Lawrence Berkeley National Laboratory

Recent Work

Title

DEFINITION AND CONVENTIONS IN ELLIPSOMETRY

Permalink

https://escholarship.org/uc/item/1c04n0hg

Author

Muller, Rolf H.
Publication Date
1968-11-01

University of California

Ernest O. Lawrence Radiation Laboratory

RECEIVED LAWREnCE
RADATHOU LABMEATOEY
DEC 181968
LIBRARY AND DOCUMENTS SECTION

DEFINITIONS AND CONVENTIONS IN ELLIPSOMETRY Rolf H. Muller

November 1968

TWO-WEEK LOAN COPY
 This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Submitted to Proceedings of UCRL-18585 Recent Developments in Ellipsometry, Preprint Meeting held in Lincoln, Nebraska, August 7-9, (1968).

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory
 Berkeley, California
 AEC Contract No. W-7405-eng-48

DEFINITIONS AND CONVENIEIONS IN ELLIPSOMETRY
Rolf H. Muller
November 1968

Definitions and Conventions in Ellipsometry*

Rolf H . Muller
Inorganic Materials Research Division
Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

Abstract

Many parameters which appear in the theory of ellipsometry crucially depend on the choice of arbitrary conventions and definitions. This dependence is discussed for nine two-fold choices. On the basis of literature usage, preferences are expressed for one of each of the alternatives and for the nomenclature of the variables involved.

* Work performed under the auspices of the U.S. Atomic Energy Commission

In the derivation of the basic equations of ellipsometry from the electromagnetic theory of light reflection, for monochromatic plane waves, arbitrary choices have to be made at many points. Some of these choices, although of profound consequence, are not recognizable from the results, and the comparison of data from different sources may be impossible. It should be realized that to some extent the separation between cause and effect is arbitrary, The alternatives chosen here as "cause" are those which present themselves in the step by step derivation of the classical theory of ellipsometry from the Maxwell equations.

In the following discussion, nine two-fold alternatives of definitions and conventions have been.singled out, and are stated in their most concise and fundamental form. Their direct effects are discussed and some of the multiply connected interactions are indicated. However, no attempt is made to discuss the effects of all possible 512 combinations. The alternatives listed in the first and second columns of Tables I to IX will be referred to as alternatives one and two. The first column represents the author's tentative preference ${ }^{7}$ which is strong, however, only in the cases represented in Tables VI (coordinate system) and IX (angle independent optical constants).

In order to establish past and present usage, the literature has been searched for authors who make specific statements on the conventions and definitions they use. Only one publication has been selected from each author and is referred to by his name. If a convention had to be inferred from the results, the name appears in parenthesis. .

Formal Definitions of Ellipsometer Parameters
Table I gives the two alternative formulations for the relative amplitude attenuation $\tan \psi$ in terms of the Fresnel coefficients r for
the electric field components normal (subscript s) and parallel (subscript p) to the plane of incidence ${ }^{1}$. The resulting alternative angles ψ are complementary to each other. The ranges of ψ values for bare surfaces given in the table hold in combination with the conventions contained in the first columns of the other tables, and under the assumption that values between 0° and 90° are admitted for the description of elliptic polarization. Although most of the literature employs alternative 2 , the first one is preferred here $7_{\text {in }}$ order to be consistent with the choice of Δ discussed below.

Table II gives the two alternative formulations for the relative phase change Δ in terms of the absolute phase changes ${ }^{2}$ of s and p components upon reflection. The first alternative is almost exclusively used in the literature and therefore preferred here. It would seem that the first alternative of ψ in Table I requires the second alternative of Δ in Table II. However, the preferred choices given in Tables III, IV and V, primarily the negative exponent of the time-factor, result in a reversal of the sign of Δ and require the first alternative in Table TI. The ranges of Δ values for bare surfaces given in the table again hold in combination with the other preferred conventions and are basically due to the restriction in the angle of incidence to 0 to 90°.

Table III gives two alternative formulations of the complex relative amplitude attenuation p. The first alternative is almost exclusively used in the literature and therefore preferred here, although there is some logic in using the second alternative in combination with the negative exponent of the time dependence factor.

Time Dependence Factor

Table IV shows two alternatives for the complex formulation of sinusoidal. oscillations. As a basis of discussion, the negative exponent is preferred ${ }^{7}$ here because of its use in most of modern physics, particularly quantum mechanics, although alternative two is firmly established in electrical engineering and can be found in the older physics texts.

A direct consequence of the choice in sign for the exponent in the time-factor is the sign of the imaginary part of the complex refractive index. A combination of signs other than those indicated in Table IV results in intrinsically negative values for the imaginary part regardless of which formulation of the refractive index (Table VIII) is chosen.

Absolute Phase

Little attention has been given in the literature to the effect which results from the formulation of the absolute phase change upon reflection. Although four alternatives are shown in Table V, the choice is again basically twofold and formally lies in the relative sign of time and phase exponent. In the preferred ${ }^{7}$ first alternative of Table V, a positive absolute phase change δ is equivalent to an increase in time, or a phase advance. Correspondingly, a negative absolute phase represents a phase retardation. The third alternative, most frequently found in the literature, is physically equivalent to the first within the framework of a positive time exponent.

Coordinate System

Table VI illustrates two possible choices for the positive coordinate direction of the reflected electric field component in the plane of incidence. The resulting values of the relative phase Δ differ by an additive
quantity of π.
This effect can most easily be understood by comparing mirror images of ellipses in Fig. 2. The coordinate system used in literature references can be inferred from statements of the Fresnel coefficient for the pcomponent which differs in sign for the two alternatives and is given in its most compact form in Table VI. ϕ is the angle of incidence, ϕ ' the angle of refraction.

The literature preference is divided between the two alternatives. Although the second alternative results in identical reflection coefficients for s and p components at normal incidence, which is physically reasonable, it is rejected here because (if used with the first alternative of Table VII) it involves a change from a right to a left hand coordinate system for the directions of \vec{E}_{p}, \vec{E}_{s} and \vec{k} between incident and reflected beam. Since azimuth circles on instruments usually show the same sense of rotation for incident and reflected beam, alternative lis strongly favored despite its lack of beauty at normal incidence.

Table VII shows the two possibilities for defining the positive coordinate directions of the reflected electric field component normal to the plane of incidence. It can be parallel or opposite to that of the incident wave. A dot stands for an arrow coming out of, a cross for one going into, the plane of the drawing which is also the plane of incidence. The literature is almost unanimous in the use of the first alternative except for Winterbottom whose equations do not seem to agree with drawings if the arrows are taken to indicate positive coordinate directions rather than electric field orientation. The preferred coordinate system with the nomenclature employed is also shown in Fig. 1. This system is also best suited for application of the Poincaré sphere
in tracing the state of polarization through the different elements of an ellipsometer.

Complex Refractive Index
Two alternative formulations of the complex refractive index, irrespective of the sign chosen for the imaginary part, are given in Table VIII. The imaginary unit $\sqrt{-1}$ is designated by the letter i. The factored form, alternative 1 , seems to be prevalent in the literature, 7 however the use of the symbols k and k is not uniform. A comparison of nomenclature for the different parts of the complex refractive index as formulated in Table VIII is given in Table X .

The proposed preferred names are:
$n-r e f r a c t i v e ~ i n d e x$
k - absorption index
k - extinction index

With either of the above formulations, the complex refractive index can be defined in two basically different ways, such that its value is either a constant or depends on the angle of incidence. This is the most far-reaching of the nine choices. Table IX shows the two alternatives in the form of the first alternative of Table VIII. n ' and k^{\prime} stand for the values which are dependent on angle of incidence, n and k for those which are independent. The relationships given between the two sets of values show that they are not simply connected to each other but become identical at normal incidence. The difference in the two definitions shows most clearly in the description of refraction at a dielectricmetal interface when put in the form of Snell's law. ${ }^{3}$ As shown in Table IX, the formulation with the angle-independent complex refractive index requires the introduction of a complex angle of refraction $\phi_{\text {complex }}^{\prime}$ which has no recognizable
physical meaning. The angle-dependent complex refractive index, on the other hand, is chosen so that its real part and the real angle of refraction ϕ^{\prime} real , which describes the direction of the wave vector \vec{k} in the absorbing medium, and is shown in Fig. l, appear in Snell's law. The phase velocity in the absorbing medium is simply connected to the angle-dependent optical constants; so is the attenuation of the electric field amplitude when formulated as a function of the real direction z normal to the surface of the absorbing medium (Table IX). This fact has been a reason for the widespread, often unrecognized, application of this definition in the literature. On the other hand, the square of the angle-independent refractive index is simply related to magnetic permeability μ, dielectric constant ε and conductivity σ, as shown in Table IX.

A strong preference is expressed here for the use of the angleindependent definition of the complex refractive index. Although this definition entails mathematical complications in some parts of the theoretical derivations, it retains the physical meaning of the refractive index as a material constant rather than being a device of mathematical expedience and is, for a given frequency, independent of the way in which it is determined.

As indicated in Table IX, the literature is divided in applying the two alternatives. Indirect evidence for the simultaneous use of both can be found in many references. Discussions of the two alternatives are presented by Ditchburn, Koenig, Vasicek and Valasek.

Numerical"examples of the interrelationship between the two sets of optical constants are given in Figures 3 and 4. They show that the dependence of the refractive index n^{\prime} on angle of incidence is strong only for small values of n and large values of k, while the angle-dependence
of the absorption index K^{\prime} is small only for high values of n. It can be seen that for a material like silver n ' changes by about a factor of ten, K^{\prime} by a factor of two between normal and grazing incidence:

A question of nomenclature arises in the formulation of the amplitude attenuation

$$
E=E_{0} e^{-\alpha z}
$$

given in Table IX. The exponent contains the coordinate z normal to the surface of the absorbing medium and the quantity

$$
\alpha=\frac{2 \pi n^{\prime} k^{\prime}}{\lambda_{0}}
$$

which should be called the "amplitude absorption coefficient." Its reciprocal, the "amplitude penetration depth," is a physically well recognizable measure of light absorption. (λ_{0} designates the wavelength in vacuum.) Most of the formulations of light absorption found in the literature are given in terms of intensity rather than amplitude

$$
I=I_{0} e^{-2 \alpha z}
$$

As indicated in Table XI, the quantity

$$
2 \alpha=\frac{4 \pi n^{\prime} K^{\prime}}{\lambda_{0}}
$$

usually identified by " α ", is called absorption coefficient. To avoid any ambiguity, it should be named "intensity absorption coefficient." Correspondingly, its reciprocal is the "intensity penetration depth."

Suinmary 8

The student of ellipsometry is confronted with a confusing multiplicity of conventions and definitions employed in the classical papers on the subject, and this problem persists in the present literature. In an effort to untangle this situation, nine conventions and definitions have been singled out, where arbitrary choices between two alternatives have to be made in the theory of ellipsometry. . Since some of these choices have the same or opposite effects, not all possible combinations lead to different results. Nevertheless, according to this analysis, reflection from any given surface can be represented by 8 numerically different combinations (including sign) of ellipsometer parameters ψ and Δ. Conversely, from any measured set of ψ and Δ values, 16 different combinations of optical constants, which are all valid within the respective framework, can be derived.

For the electric field strength ${ }^{4}$ formulated as

$$
\overrightarrow{\mathrm{E}}=E_{0} e^{-i(\omega t+\delta)} e^{i \vec{k} \cdot \vec{r}} e^{-\alpha z}
$$

the complex relative amplitude attenuation

$$
\rho \equiv \frac{r_{s}}{r_{p}}
$$

can be formulated as ${ }^{5}$

$$
\rho=\frac{\frac{\left.\right|_{s} ^{E_{s}^{\prime \prime}} \mid}{E_{s} \mid} e^{-i \delta_{s}}}{\frac{\left|E_{p}^{\prime \prime}\right|}{\left|E_{p}\right|} e^{-i \delta_{p}}}
$$

This expression can be rewritten in the form

$$
\rho=\frac{\frac{\left|E_{s}^{\prime \prime}\right|}{\left|E_{p}^{\prime \prime}\right|}}{\frac{\left|E_{s}\right|}{\left|E_{p}\right|}}+i\left(\delta_{p}-\delta_{s}\right)
$$

or ${ }^{6}$

$$
\begin{aligned}
& \rho=\frac{\tan \psi_{r}}{\tan \psi_{i}} e^{i \Delta} \\
& \rho=\tan \psi e^{i \Delta}
\end{aligned}
$$

Thus, the preferred formulations of the two ellipsometer parameters are

$$
\begin{aligned}
\tan \psi & =\frac{\left|r_{s}\right|}{\left|r_{p}\right|} \\
\Delta & =\delta_{p}-\delta_{s}
\end{aligned}
$$

The coordinate system is preferred as given in Fig. l. The complex refractive index of an absorbing medium is formulated as

$$
n_{c} \equiv n(1+i k)
$$

and defined to be independent of angle of incidence.
The preferred nomenclature is
$\tan \psi$ - relative amplitude attenuation
$\triangle \quad$ - relative phase change
$n \quad$ - refractive index
$k \quad$ - absorption index
$k \equiv n k$ - extinction index

Although the general use of a standardized set of definitions and conventions may not be feasible, it is hoped that this discussion leads to a greater appreciation of the problem, and results in the more frequent statement of the arbitrary choices made by authors : Thus, communication within a growing technical community would be greatly facilitated.
| Jonathan Z. Shoher has assisted in the literature search for this study.

Modification of Preferences

Contributions to the discussion of this paper, particularly by Dr. H. E. Bennett ${ }^{*}$ and Professor F. Abeles ${ }^{* *}$, have convinced the author to adopt the positive exponential for the time factor (alternative 2, Table IV) and the unfactored form for the complex refractive index (alternative 2, Table VIII). As a consequence of this change, several other choices have to be reversed, so that the modified set of preferred definitions and conventions is given by

Tables I II III IV V VI VII VIII
Alternatives $\begin{array}{lllllllll}2 & 1 & 1 & 2 & 3 & 1 & 1 & 2\end{array}$

The summary, to take the place of the one given in the paper, can therefore be restated as follows: For the electric field strength formulated as:

$$
\vec{E}=E_{0} e^{i(\omega t+\delta)} e^{i \vec{k} \cdot \vec{r}} e^{-\alpha z}
$$

The complex relative amplitude attenuation is:
where

$$
\begin{aligned}
& \tan \psi=\frac{\left|{ }^{r} p\right|}{\left|{ }^{r} s\right|} \\
& \Delta=\delta_{p}-\delta_{s}
\end{aligned}
$$

[^0]The preferred coordinate system is shown in Fig. I. The complex refractive index, defined to be independent of angle of incidence, is preferably formulated as

$$
n_{c} \equiv n-i k
$$

Table I. Formal Definition of Relative Amplitude Parameter ψ

Table II. Formal Definition of Relative Phase Parameter Δ

Alternatives:	$\Delta=\delta_{p}-\delta_{s}$	$\Delta=\delta_{s}-\delta_{p}$
Effect on Δ :	Δ	- \triangle
Bare surface values:	$0 \leq \Delta \leq+180^{\circ}$	$0 \geq \Delta \geq-180^{\circ}$
Authors:	Abeles p. 46	(Fry p. 22)
	Archer p. 10	Mayer p. 90
	Born and Wolf: p. 617	
	Drude.\% p. 292	
	(Foersterling p. 119)	.
	Hall p. 911	
	(Heavens p. 198)	
	(Holmes and Feucht p. 467)	
	Jenkins and White p. 524	
	Koenig pr 222	
	Laue p. 162	
	Leberknight and Lustman p. 62	
	Rothen p. 1057	
	Tronstad . p. 19	
	Valasek p. 251	
	Vasicek p. 289	
	Winterbottom p. 16	
	Wood p. 552	

Table III. Formal Definition of Complex Relative Amplitude Attenuation

Table IV. Time Dependence Factor

Alternatives:	$e^{-i \omega t}$	$e^{+i \omega t}$	
Effect on Complex			
Authors:	Born and Wolf p. 24 Fry p. 143 Stone p. 35 (Winterbottom p. 15)	Abelès	p. 42
		(Archer	p. 11)
		Born	p. 21
		Condon	p. 6-7
		Ditchburn	p. 40
		Drude	p. 299
		Foersterling	p. 75
		Françon	p. 387
		(Hall	p. 911)
		(Heavens	p. 198)
		Koenig	p. 153
		Laue	p. 161
		(Leberknight and Lustman	p. 66)
		Mayer	p. 125
		(McCrackin and Colson	p. 64)
		Pohl	p. 149
		Rossi	p. 368
		Valasek	p. 243
		Vasicek	p. 15
		Wood	p. 416

Table V. Absolute Phase

Table VI. Coordinate System for p-Component

Table VII. Coordinate System for s-Component

Table VIII. Formal Definition of Complex Refractive Index n_{c}

Table IX. Angle of Incidence Dependence of Refractive Index

Table X. Nomenclature for Optical Constants

Authors:	Names For:		
	n	K	$\mathrm{k} \equiv \mathrm{nk}$
Archer	p. 11		ext. coeff.
Bashara and Peterson	p. 1329 \{real part of refr. index		abs. coeff.
Born	p. 260	abs. index	
Born and Wolf	p. 613	att. index	
Condon	p. 6-7	abs. index	
Ditchburn	p. 551	ext. coeff.	
Drude	p. 360	coeff. of abs.	
Françon	p. 387 refr. index		ext. index ext. coeff.
Hall	p. 911 refr. index	abs. coeff.	
Jenkins and White	p. 533 refr. index	abs. index	
Koenig	p. 189	abs. index	ext. modul
Laue	p. 160 refr. index		ext. coeff.
Mayer	p. 127		abs. index
McCrackin and Colson	p. 79 \{real part of refr. index		\{imag. part of refr. index
Stone	p. 372 refr. index		
Tronstad	p. 18 refr. index	abs. index	
Vasicek	p. 286	index of abs.	abs. coeff.
Winterbottom	p. 15 refr. index	ext. coeff.	
Wood	p. 546 refr. index	abs. index	

Table XI. Nomenclature for Light Attenuation

REFERENCES

F. Abeles, Ellipsometry in the Measurement of Surfaces and Thin Films, E. Passaglia, R. R. Stromberg and J. Kruger, eds. (National Bureau Standards Misc. Publ. 256, 1964), p. 41.
R. J. Archer, Manual on Ellipsometry (Gaertner Scientific Corp. 1968).
N. M. Bashara and D. W. Peterson, J. Opt. Soc. Am. 56, 1320 (1966).
M. Born, Optik (Springer Verlag, 1965) 2nd ed.
M. Born and E. Wolf, Principles of Optics (MacMillan, N. Y., 1964) 2nd ed.
E. U. Condon, Electromagnetic Waves, Handbook of Physics, E. U. Condon and H. Odishaw, eds. (McGraw-Hill, 1958).
R. W. Ditchburn, Light (Interscience, 1964) vols. I and 2.
'P. Drude, The Theory of Optics (Dover Publications, 1959).
K. Foersterling, Lehrbuch der Optik (Verlag Hirzel, Leipzig, 1928)*
M. Francon, Interférences, diffraction et polarisation, Encyclopedia of Physics, S. Fluegge, ed. (Springer Verlag 1956), vol. 24.

T* C. Fry, J. Opt. Soc. Am. 15, 137 (1927), 16, I (1928)。
A. C. Hall, J. Opt. Soc. Am. 55, 911 (1965)*
O. S. Heavens, Measurement of Optical Constants of Thin Films, Physics of Thin Films, G. Hass and R. E. Thun, eds. (Academic Press 1964), vol. 2.
D. A. Holmes and D. I. Feucht, J. Opt. Soc. Am. 57, 466 (1967).
F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1957), 3rd. ed.
W. Koenig, Elektromagnetische Lichttheorie, Handbuch der Physik, H. Geiger and K. Schél, eds. (Springer Verlag 1928), vol. 20.
M. v. Laue, Die Spiegelung und Brechung des Lichtes an der Grenze zweier Isotroper Koerper, Handbuch der Experimental-Physik, W. Wien, F. Harms and H. Lenz, eds. (Akademische Verlagsgesellschaft, Leipzig 1928), vol. 18.
C. E. Leberknight and B. Lustman, J. Opt. Soc. Am. 29, 59 (1939).
H. Mayer, Physik duenner Schichten (Wissenschaftliche Verlagsgesellschaft Stuttgart 1950), vol. 1.
F. L. McCrackin and J. P. Colson, Ellipsometry in the Measurement of Surfaces and Thin Films, E. Passaglia, R. R. Stromberg and J. Kruger, eds. (National Bureau Standards Misc. Publ. 256 (1964)), p. 61.
R. W. Pohl, Optik und Atomphysik, (Springer Verlag 1963), llth ed.
B. Rossi, Optics (Addison-Wesley Co., 1959) 2nd. ed.
A. Rothen, Ann. New York Acad. Sci. 53, 1054 (1951).
J. Stone, Radiation and Optics (McGraw-Hill, 1963).
L. Tronstad, Det Kgl Norske Videnskabers Selskabs Skrifter (1931), p. 1.
J. Valasek, Introduction to Theoretical and Experimental Optics (Wiley, 1949).
A. Vašíček, Optics of Thin Films (North Hollànd Publishing Co., 1960).
A. B. Winterbottom, Det Kongelige Norske Videnskabers Selskabs Skrifter 1955, p. 1.
R. W. Wood, Physical Optics (MacMillan, N.Y., 1934) 3rd ed.

FOOTNOTES

1. Defined as the plane which contains incident and reflected beams or wave vectors.
2. Phase of the reflected with respect to the incident wave in the reflecting surface.
3. Real refractive index of dielectric $-n_{0}$, complex refractive index of metal $n(1+i K)$ or $n^{\prime}\left(1+i K^{\prime}\right)$. Angle of incidence ϕ (real), angle of refraction ϕ^{\prime} (complex or real, depending on choice of complex refractive index).
4. E_{0} - reference amplitude, 1 - imaginary unit, ω - angular frequency, δ - absolute phase (see footnote 2), \vec{k} - wave vector, \vec{r} - position vector, α - amplitude absorption coefficient, z - inward normal to reflecting surface.
5. $|E|$ and $\left|E^{\prime \prime}\right|$ - electric field amplitude in incident and reflected wave, respectively.
6. $\tan \psi_{i}$ and $\tan \psi_{r}$ - relative amplitudes of s and p components in incident and reflected wave, respectively.
7. As a result of the discussion, the author's preference has been modified to alternative 2 in Tables I, IV and VIII and to alternative 3 in Table V.
8. See end of discussion for summary of the modified preferences.

FIGURE CAPTIONS

Fig. 1 Reflection and refraction at a dielectric-metal interface, designation of symbols. E, E^{\prime} and $E^{\prime \prime}$-positive coordinate direction of electric field amplitude in incident, refracted and reflected waves for components parallel (subscript p) and normal (subscript s) to the plane of incidence. The circles represent arrows pointing out of the plane of the drawing. k, k^{\prime} and $k^{\prime!}$ - propagation direction of the three waves. ϕ - angle of incidence, ϕ_{r}^{\prime} - real angle of refraction, n_{o} - refractive index of incident medium, n_{c} or n_{c}^{\prime} refractive index of reflecting medium, z - coordinate direction for amplitude attenuation.

Fig. 2

Fig. 3

Fig. 4

Dependence of elliptic polarization on phase difference Δ between orthogonal linearly polarized components of amplitude A and B.

Effect of the angle of incidence ϕ on the angle-dependent refractive index n^{\prime} for different combinations of the angle-independent optical constants n and k .

Effect of the angle of incidence ϕ on the angle-dependent absorption index k^{\prime} for different combinations of the angleindependent optical constants n and k.

XBL689-3879
Fig. 1

MUB-8168-A
Fig. 2

XBL689-3848

Fig. 3

XBL689-3849
FIg. 4

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

[^0]: * Head, Physical Optics Branch, Michelson Laboratory, Naval Weapons Center, China Lake, Calif. 93555

 Université de Paris, Faculté de Sciences de Paris, Laboratoire d'Optique, 9, quai-Saint-Bernard, Paris - 5^{e}, France.

