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 | Environmental Microbiology | Research Article

Rhizosphere and detritusphere habitats modulate expression of 
soil N-cycling genes during plant development

Ella T. Sieradzki,1 Erin E. Nuccio,2 Jennifer Pett-Ridge,2,3,4 Mary K. Firestone1

AUTHOR AFFILIATIONS See affiliation list on p. 14.

ABSTRACT Interactions between plant roots and rhizosphere bacteria modulate 
nitrogen (N)-cycling processes and create habitats rich in low molecular weight 
compounds (exudates) and complex organic molecules (decaying root litter) compared 
to those of bulk soil. Microbial N-cycling is regulated by edaphic conditions and genes 
from many interconnected metabolic pathways, but most studies of soil N-cycling 
gene expression have focused on single pathways. Currently, we lack a comprehensive 
understanding of the interplay between soil N-cycling gene regulation, spatial habitat, 
and time. We present results from a replicated time series of soil metatranscriptomes; we 
followed gene expression of multiple N transformations in four soil habitats (rhizosphere, 
detritusphere, rhizo-detritusphere, and bulk soil) during active root growth for the 
annual grass, Avena fatua. The presence of root litter and living roots significantly 
altered the trajectories of N-cycling gene expression. Upregulation of assimilatory nitrate 
reduction in the rhizosphere suggests that rhizosphere bacteria were actively competing 
with roots for nitrate. Simultaneously, ammonium assimilatory pathways were upregula
ted in both rhizosphere and detritusphere soil, which could have limited N availability 
to plants. The detritusphere supported dissimilatory processes DNRA and denitrification. 
Expression of nitrification genes was dominated by three phylotypes of Thaumarch
aeota and was upregulated in bulk soil. Unidirectional ammonium assimilation and its 
regulatory genes (GS/GOGAT) were upregulated near relatively young roots and highly 
decayed root litter, suggesting N may have been limiting in these habitats (GS/GOGAT 
is typically activated under N limitation). Our comprehensive analysis indicates that 
differences in carbon and inorganic N availability control contemporaneous transcription 
of N-cycling pathways in soil habitats.

IMPORTANCE Plant roots modulate microbial nitrogen (N) cycling by regulating the 
supply of root-derived carbon and nitrogen uptake. These differences in resource 
availability cause distinct micro-habitats to develop: soil near living roots, decaying roots, 
near both, or outside the direct influence of roots. While many environmental factors 
and genes control the microbial processes involved in the nitrogen cycle, most research 
has focused on single genes and pathways, neglecting the interactive effects these 
pathways have on each other. The processes controlled by these pathways determine 
consumption and production of N by soil microorganisms. We followed the expression 
of N-cycling genes in four soil microhabitats over a period of active root growth for 
an annual grass. We found that the presence of root litter and living roots significantly 
altered gene expression involved in multiple nitrogen pathways, as well as tradeoffs 
between pathways, which ultimately regulate N availability to plants.

KEYWORDS soil microbiome, soil nitrogen, rhizosphere, gene expression, metatran
scriptomics, nitrification, plant litter, detritusphere
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N itrogen (N) is a key limiting nutrient for plant growth, since in soil, N mostly 
occurs in organic forms as large, complex molecules that are unavailable to plants. 

Soil microorganisms have suites of extracellular enzymes capable of degrading these 
molecules, yielding small organic and inorganic N to the surrounding soil, and bene
fitting nearby plants. Some bacteria and archaea oxidize N to nitrate—an inorganic 
form that, like ammonium, is available to many plants. Meanwhile, microorganisms also 
take up inorganic N for a variety of growth-supporting assimilatory and dissimilatory 
metabolic processes. This can lead to some competition for N between soil bacteria and 
plants as well as between different soil bacteria. While many of these processes occur 
simultaneously in soil, we have an incomplete understanding of how they vary with time 
and in distinct soil habitats.

Soils contain numerous microhabitats with heterogeneous distributions of substrates 
and resources (1). The influence of growing roots can dominate (rhizosphere), or 
dead root litter may dominate (detritusphere); alternatively, these two habitats may 
co-occur when live roots regrow into previously colonized areas (rhizo/detritusphere). In 
previous analyses, we have shown that distinct bacterial guilds operate in rhizosphere, 
detritusphere, and combined rhizosphere-detritusphere soil habitats (2, 3). The spatial 
organization of these soil habitats may be particularly important for nutrient transfers 
that create distinct microhabitats that enable or limit N-cycling. For example: (i) in 
the rhizosphere, exudate-driven blooms of microbial growth are followed by preda
tion that liberates the nutrient capital held in bacterial, fungal, and metazoan bodies; 
this redistribution of microbial biomass causes conversion of lower molecular weight 
compounds (e.g., amino acids) that are deaminated to ammonium by diverse bacteria 
and fungi (4, 5); (ii) in the detritusphere, organic N in root litter [e.g., lignoproteins (6)] 
is mineralized to make inorganic N available to soil microbes, while the same organic 
material serves as a carbon (C) source for soil microbes (7), creating a demand for N to 
maintain cellular stoichiometry; and (iii) in bulk soils, some microbes may express more 
macromolecule degradation genes relative to more resource-rich sites near roots, where 
degradation enzymes for low molecular weight compounds are more prevalent (8).

Rates of microbial N transformations in soil can be significantly impacted by soil 
edaphic conditions (e.g., moisture, pH, O2, and texture) and the presence of both 
growing and decaying roots. Gross N mineralization, immobilization, and nitrification 
rates vary as a function of proximity to plant roots, root age, and concentration of 
organic material in grassland soil (9, 10). Roots can significantly deplete ammonium in 
the rhizosphere within days of root introduction into sterile soil (11). However, in wild 
soils with intact microbial communities, rhizosphere-associated bacteria can transiently 
compete with plants (e.g., Avena barbata roots) for inorganic nitrogen (12). As part 
of this competition, plants can inhibit rhizosphere nitrogen transformations through 
mechanisms such as biological nitrification inhibition (BNI) by production of certain root 
exudate compounds (13). Plants have also been shown to inhibit both nitrification and 
denitrification processes in the rhizosphere—a combination of processes that leads to 
loss of N from the plant-available pool (14)—and litter amendment has been shown to 
increase denitrification (15). Understanding the N-cycling tradeoffs between different 
soil habitats is key for our ability to better model and predict the controls of soil 
N-cycling.

Soil metatranscriptome analysis is a powerful tool for linking nitrogen cycling genes 
to specific microbial populations and correlating transcription levels to environmental 
conditions (2, 3, 16–19). In comparison, qPCR can target only single genes, and primer 
biases may leave some taxa undetected. A recent metatranscriptomics study demon
strated a short-term coupling of nitrogen cycling pathways and availability of simple 
carbons simulating priming by root exudates (20). Otherwise, there is little knowledge 
of the contemporaneous feedback through gene expression between carbon availability 
and nitrogen cycling in naturally complex soil habitats and over annual plant-relevant 
time frames (21–23).
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Here, we used soil metatranscriptomics analysis to build a comprehensive time-
resolved representation of both organic and inorganic nitrogen transformations in an 
annual grassland soil. We characterized a period of active root growth, as well as root 
decomposition, of wild oat grass (Avena fatua), a common species in Mediterranean 
grasslands. We hypothesized that different N cycle pathways would be prevalent in 
different soil microhabitats that vary in available C and N resources. We analyzed 48 
metatranscriptomes from rhizosphere and bulk soil collected over a 3-week time series in 
the presence or absence of root litter; this allowed us to identify the dominant N-cycling 
pathways associated with each habitat and untangle the effects of carbon supply by live 
or dead roots from competition with the plant for N. We previously analyzed a different 
subset of these data to assess expression of genes coding for carbohydrate degradation 
(2) and complex organic nitrogen degrading enzymes (3). While these prior studies 
provide important context, our analysis here is unique in its comprehensive exploration 
of how N transformation gene expression is influenced by the distinct environmental 
conditions of different soil habitats. The use of metatranscriptomics (as opposed to 
qPCR) also facilitated identification of specific microbial populations involved in each 
pathway and helped us test for multiple N transforming pathways expressed within 
populations found in multiple soil habitats. Finally, we measured changes in N pathway 
gene expression over time as the rhizosphere aged and as root litter was degraded.

MATERIALS AND METHODS

Experimental design, sample collection, and sequencing

The experimental procedures and initial data processing for our 48 soil metatranscrip
tome data set are described in detail in reference (2). Briefly, Avena fatua was grown 
in a fine loam Alfisol complex (Ultic Haploxeralf mixed with a Mollic Palexeralf ) from 
the Hopland Research and Extension Center (Hopland, California), pH 5.6, 2% total C, 
in microcosms with a sidecar with transparent walls. After 6 weeks, roughly halfway 
through the plant life span, the solid divider to the sidecar was removed and replaced 
with a slotted divider so that roots could grow into the sidecar. Root growth was marked 
on the sidecar wall. All sidecars contained bulk soil bags that were inaccessible to roots. 
Half of the bulk soil bags as well as the soil in half of the sidecars were amended with 
dried A. fatua root detritus (litter C:N = 13.4). Once the sidecar was opened, paired 
rhizosphere and bulk soil triplicates were harvested destructively after 3, 6, 12, and 22 
days from amended and unamended microcosms for a total of 48 samples. Lifeguard Soil 
Preservation Reagent (MoBio) was added to a 1 g subsample of the harvested soil. The 
supernatant and roots were removed, and the samples were stored at −80°C.

DNA/RNA co-extraction was performed with phenol-chloroform. DNA and RNA were 
separated with an AllPrep Kit (Qiagen), and RNA was DNase treated (TURBO DNase, 
Thermo Fisher Scientific). Ribosomal RNA was depleted (RiboZero, Illumina), and the 
mRNA was retrotranscribed. cDNA was sequenced with an Illumina HiSeq 2000 2 × 150 
(TruSeq SBS v3) protocol at the Joint Genome Institute. In addition, the V4 hypervariable 
region of the 16S gene (primers 515F and 806R) was amplified from the extracted DNA 
and sequenced via Illumina MiSeq v3 2 × 300. Amplicons were analyzed by the Joint 
Genome Institute. Operational taxonomic units (OTUs) were clustered at 97% identity 
with USEARCH (24), and taxonomy was assigned at 95% ID by RDP (25).

Expression of nitrogen cycling genes identified in assembled metatranscrip
tomes

After quality control, the metatranscriptomes were assembled into contigs within each 
sample. Only contigs larger than 200 bp were clustered at 99% ID with cd-hit-est (26). 
Prodigal (26, 27) was used to predict open reading frames (ORFs) from the cluster 
representatives (longest contig), and KEGG models (28) were used to locate nitrogen 
cycling genes based on the KEGG nitrogen cycle module (see Table S1 for a list of 
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KEGG profiles, gene lengths, and thresholds used). Some ORFs were identified by several 
HMMs due to homology (e.g., nitrate reductases nxrA, narG, and napA). In those cases, 
the highest-scoring (by bit score) hit from all HMMs was selected. To further verify 
the annotations, we placed the assembled sequences on a protein reference tree (29) 
and corrected the annotations according to tree clustering. Notably, assignment by the 
highest bit score was generally correct. Extracellular proteases were called by recipro
cal blast to proteases from the MEROPS database that contained signal peptides (30, 
31). Reads were mapped to nitrogen cycling ORFs at a minimum identity of 95% and 
minimum breadth of 75% using bbmap (2, 32). Normalization to sequencing depth and 
gene length was done with DESeq2. Heat maps were generated in R with gplots (33).

Phylogeny of the ammonium monooxygenase subunit A (amoA) was determined by 
aligning amoA-assembled transcripts to curated full amoA gene sequences from RefSeq 
(Jun 1, 2019) using mafft-linsi (sensitive mode) (34) and removing positions represented 
by less than 50% of the aligned sequences with GBlocks version 0.91 (35) with parame
ters -b3=50 -b4=5 -b5=h. RAxML version 8.2.12 (36) with parameters set to matrix LG 
and seed = 13 was used to build a Newick tree which was visualized in iTOL (37). The 
phylogeny of nirK transcripts was determined in the same manner. The aggregated 
coverage of amoA/nirK variants from all samples was superimposed onto the tree in 
iTOL. As the bacterial nirK participates in denitrification whereas its archaeal homolog 
functions in nitrification, we separated nirK variants and their expression by the pathway 
they participate in and tested amendment, location, and time effects by pathway. Tables 
were constructed and manipulated with tidyverse (38), and figures were generated with 
ggplot2 (39). Variance-normalized expression per gene per timepoint was compared 
between groups using ANOVA and Tukey HSD tests, and P-values were FDR adjusted 
for multiple comparisons (number of genes, time, location, litter amendment, and all 
interactions between them). Upregulation was determined as log2-fold values calculated 
by DESeq2 compared to unamended bulk soil at the same timepoint.

All features and their metatranscriptomic read recruitment were analyzed with the 
R package DESeq2 (40, 41) requiring an adjusted P < 0.05. Ordination and visualization 
were conducted using R package ggplot2 (39) and vegan (39, 42); the vegan function 
Adonis was used to perform PERMANOVA on DESeq2 counts (variance normalized to the 
gene length and sequencing depth) to detect significant factors affecting expression of 
nitrogen cycling genes.

RESULTS

To assess whether expression of organic and inorganic nitrogen cycling genes was 
affected by the presence of root litter in the rhizosphere or in nearby bulk soil, we tested 
for significant differences in N transformation gene expression over a 3-week time series 
(3, 6, 12, and 22 days). Unlike prior analyses of this metatranscriptome data set, where we 
focused on carbohydrate-active enzymes (CAZy) (2) or proteases and chitinases (3) and 
mapped transcriptomic short reads to a collection of curated genomes, in our current 
study, we focused on assembled transcripts of all nitrogen cycling genes, in order to 
capture more of the genetic diversity present in the system. A principal coordinates 
analysis (PCoA) based on Bray-Curtis dissimilarity of expression of 57,469 N-cycling gene 
variants normalized to sequencing depth revealed that the last timepoint (T4; 22 days) 
was notably distinct from the others (Fig. 1A). Analysis of the first three timepoints 
only (3, 6, and 12 days) revealed additional clustering by litter amendment and location 
(rhizosphere/bulk soil) (Fig. 1B). In both analyses, the first two principal components 
explained 40% of the variation. PERMANOVA analysis using transcript counts variance 
normalized to the gene length and sequencing depth from all timepoints indicated a 
significant effect of location (rhizosphere vs bulk soil), time, and litter amendment (P = 
10−4) (see Table S1 for all values). The combined R2 of all significant factors was 63%. 
When we conducted the same analysis but excluded the last timepoint (T4), the effects 
of single factors remained significant (P = 10−4). The combined R2 of all significant factors 
was 61%, and the variability explained by time decreased from 30% with T4 to 11% 
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without T4, whereas the variability explained by location and amendment increased by 
8% and 6%, respectively (Table S1).

Expression of nitrogen cycling genes by pathway

To identify the dominant N-cycling pathways in four soil microhabitats (rhizosphere, 
detritusphere, rhizo/detritusphere, and bulk soil), we calculated the log2 ratio differential 
expression of each nitrogen cycling gene in the presence or absence of roots and litter 
amendment to expression in unamended bulk soil at the same timepoint. Expression 
and upregulation trends of N-cycling genes (defined in Table S2, comparison by ANOVA 
and Tukey post-hoc tests with P values FDR adjusted for multiple comparisons, Table 
S3) are shown in Fig. 2. Several genes involved in assimilation of inorganic N were 
significantly upregulated in the rhizosphere compared to bulk soil: assimilatory nitrate 
reduction genes nasA, NR and nirA, glutamate dehydrogenase gdh2, and GS/GOGAT 
genes glt1 and gltB (Fig. 2). The first step of GS/GOGAT, glnA, was upregulated both in 
the rhizosphere and in the presence of litter compared to unamended bulk soil (Fig. 2), 
and the GS/GOGAT regulatory proteins glnD and glnG, triggered under N limitation, were 
upregulated in the rhizosphere, whereas GS/GOGAT activator glnB was upregulated in 
the presence of litter (Fig. S1). In the detritusphere, the presence of litter also triggered 
macromolecular organic nitrogen degradation (extracellular protease and chitinase), as 
well as dissimilatory pathways, dissimilatory nitrate reduction (DNRA) and denitrification 
compared to unamended bulk soil (Fig. 2). However, not all genes in these pathways 
were upregulated, and some were not detected at all (nirS and norBC in denitrification), 
whereas others were not significantly upregulated (napB) (Fig. 2; Table S3). Finally, 
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nitrification, DNRA, and the first step of denitrification were upregulated in bulk soil 
compared to the rhizosphere (Fig. S1; Table S3).
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Several genes were particularly highly expressed in our data set [e.g., ammonium 
monooxygenase subunits amoA and amoC, and the archaeal homologue of nitrate 
reductase nirK (Fig. S1)] but did not show clear patterns of differential expression by 
either amendment or time. We did not detect any genes involved in nitrogen fixation or 
anaerobic ammonium oxidation. Expression of fungal N cycle genes such as cyp55 (nitric 
oxide to nitrous oxide) and nit-6 (nitrite to ammonium) was very low (Fig. S1).

Archaeal nitrification

Two of the most highly expressed genes we identified were subunits of ammonium 
monooxygenase, the first enzyme in the nitrification pathway. Nitrification genes were 
not affected by the presence of litter, but nirK, amoB, hao, nxrA, and nxrB were signifi-
cantly upregulated in bulk soil compared to rhizosphere soil (ANOVA: P < 0.05; Tukey 
HSD test: adjusted P < 0.05) (Table S2).

Ammonium oxidation can be performed either by ammonium-oxidizing archaea 
(AOA) or ammonium-oxidizing bacteria (AOB). The amoA subunit of ammonium 
monooxygenase is commonly used as a taxonomic marker to differentiate between 
AOA and AOB. To determine which taxa were responsible for the high expression of 
ammonium oxidation genes, we placed the 13 amoA ORFs identified in assembled 
transcripts into a phylogenetic tree with full-length amoA reference sequences from the 
RefSeq database (Fig. 3A). The cumulative coverage per amoA variant in all samples was 
superimposed onto the tree. Read recruitment to AOA was orders of magnitude higher 
than to AOB, accounting for 98% ± 0.007% of the reads mapped to amoA per sample (n 
= 16). While there were some ORFs placed into comammox clade B, their expression was 
negligible compared to that of archaeal amoA (Fig. 3A).

The expression of hydroxylamine oxidoreductase (hao), the next step in bacterial 
nitrification after ammonium oxidation, was extremely low across all samples. Similarly, 
expression of nitrite oxidase (nxrAB) was very low. However, the expression of nirK was 
very high (Fig. 2). A phylogenetic analysis placed 96 out of 158 nirK-assembled ORFs in 
the archaeal clade and, as in the case of amoA, revealed that the archaeal variants 
recruited more than 95% ± 0.07% of the reads that mapped to nirK (Fig. 3B) (n = 16). 
Three archaeal phylotypes dominated nirK expression, with 76% ± 0.07% of all reads 
mapped to nirK (n = 16).

To determine whether the high expression of archaeal nitrification genes can be 
explained by the abundance of AOA compared to AOB, we searched our 16S rRNA gene 
amplicons (2) for known AOA and AOB. The relative abundance of AOA 16S rRNA genes 
was two- to fivefold higher than that of AOB, and the relative abundance of AOB was 
consistently higher than that of nitrite-oxidizing bacteria (NOB) (Fig. 3C). The aggregate 
expression of amoA and nirK was well correlated with a ratio of nirK:amoA = 1.6 (R2 = 0.7, 
P < 0.0001) (Fig. 3D). In addition, the aggregated expression of amoA was also highly 
correlated to that of Thaumarchaeal extracellular proteases (3) (Fig. 3E; adjusted R2 = 
0.61, P < 0.0001). Finally, the expression of amoA in the unamended rhizosphere 
decreased near aging roots (22 days; Fig. 3F).

Ammonium assimilation and transport pathways

The most highly expressed ammonium acquisition pathway was glutamate synthase (GS/
GOGAT), which can be activated by a cascade of four enzymes under nitrogen limitation 
(Fig. 4A) (44–46). As opposed to single-gene-dependent transporters (amt) and gluta
mate dehydrogenase (GDH), GS/GOGAT is a two-step pathway: the first step is encoded 
by the gene glnA and the second step by either glt1, Glu, or the heterodimer gltBD. Both 
ammonium transporters (Fig. S2) and GS/GOGAT (glnA; Fig. 4B) were significantly 
upregulated in the young litter-amended rhizosphere (Rhizo Litter, 3 days) and in bulk 
soil at the final timepoint (Bulk Litter, 22 days) (Fig. 4B). glnA was also significantly 
upregulated in the early rhizosphere compared towith the bulk control (Rhizo; Fig. 4B), 
and three out of four detected proteins involved in GS/GOGAT were also upregulated in 
the rhizosphere after 3, 6, and 12 days (Fig. S3). We found that expression of gltBD was 
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generally much higher than that of glt1, whereas Glu was not detected (Fig. S1). Expres
sion of an additional ammonium assimilation pathway, glutamate dehydrogenase, was 
low (Fig. S1). GDH consists of a single step performed by one of two enzymes: gdh2 or 
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gudB. Gdh2 was upregulated in the rhizosphere, whereas gudB was upregulated in the 
presence of litter (Fig. S1; Table S2).

Theoretically, there is an advantage to using GS/GOGAT for ammonium assimilation 
over GDH under N limitation, as GS/GOGAT in a one-way pathway, whereas GDH can also 
catalyze deamination of glutamate which might lead to loss of ammonium. Expression of 
GS/GOGAT was an order of magnitude higher than that of GDH under all experimental 
conditions (Fig. 4C). The ratio of expression (GS/GOGAT to GDH) significantly increased 
over time [PERMANOVA model: ratio~condition×time, P(time) = 0.002]. In the young 
rhizosphere, the ratio appeared to be higher compared to that in bulk soil, whereas in 
the mature rhizosphere, litter seemed to trigger a higher ratio (Fig. 4C). Expression of 
the GS/GOGAT regulatory proteins glnD, glnG, and glnL was significantly upregulated in 
the rhizosphere compared to bulk soil, particularly in the young rhizosphere (Fig. 4D; 
Table S3). Most regulatory genes were also upregulated in the detritusphere compared 
to unamended soil at the last timepoint (Fig. 4D).

DISCUSSION

In this study, we used metatranscriptomic gene expression (percentage of reads mapped 
to a gene) and upregulation (log-fold change of expression in a habitat compared 
to unamended bulk soil) to identify contemporaneous N transformations in four soil 
habitats: rhizosphere (near live roots), detritusphere (near dead roots), rhizo-detritu
sphere (intermingled live and dead roots), and bulk soil (without root influence). The 
expression of genes coding for N-cycling processes varied both between soil habitats 
and over a relatively short time frame. The use of metatranscriptomic analyses allowed us 
to track multiple N-cycling pathways occurring at the same time. Moreover, as N pools in 
this grassland soil are relatively constant but fluxes are high (47), studying N-cycling gene 
expression may be a better proxy for flux rates than pools.

Using microbial gene expression to monitor how roots and root litter affect N-cycling 
allowed us to explore N pathway activity at a spatial and temporal resolution that 
would be difficult for more traditional approaches such as enzyme activity assays or 
isotope tracing approaches which require volumes of soil that are difficult to collect 
in a microhabitat such as the rhizosphere. Metatranscriptomics also helps to point out 
“realized” metabolic niches for individual taxonomic groups within a complex microbial 
community (2). Until recently, niche differentiation has been difficult to describe for 
soil microorganisms due to their high degree of functional redundancy and the fact 
that most soil microbes cannot be cultured in the laboratory. While metatranscriptom
ics remains a relatively new approach for soil nitrogen cycling studies (20, 48, 49) 
and has rarely been benchmarked against more established methods [e.g., enzyme 
assays, although see reference (50)], it can help to target the more active members 
of a community, allows simultaneous detection of activity across all domains of life 
(51), and alleviates many of the concerns associated with relic DNA (52). As we have 
previously shown with this data set, transcriptional succession may occur at a faster pace 
than taxonomic succession (2). Thus, transcript analyses may be a particularly sensitive 
readout of community response to current edaphic conditions and resource availability.

Our results illustrate how soil microhabitat and temporal patterns of N-cycling gene 
expression are tightly interrelated. We detected the strong effects of habitat on gene 
expression at the first three sampling times, although not after 22 days when the soil 
had become drier due to plant transpiration (2). This decrease in soil moisture likely 
affected rates of substrate diffusion as well as microbial mobility, leading to changes 
in the edaphic conditions experienced by the microbes. In addition to reduced soil 
moisture, the roots present in the rhizosphere have begun to senescence after 22 days 
and thus reflect degradation processes that are more characteristic of a root litter habitat. 
Moreover, root exudation decreases as a root senesces, and the shift from microbial 
exploitation of simple exudate carbon sources to usage of root litter may be another 
cause of the temporal shifts we observed (8). After removing the last timepoint from 
analyses, we observed strong effects of roots and litter on gene expression, as well as 
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the interaction between the two, implying that rhizosphere bacteria responded to litter 
amendment differently than bulk soil bacteria. These results suggest that N process rates 
are not driven solely by the soil habitat, or by plant development, but that the two are 
interrelated, and gross rates of N-cycling processes are likely changing faster in space and 
time than previously thought.

Several N-cycling pathway genes were differentially expressed in different soil 
habitats. In the rhizosphere, we identified upregulation of assimilatory nitrate reduc
tion and ammonium assimilation through glutamate dehydrogenase (GDH; gdh2) and 
glutamine synthetase (GS/GOGAT; glnA, glt1, and gltB). An additional GDH enzyme, gudB, 
was upregulated in the litter-amended rhizosphere. Three of four regulatory enzymes 
that activate GS/GOGAT under N limitation were also upregulated in the rhizosphere, and 
the fourth was upregulated in the litter-amended rhizosphere. The upregulation of these 
pathways likely indicates that the rhizosphere microbial community was experiencing 
inorganic N limitation. N limitation can stem from competition over inorganic N with the 
plant (12, 53), as well as from a higher demand for N as microbial density is ca. 10× higher 
in the rhizosphere compared to bulk soil (54). Avena plants have been shown to be better 
competitors than their rhizosphere community for nitrate (12, 53), potentially explaining 
why rhizosphere microorganisms would upregulate assimilatory nitrate reduction to 
ammonium.

Compared to bulk soil, dissimilatory nitrate reduction (DNRA) and denitrification 
pathways were upregulated in the detritusphere. Denitrification leads to loss of gaseous 
nitrogen from the system either as N2, N2O, or NO, whereas DNRA is a N-conserva
tive process, converting NO3 (that can be easily lost) into less-mobile ammonium. A 
recent meta-analysis suggests DNRA is highly sensitive to carbon substrate supply and 
precipitation (a proxy for oxygen availability) and negatively related to nitrous oxide 
(N2O) emissions (55), implying that it is negatively correlated to denitrification. However, 
we find that both denitrification and DNRA were promoted in the detritusphere.

As N is commonly a limiting nutrient in the rhizosphere, coveted by both plants 
and microbes, denitrification and the resulting loss of N might be disadvantageous 
to plants and N-limited microorganisms. Indeed, our data indicate downregulation of 
denitrification in the rhizosphere compared to bulk soil. Plants have been demonstrated 
to outcompete nitrate-reducing bacteria for nitrate (56), and there is some evidence that 
root exudates can inhibit denitrification (57). However, multiple studies have hypothe
sized that denitrification activities may be stimulated by the addition of root exudates 
(58) and even predict that exudate composition shapes the gaseous end-product of 
denitrification and thus greenhouse gas emissions (59). Our data show that some of 
the genes involved in denitrification and DNRA were also significantly upregulated in 
litter-amended bulk soil compared to litter-amended rhizosphere, also suggesting the 
inhibition of dissimilatory processes in rhizosphere soil.

Upregulation of assimilatory processes (nitrate reduction and ammonium assimila
tion) in the detritusphere compared to unamended soil was likely driven by the use 
of carbon substrates to maintain C:N cellular stoichiometry. Unlike in the rhizosphere, 
where there is competition between microbes and plants for nitrate, in the detritu
sphere, the driving force should be only carbon and oxygen consumption which may 
create anaerobic or microaerobic niches that would support DNRA and denitrification. 
Expression of assimilatory process genes that were upregulated in the detritusphere 
compared to bulk soil (gudB, gltD) was higher than that of any of the DNRA or deni
trification genes, suggesting that dissimilatory nitrate reducers may be outcompeted 
by assimilatory nitrate reducers in the detritusphere, likely due to oxygen and carbon 
availability.

In bulk soils, genes coding for nitrification were upregulated, leading to potential loss 
of N from the system via generation of nitrous oxide and nitrate leaching (60). Ammo
nium monooxygenase subunit C (amoC) was one of the most highly expressed genes in 
this soil. Interestingly, the expression of subsequent steps in bacterial nitrification (hao, 
nxrA, and nxrB) was extremely low. However, expression of nirK, traditionally considered 
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a part of the denitrification process, was one of the highest we detected. When we 
explored the phylogeny of detected amoA and nirK variants, we discovered that all 
highly transcribed variants were archaeal. nirK has been detected in archaeal genomes, 
and the current leading hypothesis is that archaea oxidize hydroxylamine by combining 
it with nitric oxide (NO), yielding two nitrite molecules, one of which is reduced and 
recycled back to NO by nirK (60). While it is possible that conditions are more favorable 
for nitrification in bulk soil because there is less competition for ammonium in the 
absence of a plant, it is also possible that nitrification was downregulated or inhibited 
in the rhizosphere. Biological nitrification inhibition (BNI) by the exudation of secondary 
metabolites from plant roots can suppress ammonium oxidation by nitrifying microor
ganisms (61, 62), thus increasing the availability of ammonium to plants. Hence, it is 
proposed as one strategy to increase crop yields and reduce fertilizer loss (63). Root 
exudates of A. fatua have been shown to inhibit nitrification by ammonium-oxidizing 
bacterium Nitrosomonas europaea (64). If A. fatua inhibited ammonium-oxidizing archaea 
to increase ammonium availability to its roots, this would likely have presented as 
upregulation in bulk soil. Our observations of N transcript expression in the rhizosphere 
and bulk soil suggest that microbes in the rhizosphere experience N limitation, as well as 
competition over ammonium with the plant, thereby minimizing nitrification.

Despite the low relative abundance of AOA, archaeal genes for ammonium monoox
ygenase (amoABC) were among the most highly expressed of all N-cycling transcripts 
in this study across time, location (bulk soil vs rhizosphere), and presence or absence 
of litter amendment. The relative abundance of AOA in our study (based on 16S rRNA 
gene abundance) never exceeded 1% of the microbial community but was several fold 
higher than that of AOB and reflected previous results from other grasslands (16, 65, 
66). The difference in abundance between AOA and AOB cannot on its own account 
for the orders of magnitude difference in transcription of amoA, suggesting that AOA 
were much more active than AOB in our soil. While slow growers, AOA can be highly 
metabolically active in soil (67). Moreover, transcription of archaeal amoA has also 
been shown to be correlated to nitrification rates (67–69). A similar experiment using 
a related species of Avena demonstrated that gross nitrification rates decreased with 
rhizosphere age (9). This pattern, which we also observed in amoA expression, could 
reflect increasing competition over the remaining labile N as well as reduced root 
exudation by the plant in an aging rhizosphere (70–72).

Expression of amoA has been previously shown to be dominated by few archaeal 
phylotypes (73–75). Not only do our results support this, but they quantitatively show 
that on average, 98% of the reads mapped to amoA were assigned to three variants, all 
archaeal. All three phylotypes were within the Nitrososphaera genus which is commonly 
found in soil (76). Similarly, nirK expression was also dominated by three variants, but 
surprisingly, these were most closely related to another soil AOA genus—Nitrosocos
micus. Additionally, expression of amoA and nirK was well correlated. It is possible 
that Nitrososphaera perform ammonium oxidation, with Nitrosocosmicus oxidizing the 
product. While in bacteria, these two processes are split between ammonium-oxidizing 
and nitrite-oxidizing bacteria, such a cooperation is not known in archaea. However, it 
is also possible that the taxonomic placement of one of the genes is incorrect. Both 
amoA and nirK have been identified in curated genomes of AOA (77–79), which raise 
the possibility that the same AOA cell can enact both steps of nitrification (80, 81), but 
dual expression of amoA and nirK by AOA has not yet been shown experimentally. It 
is also possible that the soil used here contains uncultured AOA that are far enough 
phylogenetically from known strains of Nitrososphaera and Nitrosocosmicus to cause a 
misassignment of amoA or nirK in a phylogenetic tree based on currently described 
representatives. The strong correlation between amoA and nirK suggests that there may 
be a relationship between these two processes, but further experimentation is required 
to determine if they are mechanistically linked like AOB and NOB or occur within the 
same cell.
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Thaumarchaeal extracellular proteases identified in the same data set were previously 
found to be upregulated in bulk soil (3), and their temporal expression patterns highly 
correlated with amoA expression. Thaumarchaeota have been shown to prefer ammo
nium from organic nitrogen sources such as urea, amino acids, and peptides in forest soil 
(82). As AOA have to compete with the plant over ammonium in the rhizosphere, they 
may turn to organic N instead (83, 84); this could explain the tight correlation between 
amoA and AOA protease expression that we observed.

In our study, GS/GOGAT gene expression was widespread across treatments and over 
time, with significant upregulation in response to both roots and litter. Moreover, the 
expression of GS/GOGAT was consistently at least an order of magnitude higher than 
that of GDH. The first step of the GS/GOGAT pathway, glnA (glutamine synthetase), 
was one of the most highly expressed genes in our study. Ammonium assimilation 
via glutamate synthase (GS/GOGAT) is generally thought to be preferred to glutamate 
dehydrogenase under N limitation due to the Km of GS/GOGAT which is an order of 
magnitude lower than that of GDH (85, 86). The PII regulatory protein glnB, which is 
activated during N limitation and activates GS/GOGAT over GDH (87), was also highly 
expressed under all experimental conditions and upregulated in the presence of live 
or dead roots. In contrast, expression of the single-enzyme pathway of glutamate 
dehydrogenase was much lower. Assuming comparable post-transcriptional regulation, 
N limitation could drive a preference for multi-step unidirectional pathway GS/GOGAT 
(88) as opposed to the bidirectional GDH (89), as it prevents nitrogen loss from the 
organism (90). All these lines of evidence point toward N limitation in both rhizosphere 
and detritusphere in Mediterranean grassland soil.

Temporal effects of ammonium assimilation gene expression varied by gene, 
pathway, and habitat. Expression of glnA (GS/GOGAT) for ammonium assimilation was 
higher in the rhizosphere compared to bulk soil at 3, 6, and 12 days and was higher 
in litter-amended soil compared to unamended soil. Its expression was highest in 
litter-amended rhizosphere at 3 and 6 days, indicating there may be an additive effect 
of live roots growing through soil that contains root litter. This could be due to the 
high resource demand in a microhabitat where C is easily available via both litter 
and exudates; this may exacerbate cells’ need to assimilate N to maintain their cellular 
stoichiometry (14, 91). In a prior analysis of this data set, we observed that carbohydrate 
active enzyme expression was also higher in the young rhizosphere, and expression of 
extracellular protease genes was highest at 3 days (2, 3). Thus, the additive effect of 
a combined rhizosphere-detritusphere appears to stimulate multiple pathways at once
—carbohydrate depolymerization, organic N breakdown, and ammonium assimilation—
reflecting synergistic breakdown and consumption processes (92). We note, however, 
that this effect may be short lived (93); in our data, it disappears by 6 days of rhizosphere 
maturation.

We also found that two GDH genes were upregulated in different habitats: rhizo
sphere (gdh2) and detritusphere (gudB). The expression of both genes decreased over 
time, possibly because ammonium concentrations dropped to a concentration too low 
for the affinity of these enzymes (86). The expression of glnA (GS/GOGAT) tells a more 
complicated story. In the litter-amended rhizosphere, its expression decreases over time, 
as does the expression of its regulatory genes. However, in the litter-amended bulk soil, 
the expression of glnA increases from day 6 on. The consistently lower expression of 
this enzyme in unamended bulk soil implies that any C input, be it from rhizodeposition 
of root litter, creates a demand for N that is at least somewhat alleviated via the GS/
GOGAT pathway. Finally, we suspect there is a tradeoff between the GDH and GS/GOGAT 
pathways that corresponds to nitrogen limitation. Therefore, we examined the ratio of 
gene expression between glnA (GS/GOGAT) and gudB, the more highly expressed of the 
GDH genes. This ratio was consistently higher than 10, implying a general preference for 
GS/GOGAT, possibly due to low N availability at all times with or without the presence 
of roots or root litter. This ratio also increased over time under all experimental condi
tions, but this increase began earlier in the litter-amended rhizosphere. However, by 22 
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days, the highest ratio was in litter-amended bulk soil, possibly because growth rates 
are slower in bulk soil compared to the rhizosphere (54), and therefore, N limitation 
developed slower. This finding implies that the ratio of N assimilation pathways may 
be a useful proxy for the apparent N availability experienced by microorganisms—a 
useful metric in soils where inorganic N pools are consistently low but mineralization and 
assimilation fluxes are substantial (9, 94).

This study used an annual grass with a 12-week growth cycle, following transcripts 
for 3 weeks. It would be interesting to reproduce this experiment in a perennial grass 
in which the duration of the experiment would be longer, and competition between 
plant and microbes over N may be less temporally accentuated. Ideally, future studies 
would also include sensing nitrate, ammonium, and oxygen via microelectrodes in the 
rhizosphere and in bulk soil and gross rate estimates of nitrogen fluxes (e.g., using 
the 15N pool dilution approach). We propose that the general mechanisms we have 
observed would be found in other grassland ecosystems, including perennials; however, 
the timescales would likely differ.

Conclusions

Most current knowledge of soil nitrogen cycling is based on measurements of bulk 
rates, soil enzyme assays, and genomic surveys and lacks insights on the spatial and 
temporal patterns that occur in distinct soil habitats. Here, we present a comprehensive 
analysis of gene expression of all major nitrogen cycling pathways over time in four 
common soil habitats: rhizosphere, litter-amended rhizosphere, litter-amended bulk soil, 
and unamended bulk soil of an annual grass. We propose several classes of controllers 
that shape the expression of nitrogen cycling genes in soil with or without roots and/or 
root litter, based on N availability, biotic competition, and the limitations of edaphic 
conditions. Expression of assimilation genes tended to be elevated in both detritusphere 
and rhizosphere soils, whereas dissimilatory processes such as denitrification and DNRA 
were upregulated primarily in the organic carbon-rich detritusphere. Processes that lead 
to loss of N from the system were downregulated near live roots. Availability of carbon 
and the quality of that C, whether from root exudates or root litter, appeared to drive 
N uptake to maintain cellular stoichiometry, and proximity to live roots likely led to 
competition for inorganic nitrogen. While gene expression levels may not necessarily 
predict protein abundance or enzyme activity, the use of metatranscriptomics allowed 
us to track multiple pathways and identify tradeoffs with fine-scale spatial and temporal 
resolution.
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