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ABSTRACT OF THE DISSERTATION

Plasma Formation in Femtosecond Laser Breakdown of Dense Hydrogen Gas

by

Alexandra Lane Latshaw

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Seth J Putterman, Chair

As energy is injected into matter it eventually reaches the plasma state where electrons are

separated from ions. The importance of electrostatic interaction in a plasma is determined

by the plasma parameter Γ which is the ratio of electric potential energy to thermal en-

ergy. Space plasmas and plasmas created in Tokomaks are dilute and have Γ << 1. The

transport properties of strongly coupled plasmas where Γ > 1 are not understood and are

especially important for understanding instabilities in inertial confinement fusion experi-

ments. Dense plasmas with Γ > 1 are accessible in table top experiments via sonolumi-

nescence, sparks and laser breakdown of dense gases. In this thesis, plasma is generated in

1-10 bar hydrogen gas using a high power femtosecond laser between pulse widths of 130-

320fs. By measuring the plasma via CCD images, spectral and bandpass emission, as well

as transmitted laser spectra, a transition from tunneling ionized plasma at low pressure

to cascade breakdown at high pressure is observed. Dense tunneling plasma is imaged di-

rectly for the first time and shown to have a uniform structure. This plasma is proposed

as an ideal candidate for the study of dense plasma hydrodynamics.
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CHAPTER 1

Introduction

Figure 1.1: Breakdown of air generated by focused femtosecond laser. The lens is in the

foreground and the beam block catching the laser is seen behind the plasma.
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1.1 Motivation

An understudied but important phase of matter is strongly-coupled plasma (SCP). Such

a plasma has formed when the coulomb interaction between charged particles is greater

than kT, where k is the Boltzmann constant and T is the temperature of the plasma. The

degree to which a plasma is correlated is determined quantitatively by the dimensionless

parameter Γ, which is the ratio of coulomb energy to kT so that

Γ =
(Ze)2

akT
(1.1)

where the particle spacing is a = ( 3
4πn

)1/3 and n is the charge density. SCPs can be found

in the interior of astrophysical objects [1], dusty plasmas [2], ultracold atom and ion trap-

ping [3], inertial confinement fusion (ICF) [4], sonoluminesce [5], and ultrafast laser break-

down [6, 7].

The study of SCPs presents theoretical challenges due to the difficulty of treating particle

interactions and collective motion. In contrast to the Navier–Stokes equations, SCP hy-

drodynamics must be characterized by the nonlocal two-point density correlation f2(r1, r2)

(or g2(r1, r2)). This means that the probability of finding particle 1 located at r1 is cou-

pled to the probability of finding particle 2 at r2. This is a result of the strong Coulomb

interaction between them, which is not present in ideal plasmas like that in the earth’s

ionosphere where Γ << 1. The exact free-energy density functional for SCPs is not known

[8, 9]. This is especially important for interpreting the evolution of fluid instabilities in

ICF experiments [10].

One of the most interesting things to occur in SCPs is the appearance of short range or-

der. In a classic paper by Edward Teller [11], the behavior of a “one-component” plasma

is described. Teller’s model is that ions are immersed in a neutralizing background and

are confined to stay within a fixed-volume box. The behavior of the ions in such a one-

component plasma is determined by the plasma parameter of the ions. Fig. 1.2 plots the

ion-ion spatial correlation function g(x) for various values of Γions. For Γions < 1, the ions

behave as an ideal gas and are not correlated. For Γions > 1, their motion becomes corre-

2



lated, and as Γions approaches 50 their correlation looks quantitatively like redistribution

functions for ordinary fluids. At Γ ∼100 the plasma exhibits a fluid-to-solid phase tran-

sition! Crystal-structured plasmas have been produced [12] and an example is shown in

Figure 1.2: Radial distribution functions g(x) for 0.05 ≤ Γ ≤ 100.0 reproduced from [11].

r=1.6a is the bcc lattice spacing.

Fig. 1.3. However a plasma crystal has not been observed in a “hot” system, i.e., where

the ionization potential Eion is on the order of kT.

SCPs have been found to readily appear in energized dense gases. This includes a) collaps-

ing gas bubbles surrounded by a fluid subjected to a resonant sound field [5], b) electrical

discharges in a dense gas [13], and c) femtosecond laser-induced breakdown of a dense gas

[7]. These systems generated in the Putterman lab at UCLA are shown in Fig. 1.4. SCPs

produced in table top setups provide an opportunity to study coupled plasma dynamics

without a large-scale facility. Important behavior to study is the off-equilibrium motion

of the plasma to determine transport properties, relaxation processes, and elucidate the

3



Figure 1.3: Plasma crystal observed for 7µm “dust” particles at room temperature repro-

duced from [12].

equation of state. However, measuring these dynamics in the lab is difficult because of the

small size of the systems (microns) and fast timescales (0.1-30ns) involved.

1.2 Towards Dense Plasma Hydrodynamics

Experiments generating plasmas in dense gas by focusing intense ultrashort pulses in gas

have been conducted [6, 7]. In [7] laser breakdown initiated with an ∼300fs laser pulse a

neutral gas made of hydrogen at 10atm transforms into a dense plasma with an electron

temperature of 30,000K (and an internal pressure >3000atm). This results in a plasma

with a coupling parameter value of Γ ∼0.5 for the electrons. Part of the goal of this exper-

iment was to access a regime of strong coupling for the ions to observe plasma crystalliza-

tion.

The Teller model is applicable in the limit that the electrons are very hot and approxi-

4



Figure 1.4: Dense, coupled plasmas are made using three different energy focusing mech-

anisms. a) A low-power acoustic drive generates the plasma inside of an imploding gas

bubble in a liquid (sonoluminescence). b) Electric breakdown between needles inside of a

high-pressure gas chamber. c) Femtosecond laser-induced breakdown in a high-pressure

gas cell. Images were taken in the Seth Putterman laboratory at UCLA.

mate a uniform background. Physically this means that kT is large in comparison to the

difference in attraction between the nearest and next-nearest ions; i.e., the electron mo-

tion is not perturbed by its nearest ion. This is exactly the situation in femtosecond laser-

breakdown, because the incoming laser pulse couples only to electrons. The pulse length

is much shorter than the time required for electrons to thermalize with ions, therefore the

ions remain at ambient temperature for a short while. The key point is that for laser ion-

ization, the ions are initially at ambient temperature Tions =300K, and Γions comes out to

be around 70 for 10atm of hydrogen gas. However, the electron–ion equipartition time is

only 10–20 ps for the hydrogen plasma and was beyond the temporal resolution of the ex-

periment.

Attempting to access exotic plasma states via laser breakdown is still an ongoing goal. To

do this the method of generating breakdown must be a well controlled process. If we wish

to study SCPs over a range of coupling strengths the key variables dictating plasma den-

sity and temperature must be understood. To open up this field, this thesis examines the

5



formation process for plasma generated by femtosecond laser pulses in dense hydrogen gas.

1.3 Laser-Generated Plasma

Starting with giant pulse Q-switched lasers, a focused laser beam was found to have suffi-

cient power to break down gases, liquids, and solids into plasma [14]. Laser-induced break-

down requires a threshold laser intensity [15] and a lot of literature surrounds the mea-

surement of this value for given laser frequencies, pulse widths, focusing conditions, and

materials. Fig. 1.5 shows one of the landmark measurements of the breakdown threshold

from the 1960s. Knowing the threshold value has been important for designing energetic

pulsed laser systems, since focusing the beam can generate a plasma which destroys spatial

and temporal beam quality or optical components. In some systems breakdown is the de-

sired result, such as in intraocular microsurgery or micromachining where controlled laser

breakdown plasma is used as a blade or drill [16].

The threshold for breakdown is dictated by ionization growth mechanisms in the mate-

rial, which are 1) collision-free photoionization via the laser’s electric field (depending on

the frequency of light, known as multiphoton ionization or tunneling ionization) and 2)

collisional cascade (also known as avalanche or impact ionization) [17]. In cascade break-

down, a free electron in the material provided by impurities or photoionization starts to

absorb the field through collisions with other particles (known as inverse Bremsstrahlung

absorption). When the electron has sufficient momentum it frees a new electron via colli-

sion. The process is repeated resulting in a avalanche buildup of the free charge density.

While laser breakdown can be used as a tool, such as making subwavelength holes in ma-

terial [18], it can also be used to generate off-equlibrium plasmas with large plasma pa-

rameter [6]. Experiments generating nonideal dense plasmas by focusing intense ultra-

short pulses in gas have been conducted [6, 7], but the mechanism responsible for break-

down and how this impacts the resulting plasma state has not been explored. Previous

experiments have used tightly focused (f/5) 100fs, 620nm pulses in dense gas [19, 20] and
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Figure 1.5: Reproduced from [14]. The seminal paper by Meyerand and Haught in 1963

measured the electric field threshold for gas breakdown with a ruby laser at 693nm. The

amount of ionization could not be explained by classical microwave breakdown theory and

the process of inverse Bremmsstrahlung is proposed.

have investigated the ionization mechanism. However, minimal pulse energies were used

(<0.4mJ) and, although breakdown was observed, absorption of the laser pulse was less

than 1%. Long filaments of plasma have also been generated in dense gas (i.e., air) by

striking a balance between self-focusing and plasma-induced defocusing of the laser beam.

In self focusing, the spatial variation in the intensity of the laser causes a higher index of

refraction in the center of the beam than in the wings. This causes the beam to focus in

on itself, increasing the effect. This can lead to electric fields above the breakdown thresh-

old of the material and generate plasma. Due to the presence of electrons, the plasma has

a lower index of refraction than the surrounding gas, which we will derive, and can act as

a negative or diverging lens. Self-focusing can be made to balance the plasma defocusing

effect, and this has generated filaments of plasma 20 meters long [21]! We will explore the
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propagation of light in later chapters to understand these effects in detail. However, the

filaments generated are low electron density [21, 22], only around 0.1% ionized. The mech-

anism responsible for dense gas breakdown and the impact of this on the initial conditions

of the plasma, such as temperature and density, has not been explored. This could be very

important for controlling the coupling parameter in gas laser-breakdown studies of dense

plasma hydrodynamics. In laser ablation experiments cascade is found to be the dominant

mechanism in the breakdown of glass down to pulse widths of 100fs [15]. No such experi-

ments exist for dense gas.

Variation of the electron density ρ as a function of time can be expressed as [23]:

∂ρ

∂t
= (η − g)ρ+ (

∂ρ

∂t
)m (1.2)

The first term on the right represents the cascade growth, where the cascade ionization

rate η is the probability per unit time that a free electron will have an ionizing collision

with a bound electron. The electron loss rate g represents free electron losses due to re-

combination, trapping and diffusion out of the focal volume of the beam. The second term

on the right is the multiphoton ionization contribution to the electron density. To solve

(1.2) it is assumed that

(
∂ρ

∂t
)m = η′ρb(t) (1.3)

where ρb(t) is the density of bound electrons at time t and η′ is the multiphoton ionization

rate. This is the transition of the electron into a free state accompanied by simultaneous

absorption of several quanta [24].

There is a second photo-absorption mechanism which is called tunneling. This is a semi-

classical effect where the electron tunnels through the barrier of the atomic potential well.

The tunneling time is determined essentially by the mean free time of the electron passing

through a barrier of width

l =
Eion
eE

(1.4)

where Eion is the ionization potential and E is the electric field. The average electron ve-

locity is on the order of
√
Eion
me

, where me is the electron mass. Up to frequencies on the
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order of

ωt =
eE√

2meEion
(1.5)

the tunneling effect is determined simply by the instantaneous value of the electric field.

At higher frequencies there appears a frequency dependence of the tunneling probability

since the electron does not have time to jump through the barrier in one cycle. The tun-

neling regime corresponds to frequencies of light ω < ωt whereas the multiphoton regime

corresponds to ω > ωt [24, 25].

1.4 Dense Laser-Generated Plasma

We seek to form a rate equation which can describe the electron density growth over the

duration of a laser pulse on the order of several hundred femtoseconds. Equation (1.2) is

used for threshold intensity calculations and diverges at long times. We propose the fol-

lowing model for the electron density ρe(t) during laser ionization:

∂ρe(t)

∂t
= η′ ρn(t) + η ρe(t)(1−

ρe(t)

ρn0

) (1.6)

ρn(t) = ρn0 − ρe(t) (1.7)

This includes a contribution from both field-induced tunneling (first term on the right in

(1.6)) and impact ionization (second term on the right in (1.6)). η′ is the tunneling rate

constant and η is the cascade rate constant. This is simply the Kennedy equation (1.2),

with tunneling instead of multiphoton photoionization. Additionally, the impact term has

been modified to a population-like growth (the logistic function) to limit the maximum

electron density to the initial neutral density ρn0 (disassociated H2 in this experiment).

Losses are neglected. Diffusion of electrons from the focal volume will be a small effect on

the femtosecond timescale, as will recombination.

Tunneling is concluded to be the photoionization mechanism in this system. The electric

field strengths at the focus of the laser in this experiment are ∼ 108V/cm and the fre-

quency of the laser is ω ∼2×1015 rad/s (800nm light). Taking the electric field measured
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in 1 bar breakdown (reported in Chapter 8), the tunneling frequency as defined by (1.5) is

ωt ∼4×1015 rad/s. The relation ω < ωt holds but only by a factor of 2. The more funda-

mental way of defining the tunneling frequency is the frequency of the electron oscillation

in the atom, given by Eion
h̄

. For hydrogen this is on the order ∼ 2 × 1016 rad/s. This puts

us well into the tunneling regime. Moreover for 800nm light the energy per photon is only

1.6eV. The ionization of a hydrogen atom via multiphoton absorption would require the

“simultaneous” absorption of around 9 photons. This is an unfavorable process. Multipho-

ton ionization tends to be discussed in the context of laser breakdown via UV lasers where

the energy per photon is much greater (∼6eV) [26].

In this thesis plasma is generated in 1-10 bar hydrogen gas using a high power femtosec-

ond laser between pulse widths of 130-320fs. By measuring the plasma through CCD im-

ages, spectral and bandpass emission, as well as the transmitted laser spectra, values for

the tunneling and cascade rate are found. The rate equation is then solved numerically.

The results show a transition from tunneling dominated plasma at low pressure and both

pulse widths to cascade dominated plasma as the pressure is increased. The effect on plasma

density and temperature is explored from the results of the electron density model. Dense

tunneling plasma is imaged directly for the first time and observed to have a uniform struc-

ture. This plasma is proposed as an ideal candidate for the study of dense plasma hydro-

dynamics.
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CHAPTER 2

Relevant Plasma Theory

2.1 Definition of the Dielectric Tensor

This derivation follows [27]. An electric field E(r, t) varies in space and time. The field in-

duces an electric current density J(r, t) in the medium. If the strength of the field is suffi-

ciently weak, then the current can be a response which is linear to the field. This is Ohm’s

law where

J(r, t) = σ(r, t) · E(r, t) (2.1)

The conductivity σ is a 2nd-rank tensor characteristic of the medium and measures the

ratio between the induced current density and the electric field. If the material is isotropic

then σ = σI, where I is the 3x3 identity matrix. We analyze the linear response of the

system via the macroscopic Maxwell equations:

∇× E +
1

c

∂B

∂t
= 0 (2.2)

∇×B− 1

c

∂E

∂t
=

4π

c
(J + Jext) (2.3)

∇ · E = 4π(ρ+ ρext) (2.4)

∇ ·B = 0 (2.5)

The charge density ρ is the induced space-charge field connected with J through the conti-

nuity equation:
∂ρ

∂t
+ ∇ · J = 0 (2.6)

Jext and ρext are the current and charge densities from external sources and satisfy a sim-

ilar continuity equation. Assuming plane-wave states, we Fourier transform (2.3) for an
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isotropic medium without external sources to obtain

k×B +
ω

c
ε · E = 0 (2.7)

ε(ω) = I− 4π

iω
σ(k, ω) (2.8)

The tensor ε is the dielectric tensor of the medium and characterizes the electromagnetic

properties of the medium. At this stage we can introduce the electric displacement D and

the magnetic field H and rewrite (2.7) as

k×H +
ω

c
ε ·D = 0 (2.9)

Comparison between (2.7) and (2.9) suggest H = B and D = ε·E, which is close. If we

define a transverse projection tensor with respect to the wave vector k

IT −
kk

k2
(2.10)

then

D = [I− 4π

iω
(I− λIT ) · σ] · E (2.11)

and

H = B + λ
4π

ick2
(k× σ) · E (2.12)

Recalling that B = c
ω

k × E, we can see this is another form of the magnetic and electric

susceptibility tensors χm and χe, where

D = [1 + 4πχe]E (2.13)

B = [1 + 4πχm]H (2.14)

We will discuss these relations in a later chapter when dealing with the response of non-

conducting media to intense electric fields.

2.2 Electromagnetic Waves in Dissipative Media

This derivation follows from [28]. For now let’s look at Maxwell’s equations written for

conducting media (no free charges):
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∇× E +
∂B

∂t
= 0 (2.15)

∇×H− ∂D

∂t
= J (2.16)

∇ · E = 0 (2.17)

∇ ·B = 0 (2.18)

For simplicity we assume we are in an isotropic medium, i.e. σ = σI, (2.16) becomes:

∇× (
B

µ
) = σE + ε

∂E

∂t
(2.19)

Using the fact that H = B
µ

for isotropic magnetic susceptibility. Applying curl (∇×) to

(2.15) we have

∇2E =
∂(∇×B)

∂t
(2.20)

Rearranging (2.19) and (2.20) we have

∇2E− µε∂
2E

∂t2
− µσ∂E

∂t
= 0 (2.21)

∇2B− µε∂
2B

∂t2
− µσ∂B

∂t
= 0 (2.22)

The solutions to (2.21) and (2.22) are

E = E0e
−i(ωt−k·r) (2.23)

B = B0e
−i(ωt−k·r) (2.24)

Substituting (2.23) and (2.24) into (2.21) and (2.22) yields

k2 = µεω2 + iµσω (2.25)

k = k1 + ik2 =
√
µεω2 + iµσω (2.26)

Inserting (2.26) into (2.23)

E = E0e
−k2ze−i(ωt−k1z) (2.27)

13



We see that the imaginary part of k is responsible for the attenuation of the wave. The

skin depth is defined as the distance for the amplitude of the wave to be reduced by a fac-

tor of 1/e. The skin depth

δ =
1

k2

(2.28)

is used as a measure of how far the wave penetrates into the conductor.

2.3 Plasma as a Dielectric

This derivation follows [28, 29]. Consider a bound electron in an external electric field

E(r, t) where

Fbinding = −kspringx = −meω
2
0x (2.29)

and

Fdamping = −meγ
dx

dt
(2.30)

The equation of motion is

me[
d2x

dt2
+ γ

dx

dt
+ ω2

0x] = eE(r, t) (2.31)

If the field varies harmonically in time with frequency ω as e−iωt the general solution is

x(t) = x0e
−iωt. Substituting into (2.29) yield

x0 = − e/me

ω2
0 − ω2 − iωγ

(2.32)

The electron has a dipole moment of p = ex(t). Now suppose there are n0 molecules per

unit volume, with fj electrons per atom inside the molecule. Each electron has an oscilla-

tion frequency ωj and damping of γj The polarization P is then

P =
n0 e

2

me

∑
j

fj
ω2

0 − ω2
j − iωγj

(2.33)

and the complex dielectric constant is given by

ε(ω) = 1 +
4πn0 e

2

me

∑
j

fj
ω2
j − ω2 − iωγj

(2.34)
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In the high frequency limit ω >> ωj

ε(ω) = 1 +
4πn0 e

2

me

Z

ω2
(2.35)

ε(ω) = 1 +
ω2
p

ω2
(2.36)

where now we have defined the plasma frequency ωp

ωp =

√
4πnee2

me

(2.37)

The plasma frequency is the timescale over which neutrality is restored in a plasma after

perturbation. The wavenumber k is given by (2.25) without the conductivity term:

k2 = ω2εµ =
ω2ε

c2ε0
(2.38)

assuming in the optical region µ ∼ µ0. This leads us to the important definition for the

complex index of refraction of a material

ñ =

√
ε

ε0
(2.39)

and so we have

k = ñ
ω

c
=

1

c

√
ω2 − ω2

p (2.40)

For ω < ωp, k is purely imaginary. There will be no propagation in the medium. As we

saw in the previous system the wave will be attenuated by an imaginary wavenumber. The

reflectivity is very high in plasmas for light with frequency below the plasma frequency.

An example of this from our system is shown in Fig. 2.1.
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Figure 2.1: CCD image of femtosecond laser generated plasma in 10 bar hydrogen. The

camera integrates the total light from 1 plasma viewed through a) an ND filter and b) a

335-610nm bandpass filter. The saturated spots on a) must be scattered light from the

800nm laser. If the plasma is fully ionized here at 10 bar then we are below the plasma

frequency by a factor of 2. However, this is close enough to get reflections in a real system.
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2.4 Light Emission from Plasma

These derivations follow [30].

2.4.1 Equation of Radiative Transfer

The propagation of light through plasma is affected by the absorption, emission, and scat-

tering properties of that plasma. We describe the exponential attenuation of an electro-

magnetic wave in a plasma by the linear absorption coefficient aω. For a wave traveling in

the z direction through a plasma, we may write

dJω
dz

= −aωJω (2.41)

where Jω is the spectral intensity (Wsr−1Hz−1) of the wave. The absorption coefficient is

related to the wave vector of the electromagnetic wave by

aω = −2Im(k) (2.42)

Recall that the imaginary part of the wave vector can be related to the conductivity of a

medium. If the conductivity is zero, there is no absorption. The fractional loss of intensity

of the light on passing between z1 and z2 is known as the optical thickness or optical depth

Dω and given by

Dω =

∫ z2

z1

aωdz (2.43)

We now define the radiation power emitted per unit solid angle per unit frequency from a

unit volume of plasma, as jω. We can define a source function S

Sω =
1

n2

jω
aω

(2.44)

where n is the real part of the refractive index.

n =
c

ω
Re(k) (2.45)

The change in intensity of light passing through an emitting and absorbing layer of plasma

of thickness dz is therefore given by

n2d(
Jω
n2

) = (−Jωaω + jω)dz (2.46)
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which can be written in terms of the source function and optical depth as

d

dDω
(
Jω
n2

) = −Jω
n2

+ Sω (2.47)

This is the equation of radiative transfer. If we wish to obtain an expression for the bright-

ness of a slab of plasma, we integrate this equation with the proper source term along the

optical depth. A steady state solution may be written:

Jω =

∫ D
0

Sω e−DωdDω (2.48)

2.4.2 Local Thermodynamic Equilibrium

If the plasma is in local thermodynamic equilibrium (LTE), (2.48) can be easily solved.

In our case, LTE means that the electrons have a well defined thermal velocity distribu-

tion, but not are necessarily in equilibrium with the ions in massive particles (ions) in the

system. Global thermodynamic equilibrium would require homogeneous intensive prop-

erties throughout the system, such as temperature and pressure. If the electrons have a

Maxwellian distribution with temperature Te, it can be shown that

aω =
jω
JωB

(2.49)

where JωB is the black body spectral intensity at temperature Te. This is Kirchoff’s Law.

In this case the source function for the plasma is

Sω =
JωB
n2

(2.50)

If the electron temperature is uniform, the source function is independent of the optical

depth Dω and (2.48) becomes

Jω = JωB[1− e−Dωtot ] (2.51)

where Dωtot is the total optical depth of the plasma. We can see that if Dωtot >> 1 then

the plasma emits like a black body at frequency ω! If Dωtot << 1 then Jω = JωBDωtot . For

a plasma of length l which is homogeneous along the line of sight Dωtot = aωl and therefore

Jω = jωl.
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The plasma goes from radiating an optically thin spectrum to black body spectrum

around ωtrans which is determined by the thickness of the plasma. Additionally as we saw

from the dielectric response of the plasma, below the plasma frequency the plasma is a

good reflector. The plasma also cannot radiate at frequencies lower than this – since the

plasma frequency is the natural response of the particles to perturbations. The plasma

emission can then be summarized as

1. ω < ωp − little to no transmission/emission

2. ωp < ω < ωtrans − black body

3. ωtrans < ω − optically thin continuous

Fig. 2.2 shows black body radiation from plasma formed via femtosecond laser in high

pressure xenon gas.

2.4.3 Sources of Plasma Radiation

There are various sources of emission in a plasma. We need to determine the dominant

sources of radiation in our system to calculate (2.51). To summarize a few main processes

responsible for plasma radiation:

2.4.3.1 Bound-Bound Transitions

This is when an atom makes a transition from one bound state to one of lower energy.

The energy of the emitted photon is well-defined by the difference of these two states and

produces spectral line emission. The profile of the line emission will be Doppler shifted by

the velocity of the emitting atom or ion, and can therefore be related to the velocity dis-

tribution of the particles and other processes such as collisions. Analysis of spectral lines

due to bound-bound transitions is a big part of plasma spectroscopy. Fig. 2.3 shows the

H-alpha Balmer line emission from our plasma, which is barely distinguishable from the

continuum at early times, making this technique difficult to apply to our system.
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Figure 2.2: Reproduced from [6].

2.4.3.2 Free-Bound Transitions

This is when a free electron is captured by an ion and makes a transition to a bound state.

The excess energy is emitted as a photon and is known as recombination radiation. The

emission spectrum is continuous with a sharp low frequency cutoff at the minimum energy

to ionize the atom from a bound state. The inverse process is photoionization. There is

also three-body recombination which becomes more probable at high density. This is when

two electrons collide with an ion: one electron is absorbed by the atom and the other ab-

sorbs the excess energy.
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Figure 2.3: a) shows the streak spectrum from plasma generated in 1 bar hydrogen via

130fs laser pulse. b) shows the t=0 lineouts from the streak image in a) and additionally

that from 320fs breakdown in 1 bar. The t=0 lineouts show the Balmer line slightly above

the continuum. Because of this the line emission would be very difficult to analyze for in-

formation about the plasma such as temperature. The spectral line doesn’t become well

defined until much later, as shown in the t=1.8ns lineouts.

2.4.3.3 Free-Free Transitions

Free-free transitions are when a free electron collides with a particle and transitions to a

lower energy free state by emitting a photon. This is the famous Bremsstrahlung emission.

The spectrum is continuous and due mostly to electron-ion collisions. Electron-electron

collisions do not radiate until they reach relativistic energies. For hydrogenic plasmas of

electron temperature around 10eV electron-ion Bremsstrahlung is the dominant radia-

tion mechanism [30], since the plasma is hot enough for most of the neutrals to be ionized.

Interactions between electrons and neutral atoms also have much shorter range than the

Coulomb interaction, so electron-neutral Bremsstrahlung will be a weak contributor to the

emission. The reverse of this process is very important for laser heating of plasma, and

fueling collisional avalanche breakdown, and is known as inverse-Bremsstrahlung. This is

when a free electron absorbs a photon as it moves to a more energetic free state while in

the field of a ion.
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2.4.4 Electron-Ion Bremsstrahlung Radiation

Since previous measurements in our system [7] have placed the electron temperature on

the order of a few eV with the gas nearly 50% ionized, we will look at electron-ion

Bremsstrahlung emission and absorption for modeling plasma radiation. The spectral

emission coefficient jω is given by

jω(Te) =
4

3π
(
2π

3
)

1
2 (

e2

4πε0c
)3 neniZ

2

m
3
2
e (kBTe)

1
2

n gc(ω, Te) e
− h̄ω

kBTe (2.52)

where gc(ω, Te) is the average Gaunt factor. This term depends upon the Coulomb log-

arithm and takes some thought to apply in the dense plasma regime [6]. The absorption

coefficient aω is given by

aω =
neniZ

2e6[1− e−
h̄ω

kBTe ]

n6πε30ch̄ω
3m2

e

(
me

2πkBTe
)

1
2
π√
3
gc (2.53)

The frequency where the plasma of thickness l switches from optically thin

Bremmstrahlung to black body radiation is where aωl ∼ 1. This can be found from (2.53)

in the limit of low frequency and high temperature h̄ω << kBTe where

aω ≈
neniZ

2e6

n6πε30cω
2
(

1

2π
)

1
2 (

1

mekBTe
)

3
2
π√
3
gc (2.54)

We can directly solve for ωtrans by setting aωl = 1. Numerically,

ω2
trans

ω2
p

= 1.75× 10−16neZgc l

T
3
2
e

(2.55)

22



CHAPTER 3

Anatomy of a Femtosecond Laser

Figure 3.1: Solstice Ace femtosecond laser on the optical table in the lab at UCLA.

We are using a one-box femtosecond amplifier system by Spectra-Physics called the Sol-

stice Ace. Fig. 3.1 is a picture of the laser setup in the lab at UCLA. The key principle of

the laser is chirped pulse amplification (CPA), which allows a femtosecond seed pulse of

nanojoule energy to be amplified by a factor of a million. Fig. 3.2 shows a layout of the
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Figure 3.2: Block diagram of Solstice Ace laser.

laser components.

First, a Ti:Sapphire seed laser produces an 80MHz pulse train of 800nm femtosecond pulses

via active mode-locking. The pulse is stretched in the time domain by factor of 104 by in-

troducing group velocity dispersion (GVD), or “chirp.” A seed is selected from the pulse

train and sent through a multi-pass Ti:Sapphire amplifier, which is pumped by a 35W,

1kHz laser at 527nm– in the absorption spectrum of Ti:Sapphire. The pulse takes multiple

round trips through the cavity until the energy is amplified to millijoule level.

If the seed pulse were to travel through the amplifier without being stretched its high in-

tensity would cause it to self-focus in the crystal. This is due to the nonlinear index of re-

fraction of the crystal. Self-focusing destroys the pulse spectrum and shape and can dam-

age the crystal. After amplification the pulse is compressed back to ultrashort duration

achieving nearly terawatt power. The output pulse of the Solstice Ace is ∼6.5mJ and has

a duration of 35fs.

The general principle of CPA is illustrated in Fig. 3.3. The technique was developed by

Strickland and Mourou in 1985 [31] and they received the Nobel Prize in Physics for their

work in 2018. Amplification of short pulses was previously limited by the onset of self-

focusing in solid state gain mediums to around 10GW/cm2. This limitation constrained

intense light-matter interaction experiments. CPA is now used to develop almost all of the
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world’s ultra high power lasers, reaching the pettawatt level! Below the concept of GVD is

explained and the technique of CPA in the Solstice Ace is detailed.

Figure 3.3: The principle of chirped pulse amplification reproduced from [32].

3.1 Group Velocity Dispersion

For this discussion we follow [32]. Consider a laser pulse of the form

E(t) = e−at
2

ei(ωot+bt2) = e−Γt2 eiωot (3.1)

where ωo is the carrier frequency and Γ ≡ a − ib is a complex Gaussian parameter. The

intensity I(t) is the usual

I(t) =
∣∣E(t)

∣∣2 = e−2at2 (3.2)

where the pulse width τp is defined as the FWHM

τp =

√
2ln(2)

a
(3.3)

The total instantaneous phase of the pulse is

φ(t) = ωot+ bt2 (3.4)

and the instantaneous frequency is found to be

ωi ≡
dφ(t)

dt
=

d

dt
(ωot+ bt2) = ωo + 2bt (3.5)
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The pulse has a linear time varying instantaneous frequency. The relationship between the

pulse width τp and its bandwidth ∆fp is now:

∆fpτp = (
2 ln(2)

π
)

√
1 + (

b

a
)2 (3.6)

where the first term on the right is the familiar time-bandwidth product. The second term

has to do with the time dependent frequency of the light. When a pulse is transform lim-

ited it means that each frequency arrives at the same time, and therefore b = 0. But you

can delay or advance some frequencies with respect to others and this is known as GVD or

“chirp.” The spectrum of the laser is shown in Fig 3.4.

Figure 3.4: Spectrum at the output of the compressor.

GVD is defined by the term

d

dω
(

1

vg(ω)
)ω=ωo = − 1

v2
g(ωo)

dvg(ω)

dω
(3.7)

This represents the variation of the group velocity vg with frequency. The pulse envelope

does not simply move at a single group velocity, such as for a narrowband pulse. Recall

vg = (
∂ω

∂k
)ω=ωo (3.8)
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evaluated at the midband value of ω = ωo. Now, different frequency components travel

at different group velocities, distorting the pulse envelope and effectively lengthening or

compressing the pulse width.

3.2 Nonlinear Optics & Self-Focusing

This discussion follows[33]. In the presence of an electric field, the charges bound in the

molecules of a material will tend to line up with the applied field and execute perturbed

motions. There is an induced electric polarization P in the material, or dipole moment per

unit volume. If the medium is linear and isotropic we express P as

P = χε0E (3.9)

where χ is called the electric susceptibility of the medium and ε0 is the dielectric perme-

ability of free space. The polarization is linear in the applied electric field E.

The total charge density ρ in the dielectric material can be written:

ρ = ρb + ρf (3.10)

The density ρb is the bound charge density resulting from the dipole polarization and the

free charge density ρf is everything else present (an example: ions embedded in the mate-

rial). Gauss’s law now follows

ε0∇ · E = ρ = ρb + ρf = −∇ ·P + ρf (3.11)

where E is now the total electric field, not just that generated by the polarization. The

divergence terms are combined

∇·(ε0E + P) = ρf (3.12)

to form what is called the electric displacement

D ≡ ε0E + P (3.13)

and we can rewrite Gauss’s law as

∇ ·D = ρf (3.14)
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The relationship between D and E in a linear medium is then written

D = ε0[1 + χ]E (3.15)

and the complex frequency dependent dielectric constant ε(ω) is given

ε(ω) ≡ ε0(1 + χ) (3.16)

where the index of refraction n is related to the dielectric constant by

n =

√
ε

ε0
(3.17)

The index determines how light propagates in the medium.

If the electric field is intense, such as in a short pulse laser, it can change the polarization

response of the medium. It will no longer be linear in the applied field. We express the

polarization as a series expansion in the applied field:

P = χ(1)ε0E + χ(2)E2 + χ(3)E3 (3.18)

The electric displacement is then

D = ε0[1 + χ(1)]E + χ(2)E2 + χ(3)E3 (3.19)

The second-order term χ(2)E2 is responsible for second-harmonic generation, which we will

talk about in Chapter 4. Due to the symmetry of this term (the sign of the electric field

does not change the polarization), this is only present in materials with non-centrosymmetric

arrangement of atoms. These are the nonlinear optical crystals used for harmonic genera-

tors.

The third-order term χ(3)E3 is present in materials of any crystal structure, liquids and

gases. This is the term responsible for self-focusing. If we look at the electric displacement

in this case

D = ε0[1 + χ(1)]E + χ(3)E3 = ε0[1 + χ(1) + ε−1
0 χ(3)E2]E (3.20)

The dielectric constant has become nonlinear in the applied field:

ε = ε1 + ε2E
2 (3.21)
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where ε1 is the linear term (2.12). We can write the index of refraction

n ≈ n0 + n2E
2 = n0 + n2I (3.22)

where n0 =
√

ε1
ε0

and n2 is the nonlinear variation which can be measured. We see that the

refractive index is modified by the laser intensity I! This is sometimes called the optical

Kerr effect with n2 called the Kerr coefficient.

The consequence of this is that a laser beam, with a spatial profile that has higher inten-

sity in the center than at the wings, creates a higher index in the center of the beam than

at the wings. The wings of the beam will focus towards the higher index area. This in-

creases the intensity at the center and the beam continues to focus more and more strongly

in a runaway which can create dielectric breakdown (plasma!) in the material. Self-focusing

occurs if the laser is sufficiently intense to excite the nonlinear term in the polarization,

and this term is stronger than the diffraction spreading for the beam at the same size. It

is the reason for chirping ultrashort pulses before amplification. The high intensity of the

pulse will cause the beam to self-focus in the gain crystal as it is amplified, destroying the

pulse and optics in the process. Fig. 3.5 shows the onset of self-focusing for a 200fs beam

propagating in air.

3.3 Stretching & Compressing the Pulse

Chirping, or GVD, can be introduced by sending the laser pulse through dispersive ma-

terials, i.e., materials which have a frequency dependent index of refraction. The original

generation of ultrahigh peak pulse by CPA used 1.3km of optical fiber [32] to achieve the

necessary temporal broadening. The Solstice Ace system uses diffraction gratings. Fig. 3.6

shows a simplified version of this method. The wide bandwidth seed/input pulse is first

spread by a diffraction grating. The bluer frequency light is sent on a longer path with the

help of a second diffraction grating and routing mirror. The pulse is bounced back and

spatially recombined, and sent out of the stretcher having been elongated in time.

The Solstice Ace uses gratings because they can cause much more GVD than other disper-
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Figure 3.5: Whole beam self-focusing data for a 200fs pulse showing the onset of beam

collapse at a power of 10GW, reproduced from [21].

sive optics. The system stretches the seed pulse by a factor of 104 in a very small space.

The same technique is used in reverse to compress the pulse back to its ultrashort dura-

tion after it has been amplified.

3.4 Seed Selection & Regenerative Amplification

After stretching, the amplifier selects a seed pulse for amplification using electro-optical

devices called Pockel cells. Pockel cells are made with non-centrosymmetric crystals which

experience a change in their refractive index in the presence of a high electric field, due to

the second term in (3.22). The electric displacement goes as

D = ε0[1 + χ(1) + ε−1
0 χ(2)E] E (3.23)

and so the index change is linear in the applied electric field. For Pockel cells the elec-

tric field is applied externally with electrodes. For the Solstice Ace the voltage is 4kV.

Pockel cells have two geometries: the field is applied either longitudinally, in the direc-

tion of propagation of the laser beam, or transversely, perpendicular to the propagation

30



Figure 3.6: Principle of pulse stretching using diffraction gratings reproduced from [34].

of the beam. The index change in the crystal will then be along the axis of the applied

electric field. A polarization dependent index of refraction, or birefringence, is experienced

by a laser pulse propagating through the cell. Pockel cells are therefore used as voltage-

controlled waveplates, which can be switched on and off.

The amplifier cavity of the Solstice Ace is designed so that only vertically polarized light

can be trapped for multiple trips through the Ti:Sapphire crystal. The Pockel cells are

tuned to act as quarter wave plates so that after two passes through them the laser polar-

ization will be flipped from horizontal to vertical. A series of pockel cells are synchronized

to flip the polarization of a seed pulse, first confining it to the cavity to be amplified, and

then again flipping the polarization to eject the pulse from the amplifier. When the pockel

cells are not energized they have no effect on the laser. Ultrafast pockel cells are used for

this kind of pulse selection and have rise times between 3-5ns. This makes it possible to

cut the 80MHz seed pulse train down to 1KHz for amplification.

The principle of regenerative amplification leaves the seed pulse in the cavity to extract

the gain from the crystal over multiple passes. Fig. 3.7 shows a photodiode measurement

from within the cavity. The red trace shows the pulse building up as it makes multiple

passes through the crystal– the spikes are separated by the round trip time of the cavity
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∼9ns. At the proper time a final Pockel cell fires to eject the amplified pulse. The final

compressed pulse at the ouput of the Solstice Ace is also seen in Fig. 3.8, measured with a

second photodiode and shown in blue.

Figure 3.7: The red trace shows a photodiode measurement of the pulse building up in

the regenerative amplifier. Note the spacing of ∼ 9ns which is the round trip time of the

cavity. The final amplified pulse out of the laser is shown in blue. This is used to measure

contrast ratio.

Interestingly, if the laser is too well aligned the back-reflection from the pulse can get back

to the seed laser from the amplifier. Fig. 3.8 shows this in our system. Strong back-reflection

in the seed oscillator causes the system to go unstable and pulse irregularly. The amplifier

was then less well-aligned, from an output of >7mJ to 6.5mJ per pulse, for stable opera-

tion.
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Figure 3.8: The graphs show the 80MHz pulse train of the seed laser. a) shows the pulse

train if the Solstice Ace laser is aligned too well. The amplified pulse is reflected back to

the oscillator. b) shows the pulse train when the system is slightly less well-aligned.
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CHAPTER 4

Chirping the Pulse

Figure 4.1: A chirped Gaussian pulse reproduced from [33].

The pulse width of the laser can be adjusted by chirping the pulse. Chirping can be ac-

complished a few ways, such as sending the pulse through a material with a dispersive in-

dex of refraction. The Solstice Ace laser uses the method of chirped pulse amplification

to amplify femtosecond pulses. The means the pulse duration is increased before it goes

into the amplifier, which is done by first spreading the light with a diffraction grating and

then sending a portion of the pulse on a longer path. The pulse is then recompressed by
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the same method after amplification. The compressor mirror inside the laser amplifier is

already adjustable via a motorized stage for fine-tuning the amplifier to its “best compres-

sion,” i.e., compressing the pulse to the shortest possible duration (∼35fs). The stage posi-

tion is adjusted via the computer control panel of the laser. We will freely adjust the pulse

width of the laser by calibrating this stage position.

We know the pulse width range we wish to work within for reasons which we will detail in

later chapters. Our calibration is limited to this. We use a single shot autocorrelator by

Positive Light/Spectra Physics designed for measuring femtosecond pulses of Ti:Sapphire

wavelengths (∼800nm). The details of the measurement and results are below.

4.1 Measuring Laser Pulse Widths

In order to measure a femtosecond pulse you need something just as short, i.e, a femtosec-

ond pulse. Instruments used to measure laser pulse widths such as streak cameras or pho-

todiodes do not have the resolution for ultrashort pulses. Pulse widths in the femtosecond

and picosecond range can be measured with intensity autocorrelation.

Figure 4.2: Fundamental beams generating SH signal in autocorrelation measurement.
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This technique splits a single laser pulse into two equal pulses and then mixes them to-

gether at a small angle in a nonlinear crystal to frequency double the light. Fig. 4.2 shows

this in our setup. The electric field of the second harmonic (SH) pulse is then the product

of the two input pulses:

E(2ω) ∝ P (2)(2ω) = χ(2)E(ω)2 (4.1)

where χ(2) is the nonlinear susceptibility tensor of the crystal. This term arises due to the

material’s birefringence—in other words having an anisotropic index of refraction. The

intensity of the SH generation therefore goes as I2ω(t) =
∣∣E2ω(t)

∣∣2 ∝ Iω(t)Iω(t).

If we delay the arrival of one of the input pulses by the amount td, and measure the time-

integrated intensity of the induced SH as a function of this delay, we have measured the

intensity autocorrelation function:

A(td) =

∫ +∞

−∞
Iω(t)Iω(t− td)dt (4.2)

For a Gaussian pulse the FWHM of A(td) is readily found in terms of the FWHM pulse

width of the laser:

∆τA =
√

2∆τp (4.3)

The intensity autocorrelation function can be measured in a “multi-shot” configuration

where sequential delays are introduced between the pulses and the time integrated SH in-

tensity is recorded. For femtosecond and picosecond pulses however the autocorrelation

function can be measured in a single shot. Below this measurement is described in detail.

4.2 Single Shot Autocorrelation

Fig. 4.3 shows the optical design of the single shot autocorrelator (SSA). The pulse enters

into a waveplate/polarizer beam splitter which splits the pulse ∼50-50% down two paths,

one of which has a delay stage which can change the optical path length of this “probe

line.” The pulses are mixed non-colinearly in the crystal to generate a SH pulse, which is

measured by a CCD array in the forward direction and read out on an oscilloscope. An up
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Figure 4.3: SSA optical layout.

close view of the pulse interaction is seen in Fig. 4.4. Here we see the split pulse overlap-

ping in space and time in the crystal to generate the SH beam.

The split pulse can be fully temporally overlapped within the crystal because ultrashort

pulses have a short spatial extents (ctp) compared to their waist size. In contrast nanosec-

ond pulses are a foot long! To probe the full extent of the pulse the delay time must be

scanned.

An ultrashort pulse will probe every point of the pulse in a single shot. Each point of over-

lap generates SH light in the forward direction proportional to the product of the pulse in-

tensities at that point. This generates the spatial extent of the SH beam, which was shown

in Fig. 4.2. Because the pulses intersect at an angle the overlap occurs at different times.

The spatial extent of the SH beam represents a time delay. The SH signal measured by

the CCD is the intensity autocorrelation function which has been generated by a single

pulse. We calibrate this measurement to obtain the FWHM of the laser pulse width.
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Figure 4.4: Second-harmonic beam produced in nonlinear crystal. Reproduced and modi-

fied from [35].

4.3 Pulse Width Calibration

It follows from the diagram in Fig. 4.4 that the FWHM of the SH spatial profile at peak

pulse overlap, DSH , is related to the FWHM pulse width τp of the input laser by

τp = DSH sin(α)/c (4.4)

where α is the angle at which the two pulses intersect in the crystal. We don’t know the

angle α. Instead we use the delay stage to increase the path length for probe line. You can

show that this will shift the SH peak on CCD array by

∆z =
c∆t

2 sin(α)
(4.5)

where ∆t is the time we have delayed the probe pulse, or

∆t = 2 (L2 − L1)/c (4.6)

with L1 and L2 being the micrometer positions. We can combine (3.4)-(3.5) to obtain:

τp =
DSH

2
(

∆t

∆z
) (4.7)
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This result is correct for an input pulse of rectangular temporal and spatial distribution.

For a Gaussian pulse the relation becomes:

τp =
DSH√

2
(

∆t

∆z
) (4.8)

The term ∆t
∆z

= β is then just a calibration constant between our scope measurement of

DSH (in µs) and the pulse duration (in fs). The pulse width relation becomes:

τp =
β DSH√

2
(4.9)

which is just the intensity autocorrelation relation but spatially transformed.

For the best resolution measurement of β the probe pulse delay is scanned to either side

of maximum pulse overlap until the SH signal is nearly gone. Fig. 4.5 shows a scan of the

probe pulse on one side of peak coincidence. The ∆z measurement is then the correspond-

ing amount the peak of the SH signal has moved on the oscilloscope.

Figure 4.5: Autocorrelation traces show the SH signal moving across the CCD as the

probe pulse is delayed from peak pulse overlap. The strength of the SH generation also

diminishes.

It was found best to measure β with a minimally chirped pulse so that the peak of SH sig-

nal is precise. From several measurements reported in Table 4.1 the calibration constant is

determined β = (0.55 ± 0.02) fs
µs

. The pulse widths for several compressor stage positions

were then measured. Fig. 4.6 shows the autocorrelation traces for the peak pulse compres-

sion resulting in ∼50fs pulse as well as longer pulse widths up to ∼350fs. The error is de-

termined from the error on the Gaussian fit and the error in the calibration constant. In
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the cases of the highly chirped pulses, asymmetry is present in the autocorrelation traces.

This is mostly likely due to the intensity distribution of the pulse no longer being smooth.

The error on the pulse width is dominated by this asymmetry.

For the measurements, the laser pulse was picked off into the autocorrelator right before

the steering mirrors that align into the focusing lens. This gives us a good idea of the

pulse width we are using when creating breakdown in the gas, although the lens and glass

of the chamber window will have some effect. Fig. 4.7 shows the calibration curve of our

system.

∆t (fs) ∆z (µs) β ( fs
µs

)

800 1500 0.533

1633 2900 0.563

1867 3500 0.533

1300 2420 0.537

567 1000 0.567

1000 1833 0.545

1233 2300 0.536

β ± δβ 0.55± 0.02

Table 4.1: Measurements of calibration constant β for single shot autocorrelation of fem-

tosecond pulses. ∆z is measured in microseconds because this is spatial extent of the SHG

beam but read out from the CCD array by the oscilloscope (in µs).
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Figure 4.6: Examples of autocorrelation measurements. (a)-(c) show an autocorrelation

from a single input pulse. (d)-(e) are the time averaged autocorrelation of 2 input pulses.

The fit is computed with the Levenberg-Marquardt least-squares algorithm to minimize

the value of Chi-square.
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Figure 4.7: Pulse width calibration for our optical setup.
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CHAPTER 5

Experimental Setup

Figure 5.1: Ray diagram following light emission from the plasma through the imaging

system.
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5.1 Femtosecond Laser

5.1.1 Attenuating the Laser

We are using a Solstice Ace one-box femtosecond amplifier designed by Spectra Physics.

The system uses regenerative chirped pulse amplification to amplify a Ti:Sapphire seed

pulse and produces a 35fs, 6.5mJ. The pulse has a spectral bandwidth of 38nm around the

central wavelength of 801.5nm. We operate at a pulse repetition of 100Hz. We choose to

attenuate the laser to ∼1mJ pulse energy. This is where previous experiments have been

conducted [7] and also limits spectral and temporal distortion of the pulse when transmit-

ted through optics.

We attenuate the pulse in two stages. First, we pick off the reflection from a dielectric

beam splitter (Newport 20Q40BS.2) at the output of the Solstice Ace, which attenuates

the pulse to ∼1.2mJ. Using silver mirrors we direct the beam into an achromatic half wave

plate (Thorlabs AHWP10M–980) and onto a thin film polarizer. The HWP is rotated

to set the reflected power from the TFP, and this beam is directed to the high pressure

chamber. The pulse energy is measured by a thermopile energy meter before being focused

by the lens, which is about 0.9mJ for our experiments. Fig. 5.2 shows the effect of send-

ing the full 6.5mJ pulse through the HWP with dielectric mirrors, and the corrected pulse

that results from attenuating the power and using silver mirrors.

5.1.2 Laser Pulse Width

The pulse width of the laser is set by the compressor mirror position. The compressor

follows the amplifier stage within the one-box Solstice Ace setup. It is responsible for re-

compressing the pulse which has been temporally broadened before entering the amplifier.

This is the principle of chirped pulse amplification which allows for high amplification of

ultrashort pulse–above the damage threshold of solid state gain mediums. For this thesis,

we adjust the compression mirror to set the pulse width to a minimum of 130fs. Shorter

pulse widths result in spectral distortion of the pulse as it is focused through the glass of
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Figure 5.2: a) shows the distorted pulse spectra which resulted from sending the full 6.5mJ

pulse through transmissive optics as well as using dielectric mirrors. b) shows the cor-

rected spectra after the laser is attenuated. c) shows the attenuation scheme using a di-

electric beam splitter.
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the chamber window. We measure the pulse width using a Spectra Physics single shot am-

plifier and this data is shown in Chapter 4. At a pressure of 10 bar, we find that for long

pulse widths, the plasma created with 0.9mJ begins to scatter laser light into our cameras.

We therefore limit ourselves to this onset of laser scatter, which is about 320fs. Longer

pulses also result in a more asymmetrical autocorrelation signal leading to unreliable pulse

width measurement.

5.1.3 Focusing the Laser into High Pressure Chamber

The beam is spatially Gaussian with 10mm diameter and M2 < 1.25. We focus the beam

into the chamber using an 1” diameter plano-convex N-BK7 lens (Thorlabs LA1134-B).

The f-number is f/6. The lens is mounted on a stage which is used to adjust the height

of the breakdown within the chamber, with 10µm step size, to center the plasma in the

image plane of the cameras. The chamber is filled with 1-10 bar hydrogen gas, after being

purged twice. Its design is detailed elsewhere [7].

Since the laser intensity will be clamped by the breakdown threshold intensity [36], the gas

breakdown actually occurs before the focus of the lens. The calibration of the focal point

is discussed in Chapter 8. The laser exits the chamber through a second window and is re-

collimated using 2” diameter asphere lens (f=50mm). The beam is scattered onto a piece

of white paper and a fiber coupled Ocean Optics spectrometer (USB2000) then views the

spot and measures the spectrum. The paper is removed and the beam is aligned onto a

pyroelectric energy meter (Ophir PE25-C) to measure transmitted energy. The setup for

focusing the beam and measuring its transmitted spectrum and energy is shown in Fig.

5.3.

5.2 Imaging the Plasma

Fig. 5.1 shows the plasma imaging system. The chamber has two Mitutoyo optics looking

at the breakdown, situated at a right angle to view the plasma from either side, referred
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Figure 5.3: Setup for measuring the spectrum of the transmitted laser.

to as “TCCD” and “BSCCD.” The microscopes magnify the plasma image 19.5× and

∼15.3×, respectively, onto two CCD cameras. The plasma/beam alignment is optimized

by viewing the symmetry of the breakdown in these cameras. The beam splitter is then

removed from the main imaging line and the light is passed through a filter wheel with

10nm bandpass filters, a Princeton Instruments spectrometer, and then into a Hamma-

matsu streak camera, which is made up of a streaking unit and CCD camera. The streak

camera collects light from a 3µm wide section of plasma and converts them into electrons

in gain channels. The electrons are streaked with an electric field across a phosphor screen

which is then photographed by a CCD camera. The operating principle of a streak camera
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is shown in Fig. 5.4.

Operating on the 0th order of the spectrometer grating with the slit fully open, the result

is an image of the plasma’s radius as it develops in time. The bandpass filters can then be

rotated out, the spectrometer slit closed to 50µm, and the diffraction grating rotated to

1st order to image the full emission spectrum from a (3× 3)µm2 slice of plasma. Images of

the plasma with a streak camera allow us to see the early time development of the system

with a temporal resolution of 32ps.

Figure 5.4: Diagram of streak camera operation from Hammamatsu.

5.3 Data Acquisition

Ideal laser beam alignment through the chamber is achieved by observing plasma at 10 bar

for 130fs pulse duration, and optimizing the breakdown for 1) identical shape in both CCD

cameras and 2) sharpness and brightness of the plasma diameter in the bandpass streak
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images. When optimally aligned, the 10 bar, 130fs plasma displays a unique shape which

is a helpful benchmark. The beam alignment is then held for the run of the experiment at

10, 3, and 1 bar, which goes as follows:

At the beginning of the run, first 1) the laser energies are measured: incident energy be-

fore the lens and then transmitted energy for the chamber under vacuum and at each pres-

sure. The pulse to pulse energy is collected for 2 minutes to ensure stability. 2) Transmit-

ted laser spectra is collected. Placement of the fiber coupled spectrometer is made so that

the full laser spot is within the NA of the fiber. Transmitted spectrum is collected for vac-

uum and each pressure. 3) Plasma images are collected: CCD, and streak bandpass and

spectra. At the conclusion of the run, 4) the laser pulse energies are collected to insure

stable operation of the laser throughout the experiment.

The 130fs experiment was collected first, and the 320fs experiment on a later day. Laser

operating parameters were measured and identical. Identical beam alignment through the

chamber was confirmed by optimizing the 10 bar, 130fs plasma and confirming identical

breakdown parameters (shape and position of brightest point on plasma). The compressor

mirror was then translated slightly to chirp the pulse width to 320fs. This was not found

to effect the alignment–i.e., the plasma was bright and symmetric at 320fs.

5.4 Pulse Energy

The difference between the pulse energy measured before the focusing lens and the trans-

mitted energy through the chamber under vacuum is ∼0.2mJ. We therefore average the

two to find the pulse energy incident on the gas, ig = 0.8 ± 0.1mJ. Fluctuations in pulse

energy < 1%.
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CHAPTER 6

Instrument Calibrations

Figure 6.1: Images taken with a) BSCCD and b) TCCD cameras of USAF 1951 target

backlit with a mercury lamp [37].

6.1 Magnification

The magnification of the imaging system was measured by A. Bataller for [7] and is recorded

in Table 6.1. In the case of the TCCD and BSCCD cameras the spatial scaling was deter-

mined by taking a picture of calibrated USAF targets as shown in Fig. 6.1. In the case

of the streak camera CCD the scaling was measured by imaging light through the streak

camera slit. The size of the slit is adjustable and was set with a micrometer.
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CCD Camera Spatial Scaling ( µm
pixel

) Magnification

TCCD 0.1921±0.1 19.52

BSCCD 0.3054±0.1 15.23

Streak CCD 0.2887±0.04 15.35

Table 6.1: Spatial scaling for CCD cameras.

6.2 Streak Spectral Images

The calibration of the spectral intensity (W/m3) for the streak camera images taken with

the Princeton Instruments spectrometer is shown in Fig. 6.2. Spectra is measured from 1st

order image of 150l/mm diffraction grating.

Figure 6.2: Calibration curve for streak camera spectral intensity [37].

The spectral scaling for the image was measured using a mercury lamp and the known

emission lines to be ∆λ = 0.171 ± 0.001( nm
pixel

). The overall spectral resolution was de-

termined to be 2.8± 0.3nm. These calibrations were measured by A. Bataller for [7].
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6.3 Streak Bandpass Images

The calibration of the spectral intensity (W/m2) for streak images taken with bandpass

filters is shown in Table 6.2. This calibration was measured by A. Bataller for [7].

Bandpass (nm) Calibration Constant ( Wm−2

counts s−1 )

700 1.79073× 10−8

400 2.62149× 10−8

Table 6.2: Calibration for streak images taken through bandpass filters.

6.4 Method for Intensity Calibrations

Spectral intensity calibrations were performed by imaging the light from a tungsten halo-

gen lamp of known spectral irradiance, called a standard. Fig. 6.3. shows a diagram of

this type of measurement. The standard has a well calibrated spectral irradiance at 50cm.

An aperture is placed at the irradiance plane and is imaged by the system. The numeri-

cal aperture (NA) of the setup tells us how much light the objective lens is collecting at a

distance l from the aperture. The NA is defined

NA = n sin(α) ≈ D

2l
(6.1)

where the angle α is determined by the distance of the objective lens from the image plane.

Since the aperture is radiating into 2π, the counts per second collected by the camera

should be multiplied by the factor

F =
2πl2

π(D
2

)2
= 8

l2

D2
≈ 2

(NA)2
(6.2)

to correct for the lens capturing only 1/F of the sky. We then derive a calibration fac-

tor (or curve) between the counts/s measured by the CCD and W/m3 emitted by the

plasma, as reported in sections 6.2 and 6.3. When using the camera to measure an un-

known source, another factor F proportional to the NA of the setup must be applied to
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the counts. If nothing has changed between the setup when calibrating and when measur-

ing, the factors cancel. For this thesis the factor F = 41.16 (NA ∼ 0.22) is used with the

calibration in Fig. 6.2 and Table 6.2 to obtain the spectral intensity of the plasma.

Figure 6.3: Quartz tungsten halogen (QTH) lamp with a well calibrated spectral irradi-

ance at 50cm distance. The aperture on the irradiance plane is imaged by a camera to

calibrate for spectral intensity, which will be needed when measuring unknown sources.

Reproduced and modified from [38].

6.5 Temporal Scaling & Jitter

The temporal scaling of the streak images can be determined by scattering a femtosecond

laser pulse into the camera (or creating breakdown) and then measuring the pixel response

as a function of delay. This will show how well the streaking field spreads the electrons in

time. This measurement was performed by A. Bataller for [7].

The delay is set by the delay generator box triggering the streak camera. The full trigger

circuit is shown in Fig. 6.4. The trigger is set optically by the 80MHz pulse train from the

seed laser, using a constant fraction discriminator (CFD) to reduce time walk. The trigger

is vetoed until the CFD receives a signal from the laser indicating that a pulse has been

selected for amplification (Sync Out). The temporal scaling for 2ns streaking was found

∆T = 0.0019561 ns
pixel

.
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Figure 6.4: Triggering the streak camera with the seed laser photodiode signal and a con-

stant fraction discriminator circuit. The discriminator sets a 10ns pulse width signal of

correct polarity which disables the veto and allows a seed pulse to trigger the DG645 delay

generator box.

The ultimate temporal resolution is limited by the trigger to trigger jitter of the streaking.

The light emission from the plasma must be averaged on the order of 103 for a bright im-

age. This averaging is done by taking long exposure images which overlay ∼ 103 streaks.

The Sync Out signal produced by the laser does not have sufficient stability to be used

as the trigger pulse itself. Fig. 6.5 shows two streak camera images, one taken with the

streak triggered off the Sync Out signal alone, and one triggered by the CFD circuit. The

temporal jitter is improved at least by a factor of 2.

The trigger levels of the CFD circuit are tuned for best results. Fig. 6.6 shows the final

temporal jitter for the streak images presented in this thesis. The jitter is obtained by spa-

tially integrating the streak image and fitting the rise time with an error function given

by

erf(x) =
1

π

∫ x

−x
e−t

2

dt (6.3)

The temporal jitter is defined as the HWHM of the gaussian function and found to be
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δT = 32ps.

Figure 6.5: a) shows the streak image resulting from the camera being triggered by the

Sync Out signal from the laser. b) shows the streak image produced by the CFD trigger

circuit.

Figure 6.6: Error function fit to the rise time (spatially-integrated) of a streak image of

plasma.
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6.6 Transmitted Laser Spectra

The Ocean Optics spectrometer is not calibrated for absolute intensity. However the spec-

tral sensitivity should be calibrated to produce a uniformly scaled spectrum of the laser

transmission. This was done by using the spectrometer to measure the emission from the

QTH standard lamp (made by Oriel). The comparison between the spectrometer response

and the true spectral irradiance is shown in Fig. 6.7. The calibration curve is then shown

in Fig. 6.8, which was generated by the ratio of the (normalized) spectral irradiance and

(normalized) spectrometer response. The results are shown in Fig. 6.9.
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Figure 6.7: Spectral irradiance of tungsten lamp measured by Ocean Optics spectrometer

vs. data provided by Oriel for the lamp.

Figure 6.8: Calibration function determined by comparing spectral irradiance measured

with Ocean Optics spectrometer and known intensity curve from Oriel.

Figure 6.9: The calibration curve then corrects the spectrum.
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CHAPTER 7

Experimental Results: Breakdown Properties

Figure 7.1: Long exposure image of femtosecond laser generated plasma in 10 bar hydro-

gen gas.
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7.1 Breakdown Length

Fig. 7.2 shows time-integrated CCD images of laser breakdown plasma for pulse energy

ig = 0.8±0.1mJ. At low pressure, the 130fs generates a long plasma column ∼ 340µm. The

plasma shrinks as the pressure is increased, but a long narrow tail persists at 10 bar. On

the other hand the 320fs pulse generates nearly the same size plasma regardless of pres-

sure. These images give the overall shape of the breakdown which, when coupled with the

pulse energy transmitted through the gas and measurements of electron density, will esti-

mate the energy per particle in the plasma. This is an important accounting of the system

that can be used to check independent measures of temperature. Additionally the overall

shape gives us a clue that nonlinear pulse propagation is possibly developing at 130fs. The

long plasma column at 1 bar is a nod to plasma filamentation seen in low f-number focus-

ing.

Plasma length is determined from FWHM fits of 5-pixel wide lineouts from the center of

the CCD images, shown in Fig. 7.3. Although this is a somewhat arbitrary cutoff for the

edge of the plasma, it provides a good relative measure of plasma length across the pulse

widths for a single pressure. The nature of the edge of the plasma will be explored in a

subsequent chapter. The lengths are plotted in Fig. 7.4.
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Figure 7.2: CCD images (from BSCCD) of breakdown via 130fs (left) and 320fs (right)

pulses in a-b) 1 bar, c-d) 3 bar, and e-f) 10 bar hydrogen gas. The pulse energy is a con-

stant ig = 0.8 ± 0.1mJ. Exposures capture total light output from 2 breakdowns. Camera

gain is not calibrated but is the same for images at same pressure. White bar represents

100µm.
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Figure 7.3: Plasma length is determined via FWHM fit of 5-pixel (∼ 2µm) wide lineout

from the center of CCD images shown in Fig. 7.2. The fit is computed with the Leven-

berg-Marquardt least-squares algorithm to minimize the value of Chi-square.
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Figure 7.4: Results of the FWHM fit in Fig. 7.3. For every point except one, the error is

on the order of the marker width.

7.2 Emission Intensity

Full time-resolved emission spectra from the plasmas is shown Fig. 7.5, which shows us

light emission as a function of time for 2ns, with ∼30ps resolution. Brightness is nearly

the same for breakdown from both pulse widths at 1 bar, with 320fs slightly brighter. As

pressure is increased the long pulse width breakdown overtakes the short pulse and at 10

bar is nearly twice the spectrally integrated brightness at t=0. The spectra are continuous

with the Balmer H-alpha line at 656nm emerging later in time as plasma cools. The rela-

tive strength of the Balmer line diminishes as the pressure is increased, and even at later

times ∼ 1ns the spectrum at 10 bar is dominated by the continuum.

There is no striking structural difference between the spectra character at short and long

pulse: i.e., one is dominated by line emission and the other is continuous. This indicates

that the pressure is playing a key role in determining the plasma emission, not the pulse
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width. However, as we reach 10 bar the 320fs breakdown overtakes the 130fs by a factor

of 2. This is a significant change, and indicates that we have reached a point in parameter

space where the pulse width has a huge effect on the resulting plasma. The spectra show

us that the peak of plasma emission is around 400nm. This is useful when deciding to take

streaked bandpass images– that is images which show the plasma diameter as a function of

time, which we will look at next.

Figure 7.5: a) Time-resolved spectra from a 3µm2 patch of emission at the brightest point

of the plasma for (left) 130fs and (right) 320fs breakdown in I-II. 1 bar, III-IV. 3 bar, and

V-VI. 10 bar hydrogen. b-c) shows the t=0 lineouts from the spectra.
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7.3 Breakdown Structure & Implications

Hints of the plasma structure can be seen in the CCD images in Fig. 7.2, where at close

inspection the 1 and 3 bar plasma generated by the long pulse shows a raked-like emission,

while the short pulse looks smooth and continuous. Fig. 7.6a shows intensity calibrated

streak images of the brightest, widest point in the breakdowns from Fig. 7.2, viewed through

a 400nm bandpass filter, which is near the peak of emission. The images show the projec-

tion of the cylindrical plasma emission onto the y-axis and would need to be Abel-inverted

to give the emission as a function of the plasma radius. However, this already gives us

good confirmation that the two pulse widths generate structurally different plasma. Li-

neouts at t=0 for the 400nm are shown in Fig. 7.6b. The intensity fluctuations for 320fs

generated plasma is also present at long wavelength bandpass emission (Fig. 7.7 shows

700nm), indicating the plasma radiates in this way across the entire spectrum.

The author of this thesis suspects that as the pulse width is increased from 130fs to 320fs

the laser energy is present in the breakdown region long enough to drive ionizing electron-

neutral collisions. This process forms temperature/density fluctuations which result in cor-

rugated light emission at long times (320fs). However, the peak plasma brightness between

the two pulse widths is comparable at low pressures. As the pressure is increased, the col-

lision time is monotonically decreased and collisional breakdown overwhelms the ionization

process at 10 bar. This leads to the brightest plasma being generated at 10 bar with the

320fs pulse, where the fluctuations in intensity have been averaged out due to many colli-

sions. This means that plasma generated with 130fs at 1 bar and possibly 3 bar are dense

tunneling plasmas. In the next chapter we leverage the laser transmission spectra collected

to learn more about the plasma and identify the ionization mechanisms present in break-

down.
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Figure 7.6: a) Streak images of plasma generated via (left) 130fs and (right) 320fs pulse

breakdown viewed through 400nm bandpass filter (10nm wide) in I-II. 1 bar, III-IV. 3 bar,

and V-VI. 10 bar hydrogen. b) shows the t=0 lineouts from the image.
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Figure 7.7: a) Streak images of plasma generated via (left) 130fs and (right) 320fs pulse

breakdown viewed through 700nm bandpass filter (10nm wide) in I-II. 1 bar, III-IV. 3 bar,

and V-VI. 10 bar hydrogen. b) shows the t=0 lineouts from the image.

66



CHAPTER 8

Supercontinuum Generation

Figure 8.1: Long exposure image of supercontinuum light generated by a 1mJ, ∼45fs pulse

focused into 10 bar hydrogen gas.

A stunning result of the gas breakdown process is the generation of supercontinuum light

from the ∼800nm laser. Fig. 8.1 shows bright visible light scattered on the optical table.
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This is the infrared laser now blue-shifted exiting the chamber after being focused to cre-

ate breakdown. The laser frequency shifts because of an instantaneous change in the index

of refraction, due to the intense light-matter interaction of the laser and hydrogen gas.

To understand this effect we take the laser to be a plane wave propagating in z direction

in a nonlinear medium. The electric field is given by:

E(t, z) = E0e
iφ(t) (8.1)

Where E0 is the amplitude and φ(t) is the phase, given by:

φ(t) = ω0t− kz (8.2)

ω0 is the initial frequency and the wavenumber k = ω0

c
n(t, z), where n(t, z) is the time

dependent index of refraction. The instantaneous frequency of the laser in then:

ω(t) =
∂

∂t
φ(t) = ω0 −

ω0

c

∂n(t, z)

∂t
z (8.3)

And the total change in the frequency, or self-phase modulation (SPM) of the laser is:

∆ω

ω0

= −1

c

∫ L

0

∂n(t, z)

∂t
dz (8.4)

The total shift is the change of the index integrated along the length of the medium L.

Many white laser sources have been generated by a shallow-focused laser propagating in

gas. The change in the index arises from the nonlinear term n2 excited in the gas by the

intensity of the laser as we saw in Chapter 3. However this term is small and thus requires

many meters of propagation to shift the laser to visible frequencies. To model the spec-

tral shifts observed in laser-plasma generation, the index is taken to be that of the plasma

derived in Chapter 2 (2.40)

n =

√
1−

ω2
p

ω2
(8.5)

The index can be rewritten in terms of the electron density ρe(t, z) as

n(t, z) =

√
1− ρe(t, z)

ρcr
(8.6)
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where ρcr =
ω2

0me

4πe2
is the critical density where the frequency of the laser ω0 is equal to the

plasma frequency ωp. For ρe << ρcr the index goes to

n ≈ 1− 1

2

ρe
ρcr

(8.7)

The critical density for 800nm light is 1.7×1021cm−3 which is approximately 20 bar H2 gas

fully ionized. At most we are 50% ionized at 10 bar. Furthermore the application of this

model is most important for 1 bar breakdown. We therefore find the expression for the

spectral shift of the laser due to breakdown

∆ω

ω0

= +
1

c

4πe2

2ω2
0me

∫ Lp

0

∂ρe(t, z)

∂t
dz (8.8)

where Lp is the length of the plasma. We see that the expression has a negative sign indi-

cating a blue-shift of the laser frequency ω0 due to plasma generation.

8.1 Spectral Blue-Shifting of the Laser

Fig. 8.2 and 8.3 show the transmitted laser spectrum for a 130fs and 320fs pulse focused

into 0-10 bar hydrogen gas.

The shift for 130fs is hundreds of nanometers! While the shift for 320fs is between 50 and

100nm. Woods et. al. [20, 19] report small spectral shifts on the order of 10nm for an

800nm laser focused in dense gas (5 bar Xe, Ar, He, Ne). They too are tightly focused

(f/5) and note observing breakdown (bright dot). However they only report ∼ 1% absorp-

tion of the laser energy by the gas using 0.4mJ pulses. The transmitted energy measured

concurrently with the transmitted spectrum for this experiment is shown in Table 8.1. A

significant fraction of the pulse energy looks to be absorbed by the gas indicating that we

are generating a dense, hot plasma.
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Figure 8.2: Transmitted spectra for 130fs laser focused into 0-10 bar hydrogen gas. Spec-

tra is the time-integrated emission for a single pulse. The 0 bar transmission provides a

baseline that shows the effect of our experimental setup (such as lens, chamber windows)

on the pulse spectrum.

Figure 8.3: Transmitted spectra for 320fs laser focused into 0-10 bar hydrogen gas. Spec-

tra is the time-integrated emission for a single pulse. The 0 bar transmission provides a

baseline that shows the effect of our experimental setup (such as lens, chamber windows)

on the pulse spectrum.
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Pressure (bar) τp (fs) iT (µJ) ia (µJ) ia
iT0

1.0±0.1 130±10 552±3 124±4 0.18±0.1

320±50 591±1 96±2 0.140±0.002

3.0±0.1 130±10 483±3 193±4 0.29±0.01

320±50 440±10 250±10 0.36±0.02

10.0±0.1 130±10 411±3 265±4 0.40±0.01

320±50 360±20 327±20 0.48±0.03

0.0±0.1 130±10 676±2 ∼ ∼

320±50 687±2 ∼ ∼

Table 8.1: The pulse energy absorbed by the gas can be estimated as the difference be-

tween iT0 , the transmitted energy at 0 bar, and iT . This is a good assumption if we do not

expect a large amount of energy to be reflected. Laser scatter only becomes evident in the

cameras imaging the plasma at a pressure of 10 bar, so this is where we may expect some

discrepancy. Additionally the 10 bar plasma will defocus the laser the most, making our

collection of the pulse from the exit chamber window the least reliable.

8.2 Homogeneous Plasma Model

(8.8) predicts a single frequency shift of the laser due to plasma creation, whereas we ob-

serve a continuous shift. To stretch this model we can interpret the maximum frequency

shift as relating the maximum rate of ionization. Additionally we can assume that the rate

of ionization is uniform over the plasma length. The maximum blue shift in the transmit-

ted laser spectra can then be expressed as

∆ωmax
ω0

= +
1

c

4πe2

2ω2
0me

(
dρe
dt

)maxLp (8.9)

or
∆λmax
λ0

= − 1

c3

λ2
0e

2

2πme

(
dρe
dt

)maxLp (8.10)
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The maximum spectral shift is found in the next section and (8.10) is applied.

8.3 Maximum Spectral Shift

Fig. 8.4 and 8.5 show the transmitted laser spectra zoomed in to find the maximum shift.

The same threshold intensity is used to find λmax. The results are shown in Table 8.2.

Figure 8.4: Transmitted laser spectra from 8.3 is shown zoomed in to find the maximum

spectral shift.
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Figure 8.5: Transmitted laser spectra from 8.2 is shown zoomed in to find the maximum

spectral shift.

Pressure (bar) τp (fs) λmax (nm) ∆λmax (nm) λ0 (nm) ∆λmax

λo

1.0±0.1 130±10 586±2 211±2 797±22 0.265±0.007

320±50 735±2 65±2 800±19 0.081±0.003

3.0±0.1 130±10 527±2 270±2 797±22 0.34 ±0.01

320±50 725 ±2 75±2 800±19 0.094±0.003

10.0±0.1 130±10 543 ±5 254±5 797±22 0.32±0.01

320±50 705±3 95±3 800±19 0.120±0.005

Table 8.2: Maximum spectra shift is measured as a function of pressure and laser pulse

width.

You can see from Table 8.2 that λ0 reported is not the 801.5nm of the Solstice Ace laser.

This is because our optics have an effect on the laser spectrum. This is shown in Fig. 8.6.

Fig. 8.6a shows the laser pulse spectrum for short and long pulse widths (though not ex-

actly the same as those used in the experiment) right before the laser is focused into the
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chamber by the lens. This accounts for any effects that our optics have had on the pulse

leading up to focusing. For the most part this looks the same as Fig. 3.4. Fig. 8.6b and

8.6c show the pulse spectra for the pulses used in this experiment after they have been fo-

cused into the chamber (under vacuum) and recollimated on the other side. This shows

the effect of our lenses and chamber windows on the spectrum. You can see the central

wavelength has been shifted in both cases– 5nm for the short pulse. The short pulse also

has significant spectral distortion. This is why 130fs was choosen as the shortest pulse

width for this experiment. Shorter pulses resulted in what the author of this thesis deemed

to be too much spectral distortion.
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Figure 8.6: a) shows the spectrum of the laser before the focusing lens. b-c) show pulse

spectra after the laser has been focused into the chamber under vacuum and recollimated

on the other end. b) shows the 320fs pulse and c) shows the 130fs pulse.
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8.4 Maximum Ionization Rate

From the spectral shift in Table 8.2 we can use (8.10) to calculate the ionization rates.

The results are shown in Table 8.3. This yields a very nice result. For a pressure of 1 bar

Pressure (bar) τp (fs) Plasma length (µm) ∆λmax

λo
(dρe
dt

)max (1017cm−3fs−1)

1.0±0.1 130±10 340±20 0.265±0.007 2.9±0.2

320±50 103±2 0.081±0.003 2.9±0.1

3.0±0.1 130±10 143±3 0.34 ±0.01 8.8±0.3

320±50 83± 2 0.094±0.003 4.1±0.2

10.0±0.1 130±10 67±2 0.32±0.01 17±1

320±50 70± 3 0.120±0.005 6.2±0.4

Table 8.3: Maximum ionization rate determined from the spectral shift, plasma length and

(8.10).

the maximum spectral shift is different by a factor of 3 for the different pulse widths. At

first glance this indicates very different ionization rates and one might conclude different

ionization processes generating the two plasmas. However, the measurement of the plasma

length perfectly accounts for this. The combined measurement of the plasma length and

spectral shift yields nearly identical ionization rates for 1 bar breakdown! At higher pres-

sures the rates are seen to diverge.

Here we make the assumption that for the ionization rate to be identical between the two

breakdowns, the ionization process must be the same. Additionally for the ionization rate

to be identical across pulse widths of 100-300fs the dominant process must be tunneling.

Cascade ionization is an exponential growth effect that would benefit from the longer pulse

width, resulting in a different maximum ionization rate. Furthermore, the estimated colli-

sion time for this process (electron-neutral atom collisions) at temperatures on the order of

1eV is > 100fs. For 1 bar, the rate equation from Chapter 1 becomes

dρe(t)

dt
= η′(ρn0 − ρe(t)) (8.11)
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which yields the solution

ρe(t) = ρn0(1− e−η′t) (8.12)

and the ionization rate
dρe(t)

dt
= η′ρn0e

−η′t (8.13)

The tunneling rate η′ is proportional to the electric field. If we assume the field turns on

in the gas as a step function, the maximum rate of ionization occurs at t=0:

(
dρe
dt

)max =
dρe(t = 0)

dt
= η′ρn0 (8.14)

Using (8.14) and the ionization rate calculated from (8.10) we can solve for the tunneling

rate constant η′. The auto-tunneling rate derived by Oppenheimer [39] and later Keldysh

[24] gives an analytic expression for η′ as a function of the electric field:

η′ =

√
6π

4

Eion
h̄

(
eEh̄

m
1
2
e E

3
2
ion

)
1
2 × exp[−4

3

√
2meE

3
2
ion

eh̄E
] (8.15)

where E is the electric field and Eion is the ionization potential. Dividing the ionization

rate from Table 8.3 by the neutral density, one can obtain the tunneling rate at t=0. Us-

ing (8.15) the electric field is then calculated. This is done for both pulse widths at 1 bar,

obtaining two electric fields which are averaged to yield the effective breakdown field:

EBD = (4.77± 0.04)× 108V/cm (8.16)

or an intensity of

IBD = (6.3± 0.1)× 1014W/cm2 (8.17)

8.5 Breakdown Fields

The plasma is formed at different locations along the focusing path of the laser. The rela-

tive position is measured by the location of the 10µm-resolution motorized stage on which

the focusing lens is mounted. The location (not scaled) of the brightest, widest point of

the breakdown as a function of pulse width and gas pressure is given in Table 8.4.
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From the knowledge of the breakdown intensity for 1 bar (8.17) along with the measured

laser pulse widths, we can calibrate the focus of the laser using Gaussian optics. With the

focal point and Table 8.4, we may then calculate the breakdown electric fields for the re-

maining gas pressures.

First, the focal point is calculated from the intensity:

IBD =
2 ig

τp π w(zBD)2
(8.18)

where w(zBD) is the spot radius at the location of breakdown, which is given by the ex-

pansion of a Gaussian beam:

w(z) = w0

√
1 +

z2

z2
r

(8.19)

where w0 is the spot radius at the focus of the laser

w0 =
2λ0f

πD
(8.20)

f is the focal length of the lens (6cm) and D is the diameter of the beam before focusing

(10mm). For this experiment w0 ∼ 4µm. The term zr is the Rayleigh length given by

zr =
πw2

0

λ0

(8.21)

The results for the focal point are given at the end of Table 8.4. Once the focal point was

calibrated (8.18), (8.19) and the plasma locations zBD were used to determine the break-

down intensities as a function of pressure and pulse width. The results are shown in Fig.

8.7.

8.6 Ionization Rate Constants

We can use the laser intensities from Fig. 8.7 to determine the tunneling and cascade rate

constants for the electron density rate equation developed in Chapter 1. The tunneling

rate η′ is determined from plugging the breakdown electric field back into (8.15). We as-

sume that the ionization threshold is clamping the maximum intensity the laser can reach
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Pressure (bar) τp (fs) Breakdown Location zBD (mm)

1.0±0.1 130±10 4.23±0.02

320±50 4.44±0.02

3.0±0.1 130±10 4.11±0.02

320±50 4.39±0.02

10.0±0.1 130±10 4.02±0.02

320±50 4.34± 0.02

f0 130±10 4.59±0.05

320±50 4.67± 0.03

Table 8.4: Relative breakdown locations of the gas as a function of pulse width and pres-

sure. The calibrated focal point f0 is shown at the bottom of the table. The zBD locations

with respect to the geometry of the experiment are depicted in Fig. 8.7.

in the gas and that the intensities in 8.7 are the same for the same pressure. We therefore

take the values determined for 130fs breakdown. These are the same within error as the

320fs values, but more precise since the error on the pulse width is much less at 130fs. The

values for η′ can only be determined by a factor of 2 due to the exponential dependence on

the electric field. The results are shown in Table 8.5.

Pressure (bar) Breakdown Electric Field (108V/cm) η (at t=0) (s−1) η′ (s−1)

1.0±0.1 4.77±0.04 (6.5±0.5)×1012 (6.0±0.4)×1012

3.0±0.1 3.8±0.5 (2.3±0.4)×1013 (12±10)× 1011

10.0±0.1 3.0±0.3 (8±1)×1013 (9±8)× 1010

Table 8.5: Rate constants calculated for the plasma as a function of pressure.

The cascade constant η is determined by the simple relation

η(t) = ρn(t) veσm (8.22)

where ρn(t) is the neutral density, which changes as a function of time as the gas is ionized
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(ρn(t = 0) ≡ ρn0), ve is the electron quiver velocity in the electric field, and σm is the cross

section for momentum transfer. The average quiver energy reaches 20eV for 800nm light

at the field strengths reported in Table 8.5, which is well above the ionization potential

of hydrogen. The quiver energy is the energy an electron absorbs from the electric field E

during a collision [40, 23]. Omitting collisional losses this is given by

dε

dt
=

e2E2τc
me(ω2τ 2

c + 1)
≈ Ep
τc

(8.23)

where Ep is the pondermotive or quiver energy and τc is the momentum transfer collision

time. One can assumed that any electron that reaches the ionization energy Eion will soon

produce a new free electron. Dividing (8.23) by Eion thus yields the cascade ionization

rate:

η =
e2E2τc

me(ω2τ 2
c + 1)Eion

(8.24)

However for this experiment the quiver energy is equal to or greater than the ionization

energy and we thus limit

η =
1

τc
(8.25)

which is (8.22). The cross sections were obtained from [41] and are between 4×10−16cm−2

and 8×10−16cm−2. The quiver velocity [42] is given by

ve =
eE

meω
(8.26)

and is on the order of 108cm/s, or 1% the speed of light, for the electric fields measured in

this experiment. The results for η at t=0 (so the neutral density is given by the gas pres-

sure) are reported in Table 8.5. Note the collision time τc = 1
η

for 1 bar is about 150fs.

8.7 Solution to the Modified Rate Equation

We can now solve our model for the electron density as a function of time, equation (1.6):

∂ρe(t)

∂t
= η′ ρn(t) + η(t) ρe(t)(1−

ρe(t)

ρn0

) (8.27)
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∂ρe(t)

∂t
= η′ ρn(t) + (ρn(t) veσm) ρe(t)(1−

ρe(t)

ρn0

) (8.28)

ρn(t) = ρn0 − ρe(t) (8.29)

This is solved numerically in Mathematica using a boxcar electric field (of the amplitude

reported in Table 8.5) from t =0 to t =350fs. The electron density equation for tunneling

ionization alone (no term due to collisions, which is the second term on the right in (8.27))

is also solved. The results are plotted in Fig. 8.8-8.10.

We see at low pressure (Fig. 8.8) there is almost no difference between the two curves.

This is not surprising: for a collision time of ∼150fs we should not expect collisions to play

a significant role at 1 bar. At 3 bar (Fig. 8.9) the curves have started to separate. There is

a large spread in error due to the fact that we could not solve for the electric field directly

as we did at 1 bar by assuming a single ionization process. The collision time τc = 1
η

for 3

bar is ∼45fs. Here collisions may start to make a difference in the degree of ionization at

longer pulse widths.

Fig. 8.9 shows the results for 10 bar. Now collisions clearly play a key role in the ioniza-

tion of the gas. The model predicts that the plasma is almost fully ionized around 130fs

due to collisions, and that the electron density then slowly grows to the neutral gas pres-

sure within 320fs. This indicates that the factor of ∼2 difference in brightness (Fig. 7.5)

observed in the breakdown of 10 bar is primarily due to collisional heating of the electrons

(recall equation 2.52 for Bremsstrahlung radiation). The collision time τc = 1
η

for 10 bar is

∼12fs.

The corrugated intensity profiles shown in the bandpass streak images for 320fs break-

down at 1 and 3 bar, shown in Fig. 7.6 and 7.7, could be due to the role of collisions on

this timescale. It looks like pockets of either more dense or more hot plasma have formed

in the breakdown. For 1 bar, there is essentially no difference predicted for electron den-

sity due to collisions. However, the plasma generated at 320fs is not as bright as the 130fs.

They should be equal brightness. Recall that 1 bar breakdown produced a nearly 400µm

plasma at 130fs. There could be some self-focusing of the laser balanced with plasma-
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induced defocusing to create a mini-filament. If that is the case, the electric field at 130fs,

1 bar could be more than we have estimated and result in a slightly brighter plasma. We

discuss the role of self-focusing in detail in the Conclusions. The structure observed in the

plasma at 320fs, 1 bar then could be due to the 1 or 2 collision times which have elapsed

by the end of the pulse.

At 3 bar, the two curves (collisions and no collisions) start to separate. At times greater

than 130fs, it is likely that collisions are playing a role in the ionization of the gas. The

plasma at 3 bar, 320fs overtakes in brightness the 130fs breakdown at this pressure. The

intensity fluctuations observed in the streak bandpass images could be a combination of

increased density and temperature. These fluctuations are then mostly washed out for

the 10 bar plasma presumably due to many collisions, although some gross structure re-

mains. These results indicate that we have observed a transition from tunneling domi-

nated plasma at low pressure to cascade plasma at high pressure in hydrogen gas. The

cascade process nearly saturates the electron density within the first ∼100fs at 10 bar, and

longer pulse widths appear to heat the electrons.
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Figure 8.7: The peak intensity of the laser (W/cm2) is determined at the location of the

gas breakdown, IBD, for breakdown generated in 1, 3 and 10 bar hydrogen. a)-c) shows

TCCD images of breakdown generated via 130fs pulses and d)-f) shows TCCD images of

breakdown via 320fs pulses. The images show the total light from a single breakdown. IBD

is reported to the right of each plasma. The white bar represents 100µm. The red arrow

indicates the direction of the laser with respect to the CCD images. The location of the

breakdown within the focal path of the laser is shown in the diagram on the left. c) and f)

are the 1 bar breakdowns used to calibrate the focal point.
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Figure 8.8: Degree of ionization vs time with and without collisions for 1 bar laser-break-

down experiment. Gridlines at 130fs and 320fs indicate the two pulse widths.
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Figure 8.9: Degree of ionization vs time with and without collisions for 3 bar laser-break-

down experiment. Gridlines at 130fs and 320fs indicate the two pulse widths.
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Figure 8.10: Degree of ionization vs time with and without collisions for 10 bar

laser-breakdown experiment. Gridlines at 130fs and 320fs indicate the two pulse widths.
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CHAPTER 9

Conclusions

The intuition from CCD and bandpass-filtered streak images in Chapter 7 (Fig. 7.2, 7.6,

and 7.7) was supported by the analysis of Chapter 8. The plasma generated on longer

timescales (320fs) exhibits structure due to the role of collisions in the ionization pro-

cess. The plasma acquired on the shortest timescales (130fs) is essentially structureless.

This fact makes the latter an ideal starting point for studies of dense and strongly coupled

plasma hydrodynamics.

9.1 Role of Self-Focusing

At the highest pressure (10 bar) we expect the plasma generated via 130fs and 320fs to

both have significant contributions from collisions. We measure the collision time to be

∼12fs. However, the 130fs plasma does not exhibit any of the gross structure we observe

at 10 bar, 320fs. This discrepancy could be due to nonlinear pulse propagation at 130fs.

If you recall Table 8.3, we calculate the maximum ionization rate from the supercontin-

uum shift. At 1 bar the rates are nearly identical, but the 130fs rates overtake 320fs as the

pressure is increased. This could be due to self-focusing of the laser at 130fs which leads to

higher breakdown electric fields. The critical power for self focusing is given by [43]:

Pcr = α
λ2

4πn0n2

(9.1)

where α is a numerically derived constant which depends on the spatial profile of the beam.

For Gaussian beams α ≈1.8962. The nonlinear index is measured by [44] for 1 bar hydro-

gen gas at 800nm to be n2 = 1.11 × 10−23m2/W . The linear index is n0 ≈ 1. This gives a
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critical power of Pcr = 9GW . The 130fs laser pulse is at a power of P130fs ≈ 6GW and the

320fs is pulse P320fs ≈ 2.5GW . Higher values of n2 at 3 and 10 bar could push the 130fs

above the threshold for self focusing. Because the tunneling rate is exponentially sensitive

to the field while the cascade rate is essentially linear in the field, even a small amount of

self focusing could significantly increase the role of tunneling at short pulse widths. This

could explain the large spectral shifts we observe at high pressure for short pulses. The

odd structure of 10 bar, 130fs seems to support the claim for self-focusing (see Fig. 8.7).

9.2 Non-ionizing Sources of Self-Phase Modulation

Recall the total change in the frequency or self-phase modulation of the laser:

∆ω

ω0

= −1

c

∫ L

0

∂n(t, z)

∂t
dz (9.2)

The index of refraction becomes nonlinear (as we derived in Chapter 3) in strong electric

fields and can be written:

n(t, z) = n0 + n2I(t, z) (9.3)

where I(t, z) is the intensity of the electric field. The nonlinear index n2 has contributions

from the both neutral gas (over the length of the gas Lg) and the electrons and ions in the

plasma (over the length of the plasma Lp) as detailed by Woods et. al [20]. The nonlinear

contribution to SPM broadening can be written:

∆ω

ω0

= −1

c
n2 Ltotal

∂I

∂t
= −1

c
[nneutral2 Lg + nplasma2 Lp]

∂I

∂t
(9.4)

Evidently this contribution is symmetric– as the leading edge and trailing edge of the in-

tensity profile will red and then blue shift the spectrum, respectively. However, we observe

only a blue shift. There are some effects such as self-steepening which would lead the shift

to be antisymmetric, however a red shift would still be present. We can compare the rela-

tive contributions to the frequency shift at 1 bar. For the gas, the shift is on the order

(
∆ω

ω0

)g ∼ nneutral2

IBD
τp

Lg (9.5)
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and for the plasma the shift

(
∆ω

ω0

)p ∼
ρn0

ρcrτp
Lp (9.6)

the ratio of the effects is given by

ρcr
ρn0

nneutral2 IBD(
Lg
Lp

) ≈ 10× 10−23(
m2

W
) 1018(

W

m2
)103 = 10−1 (9.7)

so the effect due to the nonlinear index and neutral gas is about 10× less than that of

plasma creation. We therefore conclude that the source of SPM observed is indeed ion-

ization of the gas. Woods et. al also concluded this [20, 19] and they are in a similar ex-

perimental setup to this thesis.

9.3 Other Side of the Chirp

Recall in Chapter 4, the process of broadening the pulse width of the laser was discussed.

This is called chirping the pulse and is done by delaying a portion of the light that makes

up the short pulse. An ultra-short pulse must have a large bandwidth; for the Solstice Ace

it is around 40nm. Fig. 9.1 shows the transmitted laser spectrum for a 360fs pulse after

being focused through 10 bar hydrogen. The pulse is chirped to 360fs but in the opposite

direction from the data shown in Chapter 8! This means that if in the previous chapter

the laser pulse had the redder light leading the bluer light, this pulse now has the bluer

light leading the redder light. We do not know the direction of the chirp.

Compare the spectral shift in Fig. 9.1 to the spectral shift seen for 10 bar in Fig. 8.3.

In Fig. 8.3 it looks as though the plasma shifts the bluer part of the light, resulting in

a shoulder appearing in the spectrum. Here in Fig. 9.1 the plasma must now be shifting

the redder part of the spectrum. This is because the laser frequency is shifted at a certain

time in the pulse– tunneling is argued to occur early on in the pulse while cascade occurs

throughout– and so depending on the direction of the chirp, the shift will take place at a

different λ0. The light in Fig. 9.1 is blue shifted but does not result in a shoulder because

it is still within the bandwidth of the pulse.

This story becomes clear looking at Fig. 9.2, which shows the emergence of the broad blue
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shoulder we expect as the pulse width is shortened (same chirp as Fig. 9.1). If a measure-

ment were conducted to determine the direction of the chirp, more information about the

breakdown process (i.e., when it occurs during the pulse) could be learned. This might be

a nice measurement for the next researcher. In the next section, additional future work

building on this thesis is proposed.

Figure 9.1: Transmitted laser spectra for 360fs pulse on the other side of the chirp.

Figure 9.2: Transmitted laser spectrum as a function of pulse width on the other side of

the chirp.
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9.4 Future Work

9.4.1 Plasma-Induced Defocusing

The effect of plasma-induced defocusing was not taken into account in the model for the

ionization rate. The electric field was assumed to be a step function turning on at t=0 and

turning off at t=350fs to span the range of pulse widths in the experiment. In reality the

effect of ionizing the gas modifies the index of refraction of the gas, and this not only con-

tributes to SPM but can defocus the laser light. This leads to a modified electric field at

the breakdown spot. The total index of refraction can be written:

n(t, z) ≈ 1 + n2I(t, z)− ρe(t, z)

2ρcr
(9.8)

The next iteration of analysis for this experiment could couple the electron density as a

function of time back to the electric field by developing a model for plasma-induced de-

focusing in our setup. There are researchers at UCLA who simulate high intensity light-

matter interactions and would have experience in this. Additionally combined with the

effect of self-focusing, which is included through the n2 term in the index, one might repro-

duce the full range of plasma observed in this experiment. With this type of model devel-

oped and validated, one could use it to predict future experiments and help guide research.

9.4.2 Energy Transport in Dense Plasma

Bandpass streak images taken along the z-axis of the 3 bar, 320fs plasma are shown in

Fig. 9.3. Lineouts are taken from the emission as a function of time, and these show the

plasma emission either expanding or “melting.” This difference could be due to the effect

of cooling via adiabatic expansion (plasma expands) or conduction to the surrounding gas

(plasma “melts”). Understanding how this energy transport works could help identify the

equation of state for dense plasmas, namely: 1) how much does this differ from an ideal

gas? and 2) how does this change as the plasma coupling parameter is modified?

New capabilities for studying femtosecond laser generated plasma in the Putterman Lab at
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Figure 9.3: Streak images taken with the 400nm bandpass filter at the top, middle, and

end of the 3 bar breakdown are on the left. Lineouts from these images from t=0 to

t=1.2ns are displayed in the middle. A CCD image taken with the TCCD camera is shown

on the right and indicates the approximate location of the streak images.

UCLA are shown in Fig. 9.4. First, there is a second and third harmonic generation crys-

tal module by Spectra-Physics which can be integrated into the Solstice Ace setup. This

can double the frequency of light to produce a wavelength of 400nm, or triple it to pro-

duce 200nm light! Additional pulse energy that is needed for this process could be gained

by switching the dielectric beam splitter shown in Fig. 5.2. The optical mount for this

piece is back loaded in anticipation of switching this component out. The silver mirrors

in the optical setup might be good down to 400nm, however UV optimized mirrors would

probably need to be used for the 200nm light.
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Figure 9.4: a) Second and third harmonic generation module by Spectra-Physics designed

to work with the Solstice Ace laser. b) 200ps-gated ICCD camera by Stanford Com-

puter Optics which has a large square array of pixels and can be used to image the entire

plasma.

9.5 Future of Dense Plasma Hydrodynamics

The laser-breakdown process in a dense gas system has been explored as a function of

pressure and laser pulse width. The experiment set up now at UCLA is well controlled

and equipped to move forward. The goal of probing plasma hydrodynamics for a range

of coupling strengths is possible. The neutral density can be spanned via gas pressure up

to 70 bar in the current high pressure chamber. The energy input time – that being the

laser pulse width – has been shown to influence the final electron temperature and den-

sity especially at high pressure. The big hope is to produce a system with long-lived cold

ions that could develop strong correlations. A good candidate is high pressure xenon gas

(∼50 bar). Xenon has many charge levels that can be ionized via laser-breakdown [6] and

the high pressure of the neutral density may establish pre-order for the system of ions [10].

Doubling or even tripling the frequency of laser light could help in coupling the laser into
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such a dense plasma. Multiphoton ionization may start to contribute significantly to ion-

ization. The results of this thesis will help elucidate whatever breakdown behavior is ob-

served in the next experiment. A symmetric and structureless plasma, such as 3 bar hy-

drogen breakdown generated with a 130fs pulse, provides a perfect baseline to compare

with in the search for effects due to strong coupling.
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