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Figure 5.1: (a) Refractive index profile in the transverse plane n(x,y) for an N
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Figure 5.5: Ratio of coupling coefficients for different separation distances ex-
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Figure 5.16: (a) FEM solution of the fundamental supermode of a silicon-on-
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Silicon photonics is technologically attractive because of the possibility of mono-

lithically integrating multi-element photonic waveguide circuits with complex electronic

circuits. To reduce the footprint of the photonic components, it is possible to fabricate

strongly-coupled waveguides and resonators, e.g., with sub-100 nm separation gaps.

The most insightful design tool used for photonic devices, coupled mode theory (CMT),

is considered suspect for high-index contrast strongly coupled waveguides. Using a nu-

merically assisted coupled mode theory (NA-CMT) developed for arrayed waveguides,

it was shown how one may modify the basis parameters within CMT to calculate more

accurate modal profiles and more accurate estimates of the value and the wavelength

dependency (i.e., dispersion) of coupling coefficients. Traditional CMT inaccurately
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predicts both the field peak locations and the exponential decay rates of the field en-

velopes in the cladding regions.

Examples of strongly-coupled silicon photonic devices based on waveguides

and couplers include giant birefringence multi-slot waveguides, and large-bandwidth

coupled-resonator optical waveguides (CROWS) consisting of several hundred coupled

silicon microring resonators. Numerical techniques will be reported for accurately sim-

ulating the transmission properties of strongly coupled arrayed waveguides and disor-

dered CROWs in excellent agreement with experimental measurements on fabricated

devices.

Experimental methods were developed for the accurate measurement of trans-

mitted intensity and group delay of silicon nanophotonic waveguides and multi-resonator

circuits including CROWs and side-coupled integrated spaced sequence of resonators

(SCISSORS). The role of external amplification in reliably measuring waveguide trans-

mission using the method of swept wavelength interferometry was studied in detail.

Also, a technique of swept-wavelength infrared imaging was developed and applied for

quantitative diagnostics of multi-resonator circuits which need not have accessible drop

ports on every device.
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1 Silicon Photonics

I believe there will be a world market for approximately five computers.

–Thomas Watson, President of IBM, 1943

Within the coming decade, the circuitry embodied by a rack of today’s network

servers will in theory fit onto a single silicon chip half the size of a postage stamp.

–Michal Lipson, Nature Photonics, 2007

1.1 Introduction to Silicon Photonics

Photonics is suitable for energy-efficient interconnects in large-scale computer

systems, including future multi-processor chips. The past decade has seen considerable

progress with regard to demonstrating most of the active and passive components nec-

essary for a fully integrated silicon-on-insulator photonic network on a chip [1]. Such

a network would require access to a suitable light source, an on-chip electrically driven

modulator for encoding an electrical data stream onto optical packets of energy, a net-

work of passive and active devices responsible for switching, buffering, routing and

possibly regenerating photonic signals, and finally efficient and large gain-bandwidth

product on-chip detectors to detect and convert the optical energy back into electrical

data.

Research in silicon photonics is motivated by the fundamental limitations and

performance costs imposed by the current method of using copper interconnects to trans-

port information [2, 3, 4]. In modern computing, interconnects consume 80% of a mi-

croprocessor’s power [5], and while both optical and electrical interconnects transport

information on electromagnetic waves (using photons), electrical interconnections on

1



2

chips are currently limited in providing adequate speed and performance—determined

by the resistance, inductance, and capacitance of the line [6, 7]. The bit rate for send-

ing information in electrical transmission lines is thus being fundamentally limited by

material constants, imposing a prohibitive scaling relationship determined by the aspect

ratio and length of the wire, B ≈ B0A/l
2, where Bo ≈ 1015, l corresponds to the length

of the wire, and A the area [8]. As such, optical interconnects—which do not have

an equivalent aspect ratio scaling—are poised to first replace longer interconnects for

transporting larger bandwidths [5].

This isn’t the first time in which an alternative interconnect has been needed

to meet the demands of increased computing speeds. From the 1960s to the 1990s

aluminum was considered the conductor of choice, even though it was well understood

that copper provided lower resistance, higher current density, and increased scalability.

It wasn’t until the 1990s that many of the fabrication hurdles preventing copper from

being used on a CMOS line were overcome [9, 10, 11]. And while research in ways to

improve the transmission characteristics of copper interconnects is still very much an

active field [12], researchers are again running into fundamental limitations as copper

interconnects reach their maximum potential, again requiring the development of new

methods of transporting data.

The use of high-index contrast silicon-on-insulator optical waveguides is partic-

ularly appealing in this role, as undoped silicon has very low intrinsic material losses

at telecommunication wavelengths (0.004 dB/cm), and a silicon waveguide intercon-

nect would have higher bandwidth, smaller interconnect delays, and better resistance

to electromagnetic interference, than a copper interconnect. Also, the large index con-

trast between the core and the cladding allows for increased device density, strong con-

finement, and sharp bending radii, compared to other types of waveguides, e.g., doped

glass, or polymeric waveguides. But perhaps the most appealing aspect of the silicon-

on-insulator photonics platform is its compatibility with the CMOS process used for

fabricating electrical devices, allowing optics and electronics to be realized on the same

chip [13].

This dissertation focuses on novel forms of strongly coupled waveguides, how-

ever, operation of optical interconnects with these added benefits requires several other
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mandatory additional optical components which will be breifly reviewed. Foremost, in

order to transport optical signals from one location on a chip to another, they must first

be generated via a coherent optical light source.

1.1.1 The Silicon Laser

By far the most illusive optical device to realize in silicon has been the laser

[14]. The reason being that, unlike direct-bandgap semiconductors such as GaAs and

InP where radiative recombination can occur as a two particle process, silicon’s indi-

rect bandgap only allows for emission to occur as a result of a three-particle process,

requiring a third particle—usually a vibrational wave of the silicon’s crystal lattice—

to balance the conservation of momentum requirement. As such, only about one in a

million excited electrons in bulk silicon will release a photon, compared with GaAs

(used in DVD players), where the efficiency is approximately 10,000 times larger due

to its direct-bandgap and steep upper bands [15]. While aggressive efforts have been

made to demonstrate lasing in erbium-doped silicon and also silicon nanocrystals—

where quantum confinement is used to relax momentum conversation requirements—

the first demonstration showing lasing in silicon utilized the Raman effect, which is

104 times larger in silicon compared with optical fibers [16, 17, 18]. The Raman ef-

fect involves adding energy to the vibrational modes of the silicon lattice via an optical

pump—which allows a weak beam at a frequency resonant with the Stokes transition,

propagating through the silicon, to then become amplified.

In 2004, the first silicon Raman laser emitted light at 1675 nm with a 30 ps pulse

width, a 25 MHz repetition rate, using a 9 W pump at 1540 nm [18]. The silicon laser

consisted of a 2 cm long rib waveguide, where feedback was provided by an optical

fiber. While the pump and lasing wavelength was insufficient to excite electrons into the

conduction band—the bandgap of silicon is 1.1 eV—a few electrons do become excited

from a process called two-photon absorption (TPA). TPA is a common source of loss in

nonlinear silicon photonics and involves the combination of energies from two photons

to excite electrons into the conduction band. Once excited, these electrons contribute

to another deleterious effect common to silicon: free carrier absorption (FCA). FCA is

a non-radiative process in which electrons in the conduction band may simply absorb
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photons by being excited to a higher energy level within the conduction band [19, 20].

Avoiding this additional FCA loss term was the motivation behind using such a low

repetition rate—requiring that the pulse period be larger then the recombination time—

and a pulse width shorter then the carrier life time, so as to render FCA effects irrelevant.

However, such a technique merely avoids the problem, which had to be adequately

addressed for continuous wave operation.

In 2005 Intel demonstrated the first continuous wave Raman laser operating at

1686 nm and pumped at 1550 nm [21]. The laser cavity was formed by a 4.8 cm long

waveguide, with a broadband back reflector with a reflection coefficient of 90%. The

front reflector was a dielectric layered stack that provided 71% reflectivity for the lasing

wavelength and 24% for the pump. In order to overcome losses associated with TPA

induced FCA, a p-i-n diode was formed by implanting boron and phosphorous atoms on

opposite sides of the silicon ridge waveguide, separated by 6 μm. Then, when a voltage

is applied to aluminum contacts residing above these doped regions, an electric field

is generated between the p- and n-doped regions, sweeping out the electron-hole pairs

in the silicon waveguide created by TPA and effectively reducing the carrier lifetime

from approximately 10 ns to 1 ns. While it was shown that this number can be reduced

further by proper device design [22], it is fundamentally limited by the speed in which

electrons can move (one thousandths of the speed of light). The first continuous wave

silicon Raman laser had a threshold of 280 mW of pump power when a 5 V bias was

applied, and 180 mW with a 25 V bias.

Both the pulsed and continuous-wave silicon Raman lasers constituted a signif-

icant advancements in the field of silicon photonics; however, they suffered from not

being directly applicable to modern silicon-on-insulator photonic circuits. This is be-

cause both lasers require an external coherent optical pump to be coupled into the silicon

waveguide, which resides off the chip.

The huge demand for compact electrically pumped lasers on a SOI chip, com-

pounded with the incredible obstacles imposed by the silicon material platform, has

led many researches to avoid the “silicon problem” altogether [23]. Perhaps the most

promising and advanced device functionality has been demonstrated using “hybrid sil-

icon lasers,” which consist of wafer bonding compound semiconductors to silicon-on-
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insulator substrates [14]. The compound semiconductors provide the necessary gain

medium, while the optical mode is guided in the silicon waveguide. Both Fabry-Perot

and micro-resonator based hybrid lasers have been demonstrated [24, 25]. Recently, in-

dium phosphide hybrid lasers provided the optical source for the first demonstration of

a 50 Gb/s integrated link, which consisted of four lasers modulated at 12.5 Gb/s, where

the individual wavelengths were determined by etching lithographically defined grating

periods into the silicon waveguides [26]. Each hybrid laser measures about 1 μm wide

and 800 μm long. Once a coherent light source is generated, it must then be transformed

into discrete packets of energy for transporting information.

1.1.2 The Silicon Modulator

Perhaps the biggest power penalty for switching from electrical to optical inter-

connects is the need to perform electrical to optical conversion at both the transmitter

and receiver. In order to compete with electrical interconnects, power consumption

should reach levels comparable to 1 pJ per bit [5].

The most common commercial modulators for telecommunications rely on ei-

ther the Pockles effect or the Franz-Keldysh effect. For the former, an applied electric

field on a material induces a change in the real part of its refractive index, and for

the latter, an applied electric field changes the band-gap energy. For photons near the

band-edge this leads to an increase in the absorption coefficient (the applied electric

field, however, does not usually excite carriers). Modulators based on the Pockles effect

are usually incorporated in a Mach-Zehnder configuration, in which a refractive index

change from an applied voltage induces a phase shift in one arm or both arms (push

pull), causing the electric field in one arm to become in phase or out of phase with re-

spect to the other arm. As such, when the two waves recombine, they will continue in the

waveguide if they are in phase, and form a radiation mode—leaving the waveguide—if

they are out of phase. Another common technique for achieving intensity modulation

using the real part of the refractive index is by changing the resonant wavelength or the

coupling coefficient of micro-cavities, thus allowing a fixed frequency to be switched

on and off resonance, varying the optical intensity at the through and drop port of the

resonator [27].
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At telecommunication wavelengths, both of these effects in silicon are very

weak, and have led researchers to look for alternative methods of electrically manipulat-

ing a waveguide’s effective index. Silicon does provide a large thermo-optic coefficient,

dn/dT = 1.86×10−4 /K at 300 K, which has proven useful for many advanced active

silicon devices [28]; however, its modulation rate is too slow for the data speed require-

ments of modern interconnects. In 1987 Richard Soref and Brian Bennett evaluated the

change in both the real and imaginary parts of the refractive index in crystalline-silicon

for different carrier concentrations [29]. This eventually led to the realization of many

different devices that electrically manipulate the free carrier concentration within a sili-

con optical waveguide, known as the plasma dispersion effect. This effect enabled some

of the first silicon modulators capable of realizing speeds in the GHz regime.

In 2007, IBM demonstrated an ultra-compact silicon modulator occupying a

length of only 200 μm, capable of operating at 10 Gb/s and consuming only 5 pJ/bit

[30]. The device consisted of 550 x 220 nm silicon nanowires which composed a Mach-

Zehnder, allowing for broadband spectral operation, where one arm was doped on both

sides to form a p+-i-n+ diode allowing for carrier injection. Compared with significantly

larger predecessors [31], operation was realized for such a small device length by uti-

lizing the high optical confinement provided by silicon nanowires, allowing for strong

overlap between the optical mode and the injected free carriers.

While the device footprint size may still be aggressively scaled down further

using ring resonators, there is a significant price to pay in terms of operational band-

width [32], as the Lorentzian response of a typical micro-resonator is on the order of

only a few hundred pico meters. Whereas Mach-Zehnder configurations usually allow

for operations encompassing approximately 20 nm. Further, the resonant wavelength of

a micro-resonator is incredibly sensitive to temperature fluctuations, requiring thermal

stabilization or a tunable laser source to compensate. While state of the art silicon mod-

ulators using the plasma dispersion effect operating at 40 Gb/s have been demonstrated,

using a traveling wave design [33], the need for higher and higher communication speeds

will continue to drive researchers to find new and creative methods of modulating optical

sources.

Once information has been encoded onto an optical stream of pulses, advanced
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functionality responsible for routing and manipulating optical signals will be required

to deliver the signal to its desired location, where it then must be converted back into an

electrical data stream.

1.1.3 Detecting light

Like the silicon laser and the silicon modulator, silicon imposes prohibitive con-

straints when it comes to optical detection at telecommunication wavelengths. The rea-

son being, that silicon absorbs very few photons in this region, which is also what allows

it to perform so proficiently as an optical waveguide. In order to realize optical detection

on a SOI chip, necessary for any transmission link, researches had to once again look

towards hybrid solutions.

There is currently a significant amount of interest in graphene as a candidate

for the next generation of photodetectors, and the first optical link using graphene was

recently demonstrated operating at 1550 nm with a responsivity of 6.1 mA/W [34].

Graphene consists of only a single layer of carbon atoms arranged in a honeycomb

lattice, and is expected to allow optical detection at speeds as high as 500 GHz [35].

However, research in photodetectors for silicon optical interconnects is currently being

dominated by germanium photodetectors [36].

While germanium is significantly easier to integrate with silicon, compared with

many other common detectors, numerous obstacles had to be overcome in order to com-

pensate for germanium’s 4.2% lattice miss-match with silicon. Progress in this area

has allowed the development of many high quality films and devices free of dislocation

defects [37, 38, 39]. Recently, significant advances in germanium avalanche photode-

tectors were made at IBM [40]. Using a rapid melting growth technique, a 140 nm

germanium layer was grown on top of a thin layer of SiON, which resides on 100 nm

of silicon. As germanium is one of the few materials with a refractive index higher then

silicon (n ≈ 4), light is pulled up into the thin gemanium layer allowing for high modal

overlap. This thin layer thus allows for operational speeds greater then 30 Ghz, at a low

bias voltage of 1.5 V. For this device, light is coupled into the detector directly from the

routing waveguide, and an avalanch gain of 10 dB was obtained.

This past decade has indeed seen tremendous progress in developing the nec-
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Figure 1.1: (a) Infrared image of light propagating through a silicon nanowire, coupled
into the waveguide using lens-tipped fibers. (b) Scanning electron microscope image
of the cross-section of a silicon nanowire, which consists of a silicon core (n = 3.47), a
SiO2 substrate (n = 1.46), and an air superstrate (n = 1). The height of the waveguide is
250 nm and the width 500 nm. (c) Finite element simulation of the transverse electric
mode Ex, with an effective index of 2.49. (d) Finite element simulation of the transverse
magnetic mode Ey, with an effective index of 1.83.

essary components for optical computing. The next section, and the majority of this

dissertation, will be focused on novel forms of waveguides. Before embarking on a dis-

cussion of new strongly coupled waveguides, and deviations from previous theories, it

is beneficial to first give a review of a few fundamental concepts.

1.2 Fundamentals of Optical Waveguiding

Once a coherent light source has been transformed into binary packets of energy,

they must be guided and routed from one destination to another. The last sections laid

out several prohibitive constraints imposed by the silicon material platform for active

devices, however, guiding electromagnetic fields at telecommunication wavelengths is

where silicon truly shines. The incredibly low material losses at telecommunication

wavelengths, compounded with one of the highest index contrasts available, makes sili-

con an excellent material for guiding photonic signals, allowing for bending radiuses on

the order of just a few microns [41].

Fig. 1.1(a) shows an infrared image of a 5.9 mm long silicon waveguide with a
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500 x 250 nm cross-section, guiding light around two 180 degree bends with an 80 μm

radius. Light is coupled into and out of the chip using lens-tipped fibers. A scanning

electron microscope image of the cross-section of the silicon rib waveguide is shown

in Fig. 1.1(b). For silicon nanowires, guiding light is achieved through total internal

reflection.

In general form, optical waveguides and resonant structures are often charac-

terized in the frequency domain, where the electromagnetic fields are described as sinu-

soidal functions of time at a single optical frequency ω, and that the structure is assumed

invariant in the direction of propagation, z:

�E = �E(x, y)ei(ωt−βz). (1.1)

�E(x, y) describes the confinement of the light for a given mode within the pro-

vided waveguide’s refractive index profile. β is the propagation constant of the elec-

tromagnetic mode, defined as β =
2πneff

λ
, where λ is the free-space wavelength. The

effective index, neff , represents the wavelength scaling of the propagating mode due to

the waveguide, which is directly proportional to the mode’s phase velocity, vp = c/neff .

To first order, one may think of the effective index as an average of the waveguide’s re-

fractive index profile, weighted by the concentration of light in each of the dielectric

regions. For example, optical modes in which the light is mostly confined in the silicon

waveguide will have a higher effective index, closer to that of silicon (nSi = 3.47 at λ =

1550 nm), compared to a mode near cutoff, which will have an effective index close to

that of oxide (nSiO2 = 1.46). In general, for an optical mode to be guided it’s effective

index must reside in between that of the core and the cladding, nSiO2 < neff < nSi.

As will be detailed in Chapter 4, one obtains the dispersion relationship, β (ω),

of an optical waveguide’s mode by calculating the propagation constant as a function of

the normalized frequency. For high-index contrast waveguides, calculation of an opti-

cal mode’s electric field profile, �E(x, y), and the corresponding propagation constants,

β, is typically done by numerically solving the full or semi-vectorial wave equation

(Helmholtz equation)—derived from Maxwell’s equations (Section 4.1). Once the dis-

persion relationship is known, calculation of higher order terms such as the group delay–

a measure of the transit time of a pulse, and the group velocity dispersion–a measure of
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the tendency of a pulse to broaden, is straight forward (see Section 4.2).

Larger waveguides will support multiple higher order modes, however, a typical

silicon nanowire will guide only a single quasi-transverse electric mode, and a single

quasi-transverse magnetic mode (while the waveguide technically guides two modes,

one for each polarization, it is typically referred to as a “single-mode waveguide”). Fig.

1.1(c) shows the quasi-TE mode, Ex, of the silicon nanowire with an effective index of

2.49; as can be seen, the light mostly resides within the silicon core. Fig. 1.1(d) shows

the more weakly confined quasi-TM mode, Ey, with an effective index of 1.83. The

dispersion properties of these modes strongly depend on the waveguide’s aspect ratio

[42, 43].

It is important note that when light goes around a bend, the mode shifts away

from the radial center lowering its effective index [44]. This causes two deleterious ef-

fects to its propagation: firstly, it causes a mode mismatch between the plane joining

the bending and straight waveguide regions, which results in optical losses. Methods

of offsetting the straight regions and the bent regions to achieve higher modal overlap

have shown reduced losses in lower index contrast structures, but require nanometer

scale precision for SOI [45]. Secondly, as the mode peak has shifted towards the di-

electric boundary, the mode will undergo higher scattering losses [46], and may be

completely radiated if the effective index drops below the refractive index of the sur-

rounding medium. In fact, it is quite common to use thinner silicon waveguides (height

= 200 nm), to completely strip off the quasi-TM polarization as it propagates around a

few bends [47].

1.3 Outline of the Dissertation

This dissertation is concerned with novel strongly coupled silicon-on-insulator

waveguides that fall well outside the domain of coupled mode theory. The new function-

ality provided by these strongly coupled waveguides will be presented, along with the

needed numerical mode solvers for accurate design. Chapter 2 and 3 present experimen-

tal results of strongly coupled arrayed waveguides and coupled resonator optical waveg-

uides. It will be shown that for the former, numerous new device functionalities can be
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realized, including a device with a giant birefringence of ng ≈ 1.5. For the latter, it will

be demonstrated that Gaussian distributions of time delay statistics, indicating ballistic

transport, can be obtained for CROWs consisting of as many as 235-rings. Chapter 4 is

concerned with numerical methods of simulating the optical properties of such devices,

including the effects of disorder on the eigenvectors and eigenvalues of periodic waveg-

uide structures. In Chapter 5, a numerically assisted coupled mode theory is presented,

and used to point out precisely where coupled mode theory fails in characterizing the su-

permodes of a strongly coupled arrayed waveguide. Finally, in Chapter 6 experimental

methods of measuring propagation time will be outlined, and also a method of wave-

length resolved infrared imaging, which allows the exact disordered eigenvectors of a

coupled resonator optical waveguide to be observed.
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diodes,” J. Appl. Phys., vol. 81, pp. 2784–2793, 1997.

[18] O. Boyraz and B. Jalali, “Demonstration of a silicon raman laser,” Opt. Express,
vol. 12, pp. 5269–5273, 2004.

[19] T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in ra-
man amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett., vol. 84,
pp. 2745–2747, 2004.

[20] R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear
absorption on raman amplification in silicon waveguides,” Opt. Express, vol. 12,
pp. 2774–2780, 2004.

[21] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia1, “A
continuous-wave raman silicon laser,” Nature, vol. 433, pp. 725–728, 2005.

[22] H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Rayday, and M. Paniccia, “Low-
threshold continuous-wave raman silicon laser,” Nature Photonics, vol. 1, pp. 232–
237, 2007.

[23] G. Roelkens, D. V. Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission
and photodetection in an inp/ingaasp layer integrated on and coupled to a silicon-
on-insulator waveguide circuit,” Opt. Express, vol. 14, pp. 8154–8159, 2006.



14

[24] A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Elec-
trically pumped hybrid algainas-silicon evanescent laser,” Opt. Express, vol. 14,
pp. 9203–9210, 2006.

[25] J. V. Campenhout, P. R. Romeo, P. Regreny, C. Seassal, D. V. Thourhout, S. Ver-
stuyft, L. D. Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped
inp-based microdisk lasers integrated with a nanophotonic silicon-on-insulator
waveguide circuit,” Opt. Express, vol. 15, pp. 6744–6749, 2007.

[26] M. Paniccia, “Integrating silicon photonics,” Nature Photonics, vol. 4, pp. 498–
499, 2010.

[27] W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,”
Opt. Express, vol. 16, pp. 15741–15753, 2008.

[28] M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and
M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with
a silicon photonic chip-based spectral shaper,” Nature Photonics, vol. 4, pp. 117–
122, 2010.

[29] R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE Journal of
Quantum Electronics, vol. QE-23, pp. 123–129, 1987.

[30] W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low
rf power, 10 gb/s silicon mach-zehnder modulator,” Optics Express, vol. 15,
pp. 17106–17113, 2007.

[31] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu,
and M. Paniccia, “A high-speed silicon optical modulator based on a metal oxide-
semiconductor capacitor,” Nature, vol. 427, pp. 615 –618, 2004.

[32] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-
optic modulator,” Nature, vol. 435, pp. 325–327, 2007.

[33] L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky,
and M. Paniccia, “40 gbit=s silicon optical modulator for highspeed applications,”
Electronics Letters, vol. 43, p. 22, 2007.

[34] T. Mueller, F. Xia, and P. Avouris, “Graphene photo-detectors for high-speed opti-
cal communications,” Nature Photonics, vol. 4, pp. 297–301, 2010.

[35] F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene
photodetector,” Nature Nanotechnology, vol. 4, pp. 839–843, 2009.

[36] L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium pho-
todetectors on silicon,” Opt. Express, vol. 17, pp. 7901–7906, 209.



15

[37] G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill,
“High-speed germanium-on-soi lateral pin photodiodes,” IEEE Photon. Technol.
Lett., vol. 16, pp. 2547–2549, 2004.

[38] D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel,
J. Chen, and F. X. Kärtner, “High performance, waveguide integrated ge photode-
tectors,” Opt. Express, vol. 15, pp. 3916–3921, 2007.

[39] L. Vivien, M. Rouvière, J. Fédéli, D. Marris-Morini, J. Damlencourt, J. Mangeney,
P. Crozat, L. Melhaoui, E. Cassan, X. Roux, D. Pascal, and S. Laval, “High speed
and high responsivity germanium photodetector integrated in a silicon-on-insulator
microwaveguide,” Opt. Express, vol. 15, pp. 9843–9848, 2007.

[40] S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photode-
tector for nanophotonic on-chip optical interconnects,” Nature, vol. 464, pp. 80–
84, 2010.

[41] Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-ţm
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2 Coupled Resonator Optical

Waveguides (CROWs)

Decades of research in the CMOS process has allowed silicon devices to be fabri-

cated with sub-100 nanometer features. At such separation distances, the characteristics

of an individual isolated waveguide does not provide sufficient information, using tradi-

tional theories, to accurately describe the functionality of a strongly coupled composite

structure. In Chapter 5, methods to improve on existing analytical theories for describ-

ing the optical modes of such strongly coupled waveguides will be presented; however,

for the most part, their modal properties must be characterized through robust numerical

techniques. Despite the lack of time-efficient analytical tools for describing strongly

coupled high-index contrast waveguides, such coupled waveguides have shown them-

selves to be indispensable in providing the necessary apodization of CROWs, and also

allowing light to be guiding in a low index material, provided by a single-mode “slot”

waveguide. In the next two chapters the incredible functionality of two strongly-coupled

photonic devices in particular will be detailed: coupled resonator optical waveguides and

strongly coupled arrayed waveguides.

Coupled resonator optical waveguides (CROWs) consist of long chains of res-

onators where light is guided by tunneling between adjacent resonators, which may be

micro-rings, micro-disks, or photonic crystals [1, 2, 3, 4]. These devices have been pro-

posed for applications in slow light, temperature insensitive high-order optical filters,

dispersion compensation, etc. [5, 6, 7, 8, 9, 10].

For an infinite chain of equally spaced identical resonators, the fields will be pe-

riodic at twice the lattice constant, Λ. This formalism is identical to the tight-binding

formalism, where the potential barriers are represented by the inter-resonator coupling
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Figure 2.1: Coupled resonator optical waveguide (CROW), periodic chains of microres-
onators, with radius R, and track-length L, where light propagates through the structure
by tunneling from resonator to resonator.

coefficient (numerical methods for calculating the wavelength dependence of this cou-

pling coefficient will be presented in Chapter 4). Fig. 2.1 shows a CROW along with the

corresponding unit-cell, composed of a single racetrack resonator with bending radius R

and track length L. For finite, “large” number of resonators, a CROW may be regarded

as a waveguide with its own dispersion characteristics [11], which strongly depends on

the nanowires of which it is composed [12].

The dispersion relationship of a CROW has been derived elsewhere using the

tight binding formalism and transfer matrix techniques [11],

cos(βπR) = ±κ cos(KΛ) (2.1)

where β(ω) = neff(ω)ω/c, κ represents the magnitude of the dimensionless cross-

coupling coefficient between two resonators, Λ and K represent the periodicity and

propagation constant of the CROW respectively, and R is the “effective” radius, defined

for racetrack resonators as the ring radius plus L/π.

2.1 Dependence on the Silicon Nanowire

In order to derive the effects of waveguide dispersion on the CROW, we recall

that Eq. (2.1) is used to describe a relatively narrow band of radial frequencies ω in the

vicinity of the single-resonator eigen-frequency, Ω. Therefore, writing ω = Ω + δω
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where |δω| � Ω, we approximate neff by the following,

neff(ω) = neff(Ω) + δω
dneff

dω

∣∣∣∣
ω=Ω

, (2.2)

and re-write the left-hand side of Eq. (2.1), discarding terms of higher order than δω,

sin(βπR)

≈ sin

[
πneff(Ω)

R

c
Ω︸ ︷︷ ︸

m

+ π

(
neff(Ω) + Ω

dneff

dω

∣∣∣∣
ω=Ω

)
︸ ︷︷ ︸

ng(Ω)

R

c
δω

]

= (−1)m sin

[
πm

ng(Ω)

neff(Ω)

δω

Ω

]
,

(2.3)

using the standard definitions of the mode number m and group index ng(Ω). We can

thus rewrite Eq. (2.1),

sin

[
πm

ng(Ω)

neff(Ω)

δω

Ω

]
= ±(−1)mκ cos(KΛ). (2.4)

We see that the bandwidth δω is scaled by the factor neff/ng. For these SOI waveguides,

this ratio represents a 42% reduction of the bandwidth.

The average group delay τg of an N-element CROW is defined by the length of

the structure (ΛN) divided by the group velocity, dω/dK, evaluated at Ω,

τg =
πngRN

|κ|c . (2.5)

Therefore, a high value of the waveguide group index actually causes increased

delay in a CROW—the enhancement is about 73% for these SOI microring CROWs. In

general, the delay can be precisely modified by adjusting the aspect ratio of the con-

stituent waveguides in order to vary ng [13, 14].

The dispersion relationship can also be used to estimate the coupling coefficient

between adjacent microrings from a measurement of the full-width (2 δλ1/2) of a CROW

transmission band. Since δω/Ω = −δλ/λ0, where Ω and λ0 are the resonance radial

frequency and wavelength of a single resonator, at the band edge, λ = λ0 ± δλ1/2, and

the cosine term on the right hand side of Eq. (2.4) takes on the value −1. Therefore,

|κ| = sin

[
2π2ng(λ0)

R

λ0

δλ1/2

λ0

]
≈ 2π2ng(λ0)

R

λ0

δλ1/2

λ0
, (2.6)
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the approximation being valid in the limit of small bandwidth, and shown by values of

|κ| � 1.

As with most slow light structures, the increased delay in a CROW is achieved

by allowing light to retrace a circuitous path. The loss of a CROW, αCROW, is given

by the product of the effective distance traveled (the product of the group delay of the

CROW and group velocity of the constituent waveguide), and the loss per unit length.

At band center, the loss is readily calculated as [1],

αCROW =
αwgNπR

|κ| (2.7)

where αwg is the loss per unit length of the waveguides.

2.2 Experimental Results

A single CROW waveguide can readily achieve multiple bands of slow and fil-

tered light in the same physical structure, unlike band-edge photonic crystal slow light

waveguides [15, 16, 17]. This characteristic is particularly useful for on-chip wavelength

division multiplexing, temperature-insensitive optical filters, and nonlinear optics, in

which several wavelengths of light are often used simultaneously.

CROWs were fabricated at the IBM Microelectronics Research Laboratory on

200 mm SOI wafers wafers where the waveguide dimensions and gaps were varied from

their nominal values as a result of dose-striping. Fig. 2.2 shows a schematic of a typical

wafer, also shown is the effect dose-striping has on the CROW’s composite directional

couplers. High dose yields an increased gap, but the center-to-center separation distance

remains the same compared with the low-dose regions. The wafers were post-processed

with two different surface roughness reduction techniques: hydrogen annealing and dou-

ble oxidation. A typical chip is shown in Fig. 2.3, which consists of five CROWs, with

35, 65, 95, 135 and 235 coupled microrings. Group delay measurements were carried

out using a single-scan, Jones matrix-based, interferometric spectral measurement in-

strument (Luna Tech. Optical Vector Analyzer CTe [18]). Light was coupled into and

out from the chip using polarization maintaining lensed tapered fibers (Oz Optics) that

have been measured to achieve ≥20 dB polarization selectivity. The TE-polarized light
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Figure 2.2: CROWs were fabricated at the IBM Microelectronics Research Laboratory
on 200 mm SOI wafers wafers where the waveguide dimensions and gaps were varied
from their nominal values as a result of dose-striping. High dose results in an increased
gap between the directional couplers of the racetrack resonators, but the center-to-center
separation distance remains the same compared with the low-dose regions.

Figure 2.3: Silicon microring CROWs ranging from 35 to 235 microrings, fabricated on
200 mm wafers and cleaved into 4 mm-long chips. (Inset) Scanning electron microscope
image of the region indicated by the dashed box.

(in the plane of the silicon) was used and the waveguide loss was measured to be about

-3.2 dB/cm. For the CROWs considered here, a loss of 0.074 dB/ring was measured.

The (TE) group index of the composite silicon nanowires, ng, was measured in

two separate ways. First, ng was measured from the relative group delay of a set of

four waveguides (without resonators) on the same chip, ranging in length from 0.35 cm
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to 4.15 cm. Second, ng was determined from the free spectral range, ΔfFSR, of the

CROW,

ng =
c

2πRΔfFSR
, (2.8)

where ΔfFSR was calculated from the center-to-center spacing of each CROW band.

Fig. 2.4 shows the group index data obtained from each method. The figure illustrates

that excellent mutual agreement with a value ng = 4.25 is obtained for both types of

measurement. We expect the fluctuations around the average group delay to be due to

the high index contrast and high confinement nature of these SOI waveguides.

Fig. 2.5(a) shows the experimentally measured transmission and group delay

spectra for eleven bands of a 35-ring CROW, along with each band’s center wavelength.

Conventionally, the “usable” bandwidth of a CROW for purposes of spectrally-flat group

delay is defined as the central half of the total bandwidth [19]. In Fig. 2.5(b), we plot

the measured group delay averaged over the center half of each band for the 35, 65, 95,

135, and 235-ring CROWs. The solid black line is the prediction of Eq. (2.5), in which

the value of κ is obtained from the bandwidth of the 35-ring CROW, using Eq. (2.6).
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Figure 2.5: (a) Transmission and group delay spectra for eleven bands of a 35-ring
CROW, along with each band’s center wavelength. (b) (Markers) Band-center group
delay for different length CROWs across the measured eleven bands. (Solid-line) Pre-
diction of the group delay of a CROW using Eq. (2.5).



23

Figure 2.6: (Blue Markers) Band-center group delay measured for different length
CROWs across the eleven bands, for seven different chips. (black-line) Prediction of
the group delay of a CROW using Eq. (2.5). The (red-line) shows previously derived
results, which did not account for the waveguide dispersion [1].
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Since Fig. 2.4 shows that the group index ng does not vary appreciably over the spectral

range characterized, Eq. (2.5) indicates that any band-to-band variation in group delay

is due to the wavelength dependence of the coupling coefficient. We see that there is an

excellent fit to the measured data, from which we can infer a range of delays of about

0.77 to 1.05 ps per unit cell of length Λ = 14.3 μm. The slowing factor, c/vg, where vg

is the group velocity, thus ranges from 16.0 to 22.1 over the measured bands.

With increasing center wavelength, as the delay per ring decreases, the band-

width of the CROW increases. The linear scaling of group delay with N was confirmed

for over eight chips, as shown in Fig. 2.6.

2.3 Band Dependence on the Composite

Directional Couplers

As shown in Fig. 2.4, coupled resonator optical waveguides can be broken down

into their composite directional couplers. By substituting into Eq. (2.6) the definition of

free spectral range of a microring,

ΔλFSR =
λ2

2πngR
, (2.9)

we obtain the dimensionless coupling coefficient, which can be measured from a single-

scan of the transmission spectrum,

|κ| = sin

[
π

δλ1/2

ΔλFSR

]
. (2.10)

By using Eq. 2.10 at each band of the CROW, one may extract the wavelength dependent

coupling coefficient of the composite directional couplers using a CROW.

Fig. 2.8(a) and (b) shows sample bands each around 1550 nm of a 35-ring

CROWs measured at the top, middle, and bottom of the double oxidized and hydro-

gen annealed wafers, respectively. It can be seen that the bandwidth varies from chip to

chip due to the change in lithography exposure, and hence waveguide width. Fig. 2.8(c)

shows the experimentally derived coupling coefficients using Eq. (2.10), for eight chips

across each wafer, where the waveguide dimensions and gaps were varied from their
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Figure 2.7: Coupled resonator optical waveguides may be broken down and character-
ized in terms of their composite directional couplers

nominal values as a result of dose-striping.

While it has been previously shown that disorder between the individual res-

onators may also have perturbative effects on the transmission spectrum of a CROW

[20], Fig. 2.8(c) nevertheless shows a strong correspondence between the experimen-

tally derived coupling coefficients using Eq. (2.10) as the waveguide widths and height

were varied. Waveguides with smaller widths due to dose-striping resulted in an in-

creased coupling coefficient, due to the mode being less confined. Compared with the

Figure 2.8: (a) Sample band around 1550 nm of a 35-ring CROW at the top, middle, and
bottom of the double oxidized, and (b) hydrogen annealed wafers. Waveguide dimen-
sions were varied from their nominal values as a result of dose-striping, demonstrated in
Fig. 2.2, which results in thinner waveguides at the top of the wafer, and wider waveg-
uides at the bottom. The double oxidation process further thinned the waveguide di-
mensions, height and width, by 20 nm. (c) Experimentally derived coupling coefficients
using Eq. (2.10), for eight chips across each wafer, where the waveguide dimensions
and gaps were varied from their nominal values as a result of dose-striping.
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Figure 2.9: Scanning electron microscope (SEM) image of the waveguide cross-section
and first four directional couplers for both the hydrogen annealed and double oxidized
wafers.

hydrogen annealed wafer, it can be seen that the double oxidation processes resulted in

a higher coupling coefficient between the resonators and increased sensitivity to varia-

tions in waveguide width due to dose-striping. We will confirm, through simulation in

(Section 4.3), that this was due to the nature of the double oxidation process, in which

approximately 20 nm of silicon (nSi = 3.47) is replaced by oxide (nSiO2=1.44). This also

results in less confinement, and thus increased overlap, of the waveguide modes.

2.4 Strongly Coupled Nanowires for Apodization

In order to reduce the group delay and insertion loss ripple of a CROW, apodiza-

tion of the directional couplers is performed by tapering the spacing (coupling coeffi-

cients) of the first rings at the input and output of the CROW. Fig. 2.9 shows a scanning

electron microscope image of the first four couplers of a 35-ring CROW, along with

the waveguide widths and center-to-center spacing, p. These strongly coupled direc-

tional couplers allow for a high coupling coefficient leading into the CROW, and for

it to be gradually ramped down to the value of the CROW where it remains constant

(this is similar to impedance matching in electronics). However, as the separation dis-

tance between the directional couplers is reduced, the propagation constants of the even

and odd supermodes will fan out [21]. As will be shown in Section 4.3, the coupling

coefficient of these sub 100-nm directional couplers can become very dispersive, re-

sulting in strong apodization variations with wavelength, as can be seen by analyzing

the increased insertion loss ripple and group delay ripple for the higher bands shown in
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Fig. 2.5. Further effects resulting from wavelength dependent apodization on the CROW

will be discussed in Section 4.4.

2.5 Limitations Imposed by Disorder and

the Motivation for Strong Coupling

Practical applications require relatively long CROWs, consisting of hundreds

of coupled resonators [2, 3, 4, 22], while maintaining good performance. In spite of

great theoretical interest in this novel form of waveguiding, the practical applications

requirement that several hundreds of resonators must be chained together in a disorder-

free manner has constituted a technological challenge [22, 2].

Disorder in CROWs has thus far been a severe practical problem, since in a

multi-resonator ensemble, the resonance frequencies of the constituent resonators must

be precisely aligned. Active resonance tuning mechanisms, e.g., thermal heaters placed

over each ring [23, 24], are impractical for ensembles consisting of hundreds or thou-

sands of rings. Moreover, although the benefit of microrings and CROWs increases

for higher quality factors (lower coupling coefficient, increased resonator separation),

such resonators are also harder to align. In fact, coupled-resonator and photonic crys-

tal waveguides that are about a hundred lattice periods in length have shown disorder-

induced localization of light [25, 26], which though fundamentally interesting and po-

tentially useful for some applications [15], is generally considered problematic for most

device applications. As such, a high coupling coefficient is needed to relax the con-

straints on the fabrication process, that the resonators be exactly identical, by broadening

the Lorentzian response of the composite resonators.

Indeed, there have been few reports of long CROWs, in each case with trans-

mission characteristics that show considerable ripple [4, 3, 23]. Moreover, the recently-

demonstrated disorder-induced localization of slow light in CROWs and photonic crys-

tal waveguides indicates serious challenges to making long structures, since all the

eigenmodes of a one-dimensional waveguide are localized in theory for any value of

disorder [27, 28]. Scaling up the number of resonators within a single CROW waveg-

uide, while maintaining suitable “ballistic” [29, 30] propagation characteristics, poses a
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significant technical challenge, as failure rates of such series-coupled structures may be

thought to scale as a power law with the number of unit-cells in the exponent.

2.6 Statistics of Light Transport for

Increasing Number of Resonators

To overcome the fiber-to-waveguide coupling losses and maintain a high signal

to noise ratio at the detector for accurate statistical analysis, the output of the OVA (av-

erage power 200 μW) was then amplified (before the chip) by an L-band EDFA, which

was used in the saturation regime (constant current mode, output power +18 dBm), fol-

lowed by a programmable passive attenuator to reduce the power level incident on the

silicon chip to a sufficiently low level to avoid nonlinearities. No amplification was per-

formed after the chip. In this way, it was ensured that the amplifier noise contribution

remained constant, regardless of the spectral variations in the CROW response. Calibra-

tion measurements showed that the EDFA and attenuator combination added only 0.14

ps RMS noise to the measured propagation delay data (Section 6.2).

Propagation delay measured data were corrected for the shorter “input” and

“drop” straight waveguide sections in longer structures, as can be seen in Fig. 2.3. Based

on the measured group index in the straight waveguides, Fig. 2.4, this length difference

translated to 40.5 ps difference in the measured propagation time. Similar relative dif-

ferences were calculated for the 65, 95 and 135 ring CROWs to be 6.1 ps, 12.2 ps, and

20.3 ps, respectively.

Transmission (insertion loss) spectra

Fig. 2.10 shows a typical set of transmission spectra from a group of 5 CROWs

consisting of 35, 65, 95, 135, and 235 microrings on a single chip, showing well-aligned

passbands over a wide range of wavelengths. The width of the passbands increased

slightly with wavelength for all the chips measured because of the dispersion of the

silicon waveguides [29]. However, the average level of transmission in the passband, as

well as high on-off extinction, remained approximately the same for each CROW, thus

showing the high level of ring-to-ring uniformity achieved in these CROW structures.
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Figure 2.10: Transmission (insertion loss) spectra were measured with resolution 1.4
pm, for 35, 65, 95, 135, and 235 ring waveguides. Shown here are the averages of 128
measured traces. Relative to the 35-ring CROW, measurements for 65, 95, 135 and 235
ring CROWs were amplified by 7, 4, 3, and 7 dB, respectively in order to boost the
power level detected at the photoreceiver.

Group delay spectra

Fig. 2.11 shows the group delay spectra for the CROWs over the same range of

wavelengths as in Fig. 2.10. The band-edge and stop-band regions, clearly indicated by

the significantly increased group delay ripple at those wavelengths, are excluded from

the statistical analysis. Within the central region of the passband (approximately two-

thirds of the edge-to-edge span), spectrally-dependent properties such as the density of

states and the localization length should be approximately constant [25] and therefore,

the variation of measured group delay with wavelength can be used as a statistical vari-

able.

Group delay ripple (GDR) here is defined as the difference between the mea-

sured group delay τ(λ) and τrms, the root-mean-squared group delay over the central
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Figure 2.11: Group delay spectra were measured with resolution 1.4 pm, for 35, 65,
95, 135, and 235 ring waveguides, over the same range of wavelengths as in Fig. 2.10.
Spectral regions of large variation in delay correspond exactly to the stopbands of the
intensity spectrum shown in Fig. 2.10

portion of the passband. GDR is an important parameter in the study of devices for

optical communications, since spectral components of GDR that are on the order of the

signal bandwidth affect the signal spectrum by imposing an average chromatic disper-

sion, which can be compensated at the receiver. Therefore, in the study of fiber Bragg

gratings, the average dispersion over the (narrow) band of interest is usually subtracted

out from the phase variations, and the residual phase variation is used as the noise statis-

tic which determines performance degradation [31]. The averaging bandwidth depends

on the spectral width of the pulses used in data transmission. For example, 40 Gbps

modulated optical data streams will average over ripple with spectral components less

than 100 pm, effectively sensing them as a constant group delay [32].

In the next section, we use ripple statistics not to investigate the performance

degradation of data transmission but the nature of light propagation in the CROWs. The
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band-to-band variation in average group delay is less than 0.1 ps/Ring over 20 nm. As

shown in Section 6.2, a linear slope imposed on the spectral variation of the measured

group delay by the EDFA of -1.81 ps/nm is was subtracted from all the data. Calibration

measurements showed that the EDFA added only 0.14 ps RMS noise to the measured

propagation delay data, which is negligible in the context of approximately 30-200 ps

of group delay ripple that characterizes the CROWs.

Statistical analysis

In a regime where disorder may play a significant role, it is very important to re-

alize that measurement of only the average transmission properties of a long waveguide

constitutes an incomplete story of transport. This is because: (a) absorption reduces

the average transmission of light in a similar way as does localization (exponentially

with length), [33, 34, 35] and (b) the average propagation time through the waveguide

scales similarly in both the localized and non-localized regimes (linearly with length)

[36, 37]. A distinction between the localized and non-localized transport regimes can be

obtained only through an analysis of the statistical properties of the transmission inten-

sity and propagation time and further, by directly imaging the light propagating through

the structure.

IR imaging

Eigenmodes of light propagation in a 235-ring waveguide were imaged using an

infrared camera diagnostic method developed for multi-ring waveguides, described in

detail in Chapter 6. Selected wavelengths in the stop-band, band-edge, and at locations

throughout the passband, as indicated in Fig. 2.12(a), were imaged under cw excitation

from a narrow-linewidth tunable laser, using a microscope fitted with an infrared cam-

era. Several image fields were stitched together laterally, but no data correction was

made for the absorptive decay of intensity with length, thus showing clearly the low in-

trinsic loss of the propagating modes, quantified to be -0.08 dB/ring. Since the chip was

imaged through a semi-transparent and scattering polymeric cladding layer, the cam-

era did not resolve individual microrings, but nevertheless clearly showed the general

trends of propagation. Although modes at only a few selected wavelengths are shown in
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Figure 2.12: (a) Transmission (insertion loss) spectrum for a single passband of a 235
ring CROW, with measurements at selected wavelengths labeled (i)-(v). (b) Intensity
profiles of the eigenmodes at the wavelengths (ii)-(iv) measured with an infrared camera,
show that non-localized excitations (extended throughout the entire waveguide length)
were observed throughout the passband, in contrast with out-of-band (i) and band-edge
(v) wavelengths. No correction was made in these images for the absorptive decay of
intensity with length of the propagating modes.
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Figure 2.13: (a) The mid-band average of the transmitted intensity (in dB), measured
without amplification, decreased linearly with length (-0.08 dB/resonator), except for
one anomalous waveguide on the measured chip (65 rings) as discussed in the text. The
errorbars represent the standard deviation, i.e., ripple, in the measured delay over the
flat portion of the band. (b) The probability distribution function (PDFs) of the nor-
malized intensity transmission (Î ≡ I

〈I〉) for the all the CROWs show agreement with
the Rayleigh distribution, shown by the dashed lines, indicating non-localized trans-
port through the waveguide. In contrast, the localized regime would show considerably
different (long-tailed) statistics [15, 33, 39].

Fig. 2.12(b) for clarity, the results for other wavelengths were very similar, except at two

sharp disorder-induced notches in the passband. Based on Fig. 2.12(b), panels (i)-(v), it

is clear that light can be transmitted throughout the entire length of a 235-ring CROW

without localization.

It is also important to point out the increased intensity shown for the local res-

onators at the band-edge wavelengths in Fig. 2.12, where it is a well known property for

coupled resonator optical waveguides that group delay increases at band-edge, caused

by an increased number of circulations within the resonators before coupling to an ad-

jacent resonator—thus higher intensity enhancement, and radiated intensity [38].
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Transmission scaling

High-resolution spectral measurements (Fig. 2.10 and 2.11) reveal strong, well-

resolved transmission passbands for CROWs composed of 35 to 235 coupled micror-

ings. The high-frequency transmission “ripple” bears the signature of random disor-

der in the fabrication of CROWs, and can be seen to increase with the number of unit

cells. Both disorder and loss contribute to a bandwidth narrowing with increasing length

of only 0.2% per ring, i.e., 100 additional rings reduced the bandwidth by 20% com-

pared to the bandwidth of the 35 ring structure. A wide passband exceeding 380 GHz

(in each band) was therefore maintained even in the 235 ring structure, sufficient for

many high-speed optical signal applications. As shown in Fig. 2.13(a), a linear fit to

the spectrally-integrated power transmitted at mid-band for CROWs of different length

indicated an average loss per ring of only -0.08 dB/ring, i.e., the insertion loss of a 35

ring CROW by itself was less than -3 dB. The 65 ring CROW may have had a defective

input coupler or damaged cleaved facet, which lowered the overall transmission through

the device, but did not affect the transmission statistics. As shown in Fig. 2.13(b), the

measured probability distribution of the normalized intensity agreed with the Rayleigh

distribution [dashed line, P (Î) = exp(Î) ] which indicates transport occurred in the

non-localized regime even in the longest CROW. This negative-exponential statistical

signature of non-localized propagation is significantly distinct from the long-tailed log-

normal distributions reported for diffusive and localized light [15, 33, 39].

Group delay scaling

Further evidence of non-localized transport was obtained from measurements

of the transmission delay, which comprises the summed contributions from each of the

rings encountered by photons traveling from input to output ports, and is therefore the

sum of a large number of random variables. The average delay value 〈τ〉 (units of pi-

coseconds, ps), shown in Fig. 2.14(a), was obtained by the root-mean-squared average of

the measured group delay data over the central one-half region of the transmission band.

As expected [8, 2], the average delay increased linearly with the number of resonators,

N, with a slope 〈τ〉/N = 0.73 ps/ring. This linear scaling was confirmed by additional

measurements on more than 800 CROW bands measured over 16 different chips. How-
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Figure 2.14: (a) The measured propagation delay averaged over the middle of a trans-
mission band 〈τ〉 (units of picoseconds) increased linearly with length (L = 35, 65, Ě,
235 rings). The errorbars represent the standard deviation, i.e., ripple, in the measured
delay over the flat portion of the band. (b) The probability distributions of normalized
delay τ̂ ≡ τ

〈τ〉 were peaked at unity (i.e., τ=〈τ〉). The dashed line is a Gaussian (normal
distribution) fit to the data, which indicates ballistic propagation statistics and the ab-
sence of localization, previously estimated to be a severe constraint on achieving > 100
resonator lengths of CROWs. In fact, the self-averaging properties of longer chains of
resonators yielded better fits to normal statistics than for the shorter waveguides, where
finite-size effects caused an asymmetric lineshape in the tails of the distributions.

ever, as mentioned before, the average propagation time through the waveguide does

not by itself provide conclusive evidence that transmission occurs in the non-localized

regime; the average delay is indeed expected to scale linearly with length in both the

localized and non-localized regimes [34]. Therefore, we examined the distributions of

the normalized time delay of propagation (τ̂ ≡ τ /〈τ〉, where τ represents the raw group

delay data, and the denominator 〈τ〉 is linearly proportional to N as discussed in the

earlier paragraph), which are plotted in Fig. 2.14(b), using a logarithmic scale on the

vertical axis for clarity. As shown by the dashed lines in Fig. 2.14(b), the delay time

distributions were well described by Gaussian statistics, characteristic of the ballistic,

i.e., non-localized , propagation regime only [36]. In contrast, diffusive or localized

propagation would result in much wider (polynomial) tails to the distribution, as has

been previously demonstrated for disordered microwave waveguides [35, 40].
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Figure 2.15: (a) The measured probability distribution functions (PDFs) of the normal-
ized group delay τ̂ ≡ τ /〈τ〉 are shown, using a logarithmic scale on the vertical axis
for clarity, for the waveguides labeled (3)-(5) in Fig. 2.10(a). With increasing length,
the distributions converged to a single-parameter Gaussian distribution, shown by the
dashed black line. (b) The variance of the measured delay (ps2) increased with the
square of the number of resonators (N), as shown by the dashed fit, var(τ ) = 0.0346
N2+(12.9 ps)2 where the second term was the typically measured group delay ripple
of the measurement apparatus. This scaling behavior was different from that of con-
ventional waveguides or cascaded fiber Bragg gratings, and as discussed in the text,
demonstrated that the individual resonator excitations are mutually correlated.

Ballistic transport

In fact, the self-averaging properties of longer chains of resonators yielded bet-

ter fits to normal statistics (i.e. Fig. 2.14(b), panels 3-5) than for the shorter waveguides

(i.e. Fig. 2.14(b), panels 1-2), where finite-size effects caused an asymmetric lineshape

[1]. As shown in Fig. 2.15(a), in the case of the three longest waveguides with 95,

135, and 235 coupled microrings, the normalized delay distributions converged to a

single-parameter distribution [36] whose width describes the average level of group de-

lay ripple per ring, equal to 0.19 ps/ring. This value can potentially be reduced with

further improvements in fabrication, or by post-fabrication trimming [41]. Moreover,

since Fig. 2.15(a) shows that the width of the distribution of normalized delay was a

constant, i.e., independent of N, it follows that the variance of the delay itself, var(τ ),

scaled as N2, as shown by the dotted line in Fig. 2.15(b). This prediction was in excellent

agreement with var(τ ) extracted directly from the measured data, shown by the squares
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in Fig. 2.15(b), and moreover agrees with numerical simulations. This behavior was in

contrast to what is expected from conventional photonic waveguides, or a sequence of

cascaded fiber Bragg gratings, in which cases var(τ ) scales linearly with N [42, 32, 43].

To explain this behavior, we recall that according to statistical theory, the vari-

ance of the mean of an ensemble of uncorrelated random variables of sample size N

decreases as N−1, which is commonly called the law of large numbers [44]. For an

ensemble of correlated random variables, however, theory dictates that the variance of

the sample mean (i.e., average delay per ring) reaches a constant value, independent

of N, and is equal to the degree of correlation [44], so that the total delay variance of

an N-ring waveguide thus scales as N2. This latter case is indeed the behavior shown

in Fig. 2.15(b), and can be explained by the physical nature of light propagation in a

CROW, in which coherent oscillations of all N coupled resonators constitute each of the

propagating eigenmodes. The delay values measured across the passband are therefore

shown to be correlated random variables, with a sample space increasing linearly with

the length of the waveguide. Therefore, Fig. 2.15 provides experimental evidence of the

mutually-correlated physical mechanism by which light propagates in a CROW. Under-

standing the statistical scaling behavior with length is particularly relevant for phase-

sensitive applications e.g., in coherent optics, power combining, waveguide quantum

light circuits and slow light.

Moreover, the fact that only nearest neighbors are directly coupled fulfills the

criterion for applicability of the generalized Central Limit Theorem [45] and thus, the

distribution of total delay will tend to a Gaussian probability distribution as N becomes

large, exactly as shown by Fig. 2.15(a). The Gaussian fit is characteristic of only the bal-

listic propagation regime [37]; the statistics in the near-localization (diffusive) regime

would show distributions with wider polynomially-decaying tails [46], becoming even

wider in the localized regime, in fact, with exponential divergence of the higher mo-

ments [36]. Furthermore, localization would destroy any long-range phase correlation

across the 235-ring length of the structure. Therefore, increasing the length of a waveg-

uide structure wherein transport occurs in the localized regime would decrease the num-

ber of resonators that are mutually coupled [25, 47], leading to an entirely different

scaling behavior (exponentially growing with N) from Fig. 2.15(b) [36].
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2.7 Summary

The directional couplers which constitute microring resonators of a CROW can

considerably affect the dispersion characteristics of coupled-resonator optical waveg-

uides (CROWs). Strongly coupled waveguides, on the order of a 100 nm, are necessary

for properly apodizing the CROW, achieving the desired bandwidth and group delay of

the pass band, and allowing for ballistic transport through a 235-ring structure.
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3 Strongly-Coupled Arrayed

Waveguides

The difference between a directional coupler and an N = 2 arrayed waveguide

comes down to excitation. For a directional coupler, such as those discussed in the

previous sections, light begins by entering one arm of the directional coupler where it

then begins to couple to the adjacent arm. Arrayed waveguides, however, are charac-

terized by their supermodes (eigenvectors), which propagate down the waveguide with

only sinusoidal variations in amplitude. It will be detailed in Chapter 4, that these two

phenomena are one in the same. When light enters one arm of a directional coupler it

splits (not necessarily equally), into the even and odd supermodes of the N = 2 arrayed

waveguide. These supermodes then propagate down the coupler shifting in and out of

phase with one another; causing the concentration of light in the directional coupler to

oscillate back and forth between the separated waveguides. Here, we are concerned with

the shape of these modes as the separation distance between the waveguides is varied.

At sub-100 nanometer separation distances, it will be shown that these waveguides have

unique properties, such as the ability to guide light in a low index medium.

3.1 Supermodes and their Probability of Excitation

Coupled mode theory predicts that when N single-mode waveguides are weakly

coupled together, the modes of the cascaded waveguide structure will split into N su-

permodes. Fig. 3.1 and Fig. 3.2 show finite difference frequency domain simulations

(Section 4.1) of the supermodes of five coupled rib waveguides surrounded by oxide,

for the transverse electric and transverse magnetic polarization respectively. Each indi-
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vidual single-mode waveguide measures 500 nm x 200 nm.

Boundary conditions require the continuity of the dielectric displacement. As

can be seen for the TE polarization, this results in a jump discontinuity of the electric

field at the top and bottom of each of the silicon rib waveguides, where the mode then

decays into the cladding. For the TM polarization light undergoes the jump disconti-

nuity at the waveguide edge within the coupling region. The magnitude of this jump

discontinuity at the waveguide boundary is determined by the dielectric permittivity, ε,

i.e., EClad⊥ = εSi
εSiO2

ECore⊥ and EClad‖ = ECore‖. For a silicon/air interface this discon-

tinuity is a factor of 12, and for silicon/oxide, 5.6. The premise behind slot waveguides

is that for the TM polarization if the waveguide separation is sufficiently close the elec-

tric field will not have ample room to decay, and will thus remain high in the slot. As

the magnetic field is continuous in the coupling region, this results in a higher optical

intensity in the low index material between the waveguides.

Light is typically coupled into the multi-slot waveguide by a waveguide (without

slots) of equal width, as shown in Fig. 3.3. There can be a significant difference between

the shape of the feeder mode with that of each supermode of the arrayed waveguide. The

percent of power, a2, that couples into each of the supermodes by the feeder waveguide

can be determined from the overlap integral of the corresponding supermode, Ês.m.,

with the mode of the feeder waveguide, ÊFeeder:

a2 =

∣∣∣〈ÊFeederÊs.m.
〉∣∣∣2〈

ÊFeederÊFeeder
〉〈

Ês.m.Ês.m.
〉 . (3.1)

3.2 Giant Birefringence in Multislot Waveguides

The guided modes of the multi-slot waveguide in Fig. 3.3 are shown in Fig. 3.4;

also shown, is the fundamental mode for each polarization for the multimode feeder

waveguide. This multi-slot waveguide consist of five silicon nanowires of 500 nm

height, 150 nm width, and separated by 100 nm, with an air cladding that allows for

an ultra-high birefringence [1]. For the TM-polarization, the multi-slot waveguide is

single-mode. Numerically solving Eq. (3.1) we note a mode mismatch of 42%, result-
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Figure 3.1: Transverse Electric Polarization: Supermodes of five silicon-on-insulator
arrayed waveguides of 500 nm height, 200 nm width, at a separation distance of 200
nm.

Figure 3.2: Transverse Magnetic Polarization: Supermodes of five silicon-on-insulator
arrayed waveguides of 500 nm height, 200 nm width, at a separation distance of 500
nm.

ing in a loss of ≈ 3.75 dB—which is coupled to radiation modes (this doesn’t include the

additional losses due to the silicon/air reflections caused by the Fabry-Perot gap shown

in Fig. 3.3). For the TE Polarization, one can readily calculate that the multi-slot waveg-

uide supports three guided modes, where 95% of the light from the feeder waveguide

will couple into the fundamental mode, ≈0% for TE1 and 1.6% for TE2.
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Figure 3.3: An arrayed waveguide consisting of an SiO2 substrate and an air superstrate,
with 500 nm high silicon rib waveguides, each 150 nm wide, and separated by 100 nm
“slots”. Both the effective index and group index of this structure is very different for
each polarization.

As shown in Fig. 3.4, for the TM polarization of the multi-slot waveguide most

of the light is being guided in air, while, for the TE polarization most of the light is being

guided in the silicon. Recalling the discussion of the effective index from Section 1.2,

this will result in a very high effective index for the TE polarization—guided in silicon,

and a very low effective index for the TM polarization—guided in air.

This type of birefringence is referred to as “form birefringence”, and is used to

describe periodic layered media where the periodicity is smaller then the wavelength

of the light. The ability to engineer birefringence is useful in nonlinear optics, which

requires phase matching between different optical waves. In contrast to earlier studies

where light is incident in a surface normal configuration, for the device shown in Fig. 3.3

light propagates axially along the length of the etched ribs. Previous values of birefrin-
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Figure 3.4: The modes of the multi-slot waveguide shown in Fig. 3.3 for each polariza-
tion, as well as the modes of the feeder waveguide. Note that for the TM0 polarization
the light is mostly guided in the slot region, allowing for a high birefringence between
the two polarizations. By numerically solving Eq. (3.1), one can see that there will be
a modal mismatch loss of 3.75 dB with the feeder waveguide. As no other modes are
supported for this structure for the transverse magnetic polarization, this “lost” light is
radiated into free space.

gence have been on the order of Δn ≈ 0.04 [2]. The structure shown in Fig. 3.3 was

optimized to achieve a record birefringence of Δngroup ≈ 1.5 and Δneff ≈ 1.

The fraction of the slot-to-slot width (period) occupied by the low-index cladding

defines the filling fraction, q, of an arrayed waveguide. A schematic of the transverse

cross-section of the multi-slot waveguide is shown in Fig. 3.5(a). Using a finite dif-

ference frequency domain algorithm (Section 4.1), the effective index is calculated for

each polarization as the filling fraction is varied. Fig. 3.5(b) shows the difference be-

tween these two effective indices as a functions of q. The shape of the curve is similar to

that derived using effective medium theories for plane waves incident on an infinitely-

wide periodically stratified grating [2]. As shown, a maximum birefringence occurs at



49

Figure 3.5: (a) Schematic of the cross-section of the giant birefringence multi-slot
waveguide. (b) Using a finite difference frequency domain algorithm, the maximum
filling fraction was calculated to be q = 0.38. For filling fractions larger then q = 0.43,
the effective index of the transverse magnetic mode drops below that of the oxide sub-
strate. (c) Plot of the effective indices for both polarization for different values of N.
(d) Calculation of the birefringence, showing that it asymptotes to a constant value for
increasing N, and that N = 5, as fabricated, is the smallest value of N for which the
birefringence saturates. The physical reason behind the saturation is that for N < 5,
the mode mostly resides in the oxide. By continuously adding more high-index regions
light is pulled out of the substrate. Once N = 5, light has been pulled out of the substrate,
and adding additional waveguides has no effect on the structure’s birefringence.

q = 0.38, also, there exists a value of q beyond which no transverse magnetic modes

are supported. The physical reason behind this cut-off is that large filling fractions have

very little silicon. As such the potential-well defined by the silicon waveguide thus has

a higher energy compared to the ocean of oxide below it, forcing the mode to dive into

the substrate. Fig. 3.5(c) plots the effective indices for the two polarizations for an in-

creasing number, N, of silicon ribs. From this figure, one may readily calculate the
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Figure 3.6: Group velocity dispersion for the (a) transverse magnetic and (b) transverse
electric polarization.

corresponding birefringence shown in Fig. 3.5(d). It can be seen that the birefringence

asymptotes to a constant value for increasing N, and that N = 5, as fabricated, is the

smallest value of N for which the birefringence saturates. The physical reason behind

this saturation is that N < 5, the mode mostly resides in the oxide. By continuously

adding more high-index regions light is pulled out of the substrate. Once N = 5, light

has been fully pulled out of the substrate, and adding additional waveguides has no effect

on the structure’s birefringence.

The finite difference frequency domain algorithm may be further used to give an

estimate of the dispersive nature of these corresponding modes. As shown in Fig. 3.6,

the slot-mode has significantly higher dispersion compared with the transverse electric

polarization—which has a wavelength crossing the telecommunications band of 0 GVD.

This will result in more broadening of a pulse as it propagates through this device for

the TM polarization compared with the TE polarization.

As shown in Fig. 3.3, in order to measure the group indices the multi-slot waveg-

uide was separated by the feeder and output waveguide (that have no slots) by 50 nm air

gaps. A C+L band narrow-spectrum mode-hop free turnable laser source was coupled

into the chip using tapered and lensed polarization maintaining fibers. The air gaps form

a Fabry-Perot resonator of precisely known length. By bandpass-filtering the measured

transmission spectrum, one may extract the frequency component which corresponds to

the Fabry-Perot resonances of length L, shown in Fig. 3.7. Using the definition of the

free spectral range, one may then determine the group index for both polarizations. The
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experimental values shown in Fig. 3.7 agree very well with simulation.

Figure 3.7: (a) Measurement setup for experimentally determining the group indicies
of the multi-slot waveguide. A C+L band narrow-spectrum mode-hop free turnable
laser source was coupled into the chip using tapered and lensed polarization maintain-
ing fibers. The air gaps form a Fabry-Perot resonator of precisely known length. By
bandpass-filtering the measured transmission spectrum, one may extract the frequency
component which corresponds to the Fabry-Perot resonances of length L. (b) Cross-
section of the transverse magnetic and transverse electric modes of the multi-slot waveg-
uide. (c) Using the definition of the free spectral range, the group index was obtained.
The experimental values shown are in good agreement with the predicted values.

3.3 Horizontal vs. Vertical Slots

By way of comparison, simulations were done to optimize a similar structure

composed of horizontal slot waveguides. The horizontal multi-slot waveguide would

be expected to have reduced losses, as the dominant source of scattering losses for the

vertical-slot waveguide is due to the surface roughness created by the etching process.

It was shown in the previous section that a vertical slot waveguide could obtain a giant

birefringence as high as Δngroup ≈ 1.5 and Δneff ≈ 1. This was achieved by guiding

light in the air-slot for one polarization, and silicon for the other. This is not practical for

the horizontal slot-waveguide shown in Fig. 3.8, where a supporting medium is required

to keep the device from collapsing. Fig. 3.8 shows similar calculations for the horizontal
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slot waveguide, where the slot material was filled with SiO2. Similar to the vertical

multi-slot waveguide, the birefringence peaks for a given filling fraction, and for high

filling fractions the modes are no longer guided. However, as the slot-mode is now

located in a higher index, nSiO2 = 1.46, the maximum birefringence that can be obtained

is Δneff = 0.64, significantly less then the vertical multi-slot waveguide.

Figure 3.8: (a) Schematic of the horizontal multi-slot waveguide consisting of 500 nm
wide and 150 nm tall silicon waveguides stacked vertically and separated by 100 nm of
SiO2. (b) Using a finite difference frequency domain, the effective index of both modes
are calculated as the filling fraction, q, is varied. (c) The birefringence of the horizontal
multi-slot waveguide. The maximum value that can be obtained is considerably less
then for the vertical multi-slot waveguide.
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3.4 The “Slot” Waveguide and its Applications

In addition to giant birefringence, slot waveguides have proven useful for a num-

ber of additional applications:

Modulators

Most modulators on the market today require voltage shifts on the order of one

volt to achieve full extinction. In order to maximize the shift in effective index of an

electro-optic waveguide, M. Hochberg et al. [3] proposed a modulator that uses the two

silicon ridges of a slot waveguide as a pair of very closely spaced but electrically isolated

electrodes. These closely spaced electrodes allow for a strong interaction between the

electric field and the non-linear polymer. They found that the modulation strength was

inversely proportional to the width of the slot; and with a nonlinear polymer of r33 = 500

pm/V, a Mach-Zehnder modulator with a Vπ-L of 4 mV-cm may be realized.

Detectors

T. Baehr-Jones et al. [4], demonstrated a slot waveguide filled with nonlinear

electro optic polymers that could detect low power optical signals. Due to the nanoscale

high intensity confinement of light in the slot waveguide a standing DC field is created.

This field induces a potential difference between the silicon electrodes resulting in cur-

rent flow which allows for optical to electrical conversion. They were able to measure

conversion with less than 1mW of non-pulsed input.

Polarization independent couplers

Making use of the distinctiveness of the TE and TM mode profiles of the slot

waveguide, Fujisawa et al. [5] were able to overcome the high polarization dependence

known to exist for SOI optical waveguide directional couplers. For two slot waveguides,

they observed that the coupling length of the TM mode shows a greater dependence on

the slot material compared to the TE mode. This is because in the TM mode the light

is guided in the slot material. By choosing a material for the slot that corresponds

to identical coupling lengths of the two polarizations, a polarization independent optical
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waveguide direction coupler is realized. Coupling lengths on the order of tens of microns

can be achieved. Polarization independent operation can also be obtained for a given slot

material by tuning the separation of the two slot waveguides.

All-optical logic gates

Extending on their slot waveguide polarization independent coupler Fujisawa et

al. [6] proposed an all-optical logic gate based on nonlinear slot-waveguide couplers.

By filling the slot with a material that has Kerr type nonlinearity, a slot waveguide is

realized that operates as a polarization independent coupler in the linear regime, and

becomes polarization dependent in the nonlinear regime. In the nonlinear regime the

TE mode no longer couples to the adjacent waveguide, while the TM shows almost no

change in the transmission characteristic compared to the linear regime. With the use

of silicon nanocrystals switching powers on the order of tens of watts is achieved. With

this device NOT, OR and AND logic gates can be realized.

Slow light

By embedding one-dimensional photonic crystals into slot waveguides Riboli et

al. [7] were able to achieve a coupled resonator optical waveguide (CROW) device that

shows a group velocity of more than c/10 at 1.55 m. The embedded photonic crystal was

obtained by defining trenches, or air slits, perpendicular to the propagation direction of

a slot waveguide.

Polarization independent multimode interference (MMI)

slot waveguide

Continuing on the idea that the optical characteristics of the TM mode of a slot

waveguide are more sensitive to the slot material then the TE mode, Fujisawa et al. pro-

posed a polarization insensitive multimode interference waveguide [8]. The beat length

L which characterizes MMI waveguides, shows a greater dependence on the slot mate-

rial for the TM mode then the TE. If the width of the MMI slot waveguide is not too

thick, then one can find an index in which the beat length for the two polarizations are
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identical. At this beat length the MMI slot waveguide achieves polarization indepen-

dence. Fujisawa et al. also note that having more than 2 output ports may be difficult for

their geometry as there are no crossing points in the L curves for the two polarizations

with widths greater than 10 m.

Optical resonators

In silicon nanowires light is strongly confined to the core of the waveguide.

These waveguides can be fabricated with very low loss enabling high Q resonators.

However at high intensities two photon absorption (TPA) in silicon becomes a signifi-

cant phenomenon and can lead to high optical losses. The slot waveguide maybe be able

to overcome this problem as it allows light to still be tightly confined while concentrat-

ing it in between the silicon ribs reducing the losses associated with TPA. Baehr-Jones

et al., achieved a quality factor of 27,000 using the slot waveguide geometry with losses

of -10 dB/cm [9].

Hybrid slot waveguides

Using silicon hybrid solutions [10], researchers were able to overcome the slow

dynamics resulting from two photon absorption generated free carriers. Using molec-

ular beam deposition to cover the slot waveguide with organic materials, all-optical

interactions were significantly enhanced. Researchers were able to demonstrate record

nonlinear coefficient as high as γ = 10−5 1/W-km without introducing significant ab-

sorption. This allowed for the demonstration of all optical demultiplexing at speeds of

all-optical 170.8 Gb/s.

3.5 Summary

In this Chapter 2 and 3, it was shown that new device functionality can be

achieved in silicon photonics through strongly coupled devices. For coupled resonator

optical waveguides, directional couplers spaced on the order of 100 nm are needed for

proper apodization. Further, it was demonstrated that by utilizing a higher coupling co-

efficient, “ballistic” propagation may be achieved for a coupled-resonator structure con-
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sisting of 235-rings. For slot-waveguides, it was shown that an ultra-high birefringence

can be achieved if the coupler is separated by sub-100 nm; numerous other device func-

tionalities were also outlined. However despite their prominence in photonic research,

most of the well developed formalism for analytically calculating the modal properties

of optical waveguides are simply not accurate for high-index contrast strongly coupled

devices, requiring one to rely on numerical techniques. In the next chapter, methods of

numerically characterizing these structures will be detailed.
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4 Modeling Techniques for

Nano-photonic Devices

If you don’t know where you are going, any road will take you there.

—Lewis Carroll, Alice in Wonderland, 1865

One of the biggest expenses for research on photonic devices is fabrication. In

a recent commentary article for Nature Photonics, Michael Hochberg and Tom Baehr-

Jones point out that, “A single high-resolution photomask can cost over US $100,000,

and an advanced electronics chip can require a set of 40 masks or more with varying

resolutions” [1]. The ability to accurately design and simulate device functionality be-

fore fabrication is therefore crucial in reducing company costs. In this chapter numerical

methods for simulating the dispersive effects of waveguides, directional couplers, and

coupled resonator optical waveguides will be reviewed. It will be shown how device

parameters can be varied from their nominal values to determine fabrication tolerances,

necessary for evaluating and predicting device yield. This chapter almost entirely fo-

cuses on frequency domain simulation methods, however, a technique for simulating

the eye-diagrams for a 40 Gb/s data stream propagating through a disordered CROW

will also be highlighted.

4.1 Numerical Solutions to Maxwell’s equations

The fundamental equations that govern electromagnetism are Maxwell’s equa-

tions. The electromagnetic modes of an isolated single waveguide, the supermodes of

an arrayed waveguide, or (equivalently) the even and odd modes of a directional cou-
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pler, are all solutions to these fundamental equations. These equations, named after the

Scottish physicist James Clerk Maxwell, consist of a compilation of equations:

∇× E =
−∂B
∂t

(Faraday’s law) (4.1a)

∇× H = J +
∂D
∂t

(Ampere’s law) (4.1b)

∇ · D = ρ (Gauss’s law) (4.1c)

∇ · B = 0 (Gauss’s law for magnetism) (4.1d)

where E is the electric field vector, B the magnetic flux density vector, D the electric

displacement vector, and H the magnetic field vector. ρ and J represent the volume

density of free charges, and the density vector of free currents, respectively, and are set

to zero when finding the eigenvectors (modes) of a dielectric waveguide. Incidentally,

Maxwell’s contribution was an additional term in Ampere’s law. Assuming a time de-

pendence of ejωt, with J = ρ = 0, and substituting in the constitutive equations for

linear dielectric materials, D = εE and B = μH, Faraday’s law and Ampere’s law may

be further reduced:

∇× E = −iωμ0H (4.2a)

∇× H = jωn2ε0E (4.2b)

where ε and μ for a given dielectric material are related to their respective values in

vacuum (ε0 = 8.854× 10−12 F/m and μ0 = 4π× 10−7) by ε = ε0n
2, and μ = μ0, where

n is the refractive index of the dielectric material. In similar form as [2], taking the curl

of Eq. (4.2a) and using Eq. (4.2b), along with the vector identity ∇×∇ = ∇ (∇·)−∇2,

one obtains:

∇2E + n2k2E = ∇ (∇ · E) , (4.3)
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note that all of the vectorial components are contained on the right hand side.

Countless numerical and analytical techniques have been developed for reducing

and then solving Eq. (4.3) for rectangular waveguides. Among the most prevalent an-

alytical solutions, which rely on perturbative approaches, are Marcatili’s method [3]—

which solves the rectangular waveguide as two independent slab waveguides, Kumar’s

method [4]—which improved on Marcatili’s method by analyzing the diagonal com-

ponents of the waveguide’s refractive index profile, and perhaps the most well known

due to its applicability to ridge waveguides: the effective index method [5]. While

these analytical techniques give fairly accurate solutions to the waveguide’s electric field

profiles for high-index contrast silicon-on-insulator nanowires, they often lead to erro-

neous results in predicting the propagation constants: used to determine group delay,

group velocity dispersion, coupling lengths, etc. Accurate design of high-index contrast

strongly coupled devices thus requires analysis using robust numerical techniques to

solve Eq. (4.3). In the following section, we outline one method specifically: the finite

difference frequency domain algorithm.

Finite difference frequency domain

In the finite-difference frequency-domain (FDFD) algorithm, developed by C. L. Xu et

al. [2], the dielectric profile of the waveguide’s cross section is discretized on a rect-

angular grid as shown in Fig. 4.1(a,b). We note from Eq. (4.1c) that the three vectorial

components of the electric field are directly related such that once two components are

solved for, determination of the final component is straight forward.

In similar fashion as [2], we begin by expanding Gauss’s law into its transverse

and axial components:

∇⊥ · (n2E⊥
)
+

∂n2

∂z
Ez + n2∂Ez

∂z
= 0. (4.4)

As we are solving for the modes of a waveguide assumed to be invariant in the direction

of propagation, z, the middle term on the LHS may be set to zero. Similarly we expand

the RHS of Eq. (4.3),

∇2E + n2k2E = ∇
(
∇⊥ · E⊥ +

∂Ez

∂z

)
. (4.5)
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Figure 4.1: (a) Typical silicon-on-insulator waveguide (b) In the finite difference fre-
quency domain algorithm the dielectric permittivity, ε, of the piecewise homogeneous
layers of the waveguide are discretized into a matrix. Note that the refractive index ma-
trix is readily calculated as n = ε1/2. (c) Numbering scheme used to label the individual
elements of the matrix shown in (b).

Solving Eq. (4.4) for ∂Ez

∂z
, substituting into Eq. (4.5), and assuming a modal profile of the

form, E(x, y, z) = E⊥(x, y)e−iβz, one obtains the transverse vectorial wave equation:

∇2
⊥E⊥ +

(
n2k2 − β2

)
E⊥ = ∇⊥

[
∇⊥ · E⊥ − 1

n2
∇ · (n2E⊥)

]
, (4.6)

where E⊥(x, y) is the transverse electric field vector. Decomposing Eq. (4.6) into its

individual transverse components, x̂ and ŷ, one obtains two equations written in matrix

form as

(
Pxx Pxy

Pyx Pyy

)(
Ex

Ey

)
= β2

(
Ex

Ey

)
(4.7)

where,
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Figure 4.2: A single point shown in Fig. 4.1, labeled here as P, is characterized and
differentiated using its cardinal and inter-cardinal terms.

PxxEx =
∂

∂x

[
1

n2

∂ (n2Ex)

∂x

]
+
∂2Ex

∂y2
+n2k2Ex , PxyEy =

∂

∂x

[
1

n2

∂(n2Ey)

∂y

]
+

∂2Ey

∂x ∂y
,

PyxEx =
∂

∂y

[
1

n2

∂(n2Ex)

∂x

]
+

∂2Ex

∂y ∂x
, PyyEy =

∂

∂y

[
1

n2

∂(n2Ey)

∂y

]
+
∂2Ey

∂x2
+n2k2Ey.

Eq. (4.7) is an eigenvalue problem that may be solved using various numerical

techniques. For the results presented in this dissertation, Matlab’s subroutine “eigs”

was used, which is optimized for solving the eigenvalues of sparse matrices (a matrix

primarily populated with zeros). It will be shown later that Eq. (4.7) is indeed a sparse

matrix.

Operator discritisation

When a continuous function u(x) is discretized at equal intervals separated by

Δx, its first order and second order derivatives at a point um are readily calculated using

central difference formulas:
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∂um

∂x
=

um+1 − um−1

2Δx
(4.8a)

∂2um

∂x2
=

um+1 − 2um + um−1

Δx2
. (4.8b)

In this section discretization of Pxx will be presented, the derivation for the other oper-

ators is similar [6]. In FDFD each data point shown in Fig. 4.1(b) is characterized and

labeled by a grid such as the one shown in Fig. 4.2. For clarity of derivation, PxxEx is

broken up into three subsections.

PxxEx =
∂

∂x

[
1

n2

∂(n2Ex)

∂x

]
︸ ︷︷ ︸

(1)

+
∂2Ex

∂y2︸ ︷︷ ︸
(2)

+ n2k2Ex︸ ︷︷ ︸
(3)

(4.9)

Using Fig. 4.2, (3) can readily be discretized by inspection:

(3) = n2
(m,n)k

2Ex|(m,n). (4.10)

In words, the number for this term in the matrix element is simply the refractive index

at that location squared times the wavenumber squared. Eq. (4.8b) may be used directly

to solve for (2):

(2) =
Ex|(m,n+1) − 2Ex|(m,n) + Ex|(m,n−1)

Δy2
. (4.11)

To solve for (1), Eq. (4.8a) is used once for the inner partial derivative:

(1) =
∂

∂x

[
1

n2

(
n2
(m+1/2,n)Ex|(m+1/2,n) − n2

(m−1/2,n)Ex|(m−1/2,n)

Δx

)]
, (4.12)

and once again for the outer partial derivative:

(1) =
1

n2
(m+1/2,n)

[
n2
(m+1,n)Ex|(m+1,n) − n2

(m,n)Ex|(m,n)

Δx2

]
−

1

n2
(m−1/2,n)

[
n2
(m,n)Ex|(m,n) − n2

(m−1,n)Ex|(m−1,n)

Δx2

]
. (4.13)
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In order to obtain an expression in terms of the cardinal points as shown in Fig. 4.2,

the refractive index at an intermediate data point is taken as an average of the nearest-

neighbor cardinal points, known as the “graded index approximation” [7]:

n2
(m+1/2,n) ≈

1

2

(
n2
(m+1,n) + n2

(m,n)

)
(4.14a)

n2
(m−1/2,n) ≈

1

2

(
n2
(m−1,n) + n2

(m,n)

)
. (4.14b)

Substituting the graded index approximation into Eq. (4.13), and after a few algebraic

steps and grouping of like terms, Pxx may be expressed as:

PxxEx = PxxWEx|(m−1,n) + PxxPEx|(m,n) +

PxxEEx|(m+1,n) + PxxNEx|(m,n+1) + PxxSEx|(m,n−1), (4.15)

where,

PxxW =
Tm−1

Δx2
, PxxE =

Tm+1

Δx2
, PxxN = PxxS =

1

Δy2
,

PxxP =
− (2−Rm+1 − Rm−1)

Δx2
− 2

Δy2
+ n2

(m,n)k
2,

and,

Tm±1 =
2n2

(m±1,n)

n2
(m±1,n) + n2

(m,n)

, Rm±1 = Tm±1 − 1.

Eq. (4.15) is the final result: the operator Pxx is thus expressed entirely in terms

of the of the waveguide’s discretized refractive index profile, shown in Fig. 4.1(b), and

the wavenumber k = 2π/λ, where λ is the free space wavelength.

Assembling Pxx

Pxx so far has been written in terms of a single data point. This section will

demonstrate how to extend Pxx for the entire refractive index profile using the number-

ing scheme shown in Fig. 4.1(c). If it can be assumed that within the waveguide the

polarizations are weakly coupled, the simplified semi-vectorial version of Eq. (4.7) may

be solved instead for each polarization separately: PxxEx = β2Ex and PyyEy = β2Ey.



66

Figure 4.3: Numbering scheme for a 12 point matrix. The numerical values of this
matrix would represent a discretized refractive index profile of a waveguide, such as the
one shown in Fig. 4.1(a)

For the purposes of demonstration, we will set up a matrix Pxx assuming the “waveg-

uide,” such as the one shown in Fig. 4.1(b), contains only twelve points. The numbering

scheme for this twelve point waveguide is shown in Fig. 4.3.

Eq. (4.16) shows the fully assembled eigenvalue equationPxxEx = β2Ex. Read-

ing off the top row, which represents point (1) in Fig. 4.3, the matrix reads that the east

element of point (1) is point (2), and is thus multiplied by Ex(2). The north element is

point (1) is point (4), and is thus multiplied Ex(4). Note that point (1) has no south or

west point, and are inherently set to zero (Dirichlet boundary conditions).

Similarly reading off the second row, which represents point (2) in Fig. 4.3, the

matrix reads that the west element of point (2) is point (1), and so it is multiplied by

Ex(1). The east element of point (2) is point (3), and so it is multiplied by Ex(3), and

the north element of point (2) is point (5), and so it is multiplied by Ex(5). Point (2) has

no southern element, and is inherently set to zero. This process is repeated to construct

rows three through twelve, shown in Eq. (4.16), which directly correspond to points

three through twelve in Fig. 4.3.

It should be noted that the operators, PxxP , PxxN , PxxS, PxxE, PxxW in row one

refer to point (1) in Fig. 4.3, and should be calculated using the definitions for these

operators in Eq. (4.15) at the location of point (1). Similarly, these five operators may or

may not be the same for point (2), where these operators in Eq. (4.15) are now evaluated
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at point (2).

As each row in Eq. (4.16) can have at most four non-zero elements (eight non-

zero elements for each row in Eq. (4.7) as the inter-cardinal elements must be consid-

ered), Pxx becomes very sparse as the number of data points increases. The non-zero

elements consist of numbers solely calculated from the discretized refractive index ma-

trix, such as the one shown in Fig. 4.1(b), and the wavenumber. The implicit assump-

tion of Dirichlet boundary conditions is that the electric field of any guided mode of the

waveguide has sufficiently decayed before reaching the numerical boundary—where it

is pinned down to a value of 0. As the modes of dielectric waveguides decay into their

cladding exponentially, this assumption is usually valid provided a sufficiently large

computational window is used. Derivation of Pxy, Pyy, Pyx is straight forward. Once

the elements of Eq. (4.7) are assembled, the eigenvalues (propagation constants) and

eigenvectors (modes) for the full-vectorial wave-equation may be solved using any ma-

trix eigenvalue solver subroutine, preferably one optimized to handle sparse matrices.
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4.2 Dispersion Engineering of SOI Waveguides

The previous section described a numerical method suitable for solving for the

exact eigenvectors (modes) and eigenvalues (propagation constants) of high-index con-

trast waveguides. Similarly, there exists numerous commercial programs that may be

used such as COMSOL, HFSS, and RSOFT, where the mode solvers are based on

the finite element method. For these commercial programs—identical to the FDFD

algorithm—one describes a waveguide geometry with the corresponding dielectric con-

stants and a free space wavelength; these numerical solvers then return the modes (elec-

tric field patterns), and the corresponding propagation constants, of the waveguide.

When the excitation wavelength is changed, not only does the waveguide re-

spond differently (waveguide dispersion), so does the materials of which the waveg-

uide is composed (material dispersion). In order to calculate the dispersion relationship

of a waveguide, β(ω), one must iteratively run the mode solver not only updating the

freespace wavelength λ (ω = 2πc/λ), but also the dielectric constants of the waveg-

uide’s constituent materials using each material’s Sellmeier equation [8]. Once one

obtains the propagation constant, the waveguide’s effective index is readily calculated

through β =
2πneff

λ
. The speed of light traveling at this frequency (phase velocity)

through the waveguide is readily calculated as vp = c/neff .

As outlined in Chapter 1, optical information is carried on pulses, which are

composed of a narrow band of frequencies around a carrier frequency ω. As such, each

of the frequency components within the pulse will travel at slightly different speeds,

giving way to pulse broadening as it propagates down the transmission line. The speed

at which the pulse travels is determined by its group velocity vg = c/ng, where ng is

defined as:

ng = neff − λ
dneff

dλ
. (4.17)

A measure of a pulse’s tendency to spread is determined by its group velocity dispersion,

GVD,

GVD = −λ

c

d2neff

dλ2
, (4.18)
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Figure 4.4: (a) Comparison between solving for the group velocity dispersion using
numerical derivatives, and increasing order of polynomial fits. (b) For higher order
polynomials the two methods produce identical results.

where GVD is usually given in units of ps/nm-km. The following Matlab code is re-

posted below due to its frequent re-usability, where the wavelength is assumed initially

to be in nanometers. Using the central difference equations, Eq. (4.8a) and Eq. (4.8b),

one may obtain the group index “ng” and group velocity dispersion “GVD”, of a waveg-

uide from an array of equally spaced wavelengths “wave” and the corresponding array

of numerically evaluated effective indexes, “neff.”

% Calculate Group Index
wave = wave*10^-9; % Wavelength in meters
d_lambda = wave(2)-wave(1);
d_neff = neff(3:end)-neff(1:end-2);
dndl = d_neff/(2*d_lambda); % Central Difference (CD)
dwave = wave(2:end-1); % Lose two points from CD.
ng = neff(2:end-1)-dwave.*dndl; %Group Index

% Calculate GVD
dwave = dwave*10^9; % units are /nm
d_lambda = d_lambda*10^9;
c = 3*10^8/1000*1e-12; % Speed of Light in km/ps

GVD = -dwave/(c*d_lambda^2).*(neff(3:end)- ...
2*neff(2:end-1)+neff(1:end-2));

From the central difference formula, if an array of ten effective indices are solved for,
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Figure 4.5: Change in group velocity dispersion (GVD) of three silicon nanowires of
different width, w, as the thickness, t, of a thin film of Si3N4 residing on top of the
waveguide is varied. The height of each of the silicon nanowires is 250 nm, and the
wavelength is 1550 nm. The slope of the GVD vs thin film thickness in a local region
describes the device sensitivity to fabrication irregularities.

equally spaced in wavelength, one may only calculate the group index and group veloc-

ity dispersion for the central eight data points.

The other common numerical technique for calculating the group index and

group velocity dispersion is by fitting the effective index data to a polynomial, and then

analytically differentiating the polynomial. Fig. 4.4 shows a comparison between the

two methods. For higher order polynomials the two methods produce identical results.

As an example of how iterative solutions of a waveguide’s propagation constant

can be used to describe device tolerances, we examine the sensitivity of GVD to the

thickness of a thin film cladding deposited on top of a silicon nanowire, as shown in

Fig. 4.5. Dispersion in silicon nanowires is dominated by waveguide dispersion, not

material dispersion. The ability to design waveguides that operate around zero GVD will

become necessary for reducing signal distortion at high data speeds over long distances

[9]. Being able to engineer GVD is also useful for wavelength conversion based on four-

wave mixing [10]. By depositing a thin layer of Si3N4 on top of a silicon rib waveguide,
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its dispersion characteristics can be precisely tailored [11]. Fig. 4.5 shows the group

velocity dispersion of a typical silicon-on-insulator nanowire for three different widths,

250 nm height, λ = 1550 nm, as the thickness of a thin film of Si3N4 residing on top of

the nanowire is varied. Note that at a zero-thickness the silicon nanowire has a relatively

high dispersion of around 3000 ps/nm-km. By increasing the thickness of the thin film

cladding the GVD is reduced, and at a certain value, it crosses zero. Shown in the inset

of Fig. 4.5 is the waveguide width, along with the thickness required for zero GVD.

Also shown is the rate of change, calculated from Eq. (4.8a), of the GVD with changing

thickness. At a waveguide thickness of 450 nm, a thin film of Si3N4 at a thickness of

147.2 nm will bring the waveguide to zero GVD. If the fabrication steps are off by 1 nm

in the thickness of the Si3N4 cladding, then the GVD will increase, or decrease, by 13.7

ps/nm-km.

The above example is perhaps the most useful capability of mode solvers. In

practice, a fabricated waveguide will often have slightly different Sellmeier equations

and a slightly different geometry due to fabrication irregularities resulting in waveg-

uide surface roughness. By iterating device dimensions within a mode solver, one can

determine the tolerance required by the fabrication process.

4.3 Dispersion of Directional Couplers

Thus far we have been concerned with the propagation constants and field pat-

terns of single isolated waveguides. It was shown that by iterating a mode solver one

may obtain the dispersion relationship, β(ω), for a given waveguide mode. As will be

detailed in the next chapter, when N single-mode waveguides are weakly coupled to-

gether, the arrayed structure will contain N supermodes (technically 2N supermodes, N

for each polarization). Each of these supermodes has its own dispersion characteristics.

An N = 2 arrayed waveguide is a directional coupler, which contains two “supermodes,”

typically labeled as symmetric and antisymmetric. When light enters one arm of a di-

rectional coupler, called the feeder waveguide, it splits—not necessarily equally—into

the even and odd supermodes of the N = 2 arrayed waveguide. Fig. 4.6 shows the feeder

waveguide and its corresponding mode, as well as the superposition of the symmetric
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Figure 4.6: Schematic of a butt-coupled directional coupler. When light enters the di-
rectional coupler it splits into the even and odd supermodes, which then propagate down
the waveguide shifting in and out of phase with one another. At the transition plane, the
superposition of the symmetric and antisymmetric supermodes of the directional coupler
have a high degree of overlap with the feeder mode.

and antisymmetric modes of the directional coupler. Note the high degree of overlap be-

tween these two profiles at the transition region, which will hold so long as the fields are

not skewed from strong coupling (Section 5.3). However, when the supermodes propa-

gate down the coupler, they will shift in and out of phase with one another due to their

different dispersion characteristics; causing the concentration of light in the directional

coupler to oscillate back and forth between the separated waveguides.

To analytically describe this phenomena we proceed in a manner similar as Her-

mann A. Haus in Ref. 14, only using the modes obtained from a numerical mode solver.

We describe the coupling of modes in space for a four-port co-directional coupler. We

begin by describing the evolution of the modes where the feeder waveguide is butt cou-

pled to one of the two arms of the directional coupler, as shown in Fig. 4.6. We then

describe the effects of adiabatic coupling, as would be the case for the racetrack res-

onators of a CROW, which were described in detail in Chapter 2.

When light from either of the uncoupled waveguides enters the coupling re-
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gion of a directional coupler, the symmetric and anti-symmetric supermodes for the

transverse-electric polarization are excited as:

Êc(x, y, 0)x̂ = asEs(x, y)x̂ + aaEa(x, y)x̂, (4.19)

where z = 0 represents the input coupling plane, Êc(x, y, 0) represents the total electric

field in the coupling region, and E s(x, y) and Ea(x, y) represent the exact symmetric and

antisymmetric supermodes of the directional coupler, obtained from a numerical mode

solver such as FDFD, with

a2s =

∣∣∣〈Êw.g.1(x, y, 0)Es(x, y)
〉∣∣∣2〈

Êw.g.1(x, y, 0)Êw.g.1(x, y, 0)
〉
〈Es(x, y)Es(x, y)〉

(4.20)

and

a2a =

∣∣∣〈Êw.g.1(x, y, 0)Ea(x, y)
〉∣∣∣2〈

Êw.g.1(x, y, 0)Êw.g.1(x, y, 0)
〉
〈Ea(x, y)Ea(x, y)〉

, (4.21)

which define the degree of mismatch between the feeder waveguide, assumed in this

case to be waveguide 1, and the excited supermodes. As demonstrated in Fig. 4, the

supermodes then propagate down the coupler beating against each other as,

Êc(x, y, z)x̂ = asEs(x, y)eiβ
szx̂ + aaEa(x, y)eiβ

azx̂, (4.22)

where βs and βa are the propagation constants of the respective supermodes. After the

waveguides have decoupled at a distance lc, we obtain our dimensionless coupling coef-

ficient as the overlap integral between the superposition of the propagated supermodes

and the second waveguide of the directional coupler:

κ2 =

∣∣∣〈Êw.g.2(x, y, lc)Ê
c(x, y, lc)

〉∣∣∣2〈
Êw.g.2(x, y, lc)Êw.g.2(x, y, lc)

〉〈
Êc(x, y, lc)Êc(x, y, lc)

〉 . (4.23)

In order to obtain a more straightforward expression, we follow the methodology

of coupled mode theory (CMT) and approximate the electric field of the supermodes as

an expansion of the individual isolated waveguide modes,
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Figure 4.7: Superposition of the exact even and odd supermode obtained from a finite
element mode solver and propagated as Eq. (4.22) at a waveguide height of 100 nm.

Es(x, y) =
1√
2

(
Êw.g.1(x, y) + Êw.g.2(x, y)

)
(4.24a)

Ea(x, y) =
1√
2

(
Êw.g.1(x, y)− Êw.g.2(x, y)

)
. (4.24b)

Substituting Eq. (4.22) and Eq. (4.24) into Eq. (4.23), and utilizing the orthog-

onality of the individual waveguide modes, the dimensionless coupling coefficient is

reduced to:

κ2 = sin2

(
π

2

lc
Lc

)
+ A2 cos2

(
π

2

lc
Lc

)
(4.25)

where,

A ≡
〈
Êw.g.2(x, y)Êw.g.1(x, y)

〉
� 1 (4.26)

and the coupling length is defined as Lc = λ
2(ns−na)

, which physically represents the

length where all of the light has transfered into the second waveguide. na and ns are

obtained from the propagation constants returned from a numerical mode solver.

In Fig. 4.8 we compare the first term of Eq. (4.25) with Eq. (4.23). Eq. (4.23) was

solved by calculating the exact supermodes of the directional coupler and the mode of

the feeder waveguide using a finite element mode solver (COMSOL). Overlap integrals

are performed to determine as and aa, where the mode in the coupling region is then

propagated down the directional coupler using Eq. (4.22), where Eq. (4.23) may then be
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directly evaluated using the mode of the second waveguide (also solved using the FEM).

Sellmeier equations were used to account for the material dispersion for the silicon core,

the SiO2 substrate [8], and the PMMA superstrate [12]. The dominant variation between

Figure 4.8: Dispersion of the coupling coefficient equi-spaced from 1530 nm to 1610
nm, calculated with Eq. (4.23) and the first term of Eq. (4.25), for a waveguide of di-
mensions 538 × 236 nm and separation distance of (a) 250 nm, (b) 150 nm, and (c) 50
nm. Also included is the percentage of the power coupled into each mode, (a2

s, a
2
a), for

λ = 1530 nm and λ = 1610 nm.
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the two coupling coefficient expressions comes from assuming that the power is equally

split into the two supermodes, which is not the case for butt-coupled directional couplers

at short separation distance due to the dislocation of the field peaks from the waveguide

centers within the coupling region, which is also predicted by CMT [13], compared with

the feeder waveguide whose mode is centered within its dielectric boundaries.

In the case of racetrack microring resonators, the waveguides are parallel in the

coupling region and bend away at both ends. The net result is that within the bending

regions the propagation constants of the supermodes, and hence the coupling coeffi-

cient, becomes a function of position [14]. In a similar fashion as Ref. 15, we use

coupled mode theory to describe the contributions to the couping coefficient due to the

waveguide bends. We will start by describing the evolution of the supermodes as they

bend away from the coupling region, and, by symmetry, this will be the same equiva-

lent length contributed by input taper. As the waveguides bend away from one another,

the effective index of the two supermodes both approach that of the single uncoupled

waveguide, causing the coupling length to go to infinity. We ignore the spatial depen-

dence of the supermodes, A = 0, which become less significant as the waveguides taper

away from each other, and write the evolution of their phases as,

Êc(x, y, z′ > 0) =
1

2
e
i
(
βslc+

∫ z′
0

βs
bends(z

′)dz′
)

(4.27)

+
1

2
e
i
(
βalc+

∫ z′
0

βa
bends(z

′)dz′
)
,

where z′ = z − lc. Substituting into Eq. (8), and evaluating over the entire bend, we

have,

κ2 = sin2

(
π

2

lc
Lc

+

∫ ∞

0

π

2Lbends
c (z)

dz′
)
. (4.28)

We assume an exponential form of the coupling length,

Lbends
c (z′) = aebg(z

′), (4.29)

and approximate the spacing between the two waveguides, g(z) ∼= g0 +
z′2
R

[15], where

g0 is the minimum separation distance of the directional coupler and R is the bending



78

Figure 4.9: (a) Dependence of coupling length on the waveguide separation and wave-
length. (b) The additional coupling length due to the contribution of the waveguide
bends.

radius of the microring. Recognizing that Lc = aebg0 , the additional phase contribution

due to both bends is readily calculated, and we obtain our coupling coefficient as,

κ2 = sin2

(
π

2Lc

(
lc +

√
πR

b

))
. (4.30)

The effect of the waveguide bends is thus to increase the effective length of the

directional coupler by lbends =
√

πR
b

.

4.3.1 The Directional Couplers of the CROWs

To proceed in evaluating Eq. (4.30) a test structure is needed: we use the direc-

tional couplers of the CROWs reported on in Section 2.1. Recall that the CROWs were

fabricated on two different wafers, which underwent different sidewall roughness reduc-

tion techniques, hydrogen annealing and double oxidation. It was pointed out that in the
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Figure 4.10: Scanning electron microscope (SEM) image of the waveguide cross-
section and first four directional couplers for both the hydrogen annealed and double
oxidized wafers.

process of oxidation, 10 nm of silicon is sacrificed at the waveguide boundary where it is

replaced by 20 nm of oxide. Fig. 4.9(a) shows the dependence of the coupling length on

the coupler gap and wavelength for both the hydrogen annealed and double oxidized di-

rectional couplers of which the CROW is composed; solved using Eq. (4.25) where both

the wavelength and waveguide spacing was varied. These graphs are fitted to Eq. (4.29)

to obtain b(λ). Fig. 4.9(b) shows the contribution of the waveguide bends to the cou-

pling length for both the double oxidized and hydrogen annealed wafers. Due to the

reduction in height, the modes affect each other sooner coming around the bend for the

double oxidized wafer and at longer wavelengths, which is a result of less confinement,

thus increased overlap, of the waveguide modes.

In addition to the two wafers undergoing different post-fabrication surface rough-

ness reduction processes, the lithography dosage on the wafers themselves was varied

(Section 2.1). Fig. 4.10 shows a SEM image of the first four rings of a 35-ring CROW. In

order to reduce the group delay and insertion loss ripple, apodization of the directional

couplers is performed by tapering the spacing (coupling coefficients) of the first four

rings [16]. We define the pitch of the coupler as p = wsi + wgap. To determine the ef-

fects of dose-striping on the coupling coefficients, we solve for the coupling coefficient

using Eq. (4.25) as the silicon filling fraction of the directional couplers, q = wsi

p
is var-

ied, keeping the pitch constant. The initial filling fraction is determined from the SEM

images of the first four couplers shown in Fig. 4.10, for both the hydrogen annealed and

double oxidized wafer.

Fig. 4.11 shows the effects of varying the waveguide width by ± 50 nm for the
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hydrogen annealed wafer in steps of 10 nm over the wavelength range that was mea-

sured experimentally. We note that the coupling coefficient of the microring directional

coupler remains relatively insensitive to variation in the filling fraction as was reported

in Section 2.1. As shown in Fig. 4.12, this is not the case for the more weakly confined

double oxidized waveguide, which is 20 nm thinner. These simulations indicate that

when the height of the silicon waveguide was reduced from the double oxidation pro-

cess, the composite directional couplers of the CROW became more strongly coupled.

This is in excellent agreement with the analysis presented in Section 2.1. The most dom-

inant post-fabrication process was thus the reduction of the height of the silicon layer

due to the double oxidization process. This led to an increase in the coupling coefficient

and less tolerance to variations in waveguide width for the directional coupler.

4.3.2 Dispersion of Fused Waveguides

If the lithography dose is too low, and the desired waveguide separation is small,

the two patterns can overlap resulting in a fused multimode waveguide, as shown for the

first hydrogen annealed Coupler 1 in Fig. 4.10. The feeder waveguide couples into all

available modes of the multimode waveguide, in this case three, which are spatially dif-

ferent from that of the directional coupler. For example, the first mode for a directional

Figure 4.11: Wavelength dependent coupling coefficient for the hydrogen annealed for
the first three couplers as the coupler pitch is held constant and the waveguide width is
varied by ± 50 nm.
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Figure 4.12: Wavelength dependent coupling coefficient for the double oxidized wafer
for the first three couplers as the coupler pitch is held constant and the waveguide width
is varied by ± 50 nm.

coupler contains two peaks, whereas the first mode for a fused waveguide only contains

one. Also, for the directional coupler, we expect that varying the filling fraction will

change where the modes begin to decay but not the location of the field peaks. This will

not be the case when changing the width of the fused waveguide for the two higher or-

der modes. From SEM images we notice an abrupt transition from the feeder waveguide

and follow the methodology used for the butt-coupled waveguide described earlier. We

write the electric field in the multimode coupler, Em.m.c(x, y, z), as superposition of the

modes,

Êm.m.c(x, y, z)x̂ = aTE1ETE1(x, y)eiβ
TE1zx̂

+ aTE2ETE2(x, y)eiβ
TE2zx̂

+ aTE3ETE3(x, y)eiβ
TE3zx̂, (4.31)

where again, a2i represent the percentage of power coupled into the ith mode, and is cal-

culated as the overlap integral of that mode with the feeder waveguide. Fig. 4.13 shows

the superposition of the three modes of the multimode waveguide and propagated as

Eq. (4.31). In Fig. 4.14 we show the coupling coefficient, determined from the overlap

integral of the propagated mode with the second waveguide. Also shown is the percent-
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Figure 4.13: Superposition of the first three modes of a multimode waveguide, obtained
from a finite element mode solver and propagated as Eq. (4.31) at a waveguide height
of 100 nm.

Figure 4.14: (a) Dispersion of the coupling coefficient of the fused waveguide for dif-
ferent widths. (b) The percentage of overlap between the feeder waveguide and each of
the modes of the multimode waveguide for different widths.

age of power coupled into each of the three modes of the multimode waveguide. For the

fused waveguide there is very strong dependence of the coupling coefficient with both

wavelength and waveguide width as the three modes, each with their own dispersion
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Figure 4.15: In the transfer matrix technique a CROW is decomposed into sub-matrices
which characterize the coupling regions Smn and phase regions Pmn. The periodicity of
the CROW, Λ, is defined in terms of the ring radius, R, the waveguide width, w, and the
separation distance g.

characteristics, beat against each other.

4.4 Simulation of a Disordered CROW

In the previous section it was shown that the composite directional couplers of a

CROW may become highly dispersive as the resonator separation distance is reduced—

required for proper apodization. Because of this dispersion the apodization of a CROW

may vary significantly from band to band. In this section we will outline a technique for

simulating the transmission spectrum of a CROW which will account for not only the

wavelength dependence of the composite directional couplers, but also the dispersion of

the silicon nanowires of which the CROW is composed. Further, with perturbations in

ring size and track length the effects of disorder may be simulated.

4.4.1 Transfer Matrices

Methods for calculating the transmission spectrum of a CROW using transfer

matrices have been developed and detailed elsewhere, and their results briefly summa-

rized here [17, 18]. In this section we highlight the necessary adaptations that must be

made to simulate a CROW composed of high-index contrast silicon-on-insulator waveg-

uides, where the resonators may be individually misaligned.

As shown in Fig. 4.15, the input waveguide’s electric field is related to that of
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the drop port waveguide through a cascade of scattering matrices, S, and propagation

matrices, P , as:

[
Ein

Ethrough

]
= S01P1S12P2 · · ·PNSN,N+1︸ ︷︷ ︸

(M)

[
Edrop, if Nodd

0

]
(4.32)

where,

Sn−1,n =
1

κn−1,n

[
1 t∗n
tn 1

]
, Pn =

[
ei

φn
2 0

0 e−iφn
2

]
,M =

[
m11 m12

m21 m22

]
, (4.33)

and n indexes the total N resonators, φn = 2πneff(λ)Cn/λ represents the round trip

phase shift of a single ring of circumference Cn, and κ(λ) and t(λ) represent the mag-

nitude of the dimensionless cross-coupling and through-coupling coefficients between

two resonators.

Section 4.2 detailed how one may obtain the dispersion of the silicon nanowires

of which the CROW is composed, neff (λ). Section 4.3 outlined how to simulate the

wavelength dependence of the coupled silicon nanowires, κ(λ), for different resonator

separation distances. Eq. (4.32) contains 2N+1, 2x2 matrices: to accurately solve the

transmission properties of a CROW, each of these matrices must be updated at each

wavelength to account for the dispersion of the coupling coefficients, κ(λ), and the

dispersion of the silicon nanowire of which the CROW is composed, neff (λ). Finite

element simulations should be done first to fully characterize these two terms, and then

these results substituted into Eq. (4.32). One may simulate an apodized CROW by

tapering the first four and last four scattering matrices, by solving for and substituting in

the corresponding κn(λ). Once the matrix M(λ) is determined, the drop port response

is readily calculated as Edrop(λ) = 1/m11(λ).

4.4.2 Reconstructing Field Patterns

As will be discussed in detail in Chapter 6, within a microring resonator the

intensity becomes enhanced. Once the drop port response is determined, one may cal-

culate the enhancement of energy, IN , in the Nth ring as,
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Figure 4.16: Intensity maps for both an apodized and a non-apodized 35-ring CROW.
Note that for the individual rings, the resonators may undergo significantly different
enhancements

IN = SN,N+1

[
Edrop

0

]
. (4.34)

Similarly, the intensity enhancement for the second to last ring, IN−1, is,

IN−1 = SN−1,NPNSN,N+1

[
Edrop

0

]
. (4.35)

Continuing this process for each ring at each wavelength one obtains the entire response

of the individual rings of a CROW. Fig. 4.16 shows this response for a single band of

a disorder-free apodized and non-apodized CROW. Within the CROW’s transmission

band, the individual resonators become enhanced forming the eigenmode of the CROW.

Note that the individual coupled resonators of a non-apodized CROW have a much

sharper linewidth, which leads to significant group delay and insertion loss ripple across

the CROW’s band. In Chapter 6, a method of directly imaging the response of these

resonators will be outlined.

In practice, disorder in CROWs has thus far been a severe practical problem,

since in a multi-resonator ensemble, the resonance frequencies of the constituent res-

onators must be precisely aligned. As the benefit of microrings and CROWs increases

for higher quality factors (lower coupling coefficient, increased resonator separation),

such resonators are also harder to align. In fact, CROWs over a hundred lattice peri-
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Figure 4.17: (a) Simulation of the transmission spectrum of a disordered 235-ring
CROW composed of silicon nanowires of 200 nm height at 500 nm width, with 3 dB/cm
propagation losses. The disorder was simulated by adding random Gaussian noise to
the inter-resonator couping coefficients of Eq. (4.32) such that their standard deviation
(STD) was defined by, δκ = 0.02. Similarly the resonator size was perturbed such that
the STD in the phase was δφ = 0.01. (b) The simulated group delay of the disor-
dered CROW. (c) Intensity variations of the individual micro-resonators. For a given
wavelength, neighboring resonators in a CROW may undergo significantly different re-
sponses. The section outlined by the dashed-white box is shown in Fig. 4.18. In Chapter
6, using infrared imaging, the intensity map of a 235-ring CROW is directly measured.

ods in length have shown disorder-induced localization of light [19, 20], which though

fundamentally interesting and potentially useful for some applications [21], is generally

considered problematic for most device applications.

Eq. (4.32) may be used to simulate the effects of disorder on the passband of

a CROW, and predict whether or not a given tolerance defined by the fabrication pro-

cess will prohibit device operation. Fig. 4.17(a,b) show the transmission and group

delay spectra of a disordered 235 ring CROW composed of silicon nanowires with 3

dB/cm propagation loss. In the simulation, random Gaussian noise was added to the
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Figure 4.18: Zoomed in region of the white-dashed box in Fig. 4.18(c), showing the
high spectral dependence of the individual resonators.

Figure 4.19: Comparison of simulated and measured, transmission and group delay,
spectra of a 35-ring CROW

inter-resonator couping coefficients such that the standard deviation (STD) across the

N rings was, δκ = 0.02. Similarly, the resonator size was perturbed such that the STD

in the phase across the N rings was, δφ = 0.01. As shown in Fig. 4.17(c), for a given

wavelength, neighboring resonators in a disordered CROW may undergo significantly

different responses. The section outlined by the dashed-white box in Fig. 4.17(c) is

expanded in Fig. 4.18.

It was demonstrated in Chapter 2 that from the transmission spectrum of a

CROW, one may extrapolate the wavelength dependent coupling coefficient of the con-

stituent directional couplers. Fig. 4.19 shows a comparison of a simulated spectrum of
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a 35-ring CROW, along with a measured spectrum. The high degree of uniformity be-

tween these two traces is clearly evident. For this simulation, the wavelength dependent

coupling coefficient of the inner micro-resonators was determined from the measured

CROW’s bandwidth. The dispersion properties of the composite silicon nanowires were

solved using a finite element mode solver, as detailed in Section 4.2. The loss of the

silicon nanowires was measured, and used in the simulation, to be -3.8 dB/cm; deter-

mined from the measurement of four straight waveguides of varying lengths on a nearby

test site. The spectrum was further offset by 8 dB to account for the input and output

couplers. The wavelength dependent coupling coefficient used in this simulation for the

first directional coupler is similar to the one shown for the first directional coupler in

Fig. 4.12. Because of the dispersion of the coupling coefficient in this first resonator, the

CROW is properly apodized only at shorter wavelengths, and un-apodized for longer

wavelengths. This results in higher group delay ripple, and insertion loss ripple, at

higher wavelengths. Fig. 4.19 shows the high degree of accuracy provided by the trans-

fer matrix method when the dispersion characteristics of all of the CROWs constituent

parts are taken into consideration.

4.4.3 Sending Numerical Data

Through a Numerical CROW

The previous section detailed a transfer matrix method for simulating the re-

sponse of a multi-resonator apodized and disordered CROW in the frequency domain.

The impulse response of this device is readily calculated in the time domain through

the Fourier transform [15]. This representation is useful for analyzing certain group

delay measurement techniques, such as swept wavelength interferometry (described in

Chapter 6), where many of the data post-processing routines are performed in the time

domain. Fig. 4.20 shows the impulse response of a 35-ring CROW as the attenuation of

the constituent nanowires is ramped up. Note that for each of these simulations the peak

of the response is located at the same location in time, and is a direct measure of the

“band-center” delay of a CROW. “Band-edge” characteristics can also be analyzed by

looking for spikes at later times. Through the convolution operation, one may thus sim-

ulate the response of a data-stream being sent through each of these CROWs. Similarly,



89

which is done here, one may stay in the frequency domain and transform the incoming

data stream.

Information is transported in photonic integrated networks using pulses. Digital

encoding interprets the presence of an optical pulse as a “1,” and the absence of a pulse

as a “0’. In this section we highlight a method for simulating the eye-diagrams for high

speed data propagating through a disordered CROW. The two most common methods of

transmitting data are the return-to-zero (RZ) and nonreturn-to-zero (NRZ) formats. In

this section we will focus on the transmission of a RZ data stream, where within each

active bit duration a pulse will rise from, and return back to, zero. Modification for the

NRZ data stream is straight forward.

The electric field of an incoming data stream, encoded onto an optical carrier at

frequency ω0, may be expressed as [22],

Edata(t) = Re
[
A0(t)e

iφ0 exp (−iω0t)
]
, (4.36)

where the amplitude A0(t) is defined by,

A0(t) = P
1/2
0

∑
n

bnfp (t− nTb), (4.37)

where P0 is the peak power, bn represents a “1” if a pulse is present, and a “0” if there

Figure 4.20: Simulation of the impulse response of a disorder free CROW as the atten-
uation of the constituent silicon nanowires was ramped up. The location in time of the
peak response is a measure of the CROW’s “band-center” delay.
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Figure 4.21: Simulation of the response of a 35-ring CROW on an incoming data stream
as the carrier wavelength is tunned throughout the CROW’s passband. (a) (Black) Initial
data stream to be sent through the CROW. (Blue) The data stream after it has propagated
through the CROW, where the carrier frequency is tuned to different locations in the
band of the CROW. (b) The frequency domain response of the CROW (green), along
with the frequency domain representation of the data stream (blue) at different carrier
locations.

Figure 4.22: Simulation of the eye diagram for a RZ data stream propagating through a
35-ring CROW, tuned to band center. The data stream is shown in blue, and the CROW
in green. Disorder was increased in the CROW by increasing the STD between the inter-
resonators coupling coefficients and propagation lengths by: (a) δκ = 0, δφ = 0,(b) δκ =
0.02, δφ = 0.008,(c) δκ = 0.06, δφ = 0.02,(d) δκ = 0.1, δφ = 0.04.

is no pulse, fp(t) defines the shape of the pulse—assumed here to be Gaussian—and
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Tb = 1/B, is the bit slot at the bit rate B. The top row of Fig. 4.36(a) shows a simulated

40 Gb/s data stream composed of 5 ps Gaussian pulses with a 25 ps bit slot. While only

the initial few bits are shown, 200 bits were used for all of the simulations in this section.

The frequency domain representation of this data stream may be calculated through the

Fourier transform, F , numerically this is done using FFT operations. Fig. 4.36(b) shows

the frequency domain response of the 35-ring CROW (blue), along with the frequency

domain representation of the data stream (green), while the carrier frequency of the data

stream is being tuned throughout the passband. The corresponding output data streams,

Edata,out, are shown in Fig. 4.36(a), and were numerically calculated from,

Edata,out = F−1
(
F
(
Edata(t)

) · ECROW (f)
)
. (4.38)

It can be seen that when the data stream’s carrier wavelength is turned to the band-gap

of the CROW, no signal is recovered at the output. As the carrier wavelength progresses

throughout the band of the CROW the signal begins to be recovered. At band center,

the data is simply attenuated and shifted in time by 30 ps. In Fig. 4.37 the eye diagrams

are shown for an incoming data stream tuned to the center of the CROW band, as the

disorder in the CROW is ramped up. Information can thus be recovered for weak vari-

ations between the individual resonators, but for a significant amount of disorder the

information will not recovered.

4.5 Summary

In this Chapter numerical techniques were outlined to accurately simulate the

dispersive properties of high-index contrast silicon-on-insulator nanowires. It was demon-

strated that using iterative techniques, one may define fabrication tolerances required for

device operation. By calculating the dispersion of the individual supermodes of coupled

nanowires, one may obtain the wavelength dependent coupling coefficient κ(λ). Further,

it was demonstrated that by using both of these terms as sub-elements in transfer ma-

trices, one may accurately simulate the multi-band transmission response of a CROW.

Such simulations were compared with measured data, showing excellent agreement.
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5 Breakdown of CMT:

Strong Coupling Perturbations

Before I came here I was confused about this subject.

Having listened to your lecture I am still confused.

But on a higher level. —Enrico Fermi

Silicon-on-insulator (SOI) waveguides and optical on-chip circuitry rely on the

high refractive index contrast between core (silicon, n = 3.5) and cladding (silicon

dioxide, n = 1.45) materials to guide light in very compact structures and with small

bending radii [1, 2]. SOI photonics is one of the most active areas of ongoing re-

search and large-scale integrated circuits are being designed and fabricated. In many

of these proposed circuits, one of the most critical waveguide components is the di-

rectional coupler between two parallel waveguides, which is used in microring-based

filters [3], Mach-Zehnder interferometers and modulators [4, 5, 6], arrayed waveguide

structures [7, 8, 9, 10] etc.

In Chapter 2 and 3 devices were outlined that rely on strongly coupled nanowires.

Further, in Chapter 4, numerical techniques for calculating various properties of these

waveguides were described; such as methods of calculating the eigenmodes and disper-

sion characteristics for both coupled and isolated structures. Here, we investigate and

quantify the limitations of perhaps one of the most established analytical methods for

coupled waveguide analysis, coupled-mode theory (CMT), in designing high index con-

trast SOI couplers and arrayed waveguides. CMT is a simple and often reliable approach

for the design of such structures, formally applicable to low-index and weakly coupled

structures, in which the coupling coefficient can be written down in terms of overlap
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integrals of the individual waveguide modes and the refractive index distribution n(x, y)

in the cross-sectional plane [11, 12, 13]. More accurate corrections to CMT for slab

waveguides have been investigated by Chiang [14], and Payne [15], among others (see

references therein).

In this Chapter, “exact” results of the coupling coefficients of directional cou-

plers, calculated using a fully-vectorial finite difference frequency-domain (FDFD) method

(Section 4.1), are compared with predictions of CMT. We demonstrate how to solve the

inverse problem of reconstructing the coupling matrix from the solutions of the FDFD

program. As a test structure which highlights both the applicability and shortcomings of

CMT, we will consider the multi-waveguide coupled-array structure [16] which consists

of a number of directional couplers parallel to one another, as is often used in arrayed

waveguide gratings and multi-element lasers and amplifiers, and which require an accu-

rate estimate of the coupling coefficients to prevent imaging and phase errors [17]. We

show that, because of the narrow waveguide widths allowed by the high index contrast,

multi-waveguide structures can reveal significant next-to-nearest-neighbor coupling and

other deviations from the conventional picture of modal coupling, and we find the “crit-

ical” waveguide-to-waveguide separation distance at which such terms become signifi-

cant.

5.1 Coupled-Mode Theory (CMT) of the

Modes of Multi-slot Waveguides

If many slot waveguides are arranged in a parallel array, as would be encountered in the

cross-section of an arrayed waveguide grating or coupler, or coupled-waveguide laser,

then their modes can often be adequately described by supermode theory [16], which is

one of the fundamental predictions of coupled-mode theory (CMT), and hence can be a

test of the applicability of CMT to SOI photonics. The next section presents the analysis

of the modes based on supermode theory, which we will then allow us to compare the

predictions of CMT with the FDFD calculations.
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Figure 5.1: (a) Refractive index profile in the transverse plane n(x,y) for an N arrayed-
waveguide structure. (b) The same refractive index profile may be decomposed, math-
ematically, into the sum of parts, Δn2

i = n2
i − n2

s, each of which appears in integrals
equation for the coupling coefficients. For the structures considered in here, h = 500
nm, w = 200 nm, and s varies over the range 50 nm to 1μm. For these waveguide widths
and heights (similar to those in Ref. [19]), the polarization direction of the principal
transverse component of the electric field is indicated for the (quasi) TE and TM modes.

Coupled mode theory and its predictions

To describe the modes of multislot waveguides, we begin with the wave equation [18],

∇2E+
ω2

c2
n2 (x, y)E = 0, (5.1)

and consider each polarization in turn. (TE and TM polarization are defined in terms

of as the major component of the electric field, which for the structure in question, are

polarized vertically and horizontally as shown in Fig. 5.1.)

TE polarization

Consider an array of N single mode waveguides, whose refractive index profile is shown

schematically in Fig. 5.1a. As long as the waveguides are not too close to each other

(i.e., greater than a separation distance which we will investigate and quantify in a sub-

sequent section), the transverse mode profile of the multislot waveguide structure can be

approximated by an expansion of the individual high index waveguide modes

Ê = ŷE(x, y) e−iβz = ŷ

[
N∑
l=1

AlE l (x, y)

]
e−iβz. (5.2)

As shown by Fig. 5.1, the relative dielectric coefficient distribution of the en-

tire N waveguide structure n2 (x, y) can be written as a sum of individual waveguide
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contributions, so that

n2 (x, y) = n2
s (x, y) +

N∑
l=1

Δn2
l (x, y) (5.3)

where n2
s (x, y) corresponds to the cladding. Thus, n2

s (x, y) + Δn2
l (x, y) would yield

the dielectric coefficient profile of the l th waveguide in the absence of the others. Sub-

stituting the above two equations into the wave equation, we have,(
∇⊥2+

ω2

c2

[
n2
s (x, y) +

N∑
l=1

Δn2
l (x, y)

]
− β2

)[
N∑
l=1

AlE l (x, y)

]
= 0. (5.4)

The modes of the individual waveguides satisfy their respective eigenvalue equa-

tions, (
∇2

⊥+
ω2

c2
[
n2
s (x, y)+Δnl

2 (x, y)
]− βl

2

)
El (x, y) = 0 (5.5)

and therefore, using Eq. (5.5), Eq. (5.4) can be written as,

N∑
l=1

Al

⎛
⎜⎝Δl +

ω2

c2

N∑
m=1
m	=l

Δn2
m(x, y)

⎞
⎟⎠ El(x, y) = 0 (5.6)

where,

Δl ≡ β2
l − β2.

N equations are formed by multiplying Eq. (5.6) by Ej
∗ (j = 1, 2, . . . , N), and

integrating each of these equations over x and y,

N∑
l=1

Al

⎛
⎜⎝Δl

∫∫
E∗
j El dxdy +

ω2

c2

N∑
m=1
m	=l

∫∫
E∗
jΔnm

2(x, y) El dxdy

⎞
⎟⎠ = 0, j = 1, 2, . . . , N.

(5.7)

We define the modal overlap integrals as follows:

Ijl =

∫∫
E∗
j El dxdy, (5.8a)

κjl =
ω2

c2

N∑
m=1
m	=l

∫∫
E∗
jΔn2

m(x, y)El dxdy, (5.8b)



98

with the normalization ∫∫
E∗
l El dxdy = 1. (5.8c)

Ijl is the overlap integral of the modes of two waveguides which are not orthogonal to

each other (particularly in the case of small waveguide separation), and κ are the self-

coupling and cross-coupling (exchange coupling) coefficients familiar from coupled-

mode theory [18, p. 362].

Eq. (9) can then be written in matrix form as an eigenvalue problem,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1
2 + κ11 Δ2I12 + κ12 . . . ΔN−1I1,N−1 + κ1,N−1 ΔNI1N + κ1N

Δ1I21 + κ21 β2
2 + κ22 . . . ΔN−1I2,N−1 + κ2,N−1 ΔNI2N + κ2N

Δ1I31 + κ31 Δ2I32 + κ32 . . . ΔN−1I3,N−1 + κ3,N−1 ΔNI3N + κ3N

...
...

...
. . .

...

Δ1IN1 + κN1 Δ2IN2 + κN2 . . . ΔN−1IN,N−1 + κN,N−1 βN
2 + κNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

A3

...

AN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β2 0 0 . . . 0

0 β2 0 . . . 0

0 0 β2 . . . 0
...

...
...

. . .
...

0 0 0 . . . β2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

A3

...

AN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.9)

(The matrix on the left-hand side of the above equation will be referred to as M .)

If we assume that only nearest neighbor coupling is significant, then the integrals

in Eq. (10) are nonzero only when l = j − 1, j, j + 1. M takes the tridiagonal form,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1
2 + κ11 Δ2I12 + κ12 . . . 0 0

Δ1I21 + κ21 β2
2 + κ22 . . . 0 0

0 Δ2I32 + κ32 . . . 0
...

...
...

. . .
...

0 0 . . . ΔN−1IN,N−1 + κN,N−1 βN
2 + κNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.10)

If the waveguides are identical and equally spaced, M can be further simplified

by setting β1
2 = β2

2 . . . = βN
2 ≡ β0

2 and also, Il,l+1 = Il−1,l ≡ I, κl,l+1 = κl−1,l ≡ κ.

However, even if the waveguides are identical and equally spaced, κ11 and κNN are not

equal to κ22, κ33, . . . , κN−1N−1. In fact, Eq. (5.8b) shows that for those waveguides at
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Figure 5.2: TE Polarization Ey: The modes of an N = 5 coupled waveguide array
for λ = 1550 nm, calculated using coupled-mode theory (blue solid lines), and a finite-
difference frequency-domain algorithm (black crosses). The coupled-mode theory cal-
culations were done by using the effective index method, calculating the overlap inte-
grals, solving Eq. (5.9), and reassembling the field. Waveguide height = 500 nm, width
= 200 nm, separation = 200 nm, ncore = 3.47, and nclad =1.46. Under nearest neighbor
coupling, the scaling relationship predicted by Eq. (5.11) adequately predicts the field
amplitudes within each waveguide.

the edges (l = 1 and l = N) there are approximately only half as many contributing

terms as the other waveguides: there are no waveguides to the left of the l = 1 waveg-

uide, and there are no waveguides to the right of the l = N waveguide, whereas all the

other waveguides have contribution terms from both the left and right halves of their

modal profiles.

We define κself ≡ κ22, κ33, . . . , κN−1N−1, κself,edge ≡ κ11 and κNN , and δκself =
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κself − κself,edge. To first order in the perturbation δκself, the eigenvectors are

A
(m)
l =

(
2

N + 1

)1/2
sin

lmπ

N + 1
− δκself

(
2

N + 1

)3/2

×
N∑

n=1
n 	=m

1

β2(m) − β2(n)

[
sin

mπ

N + 1
sin

nπ

N + 1
+ sin

mNπ

N + 1
sin

nNπ

N + 1

]
sin

lnπ

N + 1

(5.11)

where m is the modal number and l indicates which high-index rib waveguide (or low-

index slot) is being described. [The expression for the eigenvalues is written later,

Eq. (5.20).]

For large N , the second term in the above expression, is smaller than the first by

(N + 1)−1 and can be ignored, yielding a simpler expression. The progression of peak-

amplitude values (in the high index regions) {A(m)
l }, l = 1, . . . , N matches with the

numerical calculations shown in Fig. 5.2. However, it will be shown that the agreement

is good only at large separation distances between the individual waveguides.

TM polarization

For the TM polarization (in which the electric field is normal to the waveguide/slot

boundary) the wave equation is now defined in terms of the magnetic field, which is

expanded in terms of the individual waveguide modes,

H = ŷH(x, y) e−iβz = ŷ

[
N∑
l=1

AlH l (x, y)

]
e−iβz. (5.12)

Under nearest neighbor coupling, the magnetic field will also obey the scaling relation-

ship of Eq. (5.11). If it can be assumed that |∂Hz/∂y| � |∂Hy/∂z|, then Hy and Ex are

related by

Ex=
β

ε(x, y)ω
Hy, (5.13)

so that, within the high index ribs, it is expected that Eq. (5.11) describes the scaling

relationship of the peak electric field amplitudes. Although the peak electric field am-

plitudes of the entire modal profile are found not in the high-index regions, but in the

low-index regions (just inside the core-cladding boundary), they obviously satisfy the

same scaling law, as can be seen in Fig. 5.3.
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Figure 5.3: TM Polarization Ex: The modes of an N = 5 coupled waveguide array, cal-
culated using coupled-mode theory (blue solid lines), and a finite-difference frequency-
domain algorithm (black crosses). The coupled-mode theory calculations were done by
using the effective index method, calculating the overlap integrals, solving Eq. (5.9),
and reassembling the field. Waveguide height = 500 nm, width = 200 nm, separation
= 1μm, ncore = 3.47, and nclad =1.46. Under nearest neighbor coupling, the scaling re-
lationship predicted by Eq. (5.11) adequately predicts the field amplitudes within each
waveguide.

5.2 Numerically-assisted CMT:

the “Inverse Problem”

CMT offers valuable physical insight into how waveguides couple—in particu-

lar, the structure of matrix M in Eq. (11) is revealing—but the quantitative predictions

of CMT are in error in high-index-contrast SOI structures at short separation distances.

To obtain a numerically-accurate picture of modal coupling, a new extension of CMT is

proposed, called “numerically assisted” CMT, to use the simulation results of the FDFD

algorithm to back-calculate the elements of the coupling matrix M . One can thereby
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check if the assumption of nearest-neighbor coupling is valid at short separation dis-

tances, and identify various other interesting coupling phenomena (e.g., non-Hermiticity

of M) which have not been pointed out earlier.

To develop NA-CMT, the following mathematical procedure is used, based on a

matrix theorem previously developed for coupled-resonator structures [20].

1. First, the supermodes are solved for using FDFD, which does not contain any

of the limitations of nearest-neighbor CMT under investigation. The propagation

constants of the supermodes are also obtained by this algorithm.

2. Having obtained both the eigenvectors (peak amplitudes) and eigenvalues (prop-

agation constants), one may construct the (non-singular) matrix of eigenvectors

Amn (whose columns are the linearly-independent supermodes), and the diagonal

matrix of eigenvalues, Λ ≡ diag{β2
m}.

3. Next, M [see Eq. (5.9)] is reassembled by using the matrix theorem cited in

Ref. [20, Eq. (7), Lem. 1–2]: if the eigenvalues are distinct (which they are in this

case), M can be reconstructed as follows: M = AΛA−1. The matrix is unique to

within a similarity transformation, which does not affect the following step. An

example is shown in Table 1. (Notice that κ11 and κ55 are approximately one-half

of κ22, κ33, or κ44, as discussed earlier.) The values of the reconstructed M matrix

may be useful to design couplers in the strongly-coupled regime from the output

of the FDFD mode-solver algorithm itself.

5.2.1 Asymptotic Accuracy of

Numerically-assisted CMT

Here, the eigenvalues (λk) and eigenvectors (A(k)) are obtained from a computer

simulation. However, they may be obtained from measurements on fabricated struc-

tures, in order to test whether the intended coupling matrix was successfully obtained in

practice. The experimental procedure to measure eigenvalues and eigenvectors could be

similar to that used to image the modes of laser resonators.

It is assumed that the measurements result in some small, uncorrelated errors in

the eigenvalues (Δλk) and eigenvectors (Δuk). The inversion algorithm presented in the
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previous section can also be used with measured data. In this section the accuracy of the

nearest-neighbor coupling and next-to-nearest-neighbor coupling coefficients in terms

of Δλk and Δuk is studied.

First, a simple theoretical estimation is carried out. It will be assumed that the

coupling matrix is Hermitian. After some algebra, the error in any element of M can be

written to first order as

ΔMij =
N∑
k=1

[(uik + ujk)Δukλk + uikujk Δλk] . (5.14)

For simplicity, here, it is assumed that Δuk is zero, i.e., the errors are only in the mea-

sured eigenvalues, since for identical arrayed waveguide structures, successive eigen-

vectors look quite different from each other and are easily distinguished [20]. The sim-

pler form of the eigenvectors is used, retaining only the first term of Eq. (5.11), so that

the errors in the reconstructed nearest-neighbor coupling and next-to-nearest-neighbor

coupling coefficients are

ΔMj j+1 =
N∑
k=1

2

N + 1
sin

jkπ

N + 1
sin

(j + 1)kπ

N + 1
Δλk,

ΔMj−1 j+1 =

N∑
k=1

2

N + 1
sin

(j − 1)kπ

N + 1
sin

(j + 1)kπ

N + 1
Δλk.

(5.15)

Assuming that Δλk are uncorrelated identically-distributed random variables with mean

E[Δλ] and variance Var[Δλ], the mean and variance of the nearest-neighbor coupling

and next-to-nearest-neighbor coupling coefficients can be calculated. Both ΔMj j+1 and

ΔMj−1 j+1 are zero-mean, since, for example,

E[ΔMj j+1] = E[Δλ]
N∑
k=1

2

N + 1
sin

jkπ

N + 1
sin

(j + 1)kπ

N + 1
= 0 (5.16)

because the summation vanishes as a consequence of the orthogonality of the eigenvec-

tors (the sum is equal to u(j).u(j+1) = 0).

To calculate the variance, it can be shown that

Var[ΔMj j+1] = Var[Δλ]

(
1

N + 1

)2 N∑
k=1

(
cos

2kπ

N + 1
− cos

2jkπ

N + 1

)2

= Var[Δλ]

(
1

N + 1

)
,

(5.17)
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Figure 5.4: Error versus N : Exact eigenvalues of a tridiagonal symmetric matrix of
size N were perturbed by values chosen from a uniform random distribution with vari-
ance chosen to be ten percent of the first eigenvalue. The variance and mean of the
reconstructed nearest-neighbor coupling and next-to-nearest-neighbor coupling coeffi-
cients are plotted, calculated from a distribution of coupling matrices generated by 105

iterations, showing that Eq. (5.18) is a good predictor of the reconstruction accuracy.

and the same result is obtained for Var[ΔMj−1 j+1].

Summarizing the results,

Nearest neighbor: E[ΔMj j+1] = 0, Var[ΔMj j+1] = Var[Δλ]/(N + 1),

Next-to-nearest: E[ΔMj−1 j+1] = 0, Var[ΔMj−1 j+1] = Var[Δλ]/(N + 1).

(5.18)

Numerical calculations, shown in Fig. 5.4 confirm Eq. (5.18). (Numerical calculations

show that the same relations are seen to hold in the case of non-identical waveguides,

in which case the off-diagonal terms of the coupling matrix are not identical along the
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sub-diagonals, and also for slightly asymmetric matrices.)

These results show that the error in reconstructing the coupling coefficients de-

creases, rather than increases, as the number of inaccurately-measured eigenvalues in-

creases. This results from (spectral) averaging: each reconstructed coupling coefficient

averages over the entire spectrum of eigenvalues, and therefore, benefits from the law of

averages. In contrast, directly measuring a coupling coefficient e.g., by a local near-field

probe of the field in the coupling region, does not benefit from any ensemble averaging.

5.2.2 Next-to-nearest-neighbor Coupling

As Table 1 shows (calculated at one specific value of the waveguide separation

distance), M contains useful information about non nearest-neighbor coupling. One

may read off whichever coupling coefficients are needed: in particular, one may calcu-

late the ratio |κ13/κ12|, i.e., the ratio of next-to-nearest-neighbor coupling coefficient to

the nearest-neighbor coupling coefficient.

Table 5.1: An example of a reconstructed coupling (M) matrix from FDFD calcula-
tions of eigenmodes and eigenvalues. Si/SiO2, TE polarization, separation s = 350 nm,
β0 = 2.26128 (2π/λ). Although the nearest-neighbor coupling coefficients dominate,
the self-coupling and off-tridiagonal coupling terms are non-zero.

M = diag
{
β0

2
}
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.00636 +0.12794 −0.00641 +0.00057 −0.00004

+0.12789 −0.01263 +0.12838 −0.00643 +0.00050

−0.00635 +0.12839 −0.01271 +0.12839 −0.00635

+0.00050 −0.00643 +0.12838 −0.01263 +0.12789

−0.00004 +0.00057 −0.00641 +0.12794 −0.00636

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

First we estimate the expected dependency of this ratio of coupling coefficients

to the edge-to-edge separation, s. Using Kuznetsov’s solution for the coupling coef-

ficients of two slab waveguides [21], we observe that κ in both the TE and TM cases

varies with s as κ ∼ e−ps where p is the field decay length in the cladding. Therefore,
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Figure 5.5: Ratio of coupling coefficients for different separation distances extracted
from Eq. (5.9), which was reconstructed using an algorithm described in the text. (a)
TE Polarization An exponential fit expected from a simple nearest-neighbor-coupling
theory holds throughout this regime. (b) TM Polarization At a separations less than
450 nm, the ratio deviates significantly from the predicted behavior. (c) TE Polarization
The ratio of cross coupling coefficients show that the reconstructed coupling matrix M
becomes asymmetric as the waveguide separation is reduced. (d) TM Polarization The
asymmetry of the coupling matrix begins at a larger separation.

the ratio κ13/κ12 for both polarizations has the following expression (to leading order),

Δ3I13 + κ13

Δ2I12 + κ12

≈ κ13

κ12

=
e−p(2s+w)

e−ps
= e−p(s+w) (5.19)

i.e., the ratio of next-to-nearest-neighbor coupling coefficient to the nearest-neighbor

coupling coefficient should fall off exponentially with increasing separation.

Fig. 5.5 shows the calculations of this ratio using the above algorithm. The ex-
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ponential fit describes the TE polarization much better than it does the TM polarization,

indicating that some of the central assumptions of CMT are starting to fail for the TM

polarization at short distances. The next section will describe another symptom of the

failure of CMT, obtained by looking at the eigenvalues, i.e., the propagation constants,

of the supermodes.

5.2.3 Eigenvalue Fanout: Effective Index of the Supermodes versus

Separation Distance

Another way to evaluate the predictions of CMT is the theory behind the eigen-

values of Eq. (5.9), which predicts that the effective index of the m-th supermode is

given by the equation

β2(m)
= β0

2 +κself +2 (κ +Δ0I) cos
mπ

N + 1
− 2

δκself

N + 1

(
sin2 mπ

N + 1
+ sin2 Nmπ

N + 1

)
,

(5.20)

where β0 is the propagation constant of a single waveguide in isolation. Note that for

N = 5, the m = 3 supermode has the special property that the right-hand-side of the

above expression , i.e., the index of that supermode does not change with the coupling

coefficient κ. Hence, n(3)
eff is only weakly dependent on the separation distance (through

the self-coupling coefficients, κ11, κ22, . . . , κ55).

To verify this prediction, Fig. 5.6 shows the effective index calculated by FDFD

for each of the five supermodes at various separation distances in three different silicon-

based material systems. These values of the effective index take into account coupling-

induced frequency shifts (CIFS, [22]) because M itself results from a numerical calcu-

lation of the supermodes (and their eigenfrequencies), rather than individual waveguide

modes and the propagation constants of isolated waveguides.

In the limit of large separation, the effective indices of all the supermodes tends

to that of the single waveguide. As the separation distance is decreased, the coupling

coefficients increase, and the effective indexes of the different modes separate [23].

The first three modes remain guided even as s shrinks to zero, since their effective

indices are higher than that of the single waveguide. From Fig. 5.6, one can read off the

waveguide separation distance at which conventional CMT is expected to fail, and more
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accurate design tools, such as FDFD calculations, should be used to accurately predict

the coupling coefficients.

An interesting observation obtains from the m = 3 supermode: at a certain

(small) waveguide separation, n(3)
eff is no longer independent of s and begins to deviate

substantially from a straight line, contrary to the prediction of Eq. (5.20). This deviation

is much more pronounced in the case of the TM polarization.
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Figure 5.6: Left column: TE Polarization, and Right column: TM polarization. Effec-
tive index of the five supermodes for different separation distances with ncore = 3.47,
and (a,b) nclad =1.46, (c,d) nclad = 1 (e,f) nclad = 2.05. For each case as the separation
between the waveguides increases, the effective indexes of the modes converge to that
of the single waveguide. These values are (a) neff = 2.36 and (b) neff = 1.66 for oxide
cladding, (c) neff = 2.24 and (d) neff = 1.07 for air cladding, (e) neff = 2.56 and (f) neff

= 2.26 for nitride cladding. The shaded regions indicate > 5% deviation of neff for the
m=3 supermode from its theoretical value, which as discussed in the text, is predicted
by CMT to be independent of the separation distance.
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5.3 Electric Field Perturbations from

Strong Coupling

In the previous section, it was detailed how the predictions of coupled mode

theory are no longer valid at short separation distances. Here, we will show exactly

what is happening to the coupled-modes themselves at these distances. As described

in section 1.4.1, at short separation distances, the reconstructed matrix M can become

non-symmetric (non-Hermitian), although the eigenvalues remain strictly real as long as

the mode is above cut-off. This can be seen in fact in the matrix written in Table 1 and

Fig. 5.5(c,d): κ12 �= κ21 and κ13 �= κ31, etc.
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Figure 5.7: TM Polarization Ex: The field profile of the fifth eigenmode in the first
waveguide. When the separation is decreased below 450 nm, the peak of the field in the
high-index rib indicated by the dotted red line in (a) is no longer centered, and the mode
shape is considerably altered, thereby changing both κ and neff. Consequently, CMT
can no longer accurately predict the mode coupling.

The reason for this asymmetry is that the fields within the individual waveguides

are no longer centered between the dielectric boundaries. As shown in Fig. 5.7, the
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modal profile starts to deviate in the location of its maxima and minima. For example,

the peaks of the field in the outermost ribs are skewed and no longer centered in the

middle of the dielectric boundaries, and can even reach the boundaries of the high-index

and low-index regions. It is no longer accurate to read off the peak amplitudes of the

supermode in order to write the eigenvectors A(m) in Eq. (5.11)—doing so would result

in asymmetric M matrices.

Figure 5.8: TE Polarization Ey: Using the exact solution from a FDFD simulation
of a single waveguide, the horizontal cross section is extracted and five copies are
shifted from one another so that their separation corresponds to a waveguide separa-
tion of 80 nm. (a) These individual waveguide modes are scaled in accordance with
Eq. (5.11) for the fundamental mode (m=1). (b) The summation of the individual waveg-
uide modes; superimposed is the FDFD solution of the entire five waveguide structure.
(c) Zoomed in to just the first waveguide. CMT and FDFD show a shift of the mode to-
wards the center of the waveguide structure. (d-e) The fifth mode, both CMT and FDFD
show a shift towards the edge of the waveguide structure however FDFD shows a shift
of greater magnitude.

At a short separation distance of 80 nm, Fig. 5.8 shows the coupled-mode theory

used to reconstruct the m = 1 and m = 5 supermode (plotted with continuous lines)

and the supermode calculation of FDFD (with crosses). Note that in both cases the field
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is asymmetrically centered within the dielectric boundaries of the outer waveguides.

Recall that CMT is based on writing the field as a summation of the scaled individual

waveguide modes, Fig. 5.8(a,d), each of which is centered within its own core-cladding

boundaries. At short separation distances, when, for example, there is a significant con-

tribution of the (asymmetric) tail from the field in the second waveguide to the (sym-

metric) mode of the first waveguide, CMT itself predicts a lateral shift of the peak (of

the sum) away from the exact center of the waveguide. The scaling relationships from

Eq. (5.11) will enhance this effect for a multi-waveguide arrayed structure compared to

a (twin-waveguide) directional coupler.

For the fundamental mode, Fig. 5.8(a-c), the summation of the fields associated

with the first (blue) and second (green) waveguides results in the peak shifting towards

the center of the five waveguide structure, which qualitatively agrees with the FDFD

simulation. But the FDFD result for the fifth mode shows a shift of greater magnitude,

now towards the outer edge of the waveguide structure, indicating that CMT no longer

accurately predicts the modal profile of the supermode. TM polarized modes start to

shift at a larger separation, due to the field discontinuities at the waveguide boundaries

and electric field enhancement in the cladding regions.

To emphasize this fact, Fig. 5.9 plots the locations of the field peaks in the ar-

rayed waveguide structure for each of the supermodes as the separation distance be-

tween the waveguides is reduced. Note that for large separation distances all of the

peaks are located at the center of the dielectric boundaries for each of the five super-

modes. However, as the separation distance is further reduced the field peaks begin to

shift, and, as shown for both the fundamental and fifth supermode, at sub-50 nm sepa-

ration distance the field peaks for the two outer waveguides have completely left their

dielectric boundaries (this is very different from the conventional picture of supermodes

in weakly coupled arrays [16]). As outlined in Fig. 5.8, the direction of the shift of an

individual waveguide’s peak for each supermode is completely determined by the scaled

magnitude and phase of the evanescent tail of the neighboring waveguide. This shift-

ing of the modal peaks for each of the supermodes is accompanied by a change of the

effective index of each of the supermodes, Fig. 5.6. As shown in Chapter 4, this “eigen-

value fanout” is a well known prediction of CMT with strong practical applications. For
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Figure 5.9: Displacement of the field peaks for each of the five supermodes shown in
Fig. 1 as the separation distance is varied. As the separation is reduced, the modal
profiles become strongly perturbed, while at large separations each of the field peaks is
exactly centered within its dielectric boundaries. The modal profiles were obtained from
a finite difference frequency domain algorithm [24].

example, a result of this fanout is the dephasing of the symmetric and antisymmetric

supermode of an N = 2 arrayed waveguide structure, which completely determines the

directional coupler’s beat length [25].

Note also, as shown in Fig. 5.8(e), that FDFD predicts a different exponential

decay constant of the field wings, compared to CMT. This is a fundamental failure

of CMT in the sense that the eigenmode of the composite structure can no longer be

written as the sum of modes of individual waveguides (in isolation from each other).

In addition to perturbations of the electric field within the high-index silicon regions,

strong coupling also affects the decay rate of each of the supermodes outside the arrayed

waveguide structure. It is the fields in this region that are responsible for determining

coupling length, cross talk, and circuit integration density.
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5.3.1 Evanescent Tail Fanout

The electric field in the cladding region decays exponentially with distance. Con-

ventional CMT for arrayed slab waveguides predicts that themth supermode decays with

some spatial constant p,

E
(m)
cladding(x) =

N∑
l=1

A
(m)
l e−p(|x|−(l−1)d) = Cme−p|x|, (5.21)

where d is the center-to-center spacing between individual waveguides and,

Cm =
N∑
l=1

A
(m)
l ep(l−1)d, (5.22)

where

A
(m)
l =

(
2

N + 1

)1/2
sin

lmπ

N + 1
,

m = 1, 2, . . . , N

l = 1, 2, . . . , N
. (5.23)

Since Cm is a constant for the mth supermode, CMT predicts the same decay rate for

each supermode regardless of separation.

Fig. 5.10 (markers) shows the exact decay constant of each of the five super-

modes of the arrayed waveguide structures studied here as the waveguide separation is

Figure 5.10: Decay constant of the five supermodes for different separation distances
with height 500 nm and width 200 nm. The evanescent tail is fitted around 50 nm from
the edge of the waveguide. Also included is the slab waveguide predictions (solid-line)
for each of the five supermodes, offset by a constant, pΔ, as described in the text.
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reduced. The decay constant is determined by numerically fitting the evanescent tail

to an exponential form, ep
(m)
0 x, around 50 nm from the edge of the waveguide. Also

included is the slab waveguide solution of the decay constant (solid-line), which is cal-

culated from the corresponding supermode’s effective index, and is offset by a constant,

pΔ, to be described in the next section. It can be seen that despite the CMT prediction

of the same decay rate across each of the supermodes, there is indeed a strong depen-

dence of the supermode’s decay rate on the supermode’s effective index, which is a well

known correspondence for optical modes as shown in both the analytical solutions for

the higher order modes of a single slab waveguide and an optical fiber [26]. At large

separation distances, or in the “weakly-coupled” regime, the decay rate of each of the

supermodes converges to that of the single isolated waveguide and will have asymptot-

ically identical decay rates. As the separation distance is reduced, the decay rates fan

out, with the fundamental mode decaying the quickest in the cladding region.

We will next show that in addition to these strong coupling effects—shifting of

the electric field peak locations and evanescent tail fanout—another perturbative effect

on the arrayed waveguide structure is due to the vertical confinement of the mode.

5.3.2 Effects of Modal Confinement

on the Isolated Waveguide

The framework of CMT is built upon writing the coupled-waveguide’s elec-

tric field profile in terms of a linear superposition of the individual isolated waveguide

modes. It is therefore necessary to have an accurate understanding of how confinement

of the optical mode affects the basis set used in reconstructing the supermode profiles of

an arrayed waveguide.

As shown in Fig. 5.11(a), in order to demonstrate the effects of optical confine-

ment on the waveguide mode we fit the evanescent tail of the transverse electric field

profile, Ey, at the center cross section of an isolated single waveguide (height = 250

nm), every 25 nm around 50 nm to an exponential form, ep(x)x. The mode profiles were

obtained from a finite element mode solver (COMSOL). Fig. 5.11(b) shows that for a

single waveguide of 500 nm height, the field in the cladding decays exponentially with

a spatially varying (i.e., chirped) decay constant p(x), with the mode decaying faster
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Figure 5.11: (a) Method of extracting the spatially dependent decay constant: The
evanescent tail is fitted at the center cross section of an isolated single waveguide (height
= 250 nm), every 25 nm around 50 nm to an exponential form, ep(x)x. (b) A spatial de-
pendence of the decay rate is introduced due to the vertical confinement of the waveg-
uide. (c) As the height of the waveguide is increased, the maximum decay rate, p0,
approaches the slab waveguide solution, p∞.

near the edge of the waveguide, where p(x = 0) ≡ p0. We find that the reason for

this novel spatial dependence of the decay constant is due to the vertical confinement of

the mode. In Fig. 5.11(c), we show the dependence of p0 on the height of the waveg-

uide: for large heights p0 approaches the spatially-independent slab-waveguide solution,

p∞ =
√

β2 − n2
cladk

2. We define pΔ as the difference between p0 and p∞. We will next

show how this spatial dependence of the decay constant affects the supermodes when

five such waveguides are coupled together.

5.3.3 Effects of Modal Confinement

on the Arrayed Waveguide

A similar analysis as demonstrated in the previous section is performed on the

supermodes of the arrayed waveguide. Fig. 5.12 shows the decay rate p(m) of the five

supermodes of the arrayed waveguide structure, calculated numerically from FEM sim-

ulations at a separation of 80 nm. It can be seen that the spatial dependence of the decay

rate of the single isolated waveguide is impressed onto the supermodes of an arrayed

waveguide structure. Note that each of the five supermodes asymptotically approaches

its respective p(m)
∞ (dashed-line), and that these asymptotic values have “fanned out” due

to the strong coupling at this separation distance. The isolated single waveguide solution
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Figure 5.12: Spatially-dependent decay rate of the five supermodes at a separation dis-
tance of 80 nm, showing the super-exponential decay of the fields close to the high-
index contrast dielectric boundaries. Farther away from the boundaries, the fields are
well described by an exponential decay constant p(m)

∞ (dashed-line). The isolated, single
waveguide solution (black crosses) is located slightly below the m = 3 supermode.

(black crosses) is plotted slightly below the m = 3 supermode, where it is known from

CMT that for this mode only next-to-nearest neighbor coupling affects the modal pro-

file and effective index, which explains the high degree of agreement between the two

trends. The dependence of the decay-rate on both confinement and coupling is outlined

in Fig. 5.13 and Fig. 5.14. As the waveguide separation is increased, both p
(m)
∞ and p

(m)
0

approach that of the single waveguide for each of the supermodes.

5.4 Modifying the CMT Basis

for Reconstruction

There has been a significant amount of research with the aim of developing more

accurate versions of CMT [27, 28, 14, 15, 25], and while they can offer improved ac-

curacy for many waveguide devices compared with conventional CMT, they can also

be less intuitive to incorporate into a specific design; not to mention that many of these

improved methods are developed within the limitations of the effective index method for

ridge waveguide structures. Here, we show how one may extend CMT to incorporate

these perturbative effects, thus retaining much of the simplicity and intuitiveness often
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Figure 5.13: (a) Spatially-dependent decay rate of the five supermodes at a separation
distance of 80 nm, and a height of 500 nm. Note that the supermodes decay to different
assymptotic values. (b) By increasing the separation between the waveguides, the spatial
dependence of the decay rate remains—that of the single isolated waveguide—however,
each mode decays to the same asymptotic value.
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Figure 5.14: (a) By increasing the height of the waveguide, each of the five supermodes
no longer has a spatially dependent decay rate, however, at a separation of 80 nm each
of the supermodes decays at a different (constant) rate. (b) For a 400 nm separation and
a 4 μm height, the supermodes have no spatial dependence, and decay at the same rate
(and thus satisfy the requirements of CMT)
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Figure 5.15: Comparison of the modes generated at a separation of 80 nm from both
traditional CMT and the new basis set; the latter accounts for the spatial dependence of
the field decay coefficients. To obtain the composite field, five copies are made of an
individual waveguide mode, laterally shifted from one another, scaled according to the
usual supermode ratios [25, Eq. (13)], and summed.

associated with CMT while also providing improved modal profile predictions com-

pared with conventional CMT [29]. This coupled mode theory analysis assumes that

the evanescent tail of a single waveguide can be calculated (or measured), e.g., using

a standard finite element or finite difference method. For the transverse electric polar-

ization, which requires continuity of the electric field across the waveguide boundaries

in the coupling region, it will be shown how conventional CMT can be adapted by ac-

counting for a simple spatial dependency of the parameters that enter into the basis set

of solutions to the coupled mode equations. This “running” of the parameters is unique

in the development of optical coupled mode theory. More accurate modal profiles al-

low for improved estimation of coupling lengths and crosstalk in multi-waveguide and

inter-connect structures.
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5.4.1 Calculating the Transverse Field Profile

Here, the problem of reconstructing (or predicting) the mode profiles accurately

is analyzed, by taking as our starting point measurements or numerical estimates of

the spatially dependent decay rate, p(m)(x), such as shown in Fig. 5.11. This method

assumes—as usual—that within the high index regions, the field has a dependence of

the form cos(h(m)x). The relationship between p
(m)
0 and h(m) is of the same form as for a

slab waveguide, i.e., satisfying the requirement of continuity and differential continuity

across the waveguide boundary,

p
(m)
0 (s) = h(m)(s) tan[h(m)(s)w], (5.24)

where 2w is the width of each silicon waveguide. Then, we assemble the field as usual,

Ê(m)(x; s) =

N∑
l=1

A
(m)
l ×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cos
[
h(m)(s)(|x| − (l − 1)d)

]
,

x ∈ ([l − 1]d− w, [l − 1]d+ w)

cos
[
h(m)(s)w

]
e−p(m)(x,s)(|x−(l−1)d|−w),

otherwise

(5.25)

In words, Ê(m)(x; s) represents the scaled summation of shifted replicas of the single-

waveguide modal solution, where the latter are renormalized by the running of the p and

h constants with the inter-waveguide separation distance, s. By way of comparison, in

conventional CMT, although the superposition coefficients may be spatially dependent

(as in the analysis of tapered couplers), the modal basis set is not.

From Fig. 5.15 it can be seen that the conventional CMT profile overshoots the

exact FEM simulations for both the first and second supermode but remains quite ac-

curate for the third mode. This is to be expected, since, as pointed out in section 1.3.2,

the m = 3 mode in the case of N = 5 coupled waveguides has the special property that

the effective index does not change with the cross-coupling coefficient. For the fourth

and fifth mode, the conventional CMT profile undercuts the FEM solutions. In fact, at

a waveguide separation of 80 nm, where the fifth mode is close to cutoff, conventional

CMT does a very poor job of describing how this mode decays into the cladding region,

compared with the improved method presented here.
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Figure 5.16: (a) FEM solution of the fundamental supermode of a silicon-on-insulator
arrayed waveguide at a separation distance of 80 nm. The solid black line represents the
field profiles shown in Fig. 6, whereas the region indicated by the white dashed lines
represents the decaying region of the supermode. (b) The rate of decay of the funda-
mental supermode in the region indicated by the white dashed lines in (a), comparing the
accuracy of CMT, NA-CMT with that of FEM. (c) FEM solution of the fifth supermode.
(d) Calculated decay rate of the region indicated by the dashed lines in (c), showing the
improved accuracy of NA-CMT compared with CMT.
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5.4.2 Calculating the 2-D Field Profile

Coupling to nearby devices, whether desired or unintentional, is not solely de-

pendent on the rate of decay at the center cross section of the device; rather, it is the

entire 2-D profile that decays into the cladding region that will perturb a neighboring

device. To calculate the 2-D mode profile, we determine the spatially dependent decay

constant along the height of the waveguide near the waveguide’s boundary. The method

is identical to that described in the previous section, only it is now performed at different

“slices” of the arrayed waveguide. By taking into account the evanescent tail fanout of

the different supermodes, a non-linear least-squares fit to the form cos(h
(m)
y y) may be

performed to generate the 2-D cross section. Fig. 5.16(a,c) shows the exact FEM solu-

tions for the fundamental and fifth supermode respectively, where the solid black line

located at the center region represents the field profiles shown in Fig. 5.15. The region

included by the white dashed lines is the focus of the 2-D reconstruction. Shown in

Fig. 5.16(b,d), the generated 2-D profile of the electric field decaying into the cladding

region shows improved agreement with the FEM method. Similar to the last section,

CMT overshoots the rate of decay for the fundamental supermode and undershoots for

the fifth supermode, which is located a few nanometers from modal cut-off.

5.5 Summary

In this Chapter, the validity of coupled mode theory CMT for high-index con-

trast (e.g., silicon-based) optical waveguiding structures was analyzed. A fully vectorial

finite-difference frequency-domain (FDFD) algorithm was used to obtain the modal pro-

files and effective indices of the supermodes in a non-perturbative way. When the modal

profiles can be “discretized” to read off peak amplitudes within each of the waveguide

cores, a theorem from matrix algebra can be employed to solve the “inverse problem”—

to reconstruct accurately the matrix of coupling coefficients M (a procedure we have

called numerically-assisted coupled-mode theory, NA-CMT). The NA-CMT framework

can be used to find out when the nearest-neighbor-coupling approximation breaks down.

Of concern was also the physical phenomena that occur when waveguides be-

come strongly coupled and fully confined in a high-index contrast medium. It was
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shown that at large separation distances these perturbative effects can be ignored, while

at short separation distances the effects of these perturbations may be taken into account

through the choice of basis used in reconstructing the fields. Utilizing the evanescent tail

fanout, which can be obtained from either measurement or simulations, we showed that

one can generate a more accurate basis set. As the separation distance between waveg-

uides is decreased, the decay constants of the fields fan out (Fig. 3) and depend upon the

transverse coordinate x. Ignoring this “running” of the p and h constants leads to inaccu-

rate prediction of the mode profiles in the strongly coupled regime and, in particular, of

the evanescent tails, which determine cross talk, allowable bending radius, the coupling

between rings and bus waveguides, etc. Finally, we show how a NA-CMT can be used

to construct the 2-D waveguide profile that is responsible for coupling to nearby devices.

We emphasize that the only required piece of information for reconstructing modes of

strongly coupled, arrayed waveguides is the rate of their decay into the cladding, which

is experimentally measurable using a variety of non-destructive techniques.
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6 Characterization of Nanophotonic

Devices

Measure what is measurable, and make measurable what is not so.

—Galileo Galilei

The previous two chapters laid out computational and analytical methods for

predicting the characteristics of nanophotonic devices. In Chapter 3, methods of simu-

lating the local enhancement of each resonator in a hundred-plus ring disordered CROW

was detailed. Here, we will demonstrate a technique that allows them to be measured di-

rectly. Further, we will show how this technique may be used to characterize micro-ring

resonators, and simultaneously measure 10 waveguide facets allowing for rapid diag-

nostics. In the second part of this chapter, different methods of measuring group delay

will be outlined. Specifically, it will be shown how swept-wavelength interferometry

allows for rapid delay characterization of an amplified device—without the need of an

optical filter.

6.1 Quantitative Infrared Imaging

Silicon-on-insulator (SOI) integrated photonic circuits with one or several mi-

croring resonators are an active area of research. In multi-resonator circuits, such as

shown in Fig. 6.1, the individual resonators often have no accessible ports, requiring

such structures to be treated as a “blackbox,” where the behavior of the individual res-

onators are probed through transmission measurements. For post-fabrication trimming

methods this is far from ideal. For example, a common multi-ring device is the side cou-
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Figure 6.1: Typically resonator structures, such as this side coupled integrated spaced
sequence of resonators, are probed by measuring each of the ports separately, where the
structure itself is treated as a “black box,” where it is unknown if measured resonance
variations are due to a defective resonator, output coupler, etc.

pled integrated spaced sequence of resonators (SCISSOR) used as a delay line, which

is composed of a linear array of identical resonators coupled together through one bus

waveguide. Structural imperfections during fabrication can result in a variation of the

microring resonant frequencies and coupling coefficients across the device. If a single

resonator was off resonance, one could tell by noting an additional dip the transmis-

sion spectra measured at the through port using a lens-tipped fiber, however, they would

be unable to decipher the specific resonator that was defective. It would be beneficial

to know precisely which resonator caused this dip, so that it could then be tuned or

trimmed through various methods. Wavelength resolved infrared imaging provides such

information.

Rayleigh scattering due to sidewall roughness is a source of radiative loss in

high-index contrast SOI waveguides at telecommunications wavelengths. Some of this

light can be collected by imaging the device plane onto a high-sensitivity infrared cam-

era through a microscope objective. This can be used to provide a local measure of the

guided light-intensity, as the scattered light is directly proportional to the light-intensity

guided in a waveguide or circulating within a resonator. Thus, using an infrared cam-

era to image the photonic circuit at multiple wavelengths and processing the resulting

images can yield spectral intensity-enhancement and transmittance data.

The ring resonator is ideal for measuring with an infrared camera. The reason

being, that silicon has incredibly low material losses at telecommunication wavelengths,

as such, a low intrinsic quality resonator is most often the result of high scattering losses.
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Figure 6.2: (a) A typical ring resonator: light within the resonator will become en-
hanced for wavelengths on resonance. (b) Infrared image of the resonator when excited
by a resonant wavelength.

On the other hand, a high quality resonator will benefit from a significant enhancement

of power circulating through the ring, which will again result in high (net) scattering.

In other words, both “good” and “bad” rings scatter a significant amount of light. With

a suitable integration time, an infrared camera can accurately measure the properties of

these rings. Fig. 6.2(a) shows a typical micro-resonator that will be measured here, and

Fig. 6.2(b) shows an IR image of the resonator when excited by a resonant wavelength.

Light is clearly circulating within the resonator for this wavelength (the bright spot on

the bottom right corner of the image is caused by light coupling to the counter propa-

gating mode due to the periodic surface roughness seen by the propagating photons).

Fig. 6.3(a) shows a 2-D simulation (FDTD [1]) of the intensity enhancement

of a single resonator. When light at one of the ring’s resonant wavelengths is coupled

into the resonator, energy builds up until the losses (from the couplers, absorption, or

scattering) match the the power being supplied by the bus waveguide. However, to first

order, light that is not within the Lorentzian response of the ring will simply bypass it.

Shown in Fig. 6.3(b) are infrared images of the SCISSOR structure at three different

wavelengths. Incidentally, we note that these resonators were originally designed to

be the same size, but ended up having different resonant frequencies due to fabrication

irregularities. Infrared imaging is thus able to tell you exactly which resonator is red-

shifted of blue-shifted from the target value so that it may then be tuned. Contrary, a
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Figure 6.3: (a) Finite difference time domain simulations at four different time steps,
showing the enhancement of energy in the ring for resonant wavelengths. (b) Infrared
image of a circuit, excited with the resonant wavelength of three ring resonators.

simple transmission measurements at the through port—all that would be available if

this device was operated as an optical buffer—would tell you that some of the rings

were defective, but would not isolate which one.

6.1.1 Calibration of the Imaging Setup

Before the spectral variations of a multi-resonator circuit can be measured, the

imaging setup must be properly calibrated. Perhaps the most important control nob is

camera integration time (or equivalently, input optical power). If too high of an integra-

tion time is used, the images will become saturated and spectral features will be lost.

For too low of an integration time, low-signal features will not be measured. Proper

integration time was typically determined through a series of measurements, where the

images where intentionally saturated at first, and then the integration time ramped down

to the ideal level.

Once integration time has been chosen, one may determine the precise amount of

power hitting the camera. To do this, laser light from a free space collimator is directly

coupled onto the infrared camera (with the desired settings), as the laser power is tuned;

Fig. 6.4 shows results of six different power levels. As the output power of the laser is

precisely known, dividing each pixel by the sum of all pixels gives the percentage of
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Figure 6.4: Using the camera settings reported here, light was collimated onto the in-
frared camera for different (known) power levels. Dividing each pixel by the sum of all
pixels gives the percentage of power falling onto each pixel.

Figure 6.5: Correlation between camera ADU to the power hitting each pixel

power falling onto each pixel. By then multiplying by the total power delivered by the

laser, one obtains the power that fell onto that pixel. As shown in Fig. 6.5, by correlating

camera ADU to the power levels hitting the pixel, one can determine exactly how much

light is being integrated by the camera for a given readout value. Once the camera has

been properly calibrated, the photonic circuit may then be measured.
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Figure 6.6: (a) Optical microscope image of 10-ring SCISSOR. (b) IR image of SCIS-
SOR when excited by broadband source. (c) Using a tunable laser source, comparison
of spectra obtained at the ten drop ports using IR images (blue line) and spectra obtained
from detected drop port power using fiber-coupling (green line). The spectrum for Ring
10 was obtained by measuring at the encircled waveguide defect.

6.1.2 Multi-ring Structures

The particular multi-ring structure fabricated, tested and reported on here was the

(SCISSOR), comprised of 10 racetrack resonators as shown in Fig. 6.1. Such devices

may be used for slow-light [2], or as a linear, or nonlinear self-limiting, add-drop filter

[3, 4]. In recent years, IR imaging using vertically scattered light has been used for

loss characterization of planar and SOI photonic crystal waveguides [5, 6], and for the

study of localization, polarization conversion and dispersion in disordered waveguides

[7, 8, 9]. Here we use IR imaging to simultaneously characterize several SOI microring

resonators.

The device was fabricated on an SOI wafer with 250 nm silicon thickness and 3

μm buried oxide thickness, using electron-beam lithography and dry-etching. The ring

and bus waveguides have a top layer of 200 nm-thick hydrogen silsequioxane (HSQ),
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Figure 6.7: Top: Fabrication error that resulted in only a few nanowatts being measured
using a lens-tipped fiber at the end-facet. Middle: The fabrication error “lights up” when
light is coupled into the device and then imaged using an infrared camera. Bottom:
Comparison of the spectral characteristics probed with the infrared camera, with the
nano-Watt power levels that were measured using the lens-tipped fiber.

while air forms the side cladding. Using photolithography, 3x2 μm2 SU-8 couplers are

patterned over 150 μm-long silicon waveguide inverse tapers. The ring radius is 25 μm,

and the straight track length is 40 μm.

Two light sources are used separately: a white-light source is used for broad-

spectrum incoherent imaging of the chip, mainly for alignment purposes and deter-

mining averaging paths, as discussed later. Alternatively, TE-polarized coherent light

from a tunable laser source is then coupled to the chip through polarization maintaining

lens-tipped fiber, with 20-dB polarization extinction measured after the tip. A XEVA-

FPA-1.7-320 12-bit IR camera (XenICs NV, Belgium, 320x256 pixel grid with a 30

μm-pitch) is used to spatially image the chip through a 5x microscope objective lens.

The maximum and minimum detectable powers per pixel (area = 36 μm2), for a camera

integration time of 4ms, are 0.16 nW and 0.04 pW respectively. Fig. 6.6(b) shows a

one-shot IR image of the entire SCISSOR device, when excited by a broadband source

centered at a wavelength of 1570 nm. This image shows that for rings 1 through 9 (start-

ing at the top of the image), the end points of the drop waveguides, along the cleaved

facet of the chip, scatter sufficient light. With this technique, the desired spectral con-

tent could also be tapped anywhere on the chip using grating couplers[10]. For the 10th

ring, there was a fabrication defect that prevented the drop port from being measured

accurately, and instead, the encircled defect, at a point along the waveguide was used.
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Fig. 6.7 shows the fabrication defect that caused light to be radiated before making it to

the end facet—where only nanowatts could be measured using the lens-tipped fiber. In

the close vicinity of these measurement sites (both on the chip and at the end facet), a

spatial average of 4x4 pixel intensities is computed from an array of IR images obtained

at each wavelength, during a 10 pm step scan of the tunable laser source. Fig. 6.6(c)

shows a comparison of the drop port transmission spectra obtained from imaging with

the traditional method of measuring via a lensed fiber, translated (and re-aligned) se-

quentially from the first to the tenth drop port. Note that only a single alignment step (of

the input) is necessary for the imaging approach, compared to eleven alignments (and

ten tunable laser scans) for the lensed fiber approach. We observe very good agreement

of data obtained from both methods.

By way of comparison, to get a sense of the spatial alignment required using

the traditional lens-tipped fiber method, programmable piezo controllers were then used

to map out the the wavelength-response of the first resonator, as the lens-tipped fiber

was vertically translated at the drop port facet. Similar to the imaging setup, the piezo

controllers move the lens-tipped fiber a few hundred nanometers, where a wavelength

scan is performed, and then the process repeated. It can be seen in Fig.6.8(a), that

such a mechanical method of automating the measurement of the drop ports would need

micro-scale precision. To further map out the spatial profile of the radiated mode, the

laser was then fixed at a given frequency, while both x and y axis were translated using

piezo-controllers, as shown in Fig.6.8(b).

6.1.3 Resonant Frequency Locations Measured on Chip

IR imaging allows non-invasive measurement of the through port transmittance

of each ring within a multi-ring cascade, as would be necessary to determine the waveg-

uide cross-coupling coefficient κ, and the round-trip (amplitude) loss factor a [11, 12].

Compared to slower serial-scan probing methods such as near-field scanning optical

microscopy [13], and optical fiber-based probes [14], IR imaging can measure several

resonators simultaneously. The main disadvantage is the diffraction limited resolution.

Another set of images is obtained by scanning the tunable laser source wave-

length and recording the IR images of Rings 1 and 2 at a higher magnification (20x).
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Figure 6.8: (a) Spatial dependence on the transmission spectrum of a resonator on the
coupling alignment using a lens tipped fiber and a programmable piezo controller. The
piezo controller was translated a few hundred nanometers, where a wavelength scan
was then performed, and the process repeated. (b) Modal size of the radiated mode.
Measured by fixing the laser at a single frequency, and taking power measurements
while two piezo controllers were scanned in the plane perpendicular to the waveguide.

Fig. 6.10(a) shows a typical IR imaging profile at a wavelength of 1533.90 nm. The

waveguide profile is obtained by using an ASE source to illuminate all 10 rings. This

profile is then converted to a binary matrix, an example of which is shown in Fig. 6.9 for

a single ring, which is used to extract the desired paths which correspond to the input

port, the through port and the ring resonator. The pixel intensities are then averaged

over these selected path lengths and normalized by the input to yield the spectra shown

in Figs. 6.10(b) and 6.10(c). In order to compare between different areas, the averag-

ing regions should contain the same number of bends, junctions or defects; otherwise,

seemingly anomalous behavior can be observed for the magnitude of through port trans-

mittance for Ring 1 (magnitude of the path-averaged output > path averaged input). We

emphasize that it is the ratios of the ‘on’ and ‘off’ resonance transmission values that

are used to characterize the microrings [11, 12].

The free spectral range FSR, resonator bandwidthBW , and normalized through

port transmittance Tmin are obtained from the through port transmission spectrum. For
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Figure 6.9: Binary Matrix used to mask and average over each of the rings separately.

Figure 6.10: (a) IR image of Rings 1 and 2, at an input wavelength of 1533.90 nm, used
towards obtaining spectra for through port, drop port and circulating (’Ring’) powers,
normalized by the input, for (a) Ring 1 and (b) Ring 2.

a Ring 1 resonance at λres=1530.45 nm, FSR=2.31 nm (296 GHz), BW=0.12 nm (15

GHz), and Tmin=0.65. Using the expressions in Ref. 10, the relevant ring parameters

are extracted and summarized in Table 1. αRT is the loss (in dB) per round trip in the

ring. Icalc is the intensity enhancement factor of the ring, calculated as the number of

round-trips N of a circulating photon, which is the ratio of the photon lifetime τph and

the time taken to complete one round-trip of the ring, TRT .

N =
τph
TRT

=
Q/ω0

1/FSRfreq

=
FSRfreq

BW

1

2π
=

F

2π
, (6.1)

where ω0 is the radial resonance frequency, and F is the finesse of the resonator. In

Table 1, Icalc = N is compared against Imeas, which is the peak circulating intensity at

a resonant wavelength, read off from Figs. 6.10(b) and 6.10(c).

Scanning electron microscope (SEM) images convey a waveguide width of 540
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Table 6.1: Extracted Resonator Parameters

Ring 1 Ring 2
λres (nm) 1530.45 1532.77 1529.30 1531.60

κ2 0.032 0.035 0.022 0.020
a 0.859 0.832 0.878 0.861

αRT (dB) 1.32 1.60 1.13 1.30
Icalc 3.06 2.64 3.66 3.34
Imeas 2.36 2.08 2.50 2.11

nm and a resonator-waveguide gap of 310 nm. Using an effective coupler length [15]

of 51 μm, we estimate κ2 to be 0.036, which is close to the values extracted from the

imaging data. The high loss is consistent with the ≥ 10 nm sidewall roughness [16]

observed using the SEM. The corresponding intrinsic quality factor is 15,900, while the

loaded Q is 12,750. For high-Q resonators, the enhancement factor will compensate

for low intrinsic scattering losses. For our ring structure, the enhancement factor will

compensate for an intrinsic scattering loss as low as 0.001 dB/cm, which corresponds to

an intrinsic Q-factor of 7.6×108.

In summary, infrared imaging has been applied for characterization of individual

rings in a multi-ring structure, towards understanding the overall device performance,

and desired post-fabrication tuning. This technique is readily scalable to measure multi-

ple devices using larger fields of view and cameras with an increased number of pixels.

6.1.4 Waveguide Bends

As mentioned in Section 1.2, waveguide bends can also be a source of radiative

loss in a photonic circuit. The reason being, that a mode shifts away from its radial center

when going around a bend. This causes a mode mismatch between the straight and bent

waveguide regions, and also increases the electric field at the waveguide boundary, both

of which result in higher scatting losses [17, 18]. As was shown in the previous sections,

infrared imaging can be used to spot fabrication defects, or “holes” in a photonic circuit.

Similarly, it can also give a measure of where a device loses energy so that it can then

be properly redesigned or trimmed. Fig. 6.11 shows a 4.15 cm long straight waveguide

that folds upon itself seven times. One can see that the waveguide bends indeed scatter
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Figure 6.11: Infrared image of a 4.15 cm long straight waveguide that folds upon itself
seven times. As discussed in the text, the waveguide bends scatter a significant amount
of light compared with the straight sections. Also, the inverse taper coupler shows sig-
nificant scattering at the silicon/SU8 transition regions. The bottom right corner shows
light being scattered off of the output coupler due to reflections and mode-missmatch.

a significant amount of light compared with the straight sections. Further, one can see

that the inverse taper couplers also scatter a significant amount of light. Most notably,

light is scattered within the SU8 coupler where the silicon waveguide begins, and also

when the SU8 coupler is terminated. In the bottom right figure is an image of light

being coupled to the output fiber, where again one can see high scattering losses due to

reflections and modal-mismatch. This is another benefit to using an infrared camera to

probe “leaks” in photonic circuits, analogous to submerging a pumped bicycle tire into

a bucket of water to spot air-holes.

6.1.5 Imaging CROWs

Infrared imaging provides a method of determining the wavelength response of

individual rings. There is perhaps no device where this would be more beneficial then

the coupled resonator optical waveguide—where by definition—the individual rings
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Figure 6.12: (a) Method of extracting the spectral characteristics of a 35-ring CROW.
35 single-ring binary matrices (shown is their summation), are superimposed onto the
wavelength resolved infrared imaging dataset. (b) Enlarged image of a semi-transparent
mask superimposed onto the 35-ring CROW. (c) Simulation of how the field profiles
of a disorder-free CROW would look. (d) Wavelength resolved IR image of a 35-ring
CROW: each of the masks were averages over their corresponding ring at each wave-
length to produce the image shown.

have no accessible ports, leaving one with little information from a transmission spec-

trum on how an individual ring behaves. The characteristics of CROWs were discussed

in detail in Section 2.1. Here, we extend the imaging technique described in the previous

section to that of a CROW. Fig. 6.12(a) outlines the method of extracting the spectral

response of the individual coupled-microrings. The data acquisition technique for the

CROW is identical to that of the SCISSOR: a tunable laser source is synchronized with

an infrared camera to obtain wavelength resolved imaging. Fig. 6.12(a) shows the bi-

nary mask used for the CROW. This mask consists of 35 rings (used to measure a 35
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ring CROW), that is actually the summation of 35 individual single ring masks such

as shown in Fig. 6.9. This mask is then superimposed onto the dataset. For each ring,

camera pixels that align with the binary mask’s “1’s” are averaged. Computationally,

the way this is done is that the mask and the dataset are dot-multiplied, and then all non-

zero elements averaged. Fig. 6.12(b) shows an enlarged image of a semi-transparent

mask superimposed on a 35-ring CROW. A method for simulating the response of the

individual rings of a CROW was detailed in Chapter 4. In Fig. 6.12(c) we recall a typical

image of how the field profiles of a disorder-free CROW should look from simulation. In

Fig. 6.12(d) the measured (averaged) response of the individual microrings of a 35-ring

CROW is shown. Also shown (blue line), is the transmission spectrum for the corre-

sponding band. One can indeed see that there is a direct correlation between where the

resonators “light-up” and the power measured at the CROW’s drop port. Also, increased

intensity can be observed at the band-edge, which will be discussed more later, similar

to that of the simulation.

Figure 6.13: Wavelength resolved infrared image of a 235-ring CROW.

Wavelength dependent eigenvectors of a disordered 235-ring CROW

The imaging process was then performed for the 235-ring CROW as shown in

Fig. 6.13. As the infrared camera is only 320 pixels, it is not feasible to take the images

in a single shot as was done for the 35-ring CROW. For the 235-Ring CROW, 16 datasets

were taken where each ring in a given dataset was then averaged using a binary mask

15-rings wide. The results of which were then stitched together to form the 235-ring

CROW spectral response shown in Fig. 6.13. From these images, one can simply extract
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the desired ring’s transmission response from the dataset. Shown in Fig. 6.14 are cross

sections of a single dataset measured near the start of the CROW. Comparing the 4th

and 14th ring in this dataset, one can see that the individual rings in a CROW undergo

very different spectral responses.

Figure 6.14: Typical dataset, measured near the beginning of the CROW shown in
Fig. 6.13. As shown, one may extract the response of the individual microrings of a
CROW using infrared imaging. Comparing the 4th and 14th ring in this dataset, one can
that the individual rings in a CROW undergo very different spectral responses.

Band edge enhancement

The CROWs imaged thus far were done so under a semi-transparent polymer

(PMMA), used to reduce the losses of the CROW. The effects of this polymer on the

infrared images is to blur the responses of the individual microrings. In order to analyze

band-edge phenomena the PMMA cladding was then removed by soaking the chip in

acetone, with the intent of specifically looking at interesting high spectral resolution

band-edge characteristics. Shown in Fig.6.15(a) is the spectral response of a 35-ring

CROW on chip W2F9 (see Fig.2.2). Fig.6.15(b) shows the band-edge transmission

spectrum outlined by the green box in Fig.6.15(a). One can see that while losses have
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increased due to the air cladding, well defined peaks can still be observed at the band-

edge.

The wavelength resolved infrared image data was taken only at the band-edge,

shown in Fig. 6.15(c), where a 1-pm step scan was used to obtain ultra-fine band-edge

resolution. Indeed, the air cladding allows the imaged responses of the individual micro-

rings to be considerably well defined. Outlined by a green box in Fig. 6.15(b) is an

enhanced localized mode of the 35-ring CROW where the light intensity is three times

higher in the central region of the CROW compared with rings on either side. Note that

the CROW has a high insertion loss of 86 dB at this wavelength. Fig. 6.15(d) shows the

IR camera measured intensity of the CROW at each resonator for a wavelength within

the region indicated by the green box in Fig. 6.15(c). In the top portion of this image, the

raw image of the 35-ring crow is shown (no mask is being applied). IR imaging is thus

capable of probing the entire disordered response of a CROW, where as a transmission

spectrum would provide no information on the response of the individual micro-rings.
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Figure 6.15: (a) Transmission spectra a 35-ring CROW on chip W2F9. (b) Band-edge
transmission response of the CROW as outlined by the green-box in (a). (c) Wavelength
resolved infrared image at the band-edge using an ultra-fine 1 pm step-size. (d) Re-
sponse of the CROWs for the localized mode outlined by the green box in (c). Shown
in the top is the actual IR image of the CROW at this wavelength.

6.2 Group Delay Measurements

The previous section outlined a novel technique for measuring the spectral de-

pendence of the intensity enhancement of a micro-ring resonator. This section focuses

on measurements of group-delay. Physiologically, these are the same thing. The en-

hancement of a micro-ring resonator is due to photons tunneling into the micro-ring

where they are then “trapped,” for a time determined by the coupling coefficient and the

losses of the cavity (i.e., chance to escape). While these photons are trapped in the ring,

additional photons are continuously being pumped into the cavity by the laser source,

which is the cause of the enhancement. Group delay on the other hand is the measure of

propagation time for a device. For micro-resonators, propagation time is increased due



146

to photons taking several passes around the microring before coupling out—which is

again, the cause of the cavity enhancement. There are numerous methods of measuring

group delay, with perhaps the most popular being the phase shift method using an vector

network analyzer. Here, we look at another technique, swept-wavelength interferometry,

and specifically the role of amplification.

6.2.1 Introduction

Measurements of wavelength-dependent group delay are important in optical fil-

ters, delay lines and interferometers, with applications in RF photonics, slow light and

optical communications [19, 20, 21]. While the rationale for using erbium-doped fiber

amplifiers (EDFA) in the operation and testing of fiber systems and networks is evident

[22], and although much of the same intuition applies to testing photonic devices, there

are significant differences between the two cases. Adding an EDFA with 50 meters of

optical fiber and additional noise contributions to a device-under-test path previously

consisting of a chip that may be only a few millimeters long requires special consider-

ations, when the goal is that of measuring group delay with sub-picosecond accuracy

[23, 24, 25].

Considerable cost, effort and time can be taken up by the packaging of bare-die

photonic chips into fiber-pigtailed devices. Additional complexity of lithography is as-

sociated with fabricating mode-size converters in order to achieve a low-loss interface

between fibers and single-mode silicon-on-insulator (SOI) waveguides [26, 27, 28, 29,

30]. Whereas researchers are reluctant to devote excessive time towards perfecting cou-

plers at the preliminary stages of designing a novel chip, they would nevertheless like to

accurately know the group delay and dispersion characteristics of the device under test,

which is the main focus of the research. Thus, during testing, coupling efficiencies of -5

to -10 dB at each of the input and output interfaces may be anticipated, as often reported

in the literature.

Furthermore, an intrinsic propagation loss of -5 to -10 dB should also be ex-

pected, since nanometer-scale sidewall roughness of SOI waveguides can lead to a sig-

nificant propagation loss [31, 32]. For example, an SOI waveguide which provides 0.5

ns of delay is about 4 cm long. After a post-lithographic surface roughness reduction
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Figure 6.16: (a) Top Axis: Measurement of the group delay ripple (ps) of a 1.2 m long
fiber patchcord, over a 40 nm wavelength span in the L-band, for increasing number
of averaged scans. Bottom axis: Group delay ripple (ps) a device-under-test consisting
of 76 m of single-mode fiber and Erbium doped fiber, and a programmable attenuator
(JDS Uniphase HA9), whose setting was increased sequentially to simulate the effect
of decreased coupling efficiency. (b) Measurement of the group delay ripple (ps) of a
4.15 cm single-mode silicon-on-insulator waveguide over a 40 nm wavelength span in
the L-band.

process, it may have a (low) absorption coefficient of -1.25 dB/cm, thus yielding an in-

sertion loss of -5 dB. In fact, single-mode SOI waveguide losses of -2.5 dB/cm (for a

total insertion loss of -10 dB) are still considered low-loss by today’s standards.

Since the goal of many novel devices is to realize filters, switches or modulators

with > 30 dB dynamic range, an accurate measurement of GD is needed not just at

the peaks of the transmissions spectrum but also at the valleys, i.e., at a detected power

level, relative to the source, of -45 to -60 dB. Typically, the input power level to an SOI

waveguide cannot exceed +10 dBm before nonlinear effects are observed. Therefore,

SOI chip-scale devices usually need accurate measurements of group delay (GD) over

a wide range of detector power levels, from -5 dBm to -50 dBm. At the power levels

considered here, < -10 dBm, the dominant receiver noise contribution comes from the

electronic amplifier noise[33, Fig. 5.27]. However, as we will see later, the situation

may change for amplified measurements using an EDFA, but in general, depends on the

device that is being measured.
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6.2.2 Coupling Measurements

Group delay measurements were done using an optical vector network analyzer

(OVA 5000 from Luna Technologies, [34]), based on the principle of swept-wavelength

interferometric polarimetry [35, 36]. A mode-hop free rapidly-tunable telecommuni-

cations wavelength laser source was used along with Mach-Zehnder interferometers,

polarization controllers and photodiodes to measure the four elements of the Jones ma-

trix of the device under test (two for each polarization). A discrete Fourier transform

of the raw data, followed by time-domain windowing, reveals the time-domain impulse

response of the device under test. The instrument measures up to 6 ns of group delay

with a wavelength resolution of 1.4 pm, which is determined by the window of the time-

domain filter. The procedure used to calculate group delay from the measured transfer

function, and its calibration against a known standard (e.g., acetylene gas cell) are de-

scribed in [37].

To confirm that the measured group delay statistics reported here were above

the detection limit of the optical vector network analyzer, measurements of the standard

deviation of group delay for a 1.2 m long single-mode fiber patchcord were performed

with increasing number of averaged scans, shown in the top axis of Fig. 1(a), yielding a

very low intrinsic variation of 0.15 ps over a 40 nm wavelength span in the L-band. To

maintain this high level of accuracy, all subsequent measurements were done with 64

averages.

Data shown in the bottom axis of Fig. 1(a) was measured when light was coupled

through lensed tapered fibers, and attenuation of the amplified source was increased

sequentially by using a programmable attenuator (JDS Uniphase HA9) to simulate the

effect of decreased coupling efficiency, or increased insertion loss. We have verified

that the attenuator, by itself, does not change the standard deviation of the measured

group delay, i.e., the noise statistics. In fact, it is well-known that attenuated Poisson or

Bose-Einstein distributions remain Poisson or Bose-Einstein distributions, respectively

[38]. As can be seen, the standard deviation of the measured GD starts to increase once

the received power decreases below 10 nW. This is similar to the degradation of the bit

error rate in a fiber optic communication link once the received power drops below the

noise floor.
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For purposes of this discussion, we assume that a standard avalanche photodiode

(APD) is used for detection, and that a signal-to-noise ratio of unity is the minimum

threshold to measure GD reliably. We can thus attribute the flat ŞfloorŤ at the higher

power levels to the effects of the photoreceiver electronics noise, with a root-mean-

squared equivalent input noise of the electronic amplifier circuitry of 〈iamp〉rms = 200 nA,

and photoreceiver bandwidth Δfsig = 2 GHz. These values are similar to those of a

2.5 Gbps APD receiver, for example, from Archcom Tech. (AC6522 Series), which has

a responsivity of 0.9 A/W and an equivalent input noise current density of 5 pA/
√

Hz.

In earlier published work using the same type of instrument [39], this noise floor was

indeed attributed to electronic amplifier noise, rather than laser noise, shot noise or

thermal noise.

6.2.3 Amplified Waveguide Measurements

Now, we consider optically amplified measurements of GD of a silicon waveg-

uide chip, using the experimental setup shown in Fig. 2(a). Chips were fabricated at

the IBM Microelectronics Research Laboratory using a CMOS compatible process on

200 mm SOI wafers. The waveguides are single-mode (TE polarization, with the elec-

tric field parallel to the plane of the chip), with transverse dimensions approximately

0.50 μm × 0.22 μm. The group index of the waveguides is measured to be ng = 4.25

over the range of wavelengths used in this measurement.

The output of the tunable laser (average power 200 μW) is directly input to the

EDFA which is used in the saturation regime (output power +18 dBm). In order to

cover the range of wavelengths spanned by the tunable laser (1530 to 1610 nm), the

EDFA actually consists of two EDFAs in parallel, with a splitter at the input: a C-band

EDFA, with 200 mA of drive current to the pump laser diode, and an L-band EDFA with

700 mA of drive current.

Similar to Fig. 1(a), Fig. 1(b) shows the increase of measured GD ripple of a

4.15 cm waveguide as the insertion loss is increased. The waveguide loss is -1.5 dB/cm,

measured by comparing the insertion loss of four waveguides of different lengths. By

extrapolating these measurements to a null-length waveguide, the coupling efficiency is

estimated to be -15 dB for the combination of input and output couplers. So as to have
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the least perturbative effect on the noise contribution of the waveguide itself, the effects

of increasingly worse coupling efficiencies are simulated by increasing the loss setting

on the programmable attenuator, rather than adjusting the tapered fibers, which could

possibly couple to a higher-order optical mode.

There are several reasons for using a saturated amplifier immediately after the

tunable laser source, rather than a higher-gain unsaturated amplifier after the chip:

1. With pre-amplification, a rapidly-tunable (the tuning speed of the laser is 70 nm/s)

narrow-band optical band-pass filter is not needed after the EDFA, since a inter-

ferometric detection scheme is used, and the ASE is suppressed effectively, and

further attenuated by the coupling and insertion losses of the chip before reaching

the photoreceiver,

2. The noise figure of the amplifier is possibly lowered, or at least not substantially

worsened [40, 41], in the gain-compressed regime, and

3. Since the input power to the EDFA is maintained constant as the laser tunes in

wavelength, the amplifier remains in the same operating condition, and contributes

more or less the same ASE noise versus wavelength. In contrast, if the EDFA

was used after a chip consisting of, e.g., a wavelength-selective filter with 30 dB

contrast in the transfer function, the amplifier would see 30 dB variations in the

input power as the wavelength was scanned, and both its output power and noise

characteristics could vary, depending on the tuning speed of the laser.

We have verified, as shown in Fig. 2(b), that there is only a small penalty, of less

than 1 picosecond, in the measurement of group delay due to the addition of the EDFA.

This can easily be neglected in the measurement of photonic devices whose intrinsic

group delay ripple exceeds this noise penalty.

In contrast, the benefit of using an EDFA to boost the detector signal power of a

poorly-coupled chip is considerable. Fig. 3(a) shows the benefits of using optical ampli-

fication to boost the detected power at the output of a 4.15 cm waveguide. Measurements

that were previously “lost” at detected power levels as low as 0.5 nW, which resulted in

significantly higher noise in GD measurement, were successfully “brought back” to the

low noise regime.
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Figure 6.17: (a) Light was coupled on and off the chip using a pair of lensed tapered
optical fibers mounted on piezoelectrically actuated alignment stages. As in Fig. 1, the
programmable attenuator setting was increased in steps of 10 dB to simulate the effect
of decreased coupling efficiency. (b) Table of of the averaged GD ripple increase, as a
consequence of using the EDFA.

It is important to note that both the measurement speed and the measured group

delay statistics are unaffected. Fig. 3(b) shows the probability distribution, P, of the

measured group delay in the unamplified and amplified measurements at the same level

of net insertion loss. A more detailed discussion of the noise performance of the mea-

surement system will be subject of the next section.

Fig. 4 shows the measured amplitude and group delay spectral measurements

of a coupled-resonator optical waveguide (CROW) [25]. Note that while much of the

amplitude response can be measured without amplification, the measurement of group

delay benefits considerably from amplification. In particular, the unamplified insertion

loss measurement shows peaks and valleys that mostly line up, versus wavelength, with

the amplified measurement, but the dynamic range is clearly compressed by the noise

floor at -60 dB. Adding the EDFA to the setup raises the noise floor by a few dB, as seen

in the stop-band of the filter response, but significantly improves the accuracy of the

dynamic range, and greatly improves the precision of the measurement of group delay.
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Figure 6.18: (a) Improvement in the standard deviation and of measured group delay,
i.e. the group delay ripple, as a consequence of using the EDFA to boost the detected
signal power. (b) Histograms of the normalized group delay τ̂ ≡ GD/〈GD〉, in three
cases: (1) un-amplified measurement at 0.5 nW, (2) which is then boosted, using an
EDFA, to 20 nW, and (3) compared with a measurement that was neither amplified nor
attenuated. The comparison shows that amplification is successful at measuring the
correct group delay ripple statistics of a waveguide that would otherwise be too lossy to
measure accurately.

6.2.4 Discussion

Because of the presence of an optical amplifier in the signal path, there is a noise

component to the detector output current. We refer to the diagram in Fig. 2(a). Under

typical power levels as described earlier, the only significant source of the amplifier-

added noise is the ASE-signal beat noise, and the mean-squared current that arises from

this contribution to the total photocurrent is

〈iASE-signal
2〉 = 4R2SNA (6.2)

where R = eη/(hν) is the responsivity (A/W) of the photoreceiver,

S = GLPin (6.3)

is the optical power of the signal component of the light that is incident on the photode-

tector, and (Haus p.337)

NA = GLhνΔfsig(NFASE − 1) (6.4)

is the optical power of the amplified spontaneous emission added by the amplifier, in

terms of the quantity (NFASE − 1), which is the excess noise figure of the amplifier. We
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Figure 6.19: Example of measurements of (a) the amplitude and (b) the group delay
versus wavelength of a silicon microring coupled-resonator optical filter which has a
delay of about 135 ps at band-center [25]. Notice that poor coupling through the device
affects the amplitude and group delay response differently. Whereas the unamplified
insertion loss measurement is mostly spectrally accurate but dynamically compressed,
i.e., the peaks and valleys line up with the more accurate amplified measurement versus
wavelength, meaningful measurements of group delay are nearly impossible without
amplification, in accordance with Fig. 3.

assume, in keeping with the experimental results reported here, that only one polariza-

tion state of light (TE polarized) is transmitted through the device; otherwise, Eq. (6.4)

should be multiplied by 2. We also assume that the optical signal bandwidth Δf sig in the

expression for N is also the electronic bandwidth in the photodetector [42].

(GL) ≤ 〈iamp〉rms

[4R2hνΔfsig(NFASE − 1)Pin]
1/2

(6.5)

At equality between the left-hand side and right-hand side of Eq. (6.5), the ASE-

signal beat noise equals the intrinsic noise of the amplifier electronics. Increasing the

amplifier gain further, so that the beat noise term grows above the electronics noise,

does not improve the signal-to-noise (SNR) ratio any further, but does not alter it, since

signal power and noise variance both scale with (GL)2.

There is no obvious benefit to significantly larger gain. Eq. (6.5) can be numeri-

cally evaluated to solve for the amplification level which should be used, given the laser

power into the EDFA, Pin, and the estimated loss, L, e.g., −15 dB for a single-mode

waveguide delay line with no resonant spectral features, or −50 dB for the resonance

dip of a microring resonator or optical filter.
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As stated before, we assume Δfsig = 2 GHz and R = 1. Since the EDFAs are

used in the saturation regime, the gain G is compressed,

G = G0 exp

(
−G− 1

G

Pout

P {C,L}
sat

)
(6.6)

where G0 is the nominal (unsaturated) gain, P C
sat = 16.5 dBm and P L

sat = 18.23 dBm are

the saturation powers of the C-band and L-band EDFAs used in the measurement. The

excess noise of the amplifier in the saturated regime is also function of G, but does not

vary much over the typical range of values used here, and is conservatively taken to be

a constant equal to 6 dB.

We consider two examples based on evaluating Eq. (6.5), assuming a tunable

laser power of Pin = 0.1 mW. For a long single-mode waveguide delay line, with small

variations in insertion loss versus wavelength, a typical value of L = −20 dB, we need

G ≥ 15.6 dB to reach the beat-noise limited regime. This can be achieved by a saturated

EDFA as long as the gain compression is not excessive.

On the other hand, to measure a microring resonator add-drop filter on reso-

nance, we may encounter a typical value of L = −40 dB (on resonance), and we need

G ≥ 36 dB to reach the beat-noise limited regime. This is beyond the regime of satu-

rated EDFAs, and in any case, such an amplifier would boost the optical power levels

input to the chip to nearly 1 W, i.e., into the nonlinear regime of silicon waveguides.

Thus, the measurement of the valleys in the pre-amplified configuration regime must be

in the detector-noise limited regime. This has not been a limitation for the measurements

reported in this paper, but recent studies of the statistics of light transmission and back-

reflection in waveguides may be influenced by which noise regime happens to describe

the measurements, when pushed to more sensitive limits in the future [43, 44, 45].

As stated before, the benefit to using saturated EDFAs before the chip, rather

than an unsaturated EDFA after the chip, is that the measured variations and noise statis-

tics of insertion loss or group delay can be conclusively attributed to the device under

test, since the input light to the EDFA, directly from the tunable laser, does not vary in

intensity. For measurements focused on the ripple statistics of waveguides or filters, this

is an important benefit to pre-amplification.

Post-chip amplification may be used if high values of gain are required, e.g., in

photonic crystal structures [46, 47], or the critical-coupling slope of a microring res-
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onator [48]. In such cases, the spectral range of the measurements should be limited

in order to prevent the amplifier from saturating as the shoulders of the transmission

nulls are encountered. The large variation in input power to the EDFA would introduce

nonlinearity in the measured transfer function, and also change the noise properties of

the measured group delay.

For such applications, the modulation-phase shift method, based on a stepped

wavelength scan of the tunable laser along with an RF modulation source and detection

by an electronic vector network analyzer, may be more versatile. However, the data

acquisition time is greatly increased, from a few seconds to many minutes, to achieve

comparable accuracy [22].

6.3 Summary

Infrared imaging is a powerful technique for probing photonic circuits. By uti-

lizing the intensity enhancement, a microring resonator can be measured that in practice

would have no drop ports. The method consists of taking sequential images of a pho-

tonic circuit that directly correspond with a step scan of a tunable laser source. This

method was also used to simultaneously measure the response of 10 rings at their drop

ports from a single data set.

Further, the benefits of optical amplification in the rapid measurement of group

delay (GD) of chip-scale photonic devices with high insertion loss was shown. By using

an EDFA before the chip, in the saturation regime, we have ensured that the amplifier

itself does not contribute noticeably to the measured GD ripple at less than the picosec-

ond scale. Filtering of the amplified spontaneous emission was not needed, and there is

no penalty to the measurement speed of the instrument. The rapid speed of the tunable

laser (70 nm/s) used in the Luna OVA5000 enables almost video-rate measurements of

group delay of a nanophotonic device.

Measurements that were previously “lost” at detected power levels as low as

0.5 nW, which previously resulted in significantly higher noise in GD measurement,

were successfully “brought back” to the low noise regime. These group delay mea-

surements are at the lowest-reported power values for any photonic chip to date, and
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further improvement into the low-power regime may enable rapid and routine delay and

dispersion measurements with sub-picosecond accuracy of novel nanophotonic devices

[46, 49, 25] without having to worry, at least initially, about optimizing the coupling

into and out of the devices.
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A Graphical User Interfaces

Numerous graphical user interfaces were developed to facilitate the research pre-

sented in this dissertation, all of which were written in Matlab. Listed here are among

the few that were indispensable to its development.
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A.1 Efield

Solves for the exact eigenvectors (modes) and eigenvalues (propagation con-

stants) of high-index contrast waveguides. This program was used extensively for the

results presented in Chapter 4. Further, it was used for the dispersion engineering cal-

culations in Chapter 3.

Figure A.1: Users input waveguide (array or single) device dimensions, materials,
wavelength, desired discretization, and program solves for the transverse eigenvectors
and eigenvalues, (electric field and propagation constant), with Dirichlet boundary con-
ditions. Also calculates waveguide group index, field concentration, and group velocity
dispersion with built in Sellmeier equations for Oxide, Silicon Nitride, PMMA, and
Silicon. For a mathematical description, see Section 3.1
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A.2 IRCAM and LScan

Synchronize a tunable laser source with an infrared camera for extracting micro-

ring resonator parameters from wavelength resolved infrared imaging. This program

was used extensively for the results presented in Chapter 5, and also published in, M.

L. Cooper, et al., “Quantitative infrared imaging of SOI microring resonators,” Optics

Letters, 35, (2010)—in which the optics letters manuscript received a spotlight from

OSA with commentary from Dr. John E. Heebner (March 2010).

Figure A.2: Users input slot location of the tunable laser source (Agilent 81640A),
power sensor (Agilent 81633A or Agilent 81634B), and desired wavelength range, step
size, integration time, input power, scan speed, and scan type (step or continuous). The
program then runs the scan and returns wavelength and power data into an array in
Matlab. Has the option in step scan to record 12-bit images at each wavelength, follow
the TLS with an optical tunable filter (Santec OTF-910 (RS232)) for use with an inline
EDFA, program Piezo controllers (RS232) for micron scale position vs. wavelength
scan, and send the user a text message to his cell phone when scan completes.
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A.3 SNIPER26

This program was used to facilitate analyzing over 5 Gb of data on the IBM

wafers, the results of which were presented in Chapter 2.

Figure A.3: The program facilitates analyzing >5 Gb of spectra data of 22 chips each
with 5 sets of coupled resonator optical waveguides, returned from the LUNA OVA. It
also displays user comments noted while the devices were being measured, the ampli-
fied spontaneous emission source (ASE) measurements, and the device length of each
measurement.
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B Final notes

I learned this, at least, by my experiment: that if one advances confidently in the

direction of his dreams, and endeavours to live the life which he has imagined, he will

meet with a success unexpected in common hours. He will put some things behind, will

pass an invisible boundary; new, universal, and more liberal laws will begin to establish

themselves around and within him; or the old laws be expanded, and interpreted in his

favor in a more liberal sense, and he will live with the license of a higher order of beings.

In proportion as he simplifies his life, the laws of the universe will appear less complex,

and solitude will not be solitude, nor poverty poverty, nor weakness weakness. If you

have built castles in the air, your work need not be lost; that is where they should be.

Now put the foundations under them.

—Henry David Thoreau, “Walden,” 1854




