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Mahalanobis-type distances in which the shape matrix is derived from a

consistent, high-breakdown robust multivariate location and scale estimator

have an asymptotic chi-squared distribution as is the case with those derived

from the ordinary covariance matrix. However, even in quite large samples, the

chi-squared approximation is poor. We provide an improved F approximation

that gives accurate outlier rejection points for various sample sizes.
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1. Introduction

In one or two dimensions, outlying data that are su±ciently far from the main

mass of data are easily identi¯ed from simple plots, but detection of outliers is

more challenging in higher dimensions. In multivariate applications, with three

or more dimensions, outliers can be di±cult or impossible to identify from

coordinate plots of observed data. Although the outliers may lie at a great

distance from the main body of data in a certain projection, identi¯cation of

this projection can be di±cult.

Various methods for detecting outliers have been studied (Atkinson, 1994;

Barnett and Lewis, 1994; Gnanadesikan and Kettenring, 1972; Hadi, 1992;

Hawkins, 1980; Maronna and Yohai, 1995; Penny, 1995; Rocke and Woodru®,

1996; Rousseeuw and Van Zomeren, 1990). One way to identify possible mul-

tivariate outliers is to calculate a distance from each point to a \center" of

the data. An outlier would then be a point with a distance larger than some

predetermined value. A conventional measurement of quadratic distance from

a point X to a location Y given a shape S, in the multivariate setting is:

d2S(X; Y ) = (X ¡ Y )0S¡1(X ¡ Y )

This quadratic form is often called the Mahalanobis Squared Distance (MSD).

If there are only a few outliers, large values of d2S(xi; ¹X), where ¹X and S are the

conventional sample mean and covariance matrix, indicate that the point xi is

an outlier (Barnett and Lewis, 1994). The distribution of the MSD with both

the true location and shape parameters and the conventional location and shape

parameters is well known (Gnanadesikan and Kettenring, 1972). However, the

conventional location and shape parameters are not robust to outliers, and

the distributional ¯t to the distance breaks down when robust measures of

location and shape are used in the MSD (Rousseeuw and Van Zomeren, 1991).
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Determining exact cuto® values for outlying distances continues to be a di±cult

problem.

In trying to detect single outliers in a multivariate normal sample, d2S(xi;
¹X)

will identify su±ciently outlying points. In data with clusters of outliers, how-

ever, the distance measure d2S(xi;
¹X) breaks down (Rocke and Woodru®, 1996).

Data sets with multiple outliers or clusters of outliers are subject to problems

of masking and swamping (Pearson and Chandra Sekar, 1936). Masking oc-

curs when a group of outlying points skews the mean and covariance estimates

toward it, and the resulting distance of the outlying point from the mean is

small. Swamping occurs when a group of outlying points skews the mean and

covariance estimates toward it and away from other inlying points, and the

resulting distance from the inlying points to the mean is large. As an example,

consider a data set due to Hawkins, Bradu, and Kass (Hawkins et al., 1984).

These data consist of 75 points in dimension three. We can only see one out-

lying point, but 14 of the points were constructed to be outliers. By using the

mean and variance of all the data, we have masked the remaining 13 outliers.

(See Figure 1)

Problems of masking and swamping can be resolved by using robust esti-

mates of shape and location, which by de¯nition are less a®ected by outliers.

Outlying points are less likely to enter into the calculation of the robust statis-

tics, so they will not be able to in°uence the parameters used in the MSD. The

inlying points, which all come from the underlying distribution, will completely

determine the estimate of the location and shape of the data. Some robust

estimators of location and shape include the minimum covariance determinant

(MCD) and the minimum volume ellipsoid (MVE) of Rousseeuw (Hampel

et al., 1986; Rousseeuw, 1984; Rousseeuw and Leroy, 1987) and M-estimators

and S-estimators. (Campell, 1980; Campell, 1982; Huber, 1981; Kent and

Tyler, 1991; LopuhaÄa, 1992; Maronna, 1976; Rocke, 1996; Tyler, 1983; Tyler,
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1988; Tyler, 1991). By using a robust location and shape estimate in the MSD,

outlying points will not skew the estimates and can be identi¯ed as outliers by

large values of the MSD.

The MSD can take as its arguments any location and shape estimates. In

this paper we are interested in robust location and shape estimates, which are

better suited for detecting outliers. In particular, we are interested in the MCD

location and shape estimates. Given n data points, the MCD of those data is

the mean and covariance matrix based on the sample of size h (h · n) that

minimizes the determinant of the covariance matrix (Rocke and Woodru®,

1996; Rousseeuw, 1984).

MCD = ( ¹X¤
J ; S

¤
J )

where J = fset of h points : jS¤J j · jS¤K j 8 sets K s.t. jKj = hg
¹X¤
J =

1

h

X

i2J
xi

S¤J =
1

h

X

i2J
(xi ¡ ¹X¤

J )(xi ¡ ¹X¤
J )
t

The value h can be thought of as the minimum number of points which must

not be outlying. The MCD has its highest possible break down at h = b (n+p+1)2 c
where b¢c is the greatest integer function (Rousseeuw and Leroy, 1987; LopuhaÄa

and Rousseeuw, 1991). We will use h = b (n+p+1)2 c in our calculations and refer

to a sample of size h as a half sample. The MCD is computed from the \closest"

half sample, and therefore, the outlying points will not skew the MCD location

or shape estimate. Large values of MSDs, using the MCD location ( ¹X¤) and

shape estimate (S¤), will be robust estimates of distance and will correctly

identify points as outlying. Recall the constructed data by Hawkins, Bradu,

and Kass. Using the MCD estimates, the distances give a clear identi¯cation

of the 14 outlying points. (See Figure 2)
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Not every data set will give rise to an obvious separation between the out-

lying and non-outlying points. Consider the data given by Daudin, Dauby and

Trecourt and analyzed by Atkinson (Daudin et al., 1988; Atkinson, 1994). The

data are eight measurements on 85 bottles of milk. Using the robust MCD es-

timates, we are not subject to masking or swamping, but we are not sure which

group of points should be considered as outlying. (See Figure 3)

In Figure 2, points were identi¯ed as obvious outliers, but in many situa-

tions (including Figure 3) it will be important to construct a minimum outlying

distance. For some known constant c, c ¢d2S¤(xi; ¹X¤) are asymptotically distrib-

uted as Â2p, but the asymptotic convergence is very slow, and the Â2p quantiles

will be larger than the corresponding MSD quantiles for even quite large sam-

ples. Use of Â2p quantiles as cuto® points will often lead to identifying too many

points as outliers (Rousseeuw and Van Zomeren, 1991).

Finding a good approximation to the distribution of d2S¤(xi;
¹X¤) will lead

to cuto® values that identify minimum outlying values, even for clusters of out-

liers. If fxig come from a multivariate normal sample, and mS comes from an

independent Wishart, then d2S(xi; ¹) will have a distribution that is a multiple

of an F statistic (Mardia et al., 1979). Since the MCD shape and location es-

timates are calculated using only the inlying points, ¹X¤ and S¤ can be thought

of as asymptotically independent from the extreme values in the sample. We

can also approximate the distribution of S¤ by matching the ¯rst two moments

of a Wishart. Accordingly, the d2S¤(xi;
¹X¤) will be approximately distributed

as a multiple of an F statistic. This insight allows us to ¯nd cuto® values for

outlying points is in the estimation of the degrees of freedom associated with

the F statistic. We will examine various cuto® values for MSD with MCD shape

and location estimates for multivariate normal data given di®erent values of n

and p.
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2. Robust Estimators for Outlier Detection

The estimation of multivariate location and shape is one of the most di±cult

problems in robust statistics (Campell, 1980; Campell, 1982; Davies, 1987;

Devlin et al., 1981; Donoho, 1982; Hampel et al., 1986; Huber, 1981; LopuhaÄa,

1989; Maronna, 1976; Rocke and Woodru®, 1993; Rousseeuw, 1985; Rousseeuw

and Leroy, 1987; Stahel, 1981; Tyler, 1983; Tyler, 1991). For some statis-

tical procedures, it is relatively straightforward to obtain estimates that are

resistant to a reasonable fraction of outliers{ for example, one dimensional lo-

cation (Andrews et al., 1972) and regression with error-free predictors (Huber,

1981). The multivariate location and shape problem is more di±cult, because

many known methods will break down if the fraction of outliers is larger than

1/(p+1), where p is the dimension of the data (Donoho, 1982; Maronna, 1976;

Stahel, 1981). This means that in high dimensions, a small amount of outliers

can result in arbitrarily bad estimates.

2.1. A±ne Equivariant Estimators

We are particularly interested in a±ne equivariant estimators of the data. A

location estimator yn 2 IRp is a±ne equivariant if and only if for any vector

v 2 IRp and any nonsingular p £ p matrix M,

yn(Mx + v) = Myn(x) + v:

A shape estimator Sn 2 PDS(p) (the set of p£p positive de¯nite symmetric

matrices) is a±ne equivariant if and only if for any vector v 2 IRp and any

nonsingular p £ p matrix M,

Sn(Mx + v) = MSn(x)M0:
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Stretching or rotating the data will not change an a±ne estimate of the data.

If the location and shape estimates are a±ne equivariant, the Mahalanobis

Squared Distances are an a±ne invariant, which means the shape of the data

determines the distances between the points. The only other real alternative is

to make a prior assumption about the correct distance measure. It is important

to have a±ne equivariant estimators so that the measurement scale, location,

and orientation can be ignored. Since MSD's are a±ne invariant, the properties

and procedures that use the MSD can be calculated without loss of generality

for standardized distributions. For the properties under normality, we can use

N(0,I).

2.2. Minimum Covariance Determinant

The Minimum Covariance Determinant (MCD) location and shape estimates

are resistant to outliers because the outliers will not be involved in the loca-

tion and shape calculations. From the MCD sample, the sample mean and

covariance matrix, which are robust estimates of the location and shape of the

underlying population, can be computed.

Finding the exact MCD sample can be time consuming and di±cult. The

only known method for ¯nding the exact MCD is to search every half sample

and calculate the determinant of the covariance matrix of that sample. For

n=20, the search would require computing about 184,756 determinants; for

n=100, the search would require computing about 1029 determinants. With

any conceivable computer, it is clear that ¯nding the exact MCD is intractable

by enumeration.

2.3. Estimating the MCD

Since the exact MCD is often impossible to ¯nd, the algorithm used to estimate

of the MCD is, in some sense, the estimator. Various algorithms have been
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suggested for estimating the MCD.

Hawkins proposed a method based on swapping points in and out of a

sample of size h. The basic algorithm is as follows.

² Start with a subsample of size h, H1.

² Swap points xi0 2 H1 and xj0 =2 H1 and call the new subsample H2 if:

di = det(cov(H1)) ¡ det(cov(H2)) > 0

AND the above di®erence, di, is maximized over swapping all possible

pairs of points xi 2 H1 and xj =2 H1

² Let H2 be the new subsample of size h

² Repeat the process until no swap lowers the det(cov(Hi)) (or equivalently,

until no swap gives di > 0) (Hawkins, 1994; Hawkins, 1999).

A faster algorithm was found independently by Hawkins (1999) and Rousseeuw

and Van Driessen (1999). The core of the algorithm is based on what Rousseeuw

calls the C-step. Instead of swapping one pair of points in and out, the C-

step allows for many points to be interchanged at each step. Again, we start

with a subset of the data of size h, H1. We can compute ¹XH1 ; SH1, and

d2SH1
(xi; ¹XH1) = d2H1(i) for each point i = 1, : : : n based on the sample H1. We

can then sort the distances based on a permutation ¼ so that:

d2H1(¼(1)) · d2H1(¼(2)) · : : : · d2H1(¼(n))

We will then assign f¼(1); ¼(2); : : : ; ¼(h)g to H2. Using H2 we can calculate

¹XH2; SH2; and d2SH2
(xi; ¹XH2) and repeat the process until the permutation, ¼,

does not change. Rousseeuw and VanDriessen (1999) showed that the process

will converge.

The question remains for both algorithms, where does the initial H1 come

from? Previously, Hawkins used a random subset of size h from the data.

If the data have large amounts of contamination, a random subset of size h
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will almost never look like the true underlying (uncontaminated) population

(it will look most like the contaminated sample), so it will be hard for either

swapping algorithm to converge to the true uncontaminated shape of the data.

For contaminated data, Rousseeuw proposed starting with a random subset

of size p+1 (the minimum number of points needed to de¯ne a nonsingular

covariance matrix) and adding points until a subset of h points is constructed

(Rousseeuw and Van Driessen, 1999). Points are added to the initial random

subset based on their distances to the mean of the initial subset. The algorithm

is as follows.

² Let H0 be a random subset of p + 1 points

² Find ¹XH0 and SH0 (If det(SH0) = 0 then add random points until det(SH0) >

0)

² Compute the distances d2SH0
(xi; ¹XH0) = d2H0(i) and sort them for some

permutation ¼ such that,

d2H0(¼(1)) · d2H0(¼(2)) · : : : · d2H0(¼(n))

² H1 := f¼(1); ¼(2); : : : ; ¼(h)g

A random subset of p+1 points has a better chance of by chance looking

like the uncontaminated data, and so H1 here will be sometimes closer to the

true data than a random subset of h points (and we only need this to happen

on one of the trials). In this paper we are interested in ¯nding quantiles for

distances based on MCD estimates. Our simulations are all done with pure

multivariate normal data, and therefore, we are able to ¯nd quantiles using

data that was uncontaminated. Since our data was not contaminated, it was

more e®ective to start with random subsets of size h, since diversity of starting

points is of no value when there is no contamination.

The algorithm we used to estimate the MCD begins with a series of random

starts, each of which is a randomly chosen half sample (or sample of size h) of
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the data points. We then use the algorithm referred to above as the C-step.

For each random start, the procedure for calculating the MCD sample is as

follows.

1. Compute the mean and covariance of the current half sample.

2. Calculate the MSD, based on the mean and covariance from step 1, for

each point in the entire data set.

3. Choose a half sample of those points with the smallest MSDs from step

2.

4. Repeat steps 1-3 until the half sample no longer changes.

MCD sample will then be the half sample (in 3) with the minimum covari-

ance determinant of all the random starts. A robust estimator like d2S¤(xi;
¹X¤),

where S¤ and ¹X¤ are the MCD shape and location estimates, is likely to detect

outliers because outlying points will not a®ect the MCD shape and location

estimates. For points xi that are extreme, d2S¤(xi;
¹X¤) will be large, and for

points xi that are not extreme, d2S¤(xi;
¹X¤) will not be large. Here we are not

subject to problems of masking and swamping.

3. Distance Distributions

Mahalanobis squared distances give a one-dimensional measure of how far a

point is from a location with respect to a shape. Using MSD we can ¯nd points

that are unusually far away from a location and call those points outlying. We

have discussed the importance of using robust a±ne equivariant estimates for

the location and shape of the data. Unfortunately, using robust estimates gives

MSDs with unknown distributional properties. Consider n multivariate data

points in dimension p, xi » N(¹;§). Let S be an estimate of § such that,

mS » Wishartp(§;m). Below are three distributional results for distances

based on the above type of multivariate normal data.
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1. The ¯rst distance distribution is based on the true parameters ¹ and §.

We know that if the data are normal, these distances have an exact Â2p

distribution (Mardia et al., 1979).

d2§(xi; ¹) » Â2p

Which gives:

E[d2§(xi; ¹)] = p

Var[d2§(xi; ¹)] = 2p

2. The second distance distribution is based on the ordinary mean and

covariance estimates. These distances have an exact Beta distribution

(Gnanadesikan and Kettenring, 1972; Wilks, 1962). It is interesting to

note that the unbiased estimator has a smaller variance than the esti-

mator which takes ¹ and § as parameters. This is because ¯tting the

mean and covariance allows the distances to be made smaller because the

estimates accommodate random °uctuations in the data.

Given,

¹X =
1

n

nX

i=1

xi

S =
1

n ¡ 1

nX

i=1

(xi ¡ ¹X)(xi ¡ ¹X)t

then,

(n ¡ 1)2

n
d2S(xi; ¹X) » Beta

Ã
p

2
;
(n ¡ p ¡ 1)

2

!

Which gives:

E

"
nd2S(xi;

¹X)

(n ¡ 1)

#
= p
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Var

"
nd2S(xi;

¹X)

(n ¡ 1)

#
= 2p

(n ¡ p ¡ 1)

(n + 1)

3. The third distance distribution is based on an estimate of S that is inde-

pendent of the xi. These distances have an exact F distribution when ¹

is the location parameter (Mardia et al., 1979), and an approximate F

distribution when ¹X is the location parameter (using a Slutsky type ar-

gument (Ser°ing, 1980)). It is interesting to note here that the unbiased

estimator has a larger variance than the estimator which takes ¹ and §

as its parameters. This is because the independent variation in S adds to

the variability of the distances which are in part functions of S.

Given S and xi independent,

np

n ¡ p
d2S(xi; ¹) » Fp;n¡p

Using a variant of Slutsky's Theorem,

np

n ¡ p
d2S(xi; ¹X)

¢» Fp;n¡p

Which gives:

E

"
(n ¡ p ¡ 2)

n
d2S(xi; ¹X)

#
:
= p

Var

"
(n ¡ p ¡ 2)

n
d2S(xi; ¹X)

#
:
= 2p

(n ¡ 2)

(n ¡ p ¡ 4)

We will refer to the standard location and shape estimates ( ¹X and S) as

within sample estimates and the MCD location and shape estimates ( ¹X¤ and

S¤) as out of sample estimates because extreme observations will not be used

to calculate the MCD (with high probability). Our interest is in the extreme

points which enter into the within sample calculations but not the out of sample

calculations.
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Since ¹X and ¹X¤ are consistent estimators for ¹, and S and c¡1S¤ (for some

constant c) are consistent estimators for §, we know that the within sample and

out of sample MSD are both asymptotically Â2p statistics (Mardia et al., 1979;

Ser°ing, 1980). Â2p quantiles are often used for identifying MSD extrema (often

inappropriately, as pointed out by (Rousseeuw and Van Zomeren, 1991)).

The main insight behind this paper is that distances based on MCD esti-

mates of location and shape will behave like case 1 or 2 above for points that

were used to calculate the MCD (equivalently, that have MSD's in the lower half

of the empirical distribution of distances), and will behave more like case 3 for

more extreme points. The theorem below con¯rms the intuition that extreme

points have a distribution that is conditionally independent of the distribution

of the MCD location and shape. Since the MCD shape estimate does not have

a Wishart distribution, the case 3 formulae do not hold without alteration,

but we use this as a framework for providing an approximating distribution for

robust MSD's that is a large improvement on the Â2p approximation.

The elbow pattern in robust MSD's described by (Rousseeuw and Van

Zomeren, 1991) can be seen in Figures 4 and 5, which show the mean ordered

MSD's from the MCD in two di®erent situations plotted against the Â2p quan-

tiles. The distances that are in the smallest half of distances (coming from

points that are included in the MCD subset) appear to follow a chi2p distrib-

ution since they lie on the line y = x, while the larger distances diverge in a

systematic pattern.

Theorem 3.1 Given n points, Xi, independently and identically distributed

(iid) Np(¹;§), ¯nd the MCD sample based on a fraction ² = h
n of the sample,

and choose ± such that ² < ± < 1. Then points Xi such that (Xi¡¹)0§¡1(Xi ¡
¹) > Â2p;±, Xi will be asymptotically independent of the MCD sample.

Proof. We will show that points satisfying the condition have, for large

n, a vanishingly small chance of being included in the MCD subset, regardless
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of any other property that they may have, which will imply the asymptotic

independence that we seek. The proof will be given in steps.

1. We can think of the iid sample as coming from 3 truncated Normal dis-

tributions. We can generate an iid sample from normal distribution as

follows:

² Let n1; n2; n3 come from a Multinomial (n; ²; ±¡²; 1¡±) distribution.

² Let X1;X2; : : : ;Xn1 come from a truncated normal distribution. The

truncated normal distribution will be Np(¹;§) with a truncation so

that each of the points have (X ¡ ¹)0§¡1(X ¡ ¹) · Â2p;².

² Let Xn1+1; Xn1+2; : : : ;Xn1+n2 come from a truncated normal distri-

bution. The truncated normal distribution will be Np(¹;§) with a

truncation so that each of the points have Â2p;² < (X ¡ ¹)0§¡1(X ¡
¹) · Â2p;±.

² Let Xn2+1;Xn2+2; : : : ;Xn1+n2+n3=n come from a truncated normal

distribution. The truncated normal distribution will be Np(¹; §) with

a truncation so that each of the points have Â2p;± < (X ¡¹)0§¡1(X ¡
¹).

Then the sample, X1; : : : ;Xn1;Xn1+1; : : : ;Xn1+n2 ;Xn1+n2+1 : : : ;Xn1+n2+n3=n,

is an iid sample of size n from Np(¹;§).

We can de¯ne the ellipsoidal regions R1; R2; R3, such that

if (X ¡ ¹)0§¡1(X ¡ ¹) · Â2p;² ) X 2 R1

if Â2p;² < (X ¡ ¹)0§¡1(X ¡ ¹) · Â2p;± ) X 2 R2

if (X ¡ ¹)0§¡1(X ¡ ¹) > Â2p;± ) X 2 R3

Note that these regions are based on the true ellipsoidal contours of the

generating distribution and are not data dependent.
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2. Letting the MCD location and shape matrix be denoted by ¹X¤ and S¤,

we know,

¹X¤ ! ¹

1

c
S¤ ! § for some c (Tyler, 1983)

which gives,

c(X ¡ ¹X¤)0S¤¡1(X ¡ ¹X¤) ! (X ¡ ¹)0§¡1(X ¡ ¹) 8X:

If X 2 R1,

c(X ¡ ¹X¤)0S¤¡1(X ¡ ¹X¤) · Â2p;² + Op(n
¡1=2)

If X 2 R3,

c(X ¡ ¹X¤)0S¤¡1(X ¡ ¹X¤) ¸ Â2p;± ¡ Op(n
¡1=2)

3. Let R¤
1 be the ellipsoid generated by the MCD sample and that just con-

tains all of the MCD points. The radius of R¤
1 will be Â2p;² + Op(n

¡1=2).

We will show that the points in R3 will almost never, for large n, have

MCD distances that will place them in R¤1; i.e., will almost never be in

the MCD subsample.

Let y 2 R3, so that (y¡¹)0§¡1(y¡¹) ¸ Â2p;±. Then, (y¡¹)0§¡1(y¡¹) =

Â2p;± + W , where W ¸ 0. Also, c(y ¡ ¹X¤)0S¤¡1(y ¡ ¹X¤) = Â2p;± + W +

Op(n
¡1=2).

Now,

P (y 2 MCD sample) = P (c(y ¡ ¹X¤)0S¤¡1(y ¡ ¹X¤) · Â2p;² + Op(n
¡1=2))

= P (Â2p;± + W + Op(n
¡1=2) · Â2p;² + Op(n

¡1=2))

= P (Â2p;± ¡ Â2p;² + W · Op(n
¡1=2))

! 0:
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If it were the case that the MCD subset could never include a point y 2 R3,

then there would be exact independence. Any failure of independence

involves a point y 2 R3 being in the MCD sample, which we have shown

to be extremely improbably in large samples.

The experimental independence of the extreme points and the MCD sample

can also be seen in Figure 6. The picture shows average distances of two sets

of independently simulated data sets whose distances were computed using the

same MCD estimates. The ¯rst set contains the MCD sample, the second

set was generated completely independently of the ¯rst sample and the MCD

estimates. The MCD estimates are approximately independent of the extreme

points, and so the extrema behave like the completely independently generated

data.

The only remaining step in approximating the distribution of the extreme

distances from the MCD is to approximate the distribution of the MCD shape

by a Wishart, so that we can apply the F-distribution result cited above.

If Xi is multivariate normal data, and ¹X¤ and S¤Y are the MCD mean and

covariance, then

1. X1; : : : ; Xn » Np(¹;§),

2. the distribution of S¤X can be approximated by,

mc¡1S¤X
¢» Wishartp(m;§); (3.1)

where m is an unknown degrees of freedom, and c is a constant satisfying

E[S¤X ] = c§ (which holds for some c because S¤X is an a±ne equivariant

shape estimator of § (Tyler, 1983)), and

3. the tail elements of Xi are approximately independent of S¤X . (See Theo-

rem 3.1 and Figure 6)

Then, using ¹X¤ ! ¹,
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c(m ¡ p + 1)

pm
d2S¤X

(Xi; ¹X¤) ¢» Fp;m¡p+1: (3.2)

Using the above F distribution to calculate cuto® values for distances based

on the MCD sample is a robust way of identifying outliers. The only remaining

problem, then, is to estimate c and m correctly.

3.1. Finding the Degrees of Freedom for the F Distribution

Using a method of moments identi¯cation by the coe±cient of variation (CV),

Welch and Satterthwaite (Welch, 1937; Welch, 1947; Satterthwaite, 1946)

estimated the degrees of freedom (df) for the well-known test H0 : ¹1 = ¹2 vs.

Ha : ¹1 6= ¹2 (when ¾1 6= ¾2) which has a test statistic,

(x1 ¡ x2) ¡ (¹1 ¡ ¹2)r
s21
n1

+
s22
n2

¢» tdf

df =
(V1 + V2)

2

V 21
n1¡1 +

V 22
n2¡1

Where V1 =
S21
n1

and V2 =
S22
n2

Using a similar method of moments idea, we can estimate the degrees of

freedom associated with the F distribution of c(m¡p+1)pm d2S¤Y
(Yi; ¹Y ¤). If for some

m, S¤Y had a distribution that was a multiple of a Wishart, then it would be

the case that

mc¡1s¤ii
¢» Â2m¾ii; (3.3)

where s¤ii are the diagonal elements of S¤Y . Since the estimators are a±ne

equivariant, we perform all calculations without loss of generality on N(0,I)
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data, in which case ¾ii = 1 and the diagonal elements are identically distributed

(GrÄubel and Rocke, 1990). The best estimates of c and m in the N(¹;§) case

will be the same as the estimates of c and m in the N(0,I) case because of this

a±ne equivariance.

From (3),

E[mc¡1s¤ii] = m ) E[s¤ii] = c

and

Var[mc¡1s¤ii] = 2m ) Var[s¤ii] =
2c2

m

which gives:

CV =

q
Var[s¤ii]

E[s¤ii]
=

c
p

2=m

c
=

r
2

m
:

So we can estimate m and c by

m̂ =
2

ĈV
2 ĉ =

1

h

hX

i=1

s¤ii

where CV (ĈV) is the (estimated) coe±cient of variation of the diagonal ele-

ments of the MCD shape estimator. This can be done either from the asymp-

totics of the MCD shape matrix or by simulation. Note that the simulation

will be used only to compute the mean and variance of the diagonal elements of

the covariance matrix, and not the distribution of the distance order statistics,

which greatly simpli¯es the task. Since the diagonal elements are identically

distributed and uncorrelated, we can simulate N copies of the p£p MCD shape

matrix from the n data points in each sample, and then estimate c and m from

the mean and coe±cient of variation of the Np diagonal elements.
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Alternatively, an asymptotic expression for c exists that works well even for

small samples.

c =
P (Â2p+2 < Â2(p;h=n))

h=n

where Â2º is a Chi-Square random variable with º degrees of freedom, and Â2º;²

is the ² cuto® point for a Â2º random variable. This formula is easily derived

and is apparently well known (also see (Croux and Haesbroeck, 1999)).

For m there exists an asymptotic expression that is good in large sam-

ples and only moderately accurate in small samples (Croux and Haesbroeck,

1999). For small samples, simulation may be necessary to estimate m accu-

rately. Croux and Haesbroeck used in°uence functions to determine an asymp-

totic expression for the variance elements of the MCD sample. Details are given

in the Appendix.

4. Results

A common and reasonable method for identifying clusters of outliers is to ¯nd

robust distances and then compute distributional quantiles to determine cuto®s.

Any point with a distance larger than the cuto® point will be an outlier. Three

distributional cuto® choices have been described,

1. Â2p (which is known to reject too few points),

2. F (from (2)) with degrees of freedom calculated from the asymptotic for-

mulas, and

3. F (from (2)) with degrees of freedom calculated from simulations.

We examined the performance of these methods in the null case by a Monte

Carlo study with p=5, 10, 20 and n=50, 100, 500, 1000. First, simulations of

the MCD shape estimators with 1000 trials were undertaken to obtain values
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for m and c for each pair of n and p. Then the cuto® values for 5%, 1%, and

0.1% rejection for each of the three distribution choices were calculated.

Next, 1000 sets of independent data for each pair of dimension and size

were simulated, and the number of points the cuto®s identi¯ed as outlying

was counted. For the 5% nominal test, the percent identi¯ed as outliers is

shown in Table 1. As expected, the Chi-Square cuto® points are far too liberal.

The problem is worse in higher dimension, but gets better in larger samples.

The asymptotic cuto® points are an improvement on the Chi-Square cuto®s,

but are too conservative, especially in small sample sizes. The performance at

sample sizes of 500 and 1000 is not bad. The simulated cuto® points are still

conservative, but are closer to the nominal values than the asymptotic values.

Results for 1% and 0.1% nominal tests are in Tables 2 and 3. Again, the

Chi-Square cuto®s are too liberal, the asymptotic cuto®s are too conservative,

and the simulated cuto®s are conservative but closer to the nominal than the

asymptotic cuto®s. Cuto®s from either the asymptotic or simulated methods

can be used for rejecting outliers in multivariate data without fear that more

than the nominal proportion of good data will be rejected (on the average).

Further improvements in the small-sample cuto®s will increase the sensitivity of

the detection procedure, but the method as it now stands is a large improvement

on the previously available methods.

From the tables, we can see that the asymptotic accuracy depends primarily

on n and not on p. As expected, the asymptotic cuto® becomes more accurate

as n increases. These results lead to the following recommendations:

1. For large values of n (at least 1000 observations), asymptotic formulas

should be used for cuto® values of outlying MCD distances.

2. For smaller values of n (less than 500 observations), the asymptotic for-

mula for c can be used, but simulation will be necessary to ¯nd m more

accurately. For very small values of n, the simulation cuto®s are still supe-
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rior to the currently used Chi-Square cuto® values; the simulation cuto®s

are somewhat conservative for small samples. The simulation programs,

in Fortran, are available from either author.

5. Conclusion

A new method for determining outlying points in a multivariate normal sample

has been derived. The methods presented here are superior to the commonly

used Chi-Square cuto®. Asymptotic values for the cuto®s work well in samples

of 1000 or larger, while a somewhat more computationally intensive simulation

method can be used for smaller samples sizes.

Because this work concerns clusters of outliers, there are implications for

clustering as well as outlier identi¯cation. It is possible that robust distances

may be able to identify outlying points in populations that are made up of two

or more di®erent clusters.

Also, the only robust method discussed in depth here is the MCD. The

above methods can be extended to other robust methods like the Rousseeuw's

Minimum Volume Ellipsoid (Hampel et al., 1986; Rousseeuw, 1984; Rousseeuw

and Leroy, 1987), S-estimation, and M-estimation.
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A. Appendix

In this appendix we provide for completeness the formulas due to Croux and

Haesbroeck (1999) needed to estimate the degrees of freedom parameter m of

the Wishart approximation.

® =
n ¡ h

n
(A.1)

where n is the sample size and h =

$
(n + p + 1)

2

%
:

q® is such that: 1 ¡ ® = P (Â2p · q®) (A.2)

c® =
1 ¡ ®

P (Â2p+2 · q®)
(A.3)

c2 =
¡P (Â2p+2 · q®)

2
(A.4)

c3 =
¡P (Â2p+4 · q®)

2
(A.5)

c4 = 3 ¢ c3 (A.6)

b1 =
c®(c3 ¡ c4)

1 ¡ ®
(A.7)

b2 = 0:5 +
c®

(1 ¡ ®)

Ã
c3 ¡ q®

p

Ã
c2 +

(1 ¡ ®)

2

!!
(A.8)

v1 = (1 ¡ ®)b21(®(
c®q®

p
¡ 1)2 ¡ 1) ¡ 2c3c

2
®(3(b1 ¡ pb2)

2 (A.9)

+ (p + 2)b2(2b1 ¡ pb2))

v2 = n(b1(b1 ¡ pb2)(1 ¡ ®))2c2® (A.10)

v =
v1
v2

(A.11)

m̂ =
2

c2®v
(A.12)
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Chi-Square(p) cuto® values

n

50 100 500 1000

p 5 19.8 13.5 7.1 6.1

10 29.9 21.7 8.5 6.8
20 26.8 32.5 12.3 8.5

Asymptotic cuto® values

n

50 100 500 1000

p 5 0.14 1.4 4.4 4.8
10 0.06 0.8 4.2 4.7

20 0.01 0.4 3.6 4.4

Monte Carlo cuto® values

n

50 100 500 1000

p 5 3.3 3.8 4.9 4.9

10 1.9 3.2 4.8 4.9
20 1.8 2.6 4.5 4.8

Table 1. Each entry represents the percent of simulated data that
were above a speci¯c 5% cuto® value. (Ideally, an entry in a cell would
be 5.) The cuto® values were determined by dimension, size, and method
of analysis. We can see that the Chi-Square cuto®s consistently reject too
many points as outlying. The asymptotic method is quite conservative,
but it appears to become more accurate as n increases. The simulation
method is very good for medium to large samples, and it has the best
performance of the three for small samples.
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Chi-Square(p) cuto® values

n

50 100 500 1000

p 5 10.3 5.5 1.8 1.4

10 21.0 10.3 2.4 1.6
20 23.6 24.8 4.0 2.3

Asymptotic cuto® values

n

50 100 500 1000

p 5 0.0 0.1 0.8 0.9
10 0.0 0.1 0.8 0.9

20 0.0 0.0 0.6 0.8

Monte Carlo cuto® values

n

50 100 500 1000

p 5 0.4 0.6 0.9 1.0

10 0.3 0.5 1.0 1.0
20 0.4 0.4 0.8 1.0

Table 2. Each entry represents the percent of simulated data that
were above a speci¯c 1% cuto® value. (Ideally, an entry in a cell would
be 1.) The cuto® values were determined by dimension, size, and method
of analysis. Again, we see the same results, the Chi-Square cuto®s con-
sistently reject too many points as outlying. The asymptotic method is
quite conservative, but it appears to become quite accurate as n increases.
The simulation method is very good for medium to large samples, and it
has the best performance of the three for small samples.
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Chi-Square(p) cuto® values

n

50 100 500 1000

p 5 4.48 1.69 0.29 0.19

10 12.10 3.86 0.41 0.22
20 19.82 15.17 0.78 0.35

Asymptotic cuto® values

n

50 100 500 1000

p 5 0.00 0.00 0.06 0.08
10 0.00 0.00 0.07 0.09

20 0.00 0.00 0.05 0.08

Monte Carlo cuto® values

n

50 100 500 1000

p 5 0.02 0.04 0.09 0.10

10 0.02 0.03 0.10 0.10
20 0.01 0.04 0.08 0.10

Table 3. Each entry represents the percent of simulated data that were
above a speci¯c 0.1% cuto® value. (Ideally, an entry in a cell would be
0.1.) The cuto® values were determined by dimension, size, and method
of analysis. Again, we see the same results, the Chi-Square cuto®s con-
sistently reject too many points as outlying. The asymptotic method is
quite conservative, but it appears to become quite accurate as n increases.
The simulation method is very good for medium to large samples, and it
has the best performance of the three for small samples.
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Figure Captions

1. Figure 1. Mahalanobis squared distances for the HBK data plotted
against the Â23 expected order statistics using the ordinary mean and
covariance matrix. There are by construction 14 introduced outliers;
these are masked when the mean and covariance are used to deter-
mine distances.

2. Figure 2. Mahalanobis squared distances for the HBK data plot-
ted against the Â23 expected order statistics using the MCD mean
and covariance matrix. All 14 outlying points are clearly visible as
outlying.

3. Figure 3. Mahalanobis squared distances for the Milk data plotted
against the Â28 expected order statistics using the MCD mean and
covariance matrix. One outlier is apparent, but how many outlying
points are there? One? Five? Six?

4. Figure 4. Mean Mahalanobis squared distances for simulated (n =
100; p = 5) data plotted against the Â25 expected order statistics using
the MCD mean and covariance matrix. The points that are in the
MCD sample appear to have a Â25 distribution, but the points not
included are de¯nitely not distributed Â25.

5. Figure 5. Mean Mahalanobis squared distances for simulated (n =
500; p = 5) data plotted against the Â25 expected order statistics using
the MCD mean and covariance matrix. Again, the points that are
in the MCD sample appear to have a Â25 distribution, but the points
not included, and especially the furthest outlying points, are not
distributed Â25. Even in large samples, there is still an elbow e®ect.

6. Figure 1. This ¯gure illustrates the lack of dependence of extreme
points on the MCD estimates. The distances for the dependent data
set, the \o"'s, are calculated using the MCD estimates from the
\o" data. Independent data are then simulated, the \+"'s, and the
distances are calculated using the MCD estimates from the \o" data.
For both sets of data, the points are averages of the ordered distances
for 1000 repetitions of dimension 5 size 100 data. It is apparent that
the extreme distances are not a®ected by whether the MCD was
calculated using the same sample or a di®erent one.
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Figure 1: MSD using ordinary estimates for HBK Data
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Figure 2:  MSD using MCD for HBK Data
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Figure 3:  MSD using MCD for Milk Data
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Figure 4:  Elbow Effect for p=5 n=100
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Figure 5:  Elbow Effect for p=5 n=500
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Figure 6:  Independence of Distant Points and MCD sample, p=5 n=100
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