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ABSTRACT 

There is considerable interest in developing new energy storage technologies for the 

electric grid, but economic viability will require that manufacturers provide warranties 

guaranteeing 15+ years of life.  While there are extensive efforts to make early 

predictions for the expected life of new storage technologies, we argue here that for 

purposes of pricing warranties and valuing second life potential—considerations that are 

crucial to whether the technologies can be commercialized—the full failure probability 

distribution, not just the expected life, is required.  We use published battery cycle-life 

data to suggest efficient statistical and machine learning-based testing and analysis 

strategies that can rapidly estimate and also take advantage of the failure probability 

distribution.  One approach is a Weibull analysis, which can (a) reduce the number of 

testing machine-hours required for setting a warranty, (b) quickly determine whether a 

new technology is better than a baseline technology, and (c) estimate the maximum 

intensity of testing acceleration that does not change the failure mode.  A second 

approach is driven by the idea that all measured data — such as capacity or energy as a 

function of time or cycle number — is valuable and generated by an underlying latent 

function.  The analysis employs a Gaussian process to find the underlying latent function, 

together with its uncertainties, which can be used to calculate the failure distribution.   
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INTRODUCTION 

Commercial viability for grid storage technologies will require that manufacturers 

provide warranties guaranteeing performance for thousands of cycles over perhaps 15-20 

years1-5.  Life predictions are difficult because of the statistical nature of failure, typically 

due to microscopic heterogeneities6, so extensive testing is required.  However, testing 

energy storage devices requires years and ties up expensive equipment, resulting in a 

paucity of publicly available data7-12.   

A important recent approach to speed up the prediction of energy storage device 

lifetimes is the use of machine learning12-22, which can be combined with the more 

traditional accelerated testing23, mechanistic3, and numerical and physics-based models24.  

Almost always, such efforts aim to predict the expected life (or the expected remaining 

useful life).  However, even a perfect predictive capability for expected life does not help 

a manufacturer price a warranty.  Suppose that a manufacturer's business plan requires 

that no more than 1% of their devices fail under warranty.  This means estimating the 

number of cycles or years until 1% of the devices fail, a number that cannot be estimated 

from knowing just the expected life.  In fact, the expected lifetime will have to be far 

longer than 15 years to justify a 15-year warranty.  But how much longer?   

There is a fundamental asymmetry in the warranty business: manufacturers get no 

direct benefit from devices that last beyond their warranty period, but they are penalized 

for those that fail early.  Thus, a device with a shorter expected life and a narrow failure 

distribution may be preferred to one with a longer expected life and a wide failure 

distribution.  Said another way, the left-hand side (LHS) of the failure distribution, not 

the expected life, is necessary for setting a warranty.  For other purposes, such as valuing 

the potential for second life25, 26, the RHS of the failure distribution is necessary.  In this 

Perspective we propose that durability research efforts be expanded to include the full 

failure distribution.   
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We will use published10 cycle-life data for 24 nominally identical commercial 

lithium-ion cells tested under nominally identical conditions in order to evaluate more 

efficient ways that could have been used to collect and analyze the data required to 

determine the failure probability density function (pdf).  For our purposes, “efficient” 

means minimizing the required resources, in units of testing machine-hours.   We take 2 

approaches.   

Our first approach uses Weibull analysis27.  Previous battery studies using Weibull 

analysis10, 28-38 have focused almost exclusively on whether and how well the data can be 

fit to the Weibull function.  Our analysis is distinguished from them by using Weibull 

statistics to demonstrate (a) how the failure pdf can be quickly estimated and (b) ways in 

which the failure pdf can be put to good economic use.  In particular, we will examine the 

sudden death Weibull protocol, which sacrifices information about the center and the 

RHS of the failure pdf in order to more rapidly get information about its LHS, necessary 

for setting a warranty.  We will also show how Weibull analysis can be used to quickly 

determine whether a new technology is better than a baseline technology, and we propose 

a way to estimate the maximum amount of testing acceleration that can be used without 

changing the failure mode.  We are unaware of other such studies in the energy storage 

field.   

Our second approach is driven by the idea that all measured data is valuable and 

generated by an underlying latent function. Cell-to-cell variability is interpreted as noise. 

Thus, we can employ a Gaussian process39 to find the underlying latent function together 

with its uncertainties, which will be used to calculate the failure distribution.  Stochastic 

processes have been proposed for failure analysis40; we will show how these statistical 

methods can be applied in the energy storage field. 
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METHODS 

Weibull Analysis 

Weibull Function 

Since it was introduced41, 2-parameter Weibull analysis has become the most 

commonly used technique for analyzing durability data42.  Theoretically, one reason that 

the Weibull pdf is so useful is that any situation in which the failure mode can be 

described by the failure of the weakest link/largest flaw–often the case for materials–can 

be described by the Weibull distribution.  (But see Zok43.)  In part, this is why Weibull 

analysis can make useful failure forecasts even for small samples with only a few 

failures42; but also in part because it incorporates information about cells that have been 

tested but did not fail.   

The Weibull failure pdf is given by 

 

where f(t) is the fraction of the original cohort that fail on cycle t.  β is the shape 

parameter and η is the scale parameter.  Integrating, we have 

 

where F(t) is the cumulative fraction that fails by cycle t.  Taking the log twice and 

rearranging, we have 

                           Equation (1) 

so that plotting the LHS of this equation vs ln(t) gives a straight-line Weibull plot (if the 

failure pdf is Weibull), from which β and η can be determined.  Weibull analysis only 

applies to one failure mode at a time; each failure mode has its own Weibull plot. A 



5 
 

strongly curved Weibull plot may suggest multiple failure modes, which could be 

valuable information when trying to determine if accelerated testing is creating new 

failure modes.  Acceleration may be especially important when considering calendar 

life44.  However, other causes of curvature are possible.  

Two other useful functions include the survival function 

 

the fraction that survives through cycle t; and the hazard function 

 

the fraction of survivors that fail on cycle t. 

 The shape of the Weibull pdf is determined by the parameter β, and the shape is 

extremely flexible.  For example, β < 1 gives a pdf that falls faster than exponential and 

corresponds to infant mortality (almost all failures occur in the first few cycles, so that 

the hazard decreases with time).  β = 1 gives an exponential pdf and implies a constant 

hazard (i.e., failure can occur with equal probability at any time, such as by driving over a 

pothole).  β > 1 implies an increasing hazard, characteristic of wear-out.  1 < β < 2.5 

gives an approximately lognormal pdf (e.g., failure is caused by the largest flaw), with 

smaller values of β in this range corresponding to early wear-out failures, and β = 2 

approximating a Rayleigh distribution, where the hazard increases linearly with time. β = 

3.5 gives a near-Gaussian pdf. (This pdf might occur if there is a critical component or 

additive, necessary for operation, that gets consumed during use; or if there are many 

simultaneous failure modes.)  Large values of β correspond to rapid, sudden wear-out 

with narrow distributions (all the devices fail at about the same time). Thus, the value of 

β depends upon–and gives hints at–the failure mechanism.  Typically, and of great 

importance, when the failure mechanism changes, so does β27.   Because of the Weibull 

distribution’s flexibility, it is sometimes said that, unlike the typical fitting procedure 
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where the data is fit to a predetermined functional form, Weibull analysis fits the 

functional form to the data.  

Sudden Death 

The sudden death Weibull test45-49, along with several other approaches50, were 

developed by manufacturers of bearings51 and other products that face long and 

expensive testing procedures for validating new technologies.  The main benefit of 

sudden death is that not all samples are run all the way to failure–in effect sacrificing 

information about the center and RHS of the failure pdf in order to learn quickly about 

the LHS. Even a small number of LHS failures may give sufficient information about the 

failure pdf to set a warranty.    

Here we will apply sudden death in hindsight to the cycle-life results of 24 

nominally identical commercial cells, 20 of which were tested all the way to failure, 

while 4 were taken off test without failure at 594 cycles, as we described previously10.   

We will refer to this testing approach as “brute force.”  These cells had lithium cobalt 

oxide cathodes and synthetic graphite anodes.  They were cycled at room temperature 

(~25º C) with an Arbin BT2000. On each cycle, the cells were charged in a CCCV 

(Constant Current Constant Voltage) mode at 1C (4.4 A) constant current up to 4.35V, 

followed by a constant voltage charge until current dropped below C/40. The cells were 

then discharged at 10C (44 A) constant current until the terminal voltage decreased to 3 

V. Note that a 10C discharge rate accelerated the degradation process, saving 

considerable testing time while risking that new degradation modes, only relevant at high 

discharge rates, may well have been introduced.  Since the cells were to be used in 

electric helicopters, where high power is needed for takeoff, the acceleration risk was 

considered to be worth taking.  (Of course, a better way to predict failure quickly is to 

understand the failure mechanisms well enough so that acceleration is not needed3.)   

A sudden death approach could have been carried out as follows.  If we have, for 

example, 6 testing machines to test the 24 cells, we would choose 6 cells at random and 
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run them simultaneously and identically until one of the cells fails.  At this point, all 6 

cells in the batch are removed (1 cell has failed, while 5 cells are “suspended.”), and a 

preliminary Weibull analysis is carried out for these 6 cells52.  The next batch of 6 cells is 

tested in the same manner, giving an updated Weibull analysis.  For 24 cells, this 

procedure is carried out 4 times, at which point we have 4 failures and 20 suspensions.  

The cells that failed are likely to have shorter than average lifetimes, while average cells 

and especially longer-lived cells are less likely to have been tested all the way to failure.  

Because most or all of our information is about the LHS of the failure pdf, even four 

failures may provide enough information to set a warranty.  Information about the 

suspended cells consists in knowing that they survived for longer than the shortest-lived 

cell in their batches, and this information is incorporated into the Weibull analysis52.  

Johnson has shown50 that the reliability estimated from this sudden death approach is 

“similar” to that obtained by the brute force approach.      

Based on the Weibull parameters obtained, we can estimate the number of cycles 

until 1%, 2%, and 5% (known as B1, B2, and B5 lives, respectively) of a large group of 

cells will fail, the information required for setting a warranty.  We compare below 

estimates made with sudden death and brute force approaches.    

Gaussian-Process-Driven Lifetime Prediction 

One of the main drawbacks of sudden-death testing is that the vast majority of 

testing data (e.g., current and voltage as a function of cycle number) is ignored; only the 

failure and suspension cycles are used for the analysis. The proposition in this section is 

to learn as much as possible from all data about a postulated, data-generating latent 

function to make informed decisions about battery lifetimes. We assume that the quantity 

of interest — charge or energy — is obtained by noisy function evaluations ( 𝑦𝑖) of an 

underlying (true but unknown) latent function that maps energy or capacity to a cycle 

number, i.e. f(x): X → R. Every new test is interpreted as a new set of function evaluations 

at fixed cycle numbers xi ∈ X, i ∈ {1,2,...}. We also assume that the joint probability 

distribution over the latent-function evaluations is normal (Gaussian). In other words, 
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there is a ground-truth (latent) function f(x) of energy or capacity vs cycle number, and 

the measured data values are noisy evaluations of that ground-truth function. With these 

assumptions in place, we can model the underlying latent model function as the posterior 

probability density function of a Gaussian (stochastic) process39 with a domain-informed 

prior-mean function and a flexible noise model.  Other stochastic processes can be and 

have been employed, most notably the inverse Gaussian process40, 53, 54.  Other statistical 

methods that have been proposed to model battery degradation include15, 18.  For this 

work, we assume Gaussian noise; however, this is not a requirement for the methodology 

to work. Measured energy or capacity values are collected as data 𝐷 = {𝑥𝑖 , 𝑦𝑖}. This 

gives us the ability to abstract over cell numbers, testing machines, and testing strategy 

leading to an agnostic methodology; a stochastic model for battery lifetime is available 

starting with the very first collected data point and is available throughout the test. The 

presented approach is agnostic to the schedule of the data acquisition. In other words, the 

algorithm can be used for equi-temporal data acquisition, random, or any other sample 

strategy. Theoretically, the method is most successful when maximizing the variety of 

distances that are being considered between data points, which is achieved if data 

acquisition happens at random intervals. 

We define a normal prior distribution over function values — we use 

nomenclature N(x |mean, covariance) for a normal distribution over x, given a mean and 

a covariance — 

𝑁(f | m, K) 

with prior mean m and covariance K. The likelihood of the data is given by 

𝑁(y | f,V) 

where V is a diagonal matrix containing the noise for each data point, which is calculated 

by a parametric noise model. The covariance of the prior is calculated by applying the 

kernel function k(x1,x2;h) to all pairs of data points. Kernel functions are symmetric 

positive-semidefinite functions55 that allow us — given a set of hyperparameters h — to 
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calculate covariances as a function of positions in the input space — a space of cycle 

numbers. This is commonly referred to as the kernel trick33, 55. Given the kernel, we can 

extend the prior over points of interest, marginalize over latent function values, and 

condition on observations to obtain a posterior probability density function  

𝑁(m - kT (K+V)-1 (y-m), k(x0,x0) - kT (K+V)-1 k), 

where the first term is the posterior mean, which can be interpreted as a surrogate of the 

latent function f, and the second term is the posterior covariances which provide the 

associated uncertainties. See Figure 1 for an illustration of the posterior being defined 

over the input domain.  

V is the matrix of the noise. To account for an increasing divergence of function 

values as testing proceeds for any given cell, we adopt a non-constant (heteroscedastic) 

parametric (polynomial) noise model 

𝜎𝑛
2(𝑥) =  𝑥ℎ1  + ℎ2 . 

  

To allow the practitioner to embed their knowledge about the battery and give the 

algorithms the capability to extrapolate, we also inject a polynomial prior-mean function 

𝑚(𝑥) =  −𝑥2\ℎ
3

 + 360 , 

where the 360 comes directly from the observed data at the beginning of each test, but 

could also, in practice be defined as an additional hyperparameter. The prior-mean 

function gives the practitioner the opportunity to inject domain knowledge into the 

model. Often, the degradation curves exhibit “knees” at unknown locations based on the 

degradation mechanisms. In that case, the prior-mean function could be defined as a 

parametric piecewise linear model or a combination of several of those modes.  All prior-

mean, noise, and kernel hyperparameters are found by maximizing the marginal log-

likelihood of the observations.  



10 
 

 

Figure 1 An example of a stochastic model of the underlying latent function cycle number → 

energy. We use energy instead of capacity as a measure of degradation because energy 

incorporates changes in both voltage and charge12. The data points are displayed as black dots. 

All data points are used to approximate the data-generating latent function by the GP posterior 

mean (blue). The grey envelope is the uncertainty associated with the latent function estimate. 

 

The stochastic model can be strategically evaluated along a slice in energy or capacity — 

depending on the definition of failure, often 80% of the original value — to obtain a 

failure probability density function. If only the left-hand side of the distribution has to be 

estimated correctly this approach can be combined with sudden-death strategies.  

Gaussian processes have been used as a standard tool for design-of-experiment 

optimization56-58. For a combined approach, the spaces (input space for battery chemistry 

for instance) and the domain of battery degradation (e.g., cycle numbers) could be 

combined to yield an integrated model. This principle can be extended to include testing 

protocols (temperature and voltage, for instance). 

RESULTS 

1. Weibull  

Sudden Death Analysis 

We are looking retrospectively at failure data for 24 cells10 that were tested either 

to failure (20 cells) or to 594 cycles (4 cells), whichever came first. Using all of the data 
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(“brute force”) provides our most accurate estimates for B lives.  (The most economical 

brute force protocol when we have multiple testing machines would be to arrange that 

every testing machine is operating all of the time, which means immediately replacing 

any failed cell with a new cell, and running every cell to failure.)  Failure was defined as 

a 20% loss of capacity, but other criteria such as energy loss, or loss in other moments of 

the voltage discharge curves, could equally well have been used12.   

If we use sudden death and have 2 test machines, we test 2 cells at a time, chosen 

at random, for 12 batches of 2, and we observe 12 failures and 12 suspensions.  With 3 

test machines, we test 3 cells at a time for 8 batches, and we observe 8 failures and 16 

suspensions; and so on.  Thus,  

Number of Machines x Number of Batches = total number of cells = 24. 

Number of Failures = Number of Batches 

With more testing machines, fewer cells are run to failure, reducing the total cost 

(number of machine-hours) but increasing our uncertainty about the failure pdf.  For 

example, using sudden death with 24 testing machines would mean that we observe only 

1 failure, that of the shortest-lived cell.  This test would be very quick, but we would have 

hardly any failure information. Our challenge is to intelligently trade-off cost and 

uncertainty. 

First, we need to recognize that, for any given number of testing machines with 

sudden death, there can be many different ways to arrange the 24 cells randomly in 

different batches.  For each possible arrangement, different cells will fail or be 

suspended, which means that the sudden death results depend on the (random) ordering.  

We therefore used a Monte Carlo approach, carried out as follows.  For each of 6 cases—

2, 3, 4, 6, 8, and 12 testing machines—we considered possible arrangements for the 

sudden death tests of the 24 cells.  For example, with only 2 testing machines, there are 

(
24×23

2
) ways to choose a pair of cells for the first batch, (

22×21

2
) ways to choose a pair of 

cells for the second batch, etc.  The indices were randomly drawn from a uniform 
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distribution.  Since the analysis is done in hindsight, we can calculate the Weibull 

parameters and the B1, B2, and B5 lives that we would have gotten for each of up to 

10,000 arrangements59.  From the distribution of the calculated B lives we then 

determined their means and standard deviations.  We define the “error” to be the 

percentage difference between these values and the brute force values, which provide our 

best estimates.  Figure 2 shows the tradeoff between the number of failures (number of 

batches) and the error.   

 

Figure 2.  The impact of increasing the number of failures or batches (reducing the number of 

testing machines) on the error, as defined in the text, in the B1, B2, and B5 lives. 

  Figure 3 shows the relationship between the number of failures (batches) and the 

cost, in terms of the number of machine-hours required, 
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Figure 3. The impact of increasing the number of failures or batches (reducing the number of 

testing machines) on the cost for testing, in units of machine-hours. 

while Fig 4 is a cross-plot that shows the direct tradeoff between cost and error. 

 

Figure 4.  Cross plot showing the tradeoff between cost in machine hours and the expected error 

in the B1, B2, and B5 lives. 

 The fractional savings in machine-hours that we achieve by using sudden death 

compared to the brute force approach is shown in Figure 5, which indicates that the 

sudden death approach can reduce the cost in machine-hours for this data set by up to 
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35%, depending on how much uncertainty is tolerated.  (Note that if only1 machine is 

available, then the sudden death and brute force methods are identical.)   

 

Figure 5. The savings, in units of machine-hours, available from using the sudden death 

approach.   

Weibayes27, 60 

Suppose that we have made a number of modifications to the battery chemistry or 

architecture in hopes of increasing B lives.  We could repeat the full complement of 

experiments for each modification, but that might require an unacceptably large number 

of machine-hours, even using sudden death.  Some of the modifications might provide an 

improvement, but many will not.  Rather than trying to get the B lives for each 

modification, we can ask a question that could be much faster and easier to answer: Can 

we quickly divide the modified cells into 2 groups, those that are better than the baseline 

cells and those that are not?   

We can answer that question without having to fail a single modified cell if we can 

assume that β for the modified cells are the same as the known  for the baseline cell. 

This is roughly equivalent to assuming that the modifications did not change the failure 

mechanism.  The benefit comes because once a value for β is assumed, the Weibull 

distribution has only 1 parameter, η.  This is the Weibayes assumption27.  (Whether or not 
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this is a good assumption is informed by experience and depends mainly on whether a 

library for similar systems is available27.)  For example, our brute force Weibull 

parameters are β = 4.9 and η = 500, with an expected B2 life of 225 cycles.  Assume that 

β = 4.9 for the modified cells.  We might decide to call a modified cell “better” if its B2 

lifetime has improved by at least 20%, i.e., B2 = 272 cycles.  For β = 4.9, this B2 life 

would correspond to η = 60052.  For these parameters, if we test 5 modified cells, and 

there are no failures after 540 cycles, we can claim with 95% confidence that the 

modified cells are better than the baseline cells (i.e., η is at least 600)47.  If only a 68% 

confidence is required, then 440 cycles with no failures will suffice. Rapidly dividing 

cells into “better than baseline” and “not better than baseline” can save a considerable 

amount of time, because only cells in the former group need to be considered further.  

Once the failure pdfs of the improved cells are found, a judgment can be made about 

whether the assumption of a constant  was justified.  An excellent discussion about 

potential errors associated with the use of Weibayes is available61. 

Accelerated Tests 

The idea behind accelerated testing is that by increasing the intensity of the stress 

(which could be temperature or charging rate, for example) we can induce rapid failures 

and determine quickly whether one battery type is better than another.  Ideally, the 

performance in an accelerated test can be quantitatively extrapolated to the performance 

under normal operating conditions.  Unfortunately, when a test is accelerated, new failure 

modes that are not relevant to failure during normal operation may be introduced, in 

which case accelerated tests may not provide useful information.  Weibull analysis may 

be useful if it can help to determine the maximum amount of acceleration that can be 

applied without changing the failure mechanism.  Experience shows27, 42 that if the value 

of β from accelerated and non-accelerated tests are similar, then the failure mode has 

likely not changed.  Thus, by gradually increasing the acceleration intensity, the point 

where β changes can be identified.  To the extent that similar battery types change 

mechanisms at a similar point, we can test them just below that point and take the 



16 
 

maximum advantage of acceleration.  Post mortem analysis will be required to validate 

this proposal, whose value would depend strongly on whether we have a library of 

failures for different conditions and batteries available.  Klein and Basu62 have published 

an alternative, much more general, Weibull approach for dealing with accelerated testing 

with multiple simultaneous failure modes. 

Parameter Convergence 

 Estimates for β and η are obtained after each sudden death failure is obtained, and 

cumulative estimates are obtained from successive failures.  In some cases, this 

cumulative value may converge before all of the planned tests have been performed.  For 

the example shown in Figure 6 below, taken from ref10, stopping the tests after 15 failures 

might have been reasonable.  The Gaussian Process discussed below provides a 

quantitative method for deciding when to stop taking data. 

 

Figure 6.  Data from reference11 showing that the Weibull parameters gradually converge as 

more failures are observed. 

Weibull Analysis: Uncertainties, Caveats, and Comments 

 We have defined the error introduced by use of sudden death as the percentage 

discrepancy between the B lives calculated from sudden death and the more accurate B 

lives calculated from brute force.  In this section, we consider additional sources of 

uncertainty and error.  We also provide some caveats with respect to whether or not our 
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analysis might be useful for other types of cells or for cells that are tested under different 

conditions. 

a. The Weibull parameters generated from our “best” data are β = 4.9 and η = 500.  

But with only 24 tests, we can’t know that these are the parameters for the 

underlying “true” pdf.  How much error is there in the B lives because even our 

best estimates for β and η come from only 24 cells?  We address this question by 

generating random sets of 24 lifetimes from the above Weibull distribution and 

calculating the B lives for each set.  We find that the standard deviation in the 

estimated B lives is about 20%.  For comparison, if we had tested 100 cells instead 

of 24, the standard deviation would be about 7%. 

b. Each arrangement of the cells in batches gives a different Weibull fit, but only 1 

sudden death protocol is run.  The standard deviations comparing the B lives 

among the up to 10,000 Monte Carlo calculations59 are between 2% and 9%. 

c. The Weibull parameters are usually determined either from the slope and intercept 

of the Weibull plot described in Equation 1 or by maximum likelihood techniques.  

For the latter case, all possible values of β and η are considered, and for each pair 

we ask, how likely is it that the observed failures would have been drawn from 

that pdf?  The likelihood is defined as the product of the pdf values at the failure 

times.  In this way, the likelihood is large if most of the failure times are close to 

the maximum of the pdf and few or no failures are observed where the pdf is close 

to zero.  There is considerable discussion27 in the literature about whether the 

Weibull plot or maximum likelihood yields better values for β and η, but it is 

straightforward to show that the Weibull plot can give unrealistic estimates for 

uncertainties in the parameter values, compared to maximum likelihood.  As an 

extreme example, if two samples are run to failure, the Weibull plot has 2 points, 

and the standard deviations for the slope and intercept are zero, clearly an overly-

optimistic result.   
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Whether or not a Weibull analysis is useful depends on the answers to at least 2 

questions:  

A. Can the data be fit to a Weibull curve? There are numerous demonstrations in the 

battery literature that failure data can be fit to a Weibull distribution, even when 

there is a geometry change38.  This is not a surprise, since the Weibull distribution 

is widely used precisely because it so often fits failure data of every sort.  To the 

extent that the data do fit Weibull curves, we have an estimate of the failure pdf, 

allowing warranties to be priced.  The tradeoff that we discussed above between 

speed and accuracy may depend sensitively on battery type and use case.  While 

we have detailed this tradeoff for our specific cells, the usefulness of the Weibull 

analysis for a particular case will have to be evaluated based on a library of results.  

B. Are there any other benefits to knowing the fitting parameters?  Beyond 

demonstrating the existence of good fits, other fields—gears, bearings, aircraft and 

automotive components—have taken advantage of specific benefits that may be 

available once a Weibull fit has been found; for example, the use of Weibayes.  

Our purpose here has been to propose that analogous benefits might be available 

in the energy storage field, and for this purpose we have shown how a Weibayes 

analysis can be used to quickly assess proposed improvements.   

We point out that we have not demonstrated a general usefulness of applying a 

Weibull analysis for energy storage systems, beyond providing the data necessary for 

setting a warranty.  In particular, we have analyzed data from just one set of 24 

commercial cells tested under conditions of very fast discharge (10C).  We have no 

evidence for when or whether the value of  that we found would be transferable, for 

example, to cells tested at different temperatures or duty cycles.  Instead, we 

recommend that a library of  values be generated for different cell types run under 

different conditions in order to evaluate transferability empirically.  Our justification 

for this recommendation is that it has been found to be useful in many other 

industries. 
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A fuller program for finding new cell technologies for grid would search 

parameter space for improved chemistries and conditions.  Such a program would 

involve both exploitation of existing knowledge (interpolation) and exploration 

(extrapolation), perhaps using techniques described here18.   

It is not clear to us how to compare the predictive capability of the Weibull 

analysis described here to the predictive capability of approaches currently taken in 

the literature.  The reason is that, to our knowledge, other prediction approaches aim 

at predicting the remaining useful life of a particular battery, typically after a small 

number of cycles.  Our Weibull analysis aims at estimating the failure pdf of a large 

population of batteries.  It is a statistical approach and does not concern itself with the 

performance of an individual battery.   

2.  Gaussian-Process-Driven Lifetime Analysis 

In this test, we are using the same cells we used in the Weibull test above. Since the 

computational cost of the GP method is much higher, we create only 10 random 

permutations of the datasets. The testing strategy is similar: we postulate a number of 

testing machines that can test a number of cells (the batch size) in parallel. In this case, 

we are postulating 2 testing machines. This would mean 10 test runs for 20 tested cells, 

for example. From here on we can follow a number of different strategies with decreasing 

costs but increasing risks:  

(1) Comprehensive but costly: After each test run, a GP tries to approximate the 

underlying latent function and its uncertainties. From here, we can use the 

uncertainties to decide if more tests have to be conducted. In this scenario, all cells 

that are tested are tested to failure. 

(2) Sudden-Death-Like: Each test run is terminated when the first cell fails.  In this 

case, we will lose out on knowledge that might be gained from the other cells in a 

test after the failure occurred, but we reduce required resources.  
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(3) Each test is terminated when the expected information gain for all tested cells in 

the run reaches a certain threshold. The GP is updated after each test of all cells in 

the batch.  

(4) The GP and therefore the model representation can be updated for every cell 

separately after every cycle, and individual decisions can be made to stop the 

testing of a particular cell based on the probability of its performance and potential 

knowledge gain. 

The GP method allows “smart” sudden death in a way that we can estimate the 

information gain of future points and stop testing when this quantity falls under a certain 

threshold.  

We consider method (1) above and simulate a test of all cells to failure while 

observing what happens to the predicted failure probability distribution. Figure 7 shows 

this distribution after a number of tests for 10 different random permutations of the data. 

It also shows the predicted number of cycles when 5% of cells have failed. In this test, we 

defined a quadratic prior mean function that can be interpreted as domain knowledge 

injected into the GP prior. We are also defining a linear noise model. The parameters of 

the linear noise model (slope and offset) and the prior mean function (a scale), together 

with other hyperparameters of the kernel function, are found by maximizing the marginal 

log-likelihood. The key takeaway from Figure 7 is that the distribution of failure pdfs 

narrows quickly, and confident statements about failure probabilities can be made after 

only around half of all cells have been tested. In this example, neither the domain 

awareness (kernel and prior-mean function of the GP) nor the testing methodology is 

optimized and we still see significant gains compared to standard testing protocols. This 

makes the case for GP-driven failure probability predictions.  
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Figure 7. (Top left to bottom right) Failure distributions of 10 random permutations of the data 

approximated by a Gaussian process after 2, 4, 10, and 20 tested cells, and the associated 5% 

failure probability as functions of the number of tested cells.  The key takeaway is that the failure 

probability and its standard deviation are rapidly converging after a subset of the cells is tested, 

demonstrating that it is not necessary to test all cells. 

SUMMARY AND CONCLUSIONS 

 With the explosive growth of electric vehicles well underway, more attention is 

turning to the need for grid storage.  An important barrier to large-scale adoption is the 

requirement that energy storage devices perform for 15+ years, as discussed in the ROVI 

Lab Call6.  Energy storage technologies that are under consideration have rarely if ever 

been operated for such an extended period under the expected use conditions.  If we 

confine ourselves to predicting the expected life, we do not help a manufacturer aiming to 

price a 15+ year warranty, considering that the expected life will have to be much longer 

than 15 years.  Similarly, we do not help a utility to estimate the value of a second life 

when weighing the commercial viability of a specific technology.  In this Perspective, we 

argue that research should broaden beyond the expected life to the full failure pdf. 

We have suggested two approaches that reduce the testing resources required to 

estimate the full failure pdf.  One approach assumes that the failure pdf is approximately 
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described by the 2-parameter Weibull function27.  Using published battery cycling data as 

an example, we showed that sudden death Weibull could reduce the number of machine-

hours required to set a warranty by up to 35%, and we quantified the tradeoff between 

cost (resource use) and accuracy.  We also showed how a version of Weibull analysis 

(Weibayes) can quickly distinguish new technologies that provide a significant benefit 

from those that do not.  And we suggested how the use of Weibull statistics could 

optimize accelerated testing by determining the point where the failure mode changes.  

We plan to test these ideas in future work by analyzing other data sets.  The latter two 

applications (Weibayes and accelerated testing) will require building a library of testing 

data from many classes of batteries and testing protocols. 

The second approach assumes that all data collected during a testing campaign is 

valuable and created by one underlying latent process with added normally distributed 

noise. The underlying latent function can then be approximated by the posterior of a 

Gaussian process (GP) with domain-informed prior mean function and a flexible 

heteroscedastic noise model.  

In the future, we will tailor the GP-driven methodology and combine it with 

sudden-death strategies to minimize testing time and efforts even further, in the hope of 

eventually being able to calculate failure distributions with a fraction of the traditionally-

collected data. 
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