
UC Riverside
UC Riverside Previously Published Works

Title
Has Access Control Become the Weak Link?

Permalink
https://escholarship.org/uc/item/1bw6970f

Journal
IEEE Security & Privacy, 22(5)

ISSN
1540-7993

Author
Jaeger, Trent

Publication Date
2024

DOI
10.1109/msec.2024.3427588

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1bw6970f
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

4 September/October 2024 Copublished by the IEEE Computer and Reliability Societies 1540-7993/24©2024IEEE

FROM THE EDITORS

Has Access Control Become
the Weak Link?

I n the early 2000s, computer systems were
under threat from a variety of Internet

worms. This malware attacked network-facing
programs by exploiting their memory errors,
hijacking their execution to perform mali-
cious operations and propagate the malware
to other systems. One key change that com-
mercial systems adopted to prevent such
attacks was in access control enforcement.
With the enhanced access control (and
other defenses), defenders were able to pre-
vent Internet worm attacks, but a variety of
other significant and catastrophic attacks
(e.g., ransomware) have emerged since that
time. But our access control infrastructure
is essentially the same as that used to com-
bat Internet worms. In this column, I want
to look more closely at the current state of
access control enforcement and where we
might go from here.

A little review of the situation in the early
2000s. At this time, commercial systems (e.g.,
UNIX-based systems and Windows) did not
yet take security threats seriously. Commercial
systems controlled access to their resources
(e.g., files) using what is known as discretion-
ary access control (DAC). DAC enforcement
has two key limitations that allowed Internet
worm attacks.

First, DAC authorizes each process’s
request to access a system resource based
on a user identity associated with the pro-
cess (i.e., user ID). The idea is that users run
processes and should get access to their own
files. However, system processes were not
associated with a specific user and can act on
behalf of any user. As a result, DAC systems
traditionally assigned an all-powerful user
(e.g., root or administrator) as the user iden-
tity for system processes. These all-powerful

system processes are authorized to perform
any operation.

Second, DAC also allows a process to
administer some the DAC permissions. Typi-
cally, a process can modify the DAC permis-
sions of resources it is said to own, which are
often resources created by a process with that
user identity (i.e., could be another process
with that user identity). However, research-
ers found that by allowing processes to man-
age permissions, it is impractical to determine
whether a particular security policy will ensure
that a security requirement (e.g., preventing a
process from obtaining a particular permis-
sion) in typical DAC administration (i.e., the
undecideability result for the safety problem4)
is enforced. Methods to ensure access control
changes comply with security properties,
such as the take-grant model7 and access con-
trol constraints,12 were not adopted.

The combination of these two limita-
tions of DAC enforcement were key factors
in permitting Internet worm attacks to suc-
ceed. On the one hand, systems of the time
had many network-facing system processes,
which all ran under an all-powerful user iden-
tity. Thus, if any one of these programs had a
vulnerability, the associated host was effec-
tively compromised. Such vulnerabilities
were plentiful then and remain an issue today,
so something had to be done reduce the per-
missions assigned to network-facing system
processes. However, even after reducing the
permissions associated with a process, DAC
administration makes it impractical to deter-
mine whether we can confine a hijacked pro-
cess to prevent host compromise in general.
An adversary could direct a network-facing
process they have hijacked to change the per-
missions to resources that it owns and create
new resources to plant attacks (more about
these attacks next) to attack other system pro-
cesses. One must use DAC very carefully to

Digital Object Identifier 10.1109/MSEC.2024.3427588
Date of current version: 13 September 2024

Trent Jaeger
The University of California,
Riverside

https://orcid.org/0000-0002-4964-1170

www.computer.org/security 5

avoid such attacks, since programs
are typically not hardened for such
threats comprehensively.

Commercial systems could not
prevent Internet worms reliably with
their current DAC enforcement.

Using Access Control
to Prevent Internet
Worm Attacks
Fortunately, there had been sev-
eral key findings in access control
research that could be drawn upon
to prevent Internet worm attacks in
commercial systems by this time.
First, researchers advocated restrict-
ing processes to just the permissions
they need to perform their function-
ality, often called least privilege.11 By
applying least privilege, a compro-
mised system process may lack per-
missions needed to compromise the
host (e.g., install a rootkit). However,
enforcing least privilege alone can-
not ensure that the host is protected
from a compromised process, as the
permissions needed for functionality
may still be sufficient to compromise
the host, directly or indirectly.

Alternatively, researchers pro-
posed an access control approach
that ensures the enforcement of
security properties (e.g., secrecy
or integrity), where processes are
restricted only to operations that
comply with those security prop-
erties. This approach, which is
commonly called multilevel secu-
rity1 although it is more generally
expressed as lattice-based access
control,3 limits processes to opera-
tions that only use data that it is
authorized to see (i.e., at its “level”
or lower) and that cannot leak any
data to less privileged processes
(i.e., at a lower level). Comparing
the two approaches, least privi-
lege aims to restrict processes to
only necessary permissions, hope-
fully blocking operations that may
violate security properties, while
multilevel security aims to restrict
functionality within operations that
must satisfy security properties.

Another key innovation used in pre-
venting Internet worm attacks is the
development of system-administered
access control policies, called man-
datory access control (MAC). MAC
polices cannot be modified by any
of the user processes or system pro-
cesses, excepting those expressly
permitted to administer the system’s
security properties. Multilevel security
policies are mandatory by design as
the system defines the security prop-
erties that must be followed, so they
cannot be changed by normal pro-
cessing. On the other hand, since least
privilege aims to allow all functionality
necessary, least privilege policies may
be either discretionary or mandatory.
Researchers devised methods for
MAC enforcement of least privilege,
such as type enforcement.2

After the emergence of Internet
worm attacks, researchers proposed
that improvements in access con-
trol could prevent such attacks.10
While multilevel security offers the
potential to prevent attacks entirely,
this approach often prevents opera-
tions necessary for implementing
common functionality, such as bidi-
rectional communication between
processes at different levels (i.e., with
different security properties). As a
result, commercial systems adopted
the least-privilege approach, and
Linux adopted MAC enforcement
of least-privilege policies, with key
examples being SELinux and AppAr-
mor. Access control policies were
designed to confine system processes,
especially network-facing processes,
to the permissions deemed necessary
for them to function only (e.g., found
by dynamic analysis). While early
policies often led to unexpected deni-
als (e.g., preventing system boot in
some configurations), eventually sys-
tem distributors expanded policies
sufficiently to make them practical.

Access Control
Policy Analysis
A challenge with applying least
 privilege access control is that we

http://rs.ieee.org

The IEEE Reliability Society (RS) is a technical Society within the
IEEE, which is the world’s leading professional association for the
advancement of technology. The RS is engaged in the engineering
disciplines of hardware, software, and human factors. Its focus on the
broad aspects of reliability allows the RS to be seen as the IEEE Specialty
Engineering organization. The IEEE Reliability Society is concerned
with attaining and sustaining these design attributes throughout
the total life cycle. The Reliability Society has the management,
resources, and administrative and technical structures to develop
and to provide technical information via publications, training,
conferences, and technical library (IEEE Xplore) data to its
members and the Specialty Engineering community. The IEEE
Reliability Society has 28 chapters and members in 60 countries
worldwide.

The Reliability Society is the IEEE professional society for
Reliability Engineering, along with other Specialty Engineering
disciplines. These disciplines are design engineering fields that apply
scientific knowledge so that their specific attributes are designed
into the system/product/device/process to assure that it will
perform its intended function for the required duration within
a given environment, including the ability to test and support it
throughout its total life cycle. This is accomplished concurrently
with other design disciplines by contributing to the planning
and selection of the system architecture, design implementation,
materials, processes, and components; followed by verifying
the selections made by thorough analysis and test and then
sustainment.

Visit the IEEE Reliability Society website as it is the gateway
to the many resources that the RS makes available to its members
and others interested in the broad aspects of Reliability and Specialty
Engineering.

Executive Committee (Excom) Members: Steven Li, President;
Jeffrey Voas, Sr. Past President; Preeti Chauhan, VP Technical Activities;
Phil Laplante, VP Publications; Christian Hansen, VP Meetings and
Conferences; Janet Lin, VP Membership; Loretta Arellano, Secretary;
Jason Rupe, Treasurer

Administrative Committee (AdCom) Members: Loretta Arellano,
Preeti Chauhan, Trevor Craney, Joanna F. DeFranco, Pierre Dersin,
Ruizhi (Ricky) Gao, Louis J. Gullo, Christian Hansen, Pradeep Lall,
Phillip A. Laplante, Janet Lin, George Pallis, Jason W. Rupe, Robert
Stoddard, Daniel Sniezek, Scott Tamashiro, Eric Wong, Ruolin Zhou

Digital Object Identifier 10.1109/MSEC.2024.3441458

6 IEEE Security & Privacy September/October 2024

FROM THE EDITORS

do not know which authorized
operations may permit attacks, such
as attacks on secrecy and integrity
prevented by multilevel security. To
answer the question of whether least
privilege access control still permits
attacks, access control policy analy-
sis was proposed. I want to briefly
explain what access control policy
analysis is and what it is for before we
examine where we are now.

In general, access control policy
analysis6 is analogous to program
analysis, where we take the arti-
fact (i.e., the access control policy)
and compute a data-flow graph
G = (V, E) implied by the autho-
rized operations. Since MAC poli-
cies are immutable, this data-flow
graph represents all the possible
authorized flows. In this case, the
data-flow graph describes the flows
among subjects S and objects O
identified by the policy, where

.V S O,= For access control
analysis, a data flow (i.e., an edge
(,) ,u v E! where ,u v V!) is cre-
ated in two ways: 1) when the access
control policy authorizes a read oper-
ation on object o by subject s an edge
(o, s) (i.e., a flow from the object to
the subject) is added to the data flow
graph and 2) when the access con-
trol policy authorizes a write opera-
tion on object o by subject s an edge
(s, o) (i.e., a flow from the subject to
the object) is added to the data flow
graph. All system calls can be classi-
fied based on whether their effects
cause reads, writes, or both.

Access control policy analysis
compares the data flows resulting
from an access control policy to a
security policy representing the oper-
ations considered secure. The idea
is to identify any authorized opera-
tion that may enable an adversary
to attack a program, e.g., causing a
data leak (violate secrecy) or illicitly
modifying critical program data (vio-
late integrity). This is exactly the set
of operations that are deemed inse-
cure in a multilevel security policy,
so access control policy analysis

often uses a multilevel policy to find
the unsafe operations authorized by
a least privilege policy. While com-
mercial systems do not use multi-
level policies, they sometimes assign
security levels to processes to limit
permissions, such as Android’s privi-
lege levels and Windows’ Mandatory
Integrity Control.

Where Are We Now?
Twenty-plus years after the intro-
duction of least privilege MAC
enforcement in commercial systems,
we continue to apply that approach.
However, adversaries have become
proficient in employing attacks that
exploit weaknesses in least-privilege
enforcement. Most of these attack
types have been known for a long time
(i.e., prior to Internet worms), but have
become a common part of the adver-
sary’s arsenal. The prevalence and
effectiveness of such attacks means that
additional defenses are required.

Consider mobile systems, such
as Android, which allow the use of
third-party applications. As adver-
saries may entice mobile users
into running their malicious apps,
a challenge for mobile systems
is to prevent attacks even when
adversary-controlled code may run
on the system. Mobile systems
change the threat model from trying
to confine network-facing processes
to also confining third-party apps.
This problem is complicated by the
prevalence of Android original equip-
ment manufacturers (OEMs) who
extend their versions of Android sys-
tems in a variety of ways to provide
value-added functionality for their
customers, including functionality for
use by third-party apps.

There are several threat vectors
that must be considered to protect
Android (and OEM) programs
from exploitation, but let’s exam-
ine one. Third-party apps often
share the filesystem with Android
programs, which may put the lat-
ter at risk should they use a file or
symbolic link created by a malicious

third-party app. For example, mali-
cious apps can plant files to con-
trol Android programs (e.g., library
code, updates, and configurations)
or plant symbolic links to redi-
rect Android programs to operate
on adversary-chosen resources.
Whenever Android programs share
resources that may be modified by
third-party apps, this creates threats
to Android security.

By using access control policy
analysis, one can identif y such
threats from the combination of
Android access control policies.8,9
While the presence of a threatening
data flow (e.g., from a third-party
app to an Android program) does
not directly mean that a program
has a vulnerability, many vulnera-
bilities to these kinds of threats have
been detected recently. This com-
ports with my personal experience
that programs often fail to address
such threats, as they underestimate
the amount of authorized sharing
resulting from least-privilege MAC
enforcement. Note that Android
systems have extensive, fine-grained
access control, so these threats
could be even more numerous on
other systems.

Why do these types of vulner-
abilities continue to emerge? One
issue is that least-privilege access
control is hard to get perfect. If a
program is denied any permission
that it really needs, then the pro-
gram will fail to operate correctly,
leading to functionality problems.
As a result, least-privilege access
control must overapproximate the
permissions needed by each pro-
gram, resulting in a significant num-
ber of threats (e.g., over 1,000 for
Android OEMs9) Another issue
is that configuring least-privilege
access control is hard. For exam-
ple, we observe that many Android
OEMs utilize the Linux DAC to try
to prevent sharing rather than the
MAC enforcement, reintroducing
its risks. As a result, the responsi-
bility for preventing threats from

www.computer.org/security 7

turning into vulnerabilities falls
upon programmers. Although Linux
application programming interfaces
have been extended to prevent some
vulnerabilities (e.g., openat), the
complexity and variety of threats
that programmers face makes it dif-
ficult to address them all.

Where Do We Go
From Here?
Given the current situation, the
question is what actions should be
taken to reduce number of vulnera-
bilities resulting from least-privilege
MAC enforcement. My hope in
developing access control analy-
sis was that operating systems dis-
tributors would use such methods
to detect threats and make changes
to reduce the number of threats,
e.g., deploy program configura-
tions that create fewer threats.
However, access control analysis
identifies threats rather than vul-
nerabilities, so these threats are not
always removed. As a result, it has
largely fallen upon programmers
to defend against such threats,
but many of these threats are not
addressed sufficiently.

It appears unlikely that improve-
ments in access control alone
will be sufficient to prevent these
exploits. As we saw for Android,
refining least-privilege MAC
enforcement is already too com-
plex for many OEMs. In addition,
programs may really use many of
these permissions that are under
threat, so adopting a more restric-
tive policy or a policy that prevents
all security violations (e.g., mul-
tilevel security), would prevent
many operations deemed necessary
in commercial programs. In practi-
cal terms, we are probably commit-
ted to some form of least-privilege
access control, but how do we make
it more effective?

W hile access control policy
analysis alone does not identify

vulnerabilities directly, we envision
that some combination of program
analysis and access control policy
analysis should be considered. Joint
program and access control analy-
sis has been proposed in the past
to check whether the information
flows of the program were compli-
ant with information flows autho-
rized by SELinux access control.5
To make access control enforce-
ment more robust, we could envi-
sion automating analysis of whether
the threats found by access control
analysis could actually cause pro-
gram vulnerabilities. Challenges
remain to determine how to the
two types of analyses could be com-
bined effectively. In addition, to
make impact on the security of sys-
tems, we need to improve the ease
of responding to problems when
they are identified.

T he bottom line is that the
least-privilege MAC approach

to access control has limitations that
need to be addressed to improve our
security posture beyond the current
state in tangible ways. It appears
that efforts from multiple commu-
nities (e.g., program analysis, access
control, filesystems, and so on) will
need to be brought together to pre-
vent such attacks.

References
 1. D. E. Bell and L. J. LaPadula, “Secure

computer system: Unified exposi-
tion and Multics interpretation,”
MITRE Corp., Bedford, MA, USA,
Tech. Rep. MTR-2997, Mar. 1976.

 2. W. E. Boebert and R. Y. Kain, “A
practical alternative to hierarchical
integrity policies,” in Proc. 8th Nat.
Comput. Secur. Conf., 1985, pp. 18–27.

 3. D. E. Denning, “A lattice model
of secure information flow,” Com-
mun. ACM, vol. 19, no. 5, pp. 236–
243, 1976, doi: 10.1145/360051.
360056.

 4. M. A. Harrison, W. L. Ruzzo, and J.
D. Ullman, “Protection in operat-
ing systems,” Commun. ACM, vol.
19, no. 8, pp. 461–471, 1976, doi:
10.1145/360303.360333.

 5. B. Hicks, S. Rueda, T. Jaeger, and
P. McDaniel, “From Trusted to
Secure: Building and executing
applications that enforce systems
security,” in Proc. USENIX Annu.
Tech. Conf., May 2007, pp. 205–218.

 6. T. Jaeger, R. Sailer, and X. Zhang,
“Analyzing integrity protection in
the SELinux example policy,” in
Proc. 11th USENIX Secur. Symp.,
Aug. 2003, pp. 59–74.

 7. A. K. Jones, R. J. Lipton, and L.
Snyder, “A linear time algorithm
for deciding security,” in Proc.
17th Annu. Symp. Found. Comput.
Sci., Houston, TX, USA, 1976, pp.
33–41, doi: 10.1109/SFCS.1976.1.

 8. Y.-T. Lee et al., “PolyScope: Multi-
policy access control analysis to tri-
age Android Scoped Storage,” IEEE
Trans. Dependable Secure Com-
put., early access, Sep. 2023, doi:
10.1109/TDSC.2023.3310402.

 9. Y.-T. Lee et al., “PolyScope: Multi-
policy access control analysis to
compute authorized attack opera-
tions in Android systems,” in Proc.
30th USENIX Secur. Symp., 2021,
pp. 2579–2596.

 10. P. A. Loscocco, S. D. Smalley, P. A.
Muckelbauer, R. C. Taylor, S. J.Turner,
and J. F. Farrell, “The inevitability of
failure: The flawed assumption of
security in modern computing envi-
ronments,” in Proc. 21st Nat. Inf. Syst.
Secur. Conf., Oct. 1998, pp. 303–314.

 11. J. H. Saltzer and M. D. Schroeder,
“The protection of information in
computer systems,” Proc. IEEE, vol.
63, no. 9, pp. 1278–1308, Sep. 1975,
doi: 10.1109/PROC.1975.9939.

 12. J. Tidswell and T. Jaeger, “An
access control model for simplify-
ing constraint expression,” in Proc.
ACM Conf. Comput. Commun.
Secur., 2000, pp. 154–163, doi: 10.
1145/352600.352622.

http://dx.doi.org/10.1145/360051.360056
http://dx.doi.org/10.1145/360051.360056
http://dx.doi.org/10.1145/360303.360333
http://dx.doi.org/10.1109/SFCS.1976.1
http://dx.doi.org/10.1109/TDSC.2023.3310402
http://dx.doi.org/10.1109/PROC.1975.9939
http://dx.doi.org/10.1145/352600.352622
http://dx.doi.org/10.1145/352600.352622

	004_22msec05-editorial-3427588

