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Abstract 

Significant advances in the theory of electronically non-adiabatic 

collision processes have been made in recent years by the advent of models 

that treat all the "heavy particle" degrees of freedom--Le., translation, 

vibration, and rotation--by classical mechanics; only electronic degrees 

of freedom are treated quantum mechanically. The "surface hopping" model 

, of Tully and Preston and the generalized Stuckelberg model of Miller and 

George are examples of this, type of approach. There have, however, been 

questions as to whether or not such models are capable of describing 

resonance effects in electronic-vibrational energy transfer, e.g., 

A* + BC(v=O) + A + BC(v=l), with ~EA ~ hWBC~ This paper shows that these 

resonance effects are the result of interference of amplitudes for different 

classical trajectories that contribute to the transition. The Miller-George 

model, which incorporates interference and tunneling within the framework 

of classical S-matrix theory, thus describes resonance behavior, whileethe 

Tully-Preston model, which adds probabilities (rather than amplitudes) for 

the various trajectories, does not. 
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I. Introduction 

As one better understands the dynamics of molecular collision processes 

that occur on one potential energy surface (i. e., within one adiabatic 

electronic state), greater attention is being directed to extending 

theoretical models to deal with non-adiabatic phenomena~ i.e., those that. 

I involve transitions from one potential energy surface to another. Since 

atoms and molecules are "heavy particles", their dynamics is often well 

approximated by classical mechanics, and the utility of classical trajectory 

methods for treating inelastic and reactive molecular collisions on a single 

potential energy surface is well-known. 2 One thus wishes to extend such 

methods as far as possible t9 deal with electronically nonadiabatic 

collisions. 

3 A major contribution to accomplishing this was Tully and Preston's 

"surface hopping" model, which they successfully applied to the H+ + H2 

COLlision system. The important feature introduced by the Tully-Preston 

approach is that all heavy particle degrees of freedom--translation and 

. vibration (and rotation, too, but it will be ignored for purposes of 

discussion)--are treated classically, as ~lassical trajectories moving on 

a potential energy surface. Only electronic degrees of freedom are described 

quantum mechanically, i.e., as states; each adiabatic electronic state is a 

different·potential energy surface. 4 Most other approaches have treated 
\ 

electr~nic and vibrational degrees of freedom quantum mechanically, while 

translation is treated classically; i. e., one considers translational 

trajectories on "vibronic" potential energy curves. The fundame-ntal short;" 

coming of this latter approach is that the coupling between translation and 

vibration cannot be treated correctly (because vibration is quantum mechanical 
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and translation is classical). For molecular collisions it appears that in 

general it is more realistic to treat the coupling between translation 

and vibration consistently, even if classically. 

Somewhat later Miller and George5 presented a more general semiclassical 

theory which, while still utilizing the full classical trajectories of the 

heavy particle motion, incorporated quantum mechanical interference and 

tunneling effects. Miller-George theory, which combined an approximation 

of Stuckelberg6 with an idea introduced by Pechukas,7 was shown8 to include 

a number of disparant models in a unified framework. It was seen, for 

example, that the model does not even require that the two potential energy 

surfaces have an "avoided intersection". In its most primitive (and most 

easily applicable) limit that the surfaces do have a well-defined avoided 

intersection and that semiclassical interference effects are discarded, the 

Miller-George approach reduces essentially to that of Tully and Preston. 

In addition to including quantum mechanical interference and tunneling 

effects, the Miller-George model has the desirable feature of not requiring 

a somewhat ill-defined "hop" from one potential energy surface to another; 

the transition between surfaces is continuous, and uniqu,ely determined by 

the classical mechanics on the adiabatic potential energy surfaces. Further

more, the probability of the transition is also determined consistently by 

the classical dynamics on the potential energy surfaces (as a classical 

action integral). In the T~lly-Preston approach, on the other hand, the 

transition pr9bability is determined separately by solving the two-state 

time-dependent Schr3dinger equation, and this precludes a proper coupling 

of the nuclear dynamics and the electronic transition. 
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The question has recently arisen,9 however, as to whether or not the 

Tully-Preston or Miller-George models are capable of describing resonant 

transitions correctly, and the purpose of this paper is to explore this 
( 

question. The particular application for which the question arose is 

electronic-vibrational energy transfer, e.g., 

Br* + HC~(v=O) ~ Br + HC~(v=l) (1) 

where Br* is the, 2Pk state. ~EB' , the excitation energy of the bromine 
2 r . 

atom, is close to hw, the vibrational separation in HCL The net energy 

which must come from, or go into translation is thus small and the cross 

section for the process is "anomalously" large.' Such resonance effects 

are well-known, and it.is also well-known that they are well described 

by the time-dependent Schrbdinger equation if the internal states in 

question are treated quantum mechanically, L e., if electronic and vibrational 

degrees of freedom are treated quantum mechanically. As discussed ab9ve, 

however, the key feature that makes the Tully-Preston and Miller-George 

approaches useful is that all heavy particle degrees of freedom are 

treated classically, Le., via classical trajectories. It is thus important 

to find out if resonance behavior can be described by models of this type.' 

The main conclusion of the paper is that this resonance behavior results 

from interference of amplitudes for the. different classical trajectories that \' 

contribute to the transition. Since Miller-George theory incorporates inter- ,. 

ference and tunneling effects within the framework of "classical S-matrix" 

. 8 
theory, it describes the resonance features; the Tully-Pr~ston approach, on 

the other hand, adds probabilities (rather than probability amplitudes) for 

the different traj ectories, and thus cannot. Section II shows more explicitly 

how this comes about by considering a simple model. 

, 
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II. Resonant Transitions; A Simple Example 

The example chosen is the simplest one which illustrates the resonance 

effects of interest; it is an ultra .... simplified model of vibrational-electronic 

energy transfer. Let i and j (= 1 or 2) denote two diabatic electronic 

states, and H .. (R,r) the Z x Z electronic Hamiltonian matrix. .R and rare 
1J 

the translational and vibrational coordinates, respectively; rotation is 

ignored, 1. e., the model is that of a collinear A + Be collision. The two 

adiabatic potential energy surfaces, Wl(R,r) and WZ(R,r), are 

112 2 k 
W . = -(H+ H ) ± -2[~H + 4H

lz
] 2 (Z.l) 

i 2 11 .2Z 

where i = 1 and 2 correspond to - and+, respectively, and ~H = H2Z-Hll . 

The model is simplified further by assuming 

~H = 0 (2.2a) 

and by linearizing ~12 in the vibrational displacement, 

(Z.Zb) 

where rO is the equilibrium position of r. Rand r are functions of time 

which, in a rigorous version of the model, are determined by classical 

motion on the adiabatic potential energy surface, but which here are taken 

to be unperturbed classical motion, 

R(t) = 

= jZn+l cos(wt) 
mw 

(Z.3a) 

(2.3b) 
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where the vibrational motion is that of a harmonic oscillator. The oscillatory 

time-dependence of r (t) is the key feature of the resonance effect, 'so to 

make the model simple enough for an analytic solution the time dependence 

of R(t) is neglected. With Eq. (2~3), the potential model thus assumes the 

form 

t.H = 0 

M: T- A cos(wt) 

where t.£ and A are time independent, 

A = _ ,jin+l' 
mw 

t.£ is the electronic energy defect. 

(2.4a) 

(2.4b) 

(2.5a) 

(2.5b) 

For this simple model [Eq. (2.4)] consider first the Tully-Preston 

approach wi.th the entire time interval taken as the "transition region". 

With R(t) and r(t) given as above, the 1 -+ 2 electronic transition is 

determined quantum mechanically, and in order to carry this out analytically 

perturbation theory is used; the result will thus be valid only to lowest 

order in the coupling parameter A. 8
2
,1' the amplitude of the·transition, 

is given in first-order time-dependent perturbation theory by 

i - - h 1 dt -it.£t/h () 
e H12 t (2.6) 

f:; 
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and with H12 (t) from Eq. (2.4b) this becomes 

= - i 
2h 

iL\£ 

I -tit L\ 
dt e [~ - A cos(wt)] 

_00 2 

The time integral is seen to involve integral representations of the Dirac 

delta function, 

o(x) 
1 

2n 

so if L\£ > 0, the transition amplitude is 

ixt 
e 

inA tJ.£ 
S 0(- - 1) 2,1 = tJ.£ hw 

This model thus shows the resonance effect--Le., a large transition 

probability if tJ.£ = hw--to the extreme. For more realistic models the 

(2.7) 

delta function is broadened. and made finite.because H12 (t) ". 0 for only 

a finite time interval (rather than the ·infinite time interval as above). 

Consider now the Miller-George approach. From Eqs. (2.1) and (2.4) 

one sees that the adiabatic potential difference tJ.W(t) = W2 (t) - WI (t) 

is 

tJ.W(t) = 2 H12 (t) 

tJ.£ - 2A cos(wt) (2.8) 
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A transition between potential energy surfaces 1 and 2 is possible whenever 

~W(t) has a complex crossing point, and this is often identified by the real 

times at which ~W(t) has a relative minimum. As shown in Figure la, ~W(t) 

from Eq. (2.8) has minima at t = 2rrn/w, where n is any integer. The complex 

crossing times, i.e., the roots of the equation 

~W(t) = a 

are seen to be simply related to the times when ~W(t) has minima: 

2nrr i -1 ~£ 
t = - + - cosh (-) 
n W W 2k 

(2.9) 

The amplitude S2,1 is the superposition of amplitudes ·for all the possible' 

crossing times, i.e., for all the possible trajectories that can lead to 

the 1 + 2 transition: 

(2.10) 

I 

where S is the amplitude for the 1 + 2 transition to take place at the 
n 

complex time tn' (Since 82,1 is being calculated only to lowest order in 

A--to compare with Eq. (2.7)~-it is not necessary to take re-crossings into 

,account.) Sn is given jn Miller-George theory byS,8 

8 
n 

'. t f 
exp(- f [ 

t 
n 

ia. = e 

t 

i in dt W2 - h 
t. 

1. 

dt ~W(t)] (2.11b) 
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where ti + _00 and t
f 

+ +00 are the initial and final times. a is a constant 

phase independent of the index n. The interpretation of Eq. (Z.l1a), apart 
i£Ztf /h -i£l tl/h 0 

from the unperturbed phase factors e and e , 1.S that the 

particle moves on potential surface Wl from ti to tn' crosses to Wz as tn 

(where W
l 

= WZ), and then moves on Wz from tn to tfo 

integral in Eq. (Z.llb) is easily evaluated 

The relevant action 

[~£ - ZA cos(wt)] 

~£t _ ZA sln(wt ) 
n w n 

To lowest order in A, 

(Z .13) 

so that the net amplitude is 

00 

L 
i~£ 
hw ZnTI 

e (Z.14) 
n=-oo 

where the constant phase factor has been discarded. The Poisson sum formulall 

implies that 

t 
n=--oo 

e 

i~£ Z 
hw nTI 00 

= ~oo 6(~£ - 9,) 
hw (Z.15) 

.. 
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and since 6.£ > 0 it is then easy to show that Eq. (2.14) becomes 

(2.16) 

To compare this to the result of quantum mechanical time-dependent 

perturbation theory, Eq. (2.7), one needs only the term of Eq. (2.16) 

that is lowest order in A, the ~=l term, 

0(6.£ - 1) 
hw (2.17) 

which is the same (apart from constant phase factors) as Eq. (2.7) except 

that the multiplicative constant e ~ 2.72 appears rather than 7f ~ 3.14. 

The terms ~ > 1 describe multiple vibrational resonances, 6.£ ~w; 

i. e. , 

A* + BC(v=O) ~ A + BC(v=~) 

The important feature this calculation demonstrates is that the 

resonance effect is correctly described by the Miller-George model. It 

comes from the interference of amplitudes that correspond to the different 

times at which the transition can occur. In the perturbative limit it has 

the same form as the result given by quantum mechanical time-dependent 

perturbation theory, although it does make an error ('V 13%) in the 

multiplicative numerical factor. 

In actual application there will not be an infinite number of terms 

in the sum over integers n in Eq. (2.15). (Nor will the different terms 

have precisely the same phase factors). Figure lb shows the behavior of 

~). 
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t,W(t) that might be expected for a more realistic model; here there would 

be only a finite number of avoided crossings with significant transition 

probabilities. A finite and broadened resonance function would thus replace 

the delta function. 

It is important to note that the Tully-Preston model obtains the 

resonance behavior only if the entire time interval is taken as the 

"transition region" during which the time-dependent Schrodinger equation 

is used to determine the transition probability associated with the 

transition region. During this transition time interval, however, the 

classical path must be assumed, rather than de'termined by the classical 

equations of motion. (In the Tully-Preston model the trajectory is 

determined by classical mechanics between the various transition regions.) 

Thus if the entire time interval is the transition region, the classical 

path must be assumed for the entire time interval, and the model thus looses 

its greatest charm, namely that of allowing the classical path to be 

determined dynamically rather than having to assume it ~ priori. If each 

avoided crossing--i.e., each minimum of bW(t)--is treated as a separate 

crossing region, as it should be for the model to be consistent, then the 

Tully-Preston model misses the resonance effect completely since it would 

add the probabilities (rather than probability amplitudes) related to the 

different avoided crossings. 
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III. Concluding Remarks 

The essential point in realizing that Miller-George theory describes 

resonance behavior in electronic-vibrational energy transfer is that 

~W(t) = ~W(R(t),r(t)) is in general an oscillatory function of t because 

r(t) is. ~W(t) will thus have a number of "avoided crossings" (Le., 

minima), and the superpositiqn of the amplitudes for the various possible 

trajectories that change from surface 1 to surface 2 interfere and can 

cause resonance effects. How sharp the resonance structure is depends on 

how many amplitudes have comparable transition probabilities. The model 

discussed in Section II, although grossly oversimplified in order to.m?ke 

a simple analytic solution possible, illustrates the way resonance effects 

appear. 

Since the Tully-Preston model.does not include this kind of 

interference behavior, why has it been as successful as it has, 

+ e.g., for the H + H2 system? Here, too, there are usually several 

different trajectories that contribute to a given process, and the proper 

thing to do is to. superpose amplitudes for these different trajectories, 

rather than add probabilities. For non-resonance processes, however, the 

different trajectories leading to a given transition are essentially , 
uncorrelated with each other, and averages over impact parameter, rotational 

degeneracy, etc., quench the interference effects. For a nearly resonant 

process, oll'the other hand, the different avoided crossings are highly 

correlated with. each other, i.e., the phases of the amplitudes for the 

different trajectories differ from each other in a regular manner. Since 

these phase relations are approximately independent of impact parameter, 

\l..L 

r 
'r 
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etc., the interference between these various amplitudes is less likely to 

be quenched by averages over unobserved collision parameters. 

Miller-George theory is difficult to apply in its fully rigorous 

'\.,1 
f b h 1 12 f . 1 . f" 1 1 1 orm, ut t ere are severa ways 0 s1mp 1 y1ng 1t to a eve tlat 

makes it comparable in applicability to the Tully~Preston model,but which 

still retain interference information. One would expect this to be a 

usefully accurate description of resonance behavior in non-adiabatic 

collision phenomena. 
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Figure Caption 

(a) The adiabatic potential difference' {l.W(t) as a function of time for the 

model given by Eq. (2.8). 

\ \,~' 

.'~ (b) The adiabatic potential difference as a function of time for a more 

realistic model. 
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