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FROM THE EDITORS

Has Access Control Become 
the Weak Link?

I n the early 2000s, computer systems were  
under threat from a variety of  Internet  

worms. This malware attacked network-facing 
programs by exploiting their memory errors, 
hijacking their execution to perform mali-
cious operations and propagate the malware 
to other systems. One key change that com-
mercial systems adopted to prevent such 
attacks was in access control enforcement. 
With the enhanced access control (and 
other defenses), defenders were able to pre-
vent Internet worm attacks, but a variety of 
other significant and catastrophic attacks 
(e.g., ransomware) have emerged since that 
time. But our access control infrastructure 
is essentially the same as that used to com-
bat Internet worms. In this column, I want 
to look more closely at the current state of 
access control enforcement and where we 
might go from here.

A little review of the situation in the early 
2000s. At this time, commercial systems (e.g., 
UNIX-based systems and Windows) did not 
yet take security threats seriously. Commercial 
systems controlled access to their resources 
(e.g., files) using what is known as discretion-
ary access control (DAC). DAC enforcement 
has two key limitations that allowed Internet 
worm attacks.

First, DAC authorizes each process’s 
request to access a system resource based 
on a user identity associated with the pro-
cess (i.e., user ID). The idea is that users run 
processes and should get access to their own 
files. However, system processes were not 
associated with a specific user and can act on 
behalf of any user. As a result, DAC systems 
traditionally assigned an all-powerful user 
(e.g., root or administrator) as the user iden-
tity for system processes. These all-powerful 

system processes are authorized to perform 
any operation.

Second, DAC also allows a process to 
administer some the DAC permissions. Typi-
cally, a process can modify the DAC permis-
sions of resources it is said to own, which are 
often resources created by a process with that 
user identity (i.e., could be another process 
with that user identity). However, research-
ers found that by allowing processes to man-
age permissions, it is impractical to determine 
whether a particular security policy will ensure 
that a security requirement (e.g., preventing a 
process from obtaining a particular permis-
sion) in typical DAC administration (i.e., the 
undecideability result for the safety problem4) 
is enforced. Methods to ensure access control 
changes comply with security properties, 
such as the take-grant model7 and access con-
trol constraints,12 were not adopted.

The combination of these two limita-
tions of DAC enforcement were key factors 
in permitting Internet worm attacks to suc-
ceed. On the one hand, systems of the time 
had many network-facing system processes, 
which all ran under an all-powerful user iden-
tity. Thus, if any one of these programs had a 
vulnerability, the associated host was effec-
tively compromised. Such vulnerabilities 
were plentiful then and remain an issue today, 
so something had to be done reduce the per-
missions assigned to network-facing system 
processes. However, even after reducing the 
permissions associated with a process, DAC 
administration makes it impractical to deter-
mine whether we can confine a hijacked pro-
cess to prevent host compromise in general. 
An adversary could direct a network-facing 
process they have hijacked to change the per-
missions to resources that it owns and create 
new resources to plant attacks (more about 
these attacks next) to attack other system pro-
cesses. One must use DAC very carefully to 
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avoid such attacks, since programs 
are typically not hardened for such 
threats comprehensively.

Commercial systems could not 
prevent Internet worms reliably with 
their current DAC enforcement.

Using Access Control 
to Prevent Internet 
Worm Attacks
Fortunately, there had been sev-
eral key findings in access control 
research that could be drawn upon 
to prevent Internet worm attacks in 
commercial systems by this time. 
First, researchers advocated restrict-
ing processes to just the permissions 
they need to perform their function-
ality, often called least privilege.11 By 
applying least privilege, a compro-
mised system process may lack per-
missions needed to compromise the 
host (e.g., install a rootkit). However, 
enforcing least privilege alone can-
not ensure that the host is protected 
from a compromised process, as the 
permissions needed for functionality 
may still be sufficient to compromise 
the host, directly or indirectly.

Alternatively, researchers pro-
posed an access control approach 
that ensures the enforcement of 
security properties (e.g., secrecy 
or integrity), where processes are 
restricted only to operations that 
comply with those security prop-
erties. This approach, which is 
commonly called multilevel secu-
rity1 although it is more generally 
expressed as lattice-based access 
control,3 limits processes to opera-
tions that only use data that it is 
authorized to see (i.e., at its “level” 
or lower) and that cannot leak any 
data to less privileged processes 
(i.e., at a lower level). Comparing 
the two approaches, least privi-
lege aims to restrict processes to 
only necessary permissions, hope-
fully blocking operations that may 
violate security properties, while 
multilevel security aims to restrict 
functionality within operations that 
must satisfy security properties.

Another key innovation used in pre-
venting Internet worm attacks is the 
development of system-administered 
access control policies, called man-
datory access control (MAC). MAC 
polices cannot be modified by any 
of the user processes or system pro-
cesses, excepting those expressly 
permitted to administer the system’s 
security properties. Multilevel security 
policies are mandatory by design as 
the system defines the security prop-
erties that must be followed, so they 
cannot be changed by normal pro-
cessing. On the other hand, since least 
privilege aims to allow all functionality 
necessary, least privilege policies may 
be either discretionary or mandatory. 
Researchers devised methods for 
MAC enforcement of least privilege, 
such as type enforcement.2

After the emergence of Internet 
worm attacks, researchers proposed 
that improvements in access con-
trol could prevent such attacks.10 
While multilevel security offers the 
potential to prevent attacks entirely, 
this approach often prevents opera-
tions necessary for implementing 
common functionality, such as bidi-
rectional communication between 
processes at different levels (i.e., with 
different security properties). As a 
result, commercial systems adopted 
the least-privilege approach, and 
Linux adopted MAC enforcement 
of least-privilege policies, with key 
examples being SELinux and AppAr-
mor. Access control policies were 
designed to confine system processes, 
especially network-facing processes, 
to the permissions deemed necessary 
for them to function only (e.g., found 
by dynamic analysis). While early 
policies often led to unexpected deni-
als (e.g., preventing system boot in 
some  configurations), eventually sys-
tem distributors expanded policies 
sufficiently to make them practical.

Access Control 
Policy Analysis
A challenge with applying least 
 privilege access control is that we  

 

 

http://rs.ieee.org

The IEEE Reliability Society (RS) is a technical Society within the 
IEEE, which is the world’s leading professional association for the 
advancement of technology. The RS is engaged in the engineering 
disciplines of hardware, software, and human factors. Its focus on the 
broad aspects of reliability allows the RS to be seen as the IEEE Specialty 
Engineering organization. The IEEE Reliability Society is concerned 
with attaining and sustaining these design attributes throughout 
the total life cycle. The Reliability Society has the management, 
resources, and administrative and technical structures to develop 
and to provide technical information via publications, training, 
conferences, and technical library (IEEE Xplore) data to its 
members and the Specialty Engineering community. The IEEE 
Reliability Society has 28 chapters and members in 60 countries 
worldwide. 

The Reliability Society is the IEEE professional society for 
Reliability Engineering, along with other Specialty Engineering 
disciplines. These disciplines are design engineering fields that apply 
scientific knowledge so that their specific attributes are designed 
into the system/product/device/process to assure that it will 
perform its intended function for the required duration within 
a given environment, including the ability to test and support it 
throughout its total life cycle. This is accomplished concurrently 
with other design disciplines by contributing to the planning 
and selection of the system architecture, design implementation, 
materials, processes, and components; followed by verifying 
the selections made by thorough analysis and test and then 
sustainment. 

Visit the IEEE Reliability Society website as it is the gateway 
to the many resources that the RS makes available to its members 
and others interested in the broad aspects of Reliability and Specialty 
Engineering.

Executive Committee (Excom) Members: Steven Li, President;  
Jeffrey Voas, Sr. Past President; Preeti Chauhan, VP Technical Activities; 
Phil Laplante, VP Publications; Christian Hansen, VP Meetings and 
Conferences; Janet Lin, VP Membership; Loretta Arellano, Secretary; 
Jason Rupe, Treasurer

Administrative Committee (AdCom) Members: Loretta Arellano, 
Preeti Chauhan, Trevor Craney, Joanna F. DeFranco, Pierre Dersin, 
Ruizhi (Ricky) Gao, Louis J. Gullo, Christian Hansen, Pradeep Lall, 
Phillip A. Laplante, Janet Lin, George Pallis, Jason W. Rupe, Robert 
Stoddard, Daniel Sniezek, Scott Tamashiro, Eric Wong, Ruolin Zhou

Digital Object Identifier 10.1109/MSEC.2024.3441458



6 IEEE Security & Privacy September/October 2024

FROM THE EDITORS

do not know which authorized 
operations may permit attacks, such 
as attacks on secrecy and integrity 
prevented by multilevel security. To 
answer the question of whether least 
privilege access control still permits 
attacks, access control policy analy-
sis was proposed. I want to briefly 
explain what access control policy 
analysis is and what it is for before we 
examine where we are now.

In general, access control policy 
analysis6 is analogous to program 
analysis, where we take the arti-
fact (i.e., the access control policy) 
and compute a data-flow graph  
G = (V, E) implied by the autho-
rized operations. Since MAC poli-
cies are immutable, this data-flow 
graph represents all the possible 
authorized flows. In this case, the 
data-flow graph describes the flows 
among subjects S and objects O 
identified by the policy, where  

.V S O,=  For access control 
analysis, a data flow (i.e., an edge 
( , ) ,u v E!  where ,u v V! ) is cre-
ated in two ways: 1) when the access 
control policy authorizes a read oper-
ation on object o by subject s an edge 
(o, s) (i.e., a flow from the object to 
the subject) is added to the data flow 
graph and 2) when the access con-
trol policy authorizes a write opera-
tion on object o by subject s an edge 
(s, o) (i.e., a flow from the subject to 
the object) is added to the data flow 
graph. All system calls can be classi-
fied based on whether their effects 
cause reads, writes, or both.

Access control policy analysis  
compares the data flows resulting 
from an access control policy to a 
security policy representing the oper-
ations considered secure. The idea 
is to identify any authorized opera-
tion that may enable an adversary 
to attack a program, e.g., causing a 
data leak (violate secrecy) or illicitly 
modifying critical program data (vio-
late integrity). This is exactly the set 
of operations that are deemed inse-
cure in a multilevel security policy, 
so access control policy analysis 

often uses a multilevel policy to find 
the unsafe operations authorized by 
a least privilege policy. While com-
mercial systems do not use multi-
level policies, they sometimes assign 
security levels to processes to limit 
permissions, such as Android’s privi-
lege levels and Windows’ Mandatory 
Integrity Control.

Where Are We Now?
Twenty-plus years after the intro-
duction of least privilege MAC 
enforcement in commercial systems, 
we continue to apply that approach. 
However, adversaries have become 
proficient in employing attacks that 
exploit weaknesses in least-privilege 
enforcement. Most of these attack 
types have been known for a long time 
(i.e., prior to Internet worms), but have 
become a common part of the adver-
sary’s arsenal. The prevalence and 
effectiveness of such attacks means that 
additional defenses are required.

Consider mobile systems, such 
as Android, which allow the use of 
third-party applications. As adver-
saries may entice mobile users 
into running their malicious apps, 
a challenge for mobile systems 
is to prevent attacks even when 
adversary-controlled code may run  
on the system. Mobile systems 
change the threat model from trying 
to confine network-facing processes 
to also confining third-party apps. 
This problem is complicated by the 
prevalence of Android original equip-
ment manufacturers (OEMs) who 
extend their versions of Android sys-
tems in a variety of ways to provide 
value-added functionality for their 
customers, including functionality for 
use by third-party apps.

There are several threat vectors 
that must be considered to protect 
Android (and OEM) programs 
from exploitation, but let’s exam-
ine one. Third-party apps often 
share the filesystem with Android 
programs, which may put the lat-
ter at risk should they use a file or 
symbolic link created by a malicious 

third-party app. For example, mali-
cious apps can plant files to con-
trol Android programs (e.g., library 
code, updates, and configurations) 
or plant symbolic links to redi-
rect Android programs to operate 
on adversary-chosen resources. 
Whenever Android programs share 
resources that may be modified by 
third-party apps, this creates threats 
to Android security.

By using access control policy 
analysis, one can identif y such 
threats from the combination of 
Android access control policies.8,9 
While the presence of a threatening 
data flow (e.g., from a third-party 
app to an Android program) does 
not directly mean that a program 
has a vulnerability, many vulnera-
bilities to these kinds of threats have 
been detected recently. This com-
ports with my personal experience 
that programs often fail to address 
such threats, as they underestimate 
the amount of authorized sharing 
resulting from least-privilege MAC 
enforcement. Note that Android 
systems have extensive, fine-grained 
access control, so these threats 
could be even more numerous on 
other systems.

Why do these types of vulner-
abilities continue to emerge? One 
issue is that least-privilege access 
control is hard to get perfect. If a 
program is denied any permission 
that it really needs, then the pro-
gram will fail to operate correctly, 
leading to functionality problems. 
As a result, least-privilege access 
control must overapproximate the 
permissions needed by each pro-
gram, resulting in a significant num-
ber of threats (e.g., over 1,000 for 
Android OEMs9) Another issue 
is that configuring least-privilege 
access control is hard. For exam-
ple, we observe that many Android 
OEMs utilize the Linux DAC to try 
to prevent sharing rather than the  
MAC enforcement, reintroducing 
its risks. As a result, the responsi-
bility for preventing threats from 
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turning into vulnerabilities falls 
upon programmers. Although Linux 
application programming interfaces 
have been extended to prevent some 
vulnerabilities (e.g., openat), the 
complexity and variety of threats 
that programmers face makes it dif-
ficult to address them all.

Where Do We Go 
From Here?
Given the current situation, the 
question is what actions should be 
taken to reduce number of vulnera-
bilities resulting from least-privilege 
MAC enforcement. My hope in 
developing access control analy-
sis was that operating systems dis-
tributors would use such methods 
to detect threats and make changes 
to reduce the number of threats, 
e.g., deploy program configura-
tions that create fewer threats. 
However, access control analysis 
identifies threats rather than vul-
nerabilities, so these threats are not 
always removed. As a result, it has 
largely fallen upon programmers 
to defend against such threats, 
but many of these threats are not 
addressed sufficiently.

It appears unlikely that improve-
ments in access control alone 
will be sufficient to prevent these 
exploits. As we saw for Android, 
refining least-privilege MAC 
enforcement is already too com-
plex for many OEMs. In addition, 
programs may really use many of 
these permissions that are under 
threat, so adopting a more restric-
tive policy or a policy that prevents 
all security violations (e.g., mul-
tilevel security), would prevent 
many operations deemed necessary 
in commercial programs. In practi-
cal terms, we are probably commit-
ted to some form of least-privilege 
access control, but how do we make 
it more effective?

W hile access control policy 
analysis alone does not identify 

vulnerabilities directly, we envision 
that some combination of program 
analysis and access control policy 
analysis should be considered. Joint 
program and access control analy-
sis has been proposed in the past 
to check whether the information 
flows of the program were compli-
ant with information flows autho-
rized by SELinux access control.5 
To make access control enforce-
ment more robust, we could envi-
sion automating analysis of whether 
the threats found by access control 
analysis could actually cause pro-
gram vulnerabilities. Challenges 
remain to determine how to the 
two types of analyses could be com-
bined effectively. In addition, to 
make impact on the security of sys-
tems, we need to improve the ease 
of responding to problems when 
they are identified.

T he bottom line is that the 
least-privilege MAC approach 

to access control has limitations that 
need to be addressed to improve our 
security posture beyond the current 
state in tangible ways. It appears 
that efforts from multiple commu-
nities (e.g., program analysis, access 
control, filesystems, and so on) will 
need to be brought together to pre-
vent such attacks. 
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