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Baroclinic instability of axially-symmetric
flow over sloping bathymetry

Aviv Solodoch1†, Andrew L. Stewart1 and James C. McWilliams1

1Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA
90095, USA

(Received xx; revised xx; accepted xx)

Observations and models of deep ocean boundary currents show that they exhibit
complex variability, instabilities and eddy shedding, particularly over continental slopes
that curve horizontally, for example around coastal peninsulas. In this article the authors
investigate the source of this variability by characterizing the properties of baroclinic
instability in mean flows over horizontally curved bottom slopes. The classical 2-layer
quasi-geostrophic solution for linear baroclinic instability over sloping bottom topography
is extended to the case of azimuthal mean flow in an annular channel. To facilitate
comparison with the classical straight channel instability problem of uniform mean
flow, the authors focus on comparatively simple flows in an annulus, namely uniform
azimuthal velocity and solid-body rotation. Baroclinic instability in solid-body rotation
flow is analytically analogous to the instability in uniform straight channel flow due
to several identical properties of the mean flow, including vanishing strain rate and
vorticity gradient. The instability of uniform azimuthal flow is numerically similar to
straight channel flow instability as long as the mean barotropic azimuthal velocity is zero.
Nonzero barotropic flow generally suppresses the instability via horizontal curvature-
induced strain and Reynolds stresses work. An exception occurs when the ratio of the
bathymetric to isopycnal slopes is close to (positive) one, as is often observed in the
ocean, in which case the instability is enhanced. A non-vanishing mean barotropic flow
component also results in a larger number of growing eigenmodes and in increased
non-normal growth. The implications of these findings for variability in deep western
boundary currents are discussed.

1. Introduction

Baroclinic instability is one of the main energy conversion processes to and from the
mesoscale in the ocean (McWilliams 2008). The baroclinic source of energy, available
potential energy due to tilting of isopycnals (constant density surfaces), is ubiquitous.
Studies based on high-resolution altimetry (Chelton et al. 2011) reveal that virtually
all areas of the world’s oceans are sources of mesoscale eddies, and therefore may be
baroclinically unstable. A few of the many roles mesoscale eddies play in the ocean are:
supporting the forward and inverse turbulent energy cascades, relaxing isopycnal slopes
and thus restratifying the ocean, vertical transfer of momentum via the eddy form stress
and transport, and ventilation and subdaction of tracers (McWilliams 2008; Dong et al.
2014).

Baroclinic eddy variability peaks in the ocean near strong persistent currents (Chelton
et al. 2011), such as large boundary currents (e.g., the Gulf Stream). The task of
measuring and characterizing eddy generation mechanisms is more challenging for deep
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(sub-surface intensified) boundary currents, since they are much less amenable to remote
sensing, and since even after decades of oceanographic expeditions, in situ measurements
are quite sparse. A prominent example is the variability associated with the Deep Western
Boundary Current (DWBC) in the Grand Banks (GB) area, where eddy shedding and
interior flow pathways are prevalent, as observational campaigns using deep Lagrangian
floats have revealed (Lavender et al. 2000, 2005; Bower et al. 2009).

The data presented in Bower et al. (2009) suggest that the horizontally curving slopes
around the GB and Flemish Cap (FC) are associated with increased eddy generation
relative to less curved portions. The curvature, convex or concave, we refer to is of
isobaths, horizontal lines of constant bottom depth. Thus “underwater capes” such as
GBs and FC, are convex, while the area between them is concave. Arguably, the data also
visually suggest greater eddy generation at convex sections of the continental slope than
at concave sections. Their figure 1 suggests that nearly all floats cross the 4000 meter
isobath off-shore after drifting south to FC (where the continental slope is convex), most
of which do not return to the DWBC further downstream. The few floats that remain
shoreward of the 4000 meter isobath, do not drift significantly further off-shore until
they reach the next convex segment, the GB. In the GB area more floats are shed from
the continental slope and cross the 4000 meter isobath. Lavender et al. (2005) found
similar loss of floats to the interior ocean at the vicinity of FC, as well as a maximum
in eddy kinetic energy there. Since the floats are generally drifting with the (baroclinic)
DWBC, these findings raise the possibility that the influence of coastal curvature on
baroclinic instability could explain the localization of eddy generation around FC and
GB. There are many dynamically similar examples of boundary currents leaking around
convex continental slopes, such as the Mediterranean Overflow Water, which sheds
Submesoscale-Coherent Vortices as it propagates around the Iberian peninsula (McDowell
& Rossby 1978; McWilliams 1985; Bower et al. 1997). The California Undercurrent also
sheds submesoscale eddies at convex bends, for example at the mouth of Monterey Bay
(Stegmann & Schwing 2007; Molemaker et al. 2015).

To study the influence of horizontal curvature in a controlled setting, we employ
a model of minimal complexity that admits baroclinic instability, a 2-layer quasi-
geostrophic (QG) model, in an annular channel. This model is a geometric variant
of the straight-channel 2-layer QG model presented in Pedlosky (1964). The case of
linear baroclinic instability in horizontally-uniform QG flow over a flat bottom was
solved by Phillips (1951) with 2 vertical layers and by Eady (1949) with a continuous
vertical coordinate. Blumsack & Gierasch (1972) extended the Eady model to include
a sloping bottom boundary. Mechoso (1980) similarly extended the Phillips model, and
systematically investigated the influence of a sloping bottom boundary in both models.
Pedlosky (1964) derived integral stability constraints for instability, for a more general
family of straight channel flows over sloping bathymetry. Multiple investigators found
that linear 2-layer baroclinic instability models compared well with observed variability
in boundary currents over continental slopes in various regions, including the Denmark
Straight Overflow (Smith 1976), the Norwegian Current (Mysak & Schott 1977), and the
Färoe-Shetland flow (Sherwin et al. 2006). Phase speeds and wavelengths were within
∼ 30% of observed values, and eigenmode structures were qualitatively similar to those
derived from observations. Other authors have attempted to incorporate this theory into
eddy parameterizations over continental slopes (Stipa 2004b; Isachsen 2011).

Choboter & Swaters (2000) used a non-QG asymptotic derivation to analyze the
baroclinic instability of a double-frontal dense water layer over sloping topography
in an annulus. Their explicit solutions are for a relatively narrow (1.5 Rossby radii
apart at the bottom) coupled front on the bottom of an otherwise stationary fluid,
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whereas we investigate wider and more horizontally-uniform 2-layer flows here. Since
we model wider currents, we use the approximation that isopycnals do not intersect
the bathymetry, consistent with the QG approximation. In addition, our focus here is
deducing the influence of horizontal curvature on the instability, whereas Choboter &
Swaters (2000) aimed to compare an existing theory for rectilinear bottom-trapped flow
against laboratory experiments in a rotating tank.

A key measure of the effect of bathymetry on baroclinic instability is the ratio of the
bathymetric slope to the mean isopycnal slope (hereafter δ, see also figure 1, and §2.4).
Blumsack & Gierasch (1972) found that the wavelength of the most rapidly growing
mode was lower (higher) for negative (positive) δ, compared to the wavelength at δ = 0,
and that the mean flow was stable to all disturbances for δ > 1. Mechoso (1980) reported
the same result for the analogous case in a 2-layer model. Isachsen (2011) used δ to
characterize the topographic regime in both Eady model calculations and in nonlinear
three-dimensional simulations. We similarly use δ throughout this paper to quantify the
influence of the topographic slope.

The outline of this paper is as follows. In §2 we present the model, and in §3 we derive
integral theorems that constrain the growth rates and phase speeds of unstable waves.
In §4 we apply the model to investigate instability of solid-body rotation over parabolic
bathymetry, and establish a close analogy with straight channel uniform flow over linear
bathymetry (Appendix B, hereafter uniform rectilinear flow). In §5 we similarly, and in
more detail, investigate instability of uniform azimuthal flow in an annulus over linear
bathymetry. In §6 we discuss the essential factors, independent of channel geometry, that
make uniform rectilinear flow and solid body rotation similar and uniform azimuthal flow
quite different. We briefly discuss a few other experiments in support of the generality
of these factors and their influence on baroclinic instability. In §7 we discuss our results
and their relevance to the stability of oceanic boundary currents.

2. Linear model of baroclinic growth in an annular channel

A schematic drawing of the domain and model is shown in figure 1. We model a
horizontally-curved continental slope as an annular channel, in which the walls represent
the shoreward and offshore extents of a baroclinic slope-trapped current. We model the
mean current as a 2-layer axisymmetric azimuthal flow, a minimal discrete approximation
to a continuous density stratification. We prescribe different geostrophic mean velocities
in each layer, creating a vertical shear and thus allowing the possibility of baroclinic
instability. The vertical axis is denoted by z, and the reference frame is assumed to
revolve around that axis to imitate the earth’s rotation (§2.1).

2.1. Quasi-geostrophic model equations in cylindrical coordinates

In this section we present the QG potential vorticity (PV) and energy equations for
axially symmetric mean flow and bathymetry. Quasigeostrophy is an approximation to
fluid flow in a rotating reference frame, which is often a good approximation for synoptic
scale oceanic flows (oceanic mesoscale), i.e., with characteristic lengthscales comparable
with the Rossby radius of deformation, defined below (Pedlosky 1987). The necessarily
small parameter in the approximation is the Rossby number Ro = U/fX � 1, where
f is the Coriolis parameter, U the velocity scale and X the horizontal lengthscale.
In these cases the Coriolis force approximately balances the pressure gradient, and to
first order in Ro, the evolution of the flow field is given by the QG PV equations.
The QG approximation also requires the bathymetry and isopycnals to exhibit small
variations relative to their respective domain-wide averages. While these conditions
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are not necessarily satisfied over continental slopes, previous studies suggest that QG
captures the essential features of large-scale flows over topographic steepnesses typical
of the ocean’s continental slopes (Williams et al. 2010; Stewart et al. 2011, 2014; Poulin
et al. 2014; Stern et al. 2015).

We use the f -plane approximation (Pedlosky 1987), in which the reference frame
revolves around the vertical axis with the same rate everywhere in the domain, neglecting
the effect of the Earth’s curvature on the Coriolis acceleration. This isolates the effect of
continental slope curvature, and thereby simplifies our analysis. This is partially justified
by the fact that, dynamically, a topographic gradient induces a similar dynamical effect
on rotating flow as does the latitudinal gradient of the rotation rate. This so-called
topographic β effect is usually much larger than the planetary β effect in the local
dynamics of slope-trapped currents.

We write the 2-layer QG PV equations (Pedlosky 1964) in cylindrical coordinates,[
∂

∂t̃
+ ũ1r

∂

∂r̃
+
ũ1φ
r̃

∂

∂φ̃

] [
∇̃2ψ̃1 −

1

L2
1

(ψ̃1 − ψ̃2)

]
= 0, (2.1a)[

∂

∂t̃
+ ũ2r

∂

∂r̃
+
ũ2φ
r̃

∂

∂φ̃

] [
∇̃2ψ̃2 −

1

L2
2

(
ψ̃2 − ψ̃1 −

g′

f0
η̃b

)]
= 0. (2.1b)

The upper and lower layer variables are denoted by the subscripts 1 and 2 respectively.
Tildes are used since we will later nondimensionalize the equations and use variables
without tildes. The annular channel interior and exterior radii are denoted by R̃i and
R̃e respectively. The radial (r̃) and azimuthal (φ̃) velocity components are related to the

streamfunction ψ̃j by (ũjr, ũjφ) =
(
−r̃−1∂ψ̃j/∂φ̃, ∂ψ̃j/∂r̃

)
. Vorticity ζ̃j is related to the

streamfunction by ζ̃j = ∇̃2ψ̃j . Other parameters include the gravitational acceleration
g, the density ρj , the reduced gravity g′ = g ρ2−ρ1ρ1

, the average layer thicknesses Hj , the

reference Coriolis parameter f0, the Rossby radii of deformation Lj =
√
g′Hj/f0, and

the bottom elevation η̃b(r̃). For boundary conditions, we require that there be no flow
normal to the inner and outer walls, ∂ψ̃j/∂φ̃ = 0 |r̃=R̃i,R̃e .

To study the instability of currents flowing parallel to the bathymetric isobaths, we

assume a geostrophic, axially-symmetric, azimuthal mean flow Ũjφ(r̃) = ∂ψ̃j/∂r̃. This
is an exact steady solution of (2.1a)–(2.1b). We partition the streamfunction into mean

and perturbation components, ψ̃j and ψ̃′j respectively. Linearizing the QG PV equations
(2.1a)–(2.1b) yields a linear system of equations for the perturbation streamfunctions,[
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] [
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1

L2
2

(ψ̃′2 − ψ̃′1)

]
− 1

r̃

∂ψ̃′2
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∂Q̃2
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= 0, (2.2b)

Q̃j = ∇̃2ψ̃j −
1

L2
j

[
(−1)j

(
ψ̃2 − ψ̃1

)
−∆j2

g′

f0
η̃b

]
. (2.2c)

Here ∆j2 = 0, 1 for j = 1, 2 respectively.
The model describes a concave (convex) continental slope is if η̃b(r̃) is monotonically

increasing (decreasing) with radius. A given convex (concave) along-slope flow can be
transformed to the analogous concave (convex) along-slope flow by a radial reflection
P (r̃− R̃i)→ P (R̃e− r̃), for any scalar radial property P (r̃− R̃i) of the mean state, such
as bathymetry η̃b(r) or isopycnal profile Z̃I(r̃).
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Figure 1. Schematic drawing of the domain boundaries, bathymetry and mean circulation.
(left) Top-down view of the annular channel, with dashed lines representing isobaths or mean
streamlines. (right) Along-slope view of the mean flow configuration. The dashed line represents
the isopycnal profile z = ZI(r), the interface between the two fluid layers. Two particular
bathymetry (ηb(r)) and isopycnal profile pairs are plotted here, linear and parabolic in r,
corresponding to uniform azimuthal flow and solid body rotation, respectively. The isopycnal
and bathymetric profiles for uniform rectilinear flow are identical to those of uniform azimuthal
flow, i.e., linear in the cross-channel coordinate. A rigid lid is assumed, consistent with stratified
quasi-geostrophy. The δ parameter, i.e., ratio of bathymetric to isopycnal slopes, is negative in
both specific cases displayed here, although both signs are considered in this study.

The baroclinic growth rate in uniform rectilinear flow (Mechoso 1980) peaks close
to the wavenumber corresponding to the first baroclinic Rossby radius of deformation.
Therefore we non-dimensionalize the equations by scaling r̃ ∼ L, where

L =

√
g′H1H2

f20 (H1 +H2)
. (2.3)

We denote the velocity scale (to be specified later) by U . The non-dimensional variables
are defined by

t = (L/U)−1t̃, Ujφ = U−1Ũjφ, ηb = (ULf0/g
′)−1η̃b, r = L−1r̃. (2.4)

For notational convenience we also define Fj = L2/L2
j = 1 − Hj/(H1 + H2), which

measures the fraction of the total depth that is not occupied by layer j. Although F1

and F2 are not independent, we shall keep both parameters to preserve some symmetry
in the presentation of the equations.

2.2. Method of solution

In what follows we drop the prime notation from the perturbation streamfunction for
ease of presentation. The eigenvalue problem is derived by decomposing the perturbation
streamfunction into normal azimuthal and temporal modes,

ψj = Re {Ψj(r) exp(i(mφ− σt))} . (2.5)

The notation Re {} indicates the real part of the expression in the curly braces, and i ≡√
−1. The azimuthal wavenumber is denoted as m, and σ is the nondimensional complex

frequency (dimensional σ̃ scales like (U/L) by (2.4)). The real and imaginary parts of
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σ are the frequency and the growth rate, respectively. The no-normal flow boundary
condition (stated above) simplifies to Ψj |r=Ri,Re = 0. Writing ∇2

r = ( ∂∂r + 1
r ) ∂∂r , the

linear vorticity equations (2.2a)–(2.2b) may be simplified as[
U1φ

r
m− σ

] [
∇2
rΨ1 −

m2

r2
Ψ1 − F1(Ψ1 − Ψ2)

]
− m

r
Ψ1
∂Q1

∂r
= 0, (2.6a)[

U2φ

r
m− σ

] [
∇2
rΨ2 −

m2

r2
Ψ2 − F2(Ψ2 − Ψ1)

]
− m

r
Ψ2
∂Q2

∂r
= 0, (2.6b)

∂Qj
∂r

=
∂

∂r

(
∂

∂r
+

1

r

)
Ujφ − Fj(−1)j

[
(U2φ − U1φ)−∆j2

∂ηb
∂r

]
. (2.6c)

In most cases presented below we solve the eigenproblem posed by (2.6a)–(2.6c)
numerically. We discretize equations (2.6a)–(2.6b) using second-order centered finite
differences and solve the resulting matrix eigenvalue problem using the “eig” function
in Matlab, which uses the QZ algorithm (Moler & Stewart 1973). The grid resolution is
dr = 0.025, giving 40 grid points per Rossby radii, thus resolving well the spatial scales
normally associated with QG dynamics. Verification of the numerical setup including
convergence tests and comparison with some analytic results are presented in Appendix
A. The standard experiment parameters are: F1 = F2 = 1/2, Ri = 3, Re = 10. The
chosen channel width (Re − Ri) is motivated by the widths of deep western boundary
currents, which are typically at least a few Rossby radii (Xu et al. 2015; Stommel & Arons
1972). Similar bathymetric curvature radii (in the range of 3−10 Rossby radii) are found
around the Grand Banks and Flemish Cap. Other parameter ranges and sensitivity tests
are discussed in Appendix A.

2.3. Energy equation

To study the modes of energy conversion from the mean state to perturbations, we
derive the volume-integrated energy equation. The general method is standard (Pedlosky
1987): multiplying equations (2.2a) and (2.2b) by D1ψ1 and D2ψ2 respectively, adding
the two resulting equations together, integrating in the entire domain, and using several
integrations by parts and the no-normal flow boundary conditions. We defined the
relative layer thicknesses Di, by D1 = F2 = H1/(H1 + H2) and D2 = F1 = H2/(H1 +

H2). In addition, one line integral over the domain boundaries,
∑2
j=1Dj

∮
ψ′j

∂2

∂t∂nψ
′
jds

(where n is the normal to the boundary), is required to vanish (McWilliams, 1977,
specifically equation 13), for consistency with the analogous asymptotic expansion (in
Rossby number) of the Primitive Equations energy balance. The derived energy equation
in non-dimensional variables is

∂

∂t
E =

∂

∂t


2∑
j=1

EKEj + EPE

 =

2∑
j=1

RSj + PEC, (2.7a)

EKEj =
1

2
Dj

∫∫
(∇ψj)2 r dr dθ, EPE =

1

2
D1D2

∫∫
(ψ1 − ψ2)2 r dr dφ, (2.7b)

RSj = Dj

∫∫ (
r
∂

∂r

Ujφ
r

)(
1

r

∂ψj
∂φ

)(
∂ψj
∂r

)
r dr dφ (2.7c)

PEC = D1D2

∫∫
(U1φ − U2φ)ψ1

1

r

∂ψ2

∂φ
r dr dφ. (2.7d)

The energy of perturbations to the mean flow (E) is a sum of the so-called eddy
kinetic energy (

∑
EKEj) and eddy potential energy (EPE). Thus energy tendency ∂tE
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is balanced by the volume-integrated Reynolds Stresses work (
∑
RSj) and by Potential

Energy Conversion (PEC), i.e., conversion rates from mean kinetic and mean potential
energy, respectively (Pedlosky 1987). When the net perturbation energy tendency (i.e.,
left hand side of (2.7a)) is positive (i.e, perturbations grow), we may define a purely
baroclinic instability as one where the Reynolds stresses volume-integrated work is zero,
as occurs in uniform rectilinear flow (Pedlosky 1987). We later show that when RSj do
not vanish, they in fact are negative, i.e., decrease the perturbation growth rate in all
cases we study here.

Bathymetry does not enter the energy equation explicitly: it does contribute to energy
exchange locally, but integrates to zero over the entire domain. The energy equation
has zero energy tendency for an azimuthally constant perturbation, and therefore such
perturbations are necessarily neutral. RSj are identically zero when the radial strain,

Sr ≡ r
∂

∂r

Ujφ
r
, (2.8)

is identically zero, which in an annular channel occurs everywhere only for flow in solid-
body rotation. Therefore solid body rotation is the only annular flow that has zero
Reynolds stresses volume-integrated work for any infinitesimal perturbation. If Sr is
nonzero anywhere then there exist many particular ψ(r, φ) perturbation shapes that
make RSj nonzero.

2.4. Mean flow profiles

Throughout this paper we compare our results against the case of uniform flow in
a straight channel over linear bathymetry (Pedlosky 1964; Mechoso 1980), which is
described in Appendix B. We hereafter refer to this case as uniform rectilinear flow
for short. In the annular channel, we investigate in detail two specific configurations
of the bathymetry and the mean azimuthal flow. Since the mean flows we prescribe are
geostrophic, the isopycnal profile ZI(r) is determined by the Margules relation (Cushman-
Roisin 1994). In dimensional variables,

Ũ1φ − Ũ2φ = −g
′

f

∂Z̃I
∂r̃

. (2.9)

The first case, solid body rotation, is motivated by the fact that both uniform rectilinear
flow and solid-body rotation have zero strain rate, defined for solid body rotation by
(2.8), and thus it is a simple starting point from which to study the effect of horizontal
curvature. We assume parabolic bathymetry to simplify the analysis, though we later
briefly explore linear bathymetry too (see §6). Formally, we define our solid body rotation
case as

Ujφ = Ωjr, ZI ∼ −(Ω1 −Ω2)r2, ηb =
1

2
pr2, (2.10)

where Ωj are the constant angular velocities of the flow in each layer, and p is a quadratic
coefficient for the bathymetry.

The second case is uniform azimuthal flow, where we assume constant mean azimuthal
velocity everywhere. This is similar to uniform rectilinear flow in that the speed is
uniform, and the isopycnals are linear in the cross-flow coordinate (r). It is different in
that the velocity direction varies, i.e., speed is everywhere azimuthal but the azimuthal
direction varies with the azimuthal angle φ. We take the bathymetry to be linear as
well (as in the uniform rectilinear flow case), though we later briefly explore parabolic
bathymetry as well (see §6). Formally, we define our uniform azimuthal flow case as

Ujφ = constants, ZI ∼ −(U1φ − U2φ)r, ηb = br, (2.11)
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where U1φ and U2φ are the azimuthal velocities and b is the linear coefficient for the
bathymetry.

We note that in uniform azimuthal velocity Ri cannot be chosen to approach r = 0,
both because the azimuthal velocity must be zero in the r → 0 limit, and because even
before the actual limit, the centrifugal force becomes larger than the Coriolis force, in
violation of the QG conditions. The balance between the two forces results in a local
Rossby number, Ro = U/fr̃ = U/(r

√
g′H1H2/(H1 +H2)). For example, taking H1 =

H2 ≈ 500m, g′ ≈ 10−3g, and U ≈ 0.1m/s, we have r > 1 (and Ri > 1) as an approximate
condition for Ro = o(1). Therefore our choice of Ri = 3 (§2.2) is also consistent with the
QG approximation.

We define the mean vertical rotation rate shear and velocity shear for solid body
rotation and for uniform azimuthal flow as follows: Ωs = Ω1 −Ω2, and Us = U1φ − U2φ,
respectively. Motivated by the fact that the baroclinic instability growth rate in uniform
rectilinear flow varies linearly in the vertical velocity shear (Mechoso 1980), we choose
the velocity scale U = LΩ̃s for solid body rotation, and U = Ũs for uniform azimuthal
flow. We assume everywhere that U > 0 (and hence ZI(r) is monotonously decreasing).
This assumption is general since we explore both positive and negative δ and can then
deduce corresponding results for U < 0 results by symmetry (see §5.3).

Similarly we define for solid body rotation and uniform azimuthal flow, the barotropic
mean rotation rate and velocity as follows: Ωbt = 1

2 (Ω1 +Ω2), and Ubt = 1
2 (U1φ + U2φ),

respectively. In fact Ωbt (or Ubt) is exactly the barotropic component only if mean layer
thicknesses are equal, but for ease of notation we refer to it as the barotropic component
in what follows.

3. Integral constraints on baroclinic growth

The classical theorem by Rayleigh (1880) on flow instability conditions was adapted
by Pedlosky (1964) to the straight-channel rotating-baroclinic instability problem. It
gives necessary (though not always sufficient) conditions for instability to occur, using
only knowledge of the mean flow. Equivalently, the theorem provides a range of values
for the physical parameters over which linear perturbations cannot grow. Here we adapt
Pedlosky’s derivation to the annular channel case, and use it to derive stability bounds for
the profiles described in §2.4. The derivation and the results remain unchanged if Ri → 0
and also if Re → ∞, and so are also applicable to other phenomena, e.g., geophysical
vortices (Olson 1991; Paldor & Nof 1990; Dewar & Killworth 1995; Benilov 2005).

While qualitatively similar instability theorems have been derived in the literature
for a variety of flows (Pedlosky 1970), we were unable to find this derivation or result
elsewhere for azimuthal flow (QG or not) over bathymetry with no further constraints
(e.g. thin layers, flat bottom). We also derived bounds on the phase speed and on the
growth rate (semi-circle theorem, Pedlosky 1964) for general annular 2-layer flow, but we
defer their presentation to Appendix C.

3.1. Derivation of the Rayleigh theorem

Our starting point is the modal PV equations (2.6a)-(2.6b). We define the complex
phase speed c = σ/m, and its real (cr) and imaginary (ci) parts. By (2.5), only unstable
eigenmodes have a non-zero ci, so for unstable eigenmodes we may divide the equation
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for the layer j by m(Ujφ/r − c).

∇2
rΨ1 −

m2

r2
Ψ1 − F1(Ψ1 − Ψ2)− 1

U1φ − cr
Ψ1
∂Q1

∂r
= 0, (3.1a)

∇2
rΨ2 −

m2

r2
Ψ2 − F2(Ψ2 − Ψ1)− 1

U2φ − cr
Ψ2
∂Q2

∂r
= 0. (3.1b)

We multiply the first and second of these last two equations by D1Ψ
∗
1 and D2Ψ

∗
2 ,

respectively (where ∗ denotes complex conjugate), and integrate with the volume element
(rdr) between the domain boundaries Ri and Re. The first (Laplacian) term can be
simplified via integration by parts, making use of the boundary conditions Ψj(Ri) =
Ψj(Re) = 0. The result is

∫ Re

Ri

 2∑
j=1

Dj

∣∣∣∣ ∂∂rΨj
∣∣∣∣2 +

2∑
j=1

Dj
m2

r2
|Ψj |2 +D1D2 |Ψ1 − Ψ2|2

 r dr +

∫ Re

Ri

 2∑
j=1

Dj

Ujφ − cr
∂Qj
∂r
|Ψj |2

 r dr = 0. (3.2)

The imaginary part of this expression is

ci

∫ Re

Ri

2∑
j=1

Dj

|Ujφ − cr|2
∂Qj
∂r
|Ψj |2 r2dr = 0. (3.3)

For an unstable mode ci is nonzero, and so the last integral must vanish. Therefore a
necessary condition for instability (hereafter, the Rayleigh criterion) is that the mean PV
gradient must be somewhere negative and somewhere positive in the domain interior.

Another necessary condition for instability can be found using the real part of (3.2).
Substituting (3.3) into (3.2), eliminates ther terms proportional to cr and ci, leaving∫ Re

Ri

2∑
j=1

Dj

|Ujφ − cr|2
|Ψj |2

(
Ujφ

∂Qj
∂r

)
r dr =

−
∫ Re

Ri

 2∑
j=1

Dj

∣∣∣∣ ∂∂rΨj
∣∣∣∣2 +

2∑
j=1

Dj
m2

r2
|Ψj |2 +D1D2 |Ψ1 − Ψ2|2

 r dr < 0. (3.4)

Therefore, another necessary instability condition (hereafter, the Fjortoft criterion) can
be stated as: at least one of the products U1φ

∂Q1

∂r and U2φ
∂Q2

∂r , must be negative inside
at least part of the domain (Ri, Re).

Both the first and second conditions as phrased here are the same as found in a
straight-channel (Pedlosky 1964). These (straight channel) conditions are used frequently
to identify unstable flow regimes in boundary currents, as well as other ocean and
atmosphere flow regimes.

3.2. Stability bounds for solid-body rotation and uniform azimuthal flow

For solid body rotation, using the same notation as (Mechoso 1980) the ratio between
bathymetric slope and isopycnal slope is the bathymetric parameter δ = pr/Ωsr = p/Ωs.
Vorticity is constant and hence the PV gradients are simply

∂Q1

∂r
= −F1r,

∂Q2

∂r
= F2 (1− δ) r. (3.5)
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By the Rayleigh criterion instability is possible only if the PV gradient changes sign,
which is seen from (3.5) to occur only if δ < 1, exactly as in uniform rectilinear flow.

For uniform azimuthal flow, in non-dimensional variables, U1φ = U2φ + 1. The bathy-
metric parameter is now δ = −b, and from equation (2.6c),

∂Q1

∂r
= − 1

r2
(U2φ + 1)− F1,

∂Q2

∂r
= − 1

r2
U2φ + F2 (1− δ) . (3.6)

Using (3.6) in the instability criteria (§3.1), it follows that a necessary condition for
instability is that, at least somewhere inside the domain,

δ < δ0(r) ≡ 1− 1

F2

U2φ

r2
. (3.7)

Equivalently, a sufficient condition for stability is δ > max(δ0), similarly to the uniform
rectilinear flow case which is stable for δ > 1. Note that δ0 = 1 exactly if U2φ = 0,

and δ0 ≈ 1 if 1
F2

|U2φ(r)|
r2 = o(1). Unlike the case in uniform rectilinear flow, the

stability threshold depends on the mean velocity magnitude, i.e., the cutoff bathymetric
parameter, δ0, increases (decreases) for negative (positive) U2φ. As evident from the
Rayleigh criterion and from (3.6), the difference is due to the non-zero mean relative
vorticity caused by curved streamlines.

We add that for U2φ < −1 − F1R
2
i , instability is not prohibited, irrespectively of the

δ value, since a PV gradient sign change occurs within a single layer. However, since the
mean flow becomes almost barotropic, that regime is less relevant to this study.

4. Stability of flows in solid-body rotation

In this section, we investigate baroclinic instability of flow in solid body rotation,
and show that it bears strong dynamical similarity to baroclinic instability of uniform
rectilinear flow. The isopycnal cross-flow profile for solid-body rotation is parabolic (§2.4),
and we specifically choose to investigate the flow over a cross-flow profile similar to
the isopycnal profile, namely a parabolic bathymetry profile. This simplifies the PV
equations significantly, and allows for some analytical results which help with more
general interpretation of the physical system. Linear bathymetry does not qualitatively
change the results, as discussed in §6.

In the solid body rotation case, equations (2.6a)-(2.6b) are,[(
Ωbt +

1

2

)
m− σ

] [
∇2
rΨ1 −

m2

r2
Ψ1 − F1(Ψ1 − Ψ2)

]
+mF1Ψ1 = 0, (4.1a)[(

Ωbt −
1

2

)
m− σ

] [
∇2
rΨ2 −

m2

r2
Ψ2 − F2(Ψ2 − Ψ1)

]
+mF2Ψ2 [−1 + δ] = 0. (4.1b)

Since Ωs does not appear explicitly, it follows from the scaling in section 2.4 that the
dimensional growth rate and frequency depend linearly on the dimensional angular shear
Ω̃s. In addition, the variables Ωbt and σ appear only together, in the expression (Ωbtm−
σ) ≡ σ0. Solving (4.1) for σ0 would correspond to a σ solution Doppler-shifted by Ωbtm.
The only effect of the barotropic velocity is a real frequency Doppler-shift, with no
influence on growth rate or streamfunction structure. Therefore to derive the dispersion
relation we may take Ωbt = 0, and after deriving it, just Doppler-shift the frequency back
by adding to it the term Ωbtm.

The terms in the left brackets may vanish only for neutral modes. In this section we
are only interested in modal instability (non-normal growth is covered in §5.2) and hence
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assume that the terms in the left brackets do not vanish and rearrange (4.1) to obtain a
pair of coupled Bessel equations,

∇2
rΨ1 −

m2

r2
Ψ1 + α1Ψ1 + F1Ψ2 = 0, (4.2a)

∇2
rΨ2 −

m2

r2
Ψ2 + α2Ψ2 + F2Ψ1 = 0, (4.2b)

α1 = F1

1
2m+ σ
1
2m− σ

, α2 = F2

(
1
2 − δ

)
m− σ

1
2m+ σ

. (4.2c)

The solution can be found in terms of Bessel functions of the first kind Jm and of the
second kind Ym. A complete and orthogonal set of Bessel functions in the radial domain
(Ri, Re) can be found as the solution set of the Bessel equation in the same geometry
with Dirichlet boundary conditions. This set is given by Pm(µir),

Pm(µr) = Jm(µr)− Jm(µRe)

Ym(µRe)
Ym(µr), (4.3)

provided that µi are determined from

Jm(µiRi)Ym(µiRe)− Ym(µiRi)Jm(µiRe) = 0. (4.4)

The general solution to (4.2) may be then expanded in the Fourier-Bessel series,

Ψj = Σ∞i=1Aj,iPm(µir). (4.5)

The amplitudes Aj,i are constants. Plugging the general solution (4.5) into (4.2), using the

identity that a Bessel function of order m satisfies,∇2
rPm(µr)−m2

r2 Pm(µr) = −µ2Pm(µr),
and exploiting the orthogonality of the Pm functions, one finds that the solution (4.5) is
consistent, under the following condition on the coefficients of each Bessel function,

(α1 − µ2
i )A1,i + F1A2,i = 0, (4.6a)

(α2 − µ2
i )A2,i + F2A1,i = 0. (4.6b)

Requiring the determinant to disappear we find, after some algebra, the solid body
rotation dispersion relation, relating the complex frequency σ to the radial wavenumber-
like parameter µi,

σi =Ωbt +m
µ2
i (F2 − F1 − F2δ)−mF1F2δ +

√
D

2µ4
i + 2µ2

i (F1 + F2)
, (4.7a)

D

m2
=µ8

i + (2F2δ)µ
6
i +

(
−4F1F2 + 2F1F2δ + F 2

2 δ
2
)
µ4
i

+
(
−4F 2

2F1δ + 2F 2
2F1δ

2
)
µ2
i + F 2

1F
2
2 δ

2. (4.7b)

The main result of this section is that the solid body rotation dispersion relation (4.7)
is isomorphic to the uniform rectilinear flow dispersion relation (B 2), showing that the
dynamics are in some sense identical, although the geometries are different. The mapping
between the dispersion relations is symbolic (and simple), with (Ωbt,m, µ)→ (Vbt, l,K).
Here k, l, K =

√
k2 + l2, and Vbt, are the uniform rectilinear flow cross-stream, down-

stream, total wavenumbers, and mean barotropic velocity, respectively (see Appendix
B). Since the dispersion relations are analogous, the dependences of the growth rates
and frequencies on the dimensionless parameters are similar, though not identical since
the allowed µi are determined from (4.4), while the allowed K are determined from an
equation with harmonic functions instead of Bessel functions.
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In figure 2 we display numerical dispersion curves (growth rates and phase speeds as
a function of wavenumber m) for solid body rotation and for uniform rectilinear flow,
setting δ = −0.2 for the purpose of illustration. We normalize the azimuthal wavenumber
by the mean radial coordinate R = (R1 + R2)/2, m̂ = m/R to provide an approximate
analogue of the Cartesian wavenumber in uniform rectilinear flow. The uniform rectilinear
flow and solid body rotation curves are very close to each other, and the main qualitative
features are identical for both cases: (i) two eigenmodes exist in each case (for other δ
values either 1 or 2 eigenmodes but no more exist per downstream wavenumber). (ii)
The global maximum in growth rate occurs at a wavenumber slightly smaller than 1
(in dimensional variables l ≈ 1/L). (iii) The phase speed has the opposite sign to δ.
This is in fact true for all δ values and is explained by a resonance condition (Pichevin
1998) with topographic Rossby waves (which propagate with shallow water to their right
in the northern hemisphere). Panels (c) and (d) show a typical first (fastest growing)
eigenmode streamfunction for solid body rotation. The streamfunction is centered in the
channel, and no mean horizontal tilt (relative to the cross-stream direction) is present
in the circulation cells. The second fastest growing eigenmodes (not shown) have two
periods in the radial axis, rather than one as the first mode, and are generally similar to
the first mode in that they have no horizontal tilt.

Figure 3b shows the solid body rotation growth rate as a function of both m and δ.
Again, the growth rate values are almost identical to the uniform rectilinear flow case
(figure 3a). We also confirmed numerically that (as in uniform rectilinear flow) there is no
growth rate dependence on barotropic velocity. Thus we can summarize the solid body
rotation case as follows: (i) The dispersion relation is isomorphic to the previously-derived
uniform rectilinear flow dispersion relation, thus demonstrating that the dynamics are
essentially identical. The growth rate is independent of the barotropic velocity and
linearly dependent on the vertical shear. Thus, (ii) despite different geometries (affecting
the boundary conditions) in solid body rotation and in uniform rectilinear flow, the
growth rates are very similar (figure 3a and b). (iii) Both cases have vanishing strain
rates and RSj and are thus pure baroclinic instabilities.

5. Stability of uniform azimuthal flow

In this section we explore the stability of uniform azimuthal flow over bathymetry that
varies linearly with radius, as defined in §2.4.

5.1. Normal modes

In figure 3, we plot growth rate (GR) as a function of normalized wavenumber m̂ and
of δ for uniform azimuthal flow (each panel for a different Ubt value), and for reference
also the GR of the uniform rectilinear flow and solid body rotation cases. Note that at
each point in (m̂, δ) space there may be multiple unstable modes, so we have plotted
the growth rate of the most unstable mode in each case. While for zero barotropic flow
Ubt = 0 the growth rate is similar to uniform rectilinear flow, nonzero barotropic velocity
results in very different GR(m̂, δ) dependence. In contrast, uniform rectilinear flow and
solid body rotation have no barotropic velocity dependence. Additional local maxima in
GR(m̂, δ) appear in uniform azimuthal flow for nonzero barotropic velocity.

The streamfunctions for several unstable uniform azimuthal flow modes are presented
in figure 4. Two geometrical differences from uniform rectilinear flow and solid body
rotation (see examples in figure 2) are evident: (a) While in solid body rotation stream-
functions are always centered in the channel, the streamfunctions in uniform azimuthal
flow cases with nonzero Ubt are shifted off the center of the channel. (b) While in
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Figure 2. Properties of unstable modes for mean solid body rotation over parabolic bathymetry
and for mean uniform rectilinear flow over linear bathymetry, with δ = −0.2 in both cases. (a)
Growth rate vs wavenumber and (b) phase velocity vs wavenumber (all dimensionless). In both
cases two independent eigenmodes are found. The first (second) mode is presented with solid
and dashed/dotted lines for solid body rotation (SBR) and uniform rectilinear flow (URF),
respectively. The abscissa is downstream Cartesian wavenumber (nondimensional values). In
solid body rotation the downstream wavenumber is defined as l ≈ m̂ = m/R. Here m is the
azimuthal wavenumber and R is the radius of the channel center. In panel (b) the (real) phase
speed is approximately Doppler-corrected and normalized to Cartesian values (for comparison
with uniform rectilinear flow) via ĉr = crR−Ωbt. (c,d) Upper and lower layer streamfunctions,
respectively, for the first (fastest growing) eigenmode of solid body rotation with wavenumber
m = 4 (m̂ = 0.615). The inner and outer circles mark the domain boundaries at r = Ri and Re,
respectively. The lines intercepting the boundaries are the zero contours of the streamfunctions,
while positive (negative) streamfunction contours are denoted by full (dashed) closed curves.
The absolute value of contours is not given since eigenmode amplitudes are arbitrary unless
specified by initial conditions.

uniform rectilinear flow the streamfunction circulation cells axes are aligned with the
radial direction, those in uniform azimuthal flow cases with nonzero Ubt are often tilted.
Reynolds stress work varies linearly with the strain and the tilts of the circulation axes,
and vanishes when the tilt is zero (Pedlosky 1987). In polar coordinates,

RSj ∼ −(Sr)j

(
∂r

∂φ

)
ψj

. (5.1)

The uniform azimuthal flow streamfunction for the first mode at Ubt = 0 (left panel)
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Figure 3. Linear growth rates as a function of along-flow wavenumber and the ratio of the
bathymetric to isopycnal slopes. All values are non-dimensionalized as described in §2.1. Where
more than one unstable modes exist, the highest growth rate is shown. (a) Mean uniform
rectilinear flow (URF) over linear bathymetry, with wavenumber l. In all other panels the
wavenumber is the normalized azimuthal wavenumber m̂, defined in §4. (b) Mean solid body
rotation (SBR) over parabolic bathymetry. (c–f) Mean uniform azimuthal flow (UAF) over
linear bathymetry, with with the mean barotropic velocity equal to (c) Ubt = 0, (d) Ubt = −1,
(e) Ubt = 1, and (f) Ubt = 2. In contrast to uniform azimuthal flow, the growth rates in the
uniform rectilinear flow and solid body rotation cases do not depend on the barotropic velocity.
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Figure 4. Mean uniform azimuthal flow, selected unstable eigenmodes. Upper (lower) layer
streamfunctions are shown in the upper (lower) panels. The bathymetric slope parameter is
δ = −0.2, and the azimuthal wavenumber is m = 4. (a,b) Ubt = 0, fastest growing eigenmode.
(c,d) Ubt = −1, fastest growing eigenmode. (e,f) Ubt = −1, third-fastest growing eigenmode.
The inner and outer circles mark the domain boundaries at r = Ri and Re, respectively. The
lines intercepting the boundaries are the zero contours of the streamfunctions, while positive
(negative) streamfunction contours are denoted by full (dashed) closed curves. The absolute
value of contours is not given since eigenmode amplitudes are arbitrary unless specified by
initial conditions.

has zero or very small tilt, implying insignificant Reynolds stresses work. The center
and right panels (for the first and third eigenmodes with Ubt = −1) show progressively
higher positive tilts, implying higher negative RSj , since by (2.8) strain rate is positive
for constant negative velocity.

The local maxima in the panels (d)-(f) of figure 3 are due to changes in the number and
character of growing eigenmodes with Ubt value. This can be seen in figure 5, where we
plot several properties for all uniform azimuthal flow growing eigenmodes at δ = −0.2 and
Ubt = 1 (compare with solid body rotation and uniform rectilinear flow, figure 2). We find
that up to four unstable eigenmodes can co-exist at a given wavenumber, whereas no more
than two co-existed for uniform rectilinear flow and solid body rotation. While in uniform
rectilinear flow the second mode has considerably lower growth rate than the first, in
uniform azimuthal flow they have similar maximum values but still peak at different
wavenumbers, thus explaining the multiple maxima observed in figure 3 panels (d)-(f).
The growth rates of third- and fourth-most unstable modes are considerably smaller. In
figure 5(c) we plot the eigenmodes’ phase speeds, doppler-corrected and normalized via
ĉr = crR − Ubt to compare approximately with equivalent values in uniform rectilinear
flow. While uniform rectilinear flow has waves propagating with shallow water to their
right (prograde), in uniform azimuthal flow the second most rapidly growing mode is
retrograde, and eigenmodes 3 and 4 have much smaller propagation speeds ĉr.
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Figure 5. Mean uniform azimuthal flow with barotropic velocity Ubt = 1 and bathymetric to
isopycnal slopes ratio δ = −0.2. (a) Growth rate, (b) ratio of Reynolds stresses volume-integrated
work to potential energy conversion, and (c) Doppler-corrected Cartesian phase speed vs
normalized azimuthal wavenumber m̂ = m/R, for all growing eigenmodes. In panel (c) the
(real) phase speed is Doppler-corrected and normalized to Cartesian values by ĉr = crR − Ubt,
to facilitate comparison with the other mean flow cases (figure 2).

The middle panel of figure 5 shows the ratios of volume-integrated Reynolds stress
work (ΣjRSj) to potential energy conversion (PEC), which are negative in all cases.
In contrast, uniform rectilinear flow has zero RSj values in all cases. Thus the uniform
azimuthal flow unstable eigenmodes are largely baroclinic modes whose growth rates are
somewhat diminished by Reynolds stresses work. The two extra eigenmodes that appear
with non-zero barotropic velocity have much higher ΣjRSj to PEC ratio magnitudes,
consistent with their very low growth rates. These results are also consistent with the
tilts of streamfunctions shown in figure 4, and are qualitatively similar for other values of
δ, m and Ubt. The general reduction in growth rate with |Ubt| is thus partially attributed
to increase in Reynolds stresses work.

In figure 6 (panels a and b) we plot the maximum growth rate over all unstable modes
and over all wavenumbers as a function of Ubt and δ. Unless δ ∼ 1, the growth rate peaks
at or close to Ubt = 0, and is close to peak growth rate for the uniform rectilinear flow
case, while lower growth rates are found for non-zero Ubt. However, the uniform rectilinear
flow instability has a cutoff at δ = 1, whereas the uniform azimuthal flow cutoff depends
on Ubt and can occur for δ larger than 1, as predicted by the instability criteria derived
in §3.2. Therefore horizontal curvature decreases eigenmodes’ growth rates when Ubt is
non-zero, unless the isopycnals are approximately parallel to the bathymetry (δ ∼ 1) and
Ubt < 0, in which case the curvature destabilizes the flow. Although we report above
that Reynolds stresses work is partially responsible for reduction in growth rate (both
relative to uniform rectilinear flow and between different uniform azimuthal flow modes),
figure 6c demonstrates that reduction in potential energy conversion is responsible for a
∼ 2− 4 times larger fraction of the growth rate reduction, than is the |ΣjRSj | increase.
For an eigenmode, GR = (PEC + ΣjRSj)/2 and hence the changes in growth rate are
proportional to changes in PEC and RSj . Generally PEC decreases monotonously with
|Ubt|, thus supporting the barotropic governor effect interpretation, given below.

Reduction in baroclinic growth rate in the presence of lateral barotropic shear is a
somewhat general phenomenon, often called barotropic governor effect (James & Gray
1986; James 1987). James (1987) attributes the effect to the horizontal shear of advection.
To remain in phase in the cross-flow direction in the presence of advective shear, the
unstable eigenmodes are tilted in the horizontal plane and have a reduced cross-flow
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Figure 6. (a) Maximum growth rate (filled contours) in the uniform azimuthal flow (UAF) case
as a function of the barotropic velocity, Ubt, and the ratio of the bathymetric to isopycnal slopes,
δ. The dashed line marks the barotropic velocity corresponding to the largest growth rates at
each δ. The dotted line marks δ = 1, above which straight channel uniform flow is stable. (b)
Maximum uniform azimuthal flow growth rate (full line) and the barotropic velocity at which it
is achieved (full line with circles), as a function of δ. The dashed line is maximum growth rate for
uniform rectilinear flow (URF). (c) (Half the value of) Potential Energy Conversion (PEC) and
Reynolds stresses work (RS = ΣjRSj), for the fastest growing eigenmode, in three different δ
values. Discontinuities (as a function of Ubt) are expected since PEC−RS distribution changes
with m, and since up to four different eigenmodes exist per m.

extent. These circulation features make the unstable eigenmodes less ideally suited for
extracting mean potential energy and hence their growth rates are smaller.

Though the usual barotropic governor effect interpretation is due to barotropic shear,
we find that in curved flow geometry, it may be more general to refer to barotropic
strain rather than shear. In uniform azimuthal flow, the eigenmodes are azimuthally
traveling waves, with constant angular phase velocity [rad/s]. If they were to have no
tilt, azimuthal advection would need to be radially constant. The azimuthally advecting
quantity is the (mean) angular velocity, Ωj(r) ≡ Ujφ/r, and its radial gradient is the
strain rate (2.8). Thus the barotropic governor effect can generally occur in azimuthal
flow with non-zero strain, i.e. flow not in solid-body rotation (§4). In accordance, we
find (figure 4) that some uniform azimuthal flow eigenmodes have substantial horizontal
tilts, often with much lower growth rates. Similar results were obtained in a primitive-
equations 2-layer vortex instability model Dewar & Killworth (1995). The authors found
that Gaussian vortices with co-rotating lower layers had reduced PEC and growth rates
relative to vortices with counter-rotating lower layers, and attributed the result to the
barotropic governor effect.

5.2. Non-normal growth

While the above diagnosis focuses on perturbation growth by individual eigenmodes
(aka normal modes), non-orthogonality of eigenmodes, which is a common occurrence in
sheared flow, means that what is known as non-normal growth is also possible (Trefethen
et al. 1993; Farrell & Ioannou 1996). Linear evolution of two or more non-orthogonal
eigenmodes, even if they are all neutral or decaying, can result in transient (non-normal)
growth before the eventual decay of the disturbance. For parameter values where growing
eigenmodes exist, they do dominate the linearized dynamics, at long enough times. But
transient non-normal growth may dominate at shorter times, as well as for parameter
ranges where no growing eigenmodes exist.
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To calculate the non-normal growth, using the same numerical eigenvalue solver
described above, we recast the PV equations (2.6) in the form: MΨ = σBΨ , where
M and B are differential operators, and Ψ = (Ψ1, Ψ2)T (T for transpose). We refer the
reader to Farrell & Ioannou (1996) for details of the method. Assuming B is invertible
we can rewrite the differential equation as σΨ = LΨ , where L = B−1M . And since
Ψ ∼ exp(−iσt),

∂tΨ = −iLΨ. (5.2)

So the propagator to time t is exp(−iLt). If we define L̂ = N1/2LN−1/2, where N is
the energy norm operator (Farrell & Ioannou 1996), then the maximal instantaneous
growth-rate of disturbances is given by the eigenvalues (and eigenstates) of the operator
H = 1

2 i(L̂
†− L̂). The energy-norm operator in the annulus case is, prior to the performed

discreziation of the differential operators and of r,

N =
1

2

(
rD1 0

0 rD2

)(
−∇2

r +
m2

r2

)
+

1

2
D1D2

(
1 −1
−1 1

)
. (5.3)

In figure 7 the maximal instantaneous non-normal growth in energy norm is shown
for uniform azimuthal flow and uniform rectilinear flow. Interestingly, the result is
independent of δ, as the bathymetry does not appear in the energy equation (2.7).
Bathymetry affects local energy conversion but not its domain integral. However, in
finite time bathymetry certainly effects energy growth or decay since it affects the
streamfunction evolution, and would likely render sub-optimal the fastest-growing non-
normal perturbations calculated using (5.3). For Ubt = 0, uniform azimuthal flow growth
is very similar to uniform rectilinear flow (which is independent of barotropic velocity),
and both have non-normal growth just slightly higher than peak normal growth rate
(compare with figure 6). However, non-normal growth occurs for a wider range of
wavenumbers than the range in which unstable normal modes exist. The decay of the
non-normal growth rate with wavenumber is slower in uniform azimuthal flow relative to
uniform rectilinear flow. In addition, at nonzero Ubt, the uniform azimuthal flow growth
rate is higher everywhere, and decays even slower with m̂, or even (not shown) grows
and oscillates in m̂ before decaying again. Growth at very high wavenumbers is probably
not physical, and would likely not appear if some form of scale-selective “eddy” viscosity
were included.

5.3. Convex and concave cases

The convex to concave transformation (by reflection of ηb(r) and ZI(r), as explained
in §2.1), results for uniform azimuthal flow in b → −b and Ujφ → −Ujφ. Therefore
equations (2.6) are unaltered if in addition σ → −σ. Also, if {σ, Ψj(r)} are an eigenvalue-
eigenfunction pair of equations (2.6) then so are their complex conjugates {σ∗, Ψ∗j (r)},
as can be verified by taking the complex conjugate of (2.6). Combining the last two
observations, if {σ, Ψj(r)} is an eigenvalue-eigenfunction pair in a convex geometry, then
{−σ∗, Ψ∗j (r)} is an eigenvalue-eigenfunction pair in a concave geometry, and vice-versa.
Thus the growth rate and the real (physical) part of the streamfunction are unaltered,
and the phase speed is reversed. The reversal of phase speed, along with reflection
of ηb(r) (shallow water at other side of the channel) results in the same phase speed
direction relative to shallow water, and therefore the physical propagation direction is
also unaltered.

Different eddy growth rate at convex versus concave sections is not accounted for in
the linear uniform azimuthal flow model, contrasting with the pronounced instabilities
observed around convex bends in the real ocean’s continental slopes (see §1). Despite
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Figure 7. Maximal instantaneous (non-normal) growth rates. The blue curve corresponds to
mean uniform rectilinear flow. The other curves correspond to mean uniform azimuthal flow
with three different barotropic velocities Ubt. Linear bathymetry was used in all cases.

this symmetry of our QG model, there is still a potentially important difference between
unstable modes growing over convex and concave bends in the continental slope. If
the perturbation streamfunction is displaced off the center of the channel, say toward
shallower water, then switching between concave and convex continental slopes will
result in the streamfunction being displaced toward deep water instead. As noted in
§5.1, the uniform azimuthal flow perturbation streamfunctions are indeed typically
displaced from the center of the channel (see figure 4). The significance of this difference
between structure of growing modes over convex and concave continental slopes cannot
be determined from our linear instability analysis, and warrants further investigation
using a nonlinear model.

6. Relation between baroclinic instability in straight and curved
geometries

Although uniform azimuthal flow and uniform rectilinear flow share the same cross-
stream isopycnal and bathymetric profiles, the properties of their unstable modes are
quite different (§5). In contrast, we found strong similarity (§4) between the uniform
rectilinear flow and solid body rotation cases, despite differing isopycnal and bathymetric
profiles. Using insights from §4-5, we can reduce the parallel between uniform rectilinear
flow and solid body rotation to three conditions:

(i) Vanishing horizontal mean strain, resulting in zero Reynolds stresses work. From a
dynamical perspective, the mean flow does not shear waves propagating in the direction
of the mean flow.
The following two factors stem from the Rayleigh criterion (§3).
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(ii) Vanishing horizontal gradient of the mean vorticity. Under this condition the
Rayleigh criterion depends only on the ratio of bathymetric to isopycnal slopes, δ.

(iii) Congruous cross-stream bathymetric and isopycnal profiles. This renders δ con-
stant. The implication can be understood by considering a uniform rectilinear flow-like
case of uniform channel flow (linear isopycnals) but over non-linear bathymetry. Then,

using (2.9) and defining δ(x) = ∂ηb(x)
∂x /∂ZI∂x , the PV gradient (B 1) can be rewritten as

∂Qj
∂x

= −Fj(−1)j [1−∆j2δ(x)] . (6.1)

By the Rayleigh criterion (§3) if δ(x) < 1 anywhere, instability is not prohibited. Thus
even if δ̄ > 1 (the bar denoting a cross-stream average), but locally δ(x) < 1 somewhere,
then this uniform flow case may be unstable.

For annular flow, the vanishing of the strain rate occurs only for parabolic isopycnals
(or equivalently, solid-body rotation), while zero horizontal gradient of vorticity occurs
only for parabolic or logarithmic isopycnals. Therefore the only annulus flow case in which
conditions (i)–(iii) all occur together is parabolic isopycnals over parabolic bathymetry,
which is our solid body rotation case (§4). Mean flow over any other bathymetry (such
as linear bathymetry, as in §5) will necessary violate at least one of (i)–(iii). For uniform
azimuthal flow, condition (iii) is satisfied, but the curvature results in non-zero strain
rate and non-zero vorticity gradient. Superficially uniform azimuthal flow may appear to
be the most similar to uniform rectilinear flow since both cases have isopycnals (linear
bathymetry in the present treatment) in the cross-stream direction, but conditions (i)–
(iii) identify solid body rotation as the true dynamical analogue of uniform rectilinear
flow.

We have verified conditions (i)–(iii) using some additional numerical experiments,
whose results are summarized in this paragraph, rather than plotted. The same numerical
solver was used in all cases. We considered two cases in which only factor (iii) is violated:
(a) Uniform straight channel flow (i.e., linear isopycnals) over parabolic bathymetry,
and (b) solid body rotation (i.e., parabolic isopycnals) over linear bathymetry in an
annular channel. Both have zero strain, and therefore were found to be similar to uniform
rectilinear flow/solid body rotation in that the magnitudes of their growth rates are very
similar, in that the Reynolds stresses work is zero, and in that the results are independent
of the barotropic velocity. However, non-zero (though small) growth occurs for δ > 1 in
(a) because condition (iii) is violated. We also tested a third case, where only condition (i)
is violated: (c) annular flow with logarithmic isopycnals and bathymetry. We found this
case to be similar to our uniform azimuthal flow results, though with a more exaggerated
dependence on the magnitude of the barotropic velocity |Ubt|. Unlike uniform azimuthal
flow, the logarithmic profile used in case (c) has zero growth rate at δ > 1 because the
vorticity is zero.

7. Summary and Discussion

To study the effect of horizontal curvature in flow and bathymetry on baroclinic
instability, we study several mean flow and bathymetry cases in an annulus and compare
them with uniform mean flow over linear bathymetry in a straight channel (uniform
rectilinear flow). We consider uniform rectilinear flow a reasonable though simple test
case for deep western boundary currents since these tend to be quite broad relative to the
Rossby radius (Xu et al. 2015; Stommel & Arons 1972). Some further justification may
be required for the use of a periodic annular channel in place of an open domain that is
approximately an annular section. We expect that for time intervals short compared to
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the travel time of perturbations along the section, azimuthal edge effects will be small,
as long as the wavelength is somewhat smaller than the section length.

We find solid body rotation (§4) to be very similar to uniform rectilinear flow, with an
exact simple transformation between the dispersion relations of both cases. We trace the
similarity in instability properties to the three commonalities between of the mean flows
and bathymetries (§6): vanishing strain rate, vanishing vorticity, and constant ratio of
bathymetric slope to isopycnal slope δ(r) ≡ δ. In contrast, the uniform azimuthal flow
case (§5), which has (like uniform rectilinear flow) linear isopycnals (and bathymetry),
has quite different stability properties from because it has non-vanishing strain rate and
mean vorticity. While we began a preliminary exploration of more significantly sheared
velocity profiles (i.e., jets and free shear layers), an adequate coverage of this topic requires
at least a full additional paper. However, we would like to stress that the analysis in §6
is very general as it is based on the Rayleigh criterion (§3) and on the energy equation
(§2.3), and that a few experiments with other simple profiles (§6) support the generality
of these results.

Baroclinic instabilities in uniform azimuthal flow differ in several ways from uniform
rectilinear flow and solid body rotation: (a) The eigenmodes depend on the mean
barotropic velocity. The growth rate of unstable eigenmodes generally decreases with
|Ubt|, unless δ ≈ 1. (b) Whereas solid body rotation and uniform rectilinear flow are
stable for δ > 1, uniform azimuthal flow is (weakly) unstable for a small interval of
δ greater than 1. That is due to non-zero mean flow vorticity. (c) Negative Reynolds
stresses work manifest as part of the barotropic governor effect (BGE). Although BGE
is usually attributed to barotropic shear, we find that in non-parallel flow the cause may
be generalized to barotropic strain (even when cross-flow shear is zero, as in uniform
azimuthal flow). (d) For non zero |Ubt|, more growing eigenmodes arise, with diverse
growth rates, phase speeds, and barotropic to baroclinic energy conversion ratios. (e)
Non-normal growth is generally faster and occurs over a larger wavenumber range. The
growth rate becomes even larger with increased |Ubt| magnitude.

The uniform azimuthal flow case has a small but non-zero growth rate for δ > 1,
due to the vorticity associated with curved streamlines, unlike the straight-channel case
(Mechoso 1980). Deep western (and some surface) boundary currents often have isopycnal
profiles similar to the bathymetric profile, i.e., δ(r) ≈ 1 (Xu et al. 2015; Stommel & Arons
1972; Stipa 2004a; Spall 2010). Thus the increased instability of uniform azimuthal flow
relative to uniform rectilinear flow in the δ(r) ≈ 1 regime is potentially relevant for the
DWBC eddy-shedding observations that motivates this work. Assuming that the DWBC
flow is faster in the deeper layer, and that the barotropic flow is in the same direction as
the flow in the deeper layer, flow on a convex slope is described (in addition to δ ≈ 1)
by Ubt < 0. Negative Ubt is indeed the range in which we find the instability is possible
for δ > 1 (figure 6, and §3.2). Note that by the symmetry described in §5.3, a concave
section would have the same linear growth rates as the convex section described.

The result regarding instability of eigenmodes for δ ≈ 1 may also be relevant for
parameterizations of eddies on sloping boundaries, still a little explored subject. Isachsen
(2011) compares parameterizations based on the extended Eady model with eddy fluxes
diagnosed in a Primitive Equation simulation over a straight continental slope. While
the parametrization predicts zero flux at δ > 1, the diagnosed eddy flux is very low but
non-zero. This might be due to non-zero horizontal vorticity gradients in the flow, which
in any case may be relevant to the equivalent parameterization problem on a horizontally
curved slope. Non-normal growth, which we found has larger maximal values in uniform
azimuthal flow, may also play a role in eddy fluxes when δ > 1, especially since maximal
potential non-normal growth rate is independent of the bathymetry. Disturbances with
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large non-normal growth, even if they occur rarely, may produce non-zero eddy fluxes
for any value of δ.

The curved streamlines and associated strain introduce more growing eigenmodes in
uniform azimuthal flow, generally with diminished growth rates and negative Reynolds
stresses work. These propagate in various directions and speeds, unlike the strictly
topographic Rossby wave-like propagation direction (with shallow water to the right)
in uniform rectilinear flow. The wavenumber of maximum growth rate thus changes, and
in some cases more than one local maxima in wavenumber exist (for a fixed δ value).
This raises questions about the validity for curved slopes of some continental slope eddy
parameterizations (Stipa 2004b; Isachsen 2011), where diffusivity is determined by solely
the global maximum in wavenumber (of the Eady model growth rate).

Perturbations over convex or concave continental slopes have the same perturbation
growth rates in uniform azimuthal flow, but the streamfunction profiles are reflected
relative to mid-channel on the shallow-deep water axis (§5.3). Uniform azimuthal flow
eigenmodes are generally not centered at mid-channel (figure 4). If an eigenmode on
a convex slope is centered offshore from mid-channel, the analogous eigenmodes on a
concave plane would be displaced shoreward from mid-channel, and vice-versa. While in
linear theory this has no direct implications for the growth rate, non-linear evolution,
interaction with topography, and bottom boundary layers may result in implications we
cannot determine here.

While non-normal peak instantaneous growth rate and the range of unstable wavenum-
bers are larger due to non-zero mean strain and mean vorticity gradient in uniform
azimuthal flow, their importance relative to individual eigenmodes’ growth remains
unclear due to the transience of non-normal amplification. Differentiating between the two
effects would probably require fully non-linear, time-evolution integrations. The domain
would preferably be open rather than periodic, to prevent confusion with down and
upstream disturbance interaction occurring in finite time. In such a case and especially
if the domain were to have changing curvature, it may be that the transience of non-
normal growth would not be as large a limitation to actual growth. Non-orthogonality of
growing eigenmodes may also influence their nonlinear evolution: their nonzero mutual
projections may encourage nonlinear interactions between modes and accelerate the path
to finite-amplitude effects.

While we have striven to choose relevant and similar flow profiles for comparison of
straight and curved flow and bathymetry, we can imagine a different criterion for selection
of the curved profile given a straight flow profile, viz., that the curved profile is the
downstream-adjusted profile of the straight flow after meeting a curve in the continental
slope. Assume that the upstream (straight flow) boundary current has linear isopycnals
and linear bathyemtry, as in uniform rectilinear flow. Once the current traverses a
horizontally curved slope section, assuming adjustment to solid-body rotation does not
happen, then strain and relative vorticity are necessarily induced in the mean flow (§6).
Hence Reynolds stresses will modulate and generally decrease the baroclinic instability
growth rates, and the relative vorticity will modulate the range of unstable δ parameters.
We find the same results in the uniform azimuthal flow case (§5), which can also be
regarded as a study of these effects, when the linear isopycnals remain (cross-stream)
approximately linear after meeting the bend in the slope. In §6 we find that a logarithmic
isopycnal profile generally has similar results to uniform azimuthal flow, and we expect
this to hold quite generally for other broad and relatively uniform flow profiles. Exactly
how and how much the mean isopycnal structure actually adjusts to curvature is a
question worthy of further investigation.

To summarize, the initial hypothesis is that horizontal curvature of bottom slopes
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increases baroclinic instability. We find that to the contrary, peak growth rates are mostly
reduced in uniform azimuthal flow relative to uniform rectilinear flow. One exception
is the δ >∼ 1 regime. δ ∼ 1 is actually quite common in deep boundary currents (Xu
et al. 2015; Stommel & Arons 1972), and despite the relatively smaller values of growth
rates (relative to δ < 1) the increased instability in this regime thus appears relevant.
We also find higher peak non-normal growth in uniform azimuthal flow relative to
uniform rectilinear flow, but the relative effect of transient non-normal growth versus
normal exponential growth is unclear and will remain so unless evaluated in a particular
context. The actual profile a deep western boundary current adjusts to (from which
baroclinic instability arises), may be different than linear, but it is conjectured above
that the results may be quite similar in terms of the baroclinic instability. Exceptions
to that may occur, if one takes into account the finite width of the slope and of the current.

AS’s and ALS’s research was supported by NSF award OCE-1538702. JCM’s and
AS’s research was supported by NSF OCE-1355970. AS would like to thank Mickael D.
Chekroun, Yizhak Feliks, and Michael Rudko, for insightful discussions on non-normal
growth.

Appendix A. Numerical verification and sensitivity tests

In this appendix we give results of numerical convergence tests, including comparison
with some analytical results, to show the validity of the solver and of the numerical
solutions. We also give results of sensitivity tests where we vary Ri, Re, F1, and F2,
showing that the general results presented in the main text still hold over a larger
parameter range.

The numerical setup in a straight-channel was verified in the uniform rectilinear flow
case to reproduce the known (Mechoso 1980) analytical dispersion relation. We also
verified the numerical solution of the solid body rotation case in a cylinder (annulus
with Ri = 0) relative to the analytical dispersion relation (4.7). A cylinder (rather than
annulus) is chosen because deriving the numerical value of growth rate from the dispersion
relation requires first solving the nonlinear algebraic equation (4.4). That can be avoided
since in a cylinder since the functions Pm are replaced then by Bessel functions of the first
kind Jm, and thereby only (tabulated) Bessel zeros values are needed for the calculation.
The results (figure 8a) show a very small relative error in the numerical result with the
standard dr = 0.025, and decreasing super-exponentially with decreasing dr in the range
shown, implying the numerical scheme is convergent.

Since the same solver was used for both solid body rotation and uniform azimuthal
flow, the comparison described in the previous paragraph verifies partially the correct
setup for uniform azimuthal flow too. We also present in figure 8b the difference in growth
rates computed, relative to the result with a higher resolution, namely dr = 0.003125.
The results suggest that growth rates of all four modes have probably converged to a
very good approximation at the resolution used thorough the paper, i.e., dr = 0.025.
While the specific plot is for m = 2, δ = −0.2, and Ubt = 1, we find that the results
are similar in other cases. The difference in the growth rates of the most unstable mode
calculated with dr = 0.025 relative to that with dr = 0.0125 are generally < 10−5 inside
of the instability boundary.

Further verification for uniform azimuthal flow came from a test of convergence of the
uniform azimuthal flow growth rates and frequencies to uniform rectilinear flow values,
as the channel inner radius Ri is increased (with constant channel width W = Re −Ri).
That is since in the strict Ri → ∞ limit, the mean state of uniform azimuthal flow
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Figure 8. (a) Numerical convergence of growth rate for cylinder solid body rotation eigenmodes
to that obtained from the analytical dispersion relation (4.7), for azimuthal wavenumber m = 2
and bathymetric slope parameter δ = 0. The cylinder width was set by R1 = 0 and W = R2 = 7
to be equivalent to the annulus width taken in sections 4 and 5. The circles denote actual
numerical values calculated, in which dr is decreased by factors of two. Note the logarithmic
scale of the ordinate. (b) Numerical convergence of uniform azimuthal flow growth rates with
various dr values to the value similarly calculated with a twice the highest resolution shown
(dr = 0.00625), .i.e. with dr = 0.003125. Results for all four unstable eigenmodes shown. The
presented results are for m = 2, δ = −0.2, and Ubt = 1. The convergence was similarly tested
for a large portion of the parameter space. The value actually used to generate all other results
in this paper is dr = 0.025 (or dx = 0.025 in the channel case).

converges to the mean state of uniform rectilinear flow. We verified that for large enough
Ri the GR(m, b) functional form for any Ubt value indeed became arbitrarily close to the
channel result (which is independent of Ubt) for large enough Ri values as far as was
tested. The convergence test was deemed successful.

The standard experiment described has a radial extent [Ri, Re] = [3, 10]. It is found
that moderate increases to domain size (and hence also to current width) do not result
in significant changes to the growth rates. For example a current with radial extent
[Ri, Re] = [3, 15] has a similar GR(m̂, b) to the standard experiment considered (with
the wavenumber normalized by average domain width, m̂ = mR). Increasing Ri while
keeping channel width constant generally results in more uniform rectilinear flow-like
results, as described in the previous paragraph. We find that convergence is slower for
larger |Ubt| cases, and so the differences described in the main text between annulus
and channel instabilities remain qualitatively similar. Decreasing Ri down to a value of
1 (while either keeping (Re − Ri) constant, or keeping Re constant) barely changes the
growth rates of the fastest growing modes, though the pattern shifts to smaller m’s. Note
that, as derived in §2.4, Ri . 1 is not consistent with QG.

A layer thickness ratio of 1 (F1 = F2 = 1/2) was taken throughout the numerical
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experiments. Further experiments were done as sensitivity tests with non-equal layers
in uniform azimuthal flow, and these show similar growth rate dependence on Ubt and
m as in the standard experiments, with a few differences. The growth rate maximum
is achieved at Fj = 1/2 and decreases as |Fj − 1/2| increases. If a line of maximum
instability (in m) per δ is fit (in figure 3), then its slope generally increases with H1/H2

(maximum δ < 0 instability occurs at higher wavenumbers).

Appendix B. Straight channel equations

We use the uniform rectilinear flow instability case (Pedlosky 1964; Mechoso 1980) as
a point of comparison for our investigations. Since it is not new, and to avoid confusing
notation, we provide details in this appendix.

Generalizing uniform rectilinear flow by allowing non-uniform currents in a straight
channel, we provide below the perturbation modal equations for mean geostrophic along-
channel flow V̄j = Vj(x)ŷ, and bathymetry ηb(x), which vary in the cross channel coor-
dinate (x) only (and in each layer). The background and perturbation streamfunctions
are again denoted by ψj and ψj respectively, and therefore Vj(x) = ∂ψj/∂x. Note that
usually the straight channel is modeled with the x coordinate along the channel axis
(in the downstream direction). We chose to take the x coordinate in the cross-stream
direction for easy comparison with the annular channel, which naturally has the cross-
stream coordinate (the radial coordinate r) as the first coordinate of a right-handed
triplet.

Assuming an harmonic solution in x and in t, ψj = Re {Ψj(x)exp(i(ly − σt))} (where
Re is the real part of the expression that follows, l is a real down-stream wavenumber, and
σ is the complex frequency), we have the (nondimensional) quasi-geostrophic potential
vorticity equations (Pedlosky 1964):

[V1l − σ]

[
∂2

∂x2
Ψ1 − l2Ψ1 − F1(Ψ1 − Ψ2)

]
− lΨ1

∂Q1

∂x
= 0, (B 1a)

[V2l − σ]

[
∂2

∂x2
Ψ2 − l2Ψ2 − F2(Ψ2 − Ψ1)

]
− lΨ2

∂Q2

∂x
= 0, (B 1b)

∂Qj
∂x

=
∂2

∂x2
Vj − Fj

[
(−1)j (V2 − V1)−∆j2

∂ηb
∂x

]
. (B 1c)

For uniform rectilinear flow, ∂ηb∂x and the Vj are constants. We state the equations in more
general form for easy comparison with the general annulus case given in the equation set
(2.6). The eigenvalue problem is defined by the PV equations together with no-normal
flow boundary conditions. The channel boundaries are denoted by Xi and Xe, and since
only their difference (channel width) is important, Xi = 0 is chosen. In the standard
uniform rectilinear flow experiment, Xe = 7, F1 = F2 = 1/2, and Vbt ≡ (V1 + V2)/2 = 0.
The last condition (zero barotropic velocity) is not limiting since the growth rates and
eigenmodes are invariant with Vbt, which just Doppler-shifts the (real) frequency. The
numerical solution is obtained in a similar way as for the annulus.

The eigenmodes streamfunctions are sums of harmonic functions and the nondimen-
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sional uniform rectilinear flow dispersion relation is

σ =Vbt + l
K2 (F2 − F1 − F2δ)− lF1F2δ +

√
D

2K4 + 2K2 (F1 + F2)
, (B 2a)

D

l2
=K8 + (2F2δ)K

6 +
(
−4F1F2 + 2F1F2δ + F 2

2 δ
2
)
K4

+
(
−4F 2

2F1δ + 2F 2
2F1δ

2
)
K2 + F 2

1F
2
2 δ

2. (B 2b)

Here k, and K =
√
k2 + l2 are the cross-stream, and total wavenumbers, respectively.

The non-dimensionalization is similar to the uniform azimuthal flow case, and (in non-
dimensional variables) δ = −∂ηb∂x .

Appendix C. Semicircle theorem

In this section we adapt the Pedlosky (1964) semi-circle theorem, which gives growth-
rate bounds and the associated phase-speed bounds to the annular channel, and we
extend it for the general case where the bathymetry is not flat. First, we make the
transformation Ψj = (Ujφ − cr)bj in equations (3.1a)-(3.1b), then multiply the first and
the second equations by D1b

∗
1(U1φ− cr) and D2b

∗
2(U2φ− cr) respectively. Summing both

equations and integrating the result with the volume element (rdr), results, after an
integration by parts of the Laplacian terms, in

2∑
n=1

∫ Re

Ri

(Ujφ − cr)2Pjrdr

= D1D2
1

2

∫ Re

Ri

(U1φ − U2φ)2|b1 − b2|2rdr −D1

∫ Re

Ri

(U2φ − cr)J2
∂ηb
∂r

rdr. (C 1)

Here we made use of the identity,

(U1φ − cr)(U2φ − cr) = −1

2

[
(U1φ − U2φ)2 − (U1φ − cr)2 − (U2φ − cr)2

]
,

with the following definitions:

Pj = Dj

[∣∣∣∣ ∂∂r bj
∣∣∣∣2 +

m2 − 1

r2
|bj |2

]
+D1D2

1

2
|b1 − b2|2

Jj = Dj |bj |2.

The real part of (C 1) is thus

2∑
n=1

∫ Re

Ri

(U2
jφ + c2rr

2 − 2Ujφcrr − c2i r2)Pjrdr

=
1

2
D1D2

∫ Re

Ri

(U1φ − U2φ)2|b1 − b2|2rdr −D1

∫ Re

Ri

(U2φ − crr)J2
∂ηb
∂r

rdr. (C 2)

If ci 6= 0, from the imaginary part of (C 1) we have∫ Re

Ri

2∑
n=1

(Ujφ − crr)Pjr2dr = −D1

2

∫ Re

Ri

J2
∂ηb
∂r

r2dr. (C 3)



Baroclinic instability of axially-symmetric flow on sloping bathymetry 27

Table 1. Summary of phase speed bounds

Condition Phase speed bounds

ηb ≡ 0 umin 6 cr 6 umax

(
∂ηb
∂r

)
max

< 0 umin −
D1

∣∣∣( ∂ηb∂r )
min

∣∣∣R2
e

2Ri(m2−1)
6 cr 6 umax

(
∂ηb
∂r

)
min

< 0 and
(
∂ηb
∂r

)
max

> 0 umin −
D1

∣∣∣( ∂ηb∂r )
min

∣∣∣R2
e

2Ri(m2−1)
6 cr 6 umax +

D1

(
∂ηb
∂r

)
max

R2
e

2Ri(m2−1)

(
∂ηb
∂r

)
min

> 0 umin 6 cr 6 umax +
D1

(
∂ηb
∂r

)
max

R2
e

2Ri(m2−1)

For m > 1, we can derive the following inequality between integrals of Jj and Pj :

∫ Re

Ri

Pjr
2dr = D1

∫ Re

Ri

[[∣∣∣∣ ∂∂r bj
∣∣∣∣2 +

m2 − 1

r2
|bj |2

]
+D1D2

1

2
|b1 − b2|2

]
r2dr

>
m2 − 1

R2
e

Dj

∫ Re

Ri

|bj |2r2dr ,

from which follows a result we will refer to as the J − P inequality:∫ Re

Ri

Jjr
2dr 6

R2
e

m2 − 1

∫ Re

Ri

Pjr
2dr. (C 4)

Pedlosky (1964) found a tighter J-P type inequality for the straight-channel case, using
a spectral estimate, which we were unable to adapt to the annulus case. The next two
subsections will derive phase speed and growth rate bounds respectively, based on the
results so far derived in this section.

C.1. Bounds on phase speed

Defining uj = Ujφ/r, equation (C 3) can then be written as

∫ Re

Ri

2∑
n=1

(uj − cr)Pjr3dr = −D1

2

∫ Re

Ri

J2
∂ηb
∂r

r2dr. (C 5)

Bounds on the phase speed can be found from the last equation, using the J−P inequality,
assuming that information about Information on ηb and u is available. The bounds are
derived separately for 4 different types of ηb profiles, and are summarized in Table 1.
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C.2. Growth rate bound

We define umax = maxj=1,2{maxRi6r6Re [uj(r)]} and umin = minj=1,2{minRi6r6Re [uj(r)]},
and use the following inequality:

0 6
∫ Re

Ri

2∑
n=1

(uj − umin)(umax − uj)Pjr3dr

=

∫ Re

Ri

2∑
n=1

[
−u2j + uj(umax + umin)− uminumax

]
Pjr

3dr. (C 6)

In a similar manner to the straight-channel case (Pedlosky 1964), we take (C 6) + (C 2)
−(umin + umax − 2cr)(C 3), resulting in,

2∑
n=1

[(
cr −

umin + umax

2

)2

+ c2i −
(
umax − umin

2

)2
]∫ Re

Ri

Pjr
3dr 6

−D1

∫ Re

Ri

(
umax + umin

2
− u2

)
J2
∂ηb
∂r

r2dr. (C 7)

Now, using
∣∣ 2max+umin

2 − uj
∣∣ 6 umax−umin

2 together with the J-P inequality (assuming
m > 1), we obtain the semi-circle inequality:(
cr −

umin + umax

2

)2

+c2i 6

(
umax − umin

2

)2

+
R2
eD1

∣∣∣∂ηb∂r ∣∣∣
max

Ri(m2 − 1)

(
umax − umin

2

)
. (C 8)

The first term on the left may be dropped as it is positive definite. In fact, by the
phase speed bounds derived ( in table 1), this term may attain a zero value in all cases.

A tighter bound may be derived by noting that

−D1

∫ Re

Ri

(
umax + umin

2
− u2

)
J2
∂ηb
∂r

r2dr 6

−D1 min

[
0,min

[(
umax + umin

2
− u2

)
∂ηb
∂r

]] ∫ Re

Ri

J2r
2dr ,

from which follows

c2i 6

(
umax − umin

2

)2

− R2
eD1

Ri(m2 − 1)
min

[
0,min

[(
umax + umin

2
− u2

)
∂ηb
∂r

]]
. (C 9)
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