on
the slot material compared to the TE mode. Thisis because in the TM mode the light
is guided in the slot material. By choosing a material for the slot that corresponds
to identical coupling lengths of the two polarizations, a polarization independent optical
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waveguidedirection coupler isrealized. Coupling lengths on the order of tens of microns
can be achieved. Polarization independent operation can also be obtained for agiven slot
material by tuning the separation of the two slot waveguides.

All-optical logic gates

Extending on their slot waveguide polarization independent coupler Fujisawa et
a. [6] proposed an all-optical logic gate based on nonlinear slot-waveguide couplers.
By filling the slot with a material that has Kerr type nonlinearity, a slot waveguide is
realized that operates as a polarization independent coupler in the linear regime, and
becomes polarization dependent in the nonlinear regime. In the nonlinear regime the
TE mode no longer couples to the adjacent waveguide, while the TM shows almost no
change in the transmission characteristic compared to the linear regime. With the use
of silicon nanocrystals switching powers on the order of tens of wattsis achieved. With
this device NOT, OR and AND logic gates can be realized.

Slow light

By embedding one-dimensional photonic crystalsinto slot waveguides Riboli et
al. [7] were able to achieve a coupled resonator optical waveguide (CROW) device that
shows agroup velocity of more than ¢/10 at 1.55 m. The embedded photonic crystal was
obtained by defining trenches, or air dlits, perpendicular to the propagation direction of
aslot waveguide.

Polarization independent multimode interference (MMI)

slot waveguide

Continuing on the idea that the optical characteristics of the TM mode of a slot
waveguide are more sensitive to the slot material then the TE mode, Fujisawaet a. pro-
posed a polarization insensitive multimode interference waveguide [8]. The beat length
L which characterizes MMI waveguides, shows a greater dependence on the slot mate-
rial for the TM mode then the TE. If the width of the MMI slot waveguide is not too
thick, then one can find an index in which the beat length for the two polarizations are
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identical. At this beat length the MMI slot waveguide achieves polarization indepen-
dence. Fujisawaet a. aso note that having more than 2 output ports may be difficult for
their geometry as there are no crossing pointsin the L curves for the two polarizations
with widths greater than 10 m.

Optical resonators

In silicon nanowires light is strongly confined to the core of the waveguide.
These waveguides can be fabricated with very low loss enabling high Q resonators.
However at high intensities two photon absorption (TPA) in silicon becomes a signifi-
cant phenomenon and can lead to high optical losses. The slot waveguide maybe be able
to overcome this problem asit allows light to still be tightly confined while concentrat-
ing it in between the silicon ribs reducing the losses associated with TPA. Baehr-Jones
et a., achieved a quality factor of 27,000 using the slot waveguide geometry with losses
of -10 dB/cm [9].

Hybrid slot waveguides

Using silicon hybrid solutions[10], researchers were able to overcome the slow
dynamics resulting from two photon absorption generated free carriers. Using molec-
ular beam deposition to cover the slot waveguide with organic materials, al-optical
interactions were significantly enhanced. Researchers were able to demonstrate record
nonlinear coefficient as high as v = 10~° 1/W-km without introducing significant ab-
sorption. This allowed for the demonstration of all optical demultiplexing at speeds of
all-optical 170.8 Gb/s.

3.5 Summary

In this Chapter 2 and 3, it was shown that new device functionality can be
achieved in silicon photonics through strongly coupled devices. For coupled resonator
optical waveguides, directional couplers spaced on the order of 100 nm are needed for
proper apodization. Further, it was demonstrated that by utilizing a higher coupling co-
efficient, “ballistic” propagation may be achieved for a coupled-resonator structure con-
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sisting of 235-rings. For slot-waveguides, it was shown that an ultra-high birefringence
can be achieved if the coupler is separated by sub-100 nm; numerous other device func-
tionalities were also outlined. However despite their prominence in photonic research,
most of the well developed formalism for analytically calculating the modal properties
of optical waveguides are simply not accurate for high-index contrast strongly coupled
devices, requiring one to rely on numerical techniques. In the next chapter, methods of
numerically characterizing these structures will be detailed.
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4 Modeling Techniques for
Nano-photonic Devices

If you don’t know where you are going, any road will take you there.
—L ewis Carroll, Alice in Wonderland, 1865

One of the biggest expenses for research on photonic devices is fabrication. In
a recent commentary article for Nature Photonics, Michael Hochberg and Tom Baehr-
Jones point out that, “A single high-resolution photomask can cost over US $100,000,
and an advanced electronics chip can require a set of 40 masks or more with varying
resolutions’ [1]. The ability to accurately design and simulate device functionality be-
fore fabrication istherefore crucial in reducing company costs. In thischapter numerical
methods for simulating the dispersive effects of waveguides, directional couplers, and
coupled resonator optical waveguides will be reviewed. It will be shown how device
parameters can be varied from their nominal values to determine fabrication tolerances,
necessary for evaluating and predicting device yield. This chapter amost entirely fo-
cuses on frequency domain simulation methods, however, a technique for simulating
the eye-diagrams for a 40 Gb/s data stream propagating through a disordered CROW
will also be highlighted.

4.1 Numerical Solutions to Maxwell’s equations

The fundamental equations that govern electromagnetism are Maxwell’s equa-
tions. The electromagnetic modes of an isolated single waveguide, the supermodes of
an arrayed waveguide, or (equivalently) the even and odd modes of a directiona cou-

59
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pler, are all solutionsto these fundamental equations. These equations, named after the
Scottish physicist James Clerk Maxwell, consist of a compilation of equations:

V xE= _8—633 (Faraday’s law) (4.19)
VxH=J+ aa—[t) (Ampere'slaw) (4.1b)
V-D=p (Gauss's law) (4.1¢)
V-B=0 (Gauss's law for magnetism) (4.1d)

where E is the electric field vector, B the magnetic flux density vector, D the electric
displacement vector, and H the magnetic field vector. p and J represent the volume
density of free charges, and the density vector of free currents, respectively, and are set
to zero when finding the eigenvectors (modes) of a dielectric waveguide. Incidentally,
Maxwell’s contribution was an additional term in Ampere's law. Assuming atime de-
pendence of ¢/“t, with J = p = 0, and substituting in the constitutive equations for
linear dielectric materials, D = ¢E and B = pH, Faraday’s law and Ampere’'s law may
be further reduced:

V x E = —iwpeH (4.28)

V x H = jwn?¢E (4.2b)

where ¢ and p for a given dielectric material are related to their respective values in
vacuum (e = 8.854 x 10712 F/mand g = 47 x 1077) by € = ¢yn?, and u = jo, Wwhere
n isthe refractive index of the dielectric material. In similar form as [2], taking the curl
of Eq. (4.2a) and using Eq. (4.2b), dlong with the vector identity Vx V = V (V+) — V2,
one obtains:

V2E+n’k’E=V (V- E), (4.3)
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note that all of the vectorial components are contained on the right hand side.

Countless numerical and analytical techniques have been devel oped for reducing
and then solving Eq. (4.3) for rectangular waveguides. Among the most prevalent an-
alytical solutions, which rely on perturbative approaches, are Marcatili’s method [3]—
which solves the rectangular waveguide as two independent slab waveguides, Kumar’'s
method [4]—which improved on Marcatili’s method by analyzing the diagonal com-
ponents of the waveguide's refractive index profile, and perhaps the most well known
due to its applicability to ridge waveguides: the effective index method [5]. While
these analytical techniques givefairly accurate solutionsto the waveguide' selectric field
profiles for high-index contrast silicon-on-insulator nanowires, they often lead to erro-
neous results in predicting the propagation constants: used to determine group delay,
group velocity dispersion, coupling lengths, etc. Accurate design of high-index contrast
strongly coupled devices thus requires analysis using robust numerical techniques to
solve Eg. (4.3). In the following section, we outline one method specifically: the finite
difference frequency domain algorithm.

Finite difference frequency domain

In the finite-difference frequency-domain (FDFD) algorithm, developed by C. L. Xu et
al. [2], the dielectric profile of the waveguide's cross section is discretized on a rect-
angular grid as shown in Fig. 4.1(a,b). We note from Eq. (4.1c) that the three vectoria
components of the electric field are directly related such that once two components are
solved for, determination of the final component is straight forward.

In similar fashion as [2], we begin by expanding Gauss's law into its transverse
and axial components:

on? OF,

- (n*E —F 2 =0. 4.4
Vi (n l>+8z A 0 (4.9)

Aswe are solving for the modes of awaveguide assumed to be invariant in the direction

of propagation, z, the middle term on the LHS may be set to zero. Similarly we expand
the RHS of Eq. (4.3),

OE,
V’E +n*k*E=V (vL ‘B + o ) . (4.5)
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Figure 4.1: (a) Typica silicon-on-insulator waveguide (b) In the finite difference fre-
guency domain algorithm the dielectric permittivity, ¢, of the piecewise homogeneous
layers of the waveguide are discretized into a matrix. Note that the refractive index ma-
trix isreadily calculated asn = €'/2. () Numbering scheme used to |abel the individual
elements of the matrix shownin (b).

Solving EQ. (4.4) for ‘36% , substituting into Eqg. (4.5), and assuming amodal profile of the

form, E(z,y, z) = E. (z,y)e %%, one obtains the transverse vectorial wave equation:

1
ViEL—F(an}Q—BQ) E, =V, {VL'EL—EV'(TLQEL)} ) (46)

where E| (z,y) is the transverse electric field vector. Decomposing Eq. (4.6) into its
individual transverse components, X and y, one obtains two equations written in matrix

(')

form as

where,
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Figure 4.2: A single point shown in Fig. 4.1, labeled here as P, is characterized and
differentiated using its cardinal and inter-cardinal terms.
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Eq. (4.7) is an eigenvalue problem that may be solved using various numerical

techniques. For the results presented in this dissertation, Matlab's subroutine “eigs’

was used, which is optimized for solving the eigenvalues of sparse matrices (a matrix

primarily populated with zeros). It will be shown later that Eq. (4.7) isindeed a sparse

matrix.

Operator discritisation

When a continuous function u(z) is discretized at equal intervals separated by

Az, itsfirst order and second order derivativesat a point u,,, are readily calculated using

central difference formulas:



aum Um41 — Um—1

or 2Ax (4.89)
Py U1 — Uy + Uy
o = o | (4.80)

In this section discretization of P, will be presented, the derivation for the other oper-
atorsissimilar [6]. In FDFD each data point shown in Fig. 4.1(b) is characterized and
labeled by a grid such as the one shown in Fig. 4.2. For clarity of derivation, P, F, 1S
broken up into three subsections.

o [10(n*E,)] 0°E,

Proby = — | — 2k2E£ 4.9
oz [nQ oz } * 0y? +b (49)
~ ~ ~ ®3)

(1 2)
Using Fig. 4.2, (3) can readily be discretized by inspection:

(3) = n%mm)kQEﬂ(m,n)- (410)

In words, the number for this term in the matrix element is simply the refractive index
at that location squared times the wavenumber squared. Eq. (4.8b) may be used directly
to solvefor (2):

Ex|(m,n+1) - 2Ex|(m,n) + Ex\(m,nfl)
(2) =

A : (4.12)
To solvefor (1), EQ. (4.8a) isused once for the inner partial derivative:
m=2 L Wns1/2.m) Erlont1/2.0) = W1/, Brl(m=1/2.m) (4.12)
Ox | n? Az ’ '
and once again for the outer partial derivative:
@ = 1 M1, Bt 10) = oy Balmm) |
n(2m—|—1/2,n) Az? |
M2 2
1 nmnEx m,n _nm, nEx m—1n
. (m,n) Zzl(m,n) K (2 1,n) Fzl(m—1,n) (4.13)
n(m—l/Q,n) L . ]
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In order to obtain an expression in terms of the cardinal points as shown in Fig. 4.2,
the refractive index at an intermediate data point is taken as an average of the nearest-
neighbor cardinal points, known as the “graded index approximation” [7]:

1
2 ~ 2 2
Nm+1/2,n) ™~ ) (”(m+1,n) + n(m,n)) (4.149)
1
2 ~ 2 2
Nn-1/20) % 5 (Pt + Mo - (4.14b)

Substituting the graded index approximation into Eq. (4.13), and after a few algebraic
steps and grouping of like terms, P, may be expressed as:

P;r;rE;r = Px:vWEas\(m—l,n) + P:BJJPE:B\(m,n) +

P:E:EEELU|(m+1,n) + P:vaE:v\(m,n-I—l) + PLULUSELUHm,n—l)? (415)
where,
Tm,]_ Tm+1 1
P, = TN 9 zzE — ) PN = Py = A 9
W Ax? B An? N § Ay?
- (2 - Rm+1 - Rmfl) 2 2 2
Poap = A2 - AyQ + n(m,n)k ’
and,
2n2mi n
Trt1 = 2 UESSD) ’ Ryz1 = Tne — 1.

Wmt1m) T om)

Eq. (4.15) isthefinal result: the operator P, isthus expressed entirely in terms
of the of the waveguide's discretized refractive index profile, shown in Fig. 4.1(b), and
the wavenumber & = 27/, where )\ isthe free space wavelength.

Assembling P,

P, so far has been written in terms of a single data point. This section will
demonstrate how to extend P, for the entire refractive index profile using the number-
ing scheme shown in Fig. 4.1(c). If it can be assumed that within the waveguide the
polarizations are weakly coupled, the simplified semi-vectoria version of Eq. (4.7) may
be solved instead for each polarization separately: P,.E, = *E, and P,,E, = (%E,.
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Figure 4.3: Numbering scheme for a 12 point matrix. The numerical values of this
matrix would represent a discretized refractive index profile of awaveguide, such asthe
one shown in Fig. 4.1(a)

For the purposes of demonstration, we will set up a matrix P,, assuming the “waveg-
uide,” such asthe one shownin Fig. 4.1(b), contains only twelve points. The numbering
scheme for this twelve point waveguide is shown in Fig. 4.3.

Eq. (4.16) showsthefully assembled eigenvalue equation P, E, = $*E,. Read-
ing off the top row, which represents point (1) in Fig. 4.3, the matrix reads that the east
element of point (1) is point (2), and is thus multiplied by F,.(2). The north element is
point (1) is point (4), and is thus multiplied F,(4). Note that point (1) has no south or
west point, and are inherently set to zero (Dirichlet boundary conditions).

Similarly reading off the second row, which represents point (2) in Fig. 4.3, the
matrix reads that the west element of point (2) is point (1), and so it is multiplied by
E.(1). The east element of point (2) is point (3), and so it is multiplied by £,(3), and
the north element of point (2) ispoint (5), and so it ismultiplied by £,.(5). Point (2) has
no southern element, and isinherently set to zero. This processis repeated to construct
rows three through twelve, shown in Eqg. (4.16), which directly correspond to points
three through twelvein Fig. 4.3.

It should be noted that the operators, P,.p, Prony Przss Peery Przw INTOW ONE
refer to point (1) in Fig. 4.3, and should be calculated using the definitions for these
operatorsin Eq. (4.15) at the location of point (1). Similarly, these five operators may or
may not be the same for point (2), where these operatorsin Eq. (4.15) are now evaluated
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at point (2).

As each row in Eg. (4.16) can have at most four non-zero elements (eight non-
zero elements for each row in Eq. (4.7) as the inter-cardinal elements must be consid-
ered), P,, becomes very sparse as the number of data points increases. The non-zero
elements consist of numbers solely calculated from the discretized refractive index ma-
trix, such as the one shown in Fig. 4.1(b), and the wavenumber. The implicit assump-
tion of Dirichlet boundary conditionsis that the electric field of any guided mode of the
waveguide has sufficiently decayed before reaching the numerical boundary—where it
is pinned down to avalue of 0. Asthe modes of dielectric waveguides decay into their
cladding exponentially, this assumption is usually valid provided a sufficiently large
computational window is used. Derivation of P,,, P,,, P,, is straight forward. Once
the elements of Eq. (4.7) are assembled, the eigenvalues (propagation constants) and
eigenvectors (modes) for the full-vectorial wave-equation may be solved using any ma-
trix eigenvalue solver subroutine, preferably one optimized to handle sparse matrices.
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4.2 Dispersion Engineering of SOl Waveguides

The previous section described a numerical method suitable for solving for the
exact eigenvectors (modes) and eigenval ues (propagation constants) of high-index con-
trast waveguides. Similarly, there exists numerous commercial programs that may be
used such as COMSOL, HFSS, and RSOFT, where the mode solvers are based on
the finite element method. For these commercial programs—identical to the FDFD
algorithm—one describes a waveguide geometry with the corresponding dielectric con-
stants and a free space wavel ength; these numerical solversthen return the modes (elec-
tric field patterns), and the corresponding propagation constants, of the waveguide.

When the excitation wavelength is changed, not only does the waveguide re-
spond differently (waveguide dispersion), so does the materials of which the waveg-
uide is composed (material dispersion). In order to calculate the dispersion relationship
of awaveguide, 5(w), one must iteratively run the mode solver not only updating the
freespace wavelength A (w = 27c/)), but also the dielectric constants of the waveg-
uide's constituent materials using each materia’s Sellmeier equation [8]. Once one
obtains the propagation constant, the waveguide's effective index is readily calculated
through 5 = Q’T"Tff The speed of light traveling at this frequency (phase velocity)
through the waveguide is readily calculated as v, = ¢/n.y;.

As outlined in Chapter 1, optical information is carried on pulses, which are
composed of a narrow band of frequencies around a carrier frequency w. As such, each
of the frequency components within the pulse will travel at dightly different speeds,
giving way to pulse broadening as it propagates down the transmission line. The speed
at which the pulse travels is determined by its group velocity v, = ¢/n,, where n, is
defined as:

dneff

d\
A measure of apulse’ stendency to spread isdetermined by itsgroup vel ocity dispersion,
GVD,

Mg = Negf — A (4.17)

(4.18)
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Figure 4.4: (a) Comparison between solving for the group velocity dispersion using
numerical derivatives, and increasing order of polynomial fits. (b) For higher order
polynomials the two methods produce identical results.

where GVD is usualy given in units of ps/nm-km. The following Matlab code is re-
posted below due to its frequent re-usability, where the wavelength is assumed initially
to be in nanometers. Using the central difference equations, Eq. (4.8a) and Eqg. (4.8b),
one may obtain the group index “ng” and group velocity dispersion“GVD”, of awaveg-
uide from an array of equally spaced wavelengths “wave’ and the corresponding array
of numerically evaluated effective indexes, “ neff.”

% Cal cul ate Group | ndex

wave = wavex10"-9; % Wavelength in neters

d_l anbda = wave(2)-wave(1l);

d_neff = neff(3:end)-neff(1l:end-2);

dndl = d_neff/(2+xd_|l anbda); % Central Difference (CD)
dwave = wave(2:end-1); % Lose two points from CD.

ng = neff(2:end-1)-dwave. *xdndl; %5 oup | ndex

% Cal cul ate GVD

dwave = dwave*10"9; % units are /nm

d lanbda = d_| anbda*1079;

c = 3%1078/1000*1le-12; % Speed of Light in knips

GWD = -dwave/ (c*d_| anbda”2).*x(neff(3:end)- ...
2+xneff (2: end-1) +neff(1: end-2));

From the central difference formula, if an array of ten effective indices are solved for,
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Figure 4.5: Change in group velocity dispersion (GVD) of three silicon nanowires of
different width, w, as the thickness, t, of a thin film of Si3N, residing on top of the
waveguide is varied. The height of each of the silicon nanowires is 250 nm, and the
wavelength is 1550 nm. The slope of the GVD vs thin film thickness in alocal region
describes the device sensitivity to fabrication irregularities.

equally spaced in wavelength, one may only calculate the group index and group veloc-
ity dispersion for the central eight data points.

The other common numerical technique for calculating the group index and
group velocity dispersion is by fitting the effective index datato a polynomial, and then
anaytically differentiating the polynomial. Fig. 4.4 shows a comparison between the
two methods. For higher order polynomials the two methods produce identical results.

As an example of how iterative solutions of a waveguide's propagation constant
can be used to describe device tolerances, we examine the sensitivity of GVD to the
thickness of a thin film cladding deposited on top of a silicon nanowire, as shown in
Fig. 4.5. Dispersion in silicon nanowires is dominated by waveguide dispersion, not
material dispersion. Theability to design waveguidesthat operate around zero GV D will
become necessary for reducing signal distortion at high data speeds over long distances
[9]. Being ableto engineer GV D isaso useful for wavelength conversion based on four-
wave mixing [10]. By depositing athin layer of SisN, on top of asilicon rib waveguide,
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its dispersion characteristics can be precisely tailored [11]. Fig. 4.5 shows the group
velocity dispersion of atypical silicon-on-insulator nanowire for three different widths,
250 nm height, A = 1550 nm, as the thickness of athin film of Si;N, residing on top of
the nanowireisvaried. Notethat at a zero-thicknessthe silicon nanowire has arelatively
high dispersion of around 3000 ps/nm-km. By increasing the thickness of the thin film
cladding the GVD isreduced, and at a certain value, it crosses zero. Shown in the inset
of Fig. 4.5 is the waveguide width, along with the thickness required for zero GVD.
Also shownistherate of change, calculated from Eq. (4.8a), of the GV D with changing
thickness. At a waveguide thickness of 450 nm, a thin film of SizN, at a thickness of
147.2 nm will bring the waveguide to zero GVD. If the fabrication steps are off by 1 nm
in the thickness of the SisN, cladding, then the GV D will increase, or decrease, by 13.7
ps/nm-km.

The above example is perhaps the most useful capability of mode solvers. In
practice, a fabricated waveguide will often have dlightly different Sellmeier equations
and a dightly different geometry due to fabrication irregularities resulting in waveg-
uide surface roughness. By iterating device dimensions within a mode solver, one can
determine the tolerance required by the fabrication process.

4.3 Dispersion of Directional Couplers

Thus far we have been concerned with the propagation constants and field pat-
terns of single isolated waveguides. It was shown that by iterating a mode solver one
may obtain the dispersion relationship, 3(w), for a given waveguide mode. As will be
detailed in the next chapter, when N single-mode waveguides are weakly coupled to-
gether, the arrayed structure will contain N supermodes (technically 2N supermodes, N
for each polarization). Each of these supermodes has its own dispersion characteristics.
An N =2 arrayed waveguide isadirectional coupler, which containstwo “ supermodes,”
typically labeled as symmetric and antisymmetric. When light enters one arm of a di-
rectional coupler, called the feeder waveguide, it splits—not necessarily equally—into
the even and odd supermodes of the N = 2 arrayed waveguide. Fig. 4.6 shows the feeder
waveguide and its corresponding mode, as well as the superposition of the symmetric
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Figure 4.6: Schematic of a butt-coupled directional coupler. When light enters the di-
rectional coupler it splitsinto the even and odd supermodes, which then propagate down
the waveguide shifting in and out of phase with one another. At the transition plane, the
superposition of the symmetric and antisymmetric supermodes of the directional coupler
have a high degree of overlap with the feeder mode.

and antisymmetric modes of the directional coupler. Note the high degree of overlap be-
tween these two profiles at the transition region, which will hold so long asthefieldsare
not skewed from strong coupling (Section 5.3). However, when the supermodes propa-
gate down the coupler, they will shift in and out of phase with one another due to their
different dispersion characteristics; causing the concentration of light in the directional
coupler to oscillate back and forth between the separated waveguides.

To analytically describe this phenomenawe proceed in a manner similar as Her-
mann A. Hausin Ref. 14, only using the modes obtained from a numerical mode solver.
We describe the coupling of modes in space for a four-port co-directional coupler. We
begin by describing the evolution of the modes where the feeder waveguide is butt cou-
pled to one of the two arms of the directional coupler, as shown in Fig. 4.6. We then
describe the effects of adiabatic coupling, as would be the case for the racetrack res-
onators of a CROW, which were described in detail in Chapter 2.

When light from either of the uncoupled waveguides enters the coupling re-
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gion of a directional coupler, the symmetric and anti-symmetric supermodes for the
transverse-electric polarization are excited as:

~

E(z,y,0)X = a,&°(x, y)X + a, £z, y)X, (4.19)

where 2z = 0 represents the input coupling plane, Ec(x, y, 0) represents the total electric
field in the coupling region, and £°(x, y) and £(x, y) represent the exact symmetric and
antisymmetric supermodes of the directional coupler, obtained from a numerical mode
solver such as FDFD, with

o ’<Ew-g-1(gg, y,0)E%(x, y)> i (.20

<Ew9-1(x, y,0)Ew-91(z, y, 0)> (€3, y)E(x,y))

and

2

. (Bvoi(a,y, 0082, ))| | o

(Bvo(@,y,0 B9 (2, ,0)) (€2(z, y)E(z, )
which define the degree of mismatch between the feeder waveguide, assumed in this

case to be waveguide 1, and the excited supermodes. As demonstrated in Fig. 4, the
supermodes then propagate down the coupler beating against each other as,

Ee(z,y, 2)X = a,E5(x, y)eP "X + a, %z, y) e X, (4.22)

where 3° and 5* are the propagation constants of the respective supermodes. After the
waveguides have decoupled at adistance (.., we obtain our dimensionless coupling coef-
ficient as the overlap integral between the superposition of the propagated supermodes
and the second waveguide of the directional coupler:

P e

(Brox(a,y 1) B o2(a,y, 1)) (B, 1) (e, y, L)

In order to obtain amore straightforward expression, we follow the methodol ogy

of coupled mode theory (CMT) and approximate the electric field of the supermodes as
an expansion of the individual isolated waveguide modes,
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Figure 4.7: Superposition of the exact even and odd supermode obtained from a finite
element mode solver and propagated as Eq. (4.22) at a waveguide height of 100 nm.

£ (a) = 5 (B (wy) + B %(a.y)) (4.242)
£(r9) = —5 (B (o) = E792(a.n). (4.24b)

Substituting Eq. (4.22) and Eqg. (4.24) into Eq. (4.23), and utilizing the orthog-
onality of the individual waveguide modes, the dimensionless coupling coefficient is
reduced to:

k% = sin? (gé—i) + A? cos? (gé—i) (4.25)
where,
A= <Ew'g'2(x,y)Ew'g'1(;E,y)> <1 (4.26)

and the coupling length is defined as L. = ﬁ which physically represents the

length where all of the light has transfered int(o the second waveguide. n, and n, are
obtained from the propagation constants returned from a numerical mode solver.

InFig. 4.8 we comparethefirst term of Eq. (4.25) with Eqg. (4.23). Eq. (4.23) was
solved by calculating the exact supermodes of the directional coupler and the mode of
the feeder waveguide using afinite element mode solver (COMSOL). Overlap integrals
are performed to determine a; and a,, where the mode in the coupling region is then

propagated down the directional coupler using Eg. (4.22), where Eq. (4.23) may then be
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directly evaluated using the mode of the second waveguide (also solved using the FEM).

Sellmeier equations were used to account for the material dispersion for the silicon core,
the SIO, substrate [8], and the PMMA superstrate[12]. The dominant variation between

—— Eq. (8) m— ;2 = 5in? (gi—c)
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the two coupling coefficient expressions comes from assuming that the power is equally
split into the two supermodes, which is not the case for butt-coupled directional couplers
at short separation distance due to the dislocation of the field peaks from the waveguide
centers within the coupling region, which isalso predicted by CMT [13], compared with
the feeder waveguide whose mode is centered within its dielectric boundaries.

In the case of racetrack microring resonators, the waveguides are parallel in the
coupling region and bend away at both ends. The net result is that within the bending
regions the propagation constants of the supermodes, and hence the coupling coeffi-
cient, becomes a function of position [14]. In a similar fashion as Ref. 15, we use
coupled mode theory to describe the contributions to the couping coefficient due to the
waveguide bends. We will start by describing the evolution of the supermodes as they
bend away from the coupling region, and, by symmetry, this will be the same equiva-
lent length contributed by input taper. As the waveguides bend away from one another,
the effective index of the two supermodes both approach that of the single uncoupled
waveguide, causing the coupling length to go to infinity. We ignore the spatial depen-
dence of the supermodes, A = 0, which become less significant as the waveguides taper
away from each other, and write the evolution of their phases as,

A

By, > 0) = sl (Bl Benan (i) (4.27)

1
(&
2
_'_ %el (Balc+f()z ﬁgﬁnds (Z/)dz/> ’

where 2/ = z — [.. Substituting into Eq. (8), and evaluating over the entire bend, we
have,

s o fml > T
K~ = SIn <§L—C—|—/0 W(iz/) . (428)

We assume an exponential form of the coupling length,

Lbends (1) = aetd), (4.29)

and approximate the spacing between the two waveguides, g(z) = go + % [15], where
go 1S the minimum separation distance of the directiona coupler and R is the bending
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Figure 4.9: (a) Dependence of coupling length on the waveguide separation and wave-
length. (b) The additional coupling length due to the contribution of the waveguide
bends.

radius of the microring. Recognizing that L. = ae®, the additional phase contribution
due to both bends is readily calculated, and we obtain our coupling coefficient as,

k? = sin? (272 (lc + HW—Z{>> . (4.30)

The effect of the waveguide bends is thus to increase the effective length of the
directional coupler by lyenqs = 1/ ™.

4.3.1 The Directional Couplers of the CROWSs

To proceed in evaluating Eq. (4.30) atest structure is needed: we use the direc-
tional couplers of the CROWSs reported on in Section 2.1. Recall that the CROWs were
fabricated on two different wafers, which underwent different sidewall roughness reduc-
tion techniques, hydrogen annealing and double oxidation. It was pointed out that in the
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Figure 4.10: Scanning electron microscope (SEM) image of the waveguide cross-
section and first four directional couplers for both the hydrogen annealed and double
oxidized wafers.

Oxidized

process of oxidation, 10 nm of silicon is sacrificed at the waveguide boundary whereit is
replaced by 20 nm of oxide. Fig. 4.9(a) shows the dependence of the coupling length on
the coupler gap and wavelength for both the hydrogen annealed and double oxidized di-
rectional couplers of which the CROW is composed; solved using Eq. (4.25) where both
the wavelength and waveguide spacing was varied. These graphs are fitted to Eq. (4.29)
to obtain b(\). Fig. 4.9(b) shows the contribution of the waveguide bends to the cou-
pling length for both the double oxidized and hydrogen annealed wafers. Due to the
reduction in height, the modes affect each other sooner coming around the bend for the
double oxidized wafer and at longer wavelengths, which is a result of less confinement,
thus increased overlap, of the waveguide modes.

In addition to the two waf ers undergoing different post-fabrication surface rough-
ness reduction processes, the lithography dosage on the wafers themselves was varied
(Section 2.1). Fig. 4.10 showsa SEM image of thefirst four rings of a35-ring CROW. In
order to reduce the group delay and insertion loss ripple, apodization of the directional
couplers is performed by tapering the spacing (coupling coefficients) of the first four
rings [16]. We define the pitch of the coupler as p = w,; + wyqp. TO determine the ef-
fects of dose-striping on the coupling coefficients, we solve for the coupling coefficient
using Eq. (4.25) as the silicon filling fraction of the directional couplers, ¢ = 1”7 isvar-
ied, keeping the pitch constant. The initial filling fraction is determined from the SEM
images of thefirst four couplers shownin Fig. 4.10, for both the hydrogen annealed and
double oxidized wafer.

Fig. 4.11 shows the effects of varying the waveguide width by + 50 nm for the
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hydrogen annealed wafer in steps of 10 nm over the wavelength range that was mea-
sured experimentally. We note that the coupling coefficient of the microring directional
coupler remains relatively insensitive to variation in the filling fraction as was reported
in Section 2.1. Asshown in Fig. 4.12, thisis not the case for the more weakly confined
double oxidized waveguide, which is 20 nm thinner. These simulations indicate that
when the height of the silicon waveguide was reduced from the double oxidation pro-
cess, the composite directional couplers of the CROW became more strongly coupled.
Thisisin excellent agreement with the analysis presented in Section 2.1. The most dom-
inant post-fabrication process was thus the reduction of the height of the silicon layer
due to the double oxidization process. Thisled to an increase in the coupling coefficient
and less tolerance to variations in waveguide width for the directional coupler.

4.3.2 Dispersion of Fused Waveguides

If the lithography doseis too low, and the desired waveguide separation issmall,
the two patterns can overlap resulting in a fused multimode waveguide, as shown for the
first hydrogen annealed Coupler 1in Fig. 4.10. The feeder waveguide couples into all
available modes of the multimode waveguide, in this case three, which are spatially dif-
ferent from that of the directional coupler. For example, the first mode for a directiona

17 Hydrogen Annealed
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Figure 4.11: Wavelength dependent coupling coefficient for the hydrogen annealed for
the first three couplers as the coupler pitch is held constant and the waveguide width is
varied by + 50 nm.
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Figure 4.12: Wavelength dependent coupling coefficient for the double oxidized wafer
for the first three couplers as the coupler pitch is held constant and the waveguide width
isvaried by + 50 nm.

coupler contains two peaks, whereas the first mode for a fused waveguide only contains
one. Also, for the directional coupler, we expect that varying the filling fraction will
change where the modes begin to decay but not the location of the field peaks. Thiswill
not be the case when changing the width of the fused waveguide for the two higher or-
der modes. From SEM images we notice an abrupt transition from the feeder waveguide
and follow the methodology used for the butt-coupled waveguide described earlier. We
write the electric field in the multimode coupler, E™¢(x, y, z), as superposition of the
modes,

Em'm'c(a:, Y, 2)X

I
9
S
&=
S
S
&
B
<
S~—
S
)ﬂ
=
183
>

+
+ oarp, ET (3, y)e (4.31)
where again, a? represent the percentage of power coupled into the i** mode, and is cal-
culated as the overlap integral of that mode with the feeder waveguide. Fig. 4.13 shows
the superposition of the three modes of the multimode waveguide and propagated as
Eq. (4.31). In Fig. 4.14 we show the coupling coefficient, determined from the overlap
integral of the propagated mode with the second waveguide. Also shown is the percent-
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Figure 4.13: Superposition of thefirst three modes of a multimode waveguide, obtained
from afinite element mode solver and propagated as Eq. (4.31) at a waveguide height
of 100 nm.
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the modes of the multimode waveguide for different widths.

age of power coupled into each of the three modes of the multimode waveguide. For the
fused waveguide there is very strong dependence of the coupling coefficient with both
wavelength and waveguide width as the three modes, each with their own dispersion



83

Se1 (OllphllgRF‘QlOlb Sia

- HO00-0C T

rin ‘otigh
Phase Sluﬂ P, \ JR+2w+g
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the CROW, A, isdefined in terms of thering radius, R, the waveguide width, w, and the
separation distance g.

characteristics, beat against each other.

4.4 Simulation of a Disordered CROW

In the previous section it was shown that the composite directional couplers of a
CROW may become highly dispersive as the resonator separation distance is reduced—
required for proper apodization. Because of this dispersion the apodization of a CROW
may vary significantly from band to band. In this section we will outline atechnique for
simulating the transmission spectrum of a CROW which will account for not only the
wavel ength dependence of the composite directional couplers, but aso the dispersion of
the silicon nanowires of which the CROW is composed. Further, with perturbationsin
ring size and track length the effects of disorder may be simulated.

4.4.1 Transfer Matrices

Methods for calculating the transmission spectrum of a CROW using transfer
matrices have been developed and detailed el sawhere, and their results briefly summa-
rized here [17, 18]. In this section we highlight the necessary adaptations that must be
made to simulate a CROW composed of high-index contrast silicon-on-insulator waveg-
uides, where the resonators may be individually misaligned.

As shown in Fig. 4.15, the input waveguide's electric field is related to that of
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the drop port waveguide through a cascade of scattering matrices, .S, and propagation
matrices, P, as.

E;
(4.32)
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and n indexes the total IV resonators, ¢,, = 2mn.sr(A)C,, /A represents the round trip
phase shift of a single ring of circumference C,,, and x(\) and ¢(\) represent the mag-
nitude of the dimensionless cross-coupling and through-coupling coefficients between
two resonators.

Section 4.2 detailed how one may obtain the dispersion of the silicon nanowires
of which the CROW is composed, n.r¢(A). Section 4.3 outlined how to simulate the
wavelength dependence of the coupled silicon nanowires, (), for different resonator
separation distances. Eg. (4.32) contains 2N+1, 2x2 matrices. to accurately solve the
transmission properties of a CROW, each of these matrices must be updated at each
wavelength to account for the dispersion of the coupling coefficients, (), and the
dispersion of the silicon nanowire of which the CROW is composed, n.¢¢(A). Finite
element simulations should be done first to fully characterize these two terms, and then
these results substituted into Eq. (4.32). One may simulate an apodized CROW by
tapering the first four and last four scattering matrices, by solving for and substitutingin
the corresponding x,,(\). Once the matrix M(\) is determined, the drop port response
isreadily calculated as E 4,0, (A) = 1/mq1(A).

4.4.2 Reconstructing Field Patterns

As will be discussed in detail in Chapter 6, within a microring resonator the
intensity becomes enhanced. Once the drop port response is determined, one may cal-
culate the enhancement of energy, I, in the N* ring as,
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Figure 4.16: Intensity maps for both an apodized and a non-apodized 35-ring CROW.
Note that for the individual rings, the resonators may undergo significantly different
enhancements

Edrop
In = SN,NH 0 (4.34)
Similarly, the intensity enhancement for the second to last ring, I x_1, iS,
Edrop
In_1 = Sy NPNSN N1 (4.35)

Continuing this processfor each ring at each wavelength one obtains the entire response
of the individual rings of a CROW. Fig. 4.16 shows this response for a single band of
a disorder-free apodized and non-apodized CROW. Within the CROW'’s transmission
band, the individual resonators become enhanced forming the eigenmode of the CROW.
Note that the individual coupled resonators of a non-apodized CROW have a much
sharper linewidth, which leads to significant group delay and insertion loss ripple across
the CROW'’s band. In Chapter 6, a method of directly imaging the response of these
resonators will be outlined.

In practice, disorder in CROWSs has thus far been a severe practical problem,
since in a multi-resonator ensemble, the resonance frequencies of the constituent res-
onators must be precisely aligned. As the benefit of microrings and CROWS increases
for higher quality factors (lower coupling coefficient, increased resonator separation),
such resonators are also harder to align. In fact, CROWSs over a hundred lattice peri-
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Figure 4.17: (a) Simulation of the transmission spectrum of a disordered 235-ring
CROW composed of silicon nanowires of 200 nm height at 500 nm width, with 3 dB/cm
propagation losses. The disorder was simulated by adding random Gaussian noise to
the inter-resonator couping coefficients of Eq. (4.32) such that their standard deviation
(STD) was defined by, 6 = 0.02. Similarly the resonator size was perturbed such that
the STD in the phase was j¢ = 0.01. (b) The simulated group delay of the disor-
dered CROW. (c) Intensity variations of the individual micro-resonators. For a given
wavel ength, neighboring resonators in a CROW may undergo significantly different re-
sponses. The section outlined by the dashed-white box is shown in Fig. 4.18. In Chapter
6, using infrared imaging, the intensity map of a 235-ring CROW is directly measured.

ods in length have shown disorder-induced localization of light [19, 20], which though
fundamentally interesting and potentially useful for some applications[21], is generally
considered problematic for most device applications.

Eq. (4.32) may be used to simulate the effects of disorder on the passband of
a CROW, and predict whether or not a given tolerance defined by the fabrication pro-
cess will prohibit device operation. Fig. 4.17(a,b) show the transmission and group
delay spectra of a disordered 235 ring CROW composed of silicon nanowires with 3
dB/cm propagation loss. In the simulation, random Gaussian noise was added to the
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Figure 4.18: Zoomed in region of the white-dashed box in Fig. 4.18(c), showing the
high spectral dependence of the individual resonators.
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Figure 4.19: Comparison of simulated and measured, transmission and group delay,
spectra of a 35-ring CROW

inter-resonator couping coefficients such that the standard deviation (STD) across the
N ringswas, 6« = 0.02. Similarly, the resonator size was perturbed such that the STD
in the phase across the N rings was, d¢ = 0.01. Asshown in Fig. 4.17(c), for a given
wavelength, neighboring resonators in a disordered CROW may undergo significantly
different responses. The section outlined by the dashed-white box in Fig. 4.17(c) is
expanded in Fig. 4.18.

It was demonstrated in Chapter 2 that from the transmission spectrum of a
CROW, one may extrapolate the wavel ength dependent coupling coefficient of the con-
stituent directional couplers. Fig. 4.19 shows a comparison of a simulated spectrum of
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a 35-ring CROW, along with a measured spectrum. The high degree of uniformity be-
tween these two traces is clearly evident. For thissimulation, the wavelength dependent
coupling coefficient of the inner micro-resonators was determined from the measured
CROW’s bandwidth. The dispersion properties of the composite silicon nanowireswere
solved using a finite element mode solver, as detailed in Section 4.2. The loss of the
silicon nanowires was measured, and used in the simulation, to be -3.8 dB/cm; deter-
mined from the measurement of four straight waveguides of varying lengths on a nearby
test site. The spectrum was further offset by 8 dB to account for the input and output
couplers. The wavelength dependent coupling coefficient used in this simulation for the
first directional coupler is similar to the one shown for the first directional coupler in
Fig. 4.12. Because of the dispersion of the coupling coefficient in thisfirst resonator, the
CROW is properly apodized only at shorter wavelengths, and un-apodized for longer
wavelengths. This results in higher group delay ripple, and insertion loss ripple, at
higher wavelengths. Fig. 4.19 shows the high degree of accuracy provided by the trans-
fer matrix method when the dispersion characteristics of al of the CROWSs constituent
parts are taken into consideration.

4.4.3 Sending Numerical Data
Through a Numerical CROW

The previous section detailed a transfer matrix method for smulating the re-
sponse of a multi-resonator apodized and disordered CROW in the frequency domain.
The impulse response of this device is readily calculated in the time domain through
the Fourier transform [15]. This representation is useful for analyzing certain group
delay measurement techniques, such as swept wavelength interferometry (described in
Chapter 6), where many of the data post-processing routines are performed in the time
domain. Fig. 4.20 shows the impulse response of a 35-ring CROW as the attenuation of
the constituent nanowiresisramped up. Note that for each of these simulationsthe peak
of the response is located at the same location in time, and is a direct measure of the
“band-center” delay of a CROW. “Band-edge’ characteristics can also be analyzed by
looking for spikes at later times. Through the convolution operation, one may thus sim-
ulate the response of a data-stream being sent through each of these CROWs. Similarly,
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which is done here, one may stay in the frequency domain and transform the incoming
data stream.

Information is transported in photonic integrated networks using pulses. Digital
encoding interprets the presence of an optical pulseasa“1,” and the absence of a pulse
asa“0'. In this section we highlight a method for simulating the eye-diagrams for high
speed data propagating through a disordered CROW. The two most common methods of
transmitting data are the return-to-zero (RZ) and nonreturn-to-zero (NRZ) formats. In
this section we will focus on the transmission of a RZ data stream, where within each
active bit duration a pulse will rise from, and return back to, zero. Modification for the
NRZ data stream is straight forward.

The electric field of an incoming data stream, encoded onto an optical carrier at
frequency wy, may be expressed as [22],

B (1) = Re [Ao(t)e" exp (—iwot)] , (4.36)

where the amplitude A, (t) is defined by,

Aolt) = Py"*> " buf, (t — nTh), (4.37)

where P, isthe peak power, b, representsa“1” if apulseis present, and a“0” if there
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Figure 4.20: Simulation of the impulse response of a disorder free CROW as the atten-
uation of the constituent silicon nanowires was ramped up. The location in time of the

peak response is a measure of the CROW'’s “band-center” delay.
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Figure 4.21: Simulation of the response of a 35-ring CROW on an incoming data stream
asthe carrier wavelength istunned throughout the CROW’s passband. (@) (Black) Initial
data stream to be sent through the CROW. (Blue) The data stream after it has propagated
through the CROW, where the carrier frequency is tuned to different locations in the
band of the CROW. (b) The frequency domain response of the CROW (green), along
with the frequency domain representation of the data stream (blue) at different carrier

locations.

(a) ' (b)
08 1 o8 8
B08 | Bosl | ||[ | Il
04 2
Eosf | [ I | Eosf {
| | | 0.2 |
0.2} uz-l | |
1%4(‘ 545 550 1555 560 o 10 20 ] 40 1540 545 550
Wavelength (nm) Time (ps) Waveleng m|
(c)
08}
§ua- |
E !
0.4 | |.'| I
02| r .Pul. ]| .
i' [ i
%&O 1545 1550 1555 1560 20 30 4 1 1545 1550 1
‘Wavelength {nm) Time {ps) Wavelength (nm)

Figure 4.22: Simulation of the eye diagram for a RZ data stream propagating through a
35-ring CROW, tuned to band center. The data stream is shown in blue, and the CROW
in green. Disorder was increased in the CROW by increasing the STD between the inter-
resonators coupling coefficients and propagation lengths by: (a) 6x =0, ¢ = 0,(b) ok =
0.02, ¢ =0.008,(c) 0x = 0.06, §¢ = 0.02,(d) 6x = 0.1, 6¢ = 0.04.

is no pulse, f,(t) defines the shape of the pulse—assumed here to be Gaussian—and



91

T, = 1/B, isthebit dot at the bit rate B. The top row of Fig. 4.36(a) shows a simulated
40 Gb/s data stream composed of 5 ps Gaussian pulses with a 25 ps bit slot. While only
theinitial few bitsare shown, 200 bitswere used for all of the simulationsin this section.
The frequency domain representation of this data stream may be calculated through the
Fourier transform, .7, numerically thisisdoneusing FFT operations. Fig. 4.36(b) shows
the frequency domain response of the 35-ring CROW (blue), along with the frequency
domain representation of the data stream (green), while the carrier frequency of the data
stream is being tuned throughout the passband. The corresponding output data streams,
Fdataout " are shown in Fig. 4.36(a), and were numerically calculated from,

Edata,out — ﬁ—l ((g‘ (Edam(t>) . ECROW(f>) . (438)

It can be seen that when the data stream’s carrier wavelength is turned to the band-gap
of the CROW, no signal is recovered at the output. Asthe carrier wavel ength progresses
throughout the band of the CROW the signal begins to be recovered. At band center,
the datais simply attenuated and shifted in time by 30 ps. In Fig. 4.37 the eye diagrams
are shown for an incoming data stream tuned to the center of the CROW band, as the
disorder in the CROW is ramped up. Information can thus be recovered for weak vari-
ations between the individual resonators, but for a significant amount of disorder the
information will not recovered.

4.5 Summary

In this Chapter numerical techniques were outlined to accurately simulate the
dispersive propertiesof high-index contrast silicon-on-insulator nanowires. It was demon-
strated that using iterative techniques, one may define fabrication tolerances required for
device operation. By calculating the dispersion of the individual supermodes of coupled
nanowires, one may obtain the wavel ength dependent coupling coefficient (). Further,
it was demonstrated that by using both of these terms as sub-elements in transfer ma-
trices, one may accurately simulate the multi-band transmission response of a CROW.
Such simulations were compared with measured data, showing excellent agreement.



92

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nature
Photonics, val. 4, p. 492U702, 2010.

C. L. Xu, W. P. Huang, M. Stern, and S. K. Chaudhuri, “Full-vectorial mode cal-
culations by finite difference method,” 1EE Proc.-Optoelectron., vol. 141, pp. 281
—286, 1994.

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for
integrated optics,” Bell Syst. Tech. J., vol. 48, pp. 2071-2102, 1969.

A. Kumar, K. Thyagargjan, and A. K. Ghatak, “Analysis of rectangular-core di-
electric waveguides—an accurate perturbation approach.,” Optics Letters, vol. 8,
pp. 63-65, 1983.

K. Okamoto, Fundamentals of Optical Waveguides. Academic Press, 2nd ed.,
2006.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides
by a full-vector beam propagation method,” |EEE J. Quantum Electron., vol. 29,
pp. 2639 —2649, 1993.

W. C. Chew, Waves and Fields in Inhomogeneous Media. |EEE Press, 1995.
M. J. Weber, Handbook of Optical Materials. CRC Press, 2003.

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, , and Y. A. Vlasov, “Group in-
dex and group velocity dispersion in silicon-on-insulator photonic wires,” Opt.
Express, vol. 14, p. 3853, 2006.

J. S. Park, S. Zlatanovic, M. L. Cooper, J. M. Chavez-Boggio, |. B. Divliansky,
N. Alic, S. Mookherjea, and S. Radic, “Two-pump four-wave mixing in silicon
waveguides,” in FiO 2009 OSA Annual Meeting, Frontiers in Optics, p. FML2,
20009.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

93

X. Liu, W. M. J. Green, |.-W. Hsieh, J. |. Dadap, Y. A. Vlasov, and R. M. Osgood,
“Dispersion engineering in silicon photonic wires using thin si3n4 conformal di-
electric coating,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics
and Laser Science Conference (QELS), 2010 Conference on, p. IMC7, 2008.

T. Ishigure, E. Nihel, and Y. Koike, “Optimum refractive-index profile of the
graded-index polymer optical fiber, toward gigabit datalinks,” Appl. Opt., vol. 35,
p. 2048, 1996.

M. L. Cooper and S. Mookherjea, “Numerically-assisted coupled-mode theory
for silicon waveguide couplers and arrayed waveguides,” Optics Express, vol. 17,
pp. 1583 —1599, 20009.

H. A. Hausand N. A. W. Jr., “Elimination of crosstalk in optical directional cou-
plers” Applied Physics Letters, vol. 46, p. 1, 1985.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis. John Wiley &
Sons, Inc., 1999.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on asilicon chip,”
Nature Photonics, val. 1, pp. 6571, 2007.

J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Y. Huang, and A. Yariv,
“Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Ex-
press, vol. 12, no. 1, pp. 90-103, 2004.

A. Yariv, Optical Electronics in Modern Communications. New York: Oxford,
fifth ed., 1997.

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, “Localization in silicon
nanophotonic slow-light waveguides,” Nature Photonics, vol. 2, p. 90, 2008.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon
localization in disordered photonic crystal waveguides,” Phys. Rev. Lett., vol. 99,
no. 25, p. 253901, 2007.

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lo-
dahl, “ Cavity quantum electrodynamics with anderson-localized modes,” Science,
vol. 327, pp. 1352-1355, 2010.

G. P. Agrawal, Lightwave Technology: Telecommunication Systems. New Jersey:
John Wiley and Sons, 2005.



5 Breakdown of CMT:
Strong Coupling Perturbations

Before | came here | was confused about this subject.
Having listened to your lecture | am still confused.
But on a higher level. —Enrico Fermi

Silicon-on-insulator (SOI) waveguides and optical on-chip circuitry rely on the
high refractive index contrast between core (silicon, n = 3.5) and cladding (silicon
dioxide, n = 1.45) materials to guide light in very compact structures and with small
bending radii [1, 2]. SOI photonics is one of the most active areas of ongoing re-
search and large-scale integrated circuits are being designed and fabricated. In many
of these proposed circuits, one of the most critical waveguide components is the di-
rectional coupler between two parallel waveguides, which is used in microring-based
filters [3], Mach-Zehnder interferometers and modulators [4, 5, 6], arrayed waveguide
structures |7, 8, 9, 10] etc.

In Chapter 2 and 3 deviceswere outlined that rely on strongly coupled nanowires.
Further, in Chapter 4, numerical techniques for calculating various properties of these
waveguides were described; such as methods of cal culating the eigenmodes and disper-
sion characteristics for both coupled and isolated structures. Here, we investigate and
guantify the limitations of perhaps one of the most established analytical methods for
coupled waveguide analysis, coupled-mode theory (CMT), in designing high index con-
trast SOI couplersand arrayed waveguides. CM T isasimple and often reliable approach
for the design of such structures, formally applicable to low-index and weakly coupled
structures, in which the coupling coefficient can be written down in terms of overlap
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integrals of the individua waveguide modes and the refractive index distribution n(z, y)
in the cross-sectional plane [11, 12, 13]. More accurate corrections to CMT for dlab
waveguides have been investigated by Chiang [14], and Payne [15], among others (see
references therein).

In this Chapter, “exact” results of the coupling coefficients of directiona cou-
plers, calculated using afully-vectorial finite difference frequency-domain (FDFD) method
(Section 4.1), are compared with predictions of CMT. We demonstrate how to solve the
inverse problem of reconstructing the coupling matrix from the solutions of the FDFD
program. Asatest structure which highlights both the applicability and shortcomings of
CMT, we will consider the multi-waveguide coupled-array structure [16] which consists
of a number of directional couplers paralel to one another, as is often used in arrayed
waveguide gratings and multi-element lasers and amplifiers, and which require an accu-
rate estimate of the coupling coefficients to prevent imaging and phase errors [17]. We
show that, because of the narrow waveguide widths allowed by the high index contrast,
multi-waveguide structures can reveal significant next-to-nearest-neighbor coupling and
other deviations from the conventional picture of modal coupling, and we find the “crit-
ical” waveguide-to-waveguide separation distance at which such terms become signifi-
cant.

5.1 Coupled-Mode Theory (CMT) of the
Modes of Multi-slot Waveguides

If many slot waveguides are arranged in a parallel array, as would be encountered in the
cross-section of an arrayed waveguide grating or coupler, or coupled-waveguide laser,
then their modes can often be adequately described by supermode theory [16], whichis
one of the fundamental predictions of coupled-mode theory (CMT), and hence can be a
test of the applicability of CMT to SOI photonics. The next section presentsthe analysis
of the modes based on supermode theory, which we will then alow us to compare the
predictions of CMT with the FDFD calculations.
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Figure 5.1: (a) Refractive index profile in the transverse plane n(x,y) for an N arrayed-
waveguide structure. (b) The same refractive index profile may be decomposed, math-
ematically, into the sum of parts, An? = n? — n?, each of which appears in integrals

equation for the coupling coefficients. For the structures considered in here, h = 500
nm, w = 200 nm, and s varies over the range 50 nm to 1m. For these waveguide widths
and heights (similar to those in Ref. [19]), the polarization direction of the principal
transverse component of the electric field isindicated for the (quasi) TE and TM modes.

Coupled mode theory and its predictions

To describe the modes of multislot waveguides, we begin with the wave equation [18],

2
v2E+°CJ—2n2 (z,y)E =0, (5.1)

and consider each polarization in turn. (TE and TM polarization are defined in terms
of as the major component of the electric field, which for the structure in question, are
polarized vertically and horizontally as shown in Fig. 5.1.)

TE polarization

Consider an array of N single mode waveguides, whose refractiveindex profileis shown
schematically in Fig. 5.1a. Aslong as the waveguides are not too close to each other
(i.e., greater than a separation distance which we will investigate and quantify in a sub-
sequent section), the transverse mode profile of the multislot waveguide structure can be
approximated by an expansion of the individual high index waveguide modes

A

E=yE(x,y)e =y

N
Z A& (z, y)] e bz, (5.2
=1

As shown by Fig. 5.1, the relative dielectric coefficient distribution of the en-
tire N waveguide structure n? (z, y) can be written as a sum of individual waveguide
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contributions, so that
N
n’(z,y) = ni(z,y)+ Y Ani(z,y) (5.3)
=1

where n? (x, y) corresponds to the cladding. Thus, n2 (z,y) + An} (x,y) would yield
the dielectric coefficient profile of the [ th waveguide in the absence of the others. Sub-
stituting the above two equations into the wave equation, we have,

2
(VL—l——n xy+ZAnlxy] )

=1
The modes of the individual waveguides satisfy their respective eigenval ue equa-

ZAlgl T y] = 0. (5.4)

tions, )
(vi_'_cs_g [ni (X> y) +Anl2 (X> Y)] - 5l2) gl ('Ta y) =0 (55)

and therefore, using Eq. (5.5), Eq. (5.4) can be written as,
ZAl Al—l——ZAn z,y) | &z, y) =0 (5.6)
m;él

where,
Al = 6l2 — 62.

N equations are formed by multiplying Eq. (5.6) by £, (j = 1,2,...,N), and
integrating each of these equations over = and y,

N 9 N
* w * 2 -
A, Al//gj&dxdy+§§1://5jmm (e,9)Ededy | =0j=1,2... N.
m;él

(5.7)
We define the modal overlap integrals as follows:
[jl = // 5;81 dxdy, (588.)
w? &
> / / £ AN (z,y)& dudy, (5.8b)

m=1
m##l
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with the normalization
/ EE dady = 1. (5.8¢c)

I, isthe overlap integral of the modes of two waveguides which are not orthogonal to
each other (particularly in the case of small waveguide separation), and « are the self-
coupling and cross-coupling (exchange coupling) coefficients familiar from coupled-
mode theory [18, p. 362].

Eqg. (9) can then be written in matrix form as an eigenvalue problem,

Bi? + ki Aolio+ K12 ... Anyihhinoi+rinv-1 AL+ Ky
Ayl + Ko 522 + K22 oo Anoilbyoi +Kron—1 Anlon + Koy
Ailsy + k31 Aolsg+ k3o ... An_ilsn_1+r3n—1 AnIsy +Kay | X

Al +Env1 Dolyo+Ene .. An_iIyn-1 +ENN-1 BN+ kNN
A, B2 0 0 ... 0 A,
Ay 0 A2 0 ... 0 Ay
Ax 0 0 0 .. p Ax

(The matrix on the left-hand side of the above equation will be referred to as M)
If we assume that only nearest neighbor coupling issignificant, then theintegrals
in Eqg. (10) are nonzeroonly when! = 5 — 1, j, j + 1. M takesthe tridiagonal form,

B2+ Kk Nolip+Kig ... 0 0
Arly + kKo B+ ke ... 0 0
M = 0 Aolz9 + K3 .. 0
0 0 oo AnaIynoi NN BN+ RNy
(5.10)
If the waveguides are identical and equally spaced, M can be further simplified
by setting 8,* = 3,°... = By" = Bo* and also, I;y1 = L1y = I, K1 = ki1 = K.

However, even if the waveguides are identical and equally spaced, 1, and xy are not
equal to koo, K33, ..., knv_1n_1. INfact, Eg. (5.8b) shows that for those waveguides at
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Figure 5.2: TE Polarization E,: The modes of an N = 5 coupled waveguide array
for A = 1550 nm, calculated using coupled-mode theory (blue solid lines), and a finite-
difference frequency-domain algorithm (black crosses). The coupled-mode theory cal-
culations were done by using the effective index method, calculating the overlap inte-
grals, solving Eqg. (5.9), and reassembling the field. Waveguide height = 500 nm, width
= 200 nm, separation = 200 Nm, n.. = 3.47, and n,q =1.46. Under nearest neighbor
coupling, the scaling relationship predicted by Eq. (5.11) adequately predicts the field
amplitudes within each waveguide.

theedges (I = 1 and [ = N) there are approximately only half as many contributing
terms as the other waveguides. there are no waveguides to the left of the ! = 1 waveg-
uide, and there are no waveguides to the right of the [ = N waveguide, whereas all the
other waveguides have contribution terms from both the left and right halves of their
modal profiles.

We define ket = Koz, K33, -+ -, KN—1 N—1, Kedfedge = K11 aNd Ky, aNd ket =
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Kedf — Ksalf,edge- 10 first order in the perturbation d s, the eigenvectors are

2 1/2 Imm 2 3/2
A== i )
l (N+1) N T KSdf<N+1)

1
N
Z sin nr + sin mNT sin nim | s,
o m@ N+1 N+1 N+1 N1 N
(5.11)

where m isthe modal number and [/ indicates which high-index rib waveguide (or low-
index slot) is being described. [The expression for the eigenvalues is written later,
Eqg. (5.20).]

For large IV, the second term in the above expression, is smaller than thefirst by
(N + 1)~! and can be ignored, yielding a simpler expression. The progression of peak-
amplitude values (in the high index regions) {A§m>},z = 1,..., N matches with the
numerical calculations shown in Fig. 5.2. However, it will be shown that the agreement
isgood only at large separation distances between the individual waveguides.

TM polarization

For the TM polarization (in which the electric field is normal to the waveguide/siot
boundary) the wave equation is now defined in terms of the magnetic field, which is
expanded in terms of the individual waveguide modes,

H=yH(zy) e =y

N
Z AH, (x, y)] e (5.12)
I=1

Under nearest neighbor coupling, the magnetic field will also obey the scaling relation-
ship of Eq. (5.11). If it can be assumed that |0H . /0y| < |0H,/0z|, then H, and E, are
related by

E,= Lﬂy, (5.13)

e(z, y)w
so that, within the high index ribs, it is expected that Eq. (5.11) describes the scaling

relationship of the peak electric field amplitudes. Although the peak electric field am-
plitudes of the entire modal profile are found not in the high-index regions, but in the
low-index regions (just inside the core-cladding boundary), they obviously satisfy the
same scaling law, as can be seenin Fig. 5.3.
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Figure 5.3: TM Polarization F,: Themodesof an N = 5 coupled waveguide array, cal-
culated using coupled-mode theory (blue solid lines), and a finite-difference frequency-
domain agorithm (black crosses). The coupled-mode theory cal culations were done by
using the effective index method, calculating the overlap integrals, solving Eqg. (5.9),
and reassembling the field. Waveguide height = 500 nm, width = 200 nm, separation
=1um, neye = 3.47, and n.,q =1.46. Under nearest neighbor coupling, the scaling re-
lationship predicted by Eq. (5.11) adequately predicts the field amplitudes within each
waveguide.

5.2 Numerically-assisted CMT:

the “Inverse Problem”

CMT offers valuable physical insight into how waveguides couple—in particu-
lar, the structure of matrix M in Eq. (11) is revealing—but the quantitative predictions
of CMT arein error in high-index-contrast SOI structures at short separation distances.
To obtain a numerically-accurate picture of modal coupling, anew extension of CMT is
proposed, called “numerically assisted” CMT, to use the simulation results of the FDFD
algorithm to back-calculate the elements of the coupling matrix M. One can thereby
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check if the assumption of nearest-neighbor coupling is valid at short separation dis-
tances, and identify various other interesting coupling phenomena (e.g., non-Hermiticity
of M) which have not been pointed out earlier.

To develop NA-CMT, the following mathematical procedure is used, based on a
matrix theorem previously developed for coupled-resonator structures[20].

1. First, the supermodes are solved for using FDFD, which does not contain any
of the limitations of nearest-neighbor CMT under investigation. The propagation
constants of the supermodes are a so obtained by this algorithm.

2. Having obtained both the eigenvectors (peak amplitudes) and eigenvalues (prop-
agation constants), one may construct the (non-singular) matrix of eigenvectors
A (Whose columns are the linearly-independent supermodes), and the diagonal
matrix of eigenvalues, A = diag{2 }.

3. Next, M [see Eq. (5.9)] is reassembled by using the matrix theorem cited in
Ref. [20, Eq. (7), Lem. 1-2]: if the eigenvalues are distinct (which they arein this
case), M can be reconstructed as follows: M = AAA~L. The matrix is unique to
within a similarity transformation, which does not affect the following step. An
exampleisshown in Table 1. (Notice that x1; and x5 are approximately one-half
of ka9, K33, OF Ky4, 8Sdiscussed earlier.) The values of the reconstructed M matrix
may be useful to design couplersin the strongly-coupled regime from the output
of the FDFD mode-solver algorithm itself.

5.2.1 Asymptotic Accuracy of
Numerically-assisted CMT

Here, the eigenvalues (\;) and eigenvectors (A*)) are obtained from a computer
simulation. However, they may be obtained from measurements on fabricated struc-
tures, in order to test whether the intended coupling matrix was successfully obtained in
practice. The experimental procedure to measure eigenvalues and eigenvectors could be
similar to that used to image the modes of laser resonators.

It is assumed that the measurements result in some small, uncorrelated errorsin
the eigenvalues (A )\;) and eigenvectors (Au,). Theinversion algorithm presented in the
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previous section can a so be used with measured data. In this section the accuracy of the
nearest-neighbor coupling and next-to-nearest-neighbor coupling coefficients in terms
of A\, and Awuy isstudied.

First, a ssmple theoretical estimation is carried out. It will be assumed that the
coupling matrix is Hermitian. After some algebra, the error in any element of M can be
written to first order as

M) =

k=1
For simplicity, here, it is assumed that Au,, is zero, i.e., the errors are only in the mea-
sured eigenvalues, since for identical arrayed waveguide structures, successive eigen-
vectors look quite different from each other and are easily distinguished [20]. The sim-
pler form of the eigenvectors is used, retaining only the first term of Eq. (5.11), so that
the errors in the reconstructed nearest-neighbor coupling and next-to-nearest-neighbor
coupling coefficients are

N . .
2 . gkm . (j+Dkn
Aij+1:kglN+181nN+18m Nl AN,
N (5.15)
2 (J—Dkr . (j+1Dkn
AMj—lj—i—l = kgl N1 S N1 Sin N1 A)\k

Assuming that A\, are uncorrelated identically-distributed random variables with mean
E[AM\] and variance Var[A )], the mean and variance of the nearest-neighbor coupling
and next-to-nearest-neighbor coupling coefficients can be calculated. Both AM; 1, and
AM;_ ;41 are zero-mean, since, for example,

E[AM; 1] = E[AX] i

k=1

because the summation vanishes as a consequence of the orthogonality of the eigenvec-

2 . gkm . (j+1)kn
3 = 5.16
N+1smN+1bm Nl 0 (5.16)

tors (the sumis equal to u) . ut+1 = 0).
To calculate the variance, it can be shown that

Var[AM, ;] = VarAN] (| —— 2% T o 20N
A N+1) & CNT1 NI

— Va[A)] (ﬁ) |
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Figure 5.4: Error versus N: Exact eigenvalues of a tridiagonal symmetric matrix of
size N were perturbed by values chosen from a uniform random distribution with vari-
ance chosen to be ten percent of the first eigenvalue. The variance and mean of the
reconstructed nearest-neighbor coupling and next-to-nearest-neighbor coupling coeffi-
cients are plotted, calculated from a distribution of coupling matrices generated by 10°
iterations, showing that Eq. (5.18) isagood predictor of the reconstruction accuracy.

and the same result is obtained for Var[AM;_; j41].

Summarizing the results,
Nearest neighbor:  E[AM; ;1] =0,  Var[AM; 1] = Var[AN]/(N + 1),
Next-to-nearest:  E[AM;_1;11] =0, Var[AM,_y,+1] = Var[AN/(N +1).
(5.18)
Numerical calculations, shown in Fig. 5.4 confirm Eq. (5.18). (Numerical calculations
show that the same relations are seen to hold in the case of non-identical waveguides,

in which case the off-diagonal terms of the coupling matrix are not identical along the



105

sub-diagonals, and aso for slightly asymmetric matrices.)

These results show that the error in reconstructing the coupling coefficients de-
creases, rather than increases, as the number of inaccurately-measured eigenvalues in-
creases. Thisresults from (spectral) averaging: each reconstructed coupling coefficient
averages over the entire spectrum of eigenvalues, and therefore, benefits from the law of
averages. In contrast, directly measuring a coupling coefficient e.g., by alocal near-field
probe of the field in the coupling region, does not benefit from any ensemble averaging.

5.2.2 Next-to-nearest-neighbor Coupling

As Table 1 shows (calculated at one specific value of the waveguide separation
distance), M contains useful information about non nearest-neighbor coupling. One
may read off whichever coupling coefficients are needed: in particular, one may calcu-
late the ratio |k13/k12], i.€., the ratio of next-to-nearest-neighbor coupling coefficient to
the nearest-neighbor coupling coefficient.

Table 5.1: An example of a reconstructed coupling (M) matrix from FDFD calcula-
tions of eigenmodes and eigenvalues. Si/SIO,, TE polarization, separation s = 350 nm,

Bo = 2.26128 (27r/X). Although the nearest-neighbor coupling coefficients dominate,
the self-coupling and off-tridiagonal coupling terms are non-zero.

—0.00636 +0.12794 —0.00641 -+0.00057 —0.00004
+0.12789 —0.01263 +0.12838 —0.00643 ~+0.00050
M = diag{B°} + | —0.00635 +0.12839 —0.01271 +0.12839 —0.00635
+0.00050 —0.00643 +0.12838 —0.01263 ~+0.12789
—0.00004 +0.00057 —0.00641 +0.12794 —0.00636

First we estimate the expected dependency of thisratio of coupling coefficients
to the edge-to-edge separation, s. Using Kuznetsov’s solution for the coupling coef-
ficients of two slab waveguides [21], we observe that  in both the TE and TM cases
varieswith s as k ~ e P* where p is the field decay length in the cladding. Therefore,
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Figure 5.5: Ratio of coupling coefficients for different separation distances extracted
from Eq. (5.9), which was reconstructed using an algorithm described in the text. (a)
TE Polarization An exponential fit expected from a simple nearest-neighbor-coupling
theory holds throughout this regime. (b) TM Polarization At a separations less than
450 nm, the ratio deviates significantly from the predicted behavior. (c) TE Polarization
The ratio of cross coupling coefficients show that the reconstructed coupling matrix M
becomes asymmetric as the waveguide separation is reduced. (d) TM Polarization The
asymmetry of the coupling matrix begins at alarger separation.

the ratio 13 /12 for both polarizations has the following expression (to leading order),

—p(2s+w
Ashg +rus _ kas _ e PO ) (5.19)

Aoliy + K12 K eps
i.e., the ratio of next-to-nearest-neighbor coupling coefficient to the nearest-neighbor

coupling coefficient should fall off exponentially with increasing separation.
Fig. 5.5 shows the calculations of this ratio using the above algorithm. The ex-
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ponential fit describes the TE polarization much better than it doesthe TM polarization,
indicating that some of the central assumptions of CMT are starting to fail for the TM
polarization at short distances. The next section will describe another symptom of the
failure of CMT, obtained by looking at the eigenvalues, i.e., the propagation constants,
of the supermodes.

5.2.3 Eigenvalue Fanout: Effective Index of the Supermodes versus
Separation Distance
Another way to evaluate the predictions of CMT isthe theory behind the eigen-

values of Eq. (5.9), which predicts that the effective index of the m-th supermode is
given by the equation

B2 = 02 4 kgt + 2 (1 + AoI) cos ij:l — QJiﬁffl <sin2 ij—rl + sin? ]]VVTTL) :

(5.20)
where j3, is the propagation constant of a single waveguide in isolation. Note that for
N = 5, the m = 3 supermode has the special property that the right-hand-side of the
above expression , i.e., the index of that supermode does not change with the coupling
coefficient «. Hence, n(eff) isonly weakly dependent on the separation distance (through
the self-coupling coefficients, x11, koo, - - . , K55)-

To verify thisprediction, Fig. 5.6 shows the effective index calculated by FDFD
for each of the five supermodes at various separation distances in three different silicon-
based material systems. These values of the effective index take into account coupling-
induced frequency shifts (CIFS, [22]) because M itself results from a numerical calcu-
lation of the supermodes (and their eigenfrequencies), rather than individual waveguide
modes and the propagation constants of isolated waveguides.

In the limit of large separation, the effective indices of all the supermodes tends
to that of the single waveguide. As the separation distance is decreased, the coupling
coefficients increase, and the effective indexes of the different modes separate [23].
The first three modes remain guided even as s shrinks to zero, since their effective
indices are higher than that of the single waveguide. From Fig. 5.6, one can read off the

waveguide separation distance at which conventional CMT is expected to fail, and more
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accurate design tools, such as FDFD calculations, should be used to accurately predict
the coupling coefficients.

An interesting observation obtains from the m = 3 supermode: at a certain
(small) waveguide separation, n(eff) is no longer independent of s and begins to deviate
substantially from a straight line, contrary to the prediction of Eq. (5.20). Thisdeviation
is much more pronounced in the case of the TM polarization.
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Figure 5.6: Left column: TE Polarization, and Right column: TM polarization. Effec-
tive index of the five supermodes for different separation distances with n..,. = 3.47,
and (a,b) ng.q =1.46, (c,d) ng.q = 1 (ef) nyaq = 2.05. For each case as the separation
between the waveguides increases, the effective indexes of the modes converge to that
of the single waveguide. These values are (a) n.s = 2.36 and (b) n.s = 1.66 for oxide
cladding, () neg = 2.24 and (d) n.s = 1.07 for air cladding, (€) n.s = 2.56 and (f) n.g
= 2.26 for nitride cladding. The shaded regions indicate > 5% deviation of n for the
m=3 supermode from its theoretical value, which as discussed in the text, is predicted
by CMT to be independent of the separation distance.
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5.3 Electric Field Perturbations from
Strong Coupling

In the previous section, it was detailed how the predictions of coupled mode
theory are no longer valid at short separation distances. Here, we will show exactly
what is happening to the coupled-modes themselves at these distances. As described
in section 1.4.1, at short separation distances, the reconstructed matrix M can become
non-symmetric (non-Hermitian), although the eigenvaluesremain strictly real aslong as
the mode is above cut-off. This can be seen in fact in the matrix written in Table 1 and
Fig. 5.5(c,d): k12 # ko1 @Nd k13 # K31, EtC.
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Figure 5.7: TM Polarization E,: The field profile of the fifth eigenmode in the first
waveguide. When the separation is decreased below 450 nm, the peak of thefield in the
high-index rib indicated by the dotted red linein (&) isno longer centered, and the mode
shape is considerably altered, thereby changing both « and ne. Consequently, CMT
can no longer accurately predict the mode coupling.

The reason for thisasymmetry isthat the fields within the individual waveguides
are no longer centered between the dielectric boundaries. As shown in Fig. 5.7, the
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modal profile starts to deviate in the location of its maxima and minima. For example,
the peaks of the field in the outermost ribs are skewed and no longer centered in the
middle of the dielectric boundaries, and can even reach the boundaries of the high-index
and low-index regions. It is no longer accurate to read off the peak amplitudes of the
supermode in order to write the eigenvectors A™) in Eq. (5.11)—doing so would result

in asymmetric M matrices.
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Figure 5.8: TE Polarization £,: Using the exact solution from a FDFD simulation
of a single waveguide, the horizontal cross section is extracted and five copies are
shifted from one another so that their separation corresponds to a waveguide separa-
tion of 80 nm. (a) These individual waveguide modes are scaled in accordance with
Eq. (5.11) for the fundamental mode (m=1). (b) The summation of the individual waveg-
uide modes; superimposed is the FDFD solution of the entire five waveguide structure.
(c) Zoomed into just the first waveguide. CMT and FDFD show a shift of the mode to-
wards the center of the waveguide structure. (d-€) The fifth mode, both CMT and FDFD
show a shift towards the edge of the waveguide structure however FDFD shows a shift
of greater magnitude.

At ashort separation distance of 80 nm, Fig. 5.8 shows the coupled-mode theory
used to reconstruct the m = 1 and m = 5 supermode (plotted with continuous lines)
and the supermode cal culation of FDFD (with crosses). Note that in both cases the field
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is asymmetricaly centered within the dielectric boundaries of the outer waveguides.
Recall that CMT is based on writing the field as a summation of the scaled individua
waveguide modes, Fig. 5.8(a,d), each of which is centered within its own core-cladding
boundaries. At short separation distances, when, for example, there is a significant con-
tribution of the (asymmetric) tail from the field in the second waveguide to the (sym-
metric) mode of the first waveguide, CMT itself predicts a lateral shift of the peak (of
the sum) away from the exact center of the waveguide. The scaling relationships from
Eq. (5.11) will enhance this effect for a multi-waveguide arrayed structure compared to
a (twin-waveguide) directional coupler.

For the fundamental mode, Fig. 5.8(a-c), the summation of the fields associated
with the first (blue) and second (green) waveguides results in the peak shifting towards
the center of the five waveguide structure, which qualitatively agrees with the FDFD
simulation. But the FDFD result for the fifth mode shows a shift of greater magnitude,
now towards the outer edge of the waveguide structure, indicating that CMT no longer
accurately predicts the modal profile of the supermode. TM polarized modes start to
shift at alarger separation, due to the field discontinuities at the waveguide boundaries
and electric field enhancement in the cladding regions.

To emphasize this fact, Fig. 5.9 plots the locations of the field peaks in the ar-
rayed waveguide structure for each of the supermodes as the separation distance be-
tween the waveguides is reduced. Note that for large separation distances all of the
peaks are located at the center of the dielectric boundaries for each of the five super-
modes. However, as the separation distance is further reduced the field peaks begin to
shift, and, as shown for both the fundamental and fifth supermode, at sub-50 nm sepa-
ration distance the field peaks for the two outer waveguides have completely left their
dielectric boundaries (thisis very different from the conventional picture of supermodes
in weakly coupled arrays [16]). Asoutlined in Fig. 5.8, the direction of the shift of an
individual waveguide's peak for each supermode is completely determined by the scaled
magnitude and phase of the evanescent tail of the neighboring waveguide. This shift-
ing of the modal peaks for each of the supermodes is accompanied by a change of the
effective index of each of the supermodes, Fig. 5.6. As shown in Chapter 4, this“eigen-
value fanout” isawell known prediction of CM T with strong practical applications. For
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Figure 5.9: Displacement of the field peaks for each of the five supermodes shown in
Fig. 1 as the separation distance is varied. As the separation is reduced, the modal
profiles become strongly perturbed, while at large separations each of the field peaksis
exactly centered within itsdielectric boundaries. The modal profiles were obtained from
afinite difference frequency domain algorithm [24].

example, a result of this fanout is the dephasing of the symmetric and antisymmetric
supermode of an N = 2 arrayed waveguide structure, which completely determines the
directional coupler’s beat length [25].

Note also, as shown in Fig. 5.8(e), that FDFD predicts a different exponential
decay constant of the field wings, compared to CMT. This is a fundamental failure
of CMT in the sense that the eigenmode of the composite structure can no longer be
written as the sum of modes of individual waveguides (in isolation from each other).
In addition to perturbations of the electric field within the high-index silicon regions,
strong coupling also affects the decay rate of each of the supermodes outside the arrayed
waveguide structure. It is the fields in this region that are responsible for determining
coupling length, cross talk, and circuit integration density.
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5.3.1 Evanescent Tail Fanout

Theelectricfield in the cladding region decays exponentially with distance. Con-
ventional CMT for arrayed slab waveguides predictsthat the m" supermode decayswith
some spatial constant p,

N

=1

where d isthe center-to-center spacing between individual waveguides and,
N
cm =Y Aer(=bi, (5.22)
=1

where

A =

9\ Y2 =1,2,...,N
( ) o mmm (5.23)

N+1) TNt 1=1,2,...,N
Since C™ is a constant for the m™ supermode, CMT predicts the same decay rate for
each supermode regardless of separation.

Fig. 5.10 (markers) shows the exact decay constant of each of the five super-
modes of the arrayed waveguide structures studied here as the waveguide separation is

16 - -
—_— p2(m)_. 2 142
(B ncladkz) A(} % pa
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Separation Distance

Figure 5.10: Decay constant of the five supermodes for different separation distances
with height 500 nm and width 200 nm. The evanescent tail is fitted around 50 nm from
the edge of the waveguide. Also included is the slab waveguide predictions (solid-line)
for each of the five supermodes, offset by a constant, pa, as described in the text.
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reduced. The decay constant is determined by numerically fitting the evanescent tail
to an exponentia form, epém)x, around 50 nm from the edge of the waveguide. Also
included is the slab waveguide solution of the decay constant (solid-line), which is cal-
culated from the corresponding supermode’s effective index, and is offset by a constant,
pa, to be described in the next section. It can be seen that despite the CMT prediction
of the same decay rate across each of the supermodes, there is indeed a strong depen-
dence of the supermode’s decay rate on the supermode’s effective index, whichisawell
known correspondence for optical modes as shown in both the analytical solutions for
the higher order modes of a single slab waveguide and an optical fiber [26]. At large
separation distances, or in the “weakly-coupled” regime, the decay rate of each of the
supermodes converges to that of the single isolated waveguide and will have asymptot-
icaly identical decay rates. As the separation distance is reduced, the decay rates fan
out, with the fundamental mode decaying the quickest in the cladding region.

We will next show that in addition to these strong coupling effects—shifting of
the electric field peak locations and evanescent tail fanout—another perturbative effect
on the arrayed waveguide structure is due to the vertical confinement of the mode.

5.3.2 Effects of Modal Confinement

on the Isolated Waveguide

The framework of CMT is built upon writing the coupled-waveguide's elec-
tric field profile in terms of a linear superposition of the individual isolated waveguide
modes. It is therefore necessary to have an accurate understanding of how confinement
of the optical mode affects the basis set used in reconstructing the supermode profiles of
an arrayed waveguide.

Asshownin Fig. 5.11(a), in order to demonstrate the effects of optical confine-
ment on the waveguide mode we fit the evanescent tail of the transverse electric field
profile, £, at the center cross section of an isolated single waveguide (height = 250
nm), every 25 nm around 50 nm to an exponential form, e?(*)*, The mode profiles were
obtained from a finite element mode solver (COMSOL). Fig. 5.11(b) shows that for a
single waveguide of 500 nm height, the field in the cladding decays exponentially with
a gpatially varying (i.e., chirped) decay constant p(x), with the mode decaying faster
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Figure 5.11: (a) Method of extracting the spatially dependent decay constant: The
evanescent tail isfitted at the center cross section of an isolated single waveguide (height
= 250 nm), every 25 nm around 50 nm to an exponential form, e?(®)*_ (b) A spatial de-
pendence of the decay rate is introduced due to the vertical confinement of the waveg-
uide. (c) As the height of the waveguide is increased, the maximum decay rate, p,
approaches the slab waveguide solution, p...

near the edge of the waveguide, where p(z = 0) = py,. We find that the reason for
this novel spatial dependence of the decay constant is due to the vertical confinement of
the mode. In Fig. 5.11(c), we show the dependence of p, on the height of the waveg-
uide: for large heights p, approaches the spatially-independent sl ab-waveguide solution,
Poo = /3% — n%,,k%. We define p, asthe difference between py and p... We will next
show how this spatial dependence of the decay constant affects the supermodes when
five such waveguides are coupled together.

5.3.3 Effects of Modal Confinement
on the Arrayed Waveguide

A similar analysis as demonstrated in the previous section is performed on the
supermodes of the arrayed waveguide. Fig. 5.12 shows the decay rate p(™ of the five
supermodes of the arrayed waveguide structure, cal culated numerically from FEM sim-
ulations at a separation of 80 nm. It can be seen that the spatial dependence of the decay
rate of the single isolated waveguide is impressed onto the supermodes of an arrayed
waveguide structure. Note that each of the five supermodes asymptotically approaches
itsrespective péﬁ?) (dashed-line), and that these asymptotic values have “fanned out” due
to the strong coupling at this separation distance. Theisolated single waveguide solution
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Distance (um)

Figure 5.12: Spatially-dependent decay rate of the five supermodes at a separation dis-
tance of 80 nm, showing the super-exponential decay of the fields close to the high-
index contrast dielectric boundaries. Farther away from the boundaries, the fields are
well described by an exponential decay constant pff.f‘) (dashed-line). Theisolated, single
waveguide solution (black crosses) islocated slightly below the m = 3 supermode.

(black crosses) is plotted dightly below the m = 3 supermode, where it is known from
CMT that for this mode only next-to-nearest neighbor coupling affects the modal pro-
file and effective index, which explains the high degree of agreement between the two
trends. The dependence of the decay-rate on both confinement and coupling is outlined
inFig. 5.13 and Fig. 5.14. Asthe waveguide separation isincreased, both pg?) and p(()m)

approach that of the single waveguide for each of the supermodes.

5.4 Modifying the CMT Basis

for Reconstruction

There has been a significant amount of research with the aim of developing more
accurate versions of CMT [27, 28, 14, 15, 25], and while they can offer improved ac-
curacy for many waveguide devices compared with conventional CMT, they can aso
be less intuitive to incorporate into a specific design; not to mention that many of these
improved methods are devel oped within the limitations of the effectiveindex method for
ridge waveguide structures. Here, we show how one may extend CMT to incorporate
these perturbative effects, thus retaining much of the simplicity and intuitiveness often
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Figure 5.13: (a) Spatially-dependent decay rate of the five supermodes at a separation
distance of 80 nm, and a height of 500 nm. Note that the supermodes decay to different
assymptotic values. (b) By increasing the separation between the waveguides, the spatial
dependence of the decay rate remains—that of the single i solated waveguide—however,
each mode decays to the same asymptotic value.
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Figure 5.14: (a) By increasing the height of the waveguide, each of the five supermodes
no longer has a spatially dependent decay rate, however, at a separation of 80 nm each
of the supermodes decays at a different (constant) rate. (b) For a400 nm separation and
a4 um height, the supermodes have no spatial dependence, and decay at the same rate
(and thus satisfy the requirements of CMT)
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Figure 5.15: Comparison of the modes generated at a separation of 80 nm from both
traditional CMT and the new basis set; the latter accounts for the spatial dependence of
the field decay coefficients. To obtain the composite field, five copies are made of an
individual waveguide mode, laterally shifted from one another, scaled according to the
usual supermode ratios [25, Eg. (13)], and summed.

associated with CMT while also providing improved modal profile predictions com-
pared with conventional CMT [29]. This coupled mode theory analysis assumes that
the evanescent tail of a single waveguide can be calculated (or measured), e.g., using
a standard finite element or finite difference method. For the transverse electric polar-
ization, which requires continuity of the electric field across the waveguide boundaries
in the coupling region, it will be shown how conventional CMT can be adapted by ac-
counting for asimple spatial dependency of the parameters that enter into the basis set
of solutionsto the coupled mode equations. This“running” of the parametersis unique
in the development of optical coupled mode theory. More accurate modal profiles al-
low for improved estimation of coupling lengths and crosstalk in multi-waveguide and

inter-connect structures.
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5.4.1 Calculating the Transverse Field Profile

Here, the problem of reconstructing (or predicting) the mode profiles accurately
is analyzed, by taking as our starting point measurements or numerical estimates of
the spatially dependent decay rate, p™ (z), such as shown in Fig. 5.11. This method
assumes—as usual—that within the high index regions, the field has a dependence of
theform cos(h(™ ). Therelationship between p{™ and h(™ isof the sameformasfor a
slab waveguide, i.e., satisfying the requirement of continuity and differential continuity
across the waveguide boundary,

p(()m)(s) = 1™ (s) tan[h™ (s)w], (5.24)

where 2w isthe width of each silicon waveguide. Then, we assemble the field as usual,

A

EM (z;5) =

( CoS [h(m)(s)(\x| — (1= 1)d)] )

N x l—1ld —w, [l — 1]d +w
SR -t i-tasw)
=1

CcOS [h(m) (S)w:| e_p<m) ($75)(‘$_(l_1)d|_w) ,

otherwise

In words, £(™(z; s) represents the scaled summation of shifted replicas of the single-
waveguide modal solution, where the latter are renormalized by the running of the p and
h constants with the inter-waveguide separation distance, s. By way of comparison, in
conventional CMT, although the superposition coefficients may be spatially dependent
(asinthe analysis of tapered couplers), the modal basis set is not.

From Fig. 5.15 it can be seen that the conventional CMT profile overshoots the
exact FEM simulations for both the first and second supermode but remains quite ac-
curate for the third mode. Thisisto be expected, since, as pointed out in section 1.3.2,
the m = 3 modein the case of N = 5 coupled waveguides has the special property that
the effective index does not change with the cross-coupling coefficient. For the fourth
and fifth mode, the conventional CMT profile undercuts the FEM solutions. In fact, at
a waveguide separation of 80 nm, where the fifth mode is close to cutoff, conventional
CMT does avery poor job of describing how this mode decays into the cladding region,
compared with the improved method presented here.
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Figure 5.16: (a) FEM solution of the fundamental supermode of a silicon-on-insul ator
arrayed waveguide at a separation distance of 80 nm. The solid black line represents the
field profiles shown in Fig. 6, whereas the region indicated by the white dashed lines
represents the decaying region of the supermode. (b) The rate of decay of the funda-
mental supermodein theregionindicated by the white dashed linesin (a), comparing the
accuracy of CMT, NA-CMT with that of FEM. (c) FEM solution of the fifth supermode.
(d) Calculated decay rate of the region indicated by the dashed linesin (c), showing the
improved accuracy of NA-CMT compared with CMT.
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5.4.2 Calculating the 2-D Field Profile

Coupling to nearby devices, whether desired or unintentional, is not solely de-
pendent on the rate of decay at the center cross section of the device; rather, it is the
entire 2-D profile that decays into the cladding region that will perturb a neighboring
device. To calculate the 2-D mode profile, we determine the spatially dependent decay
constant along the height of the waveguide near the waveguide's boundary. The method
isidentical to that described in the previous section, only it is now performed at different
“dices’ of the arrayed waveguide. By taking into account the evanescent tail fanout of
the different supermodes, a non-linear least-squares fit to the form cos(hg(,m)y) may be
performed to generate the 2-D cross section. Fig. 5.16(a,c) shows the exact FEM solu-
tions for the fundamental and fifth supermode respectively, where the solid black line
located at the center region represents the field profiles shown in Fig. 5.15. The region
included by the white dashed lines is the focus of the 2-D reconstruction. Shown in
Fig. 5.16(b,d), the generated 2-D profile of the electric field decaying into the cladding
region shows improved agreement with the FEM method. Similar to the last section,
CMT overshoots the rate of decay for the fundamental supermode and undershoots for
the fifth supermode, which islocated a few nanometers from modal cut-off.

5.5 Summary

In this Chapter, the validity of coupled mode theory CMT for high-index con-
trast (e.g., silicon-based) optical waveguiding structures was analyzed. A fully vectoria
finite-difference frequency-domain (FDFD) algorithm was used to obtain the modal pro-
filesand effectiveindices of the supermodesin a non-perturbative way. When the modal
profiles can be “discretized” to read off peak amplitudes within each of the waveguide
cores, atheorem from matrix algebra can be employed to solve the “inverse problem” —
to reconstruct accurately the matrix of coupling coefficients M (a procedure we have
called numerically-assisted coupled-mode theory, NA-CMT). The NA-CMT framework
can be used to find out when the nearest-nei ghbor-coupling approximation breaks down.

Of concern was also the physical phenomena that occur when waveguides be-
come strongly coupled and fully confined in a high-index contrast medium. It was
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shown that at large separation distances these perturbative effects can be ignored, while
at short separation distances the effects of these perturbations may be taken into account
through the choice of basisused in reconstructing thefields. Utilizing the evanescent tail
fanout, which can be obtained from either measurement or simulations, we showed that
one can generate a more accurate basis set. As the separation distance between waveg-
uidesisdecreased, the decay constants of the fields fan out (Fig. 3) and depend upon the
transverse coordinate z. Ignoring this*running” of thep and h constantsleadsto inaccu-
rate prediction of the mode profilesin the strongly coupled regime and, in particular, of
the evanescent tails, which determine crosstalk, allowable bending radius, the coupling
between rings and bus waveguides, etc. Finally, we show how a NA-CMT can be used
to construct the 2-D waveguide profile that is responsible for coupling to nearby devices.
We emphasize that the only required piece of information for reconstructing modes of
strongly coupled, arrayed waveguidesis the rate of their decay into the cladding, which
is experimentally measurable using avariety of non-destructive techniques.
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6 Characterization of Nanophotonic
Devices

Measure what is measurable, and make measurable what is not so.
—Galileo Galilei

The previous two chapters laid out computational and analytical methods for
predicting the characteristics of nanophotonic devices. In Chapter 3, methods of simu-
lating the local enhancement of each resonator in a hundred-plusring disordered CROW
was detailed. Here, we will demonstrate atechnique that allows them to be measured di-
rectly. Further, we will show how thistechnique may be used to characterize micro-ring
resonators, and simultaneously measure 10 waveguide facets allowing for rapid diag-
nostics. In the second part of this chapter, different methods of measuring group delay
will be outlined. Specifically, it will be shown how swept-wavelength interferometry
allows for rapid delay characterization of an amplified device—without the need of an
optical filter.

6.1 Quantitative Infrared Imaging

Silicon-on-insulator (SOI) integrated photonic circuits with one or several mi-
croring resonators are an active area of research. In multi-resonator circuits, such as
shown in Fig. 6.1, the individual resonators often have no accessible ports, requiring
such structures to be treated as a “blackbox,” where the behavior of the individual res-
onators are probed through transmission measurements. For post-fabrication trimming
methodsthisisfar fromideal. For example, acommon multi-ring device isthe side cou-
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Input “Black Box™ Through

Figure 6.1: Typically resonator structures, such as this side coupled integrated spaced
seguence of resonators, are probed by measuring each of the ports separately, where the
structure itself is treated as a “black box,” where it is unknown if measured resonance
variations are due to a defective resonator, output coupler, etc.

pled integrated spaced sequence of resonators (SCISSOR) used as a delay line, which
is composed of a linear array of identical resonators coupled together through one bus
waveguide. Structural imperfections during fabrication can result in a variation of the
microring resonant frequencies and coupling coefficients across the device. If asingle
resonator was off resonance, one could tell by noting an additional dip the transmis-
sion spectrameasured at the through port using a lens-tipped fiber, however, they would
be unable to decipher the specific resonator that was defective. 1t would be beneficial
to know precisely which resonator caused this dip, so that it could then be tuned or
trimmed through various methods. Wavelength resolved infrared imaging provides such
information.

Rayleigh scattering due to sidewall roughness is a source of radiative loss in
high-index contrast SOI waveguides at tel ecommunications wavelengths. Some of this
light can be collected by imaging the device plane onto a high-sensitivity infrared cam-
era through a microscope objective. This can be used to provide a local measure of the
guided light-intensity, as the scattered light is directly proportional to the light-intensity
guided in awaveguide or circulating within a resonator. Thus, using an infrared cam-
era to image the photonic circuit at multiple wavelengths and processing the resulting
images can yield spectral intensity-enhancement and transmittance data.

The ring resonator is ideal for measuring with an infrared camera. The reason
being, that silicon hasincredibly low material losses at telecommuni cation wavelengths,
assuch, alow intrinsic quality resonator is most often the result of high scattering losses.



131

. (Enhanced)

- Circulating
Intensity

Figure 6.2: (@) A typical ring resonator: light within the resonator will become en-
hanced for wavelengths on resonance. (b) Infrared image of the resonator when excited
by aresonant wavelength.

On the other hand, a high quality resonator will benefit from a significant enhancement
of power circulating through the ring, which will again result in high (net) scattering.
In other words, both “good” and “bad” rings scatter a significant amount of light. With
a suitable integration time, an infrared camera can accurately measure the properties of
these rings. Fig. 6.2(a) shows atypical micro-resonator that will be measured here, and
Fig. 6.2(b) shows an IR image of the resonator when excited by a resonant wavelength.
Light is clearly circulating within the resonator for this wavelength (the bright spot on
the bottom right corner of the image is caused by light coupling to the counter propa
gating mode due to the periodic surface roughness seen by the propagating photons).
Fig. 6.3(a) shows a 2-D simulation (FDTD [1]) of the intensity enhancement
of a single resonator. When light at one of the ring’s resonant wavelengths is coupled
into the resonator, energy builds up until the losses (from the couplers, absorption, or
scattering) match the the power being supplied by the bus waveguide. However, to first
order, light that is not within the Lorentzian response of the ring will simply bypass it.
Shown in Fig. 6.3(b) are infrared images of the SCISSOR structure at three different
wavelengths. Incidentally, we note that these resonators were originally designed to
be the same size, but ended up having different resonant frequencies due to fabrication
irregularities. Infrared imaging is thus able to tell you exactly which resonator is red-
shifted of blue-shifted from the target value so that it may then be tuned. Contrary, a
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Figure 6.3: (a) Finite difference time domain simulations at four different time steps,
showing the enhancement of energy in the ring for resonant wavelengths. (b) Infrared
image of acircuit, excited with the resonant wavel ength of three ring resonators.

simple transmission measurements at the through port—all that would be available if
this device was operated as an optical buffer—would tell you that some of the rings
were defective, but would not isolate which one.

6.1.1 Calibration of the Imaging Setup

Before the spectral variations of a multi-resonator circuit can be measured, the
imaging setup must be properly calibrated. Perhaps the most important control nob is
cameraintegration time (or equivalently, input optical power). If too high of an integra-
tion time is used, the images will become saturated and spectral features will be lost.
For too low of an integration time, low-signal features will not be measured. Proper
integration time was typically determined through a series of measurements, where the
images where intentionally saturated at first, and then the integration time ramped down
to the ideal level.

Once integration time has been chosen, one may determine the precise amount of
power hitting the camera. To do this, laser light from a free space collimator is directly
coupled onto the infrared camera (with the desired settings), as the laser power is tuned;
Fig. 6.4 shows results of six different power levels. Asthe output power of the laser is
precisely known, dividing each pixel by the sum of all pixels gives the percentage of
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Figure 6.4: Using the camera settings reported here, light was collimated onto the in-
frared camerafor different (known) power levels. Dividing each pixel by the sum of all
pixels gives the percentage of power falling onto each pixel.
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Figure 6.5: Correlation between camera ADU to the power hitting each pixel

power falling onto each pixel. By then multiplying by the total power delivered by the
laser, one obtainsthe power that fell onto that pixel. Asshownin Fig. 6.5, by correlating
camera ADU to the power levels hitting the pixel, one can determine exactly how much
light is being integrated by the camera for a given readout value. Once the camera has
been properly calibrated, the photonic circuit may then be measured.
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Figure 6.6: (a) Optical microscope image of 10-ring SCISSOR. (b) IR image of SCIS-
SOR when excited by broadband source. (c) Using a tunable laser source, comparison
of spectraobtained at the ten drop portsusing IR images (blue line) and spectra obtained
from detected drop port power using fiber-coupling (green line). The spectrum for Ring
10 was obtained by measuring at the encircled waveguide defect.

6.1.2 Multi-ring Structures

The particular multi-ring structure fabricated, tested and reported on here wasthe
(SCISSOR), comprised of 10 racetrack resonators as shown in Fig. 6.1. Such devices
may be used for slow-light [2], or as alinear, or nonlinear self-limiting, add-drop filter
[3, 4]. Inrecent years, IR imaging using vertically scattered light has been used for
loss characterization of planar and SOI photonic crystal waveguides [5, 6], and for the
study of localization, polarization conversion and dispersion in disordered waveguides
[7, 8, 9]. Here we use IR imaging to simultaneously characterize several SOI microring
resonators.

The device was fabricated on an SOI wafer with 250 nm silicon thickness and 3
m buried oxide thickness, using electron-beam lithography and dry-etching. The ring
and bus waveguides have a top layer of 200 nm-thick hydrogen silsequioxane (HSQ),
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Figure 6.7: Top: Fabrication error that resulted in only afew nanowatts being measured
using alens-tipped fiber at the end-facet. Middle: The fabrication error “lightsup” when
light is coupled into the device and then imaged using an infrared camera. Bottom:
Comparison of the spectral characteristics probed with the infrared camera, with the
nano-Watt power levelsthat were measured using the lens-tipped fiber.

while air forms the side cladding. Using photolithography, 3x2 ;:m? SU-8 couplers are
patterned over 150 m-long silicon waveguide inverse tapers. Thering radiusis 25 m,
and the straight track length is 40 ym.

Two light sources are used separately: a white-light source is used for broad-
spectrum incoherent imaging of the chip, mainly for alignment purposes and deter-
mining averaging paths, as discussed later. Alternatively, TE-polarized coherent light
from atunable laser source is then coupled to the chip through polarization maintaining
lens-tipped fiber, with 20-dB polarization extinction measured after the tip. A XEVA-
FPA-1.7-320 12-bit IR camera (XenlCs NV, Belgium, 320x256 pixel grid with a 30
pm-pitch) is used to spatially image the chip through a 5x microscope objective lens.
The maximum and minimum detectable powers per pixel (area= 36 um?), for acamera
integration time of 4ms, are 0.16 nW and 0.04 pW respectively. Fig. 6.6(b) shows a
one-shot IR image of the entire SCISSOR device, when excited by a broadband source
centered at awavelength of 1570 nm. Thisimage showsthat for rings 1 through 9 (start-
ing at the top of the image), the end points of the drop waveguides, along the cleaved
facet of the chip, scatter sufficient light. With this technique, the desired spectral con-
tent could also be tapped anywhere on the chip using grating couplers[10]. For the 10"
ring, there was a fabrication defect that prevented the drop port from being measured
accurately, and instead, the encircled defect, at a point along the waveguide was used.
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Fig. 6.7 shows the fabrication defect that caused light to be radiated before making it to
the end facet—where only nanowatts could be measured using the lens-tipped fiber. In
the close vicinity of these measurement sites (both on the chip and at the end facet), a
gpatial average of 4x4 pixel intensitiesis computed from an array of IR images obtained
at each wavelength, during a 10 pm step scan of the tunable laser source. Fig. 6.6(c)
shows a comparison of the drop port transmission spectra obtained from imaging with
the traditional method of measuring via a lensed fiber, trandated (and re-aligned) se-
guentially from the first to the tenth drop port. Note that only asingle alignment step (of
the input) is necessary for the imaging approach, compared to eleven alignments (and
ten tunable laser scans) for the lensed fiber approach. We observe very good agreement
of data obtained from both methods.

By way of comparison, to get a sense of the spatial alignment required using
the traditional lens-tipped fiber method, programmabl e piezo controllers were then used
to map out the the wavelength-response of the first resonator, as the lens-tipped fiber
was vertically trandated at the drop port facet. Similar to the imaging setup, the piezo
controllers move the lens-tipped fiber a few hundred nanometers, where a wavelength
scan is performed, and then the process repeated. It can be seen in Fig.6.8(a), that
such a mechanical method of automating the measurement of the drop ports would need
micro-scale precision. To further map out the spatial profile of the radiated mode, the
laser was then fixed at a given frequency, while both x and y axis were translated using
piezo-controllers, as shown in Fig.6.8(b).

6.1.3 Resonant Frequency Locations Measured on Chip

IR imaging allows non-invasive measurement of the through port transmittance
of each ring within amulti-ring cascade, as would be necessary to determine the waveg-
uide cross-coupling coefficient «, and the round-trip (amplitude) loss factor a [11, 12].
Compared to slower serial-scan probing methods such as near-field scanning optical
microscopy [13], and optical fiber-based probes [14], IR imaging can measure several
resonators simultaneously. The main disadvantage is the diffraction limited resolution.

Another set of images is obtained by scanning the tunable laser source wave-
length and recording the IR images of Rings 1 and 2 at a higher magnification (20x).
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Figure 6.8: (a) Spatial dependence on the transmission spectrum of a resonator on the
coupling alignment using a lens tipped fiber and a programmable piezo controller. The
piezo controller was trandated a few hundred nanometers, where a wavelength scan
was then performed, and the process repeated. (b) Modal size of the radiated mode.
Measured by fixing the laser at a single frequency, and taking power measurements
while two piezo controllers were scanned in the plane perpendicular to the waveguide.

Fig. 6.10(a) shows a typical IR imaging profile at a wavelength of 1533.90 nm. The
waveguide profile is obtained by using an ASE source to illuminate all 10 rings. This
profileisthen converted to a binary matrix, an example of whichisshowninFig. 6.9 for
a single ring, which is used to extract the desired paths which correspond to the input
port, the through port and the ring resonator. The pixel intensities are then averaged
over these selected path lengths and normalized by the input to yield the spectra shown
in Figs. 6.10(b) and 6.10(c). In order to compare between different areas, the averag-
ing regions should contain the same number of bends, junctions or defects; otherwise,
seemingly anomal ous behavior can be observed for the magnitude of through port trans-
mittance for Ring 1 (magnitude of the path-averaged output > path averaged input). We
emphasize that it is the ratios of the ‘on’ and ‘off’ resonance transmission values that
are used to characterize the microrings [11, 12].

Thefree spectral range F'S R, resonator bandwidth B, and normalized through
port transmittance 7,,,;, are obtained from the through port transmission spectrum. For
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Figure 6.9: Binary Matrix used to mask and average over each of the rings separately.
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Figure 6.10: (a) IR image of Rings 1 and 2, at an input wavelength of 1533.90 nm, used
towards obtaining spectra for through port, drop port and circulating (' Ring’) powers,
normalized by the input, for (a) Ring 1 and (b) Ring 2.

aRing 1 resonance at \,..,=1530.45 nm, F'S R=2.31 nm (296 GHz), BW=0.12 nm (15
GHz), and 7,,,;,=0.65. Using the expressions in Ref. 10, the relevant ring parameters
are extracted and summarized in Table 1. a gy iSstheloss (in dB) per round trip in the
ring. 1., iStheintensity enhancement factor of the ring, calculated as the number of
round-trips NV of a circulating photon, which is the ratio of the photon lifetime 7, and
the time taken to compl ete one round-trip of thering, Trr.

N = Tph = Q/wo = FSRfreqi —= E
TRT 1/FSRf,«eq BW 2n 27'("

where wy is the radial resonance frequency, and I is the finesse of the resonator. In

(6.1)

Table 1, I.,. = N iscompared against /,,..s, which is the peak circulating intensity at
aresonant wavelength, read off from Figs. 6.10(b) and 6.10(c).
Scanning electron microscope (SEM) images convey a waveguide width of 540
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Table 6.1: Extracted Resonator Parameters

Ring 1 Ring 2
Ares (NM) 153045 1532.77 1529.30 1531.60
K2 0.032 0.035 0.022 0.020
a 0.859 0.832 0.878 0.861
agr (dB)  1.32 1.60 1.13 1.30
Leate 3.06 2.64 3.66 3.34

Ineas 2.36 2.08 2.50 211

nm and a resonator-waveguide gap of 310 nm. Using an effective coupler length [15]
of 51 um, we estimate 2 to be 0.036, which is close to the values extracted from the
imaging data. The high loss is consistent with the > 10 nm sidewall roughness [16]
observed using the SEM. The corresponding intrinsic quality factor is 15,900, while the
loaded @ is 12,750. For high-Q resonators, the enhancement factor will compensate
for low intrinsic scattering losses. For our ring structure, the enhancement factor will
compensate for an intrinsic scattering loss as low as 0.001 dB/cm, which corresponds to
an intrinsic Q-factor of 7.6x 10°.

In summary, infrared imaging has been applied for characterization of individual
rings in a multi-ring structure, towards understanding the overall device performance,
and desired post-fabrication tuning. Thistechniqueisreadily scalable to measure multi-
ple devices using larger fields of view and cameras with an increased number of pixels.

6.1.4 Waveguide Bends

As mentioned in Section 1.2, waveguide bends can also be a source of radiative
lossinaphotonic circuit. Thereason being, that amode shiftsaway fromitsradial center
when going around a bend. This causes a mode mismatch between the straight and bent
waveguide regions, and also increases the electric field at the waveguide boundary, both
of which result in higher scatting losses[17, 18]. Aswas shown in the previous sections,
infrared imaging can be used to spot fabrication defects, or “holes’ in a photonic circuit.
Similarly, it can aso give a measure of where a device loses energy so that it can then
be properly redesigned or trimmed. Fig. 6.11 shows a 4.15 cm long straight waveguide
that folds upon itself seven times. One can see that the waveguide bends indeed scatter
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Figure 6.11: Infrared image of a4.15 cm long straight waveguide that folds upon itself
seven times. As discussed in the text, the waveguide bends scatter a significant amount
of light compared with the straight sections. Also, the inverse taper coupler shows sig-
nificant scattering at the silicon/SU8 transition regions. The bottom right corner shows
light being scattered off of the output coupler due to reflections and mode-missmatch.

a significant amount of light compared with the straight sections. Further, one can see
that the inverse taper couplers also scatter a significant amount of light. Most notably,
light is scattered within the SU8 coupler where the silicon waveguide begins, and also
when the SU8 coupler is terminated. In the bottom right figure is an image of light
being coupled to the output fiber, where again one can see high scattering losses due to
reflections and modal-mismatch. Thisis another benefit to using an infrared camera to
probe “leaks’ in photonic circuits, analogous to submerging a pumped bicycle tire into
abucket of water to spot air-holes.

6.1.5 Imaging CROWs

Infrared imaging provides a method of determining the wavelength response of
individual rings. There is perhaps no device where this would be more beneficial then
the coupled resonator optical waveguide—where by definition—the individual rings
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Figure 6.12: (a) Method of extracting the spectral characteristics of a 35-ring CROW.
35 single-ring binary matrices (shown is their summation), are superimposed onto the
wavel ength resolved infrared imaging dataset. (b) Enlarged image of a semi-transparent
mask superimposed onto the 35-ring CROW. (¢) Simulation of how the field profiles
of a disorder-free CROW would look. (d) Wavelength resolved IR image of a 35-ring
CROW: each of the masks were averages over their corresponding ring at each wave-
length to produce the image shown.

have no accessible ports, leaving one with little information from a transmission spec-
trum on how an individual ring behaves. The characteristics of CROWs were discussed
indetail in Section 2.1. Here, we extend the imaging technique described in the previous
section to that of a CROW. Fig. 6.12(a) outlines the method of extracting the spectral
response of the individual coupled-microrings. The data acquisition technique for the
CROW isidentical to that of the SCISSOR: atunable laser source is synchronized with
an infrared camera to obtain wavelength resolved imaging. Fig. 6.12(a) shows the bi-
nary mask used for the CROW. This mask consists of 35 rings (used to measure a 35
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ring CROW), that is actually the summation of 35 individual single ring masks such
as shown in Fig. 6.9. This mask is then superimposed onto the dataset. For each ring,
camera pixels that align with the binary mask’s “1's” are averaged. Computationally,
the way thisis doneisthat the mask and the dataset are dot-multiplied, and then all non-
zero elements averaged. Fig. 6.12(b) shows an enlarged image of a semi-transparent
mask superimposed on a 35-ring CROW. A method for simulating the response of the
individual rings of a CROW was detailed in Chapter 4. In Fig. 6.12(c) werecall atypical
image of how thefield profiles of adisorder-free CROW should ook from simulation. In
Fig. 6.12(d) the measured (averaged) response of the individual microrings of a 35-ring
CROW is shown. Also shown (blue line), is the transmission spectrum for the corre-
sponding band. One can indeed see that there is a direct correlation between where the
resonators*“light-up” and the power measured at the CROW’ sdrop port. Also, increased
intensity can be observed at the band-edge, which will be discussed more later, similar
to that of the simulation.
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Figure 6.13: Wavelength resolved infrared image of a 235-ring CROW.

Wavelength dependent eigenvectors of a disordered 235-ring CROW

The imaging process was then performed for the 235-ring CROW as shown in
Fig. 6.13. Astheinfrared camerais only 320 pixels, it is not feasible to take the images
inasingle shot aswas donefor the 35-ring CROW. For the 235-Ring CROW, 16 datasets
were taken where each ring in a given dataset was then averaged using a binary mask
15-rings wide. The results of which were then stitched together to form the 235-ring
CROW spectral response shownin Fig. 6.13. From these images, one can simply extract
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the desired ring’s transmission response from the dataset. Shown in Fig. 6.14 are cross
sections of a single dataset measured near the start of the CROW. Comparing the 4th
and 14th ring in this dataset, one can see that the individual rings in a CROW undergo
very different spectral responses.
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Figure 6.14: Typical dataset, measured near the beginning of the CROW shown in
Fig. 6.13. As shown, one may extract the response of the individual microrings of a
CROW using infrared imaging. Comparing the 4th and 14th ring in this dataset, one can
that the individual ringsin a CROW undergo very different spectral responses.

Band edge enhancement

The CROWSs imaged thus far were done so under a semi-transparent polymer
(PMMA), used to reduce the losses of the CROW. The effects of this polymer on the
infrared images isto blur the responses of the individual microrings. In order to analyze
band-edge phenomena the PMMA cladding was then removed by soaking the chip in
acetone, with the intent of specifically looking at interesting high spectral resolution
band-edge characteristics. Shown in Fig.6.15(a) is the spectral response of a 35-ring
CROW on chip W2F9 (see Fig.2.2). Fig.6.15(b) shows the band-edge transmission
spectrum outlined by the green box in Fig.6.15(a). One can see that while losses have
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increased due to the air cladding, well defined peaks can still be observed at the band-
edge.

The wavelength resolved infrared image data was taken only at the band-edge,
shown in Fig. 6.15(c), where a 1-pm step scan was used to obtain ultra-fine band-edge
resolution. Indeed, the air cladding allowsthe imaged responses of the individual micro-
rings to be considerably well defined. Outlined by a green box in Fig. 6.15(b) is an
enhanced localized mode of the 35-ring CROW where the light intensity is three times
higher in the central region of the CROW compared with rings on either side. Note that
the CROW has a high insertion loss of 86 dB at this wavelength. Fig. 6.15(d) showsthe
IR camera measured intensity of the CROW at each resonator for a wavelength within
the region indicated by the green box in Fig. 6.15(c). Inthetop portion of thisimage, the
raw image of the 35-ring crow is shown (no mask is being applied). IR imaging is thus
capable of probing the entire disordered response of a CROW, where as a transmission
spectrum would provide no information on the response of the individual micro-rings.
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Figure 6.15: (a) Transmission spectra a 35-ring CROW on chip W2F9. (b) Band-edge
transmission response of the CROW as outlined by the green-box in (a). (¢) Wavelength
resolved infrared image at the band-edge using an ultra-fine 1 pm step-size. (d) Re-
sponse of the CROWSs for the localized mode outlined by the green box in (). Shown
in the top is the actual IR image of the CROW at this wavelength.

6.2 Group Delay Measurements

The previous section outlined a novel technique for measuring the spectral de-
pendence of the intensity enhancement of a micro-ring resonator. This section focuses
on measurements of group-delay. Physiologically, these are the same thing. The en-
hancement of a micro-ring resonator is due to photons tunneling into the micro-ring
where they are then “trapped,” for atime determined by the coupling coefficient and the
losses of the cavity (i.e., chance to escape). While these photons are trapped in the ring,
additional photons are continuously being pumped into the cavity by the laser source,
which isthe cause of the enhancement. Group delay on the other hand is the measure of
propagation time for a device. For micro-resonators, propagation time is increased due
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to photons taking several passes around the microring before coupling out—which is
again, the cause of the cavity enhancement. There are numerous methods of measuring
group delay, with perhaps the most popular being the phase shift method using an vector
network analyzer. Here, welook at another technique, swept-wavel ength interferometry,
and specifically the role of amplification.

6.2.1 Introduction

M easurements of wavel ength-dependent group delay are important in optical fil-
ters, delay lines and interferometers, with applications in RF photonics, slow light and
optical communications[19, 20, 21]. While the rationale for using erbium-doped fiber
amplifiers (EDFA) in the operation and testing of fiber systems and networksis evident
[22], and athough much of the same intuition applies to testing photonic devices, there
are significant differences between the two cases. Adding an EDFA with 50 meters of
optical fiber and additional noise contributions to a device-under-test path previously
consisting of a chip that may be only afew millimeters long requires special consider-
ations, when the goal is that of measuring group delay with sub-picosecond accuracy
[23, 24, 25].

Considerable cogt, effort and time can be taken up by the packaging of bare-die
photonic chips into fiber-pigtailed devices. Additional complexity of lithography is as-
sociated with fabricating mode-size converters in order to achieve a low-loss interface
between fibers and single-mode silicon-on-insulator (SOI) waveguides [26, 27, 28, 29,
30]. Whereas researchers are reluctant to devote excessive time towards perfecting cou-
plers at the preliminary stages of designing anovel chip, they would neverthelesslike to
accurately know the group delay and dispersion characteristics of the device under test,
which isthe main focus of the research. Thus, during testing, coupling efficiencies of -5
to-10 dB at each of the input and output interfaces may be anticipated, as often reported
in the literature.

Furthermore, an intrinsic propagation loss of -5 to -10 dB should aso be ex-
pected, since nanometer-scale sidewall roughness of SOI waveguides can lead to asig-
nificant propagation loss [31, 32]. For example, an SOI waveguide which provides 0.5
ns of delay is about 4 cm long. After a post-lithographic surface roughness reduction
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Figure 6.16: (&) Top Axis: Measurement of the group delay ripple (ps) of a1.2 m long
fiber patchcord, over a 40 nm wavelength span in the L-band, for increasing number
of averaged scans. Bottom axis. Group delay ripple (ps) a device-under-test consisting
of 76 m of single-mode fiber and Erbium doped fiber, and a programmable attenuator
(JDS Uniphase HA9), whose setting was increased sequentialy to simulate the effect
of decreased coupling efficiency. (b) Measurement of the group delay ripple (ps) of a
4.15 cm single-mode silicon-on-insulator waveguide over a 40 nm wavelength span in
the L-band.

process, it may have a (low) absorption coefficient of -1.25 dB/cm, thus yielding an in-
sertion loss of -5 dB. In fact, single-mode SOI waveguide losses of -2.5 dB/cm (for a
total insertion loss of -10 dB) are till considered low-loss by today’s standards.

Since the goa of many novel devicesisto realize filters, switches or modulators
with > 30 dB dynamic range, an accurate measurement of GD is needed not just at
the peaks of the transmissions spectrum but also at the valleys, i.e., at a detected power
level, relative to the source, of -45 to -60 dB. Typically, the input power level to an SOI
waveguide cannot exceed +10 dBm before nonlinear effects are observed. Therefore,
SOI chip-scale devices usually need accurate measurements of group delay (GD) over
a wide range of detector power levels, from -5 dBm to -50 dBm. At the power levels
considered here, < -10 dBm, the dominant receiver noise contribution comes from the
electronic amplifier noisg[33, Fig. 5.27]. However, as we will see later, the situation
may change for amplified measurements using an EDFA, but in general, depends on the
device that is being measured.
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6.2.2 Coupling Measurements

Group delay measurements were done using an optical vector network analyzer
(OVA 5000 from Luna Technologies, [34]), based on the principle of swept-wavelength
interferometric polarimetry [35, 36]. A mode-hop free rapidly-tunable telecommuni-
cations wavelength laser source was used along with Mach-Zehnder interferometers,
polarization controllers and photodiodes to measure the four el ements of the Jones ma-
trix of the device under test (two for each polarization). A discrete Fourier transform
of the raw data, followed by time-domain windowing, reveals the time-domain impulse
response of the device under test. The instrument measures up to 6 ns of group delay
with awavelength resolution of 1.4 pm, which is determined by the window of the time-
domain filter. The procedure used to calculate group delay from the measured transfer
function, and its calibration against a known standard (e.g., acetylene gas cell) are de-
scribed in [37].

To confirm that the measured group delay statistics reported here were above
the detection limit of the optical vector network analyzer, measurements of the standard
deviation of group delay for a 1.2 m long single-mode fiber patchcord were performed
with increasing number of averaged scans, shown in the top axis of Fig. 1(a), yielding a
very low intrinsic variation of 0.15 ps over a 40 nm wavelength span in the L-band. To
maintain this high level of accuracy, all subsequent measurements were done with 64
averages.

Data shown in the bottom axis of Fig. 1(a) was measured when light was coupled
through lensed tapered fibers, and attenuation of the amplified source was increased
sequentially by using a programmable attenuator (JDS Uniphase HA9) to simulate the
effect of decreased coupling efficiency, or increased insertion loss. We have verified
that the attenuator, by itself, does not change the standard deviation of the measured
group delay, i.e., the noise statistics. In fact, it is well-known that attenuated Poisson or
Bose-Einstein distributions remain Poisson or Bose-Einstein distributions, respectively
[38]. As can be seen, the standard deviation of the measured GD starts to increase once
the received power decreases below 10 nW. Thisis similar to the degradation of the bit
error rate in a fiber optic communication link once the received power drops below the

noise floor.
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For purposes of this discussion, we assume that a standard avalanche photodiode
(APD) is used for detection, and that a signal-to-noise ratio of unity is the minimum
threshold to measure GD reliably. We can thus attribute the flat SfloorT at the higher
power levels to the effects of the photoreceiver electronics noise, with a root-mean-
squared equivalent input noise of the electronic amplifier circuitry of (iamp)ms = 200 A,
and photoreceiver bandwidth A fgq = 2 GHz. These values are similar to those of a
2.5 Gbps APD receiver, for example, from Archcom Tech. (AC6522 Series), which has
aresponsivity of 0.9 A/W and an equivalent input noise current density of 5 pA//Hz.
In earlier published work using the same type of instrument [39], this noise floor was
indeed attributed to electronic amplifier noise, rather than laser noise, shot noise or
thermal noise.

6.2.3 Amplified Waveguide Measurements

Now, we consider optically amplified measurements of GD of a silicon waveg-
uide chip, using the experimental setup shown in Fig. 2(a). Chips were fabricated at
the IBM Microelectronics Research Laboratory using a CMOS compatible process on
200 mm SOI wafers. The waveguides are single-mode (TE polarization, with the elec-
tric field parallel to the plane of the chip), with transverse dimensions approximately
0.50 pm x 0.22 pm. The group index of the waveguides is measured to be ng = 4.25
over the range of wavelengths used in this measurement.

The output of the tunable laser (average power 200 W) is directly input to the
EDFA which is used in the saturation regime (output power +18 dBm). In order to
cover the range of wavelengths spanned by the tunable laser (1530 to 1610 nm), the
EDFA actually consists of two EDFAsin parallel, with a splitter at the input: a C-band
EDFA, with 200 mA of drive current to the pump laser diode, and an L-band EDFA with
700 mA of drive current.

Similar to Fig. 1(a), Fig. 1(b) shows the increase of measured GD ripple of a
4.15 cm waveguide as the insertion lossisincreased. The waveguide lossis-1.5 dB/cm,
measured by comparing the insertion loss of four waveguides of different lengths. By
extrapol ating these measurements to a null-length waveguide, the coupling efficiency is
estimated to be -15 dB for the combination of input and output couplers. So as to have
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the least perturbative effect on the noise contribution of the waveguide itself, the effects
of increasingly worse coupling efficiencies are simulated by increasing the loss setting
on the programmable attenuator, rather than adjusting the tapered fibers, which could
possibly couple to a higher-order optical mode.

There are severa reasons for using a saturated amplifier immediately after the
tunable laser source, rather than a higher-gain unsaturated amplifier after the chip:

1. With pre-amplification, arapidly-tunable (the tuning speed of thelaser is70 nm/s)
narrow-band optical band-pass filter is not needed after the EDFA, since a inter-
ferometric detection scheme is used, and the ASE is suppressed effectively, and
further attenuated by the coupling and insertion losses of the chip before reaching
the photoreceiver,

2. The noise figure of the amplifier is possibly lowered, or at least not substantially
worsened [40, 41], in the gain-compressed regime, and

3. Since the input power to the EDFA is maintained constant as the laser tunes in
wavelength, the amplifier remainsin the same operating condition, and contributes
more or less the same ASE noise versus wavelength. In contrast, if the EDFA
was used after a chip consisting of, e.g., a wavelength-selective filter with 30 dB
contrast in the transfer function, the amplifier would see 30 dB variations in the
input power as the wavelength was scanned, and both its output power and noise
characteristics could vary, depending on the tuning speed of the laser.

We have verified, as shown in Fig. 2(b), that thereis only asmall penalty, of less
than 1 picosecond, in the measurement of group delay due to the addition of the EDFA.
This can easily be neglected in the measurement of photonic devices whose intrinsic
group delay ripple exceeds this noise penalty.

In contrast, the benefit of using an EDFA to boost the detector signal power of a
poorly-coupled chip is considerable. Fig. 3(a) shows the benefits of using optical ampli-
fication to boost the detected power at the output of a4.15 cm waveguide. M easurements
that were previously “lost” at detected power levelsaslow as 0.5 nW, which resulted in
significantly higher noisein GD measurement, were successfully “brought back” to the
low noise regime.



151

r
€)) : IL/GD measurement
|

; Tunable laser ! Programmable
Photoreceiver |— —
source Attenuator

Averaged STD(1)

(b) -
0 EDFA EDFA A
C-Band 6.71 (ps) 7.09 (ps) 0.38 (ps)
L-Band 7.05 (ps) 7.19 (ps) 0.14 (ps)

Figure 6.17: (a) Light was coupled on and off the chip using a pair of lensed tapered
optical fibers mounted on piezoelectrically actuated alignment stages. Asin Fig. 1, the
programmabl e attenuator setting was increased in steps of 10 dB to simulate the effect
of decreased coupling efficiency. (b) Table of of the averaged GD ripple increase, as a
consequence of using the EDFA.

It isimportant to note that both the measurement speed and the measured group
delay statistics are unaffected. Fig. 3(b) shows the probability distribution, P, of the
measured group delay in the unamplified and amplified measurements at the same level
of net insertion loss. A more detailed discussion of the noise performance of the mea
surement system will be subject of the next section.

Fig. 4 shows the measured amplitude and group delay spectral measurements
of a coupled-resonator optical waveguide (CROW) [25]. Note that while much of the
amplitude response can be measured without amplification, the measurement of group
delay benefits considerably from amplification. In particular, the unamplified insertion
loss measurement shows peaks and valleys that mostly line up, versus wavelength, with
the amplified measurement, but the dynamic range is clearly compressed by the noise
floor at -60 dB. Adding the EDFA to the setup raises the noise floor by afew dB, as seen
in the stop-band of the filter response, but significantly improves the accuracy of the
dynamic range, and greatly improves the precision of the measurement of group delay.
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Figure 6.18: (a) Improvement in the standard deviation and of measured group delay,
i.e. the group delay ripple, as a consequence of using the EDFA to boost the detected
signal power. (b) Histograms of the normalized group delay 7 = GD/(GD), in three
cases. (1) un-amplified measurement at 0.5 nW, (2) which is then boosted, using an
EDFA, to 20 nW, and (3) compared with a measurement that was neither amplified nor
attenuated. The comparison shows that amplification is successful at measuring the
correct group delay ripple statistics of a waveguide that would otherwise be too lossy to
measure accurately.

6.2.4 Discussion

Because of the presence of an optical amplifier inthe signal path, thereisanoise
component to the detector output current. We refer to the diagram in Fig. 2(a). Under
typical power levels as described earlier, the only significant source of the amplifier-
added noise isthe ASE-signal beat noise, and the mean-squared current that arises from

this contribution to the total photocurrent is
(inse-signa’) = 4R*SNa (6.2)
where R = en/(hv) isthe responsivity (A/W) of the photoreceiver,
S =GLPy (6.3)

isthe optical power of the signal component of the light that is incident on the photode-
tector, and (Haus p.337)

NA =GLhv Afsig(NFASE - 1) (64)

is the optical power of the amplified spontaneous emission added by the amplifier, in
terms of the quantity (NFase — 1), which isthe excess noise figure of the amplifier. We
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Figure 6.19: Example of measurements of (a) the amplitude and (b) the group delay
versus wavelength of a silicon microring coupled-resonator optical filter which has a
delay of about 135 ps at band-center [25]. Notice that poor coupling through the device
affects the amplitude and group delay response differently. Whereas the unamplified
insertion loss measurement is mostly spectrally accurate but dynamically compressed,
i.e., the peaks and valleysline up with the more accurate amplified measurement versus
wavelength, meaningful measurements of group delay are nearly impossible without
amplification, in accordance with Fig. 3.

assume, in keeping with the experimental results reported here, that only one polariza-
tion state of light (TE polarized) is transmitted through the device; otherwise, Eq. (6.4)
should be multiplied by 2. We also assume that the optical signal bandwidth A f4 inthe
expression for IV is also the electronic bandwidth in the photodetector [42].

<%mp>rms
(GL) < A2 2 fag(NFae — 1) B (6.5)

At equality between the left-hand side and right-hand side of Eq. (6.5), the ASE-
signal beat noise equals the intrinsic noise of the amplifier electronics. Increasing the
amplifier gain further, so that the beat noise term grows above the electronics noise,
does not improve the signal-to-noise (SNR) ratio any further, but does not alter it, since
signal power and noise variance both scale with (GL)>.

There is no obvious benefit to significantly larger gain. Eqg. (6.5) can be numeri-
cally evaluated to solve for the amplification level which should be used, given the laser
power into the EDFA, P, and the estimated loss, L, e.g., —15 dB for a single-mode
waveguide delay line with no resonant spectral features, or —50 dB for the resonance
dip of amicroring resonator or optical filter.
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As stated before, we assume A fgg = 2 GHz and R = 1. Since the EDFAs are
used in the saturation regime, the gain G is compressed,

G—1 Pou
G pen

where G, isthe nominal (unsaturated) gain, PS, = 16.5 dBm and PL, = 18.23 dBm are
the saturation powers of the C-band and L-band EDFASs used in the measurement. The
excess noise of the amplifier in the saturated regime is also function of G, but does not

G = Gy exp (— (6.6)

vary much over the typical range of values used here, and is conservatively taken to be
aconstant equal to 6 dB.

We consider two examples based on evaluating Eg. (6.5), assuming a tunable
laser power of P, = 0.1 mW. For along single-mode waveguide delay line, with small
variations in insertion loss versus wavelength, atypical value of . = —20 dB, we need
G > 15.6 dB to reach the beat-noise limited regime. This can be achieved by a saturated
EDFA aslong as the gain compression is not excessive.

On the other hand, to measure a microring resonator add-drop filter on reso-
nance, we may encounter a typical value of L = —40 dB (on resonance), and we need
G > 36 dB to reach the beat-noise limited regime. Thisis beyond the regime of satu-
rated EDFAS, and in any case, such an amplifier would boost the optical power levels
input to the chip to nearly 1 W, i.e., into the nonlinear regime of silicon waveguides.
Thus, the measurement of the valleysin the pre-amplified configuration regime must be
in the detector-noise limited regime. Thishas not been alimitation for the measurements
reported in this paper, but recent studies of the statistics of light transmission and back-
reflection in waveguides may be influenced by which noise regime happens to describe
the measurements, when pushed to more sensitive limitsin the future [43, 44, 45].

As stated before, the benefit to using saturated EDFAS before the chip, rather
than an unsaturated EDFA after the chip, isthat the measured variations and noise statis-
tics of insertion loss or group delay can be conclusively attributed to the device under
test, since the input light to the EDFA, directly from the tunable laser, does not vary in
intensity. For measurements focused on the ripple statistics of waveguidesor filters, this
isan important benefit to pre-amplification.

Post-chip amplification may be used if high values of gain are required, e.g., in
photonic crystal structures [46, 47], or the critical-coupling slope of a microring res-
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onator [48]. In such cases, the spectral range of the measurements should be limited
in order to prevent the amplifier from saturating as the shoulders of the transmission
nulls are encountered. The large variation in input power to the EDFA would introduce
nonlinearity in the measured transfer function, and also change the noise properties of
the measured group delay.

For such applications, the modulation-phase shift method, based on a stepped
wavel ength scan of the tunable laser along with an RF modul ation source and detection
by an electronic vector network analyzer, may be more versatile. However, the data
acquisition time is greatly increased, from a few seconds to many minutes, to achieve
comparable accuracy [22].

6.3 Summary

Infrared imaging is a powerful technique for probing photonic circuits. By uti-
lizing the intensity enhancement, a microring resonator can be measured that in practice
would have no drop ports. The method consists of taking sequential images of a pho-
tonic circuit that directly correspond with a step scan of a tunable laser source. This
method was also used to simultaneously measure the response of 10 rings at their drop
ports from a single data set.

Further, the benefits of optical amplification in the rapid measurement of group
delay (GD) of chip-scale photonic devices with high insertion loss was shown. By using
an EDFA before the chip, in the saturation regime, we have ensured that the amplifier
itself does not contribute noticeably to the measured GD ripple at |ess than the picosec-
ond scale. Filtering of the amplified spontaneous emission was not needed, and thereis
no penalty to the measurement speed of the instrument. The rapid speed of the tunable
laser (70 nm/s) used in the Luna OVA5000 enables almost video-rate measurements of
group delay of a nanophotonic device.

Measurements that were previously “lost” at detected power levels as low as
0.5 nW, which previously resulted in significantly higher noise in GD measurement,
were successfully “brought back” to the low noise regime. These group delay mea-
surements are at the lowest-reported power values for any photonic chip to date, and
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further improvement into the low-power regime may enable rapid and routine delay and
dispersion measurements with sub-picosecond accuracy of novel nanophotonic devices
[46, 49, 25] without having to worry, at least initially, about optimizing the coupling

into and out of the devices.
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A Graphical User Interfaces

Numerous graphical user interfaces were devel oped to facilitate the research pre-
sented in this dissertation, all of which were written in Matlab. Listed here are among
the few that were indispensable to its devel opment.
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A.l Efield
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Solves for the exact eigenvectors (modes) and eigenvalues (propagation con-

stants) of high-index contrast waveguides. This program was used extensively for the

results presented in Chapter 4. Further, it was used for the dispersion engineering cal-

culations in Chapter 3.
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Figure A.1: Users input waveguide (array or single) device dimensions, materias,
wavelength, desired discretization, and program solves for the transverse eigenvectors
and eigenvalues, (electric field and propagation constant), with Dirichlet boundary con-
ditions. Also calculates waveguide group index, field concentration, and group velocity
dispersion with built in Sellmeier equations for Oxide, Silicon Nitride, PMMA, and
Silicon. For amathematical description, see Section 3.1
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A.2 IRCAM and LScan

Synchronize atunable laser source with an infrared camerafor extracting micro-
ring resonator parameters from wavelength resolved infrared imaging. This program
was used extensively for the results presented in Chapter 5, and also published in, M.
L. Cooper, et a., “Quantitative infrared imaging of SOI microring resonators,” Optics
Letters, 35, (2010)—in which the optics letters manuscript received a spotlight from
OSA with commentary from Dr. John E. Heebner (March 2010).
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Figure A.2: Users input slot location of the tunable laser source (Agilent 81640A),
power sensor (Agilent 81633A or Agilent 81634B), and desired wavelength range, step
Size, integration time, input power, scan speed, and scan type (step or continuous). The
program then runs the scan and returns wavelength and power data into an array in
Matlab. Has the option in step scan to record 12-bit images at each wavelength, follow
the TLS with an optical tunable filter (Santec OTF-910 (RS232)) for use with aninline
EDFA, program Piezo controllers (RS232) for micron scale position vs. wavelength
scan, and send the user atext message to his cell phone when scan completes.
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A.3 SNIPER26

This program was used to facilitate analyzing over 5 Gb of data on the IBM
wafers, the results of which were presented in Chapter 2.
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Figure A.3: The program facilitates analyzing >5 Gb of spectra data of 22 chips each
with 5 sets of coupled resonator optical waveguides, returned from the LUNA OVA. It
also displays user comments noted while the devices were being measured, the ampli-
fied spontaneous emission source (ASE) measurements, and the device length of each
measurement.



B Final notes

| learned this, at least, by my experiment: that if one advances confidently in the
direction of his dreams, and endeavours to live the life which he has imagined, he will
meet with a success unexpected in common hours. He will put some things behind, will
pass an invisible boundary; new, universal, and more liberal lawswill begin to establish
themselves around and within him; or the old laws be expanded, and interpreted in his
favor inamoreliberal sense, and hewill live with the license of a higher order of beings.
In proportion as he simplifies his life, the laws of the universe will appear less complex,
and solitude will not be solitude, nor poverty poverty, nor weakness weakness. If you
have built castles in the air, your work need not be lost; that is where they should be.
Now put the foundations under them.

—Henry David Thoreau, “Walden,” 1854
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