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Abstract 
 

Small molecule drugs target many small molecule metabolic enzymes in humans 

and pathogens, often mimicking endogenous ligands. The effects may be therapeutic or 

toxic, but are frequently unexpected. A large-scale mapping of the intersection between 

drugs and metabolism is needed to better guide drug discovery. To map the intersection 

between drugs and metabolism, we have grouped drugs and metabolites by their 

associated targets and enzymes using ligand-based set signatures created to quantify their 

degree of similarity in chemical space. The results reveal the chemical space that has 

been explored for metabolic targets, where successful drugs have been found, and what 

novel territory remains. Chemical similarity links between drugs and metabolites predict 

potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. To 

aid other researchers in their drug discovery efforts, we have created an online resource 

of interactive maps linking drugs to metabolism that enable easy navigation of the vast 

biological data on potential metabolic drug targets and the drug chemistry currently 

available to prosecute those targets. Thus, this work provides a large-scale approach to 

ligand-based prediction of drug action in small molecule metabolism. 

Furthermore, this work challenges a fundamental dogma in modern molecular 

biology – the presumption that individual protein structural and chemical requirements 

are the dominant constraints in small molecule metabolic enzyme evolution. We directly 

test that assumption by weighing the absolute and relative constraints imposed by 

structural homology, metabolic pathway context, and transcriptional coregulation. We 

believe this work is the first to explicitly argue – from the molecular level perspective of 
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genomic data – that selection constrains enzyme evolution as much at the level of 

metabolic pathway organization as it does at the level of individual protein structure. 
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Chapter 1. Introduction for a General 

Audience 
 

All humans, plants, and animals use enzymes to metabolize food for energy, build and 

maintain the body, and get rid of toxins. Drugs used to clear infections or cure cancer often target 

enzymes in bacteria or cancer cells, but the drugs can interfere with the proper function of human 

enzymes as well. Recent studies have mapped drugs to enzymes and many other targets in 

humans and other organisms, but have not focused on metabolism. Chapter 2 presents a new 

method to predict what enzymes drugs might affect based on the chemical similarity between 

classes of drugs and the natural chemicals used by enzymes. We have applied the method to 246 

known drug classes and a collection of 385 organisms (including 65 National Institutes of Health 

Priority Pathogens such as malaria, anthrax, and the plague) to create maps of potential drug 

action in metabolism. We also show how the predicted connections can be used to find new ways 

to kill pathogens and to avoid unintentionally interfering with human enzymes. 

 

Some enzymes change slowly over time, while others evolve rapidly. Chapter 3 

investigates what determines this evolutionary rate. The blueprints for enzymes and other 

proteins are found in genes. How much a gene is turned on (i.e. expression level) is known to be 

a major predictor of how fast it will evolve. However, many other potential predictors also exist. 

How hard is the enzyme’s job?  How important is the job – can you live without it? How stable 

is the enzyme in stressful environments? Think, for example, of the wildly colorful and heat-

loving bacteria growing happily in the scalding pools of Yellowstone National Park.  Previous 
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studies have focused on these convential predictiors of how rapidly an enzyme will evolve over 

time.   

 

In Chapter 3 we challenge this fundamental dogma of molecular biology.  Many 

enzymes work together in sequences called metabolic pathways.  Together they produce 

essential molecules, such as the building blocks of DNA and proteins, or to get rid of dangerous 

toxins. Because enzymes work together as a group, we hypothesize that an enzyme’s metabolic 

pathway neighbors help predict an enzyme’s evolutionary rate. This idea of “group selection” 

has been  extremely controversial in evolutionary biology for decades.  Group selection usually 

refers to groups of animals such as herds of antelope or schools of fish.  However, here we apply 

the concept to groups of enzymes that together contribute to metabolic fitness.  We present for 

the first time evidence that molecular level group selection is at least as important as individual 

enzymes in predicting evolutionary rate. 
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Chapter 1. Technical Introduction 
 

 

1.1  Drugs and metabolism 

The breathtaking chemical diversity of biological systems pales in comparison to the 

breadth of all carbon-based chemistry. The estimated number of possible carbon-based 

molecules with molecular weight under 500 daltons, the range of most common metabolites, 

exceeds 1060. Yet the substrates and products of small molecule metabolism, for all organisms 

studied to date, number only on the order of 104. These molecules represent a small but highly 

active slice of biological chemistry. In the search for new drugs, chemical similarity to these 

metabolites frequently may suggest an increased likelihood of in vivo perturbation, and 

ultimately therapeutic effect. The chemical similarity may be broad and non-specific, or indicate 

direct molecular mimicry of endogenous compounds. Examples of these anti-metabolites include 

antibacterial sulfonamides, nucleoside reverse transcriptase inhibitors used in antiviral therapy, 

and antineoplastics such as methotrexate and 5-fluorouracil. A wealth of biological knowledge 

about metabolism allows further filtering through vast chemical diversity to target only essential 

enzymes and their related drug chemistry. For example, genetic studies in numerous organisms 

have revealed lethal and synthetic lethal gene knockouts that could be targeted based upon 

chemical similarity to endogenous substrates. Orthologs to these same therapeutic targets from 

pathogens can be sources of toxicity when accidentally targeted in humans. For these reasons, 

the intersection between drug chemistry and small molecule metabolism and drug chemistry 

merits comprehensive analysis to better guide drug discovery. 
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Development of a method to predict the interaction between drugs and small molecule 

metabolic enzymes would help avoid drug toxicity in humans and facilitate the discovery of new 

drugs against pathogens.  In Chapter 2, we present a new approach to predicting drug action by 

comparing the chemical similarity between known drug classes and the endogenous substrates 

and products of metabolic reactions.  The results reveal the chemical space that has been 

explored for drugs against metabolic targets, where successful drugs have been found, and what 

unexploited territory remains.  Specifically, based solely upon ligand bond topology, we predict 

the likely array of metabolic drug targets in humans for each drug class from a large collection of 

drug classes reported in the patent literature.  We also apply our approach to a large collection of 

model organisms and NIH Priority Pathogens.  Using this information, we created an online 

resource of interactive metabolic maps to explore the vast biological data on potential metabolic 

drug targets and the drug chemistry currently available to prosecute those targets. These drug 

“effect space” maps can be used by other researchers to navigate the connections between known 

drug classes and metabolism.  To demonstrate how our method may be applied to drug discovery 

against emerging pathogens, we present a case study in MRSA that integrates synthetic lethal 

analysis with our ligand-based chemical similarity approach to recover many of the known drug 

targets in MRSA.   

JCA conceived of, designed, and performed the experiments mapping drugs to 

metabolism, analyzed the data, and wrote the paper; MJK developed the initial SEA method, 

designed experiments mapping drugs to metabolism, and developed the computational tools used 

in this study, LB performed MRSA experiments under the guidance of HFC, DSL performed the 

essentiality and synthetic lethal analyses under the guidance of OGW, and PCB directed and 

supervised the research. 
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1.2  Evolution and Metabolism 

What determines the evolutionary rate of a gene? Many hypotheses have been offered, 

but the precise determinants remain elusive.  Expression level is a dominant factor, but additional 

properties include functional class, stability, dispensability, and pleiotropy. Integrated analyses 

that both demonstrate significant correlations with evolutionary rate and distinguish the 

proportion of variance a given factor may explain constitute the next step in further elucidating 

the principles of protein evolution. Chapter 3 outlines just such an approach in revealing the 

predictors of evolutionary rate among small molecule metabolic enzymes.  In addition to gene 

expression, we hypothesize that two key selectable properties of metabolic systems – structural 

similarity in homologs of dissimilar function and the output of metabolic pathways – represent 

important determinants that uniquely distinguish metabolic pathways from other biological 

systems. First, investigation of structural homologs of dissimilar function allows dissection of the 

structural constraints on enzyme evolution from overlapping constraints on their functional roles 

in metabolic pathways. Second, the chemical conversion of a substrate, via multiple reactions 

within a metabolic pathway, into a biologically useful product provides the primary readout of 

metabolic fitness. 

Chapter 3 challenges a fundamental dogma in modern molecular biology – the 

presumption that individual protein structural and chemical requirements are the dominant 

constraints in small molecule metabolic enzyme evolution. That assumption is directly tested by 

weighing the absolute and relative constraints imposed by structural homology, metabolic 

pathway context, and transcriptional coregulation. We believe this work is the first to explicitly 

argue – from the molecular level perspective of genomic data – that selection constrains enzyme 
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evolution as much at the level of metabolic pathway organization as it does at the level of 

individual protein structure. 
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2.1 Abstract 
 

2.1.1 Background 
 
Small molecule drugs target many core metabolic enzymes in humans and pathogens, often 

mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently 

unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed 

to better guide drug discovery.  

 

2.1.2 Methodology/Principal Findings 
 
To map the intersection between drugs and metabolism, we have grouped drugs and metabolites 

by their associated targets and enzymes using ligand-based set signatures created to quantify 

their degree of similarity in chemical space. The results reveal the chemical space that has been 

explored for metabolic targets, where successful drugs have been found, and what novel territory 

remains. To aid other researchers in their drug discovery efforts, we have created an online 

resource of interactive maps linking drugs to metabolism. These maps predict the “effect space” 

comprising likely target enzymes for each of the 246 MDDR drug classes in humans. The online 

resource also provides species-specific interactive drug-metabolism maps for each of the 385 

model organisms and pathogens in the BioCyc database collection.  

 

2.1.3 Conclusions/Significance 
 
Chemical similarity links between drugs and metabolites predict potential toxicity, suggest routes 

of metabolism, and reveal drug polypharmacology. The metabolic maps enable interactive 

navigation of the vast biological data on potential metabolic drug targets and the drug chemistry 



9 
 

currently available to prosecute those targets. Thus, this work provides a large-scale approach to 

ligand-based prediction of drug action in small molecule metabolism. 
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2.2 Introduction 

Drug developers have long mined small molecule metabolism for new drug targets and 

chemical strategies for inhibition. The approach leverages the “chemical similarity principle” [1] 

which states that similar molecules likely have similar properties. Applied to small molecule 

metabolism, this principle has motivated the search for enzyme inhibitors chemically similar to 

their endogenous substrates. The approach has yielded many successes, including antimetabolites 

such as the folate derivatives used in cancer therapy, and the nucleoside analog pro-drugs used 

for antiviral therapy. However, drug discovery efforts also frequently falter due to unacceptable 

metabolic side-effect profiles or incomplete genomic information for poorly characterized 

pathogens [2,3,4]. 

 

With the recent availability of large datasets of drugs and drug-like molecules, 

computational profiling of small molecules has been performed to create global maps of 

pharmacological activity. This in turn provides a larger context for evaluation of metabolic 

targets. For example, Paolini et al. [5] identified 727 human drug targets associated with ligands 

exhibiting potency at concentrations below 10μM, thus creating a polypharmacology interaction 

network organized by the similarity between ligand binding profiles. Keiser et al. [6] organized 

known drug targets into biologically sensible clusters based solely upon the bond topology of 

65,000 biologically active ligands. The results revealed new and unexpected pharmacological 

relationships, three of which involved GPCRs and their predicted ligands that were subsequently 

confirmed in vitro. Cleves et al. [7] also rationalized several known drug side effects and drug-

drug interactions based upon three-dimensional modeling of 979 approved drugs. However, 

despite the clear rationale and past successes in applying ligand-based approaches to drug 
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discovery, global mapping between drugs and small molecule metabolism, the goal of this study, 

has been hindered by both methodological challenges and incomplete genomic information. The 

relatively recent availability of metabolomes for numerous organisms allows a fresh look on a 

large scale [8,9,10,11,12,13]. 

 

In this work, we link the chemistry of drugs to the chemistry of small molecule 

metabolites to investigate on a large scale the intersection between small molecule metabolism 

and drugs. The Similarity Ensemble Approach (SEA) [6] was used to link metabolic reactions 

and drug classes by their chemical similarity, measured by comparing bond topology patterns 

between sets of molecules. Two types of molecule sets are used in this work. The first comprises 

drug-like molecules known to act at a specific protein target, and the second comprises the 

known substrates and products of an enzymatic reaction. While this approach is complementary 

to target and disease focused methods [5,14,15,16,17,18,19,20,21,22,23], neither protein 

structure nor sequence information is used in the comparisons. Thus, these links provide an 

orthogonal view of metabolism based only upon the chemical similarity between existing drug 

classes and endogenous metabolites. 

 

To provide the results in the context of metabolism, drug “effect-space” maps were also 

created. For each of the 246 drug classes investigated in this work, effect-space maps enable 

visualization of the chemical similarities between drugs and metabolites painted onto human 

metabolic pathways, allowing a unique assessment of potential drug action in humans. In 

addition, to aid target discovery in pathogens, 385 species-specific effect-space maps were 

created to show the predicted effect-space of currently marketed drugs painted onto metabolic 
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pathways representing target reactions in model organisms and pathogens. Examples of these 

maps are provided below and their applications in predicting drug action, toxicity, and routes of 

metabolism are discussed. To enable facile exploration of the drug-metabolite links established 

by this analysis, interactive versions of both sets of maps are available at 

http://sea.docking.org/metabolism.  

 

 Finally, we consider the role of these effect space maps in addressing the challenge of 

new drug target discovery. We have integrated our results with those from essentiality and 

synthetic lethal analysis and applied this information retrospectively to assess metabolic drug 

targets in methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a major pathogen 

causing both hospital- and community-acquired infections that, like many other hospital acquired 

infections, is resistant to at least one of the antibiotics most commonly used for treatment 

[24,25,26,27,28]. A recent meta-analysis shows that MRSA causes more fatalities in the US than 

HIV, underscoring the urgent need for new treatments [29]. 

 

 

2.3 Results 
 

2.3.1 Drug-metabolite links recapitulate known drug-target interactions 
 

To evaluate such the chemical similarity between drug classes and metabolic reactions, 

links between sets of metabolic ligands and sets of drugs were generated according to SEA 

(Figure 1) [6]. The similarity metric consists of a descriptor, represented by standard two-

dimensional topological fingerprints, and a similarity criterion, the Tanimoto coefficient (Tc). 
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Expectation values (E) were calculated for each set pair by comparing the raw scores to a 

background distribution generated using sets of randomly selected molecules (see Methods for 

further details). To represent metabolic ligand sets, the MetaCyc database, which includes 

enzymes from more than 900 different organisms catalyzing over 6,000 reactions, was used [12]. 

The substrates and products of each enzymatic reaction were combined to form a reaction set, 

each of which was required to contain at least two unique compounds. Ubiquitous molecules 

called common carriers, which frequently play critical roles in reaction chemistry but do not 

distinguish the function of a specific enzyme, were removed, leaving a total of 5,056 reactions 

involving 4,998 unique compounds. To represent drugs, a subset of 246 targets of the MDL Drug 

Data Report (MDDR) collection, which annotates ligands according to the targets they modulate, 

was used [30]. These sets contain 65,241 unique ligands with a median and mean of 124 and 289 

ligands per target, respectively. Overall, 246 drug versus 5,056 reaction set comparisons 

involving 1.39 x 109 pairwise comparisons were made.  

 

Although drugs and metabolites typically differ in their physiochemical properties, 

significant and specific similarity links nonetheless emerged. Using SEA at an expectation value 

cutoff of E = 1.0 x 10-10, a previously reported cutoff for significance [6], 54% (132 of 246) of 

drug sets link to an average of 43.7 (median = 10) or 0.9% of metabolic reactions. None of the 

remaining 46% (114 of 246) of drug sets link to any metabolic reaction sets. For instance, while 

the α-glucosidase drug set links to the α-glucosidase reaction (E = 1.00 x 10-51), the thrombin 

inhibitor drug set does not link significantly with any metabolic reaction. The thrombin inhibitor 

drug set targets the serine protease thrombin, which does not participate in small molecule 

metabolism, but rather plays a role in the coagulation signaling cascade. Similarly, 67% (1,790 
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of 5,371) of reaction sets do not link to any MDDR drug set at the expectation value cutoff of E 

= 1.0 x 10-10, but those that do hit an average of 2.8 (median = 2) or 1.1% of drug sets. This is 

strikingly similar to the 0.9% of metabolic sets that an average drug set hits. For instance, the 

metabolite set for the valine decarboxylase reaction, which is not an MDDR drug target, does not 

link significantly to any drug sets, but the retinal dehydrogenase reaction set links, as expected, 

to the retinoid drugs at E = 3.05 x E-98. For full results, see Supplemental Data. 

 

 To determine the recovery rate of known drug-target interactions, it was hypothesized 

that chemical similarity between MetaCyc reaction sets and corresponding MDDR drug sets 

could specifically recover the known drug-target interactions. The 246 MDDR drug set targets 

include 62 enzymes that could be mapped to MetaCyc via the Enzyme Commission (EC) number 

[31] describing the overall reaction catalyzed [32]. The results show that all 62 reaction sets for 

these targets link to at least one MDDR drug set. The majority of best hits (42 out of 62) were 

found at expectation values of E = 1.0 x 10-10 or better (Table 1). At expectation values better 

than E = 1.0 x 10-25, 61% (19 of 31) of best hits recover either the specific known target or 

another enzyme in the same pathway. Examples of specific compounds linked by this analysis 

are given in Table 2 for a selected group of these best-scoring hits. 

 

 Other links recovered off-pathway hits, which often reflect known polypharmacology 

that is well-documented. For example, the glycinamide ribonucleotide formyltransferase 

(GART) inhibitor drug set hits both the GART reaction set (E = 1.55 x 10-82) and the off-

pathway but pharmacologically related antifolate target dihydrofolate reductase (DHFR) (E = 

1.02 x 10-134). Other off-pathway hits reflect biological connections, or physical connections, 
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between targets. For example, the adenosine deaminase reaction set links to the A1 adenosine 

receptor agonist drug set (E = 7.69 x 10-159) (Table 1) capturing the known interaction between 

A1 adenosine receptors and adenosine deaminase on the cell surface of smooth muscle cells [33]. 

Considering only the stringent case of exact matches based on EC numbers, a Mann-Whitney 

rank-sum test (also referred to as the U-test) shows that the expectation values for links between 

reaction sets and drug sets of known drug target enzymes were significantly better than the 

expectation values for links to reaction sets of non-target enzymes, i.e., 62 known enzyme targets 

were recovered in a background of 4,920 non-target “other” enzymes at a statistical significance 

of P = 2.01 x 10-6.  

 

 The predicted links recapitulate many known drug-target interactions and suggest new 

hypotheses about drug-target interactions. One such new prediction involves the phospholipase 

A2 (PLA2) inhibitor drug class. The substrates and products of PLA2 recapitulate its known link 

to the PLA2 inhibitor drug set (E = 9.82 x 10-26), however, the sterol esterase reaction returns an 

even better score against the PLA2 inhibitor set (E = 3.18 x 10-44) (Table 1). Although this 

predicted pharmacological relationship has, to our knowledge, not been previously documented, 

the result is consistent with the known biological relationship between PLA2 and sterol esterase. 

Both enzymes are secreted by the pancreas and require phosphatidylcholine hydrolysis to 

facilitate intestinal cholesterol uptake [34]. Thus, this link suggests that therapeutic agents 

directed against PLA2 may also inhibit sterol esterase, perhaps even more strongly than their 

intended target.  
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2.3.2 Human drug “effect-space” maps detail interactions between drug classes and enzyme 
targets  
 

To present links between small molecule metabolites and drugs in the context of their 

known (and potential) metabolic targets, metabolic “effect-space” maps for currently marketed 

drugs were generated for each of the 246 drug classes investigated in this work. These maps 

enable visualization of the chemical similarities between drugs and metabolites painted onto 

human metabolic pathways, illustrating potential interactions between an individual drug class 

and specific metabolic enzymes in humans. Examples include the nucleoside reverse 

transcriptase, dihydrofolate reductase, and thymidylate synthase inhibitors which target 

pyrimidine nucleotide metabolism and biosynthesis of the essential coenzyme folate (Figure 2 

and Table 3). Using the canonical human metabolic pathways from HumanCyc [35], a subset of 

the BioCyc [12] database collection, reactions in each metabolic network have been colored 

according to their similarity to known drug classes (Figure 2). While Table 1 presents only the 

top link for each of 62 enzyme targets in MetaCyc against the 246 MDDR drug classes, the 

networks in Figure 2 detail all significant hits for selected drug classes against the pyrimidine 

and folate pathways. Interactive versions of these maps, one for each of the 246 drug classes 

included in our analysis, are available online (see below). 

 

It has previously been shown that chemical similarity between known drugs often 

suggests novel drug-target interactions [5,6,7,14]. Consistent with these observations, effect-

space maps such as those shown in Figure 2 can also be used to exploit chemical similarities 

between drugs and metabolites to indicate potential routes of drug metabolism and toxicity 

[3,11,36,37]. For example, the nucleotide reverse transcriptase inhibitors (NRTIs) used in HIV 
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therapy are administered as pro-drugs. The effect-space map reflects this route of NRTI 

metabolism leading to viral inhibition. The top three hits yielded by the NRTI drug set queried 

against human metabolism – thymidine kinase (E = 3.48 x 10-26), thymidylate kinase (E = 7.48 x 

10-28), and deoxythymidine diphosphate kinase (E = 1.54 x 10-24) (reaction numbers 2, 3, and 4 in 

Figure 2A, additional results in Table 3A) – successively phosphorylate the NRTI pro-drugs 

into the pharmacologically active NRTI triphosphates [38,39]. The viral reverse transcriptase 

enzyme then incorporates the fully phosphorylated NRTIs into the growing DNA strand, thereby 

terminating transcription of the viral DNA. In this example, considerable toxicity mitigates the 

therapeutic value of inhibiting viral DNA transcription since the phosphorylated NRTIs directly 

inhibit human nucleotide kinases and mitochondrial DNA pol-γ. They also may be incorporated 

by pol-γ into the growing human mitochondrial DNA strand, and once incorporated are 

inefficiently excised by DNA pol-γ exonuclease [40]. Thus, the effect-space map illustrates both 

the route of metabolism and a mechanism of toxicity for NRTIs in humans. 

 

Drug effect-space maps also offer a broad glimpse of potential human metabolic 

interactions predicting new “polypharmacology”. From the ligand perspective, “drug 

polypharmacology” refers to a single drug or drug class that hits multiple targets. For example, 

dihydrofolate reductase (DHFR, reaction number 7 in Figure 2) uses NADPH to reduce 7,8-

dihydrofolate to tetrahydrofolate. Antifolate drugs inhibit DHFR, and, as expected, the DHFR 

drug set recovers the DHFR reaction substrates and products as the top similarity hit in human 

metabolism (E = 1.46 x 10-82) (Figure 2B, Table 3A, Table 4). However, at least 20 other 

reactions also use folate coenzymes in human metabolism [41,42,43]. Accordingly, SEA finds 

additional links between the DHFR drug set and established antifolate targets outside the 
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pyrimidine and folate biosynthesis pathways such as serine hydroxymethyltransferase (SHMT, E 

= 2.68 x 10-44), phosphoribosyl-aminoimidazole-carboxamide formyltransferase (AICAR 

transformylase, E = 2.21 x 10-39), and phosphoribosyl-glycinamide formyltransferase (GART, E 

= 2.21 x 10-39) (Table 3A). The effect-space maps in Figure 2 illustrate the results from Table 

3A and Table 4 in a single view, illustrating drug polypharmacology with respect to critical 

metabolic pathways. 

 

Alternatively, from the target perspective, “target polypharmacology” may refer to a 

single target being modulated by multiple classes of drugs. For instance, thymidylate synthase 

(TS) is another classic antifolate target that uses a folate coenzyme to methylate deoxyuridine 

phosphate, generating deoxythymidine phosphate [44,45,46,47]. As expected, the TS reaction 

links to known antifolate drug classes such as GART inhibitors (E = 4.76 x 10-73) and DHFR 

inhibitors (E = 1.91 x 10-48) (Tables 3B and 4). However, TS is also effectively inhibited by 

uracil analogs such as fluoropropynyl deoxyuridine, which is not a folate, but rather a pyrimidine 

analog. Accordingly, the TS reaction also links to reverse transcriptase inhibitors, which include 

fluoropropynyl deoxyuridine and additional pyrimidine analogs such as azidothymidine (AZT) 

(E = 5.68 x 10-11) (Table 4). The target polypharmacology of the thymidylate synthase enzyme is 

mirrored by the drug polypharmacology of the thymidylate synthase inhibitors. The TS inhibitors 

link not only to the reactions of deoxyribonucleotide biosynthesis including thymidylate synthase 

(E = 2.54 x 10-75), but also the GART (E = 1.50 x 10-60) and DHFR (E = 1.96 x 10-123) reactions 

(Figure 2C and Table 3). Thus, SEA recapitulates the known polypharmacology of TS. Effect-

space maps illustrate and clarify these pharmacological relationships. 
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2.3.3 Species-specific effect-space maps for drug discovery in pathogens 
 

The great diversity of metabolic strategies, pathways, and enzymes present in humans, 

model organisms, and pathogenic species constitutes not only a major challenge, but also an 

opportunity for drug discovery. To visualize the drug-metabolite links identified in this work in a 

drug discovery context, species-specific effect-space maps were created for each of 385 

organisms from the BioCyc Database Collection. Target reactions existing in common and 

differentially between each of these species and humans are shown in these metabolic maps. As 

with the human effect-space maps, this set of species-specific effect-space maps is available in 

interactive form online (see below). A static version of the effect-space map for MRSA is shown 

in Figure 3. To illustrate how these maps may be used to integrate different types of drug and 

biological data in a metabolic context (Figure 4), we present a case study on MRSA.  

 

2.3.4 Case study: MRSA 

 

 In the following retrospective case study, we demonstrate how drug-metabolism maps 

may be used to guide drug-target discovery. As described for Figure 2, each node in the MRSA 

network (Figure 3) represents one reaction set, the substrates and products of a single metabolic 

reaction. Edges connect the reactions according to canonical BioCyc MRSA pathways. Each 

reaction in the network has been colored according the expectation value of the best link between 

the reaction set and any of the 246 MDDR drug sets. Lighter colored nodes have higher 

expectation values indicating less drug-like reaction sets, while darker colored nodes indicate 

more drug-like reaction sets. To provide therapeutic context, reactions that are also present in 

human metabolism have been faded, indicating that drug sets targeting these enzymes in MRSA 
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may have the undesirable potential to inhibit the human enzymes as well. As with the other 

organisms represented in our online map set, most reactions in the MRSA subset have little 

chemical similarity to any MDDR drug set. Although 74% of the 469 MRSA metabolic reactions 

have measurable similarity to at least one MDDR drug set, only 36% of these links had 

expectation values of E = 1.0 x 10-10 or better. Several complete pathways of diverse chemical 

classes, including shikimic acid, phospholipid, peptidoglycan, teichoic acid, and molybdenum 

cofactor biosynthesis, lack links to any drug set at all. Only 18 of the 469 MRSA metabolic 

reactions are already known to be drug targets in MDDR. Fourteen of these are represented in 

Figure 3 (as diamonds), but all 18 of these also appear in humans. Human orthologs to the 

MRSA enzymes that catalyze these shared reactions would likely be vulnerable to the same 

inhibitors, putting drugs that target these reactions at risk for toxicity. 

 

 The approach described in this paper may be applied to predict both drug action and 

toxicity at specific enzyme targets. However, successful modulation of the target may not alone 

be sufficient to kill the pathogen due to redundant pathways for the formation of critical 

metabolites. Therefore, we used the metabolic maps to integrate essentiality and synthetic lethal 

data, and thereby provide a more nuanced picture of the potential for drug discovery targeting 

metabolism in MRSA. Using flux balance analysis of the metabolic network, the essential 

enzymes and metabolites that are required for the formation of all necessary biomass 

components of an organism can be identified [48,49]. Such an analysis has recently been 

performed by several of the authors for 13 strains of Staphylococcus aureus¸ including the 

methicillin-resistant N315 strain [50]. In short, the metabolic network was reconstructed from the 
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genome to include all reactions and the essentiality of a given enzyme was then assessed by the 

effect of the removal of that enzyme on biomass production in an ideally rich medium. 

 

From the flux balance analysis, 39 predicted essential reactions could be mapped to our 

dataset (Figure 4). Several of these reactions have been successfully targeted by currently 

marketed drugs. For example, antifolate targets DHFR (E = 1.02 x 10-134), thymidylate synthase 

(E = 2.54 x 10-75), and dihydrofolate synthase (E = 1.35 x 10-70) all score strongly against MDDR 

drug sets. However, while species-specific antifolates do exist, many antifolates such as 

methotrexate used in cancer therapy cause severe toxicity [43]. To avoid such toxicity, 14 of the 

39 essential MRSA reactions that are also present in humans were excluded from further 

consideration. All but two of the remaining 25 essential reactions were accounted for by four 

pathways: folate, tryptophan, histidine, and shikimate biosynthesis. These essential reactions 

include well-validated (but as yet unsuccessful) drug targets such as shikimate kinase in 

chorismate biosynthesis as well as several novel targets [51]. 

 

Only four remaining reaction sets hit against MDDR drug sets with expectation values 

better than 1.0 x 10-10. Of these, MRSA’s uroporphyrin-III methyltransferase reaction, in the 

cobalamin synthesis pathway, was the most similar of all its metabolic reactions to the MDDR 

drug sets. The reaction set and its matching drug sets (including top hits S-adenosyl-

homocysteine hydrolase (SAMH) inhibitors (E = 1.58 x 10-204), adenosine (A2) agonists (E = 

8.11 x 10-140), and adenosine (A1) agonists (E = 7.70 x 10-133)) all contained close analogs of the 

common carrier S-adenosyl-homocysteine (SAH). This common carrier was not filtered because 

it occurred in the network at a frequency below the threshold set in Methods. Despite the 
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ubiquity of this cofactor in essential human reactions and the concern for side-effects [52], SAH 

analogs have long been recognized as potent methylation inhibitors and potential antimicrobials 

[53]. Most other enzymes in the cobalamin pathway also use SAH as a cofactor and thus link 

prominently to MDDR (Figure 4) although they themselves are not predicted essential. The 

remaining three top hits among essential reactions, histidinol dehydrogenase (E = 4.22 x 10-16), 

tryptophan synthase (E = 1.31 x 10-19), and anthranilate phosphoribosyltransferase (E = 4.27 x 

10-15) show more modest chemical similarity to MDDR drug sets. While these links may suggest 

potentially useful drug targets, the expectation values fall outside the more stringent empirical 

cutoff of 1.0 x 10-25 for exact or same pathway matches noted in Table 1.  

  

Due to the lack of essential MRSA reactions with strong links to MDDR, synthetic lethal 

reactions that could be targeted in combination were investigated as new drug target alternatives. 

Again using predictions from flux balance analysis [50], 19 synthetic lethal enzyme pairs were 

mapped to MRSA (Figure 4). All but one of the synthetic lethal pairs, arogenate and prephenate 

dehydrogenase in tyrosine precursor biosynthesis, had at least one orthologous enzyme also 

present in humans. Of all the potential targets without human orthologs, whether essential or 

synthetic lethal, the arogenate dehydrogenase reaction set found the strongest links to MDDR 

drug sets (E = 4.80 x 10-28). Interestingly, both arogenate and prephenate dehydrogenase are 

catalyzed by the tyrA enzyme in the same active site, making tyrA essential for MRSA survival 

[54]. Furthermore, arogenate dehydrogenase was also predicted to be synthetic lethal with 

aspartate aminotransferase (AAT). Based upon the SEA results, combined with the MRSA 

synthetic lethal analysis, we found tyrA and AAT to be the targets most accessible to current 

drug chemistry. Consistent with this blind prediction, numerous inhibitors for both enzymes, 
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such as m-fluorotyrosine for tyrA and aminooxyacetate for AAT, have been previously reported 

in the literature [55,56,57,58,59]. Species-specific maps such as MRSA’s (Figure 3) 

complement flux-balance analysis and other approaches, enabling systematic analysis of new 

strategies for attacking many pathogenic organisms.  

 

A compilation of all of the metabolic network maps generated in this study is available at 

http://sea.docking.org/metabolism. These include interactive versions of the human effect-space 

maps shown in Figure 2, one for each of the 246 MDDR drug classes analyzed in this work, and 

385 species-specific maps such as that shown in Figure 3. The species-specific maps were 

generated from the BioCyc database public collection, a compendium of 385 model organisms 

and pathogens whose genomes have been sequenced and their metabolomes deciphered. Of 

these, 65 have been designated as Priority Pathogens by the National Institute of Allergy and 

Infectious Diseases (NIAID) and include Bacillus anthracis, Brucella melitensis, 

Cryptosporidium parvum, Salmonella, SARS, Toxoplasma gondii, Vibrio cholerae, and Yersinia 

pestis [60]. Browse and similarity search tools are also provided, allowing exploration of the 

metabolic reaction sets and current drug classes used in this work, as well as comparison to user-

defined custom ligand sets. These interactive tools enable facile exploration between the vast 

biological data on potential metabolic drug targets in these organisms and the drug chemistry 

currently available to prosecute those targets.  

 

 

2.4 Discussion 
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A key product of this study is the construction of drug-metabolite correspondence maps 

that provide a more contextual picture of predicted drug action in human metabolism than has 

been previously available. Two aspects of these maps deserve particular emphasis. First, despite 

the differences in physiochemical properties of most drugs and small molecule metabolites, 

numerous links arise between drugs and metabolism. Viewed in the context of metabolic 

networks, the pharmacological relationships predicted by these links become biologically 

sensible. Moreover, retrospective analysis shows that these connections are biologically and 

pharmacologically significant. The links capture known polypharmacology and may predict 

potential targets that have been previously unrecognized. They reveal the relevant chemotypes 

previously explored in drug development and provide new tools to further interrogate the links 

between drugs and metabolism. Second, by integrating chemical and biological information with 

the metabolic context, our approach provides metabolome-wide exploratory tools to guide target 

identification and indicate routes of drug metabolism and toxicity.  

 

With respect to the coverage of drug links across small molecule metabolism that this 

study provides, we note that the SEA method relies solely upon the chemical similarity of 

ligands to establish links between drug sets and reaction sets. Based on these links, and the 

biologically sensible connections shown in the results, we infer that a particular drug class may 

act on a certain target. However, drugs may also act against a target without resembling the 

endogenous substrate, for example, by allosteric regulation. The SEA method, as applied here to 

the substrates and products of metabolic reactions, does not capture these additional drug-target 

links. To estimate the frequency of such cases that fall beyond the scope of this study, the results 

reported in Table 1 provide some answers. Of the 62 known enzyme targets in MetaCyc, 42 
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(68%) the substrate/product metabolite sets show significant chemical similarity to at least one 

MDDR drug set, establishing a reasonable first pass estimate for the percentage of current 

enzyme targets accessible to the approach presented here.  

 

2.5 Conclusion 
 

Using the SEA method, we have shown that comparison between ligand sets representing 

MDDR drug classes and ligand sets representing the substrates and products of metabolic 

reactions yields links between known drugs and enzyme targets at high statistical significance. 

Because the method is based on chemical similarity and requires only information from these 

molecule sets rather than the sequence, structure or physiochemistry of the targets, this ligand-

based approach is independent from, and complementary to, protein structure and sequence 

based methods. The results also suggest the potential of this method for predicting previously 

unknown interactions between drug classes and metabolic targets, recovering routes of 

metabolism and toxicity in in humans, and identifying potential drug targets in emerging 

pathogens. Thus, by mapping the chemical diversity of drugs to small molecule metabolism 

using ligand topology, this work establishes a computational framework for ligand-based 

prediction of a drug class’s action, metabolism, and toxicity.  

 

 

2.6 Methods 
 

2.6.1 Compound sets. All compounds, both drugs and metabolites, are represented using 

Daylight SMILES strings [61]. Sets comprised of isomers with unique compound names were 
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retained, even though stereochemistry was later removed as part of the molecule fingerprinting 

process.  

 

2.6.2 Ligand sets. Reaction sets were extracted from the 8.15.2007 release of MetaCyc based 

upon the substrates and products annotated to each reaction. Two filters were applied. First, the 

ten most common metabolites based on the number of occurrences in the MetaCyc metabolic 

network were removed: water, ATP, ADP, NAD, pyrophosphate, NADH, carbon dioxide, AMP, 

glutamate, and pyruvate. Second, each reaction set was required to include at least two unique 

compounds, as indicated by a MetaCyc or a MDDR unique compound id.  

 

2.6.3 Drug sets. Drug sets were extracted from the MDDR, a compilation of about 169,000 

drug-like ligands in 688 activity classes, each targeting a specific enzyme (designated by the 

Enzyme Commission (E.C.) number). The subset of this database for which mappings between 

enzymes and the MDDR drug classes were available was used. These mappings were based on a 

previous study that maps E.C. numbers, GPCRs, ion channels and nuclear receptors to MDDR 

activity classes [32]. Only sets containing five or more ligands were used. Salts and fragments 

were removed, ligand protonation was normalized and duplicate molecules were removed. Of the 

688 targets in the MDDR, 97 were excluded as having too few ligands (<5), and another 345 

targets were excluded because their definitions did not describe a molecular target, e.g., drugs 

associated only with an annotation such as "Anticancer" were not used. The remaining 246 

enzyme targets were together associated with a total of 65,241 unique ligands, with a median and 

mean of 124 and 289 drug ligands per target. For further details, see Keiser et al. [6].  
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2.6.4 Set comparisons. All pairs of ligands between any two sets were compared using a pair-

wise similarity metric, which consists of a descriptor and a similarity criterion. For the similarity 

descriptor, standard two-dimensional topological fingerprints were computed using the Scitegic 

ECFP4 fingerprint [62]. The similarity criterion was the widely used Tanimoto coefficient (Tc) 

[63]. For set comparisons, all pair-wise Tcs between elements across sets were calculated, and 

those scoring above a threshold were summed, giving a raw score relating the two sets. The 

Tanimoto coefficient threshold of 0.32 was determined according to a previously published 

method based upon fit to an extreme value distribution [6]. A model for random similarity 

similar to that used by BLAST [64] was used to generate expectation (E) values which are used 

to describe the strengths of relationships discovered using this protocol [6]. All scores reported 

here are based upon the background distribution and cutoff scores generated using the drug sets 

extracted from the MDDR collection. For further details, see Keiser et al. [6]. Network 

visualization was performed in Cytoscape 2.6.2 [65] using the γ-files hierarchical layout 

algorithm. 

 

2.6.5 MRSA essentiality and synthetic lethal analysis.  

Essentiality and synthetic lethal data generated as described earlier [49]. Briefly, the metabolic 

network was reconstructed from the genome to include all reactions that have an active flux The 

essentiality of a given enzyme was then assessed by the effect of the removal of that enzyme on 

biomass production. Similarly, synthetic lethal pairs can be identified by systematic pairwise 

deletion of enzymes and recalculation of biomass production in an ideally rich medium. 
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Figure 2.1| Similarity Ensemble Approach (SEA) 
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Figure 2.2 | Effect-space map showing chemical similarity between drugs and metabolites in human 
folate and pyrimidine biosynthesis. Each node represents one reaction set – the substrates and products 
of a single human metabolic reaction. Edges connect the reactions in the canonical pathway as annotated 
in HumanCyc [35]. As given in the color key, each reaction is colored according to the expectation value 
indicating the strength of similarity between that target reaction set and the respective MDDR drug sets 
represented in panels A-C. Diamond shaped nodes indicate reactions catalyzed by enzymes annotated as 
known drug targets in the MDDR; circles indicate reactions catalyzed by enzymes not annotated as 
targets. Reaction key: 1. Deoxyuridine kinase 2. Thymidine kinase 3. Thymidylate kinase 4. 
Deoxythymidine diphosphate kinase 5. Thymidylate synthase (TS) 6. Methylene tetrahydrofolate 
reductase 7. Dihydrofolate reductase (DHFR) 8. Deoxyuridine diphosphate kinase 9. Deoxyuridine 
triphosphate diphosphatase 
 
Figure 2.2.A| Effect-space map – Nucleoside reverse transcriptase inhibitors (NRTIs) 

 
Figure 2.2.B| Effect-space map – Dihydrofolate reductase (DHFR) inhibitors 

  
Figure 2.2.C| Effect-space map – Thymidylate synthase (TS) inhibitors 
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Figure 2.3| Effect-space map showing chemical similarity between drugs and metabolites in MRSA. 
Canonical pathway representation of methicillin-resistant Staphylococcus aureus (MRSA) [12] small 
molecule metabolism colored by expectation value of the best hit against MDDR. Reactions that are also 
present in humans have been faded. Layout based upon the Cytoscape 2.5 y-files hierarchical layout. 
Edge lengths are not significant. For ease of viewing, reactions are not labeled but can be identified in the 
interactive versions of the maps available at the online resource. 
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Figure 2.4| Essential/synthetic lethal map of MRSA metabolism. Canonical pathway representation of 
methicillin-resistant Staphylococcus aureus (MRSA) small molecule metabolism colored by essentiality 
and synthetic lethality of reactions. 
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Key: 
Black = Essential reaction 

Other colors = Synthetic lethal reaction pairs 
Node size = similarity to top MDDR hit (bigger is more drug-like) 

Diamond shape = MDDR drug target 
Faded border = human reaction 
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Table 2.1| Metabolic enzyme targets and their best links to MDDR.  

 

Enzyme Targeta EC# Best Hit MDDR Drug Set 
Best Hit 
E-value 

Adenosine kinase 2.7.1.20 
S-Adenosyl-L-Homocysteine Hydrolase 
Inhibitor 4.38E-288 

Adenosylmethionine decarboxylase 4.1.1.50 
S-Adenosyl-L-Homocysteine Hydrolase 
Inhibitor 2.71E-216 

Thromboxane-A synthase 5.3.99.5 Prostaglandin 1.66E-204 

Adenosylhomocysteinase 3.3.1.1 
S-Adenosyl-L-Homocysteine Hydrolase 
Inhibitor 4.73E-203 

Adenosine deaminase 3.5.4.4 Adenosine (A1) Agonist 7.69E-159 
Thymidine kinase 2.7.1.21 Thymidine Kinase Inhibitor 3.19E-151 

Dihydrofolate reductase 1.5.1.3 
Glycinamide Ribonucleotide 
Formyltransferase Inhibitor 1.02E-134 

Catechol O-methyltransferase 2.1.1.6 
S-Adenosyl-L-Homocysteine Hydrolase 
Inhibitor 4.67E-127 

Prostaglandin-endoperoxide synthase 1.14.99.1 Prostaglandin 8.57E-110 
Purine-nucleoside phosphorylase 2.4.2.1 Adenosine (A1) Agonist 8.35E-105 

Ribose-phosphate pyrophosphokinase 2.7.6.1 
S-Adenosyl-L-Homocysteine Hydrolase 
Inhibitor 4.33E-91 

Phosphoribosylglycinamide 
formyltransferase 2.1.2.2 

Glycinamide Ribonucleotide 
Formyltransferase Inhibitor 1.55E-82 

Phosphoribosylaminoimidazolecarboxamide 
formyltransferase 2.1.2.3 

Glycinamide Ribonucleotide 
Formyltransferase Inhibitor 9.12E-80 

3',5'-cyclic-nucleotide phosphodiesterase 3.1.4.17 
S-Adenosyl-L-Homocysteine Hydrolase 
Inhibitor 1.23E-77 

Thymidylate synthase 2.1.1.45 Thymidylate Synthetase Inhibitor 2.54E-75 
Steryl-sulfatase 3.1.6.2 Aromatase Inhibitor 4.90E-62 
Guanylate cyclase 4.6.1.2 Purine Nucleoside Phosphorylase Inhibitor 2.68E-60 
Cholestenone 5-alpha-reductase 1.3.1.22 Steroid (5alpha) Reductase Inhibitor 3.63E-60 
Steroid 17-alpha-monooxygenase 1.14.99.9 Steroid (5alpha) Reductase Inhibitor 1.37E-58 

RNA-directed DNA polymerase 2.7.7.49 
S-Adenosyl-L-Homocysteine Hydrolase 
Inhibitor 1.06E-52 

Alpha-glucosidase 3.2.1.20 Glucosidase (alpha) Inhibitor 1.00E-51 
Farnesyl-diphosphate farnesyltransferase 2.5.1.21 Squalene Synthase Inhibitor 2.12E-46 
Beta-galactosidase 3.2.1.23 Glucosidase (alpha) Inhibitor 4.04E-46 
Sterol esterase 3.1.1.13 Phospholipase A2 Inhibitor 3.18E-44 
Leukotriene-A4 hydrolase 3.3.2.6 Prostaglandin 5.16E-40 
Squalene monooxygenase 1.14.99.7 Squalene Synthase Inhibitor 7.59E-40 

Ribonucleoside-diphosphate reductase 1.17.4.1 
S-Adenosyl-L-Homocysteine Hydrolase 
Inhibitor 2.47E-38 

3-hydroxyanthranilate 3,4-dioxygenase 1.13.11.6 
3-Hydroxyanthranilate Oxygenase 
Inhibitor 1.14E-33 

Dihydroorotase 3.5.2.3 Dihydroorotase Inhibitor 2.25E-32 
Nitric-oxide synthase 1.14.13.39 Nitric Oxide Synthase Inhibitor 8.86E-28 
Phospholipase A2 3.1.1.4 Phospholipase A2 Inhibitor 9.82E-26 
Diaminopimelate epimerase 5.1.1.7 Nitric Oxide Synthase Inhibitor 2.43E-24 
Membrane dipeptidase 3.4.13.19 Nitric Oxide Synthase Inhibitor 2.81E-23 
3-alpha(or 20-beta)-hydroxysteroid 
dehydrogenase 1.1.1.53 Aromatase Inhibitor 1.51E-22 
Sterol O-acyltransferase 2.3.1.26 Adenosine (A2) Agonist 4.95E-22 
Hydroxymethylglutaryl-CoA reductase 
(NADPH) 1.1.1.34 Adenosine (A2) Agonist 4.95E-22 
IMP dehydrogenase 1.1.1.205 Adenosine (A1) Agonist 8.98E-17 
ATP-citrate (pro-S-)-lyase 4.1.3.8 Adenosine (A2) Agonist 1.83E-15 
Glutamate--cysteine ligase 6.3.2.2 Nitric Oxide Synthase Inhibitor 2.71E-11 
Dopamine-beta-monooxygenase 1.14.17.1 Adrenergic (beta1) Agonist 3.81E-11 
Lanosterol synthase 5.4.99.7 Squalene Synthase Inhibitor 1.38E-10 
Nucleoside-diphosphate kinase 2.7.4.6 P2T Purinoreceptor Antagonist 2.76E-10 

aExact matches (the enzyme is the canonical target of the best MDDR hit) are shown in bold type, pathway matches 
(the enzyme shares the same pathway as the canonical target of the best MDDR hit) are shown in normal type, and 
enzymes not in the same pathway as the canonical target are shown in  italic type. 
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Table 2.2| Selected best hits between MetaCyc reaction sets and MDDR drug sets 
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Table 2.3| Selected links between human metabolic reactions and current drugs.  
A. Select drug classes link to human metabolic reactionsa 

Rank Thymidylate Synthetase (TS) Inhibitor E-value 
1 Dihydrofolate reductase (DHFR) 1.96E-123
2 Methyltetrahydrofolate-corrinoid-iron-sulfur protein methyltransferase 3.58E-102
3 Methionyl-tRNA formyltransferase 1.97E-99
4 Methylenetetrahydrofolate reductase 2.67E-86
5 Thymidylate synthase (TS) 2.54E-75
6 Formate-tetrahydrofolate ligase 1.44E-74
7 Dihydrofolate synthetase 1.35E-70
8 Aminomethyltransferase 7.13E-63
9 5-methyltetrahydrofolate-homocysteine S-methyltransferase 2.80E-62

10 Phosphoribosylaminoimidazolecarboxamide (AICAR) formyltransferase 1.50E-60
11 Phosphoribosylglycinamide formyltransferase (GART) 1.50E-60

Rank Dihydrofolate Reductase (DHFR) Inhibitor E-value 
1 Dihydrofolate reductase (DHFR) 1.46E-82
2 Methyltetrahydrofolate-corrinoid-iron-sulfur protein methyltransferase 2.84E-75
3 Methylenetetrahydrofolate reductase 6.01E-73
4 Methionyl-tRNA formyltransferase 7.00E-66
5 Aminomethyltransferase 6.90E-55
6 Formate-tetrahydrofolate ligase 6.15E-49
7 Thymidylate synthase (TS) 1.91E-48
8 5-methyltetrahydrofolate-homocysteine S-methyltransferase 2.60E-45
9 3-methyl-2-oxobutanoate hydroxymethyltransferase 2.68E-44

10 Glycine decarboxylase 2.68E-44
11 Glycine hydroxymethyltransferase (SHMT) 2.68E-44
12 Dihydrofolate synthetase 9.65E-42
13 Phosphoribosylaminoimidazolecarboxamide (AICAR) formyltransferase 2.21E-39
14 Phosphoribosylglycinamide formyltransferase (GART) 2.21E-39

Rank Nucleoside Reverse Transcriptase Inhibitor (NRTI) E-value 
1 Thymidylate kinase 7.48E-28
2 Thymidine kinase 3.48E-26
3 Deoxythymidine diphosphate kinase 1.54E-24
4 Ribonucleoside-triphosphate reductase 2.88E-14
5 Deoxyuridine triphosphate pyrophosphatase 5.60E-12
6 Deoxyuridine kinase 1.14E-11
7 Deoxyuridine diphosphate kinase 1.45E-11
8 Thymidylate synthase (TS) 5.68E-11

B. Select metabolic reactions link to current drug classesb 
Rank Thymidylate Synthetase (TS) Reaction E-value 

1 Thymidylate synthase inhibitor (TS) 2.54E-75
2 Glycinamide ribonucleotide formyltransferase inhibitor (GART) 4.76E-73
3 Thymidine kinase inhibitor (TK) 1.18E-62
4 Dihydrofolate reductase inhibitor (DHFR) 1.91E-48
5 Folylpolyglutamate synthetase inhibitor 2.27E-31
6 Nucleoside reverse transcriptase inhibitor (NRTI) 5.68E-11

Rank Dihydrofolate Reductase (DHFR) Reaction E-value 
1 Glycinamide Ribonucleotide Formyltransferase Inhibitor 1.02E-134
2 Thymidylate Synthetase Inhibitor 1.96E-123
3 Dihydrofolate Reductase Inhibitor 1.46E-82
4 Folylpolyglutamate Synthetase Inhibitor 3.15E-62

a Top ranked links to human metabolic reaction sets using select MDDR drug classes as query sets 
b Top ranked links to MDDR drug classes using selected human metabolic reactions as query sets 
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Table 2.4| Selected links between MDDR drug classes and human folate and  
pyrimidine metabolism 
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Chapter 3.  Global Predictors for the 
Evolutionary Rates of Enzymes 

 

 

3.1 Abstract 

 

 Numerous variables have been invoked as predictors for the evolutionary rates of 

proteins. While expression level is the most prominent, the independent contribution of 

each variable is inherently difficult to discern due to shared mechanisms and overlapping 

statistical effects. For enzymes, we propose that three key selectable properties represent 

important, and separable, axes of evolutionary constraint. First, we investigate gene 

expression, which requires proper folding and thermodynamic stability to produce 

functional proteins. Second, homologs with similar structure but dissimilar molecular 

function represent a protein’s inherent structural constraints or evolvability. Finally, the 

output of metabolic systems, the chemical conversion of a substrate through multiple 

reactions into a biologically useful product, constitutes a key aspect of organismal fitness. 

In Saccharomyces small molecule metabolism, expression level is the single strongest 

predictor of evolutionary rate as measured by mRNA level (rdn = -0.49, rω = -0.25, n = 

1745 genes) and codon adaptation index (rdn = -0.74, rω = -0.46, n = 145 genes). 

Coexpression, in contrast to expression level, does not correlate strongly with 

evolutionary rate (rdn = 0.09, rω = 0.07, n = 98 genes). We demonstrate a correlation in 

evolutionary rate (dn) and selective pressure (ω) between structural superfamily members 

(rdn = 0.25, rω = 0.24, n = 264 genes) and metabolic network neighbors (rdn = 0.29, rω = 
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0.29, n = 143 genes), respectively. Taken together, metabolic network neighbors and 

superfamily members correlate significantly better in measures of evolutionary rate and 

selective pressure than either constraint alone (rdn = 0.56, rω = 0.53, n = 100 genes). These 

predictors are measurable in genomic data, can be relatively weighed, and contribute 

information independent from expression level. Together with expression level and 

dispensability, these predictors explain the majority of variance in dn across our dataset 

(rdn
2 = 0.65, n = 64). 

 

3.2 Background 
 

3.2.1 Introduction 

 

 Many hypotheses have been offered regarding the correlation between expression 

level and evolutionary rate, but the precise mechanisms remain elusive [1-3]. It has been 

suggested that highly expressed proteins are involved in more critical biological 

functions, and therefore are subject to stronger purifying selection. Another view 

recognizes that proper folding and thermodynamic stability are pre-requisites for proper 

protein function. The severity of deleterious mutations and the burden of unfolded, 

misfolded, or unstable proteins increases with expression level. Therefore, biological 

systems should be less tolerant of change in highly expressed proteins. A third 

hypothesis, translational selection, supposes that differences between amino acids in 

codon usage bias, based upon the speed, accuracy, and metabolic cost of translation, 

could constrain evolutionary rates. By ‘constrain’ we mean that some amino acid changes 

improve protein function and are selected for, others are neutral and subject to drift, while 
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many disrupt function and are selected against. Finally, the effects on evolutionary rate 

could also be caused, or at least enhanced, by secondary correlations with other variables. 

 

 Among these additional properties that have been correlated with evolutionary 

rate are dispensability, functional class, expression breadth, developmental timing, and 

degree of connectivity in protein-protein interaction networks [2-8]. The requirements of 

selection at various levels of function in biological systems differ tremendously from site-

specific protein structural constraints in proteins or protein complexes [9-12], to 

translational efficiency [1, 2, 13], to substrate flow in metabolic pathways [14-16]. 

Overlapping effects of these properties complicate the analysis of evolutionary rates. For 

instance, genome regions with elevated mutation rates also show increased recombination 

rates and higher expression levels, while high recombination rates and expression 

correlate with reduced fixation rates for harmful mutations [2]. 

 

 For enzymes, we propose that in addition to gene expression two key selectable 

properties of metabolic systems – structural similarity in homologs of dissimilar function 

and the output of metabolic pathways – represent important axes of constraint that 

uniquely distinguish metabolic pathways from other biological systems. First, 

investigation of structural homologs of dissimilar function allows dissection of the 

structural constraints on enzyme evolution from overlapping constraints on their 

functional roles in metabolic pathways. Second, the chemical conversion of a substrate, 

via multiple reactions within a metabolic pathway, into a biologically useful product 

provides the primary readout of metabolic fitness. To provide an estimate of the overall 
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importance of structural homologs and metabolic pathway context as predictors of 

evolutionary rates, we have compared the contribution of these two properties to those of 

both expression level and coexpressed groups of genes. Together these constitute a third 

axis of gene expression. Despite the importance of all these axes of constraint for 

understanding the evolutionary rates of enzymes, no analyses have yet addressed the 

relative extent to which they make independent contributions to evolutionary rate and 

selective pressure in the evolution of metabolic enzymes. Dissecting the individual 

contribution of each of these determinants will provide additional insight into the detailed 

mechanisms by which biological systems evolve. 

 

 To achieve this goal, we have three primary aims. First, to better understand the 

sources of variation in evolutionary rates, we aim to determine to what extent expression 

level accounts for variation in the evolutionary rates of enzymes, and whether the 

addition of orthogonal information improves these correlations. We also investigate 

correlations in evolutionary rate between coexpressed genes in the same transcriptional 

module. Given the challenges of obtaining protein and mRNA expression profiles for 

each new model organism studied, we are particularly interested in predictors of a gene’s 

evolutionary rate encoded directly in the genome. We therefore included codon 

adaptation index in our analyses, along with mRNA level and protein abundance, as a 

proxy measure of expression level. 

 

 Second, we wish to determine whether homologs with similar structure but 

dissimilar function correlate in evolutionary rate. Therefore, we investigate correlations 
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in evolutionary rate among superfamily members as defined by the Structural 

Classification of Proteins (SCOP) [17]. SCOP superfamilies by definition descend from a 

common ancestor and share similar protein structures, but often encompass highly 

divergent sets of enzymes that can catalyze distinct and even widely different chemical 

reactions. These diverse superfamilies may be related through a similar aspect of 

function, such as binding of the same substrate or substrate sub-structure, or performing 

the same partial chemical reaction, both of which can be associated with conserved 

structural features [11]. Superfamilies frequently span sequences with less than 30% 

identity. Given strong structural similarity coupled with such great sequence divergence, 

we ask whether superfamily members correlate in evolutionary rate. By focusing upon 

evolutionarily related structures in the same superfamily, but annotated to distinct 

metabolic reactions, we aim to capture constraints on evolvability inherent in the 

structure and not based upon a single enzymatic function. 

 

 Third, we investigate whether metabolic network context is correlated with 

evolutionary rate. Evolutionary rate correlations have frequently been reported for 

protein-protein interaction networks [18, 19]. However, small molecule metabolic 

networks are distinct in that the majority of enzymes catalyzing the reactions of central 

metabolism are not known to directly bind or complex with each other [20]. Therefore, 

unlike protein-protein interaction networks, any correlations in evolutionary rate are 

likely due to causes other than compensating mutations at binding interfaces. Rather, 

these correlations may relate to an organism’s need to maintain an appropriate 

relationship in timing and concentration of small molecule substrate flow through 
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metabolic pathways. In other work, metabolic network context has been addressed in 

terms of flux analysis, which also presumes the primary importance to fitness of an 

appropriate level of substrate flow through metabolic pathways [8]. 

 

3.2.2 A Pairs-based Approach 
 

 In this work, we focus on evolutionary rate correlations among three groups of 

small molecule metabolic enzymes – coexpressed enzymes in the same transcriptional 

module, enzymes in the same structural superfamily but with different overall reactions, 

and enzymes adjacent in the metabolic network. We conducted our study using the yeast 

Saccharomyces cerevisiae and its three close relatives S. paradoxus, S. mikatae, and S. 

bayanus. Together, these genomes provide excellent resolution of molecular evolution 

across a phylogeny of closely related eukaryotic organisms. Advantages of using the 

Saccharomyces yeast model system include detailed expression profiles [21, 22], well-

characterized biochemical pathways from the Saccharomyces Genome Database (SGD 

[23]), and widely available protein structure data (SCOP). 

 

 To dissect the role of protein structure and metabolic network context from 

expression level in small molecule metabolic enzyme evolution, we compare pairs of 

enzymes with respect to the three axes of constraint investigated in this paper, i.e. pairs of 

structurally related enzymes, pairs of enzymes adjacent in the metabolic network, and 

pairs of enzymes expressed together. Metabolic network context constantly varies as the 

metabolic network neighbors differ for every enzyme. The same is true for superfamily 

membership and transcriptional modules. Pairs-based analyses account for this constantly 



49 
 

changing perspective. Metabolic pathways, superfamilies, and transcriptional modules 

also vary widely in size. Reliable ortholog sets and evolutionary rate information are not 

available for every enzyme. Our pairs-based approach was designed to manage these 

variations. 

 

Using S. cerevisiae as our model system, we first generate three sets of pairs 

representing constraints of interest: all possible enzyme pairs in the same structural 

superfamily excluding identical pairs, all enzyme pairs that catalyze adjacent reactions in 

the metabolic network, and all possible pairs in the same transcriptional module 

excluding identical pairs (see Supplemental Data). We then map evolutionary rates to 

these S. cerevisiae enzyme pairs. We use previously published rates from orthologs that 

can be clearly identified across the four closely related Saccharomyces yeast species: 

evolutionary rate (dn), synonymous mutation rate (ds), and selective pressure (dn/ds = ω). 

These data have previously been corrected for the well-known codon usage bias in S. 

cerevisiae [24, 25]. When evolutionary rate information for an enzyme is not available 

across all four yeast species, all pairs that contain that enzyme are excluded from 

analysis. The correlation between pairs can then be calculated across the three sets of 

pairs. Significance estimates are obtained by comparison to a label-permuted null model. 

For further details, see relevant sections below and Methods. 

 

3.3 Results 
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3.3.1 Expression Level Accounts for Largest Percentage of Evolutionary Rate 

Variance 

 

We begin by asking how much of the variation in evolutionary rate across our 

dataset is accounted for by expression level, and how much may be due to other factors. 

Following the method of Drummond et al., we applied principal component analysis 

(PCA) to our small molecule metabolic enzyme dataset. Using the Drummond et al. 

variables as a starting point, we performed PCA with the following seven variables: 

codon adaptation index (CAI), mRNA level, protein abundance, dispensability, 

superfamily average dn, metabolic network neighbor average dn, and (in analogy to 

protein-protein interaction networks) degree of connectivity in the metabolic network (n 

= 64). A strength of PCA is that it does not assume independence among variables. 

Therefore, it is frequently applied to reduce the dimensionality of datasets and find the 

subset of variables that account for the greatest variance. 

 

 Two strongly significant components emerge from PCA of the evolutionary rates 

(components 1 and 2 from Fig. 1). Component 1 totals 33% of the overall variance and is 

dominated by measures related to expression level including codon adaptation index, 

mRNA level, and protein level. Component 2 is the next largest comprising 30% of the 

total variance. This component contains measures related to network context (degree of 

connectivity in the metabolic network and average dn of enzymes adjacent in the 

network), homologous structures (average dn of an enzyme’s SCOP superfamily 

members excluding the enzyme itself), and dispensability (a measure of gene essentiality 
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from knockout studies). The emergence of dispensability and network connectivity in 

consistent with previous reports ([8] 

 

 As shown in Table 1, expression related measures explained the greatest 

percentage of the overall variance in dn, 29%. Superfamily members, enzymes adjacent in 

the metabolic network, and degree of connectivity in the metabolic network together 

explain and additional 24% of the overall variance in dn. The opposite was true for 

selective pressure (ω) with superfamily members, adjacent enzymes, and connectivity 

collectively explaining 34% of the total variance, and expression level just 19%.  

Dispensability was the largest single variable contributing to variance in ω at 18%. All 

seven variables used in the PCA together accounted for 65% of the total variance in dn 

(multiple rdn
2 = 0.6497, adjusted rdn

2 = 0.6059, P = 9.073e-11) and 70% of the total 

variance in ω (multiple rdn
2 = 0.704, adjusted rdn

2 = 0.667, P = 9.862e-13). These results 

confirm previously reported correlations between dn and expression level [2, 3, 5, 26], as 

well as dn and dispensability, but still leave 35% of the overall variance in evolutionary 

rate unaccounted for. We now focus on the contributions of protein structure and 

metabolic network context, which have not previously been addressed in an integrated 

analysis, to variance in evolutionary rate. 

 

3.3.2 Evolutionary Rates Correlate among SCOP Superfamily Members 
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 We examined whether structurally related enzymes, i.e. members of the same 

SCOP superfamily, significantly share measures of evolutionary rate and selective 

pressure and contribute to the overall variance in evolutionary rate. As defined by the 

Structural Classification of Proteins Database, superfamilies contain proteins with 

significant sequence divergence, but whose structures suggest that a common 

evolutionary origin is probable [17]. Despite clear structural similarity, sequence identity 

between superfamily members generally falls below 30%, and these homologs often 

perform distinct chemical reactions. 

 

Our dataset contains 96 SCOP superfamilies for which evolutionary rate data are 

available for at least two members. Our results show that SCOP superfamily members 

correlate significantly in evolutionary rate and selective pressure (rdn = 0.25, P < 0.0001; 

rω = 0.24, P < 0.0001; n = 264 genes, 897 pairs, Fig. 2). Because isozymes could be a 

confounding factor in our analysis, we investigated their impact on our results. Enzyme 

annotated to both the same SCOP superfamily and to the same reaction comprised just 

6% of the pairs in this analysis. Removing these pairs yields similar results (rdn = 0.20, P 

< 0.0001; rω = 0.21, P < 0.0001; n = 247 genes, 839 pairs). 

 

3.3.3 Evolutionary Rates Correlate in Adjacent Metabolic Network Enzymes 

 

We also examined whether evolutionary metrics for neighboring genes in the 

yeast small molecule metabolic network correlate with measures of evolutionary rate. To 

perform this analysis, the metabolic network was reconstructed based upon the 142 
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individual biochemical pathways that are currently represented in the SGD. This sample 

set contains all gene pairs with unambiguously identified orthologs in all four 

Saccharomyces yeast species, 42% and 25% of the annotated genes and adjacent gene 

pairs, respectively, of the SGD biochemical pathways. For this study, each gene pair in 

the network is unique and counted only once, no matter how many SGD pathways are 

annotated with the pair. The results show that in adjacent network pairs both evolutionary 

rate and selective pressure correlate with strong statistical significance (rdn = 0.29, P = 

0.0008; rω = 0.29, P = .0010; n = 145 genes, 130 pairs; Fig. 2). As expected, and 

consistent with previous reports,[27] synonymous mutation rate shows poor correlation 

and no statistical significance (rds= 0.06, P = 0.2192).  

 

Given that metabolic network context appears as a significant constraint in our 

results, the question arises whether these constraints on pathway pairs also constrain 

pathway order. To determine whether pathway order correlates with evolutionary rate and 

selective pressure, we repeated the analysis using only the set of individual SGD 

biochemical pathways, not the reconstructed network. We employed two different null 

models: one permuting globally across all pathways and a second permuting only locally 

within pathways. While pathway pairs correlate with high significance when permuting 

globally (rdn = 0.28, P = 0.0037; rω = 0.29, P = .0040; n = 136 genes, 125 pairs), they do 

not when permuting locally (rdn = 0.28, P = 0.0744; rω = 0.29, P = .0893), indicating that 

all pathway members tend to evolve together without regard to pathway order. 

 

To account for direction of substrate flow, previously suggested to correlate with 
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selective pressure and evolutionary rate [28, 29], we also looked at all unbranched, 

unidirectional pathways. On average, upstream adjacent genes had lower measures of 

evolutionary rate (dn = 0.082 vs. 0.097) and selective pressure (ω = 0.038 vs. 0.047). We 

note, however, that the sample size is small (n = 30 pairs) and the result is not statistically 

significant (paired student’s t-test: tdn = -1.37, d.f. = 29, P = 0.27). A more definitive 

answer to the question cannot be resolved without a larger dataset than was available for 

this work. 

 

We also confirmed that these results would not be biased by protein-protein 

interaction. Of the few adjacent pathway pairs in the reconstructed metabolic network 

known to bind each other directly, none were sufficiently conserved across the four yeast 

species to also appear in our results [20]. Like protein-protein interaction networks, there 

is conflicting evidence whether degree of connectivity in the metabolic network 

correlates with either evolutionary rate or selective pressure. While we did not find such 

such a correlation in a direct pairwise analysis (rdn = -0.07, P = 3.3e10; rω = -0.07, P = 

3.2e-1; n = 165 genes), correlations have been reported in the literature [8]. Our pairwise 

correlation result contrasts with the PCA where degree of connectivity accounted for a 

small portion of variance (6.4%) in dn. We note that our sample sets comprise different 

numbers of genes, and employ different approaches, pairwise correlation versus the 

global maximization approach of PCA. Taken together, these observations suggest that 

direct molecular interaction between enzymes, at least in this small dataset, cannot be a 

dominant mechanism of coevolution in metabolic networks. By coevolution we mean that 

proteins evolve at similar rates through compensating mutations. Thus, to the extent that 
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direct binding between protein pairs is a mechanism of coevolution in protein-protein 

interaction networks, metabolic pathways are distinct in that connectivity is carried 

instead by the flow of small molecule substrates. 

 

3.3.4 Expression Levels Correlate in Adjacent Metabolic Network Pairs – But Not 

Transcriptional Module Pairs 

 

Many reports have indicated that expression level correlates strongly with 

evolutionary rate [4, 30-32]. The same is true in our dataset (CAI rdn = -0.74, P = 2e-32; 

rω = -0.46, P = 1e-10; n = 145 genes). However, in the present work we are explicitly 

concerned with predictive correlations between different genes, not just different 

properties within the same gene. Therefore, we also investigated the correlations between 

transcription level [33], CAI [25], and protein abundance [34] in adjacent network 

enzymes (Table 2). As suggested by the correlations in evolutionary rate between 

network neighbors coupled with the correlation between CAI and evolutionary rate, we 

find that CAI, mRNA levels, and protein levels all significantly correlate in adjacent 

network pairs. 

     

 To examine the effect of transcriptional coregulation on evolutionary rate and 

selective pressure in the context of this study, we tested transcriptional modules as 

defined by Ihmels et al. [22] Transcriptional modules are self-consistent regulatory units 

comprising a set of coregulated genes and the experimental conditions that induce their 

coregulation. We found statistically significant but negligible correlations in dn and ω 
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between transcriptional module pairs (rdn = 0.09, P = 3.0e-3; rds = 0.01, P = 6.7e-1; rω = 

0.07, P = 2.4e-2; n = 98 genes; 1,137 pairs; Fig. 2), but these results cannot be considered 

reliable over varying confidence values (see Methods). Moreover, transcriptional module 

membership did not improve predictions of evolutionary rate or selective pressure when 

combined with either metabolic network context or SCOP superfamily. These results 

were unexpected given that 83% and 70% of the transcriptional module genes also appear 

in the network neighbor and SCOP superfamily gene sets, respectively. We rationalize 

these results by noting that although many enzymes grouped within pathways are 

coregulated, only 2% of the 1,137 transcriptional module pairs analyzed are adjacent in 

the metabolic network. Consistent with this interpretation, repeating the analysis 

requiring that coregulated enzyme pairs be within five metabolic network steps yields 

results similar to those using only the SGD adjacent network pairs (dn: r = 0.27, P = 

0.0337; ω: r = 0.37, P = .0091; n = 76 genes, 213 pairs). 

 

3.3.5 The Independence of Network Context and SCOP Superfamily 
 

 To evaluate the combined contributions of network context and structural 

similarity to enzyme evolution, we looked at all genes (n = 100) that had both 

neighboring enzymes in the metabolic network and additional members in the same 

SCOP superfamily that are not adjacent in the metabolic network. Given the sequence 

metrics dn, ds, and ω, for each gene, we defined three quantities: s is the average of the 

SCOP superfamily members excluding the gene in question, p is the average of all 

enzymes adjacent in the network, and c is the average of s and p. We find that the 

combined metric outperforms all others, suggesting that the information in p and s is 
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additive. (Fig 3, Table 3A) In support of these results, multiple regression analysis on the 

100 genes with both additional superfamily members s and adjacent pathway genes p 

yields a covariance of 30% for evolutionary rate and 27% for selective pressure across 

this set of metabolic genes (rdn
 2 = .2998, rds

 2 = .0148, r 
ω

2 = .2676, n = 100 genes). 

 

As a further test for independence, we performed partial correlation to help 

determine whether the correlations in evolutionary rate among superfamily members and 

among network neighbors were due to an underlying correlation with expression level. 

Partial correlation analysis can be used to test for correlations between two variables 

while controlling for a third. Here, rAB|C denotes the partial correlation coefficient 

between any two variables, A and B, while controlling for a third, C. Due to limited 

mRNA expression and protein abundance data, we used the commonly applied CAI as 

the best available proxy measure of expression level [4, 6, 13, 25]. Partial correlation 

analysis indicates that pathway neighbors and SCOP superfamily represent largely 

independent predictors equivalent in magnitude (Table 3B). In particular, p and s do not 

correlate significantly with each other (dn = 0.17, P = 0.0850; ω = 0.16, P = 0.1063) when 

controlling for variation in evolutionary rate. Importantly, a gene’s evolutionary rate 

correlates neither with the expression level of its metabolic network neighbors (dn = 0.06, 

P = 0.51; ω = 0.04, P = 0.66, Table 3C), nor the expression level of other superfamily 

members (dn = 0-.14, P = 0.17; ω = -0.13, P = 0.17, Table 3D), controlling for variation 

in evolutionary rate across network neighbors and SCOP superfamily members, 

respectively. 
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3.4 Discussion 
 

 This study accounts for variance in the evolutionary rates of Saccharomyces small 

molecule metabolic enzymes unexplained by expression level, and identifies additional 

potential evolutionary constraints that may be encoded directly in the genome. We 

demonstrate modest but significant correlations in evolutionary rate among SCOP 

superfamily members and among enzymes adjacent in the metabolic network. The SCOP 

superfamily members studied here are distant homologs that retain similar protein 

structure, yet catalyze distinct chemical reactions. Adjacent enzymes in small molecule 

metabolic pathways are joined by their role in the conversion of a substrate into a 

biologically useful product. Our results suggest that these constraints are independent 

from both each other and from expression level. 

 

 These results mirror those in a recent review that identified four factors with 

purifying selection and influence on evolutionary rate – expression level, structure and 

stability (represented in part by our correlations among SCOP superfamily members), 

pleiotropy (reflected in our metabolic network context analyses), and dispensability [2].  

 

 As a tool for understanding protein evolutionary rates, expression level fails to 

explain a significant portion of the constraint on evolutionary rate and selective pressure. 

For our dataset, and as a recent study suggested for a different and larger sample set, 

expression level explains less than half of the observed variance in evolutionary rate [26]. 
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Of the total variance in dn across our dataset expression level accounts for just 29% and 

dispensability 11%. Importantly, superfamily and metabolic network context account for 

another 25% (Fig 1, Tables 1 and 2). The remaining 35% variance in evolutionary rate 

may be addressed by some of the many factors noted in the literature, but remains an 

open question in this study.  

 

 In addition to the inability of expression level to explain the majority of variance 

in our dataset, we note that expression level is a problematic metric for both practical and 

conceptual reasons. As a practical matter, obtaining expression profiles and protein 

abundances for all organisms whose genome has been completely sequenced presents an 

enormous challenge. Useful proxy measures for expression level such as CAI are based 

upon codon usage bias. Yet CAI cannot be consistently applied across all genomes since 

codon usage bias varies widely between organisms, and sometimes does not appear at all, 

notably in humans. Conceptually, the mechanisms underlying the intriguing correlation 

between expression level and evolutionary rate are uncertain and the biological 

interpretation unclear. For example, expression profiles may diverge rapidly with gene 

duplication or speciation while the expressed genes themselves remain relatively 

unchanged over long periods of time [36]. It is unknown how this difference in 

evolutionary window between changes in expressional level and changes in the expressed 

genes impacts the observed correlation. For these reasons, studies are needed to shed 

additional light on the relative importance and specific mechanisms of constraints on 

protein evolution. 
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3.4.1 The Independence of SCOP Superfamily and Network Context from 

Expression Level 

 

 We have presented evidence based upon both principal component and partial 

correlation analyses that our correlations in evolutionary rate among SCOP superfamily 

members and among metabolic network neighbors are largely independent from 

expression level. The principal component analysis reveals three significant components. 

Measures related to expression level dominate the largest component, but the SCOP 

superfamily and metabolic network context dominate the second largest component and 

explain considerable variance (24%) across the dataset. This is the first systematic study 

to demonstrate an independent contribution to evolutionary rate for these two variables. 

 

 Partial correlation analysis contributes further evidence that the SCOP and 

network neighbor correlations are not only independent from expression, but also 

independent from each other. Metabolic enzyme evolutionary rates have a strong 

negative correlation with CAI, a proxy measure of expression level. Conversely, a gene’s 

evolutionary rate does not correlate with the CAI of superfamily members. Surprisingly, 

a gene’s evolutionary rate also does not correlate with the CAI of metabolic network 

neighbors. We note that noise is known to be a confounding factor in partial correlation 

analysis. In particular, due to noise, two variables could falsely appear correlated because 

of underlying and independent correlations with a third variable. Although our results do 

not definitively prove the independence of these variables, given the absence of any 

significant partial correlation in CAI between superfamily members or between network 
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neighbors, we conclude that these correlations are indeed independent from expression 

level. 

 

3.4.2 The Independence of SCOP Superfamily from Network Context 
 

 We have presented evidence that network context and structural similarity are 

independent in their correlations with evolutionary rate. Regarding functional 

independence, only 7 of the SCOP superfamily pairs appear in the metabolic network 

pairs dataset. The low incidence of SCOP superfamily members appearing in metabolic 

pathways is consistent with other reports. For example, working in the E. coli model 

system, Teichmann et al. found that only 8 of 106 metabolic pathways contained 

significant numbers of homologs [35]. Teichmann et al. also reported that homologs were 

twice as likely to be distributed between pathways as within pathways. Regarding 

correlations in evolutionary rate, we note that SCOP superfamily and metabolic network 

neighbors together correlate better with a gene’s evolutionary rate than either measure 

alone (Fig. 3). Partial correlation analyses as well supports the hypothesis of 

independence. When controlling for variation in a gene’s evolutionary rate, there is no 

significant correlation between SCOP superfamily and adjacent pathway members 

(Table 3). Together, these lines of evidence point to independence between SCOP 

superfamily and metabolic network context with respect to evolutionary rate. Finally, we 

note that whether or not our work establishes SCOP superfamily and network context as 

independent from each other, together they account for a quarter of the variation in 

evolutionary of the metabolic enzymes, independent of expression level. 

 



62 
 

3.4.3 SCOP Superfamily 
 

 Our results suggest that, from a global perspective, some enzyme scaffolds may 

indeed be more constrained in evolutionary rate than others. This is consistent with a 

broad and deep body of literature showing that some protein scaffolds can tolerate more 

mutations than others and still function [11, 36-41]. For example, roughly 10% of all 

enzymes contain an (alpha/beta)8 barrels domain [42-44]. The impressive functional 

versatility and sequence diversity of this fold suggest high inherent evolvability. Indeed, 

single-site mutants of the barrel domains in both the L-Ala-D/L-Glu epimerase from 

Escherichia coli (AEE) and the muconate lactonizing enzyme II from Pseudomonas sp. 

P51 (MLE II) catalyze the o-succinylbenzoate synthase (OSBS) reaction while 

maintaining competence for the wild-type reaction [45]. 

 

Such tolerance for mutations may be attributed to at least two factors. First, 

abundant evidence has been gathered from in vitro studies linking evolvability, or 

‘designability’, with thermodynamic stability. However, in vivo reports remain anecdotal. 

Thus, the stability hypothesis must be tempered by the fact that although minimum 

stability is a precondition for proper protein function, stability does not directly correlate 

with functional competence.  

 

 Second, functional requirements of proteins are known to constrain evolutionary 

rates at specific residues [37, 46-48]. This fundamental rule underlies numerous 

comparative analyses of proteins and nucleic acids [11, 38, 39, 49-52]. For example, 

genomic sequencing efforts have been remarkably successful at generating functional 
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hypotheses for novel genes. The process typically begins with an inference of homology 

based on sequence or structure, followed by functional annotation transfer from 

previously characterized proteins. Functional annotation transfer presumes that 

homologous proteins will perform similar functions. Many widely used genomic and 

proteomic databases, such as PFAM [53] and SCOP [17], are explicitly structured around 

this principle. This approach presumes site-specific evolutionary constraints arise 

primarily from individual protein structural and chemical requirements. Such site-specific 

constraints contribute to the mechanisms by which some protein scaffolds are inherently 

more or less evolvable than others [36, 54, 55]. 

 

 Because it has been so broadly observed that functional requirements in 

homologous enzymes constrain evolutionary rate at specific residues, constraints 

represented by SCOP superfamilies might be expected to dominate small molecule 

metabolic enzyme evolution. Surprisingly, while SCOP superfamily members correlate in 

evolutionary rate and selective pressure, SCOP superfamily represents only a modest 

fraction of the total variance (12%). This result is consistent with observations that the 

structures of individual enzymes contributing to primary and secondary metabolism can 

vary appreciably [56]. For example, in different species multiple enzymes that are 

evolutionarily unrelated have been shown to catalyze identical reactions in both thiamine 

biosynthesis [57] and S-adenosyl methionine modification [58]. Thus, it appears that the 

need for metabolic competence can conscript different proteins scaffolds that are 

evolutionarily unrelated to evolve new functions. 
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3.4.4 Metabolic Network Context 
 

 While structural similarity among homologous enzymes accounts for a modest 

percentage of variance in evolutionary rates, this study also demonstrates that enzymes 

adjacent in the metabolic network evolve at similar rates. This effect is separable from 

expression level, codon adaptation index, protein abundance, and inherent constraints in 

the structural superfamilies represented in the pathway. There are many reasons selection 

may occur in a metabolic network. For example, metabolic pathway reactions usually 

involve highly similar substrates whose chemistry may impose similar constraints across 

the pathway [14]. 

 

 Kinetic efficiency across metabolic pathways has been shown to be important for 

pathway stability and could therefore be subject to selection [14]. Thus, selection for 

optimal kinetics in a pathway, rather than in individual enzymes, suggests another 

potential mechanism by which selection could act on metabolic pathways. A classic 

example of this is triose phosphate isomerase (TIM). Extensive studies have shown that 

TIM has achieved diffusion-limited catalytic efficiency [9]. This feature is biologically 

less meaningful, however, if the substrate is not provided in concentrations sufficient to 

benefit from this high level of efficiency, or if the product of catalysis is not then required 

by the cell at equally high rates.  

 

 Finally, we note that conserved pathways must generate a biologically useful 

product, or degrade a harmful substrate. Selection therefore conserves pathway output, 

but not necessarily the individual enzymes comprising the pathway. As illustrated by the 



65 
 

case of S-adenosyl methionine modification discussed above, multiple unrelated 

structures may perform the same reaction, allowing conservation of pathway output 

without conservation of the specific components within pathways. Furthermore, enzymes 

once thought to catalyze a single specific reaction are increasingly recognized as 

promiscuous, allowing a single structure to contribute different functions [59]. For 

example, tetrachlorohydroquinone (TCHQ) dehalogenase from Sphingobium 

chlorophenolicum catalyzes the replacement of two chorine substituents on TCHQ, 

allowing the soil bacterium to degrade the anthropogenic pesticide pentachlorophenol. 

Yet in the same active site, the enzyme also has maleylacetoacetate isomerase activity 

[60]. Such pathway mutability and ad hoc assembly is beginning to feature prominently 

in how we describe the evolutionary dynamics of, and ultimately engineer, new metabolic 

pathways [61, 62]. The fitness benefit conferred by these pathways, along with the 

frequency and intensity of selection, may thus drive similar evolutionary rates among the 

constituent enzymes. 

 

 

3.5 Conclusion 
 

Our results demonstrate that both network context and protein structure provide 

constraints on evolutionary rates among small molecule metabolic enzymes. These 

predictors are measurable in genomic data, can be relatively weighed, and contribute 

information independent from expression level. Altogether, measures related to 

expression level, dispensability, structural superfamily, and metabolic network context 

explain 64% of the variance in evolutionary rate across our dataset. 
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 Although we cannot explain all the variance in evolutionary rate, studies from 

disparate disciplines have added to a long list of factors implicated as determinants of 

evolutionary rate that may address the additional variance unaccounted for here. As 

advocated elsewhere [2], integrated analyses such as provided in this work that both 

demonstrate significant correlations with evolutionary rate and distinguish the proportion 

of variance a given factor may explain, constitute the next step in further elucidating the 

principles of protein evolution. Such syntheses will impact fundamental questions such as 

how we search for positive selection in our own genome, how we predict the function of 

genes from recently sequenced organisms, and how we engineer novel ones. 

 

3.6 Methods 

 

3.6.1 Evolutionary Metrics. We use the evolutionary rate data published by Hirsh et al. 

The data derive from the comparative analysis of orthologous coding sequences 

identified across four yeast species (Saccharomyces cerevisiae, S. paradoxus, S. mikatae, 

and S. bayanus) by Kellis et al.[24] Together, these genomes provide excellent resolution 

of molecular evolution across a phylogeny of closely related eukaryotic organisms (80% 

genic sequence identity) with minimal lateral gene transfer. Using a correction for the 

well-known codon usage bias in yeast [30], dn, ds, and dn/ds (also known as ω) have been 

calculated by Hirsh et al based upon the Kellis ortholog assignments. Coding mutation 

rates (dn) provide an estimate of evolutionary rate with respect to orthologs in other 

species, essentially sequence distance since time of divergence. Non-coding mutation 
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rates (ds), presumed to be neutral to selection, serve as an internal control by 

approximating time since divergence. Selective pressure on a particular gene can be 

estimated by calculating ratios of coding versus non-coding mutation rates (ω) with 

respect to orthologs in other species. Ratios of 1, >1, and <1 indicate neutral evolution, 

positive selection, and negative selection, respectively. The combined metric c is the 

average of s and p, where s is the average of the other members of the same superfamily 

and p is the average of all adjacent genes in the metabolic network. 

 

3.6.2 Biochemical Network. For our metabolic network model, we use the Yeast 

Biochemical Pathways, formerly known as YeastCyc, hosted by the Saccharomyces 

Genome Database (SGD) [23]. The current set (generated September 19, 2005) of 138 

pathways contains 781 polypeptides corresponding to 925 enzymatic reactions on 675 

compounds. Since the functions of many of the yeast genes are not yet known, pathways 

and reaction assignments may be incomplete. Nevertheless, this metabolic network model 

represents the best-curated dataset available uniting yeast metabolic pathways and 

genomic data. 

 

All enzymes in the reconstructed network are unique, but may be annotated to multiple 

pathways. For example, fructose 1,6-bisphosphate aldolase is annotated to several 

overlapping pathways including glycolysis, gluconeogenesis, glucose fermentation, 

mannitol degradation, and sorbitol degradation. When analyzing network pairs, each 

enzyme pair including fructose 1,6-bisphosphate aldolase enzyme is counted only once. 

However, when we permute within pathways to test pathway order, enzyme pairs are not 
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unique because they may catalyze the same adjacent reactions in multiple pathways. For 

instance, fructose 1,6-bisphosphate aldolase is annotated with identical adjacent enzymes 

to both the glucose fermentation and glycolysis pathways. 

 

SCOP. The Structural Classification of Proteins (SCOP) [17] database is a 

comprehensive ordering of all proteins of known structure, according to their 

evolutionary and structural relationships. Whole genome assignments based upon the 

1.67 SCOP release are hosted on the Superfamily Database [63]. The Superfamily 

Database search method uses a library (covering all proteins of known structure) 

consisting of 1447 SCOP superfamilies, each of which is represented by a group of 

hidden Markov models. In this report, we use the best match for each domain with an e-

value cutoff of e-10. Correlations and significance are similar over a wide range of e-

value cutoffs, but begin to decrease with more permissive e-values. Proteins may be 

assigned to more than one superfamily, but in practice this is rare, given that most yeast 

small molecule metabolic enzymes annotated in SGD comprise single domains. All 

SCOP superfamily members included in our analyses are annotated to a small molecule 

metabolic reaction. Additionally, each superfamily included in our analyses has at least 

two members annotated to different reactions. 

 

3.6.3 Transcriptional Modules. Ihmels et al. [21] established that genes associated with 

similar metabolic functions are likely to exhibit a similar expression pattern. They 

characterized the regulation of genes associated with adjacent metabolic reactions and 

provide a database describing the coregulated genes and the regulatory conditions 
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associated with most metabolic pathways. Confidence values are given for each gene 

assignment to a particular metabolic transcriptional module. Here we report results 

calculated on this data set using a confidence value cutoff of 80% for inclusion of a gene 

in a transcriptional module. 

 

3.6.4 Statistical Methods. We began by generating three sets of pairs representing 

constraints of interest: all possible enzyme pairs in the same structural superfamily, all 

enzyme pairs that catalyze adjacent reactions in the metabolic network, and all possible 

pairs in the same transcriptional module (see Supplemental Data). Pairs are excluded 

from analysis when evolutionary rate data is not available for both genes. To avoid undue 

bias towards the largest large superfamilies and transcriptional modules, we used a cutoff 

of 400 gene pairs (i.e. 20 genes) per superfamily or transcriptional module. Correlation 

coefficients are then calculated for the respective sets of pairs. For the sake of clarity and 

readability, we generally report only parametric (Pearson) results. In cases where 

parametric and non-parametric (Spearman rank order) disagree considerably, we have 

listed both. Calculated P-values are all given in scientific notation. Bootstrap P-values 

from the null model are given exactly in full notation. 

 

We use a label-permuted null model to bootstrap p-values for the network context, SCOP 

superfamily, and the combined analyses (Figs. 2 and 3). We bootstrap these P-values due 

to non-normal distribution of evolutionary rates and the presence of the same gene in 

multiple pairs. The bootstrap P-values tend to be more conservative than calculated P-

values by approximately 101. These results are report exactly to four significant digits, all 
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other results are given in scientific notation. The null model was generated by 

randomizing data values across a given sample set of genes for 10,000 iterations. 

Randomizing in this way preserves network connectivity. For example, enzymes 

catalyzing reactions that feed into many biochemical pathways are similarly represented 

in the null model, but with a randomly assigned evolutionary rate. The randomization of 

data labels is performed only across the genes in a given sample set, not across the entire 

metabolic network. 

 

We used R (Ihaka and Gentleman 1996) with the .pls package to perform the multiple 

regression and principal component analyses, as previously described [26]. We log 

transformed codon adaptation index and mRNA expression. We decided whether or not 

to log transform a variable based on whether log transformation led to a higher variance 

(r2). We scaled the predictor variables to zero mean and unit variance before carrying out 

the principal component analysis. For further details, see [26]. 
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Figure 3. 1| Principal component analysis (PCA) of evolutionary rate (dn) in small 
molecule metabolic enzymes yields two highly significant components. PCA of the 
evolutionary rate of small molecule metabolic enzymes (n = 64) using seven input 
variables (see box above) yields two highly significant components (P-values appear 
above the significant components). 
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Figure 3. 2| Pearson correlation between small molecule metabolic enzyme pairs 
according to constraint: metabolic network, SCOP superfamily, and transcriptional 
module. Histograms display null distributions with drop arrows indicating observed 
values from the four Saccharomyces yeast species. The analysis includes 143 genes in 
120 adjacent metabolic network pairs, 264 genes in 897 SCOP superfamily pairs, and 98 
genes in 1,137 transcriptional module pairs. Null distributions were generated from 
10,000 label-permuted networks that preserved overall topology. See Additional File for 
plots of the raw data used in this analysis. 



73 
 

 

 
 
Figure 3. 3| Pearson correlation between small molecule metabolic enzyme pairs 
with orthogonal constraints: metabolic network only, SCOP superfamily only, 
metabolic network and SCOP superfamily combined. Histograms display null 
distributions with drop arrows indicating observed values from the four Saccharomyces 
yeast species. The figure includes only the 100 enzymes with both adjacent metabolic 
network pairs and additional SCOP superfamily members conserved across all four yeast 
species. Correlations are between the query gene and the average of the adjacent network 
pairs (p), the average of the additional SCOP superfamily members (s), or the average of 
both (c, or (p+s)/2). Null distributions were generated from 10,000 label-permuted 
networks that preserved overall topology. See Additional File for plots of the raw data 
used in this analysis. 
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Table 3.1| Principal component analysis yields multiple variables that together 
explain variation in metabolic enzyme evolutionary rates. 
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Table 3.2| Expression level measures correlate in adjacent metabolic network pairs. 
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Table 3.3| Pathway context and structural superfamily independently correlate with 
metabolic enzyme evolutionary rates. Boxes are highlighted in pale blue to indicate 
significant results (P-value < 0.05) and blue to indicate highly significant results (P-value 
< 0.01). Correlations are shown for evolutionary rate (dn), selective pressure (ω), and 
synonymous mutation rate (ds). The combined metric c is the average of s and p, where s 
is the average of the other members of the same structural (SCOP) superfamily and p is 
the average of all adjacent genes in the metabolic network. x is codon adaptation index 
(CAI) of metabolic network neighbors (C) or SCOP superfamily members (D). rAB|C 
denotes the partial correlation coefficient between any two variables A and B, while 
controlling for a third C. 
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3.8 Epilogue 
 
  

 While this manuscript was in review, Plotkin and Fraser published an article titled 

“Assessing the Determinants of Evolutionary Rates in the Presence of Noise” [1].  The 

article purports to demonstrate that differences in noise when measuring biological 

predictor variables, combined with the susceptibility of principal component analysis to 

variability in noise, invalidates principal component analysis as a method to tease apart 

the drivers of the evolutionary rate of proteins.  The article by Plotkin and Fraser was a 

direct response to the work of Drummond and colleagues [2] which itself claimed to 

invalidate the reliability of another technique, multiple regression analysis, widely used 

to study evolutionary rate.  Multiple regression analysis is not robust to outlier data, and 

is similarly vulnerable to noisy predictor variables.  Drummond and colleagues proposed 

that principal component analysis could overcome these issues, and based upon their 

analysis, claimed that expression level was the single determinant for the evolunationary 

rate of proteins.  The mathematical basis of their claim was flatly rejected by Plotkin and 

Fraser, whose findings have recently been extended to population level studies.  

Kryazhimskiy and Plotkin have demonstrated not only that the ratio of synonymous to 

non-synonymous mutation rate (dn/ds) is relatively insensitive to selective pressure at the 

population level, but that the hallmark signature of selection, dn/ds > 1, is frequently 

violated at the population level [3]. 

 Disputes over methodology continue unabated in the field of molecular evolution.  

More sophisticated mathematical techniques and, more importantly, biologically 

sophisticated experimental models will be required to tease apart the contributions of 
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various constraints on evolutionary rate.  While we are convinced that our work remains 

important, robust, and correct – particularly with respect to selection at the pathway level 

– serious methodological issues must first be resolved in this area of evolutionary 

biology.  In light of these facts, and understanding that both mathematical modeling and 

the design of biochemical systems to dissect mechanisms of selection are not our primary 

research focus, we made the difficult decision to withdraw the manuscript from review. 

Others investigators continue to publish relying on the same methods discussed here (for 

a recent example see [4]), but the value of those contributions and the potentially 

spurious results will remain in doubt until these fundamental methodological issues have 

been resolved. 
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Appendix A.  The Chemical Diversity of 

Drugs and Metabolites 

 
 
A.1 Chemical similarity among drugs and among metabolites 
 

Although drugs and metabolites typically differ in their physiochemical 

properties, significant and specific similarity links nonetheless emerged. Using SEA at an 

expectation value cutoff of E = 1.0 x 10-10, 54% (132 of 246) of drug sets link to an 

average of 43.7 (median = 10) or 0.9% of metabolic reactions (Figure A.1A). None of 

the remaining 46% (114 of 246) of drug sets link to any metabolic reaction sets. 

Similarly, 67% (1,790 of 5,371) of reaction sets do not link to any MDDR drug set at the 

expectation value cutoff of E = 1.0 x 10-10, but those that do hit an average of 2.8 (median 

= 2) or 1.1% of drug sets (Figure A.1B). 

 

Our analysis of the intersection between drugs and metabolism reveals substantial 

regions of unexplored chemical space. To investigate why so many regions remain open, 

we compared the patterns of chemical similarity among drugs to the patterns of chemical 

similarity among metabolites. Most set comparisons in an exhaustive all-by-all analysis 

yield little or no significant similarity. However, through sequential linkage, archipelagos 

of strong similarity emerge that allow us to connect almost all sets together into two 

single networks – a drug network and a metabolic network. Of the 246 MDDR drug sets, 

each set linked to an average of 6.6 (median = 4) or 2.3% of all other drug sets with an 
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expectation value of 1.0 x 10-10 or better (Figure A.1C). Metabolic reactions were more 

promiscuous with each of the 5,056 MetaCyc reactions linking to an average of 473.0 

(median = 370) or 9.4% of all other reactions (Figure A.1D). 

 

To extract the most chemically relevant links, we applied the Floyd-Warshall 

algorithm which guarantees the best path (weighted by expectation value) between any 

two nodes. Biologically related nodes cluster together by the chemical similarity of their 

ligands, even though no explicit biological information was used to link them (Figure 

A.2). In the drug network, the serotonin (5HT) receptor agonists/antagonists group 

together, as do adenosine receptor agonists/antagonists and phospholipase inhibitors. 

Some classes additionally segregate into their appropriate subtypes, such as the α-

adrenergic and β-adrenergic receptor agonists/antagonists. In the metabolic network, 

clusters often reflect neighboring reactions within a pathway or similar reactions shared 

across different pathways. For instance, the first five reactions in the purine degradation 

pathway all cluster together, as do the last five reactions of flavin synthesis. Viewing 

metabolic networks by chemical similarity allows links among ligand sets independent of 

their canonical pathway organization. Three reactions involving precursors and 

metabolites of chorismate (chorismate synthase, chorismate mutase, and isochorismate 

mutase) group together despite annotation to three different pathways (chorismate, 

tyrosine, and menaquinone biosynthesis, respectively). Similarly, the antifolate drug 

targets DHFR, GART, and thymidylate synthase catalyze reactions in multiple pathways 

including tetrahydrofolate, pyrimidine, and purine biosynthesis. Yet all three enzymes 
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recognize antifolates, demonstrate synergy as targets, and cluster together in the MDDR 

drug network. 

 

A.2 Topological differences between drug and metabolic space 
 

Although the same technique was used to prune and visualize these two networks, 

a prominent difference in connectivity (k) emerged. In the Floyd-Warshall graphs, 

MetaCyc reaction sets connect on average to 8.6 (median k = 2) other metabolic nodes 

(Figure A.2A) while MDDR drug sets connect on average to just 2.0 (median k = 2) 

other drug sets (Figure A.2B). 

 

Several highly connected metabolic network hubs reveal the striking difference in 

connctivity. Amino acid racemase (k = 420), UDP sugar hydrolase (k = 354), and S-

adenosyl-L-homcysteine hydrolase (k = 333) were the three most highly connected hubs 

in the metabolic network. Strongly interconnected clusters where each node connects to 

each other node also emerged in the metabolic network (clustering coefficient Cn = 

0.322), but not the drug nework (Cn = 0.015). Methyl-transferase reactions (n = 70, k = 

200) all utilizing the conversion between S-adenosyl-L-methionine and S-adenosyl-L-

homcysteine dominate the largest MetaCyc cluster. The difference in connectivity cannot 

be attributed solely to the difference in network size between MDDR (nodes = 220, edges 

= 222) and MetaCyc (nodes = 5,039, edges = 21,604). We applied the same algorithm to 

the smaller metabolic network of MRSA (nodes = 554, edges = 803) revealing a pattern 

of connectivity (k = 2.9, mean = 2) and clustering (Cn = 0.194) similar to MetaCyc 

(Figure A.2C). 



87 
 

 

 A second connectivity difference between the two networks is the presence of 

cycles. In contrast to our earlier work (Keiser, 2007), the network construction technique 

allows cycles when connections among highly similar sets would otherwise be lost. 

Surprisingly, the resulting drug network remains highly acyclic, with only seven cycles in 

total, all among four beta-lactam related drug classes (Figure A.2B). The beta-lactams 

break the otherwise treelike nature of the drug network by forming cycles. By contrast, 

the metabolic reaction networks are not at all treelike and have many cycles, which 

appeared widespread across the entire network (Figures A.2A and A.2C). Due to high 

cycle count, we could not fully count the cycles even in the smaller MRSA network. 

Enumerating cycles in a graph is an NP-complete problem. 

 

 Drug and metabolic chemical similarity networks follow distinctly different 

connectivity patterns, reflecting the ways each has been explored over time.  Drug 

exploration, by medicinal chemistry and drug series growth, starts at multiple points and 

follows distinct branches of discrete, localized similarity. Even within a given biological 

effect category, it is rare for drug nodes to connect through more than one path, with four 

adenosine analog nodes as the only exception (Figure A.2). In stark contrast, a small 

number of highly connected central hubs emerge in metabolic networks, interconnected 

by redundant similarity links. One such central hub is the adenylate cyclase reaction that 

converts ATP to ADP, which reflects ATP’s central role as a common metabolic 

currency. Explicit removal of metabolic common carriers decreases the size of central 

hubs, but does not remove them. Such a pattern is biologically sensible for at least two 
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reasons.  First, metabolites must be recyclable. The breakdown product of one pathway 

becomes essential substrate for another. Reversible reactions and changing metabolic 

demand lead to an ebb and flow of substrates through catabolic and anabolic pathways. 

This vastly narrows the metabolic chemical space available to any single organism. 

Second, while metabolic chemical scaffolds are limited, the enzymes and proteins that 

bind them are prone to mutation and selection. Therefore, compared to drugs, nature can 

sample the relatively smaller space of metabolism more densely. We can quantify these 

differences in the random chemical background fits. Random metabolic backgrounds for 

single organisms are on average 10 to 20 times more internally similar than drug ones, 

indicating smaller breadth.  However, the standard deviations are lower than drug 

backgrounds, indicating that metabolic space is more densely sampled (Figure A.3). We 

note that the chemical diversity for all of MetaCyc, a compendium of metabolic reactions 

from over 900 species, approaches within 6-fold the chemical diversity of drug space 

more closely than the metabolic complement of any single organism.  This suggests that 

nature can access broader chemical diversity through metabolism, but that evolution 

selects for a much narrower slice of chemical space. 
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Figure A.1.A| Distribution of MDDR drug set links to MetaCyc reaction sets 
 

 
Figure A.1.B| Distibution of MetaCyc reaction set links to MDDR drug sets 
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Figure A.1.C| Distribution of chemical similarity links within MDDR 
 

 
Figure A.1.D| Distribution of chemical similarity links within MetaCyc 
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Appendix B. MRSA Growth Assays 

 

B.1 Rationale 
 

Due to the dearth of essential MRSA reactions with strong links to MDDR, we 

also investigated synthetic lethal reactions that could be targeted in combination. Again 

using predictions from flux balance analysis, we mapped 19 synthetic lethal enzyme pairs 

to MRSA. All but one of the synthetic lethal pairs, arogenate and prephenate 

dehydrogenase in tyrosine precursor biosynthesis, had at least one orthologous enzyme 

also present in humans. Of all the potential targets without human orthologs, whether 

essential or synthetic lethal, arogenate dehydrogenase found the strongest links to MDDR 

drug sets with an expectation value of 4.80 x 10-28. Interestingly, both arogenate and 

prephenate dehydrogenase are catalyzed by the tyrA enzyme in the same active site, 

making the tyrA essential for MRSA survival. Furthermore, arogenate dehydrogenase 

was also predicted to be synthetic lethal with aspartate aminotranseferase (AAT). Based 

upon these SEA results, combined with the MRSA synthetic lethal analysis, we predicted 

that the synthetic lethal enzyme pair of tyrA and AAT would be the targets most 

accessible to current drug chemistry.  

 



94 
 

B.2 Experimental Design 
 

To demonstrate proof of concept, we tested known inhibitors (m-fluorotyrosine 

for tyrA and aminooxyacetate for AAT) alone and in combination against the COL 

laboratory strain of MSRA. We used a 1:2 serial dilution growth assay in a microtiter 

plate format. AOAA alone inhibited MRSA growth at an IC50 of 340 μmol while MFT 

alone failed to inhibit at concentrations up to 10,000 μmol (Figure B.1). Surprisingly, 

while combing AOAA with elevated levels MFT at ratios up to 1:16 did not significantly 

alter MRSA growth rates, combining AOAA with less MFT at a ratio of 1:2 lowered the 

IC50 of AOAA to 206 μmol. These results confirm interaction between the AOAA, MFT, 

and MRSA metabolism. 

 

 

B.3 Discussion 
 

This work presented in Chapter 2 lays the computational foundation for ligand-

based prediction of interactions between drug compounds and metabolic enzymes. 

However, prediction of the dynamic response of a pathogen or patient to a given 

therapeutic intervention lies beyond the scope of our method. The MRSA growth 

inhibition results reported here demonstrate the often counter-intuitive effects of 

perturbing metabolic networks. While AOAA combined with low levels of MFT 

effectively inhibited MRSA growth, combining AOAA with higher ratios of MFT did not 

significantly alter MRSA growth rates. These curious results may be rationalized by the 

fact that some tyrosine analogs function as feedback inhibitors. In some bacterial strains, 
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MFT down-regulates de novo synthesis of aromatic amino acids while also decreasing 

amino acid turnover, leading to an overall increase in the levels of aromatic and other 

amino acids. Thus, elevated levels of MFT may paradoxically lead to greater MRSA 

survival. Complimentary methods embraced by the emerging field of systems biology 

directly address this challenge of modeling the dynamic response of biological systems to 

chemical perturbations. 
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Figure B. 1| MRSA growth inhibition by AOAA and MFT. The COL strain of 
methicillin-resistant Staphylococcus aureus was incubated for 24hrs in the presence of 
aminooxyacetate (AOAA), m-fluorotyrosine (MFT), and AOAA/MFT combinations at 
varying ratios using a 1:2 serial dilution format on microtiter plates. 
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