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Improving Quantification of Prostate-Specific Membrane Antigen (PSMA) - Positron Emission 

Tomography (PET) Clinical Data  

Ningjing Zhang 

ABSTRACT 

Prostate cancer is a significant global health concern, ranking as the second most diagnosed 

cancer and fifth leading cause of cancer-related deaths in men worldwide. Prostate-specific 

membrane antigen (PSMA)-targeted positron emission tomography (PET) is used for staging, 

especially in intermediate to high-risk cases and biochemical recurrence, offering superior 

sensitivity and specificity compared to conventional methods. Despite advancements, the 

analysis of PSMA-PET data remains largely manual, prompting the need for computer-aided 

diagnosis using machine learning or deep learning to enhance efficiency and consistency. Some 

previous works have been done to develop a prediction model based on deep neural network 

(DNN), however it failed in prediction of high-volume disease cases. In this project, I 

hypothesized that refined lesion annotation and specialized batching strategies can enhance 

algorithm performance, leading to improved segmentation accuracy, and SUV measurements. 

The successful implantation of better contour of the lesion was done by a clinical fixed-threshold 

method. The results suggested the refined lesion annotations significantly impacted the SUV-

mean values in lesions and will further affect the result of DNN training.  

 

Keywords: prostate-specific membrane antigen (PSMA), positron emission tomography (PET) 

Imaging, lesion segmentation 
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1.Introduction 

1.1 Prostate Cancer and PSMA-targeted PET 

Prostate cancer is a major health issue that affects men globally. It is the second most diagnosed 

cancer and the fifth leading cause of cancer-related deaths in men worldwide [1]. Globally, more 

than 1.4 million new prostate cancer cases were diagnosed, and more than 375 thousand related 

deaths were reported in 2020 [1]. According to different stages of prostate cancer (localized, 

locally advanced, and metastatic disease), different treatment should be administrated to reduce 

both under- and over-treatment [2]. However, the choice of treatment can be challenging due to 

the heterogeneity of the disease [2]. Thus, it is essential to have accurate diagnosis. Prostate-

specific membrane antigen (PSMA), a transmembrane protein that is highly expressed in prostate 

cancer cells, plays a critical role in positron emission tomography (PET) imaging [3]. PSMA-

PET tracers are usually used for staging intermediate, high-risk and very high-risk prostate 

cancer patients and for patients with biochemical recurrence [4]. The advantages of PSMA-PET 

over conventional imaging techniques such as CT and bone scan include higher sensitivity and 

specificity, improved detection of small lesions, and better differentiation between benign and 

malignant lesions [4]. PSMA-PET also allows for more accurate localization of lesions, which 

can aid in treatment planning and monitoring [4]. 

PSMA-PET tracers have a relatively short history, with the first molecular imaging agent 

for prostate cancer, In-capromab pendetide (ProstaScint), being approved by the FDA in 

1996 [5]. However, this tracer had limited performance due to its targeting of only dying or 

dead cells [5]. The first antibodies to the extracellular domain of PSMA were developed in 

1997, enabling studies of PSMA in viable cells [5]. Since then, PSMA-PET has been 
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investigated as a biomarker for selecting patients for PSMA-directed therapy, including 

PSMA-11, PSMA-617, DCFPyL, and PSMA-1007 (Table 1.1) [5,6].  

 

Tracers Isotope Application 

PSMA-11 68Ga Diagnostics 

PSMA-617 68Ga, 177Lu, 225Ac Theranostics 

DCFPyL 18F Diagnostics 

PSMA-1007 18F Diagnostics 

Among these, PSMA-11 is the most-studied PSMA-targeted PET tracers, with its initial 

report dating back to 2007 [7]. Subsequent preclinical evaluations in 2012 were followed by 

the first clinical reports in 2012 [8, 9]. Notably, on December 1, 2020, PSMA-11 received 

FDA approval for both New Drug Applications (NDAs) submitted by UCSF and UCLA 

[10]. This marked a significant milestone, making PSMA-11 the first Gallium-68-labeled 

radiopharmaceutical approved for PET imaging of PSMA-positive prostate cancer. Other 

common tracers have expanded applications, including both diagnostic (using Ga-68 and F-

18) and therapeutic (using Lu-177 and Ac-225) purposes [6]. And so far, most of PSMA-

PET image data is analyzed manually by the specialists in nuclear medicine based on their 

experience, which is a time-consuming and error-prone process, leading to a high number of 

inter- and intra-observer variability [11]. Thus, there is a need to use computer-aided 

diagnosis (CAD) via machine learning (ML) or deep learning (DL) tools to automate and 

standardize repetitive tasks currently performed by physicians, freeing up their time to focus 

on more complex patient care, and thus reduce costs and improve health outcomes for 

underserved populations. 

Table 1.1: Common PSMA-PET Tracers in clinical use 
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1.2 Hypothesis and Goals 

Although there are some ML algorithms which are able to detect and characterize prostate cancer 

lesions, they still have some limitations due to data inconsistency, overfitting, and generalization 

issues [11]. Therefore, there is a need for further research and validation studies to establish the 

clinical utility of ML in PSMA-PET imaging and to ensure the effective implementation of these 

techniques in clinical practice. This project aims to improve deep DL models which can extract 

relevant features from clinical Ga-68-PSMA-11-PET reconstructions and perform good 

segmentation so that the PSMA-PET positive volume and standardized uptake values (SUV, 

including SUV-max and SUV-mean) in bone, liver, lymph node, and other lesions can be 

calculated. The hypothesis was that enhancing the accuracy of lesion annotation will lead to 

improved algorithm performance. This can be achieved by employing more effective contouring 

techniques to minimize background information within the region of interest (ROI). To test this, 

the experiment previously conducted by Dr. Smith should be replicated, with a focus on 

quantifying potential enhancements in segmentation accuracy. Additionally, the effects of the 

refined segmentation on SUV (Standardized Uptake Value) measurements and patient survival 

rates should be assessed through sensitivity analysis. If successful, the utilization of ML 

techniques in PSMA-PET imaging has the potential to significantly improve the accuracy of 

tumor volume estimation and enhance treatment planning for prostate cancer patients. By 

providing a quantitative PSMA-PET biomarker report, this tool can aid radiologists and nuclear 

medicine specialists in making informed decisions, ultimately leading to more effective and 

personalized care. This will benefit the development of tailored prostate cancer research and 

improve patient outcomes. 
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1.3 Previous Work 

Some previous works have been done on this project by Dr. Elizabeth Smith. There was a 

previous prediction model based on 3D U-Net which was trained on 250 whole-body Ga-

68-PSMA-11 positive PET scans with annotations and generated predictions for the SUV-

max and SUV-mean values. The previous prediction model works well on the low-volume 

diseases. However, it fails on the high-volume ones because the current ground truth is not 

the actual ground truth. More specifically, the ground truth we have now is the annotations 

from the radiologists which are bigger than the lesion. This leads to the inaccurate tumor 

volume estimation after segmentation which results in an inaccurate prediction. Therefore, 

we need to refine the segmentation neural networks to get more accurate lesions regions for 

better tumor volume estimation and have more high-volume datasets in the training. 

Furthermore, the choice of right batch size is also important for optimizing the training 

because it will affect the generalization performance and the accuracy of the gradient 

estimates used to update the model parameters. Fig.1.1 is the general workflow of the 

project, and in 

this project, I 

focused on the 

improvement of 

DNN 

performance via 

better ground truth.  Figure 1.1: General workflow 
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2 Methods 

2.1 Datasets 

The datasets were from UCSF Medical Center. The datasets employed in this study consist 

of a meticulously curated collection of 250 scans depicting PSMA-positive cases. All the 

patient personal information was removed, and a new ID was generated for each of the 

patients. The selection of new scans was conducted using a stratified sampling approach, 

aiming to optimize the incorporation of various factors that contribute to fluctuations in 

image quality and the distribution of radiotracers. Dr. Thomas Hope meticulously annotated 

approximately 1,000 lesions within the dataset. Additionally, a comprehensive analysis of 

thousands of radiology reports was undertaken to identify around 70 instances of PSMA 

negative scans. This dataset serves as a robust foundation for training and evaluating 

models, encompassing a diverse range of scenarios and tumor volume distributions. 

2.2 Better Ground Truth Generation 

As mentioned before, the previous annotations did not provide the best contour for the 

lesions. One example is shown in Fig 2.1. The lesion was small (the bright spot inside the 

red box in the first figure), while the annotation was much larger as shown in the second 

figure with the white circle. The histogram plot inside this ROI also demonstrated that there 

were plenty of background information in this annotation. Therefore, it led to inaccurate 

SUV-mean and total tumor volume estimation. 

To mitigate this problem, a histogram-based method provided by Burger et al. was investigated 

in generating new masks [12]. According to Burger et al, the background subtracted lesion (BSL) 

activity can be calculated by a new histogram-based method to determine the tumor activity by 

subtraction of a Gaussian fit over the peak of the histogram from the volume of interest (VOI)  
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surrounding the tumor (Fig 2.2). The mean background activity of the surrounding tissue, 

SUVBG, was estimated by the mode of the histogram [12].  

 

Another approach to improve 

the annotation was suggested 

by Dr. Hope, which is a 

common clinical fixed-

threshold method (Fig 2.3). 

First, from each of the 

previous annotation files, the 

exam ID was extracted and 

Figure 2.1: Example of previous annotations. The first column (left) is a clinical PSMA-
PET image. Red box indicated the location of the lesion. The second column is the mask 
generated for the lesion. The third column is the overlay of the mask and the PET image. 
The fourth column is a histogram indicating the majority of SUV values came from the 
background information.     

 

Figure 2.2: Illustration of a sphere model with a yellow 
lesion and spillover (orange) in background activity. The 
background activity should be the blue area under the curve, 
and the true volume should be the combination of orange and 
yellow area.  
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used to locate the corresponding computerized tomography (CT) and PET digital imaging and 

communications in medicine (DICOM) files. Some patient specific information was extracted 

from DICOM files such as patient weight and height. Then Neuroimaging informatics 

technology initiative (NIfTI) files were generated separately, and the PET and CT images were 

stored as a 3D array. By combining the information in those images and previous annotation 

files, individual masks for each lesion in each patient was created. Then the SUV-max values 

were extracted from those ROIs selected by the original mask. If the SUV-max was greater than 

5, the threshold was set to be three, otherwise the threshold was set to be 42% of the SUV-max. 

After thresholding, the new masks were generated. Finally, the specific patient info (including 

exam ID, patient height, patient weight), the old masks, the new masks, PET and CT images 

were stored in Hierarchical Data Format version 5 (HDF5) file, which was used to obtain useful 

information such as total lesion volume, SUV-mean values in each lesions to help improve the 

training strategy.  

To better quantify the difference between the distribution of SUV-mean values between two 

masks, after the new masks were generated, Kullback-Leibler divergence (KL divergence) was 

Figure 2.3: Workflow of generating better ground truth 
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calculated. KL divergence serves as a pivotal measure to gauge the information loss when 

approximating one distribution with another [13]. Adjusted mutual information (AMI) and 

normalized mutual information (NMI) were also computed both between the mask 1 itself and 

between mask 1 and mask 2. AMI is a measure that quantifies the agreement between two 

clustering assignments while considering chance agreement and NMI evaluates clustering quality 

by normalizing the Mutual Information score by the entropy of the individual clusters, which 

provides a measure of the proportion of information shared between the cluster assignments 

compared to the information in each individual clustering [14,15]. They play a crucial role in 

accessing the quality of clustering results and can guide the DNN training and hyperparameter 

tuning.  
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3. Results  

3.1 Updated Ground Truth 

The results from the histogram-based method were shown in Fig 3.1. The results were not ideal 

as the Gaussian fit did not fit the background pixels very well, which led to inaccurate tumor 

volume estimation after subtracting the area under the Gaussian fit. 

However, the fixed-threshold method provided a better 

improvement visually. As shown in Fig 3.2, in the first 

maximum intensity projection (MIP) image (top), the 

patient had two lesions, and in the second image which 

only contained the previous mask area of the MIP, 

there were lots of background information. And as 

indicated in the second image, the masks covered an 

area larger than the actual lesion. After thresholding, 

the masks were significantly decreased and were closer 

to the actual lesion size. The improvement on the fit of the lesion was also confirmed in the 

scatter plot which compared the distribution of the SUV-max and SUV-mean between the 

original mask (mask1) and updated mask (mask2) (Fig 3.3). Similarly, from the histogram, the 

distribution of the SUV-mean has significantly changed, as lower SUV-mean values have shifted 

towards higher values (Fig 3.4). Both Fig 3.3 and Fig 3.4 indicated that there were no significant 

change in SUV-max, while an increase in SUV-mean, indicating a better estimate of the lesion 

voxels. 

Figure 3.1: Non-ideal Result from 
histogram-based method 
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The results from KL divergence, AMI and NMI also suggested that there was a significant 

difference between two masks (Table 3.1).  KL divergence between two masks was 1.01, 

indicating the two distributions of masks had nonnegligible difference. The AMI score decreased 

from 1.0 to 0.42 and NMI score decreased from 1.0 to 0.73, both indicating there were some 

Figure 3.2: Example of the comparison between the mask generated by previous 
annotation and after the thresholding. The bottom row was a zoom-in version of one of 
the lesions inside the red box shown in the first figure, from which the background 
information was largely reduced.  
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similarities between two clusters of masks, but also, they separated certain instances into distinct 

groups that differ between two masks.  

 

Figure 3.3: Scatter plot of SUV-max and SUV-mean distribution of lesions before and 
after contouring the ground truth 

Figure 3.4: Histogram of SUV-max and SUV-mean distribution of lesions before 
and after contouring the ground truth 
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 KL Divergence Adjusted MI Normalized MI 

mask1 to mask 1 N.A. 1.0 1.0 

mask1 to mask 2 1.01 0.42 0.73 

Table 3.1 KL divergence, MI results between two masks 
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4. Discussion  

This project demonstrated that the better mask contouring algorithms would have an impact 

on the SUV-mean value in the annotations, which would affect the DNN segmentation 

accuracy as well as the correlation between SUVmean and patient survival rate. In the 

quantification of two distribution of the masks, a KL divergence of 1.01 highlights 

differences in SUV-mean distributions between masks; an AMI score of 0.43 suggests 

moderate agreement in clustering, while an NMI score of 0.73 indicates substantial 

normalized agreement. Using these insights can help to guide model training: emphasize 

distinct and shared patterns, prioritize important features, apply regularization, and validate 

against ground truth [16]. These values can help establish a balanced model that captures 

both unique and common information present in the dataset [16]. 

Admittedly, there are some limitations in this study. First of all, the updated ground truth 

was generated by a simple thresholding method, which is reported to be very dependent on 

the signal to noise ratio, tumor to background ratio and the size of the tumor [17]. There 

might be some better contouring algorithms for this task. There are some literatures 

introduced how to use dynamic PET threshold to get more accurate SUV-max, SUV-mean 

measurements from the crude manual annotations generated by radiologists [18,19]. Erdi et 

al [18] proposed an iterative threshold method in which the optimal thresholds, specific to 

volume-to-signal-to-background ratios, were fitted using an exponential decay function 

based on a phantom [18]. Notably, the researchers suggested a fixed threshold (e.g., 42%) 

for volumes >4 mL due to reduced sensitivity to partial volume effects, while smaller 

volumes exhibited increased optimal thresholds as lower signal-to-background ratios led to 

edge-blurring from background activity [18].  Bilger et al [19] also proposed a new 
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segmentation technique based on adapting a fit function to the soft tissue peak of the 

histogram in VOI, and they enhanced the method's robustness by introducing an estimated 

lung position for patient contour finding and lung segmentation. Therefore, in the future 

research, a more robust contouring algorithm should be investigated for application of more 

general datasets. Furthermore, it is important to acknowledge that the dataset used in this 

study remains limited in size and lacks the diversity of multi-center image data.  

To address these limitations, future research endeavors could focus on implementing 

different threshold methods to generate better contoured ground truth and expanding the 

dataset by incorporating a larger variety of images. This extension would contribute to a 

more comprehensive validation of the deep neural network model's performance and 

generalizability. Moreover, the correlation between SUV-mean and clinical data such as 

patient survival rate can be further evaluated to demonstrate that the improvement in the 

lesion contouring can lead to more predictive clinical results.  
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5. Conclusion 

In conclusion, a more effective methodology has been devised for the representation and post-

processing of physician-annotated lesions in PSMA-PET imaging. The study has highlighted the 

substantial impact of the chosen contouring algorithm on the calculation of SUV-mean. Notably, 

the clinical fixed-threshold technique showcased superior performance compared to the 

histogram-fitting approach. These findings collectively underscore the critical importance of 

precise lesion annotation and appropriate algorithm selection in the accurate determination of 

SUV-mean values within PSMA-PET scans.  
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