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Abstract

Nonradiative Recombination

in Semiconductor Alloys

by

Jimmy-Xuan Shen

The nonradiative recombination of electrons and holes in semiconductors is inherently

detrimental to the performance of optoelectronic technologies. Two types of recombina-

tion mechanism cause the loss of carriers at different carrier density regimes: Shockley-

Read-Hall recombination dominates at low carrier-densities and Auger recombination

dominates at high carrier densities. Shockley-Read-Hall recombination can be consid-

ered as the independent capture of electrons and holes by a crystal defect or impurity

via interactions with lattice vibrations. Auger recombination is a three-carrier process

that involves an electron and a hole recombining across the band gap with the excess

energy of that recombination going to a third carrier (either an electron or a hole). In

this thesis, we discuss the simulation of these two distinct types of nonradiative recom-

bination mechanisms using first-principles calculations by presenting case studies of the

nonradiative recombination in several different material systems.

Recently, unexpectedly large concentrations of calcium have been found in InGaN

quantum wells, likely due to unintentional contamination during the polishing process or

from the In source. We assess the role of Ca impurities in pure GaN and InGaN alloys

and identify it as a deep donor. Using our methodology for simulating the Shockley-

Read-Hall recombination we will demonstrate that the Ca impurity readily assists in

nonradiative recombination and is a detrimental recombination center in lower band gap

InGaN alloys.
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For Auger recombination, we look at two material systems (InAs and CH3NH3PbI3)

where the spin-orbit interactions play a large role in the electronic structure. Both InAs

and CH3NH3PbI3 exhibit a resonance between the band gap and the spin-orbit splitting,

and we examine how this splitting affects the Auger recombination in each case. In the

case of InAs, we also examine the impact of the indirect, phonon-assisted, Auger process

on the recombination rate. For CH3NH3PbI3, the Rashba-type linear-k splitting at the

band edges has been flagged as a key feature in the band structure. We demonstrate

how this splitting influences the Auger process, and propose how Auger recombination

can be suppressed in this material.
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Chapter 1

Introduction

1.1 Semiconductors and Recombination Processes

Semiconductors are distinguished from insulators by the ability to be doped. Doping

occurs when defects or impurities are present; the dopants can be donors, which provide

an electron to the conduction band, or acceptors, which remove an electron from the

valence band (leaving behind a hole). The electrons and holes in these semiconductors

are considered free carriers. Much of the physics of a semiconductor is determined by

the various processes that govern how these free carriers interact with each other and

with the surrounding atomic environment [1]. The description of these processes is, fun-

damentally, a quantum mechanics problem. The existence of holes in semiconductors

was first observed in the form of positive Hall coefficients which confirmed Pauli’s theo-

retical predictions that there is a correspondence between excess electrons and electron

“deficiencies” [2]. However, as late as 1931, Pauli had the opinion that “one shouldn’t

work on semiconductors, that is a filthy mess; who knows whether any semiconductors

exist.” [3]

The study of the quantum mechanical description of the electronic structure of semi-
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conductors was initiated in 1931 by Allen Wilson [4]. Systematic investigations of the

recombination of electrons and holes in semiconductors began in the 1950’s in the works

by Shockley, Read and Hall [5, 6] on defect recombination. This type of work was very

relevant at the time as semiconductor transistors based on germanium had been invented

in 1947, and the defect-assisted recombination of holes and electrons dramatically affected

the carrier lifetimes. This initial work on defect recombination was followed shortly by

the description of radiative recombination, where the energy of an electron-hole annihi-

lation is given to a photon, in 1954 [7], and Auger recombination, where the energy of

an electron-hole annihilation is used to excite another carrier, in 1959 [8].

While the theoretical description of recombination processes in semiconductors was

in principle established in the 1950s, reliable and predictive calculations have become

possible only in recent years. A practical methodology for calculating the electronic

structure of solids was developed in the 1960s, in the form of density functional theory [9].

Many more decades would pass before computers (based on the transistors that inspired

the initial studies by Shockley, Read and Hall!) became powerful enough to allow us to

make ab initio predictions of the recombination rates in semiconductors.

1.2 Light-Emitting Diodes

Recombination of electrons and holes is the process by which these charge carriers

annihilate each other. Since holes describe a missing electron, the recombination of

carriers can be considered as an electron moving from the conduction band to the valence

band. The states that participate in the recombination process are typically near the

valence-band maximum (VBM) and conduction-band minimum (CBM), so the energy

released by a recombination event is on the order of the band gap of the system. Different

recombination events are classified according to the mode by which the energy is released:
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in a radiative process the energy is emitted as a photon, while in a nonradiative process

the energy is ultimately released in the form of lattice vibrations (i.e., phonons).

To anchor our discussions, we will examine the consequences of these recombination

mechanism in the context of light-emitting diodes (LEDs). In addition to being the foun-

dation of two separate multi-billion dollar industries (display technologies, and solid-state

lighting), LEDs are also a very useful system for understanding the fundamental physi-

cal properties of materials due to the simplicity of their basic design. The fundamental

components of an LED are shown in Fig. 1.1. With the advent of solid-state lighting,

gallium nitride (GaN) has become one of the most widely used materials for LEDs. GaN

can be intentionally doped with Si impurities that acts as donors to create n-type ma-

terial (n-GaN), or with Mg impurities that act as acceptors to create p-type material

(p-GaN). The electrons and holes that are generated in the n-GaN and p-GaN regions

are then injected into an active region with a lower band gap (typically InGaN). In order

to enhance the capture of electrons in the active region and reduce carrier leakage, a

electron-blocking layer with a higher band gap (typically AlGaN) is used between the

active region and the p-GaN layer.

1.3 ABC Model

The basic design in Fig. 1.1 allows us to populate the active region with both electrons

and holes, and the different recombination mechanisms will allow them to annihilate.

Unlike incandescent light sources, which rely on black body radiation for the generation

of photons and in which much of the energy is lost as heat, there is in principle no

intrinsic limitation on the efficiency of LEDs. If each electron that is injected into the

active region results in the emission of a photon at the energy of the band gap, then

we would consider the LED to have 100 % quantum efficiency. However during the

3
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Figure 1.1: Schematic of a basic LED device structure. The energy band diagram
of the VBM and CBM are shown in red. The flows of injected electrons and holes
are shown by green arrows. Photons are generated inside the active layer (usually
comprised of multiple quantum wells). The three possible options for electron-hole
recombination are labeled A (defect-related recombination), B (radiative recombina-
tion), and C (Auger recombination).

conversion process between electronic energy to optical energy, there are a number of

possible avenues of energy loss.

To separate the different contributions to efficiency loss in an LED, we split the

quantum efficiency (ηQ) of an LED into two contributing factors, the internal quantum

efficiency (IQE) and the extraction efficiency, ηext:

ηQ = ηIQEηext . (1.1)
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The extraction efficiency is dependent on the device geometry while the IQE is an intrinsic

property of the material in the active region. The IQE is the quantity that places

fundamental limits on the efficiency of LEDs operating at a given band gap.

The different contributions to the IQE can be understood using the well-known ABC

model for carrier recombination described below. The injected densities of electrons (n)

and holes (p) can be assumed to be equal under typical LED operating conditions. The

three different recombination mechanisms [defect-assisted Shockley-Read-Hall (SRH) re-

combination, radiative recombination, and Auger recombination] have rates proportional

to different power laws of the carrier density, as shown in Fig. 1.2

VBM

CBM

SRH

VBM

CBM

Radiative

VBM

CBM

Auger

Figure 1.2: Schematic of the different forms of recombination occurring in semicon-
ductors. The red circles represent electrons and white circles represent holes. In the
Shockley-Read-Hall (SRH) process, electrons/holes from the VBM/CBM recombine
at a defect level. In the radiative recombination process, the charge carriers recom-
bine across the band gap and emit a photon. In the Auger recombination process,
the excess energy from the band-gap recombination is transferred to a third charge
carrier.

In the case of SRH recombination, the electrons and holes are independently captured
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by a defect level. As such, the charge state of the defect is unchanged after a complete

SRH event, and the defect can be continuously recycled. Since the capture of an electron

and the capture of a hole are independent events, SRH recombination is a first-order

process that depends linearly on n. For radiative recombination, an electron and a hole

must annihilate each other to produce a photon, which is a second order (n2) process.

The Auger recombination process also involves the annihilation of an electron-hole pair;

however, since the excess energy is given to another carrier, Auger recombination is a

third-order (n3) process.

According to the ABC model, the IQE is given by the ratio of the radiative recombi-

nation rate divided by the sum of all three rates:

ηIQE =
Rrad

RSRH +Rrad +RAuger

=
Bn2

An+Bn2 + Cn3
. (1.2)

The rate coefficients of the SRH, radiative, and Auger recombination processes are given

by A, B, and C, respectively. A fundamental assumption of the ABC model is that these

rate coefficients are independent of the carrier density.

In this thesis, we will focus on the simulation of nonradiative recombination mech-

anisms, namely SRH and Auger recombination, which are represented by the A and C

coefficients in the ABC model. A schematic of the IQE curve as a function of carrier

density is shown in Fig. 1.3. The IQE is peaked at

n0 =

√
A

C
, (1.3)

which corresponds to a maximum efficiency of

ηIQE0 =
B

B + 2
√
AC

. (1.4)
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In the best GaN devices, the peak efficiency can be higher than 90% [10]. SRH re-

combination primarily affects the efficiency at low carrier concentrations, while Auger

recombination limits the efficiency at high carrier densities.

Figure 1.3: Schematic of the IQE as a function of the carrier density.

1.4 Simulation of Nonradiative Mechanisms

The focus of this thesis is on the calculation of the nonradiative recombination rates,

represented by the A and C terms in Eq. (1.2). As we can see from Eq.(1.3), the A

and C constants alone are enough to determine the carrier concentration at which the

IQE is peaked. The recombination processes can be considered as a time-dependent

perturbation of the electronic structure of the material of interest. The perturbing in-

teraction will change based on the recombination mechanism we are interested in. For

7



SRH recombination, the capture process of electrons and holes is facilitated by lattice

vibrations associated with a defect/impurity in the lattice, so the interaction is mediated

by electron-phonon interactions. For Auger recombination, each recombination event

sees two carriers recombine across the gap and the excess energy is transferred to a third

carrier [See Fig. 1.2]. While the interactions for the two different recombinations mecha-

nisms are dramatically different, the recombination rate in either case is given by Fermi’s

golden rule:

Ri→f =
2π

~

∣∣∣〈i ∣∣∣ Ĥint

∣∣∣ f〉∣∣∣2 δ(Ef − Ei) , (1.5)

where i and f represent the initial and final states of the recombination and Ei and Ef

represent their energies. In cases where multiple final states are possible, a total rate is

obtained by summing (or integrating) over the final states; the energy conserving delta

function then yields a density of states.

The basic methodology for how to calculate these nonradiative recombination rates

was pioneered in the Van de Walle group by Prof. Kioupakis [11] and Prof. Alkauskas [12].

The work covered in this thesis will extend those methodologies to handle materials sys-

tems that were previously inaccessible. In Chapter 2, we will describe these methodolo-

gies and the extensions in detail. The buildup of the necessary components from first-

principles calculations that are needed in our recombination-rate calculations is described

in Sec. 2.1–2.3. The methodology for calculating SRH recombination using computation-

ally efficient projector-augmented-wave potentials is detailed in Sec. 2.4. The extension

of the methodology for Auger recombination to handle systems with spin-orbit coupling

is discussed in Sec. 2.5.

The results presented in this thesis are based on four projects, which will be described

in detail in subsequent chapters. Since both the SRH and Auger recombination rates are

sensitive to the value of the band gap, we will first examine how the band gap can change

8



in a materials as we slowly change the chemical composition, using the wide-band-gap

insulator BAlN as the model system (Chapter 3). The SRH methodology was used to

investigate the effects of Ca in InGaN (Chapter 4). The first-principles methodology

for spin-orbit coupling was used to study the Auger process in InAs, a low-band-gap

semiconductor with large spin-orbit splitting (Chapter 5). Finally, we discuss the exotic

band-structure features of the prototypical hybrid perovskite, CH3NH3PbI3, and how

these features influence Auger recombination (Chapter 6).

1.5 Permissions and Attributions

1. The content of Chapter 3 previously appeared in:

Band bowing and the direct-to-indirect crossover in random BAlN alloys, J.-X.

Shen, D. Wickramaratne, C. G. Van de Walle, Phys. Rev. Mater., 1, 065001

(2017).

2. The content of Chapter 4 previously appeared in:

Calcium as a nonradiative recombination center in InGaN, J.-X. Shen, D. Wick-

ramaratne, C. E. Dreyer, A. Alkauskas, E. Young, J. S. Speck, and C. G. Van de

Walle, Appl. Phys. Express 10, 021001 (2017).

3. The content of Chapter 6 has been submitted to Advanced Energy Materials.
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Chapter 2

Theoretical Background

2.1 The Many-Body Problem

2.1.1 The Many-Body Schrödinger Equation

The goal of first-principles calculations is to use only the most basic information about

a material and predict its physical properties. On a fundamental level, a material can be

viewed as composed only of positively charged nuclei and negatively charged electrons.

Both the nuclei and the electrons are governed by the laws of quantum mechanics from

which all of the properties of the system are derived or computed. Consider a system of

N nuclei with index I at the coordinates RI , with masses MI , and atomic numbers ZI ,

along with Ne electrons, indexed by i, and described by the coordinate ri. Ignoring spin,

the full Hamiltonian of the system is given by:

Ĥ =
N∑
I=1

|PI |2

2MI

+
Ne∑
i=1

|pi|2

2me

+
∑
i>j

e2

|ri − rj|
+
∑
I>J

ZIZJe
2

|RI −RJ |
−
∑
i,I

ZIe
2

|ri −Ri|
(2.1)

where me is the mass of the electron and e is the charge. The first two terms represent the

kinetic energy of the nuclei and the electrons. The final three terms, in order, represent

10



the electron-electron, nuclear-nuclear, and electron-nuclear interactions respectively.

In principle, all of the properties of a system of interacting electrons in a solid can be

obtained by solving the Schrödinger equation with the above Hamiltonian,

ĤΨ = EΨ , (2.2)

where E is the total energy of the system, and Ψ is the many-body wave function.

Neglecting spin, Ψ is complex function of the spatial coordinate of the electrons (ri) and

nuclei (RI) in the system, Ψ(ri, ..., rNe ,RI , ...,RN). However, as Dirac pointed out [13],

this “Theory of Everything” has a catch, as the “equations are too complicated to be

soluble”. This complexity lies within the many-body nature of the wave function itself.

As an illustration, consider a simple iron atom with Ne = 26 electrons. The many-body

wave function depends on the three spatial coordinates of the nucleus, and the 26 times 3

spatial coordinates for the electrons. Choosing a coarse grid of 10 points per coordinate

axis yields 1081 numbers to be stored, an impossibly large quantity of data for a single

atom. While the many-body nature of this wave function make the problem difficult to

approach directly, a quantitative description of interacting electrons is not impossible, as

there are approximations that work surprisingly well for a variety of materials.

2.1.2 The Born-Oppenheimer Approximation

From a dynamics point of view, there is a strong separation of time scales between

the electronic and nuclear motions since the electrons are lighter than the nuclei by three

orders of magnitude. As such, we can invoke the Born-Oppenheimer approximation,

where we assume that the many-body wave function Ψ, i.e., the solution of the full
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Hamiltonian [Eq. (2.1)], is separable, i.e.,

Ψ(~r, ~R) ≡ ψ(~r)χ(~R) (2.3)

where ψ is the wave function of the electrons, and χ is the wave function of the nuclei.

We have used the notation ~R ≡ R1, ...,RN and ~r ≡ r1, ..., rNe to make the equations

more compact. The Born-Oppenheimer approximation allows us to treat the electrons

and nuclei independently. In many cases, we are interested in the properties of solid-state

systems, where the atoms are in their lowest energy configuration. As such, we can treat

the atomic positions as parameters and only consider the Hamiltonian for the electrons

in the system:

Ĥ =
Ne∑
i=1

|pi|2

2me

+
∑
i>j

e2

|ri − rj|
−
∑
i,I

ZIe
2

|ri −Ri|
(2.4)

Note that nuclear coordinates still enter the electronic Hamiltonian equation as an ex-

ternal potential experienced by the electrons. While we have just eliminated the nuclear

degree of freedom, solving the electron many-body problem is still intractable. Clearly,

further approximations are required.

2.2 Density Functional Theory

Almost immediately after Dirac proclaimed in 1929 that practical approximations

were needed to simulate quantum systems [13], physicists and chemists began devis-

ing the theoretical framework needed to calculate realistic quantum systems. The idea

that ground-state energy can be expressed in terms of electron density alone was im-

plemented in Thomas-Fermi theory in 1928 [14], and the idea to solve the Schrödinger

equation with a determinant of single-particle wave functions was implemented in what

we now call Hartree-Fock (HF) theory in 1935 [15, 16]. By the 1960’s, quantum chemists
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routinely used HF theory to solve the many-body quantum system. Density functional

theory (DFT) first appeared in 1964–65 [17, 18], and has since been one of most widely

used theoretical results in physics. Broadly speaking, DFT allows us to replace the the

many-body Schrödinger equation [Eq. (2.2)] with a system of auxiliary single-particle

Schrödinger equations. This allows us to dramatically reduce the size of the wave func-

tion in our iron atom example, since each single particle wave function only requires the

storage of 103 numbers for a total of 26× 103 for the whole system. This approximation

makes solving the Schrödinger equation [Eq. (2.4)] much more tractable.

2.2.1 Hohenberg-Kohn Theorems

The theoretical foundation of DFT was established in 1964 by Hohenberg and Kohn [17].

They considered the problem of electrons moving in an external potential Vext, where the

electrons interact through the Coulomb interaction. Within the Born-Oppenheimer ap-

proximation, the three terms in the Hamiltonian of Eq. (2.4) can be written as:

Ĥ = Te + Vext + Vee , (2.5)

where Te is the kinetic energy operator, and Vee represents the total energy from electron-

electron interactions. In principle, this Hamiltonian above can be solved to obtain the

ground-state wave function (Ψ0), and the density operator can be evaluated using Ψ0

to obtain the electron density n0(r). The first Hohenberg-Kohn theorem completes the

cycle by proving that the ground-state electron density uniquely determines the external

potential that induced it [17]. This can be visualized as:
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Vext Ψ0 n0(r) ,

Hohenberg−Kohn

and thus there is an one-to-one correspondence between Vext and n0. This one-to-one

correspondence establishes that n0 can be used as the key quantity for computing all

expectation values for the ground state of the system.

Assuming that the ground state is nondegenerate, the proof, by contradiction, starts

by assuming there are two different Hamiltonians Ĥ and Ĥ ′, with external potentials

Vext and V ′ext and the corresponding unique ground-state wave functions Ψ0 and Ψ′0.

Additionally, assume that (†) these two different wave functions give the same charge

density n0(r). Since Ψ′0 is the ground state of Ĥ ′, the energy expectation value of any

other wave function (namely Ψ0) will be greater:

〈Ψ′0|Ĥ ′|Ψ′0〉 < 〈Ψ0|Ĥ ′|Ψ0〉 . (2.6)

Since the two Hamiltonians only differ in the external potential, we can rewrite Eq. (2.6)

as:

〈Ψ′0|Ĥ ′|Ψ′0〉 < 〈Ψ0|Ĥ|Ψ0〉+ 〈Ψ0| [V ′ext(r)− Vext(r)] |Ψ0〉 . (2.7)

The integrals can be evaluated to give:

E ′ < E +

∫
[V ′ext(r))− Vext(r)]n0(r) dr . (2.8)

Similarly, if we look at the minimum energy of the unprimed state,

〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′0|Ĥ|Ψ′0〉 . (2.9)
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we get:

E < E ′ +

∫
[Vext(r))− V ′ext(r)]n0(r) dr , (2.10)

where n0 is assumed to be the same in both equations. Adding the two equations above

leads to:

E + E ′ < E ′ + E , (2.11)

which is clearly contradictory. Thus, the assumption above (†) must be false, which means

that n0 uniquely determines the external potential, and therefore uniquely determines

solutions of the entire system.

The first Hohenberg-Kohn theorem proves the existence of a one-to-one mapping

between the external potential and the ground-state density, but it does not provide

a practical way of obtaining the ground-state density. The second Hohenberg-Kohn

theorem addresses this issue. The second Hohenberg-Kohn theorem states that there

exists a functional FHK[n0], accounting for the kinetic and interaction energies in Eq. (2.5):

FHK[n0] = Te[n0] + Vee[n0] , (2.12)

which is a universal functional that is the same for all systems of interacting electrons.

If this functional is known, the energy of of a system can be written as a functional of

the density,

E[n0] =

∫
Vextn0(r) dr + FHK[n0] , (2.13)

The density that minimizes this functional corresponds to the exact ground-state charge

density n0 of the system.

This theorem can be proven by considering a trial electron density ñ(r) such that

∫
ñ(r) dr = N . (2.14)
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From the statement of the first Hohenberg-Kohn theorem, the trial electron density

ñ determines an external potential Ṽext and its own wave functions Ψ̃. Following the

variational approach we used above, we get that:

〈
Ψ̃
∣∣∣ Ĥ ∣∣∣ Ψ̃〉 =

∫
Vextñ(r) dr + FHK[ñ] > E0 , (2.15)

Thus, if we have the system-independent functional FHK we can simply minimize
〈

Ψ̃
∣∣∣ Ĥ ∣∣∣ Ψ̃〉

to obtain the solutions to our Hamiltonian.

2.2.2 Kohn-Sham Equations

The Hohenberg-Kohn theorems prove the existence of a universal functional FHK[n],

but does not provide any way of determining its form. To this end, Kohn and Sham [18]

outlined an approximation scheme in which the interacting electron system is mapped

onto a system of non-interacting particles. Since the system is non-interacting, the density

can be constructed as a sum of the individual particle densities,

n(r) =
Ne∑
i=1

|ψi(r)|2 . (2.16)

In the case of the iron atom, this is the crucial approximation that reduces the 1078 num-

bers needed to store the wave function to 26× 103 numbers. Within this approximation,

we can write down the energy functional,

E[n0] = T [n] + VHartree[n] + EXC[n] +

∫
Vextn(r) dr , (2.17)
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Here, the kinetic energy term is simply the sum of the kinetic energies of the non-

interacting particles,

T [n] =
Ne∑
i=1

∫
ψ∗i (r)

(
−~2

2me

∇2

)
ψi(r) dr . (2.18)

The VHartree and EXC terms together make up the functional FHK[n] for the electron-

electron interactions. VHartree is the contribution to the total energy from Coulomb re-

pulsion between electrons,

VHartree[n] =
e2

2

∫ ∫
n(r)n(r)

|r− r′|
drdr′ . (2.19)

The additional effects of the exchange interaction and correlation are added through the

exchange-correlation functional EXC[n]. While we know this functional exists, its true

form is not known, and many approximations have been developed.

Within the Kohn-Sham framework, the many-body problem is reduced to solving an

auxiliary one-electron Schrödinger equation, known as the Kohn-Sham (KS) equation,

[
−~2

2me

∇2 + Vext(r) + e2
∫

n(r)

|r− r′|
dr′ +

δEXC[n]

δn(r)

]
︸ ︷︷ ︸

ĤKS

ψi(r) = εiψi(r) , (2.20)

where the single-particle states ψi are solutions of the single-particle Hamiltonian ĤKS.

Clearly, solving the Kohn-Sham equations requires a priori knowledge of the electron den-

sity, but this quantity can only be obtained from solutions of the Kohn-Sham equations.

Hence, solving for the ground-state charge density requires a self-consistent procedure.

In practice, this is done by starting with a trial density ntr; one common choice is to

start with the charge density of the isolated atoms arranged into the periodic lattice of
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the solid. With this charge density, the Hamiltonian in the Kohn-Sham equation can be

constructed. Then, the Hamiltonian is solved to obtain the single-particle wave functions

ψi, which can be used to update the charge density n using Eq. (2.16). This calculated

density can be used as the new trial density, and the Kohn-Sham equations can be up-

dated and solved again. The process above (illustrated in Fig. 2.1) is repeated until

the total-energy difference between each step is small enough to consider the solution

“converged”.

Update n(r)

Kohn-Sham equations:

ĤKS =
−~2

2me

∇2 + Veff

Veff = Vext + VHartree + VXC

Solutions:

ĤKS |ψi〉 = εiψi

n =
Ne∑
i=1

|ψi|2

Etot
Converged?

Stop and output:
n, Etot, εi,
ψi, etc...

Initial guess
ntr

NO

YES

Figure 2.1: Schematic computational diagram of the Kohn-Sham procedure.
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2.2.3 The Exchange-Correlation Functional

In principle, the Kohn-Sham scheme outlined above provides the exact solution to

the ground-state energy of a many-body system. However, VXC is not known and must

be approximated. The earliest approximation of VXC was also introduced by Kohn and

Sham [18] and is commonly known as the local density approximation (LDA). LDA takes

advantage of the fact that EXC can be calculated explicitly for the homogeneous electron

gas and simply replaces the exchange-correlation contributions at each point in space

with those of a homogeneous electron gas with the same density

ELDA
XC [n] =

∫
n(r)EXC(n(r)) dr . (2.21)

Here, EXC(n(r)) is the exchange-correlation energy per electron of a homogeneous electron

gas with density n(r). The exchange contribution can be expressed analytically,

ELDA
X [n] = −3

4

(
3

π

)1/3 ∫
n(r)4/3 dr , (2.22)

and the correlation energy can be obtained from quantum Monte Carlo calculations [19].

While the approximation taken in the LDA seems dramatic, LDA often works well for

solid-state systems with delocalized electrons. However, LDA consistently underestimates

the the bond lengths and the band gaps.

Another common approximation scheme is the generalized gradient approximation

(GGA), or the semi-local approximation. Within GGA, the exchange-correlation energy

is determined by n(r) and ∇n(r),

EGGA
XC [n] =

∫
f [n(r), ∇n(r)] dr . (2.23)
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While GGA generally gives more accurate results than LDA, the bond lengths tend to be

overestimated, and the band gap is still systematically underestimated. The local (LDA)

and semi-local (GGA) approximations have their limitations, but they are still widely

used to date. The total energies obtained from LDA and GGA are often accurate enough

for predicting materials properties that depend only on the total energies. Moreover, the

quantities of interest are always energy differences. where the errors in the approximation

of EXC[n] can often cancel out. LDA and GGA have been consistently successful in

predicting the structural properties and phase stability of many materials.

While the total energies obtained are surprisingly accurate, both LDA and GGA suffer

from the well-known “band-gap error”, where the standard local and semi-local DFT

underestimate the band gap of semiconductors and insulators. The extent of this error

can be several electron-volts; as a result, small-band-gap materials are often mistakenly

predicted to be metallic using LDA and GGA. If we want to make predictions about

the electronic and optical properties of semiconductors, this systematic underestimation

must be addressed.

2.2.4 Hybrid Functionals

The fundamental limitation of the local (LDA) and semi-local (GGA) functionals is

the so-called self-interaction error. The self-interaction error can be illustrated by con-

sidering a simple single-electron system like the hydrogen atom. One contribution to the

energy of the Kohn-Sham system is the Hartree energy given in Eq. (2.19). It is obvious

in the case of the hydrogen atom that the Hartree term accounts for unphysical interac-

tions of the electron with itself. For the hypothetical exact functional, contributions from

the exchange-correlation functional should exactly cancel this self-interaction error (as is

the case in Hartree-Fock). Unfortunately, the semi-local functionals do not approximate
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the exact functional well enough for this cancellation to occur [20].

It turns out that the missing energy is precisely the discontinuity of the function at

the highest occupied electron number [21], as the band gap (Eg) is given by:

Eg = εCBM − εVBM +
δEXC

δn

∣∣∣
N+δ
− δEXC

δn

∣∣∣
N−δ

, (2.24)

where the eigenenergies (ε) of the conduction-band minimum (CBM) and valence-band

maximum (VBM) are obtained for DFT. The discontinuity comes from evaluating the

functional derivative δEXC/δn at N + δ and N − δ in the limit as δ → 0. It is well known

that semi-local functionals fail to capture the derivative discontinuity [20]. However, this

discontinuity is present in the exchange functional from HF theory [21]. As such, one

obvious approach to correct for the band-gap underestimation of semi-local functionals

is to incorporate some degree of HF exchange into the exchange-correlation functional to

reproduce the derivative discontinuity; an illustration of this idea is shown in Fig. 2.2.

This idea was first proposed by Becke in 1993 [22], but usage was limited at the time since

evaluation of the HF exchange is orders of magnitude more expensive computationally.

In recent years, due to the exponential increase in parallel computing power and advances

in algorithmic design, this approach has become increasingly popular.

In a hybrid functional, the exchange-correlation potential (V hybrid
XC ) is calculated by

mixing the exchange energy from a standard DFT calculation (EDFT
X ) with a fraction of

the HF exchange (EHF
X ):

Ehybrid
XC = EDFT

XC + α(EHF
X − EDFT

X ) . (2.25)

The mixing parameter α is the fraction of HF exchange used in the calculation of the

exchange-correlation potential. One of most successful hybrid functionals used for the
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Figure 2.2: Illustration of the derivative discontinuity problem. The semi-local
functionals give a continuous derivative at N , while HF tends to overestimate the
discontinuity. A compromise can be had by mixing these two methods to approximate
the behavior of the exact functional.

calculation of electronic properties of bulk and defect properties is the screened hy-

brid functional proposed by Heyd, Scuseria and Ernzerhof, commonly called the HSE

functional [23, 24]. The HSE functional uses a range-separated approach, where the

long-range and short-range exchange potentials are treated differently. HSE uses the

GGA functional of Perdew, Burke and Ernzerhof (PBE) [25] as the starting point. The

exchange potential falls off as 1/r and can be split into:

1

r
=

erf(ωr)

r︸ ︷︷ ︸
long range

+
erfc(ωr)

r︸ ︷︷ ︸
short range

, (2.26)

where the term containing the error function describes the long-range exchange potential,
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and the term containing the complimentary error function describes the short-range ex-

change potential. The adjustable parameter ω defines the range separation in Eq. (2.26).

The long-range exchange potential and the correlation potential are calculated with the

PBE functional, while the HF exchange is only mixed with the short-range exchange

potential. Range separating the exchange interaction gives a dramatic computational

advantage since only the short-range HF exchange integrals need to be evaluated.

Thus, the exchange-correlation energy is given by:

EHSE
XC = αEHF,SR

X (ω) + (1− α)EPBE,SR
X (ω) + EPBE,LR

X (ω) + EPBE
C . (2.27)

The superscripts SR and LR represent short-range and long-range, respectively. In prin-

ciple, the two parameters in Eq. (2.27), ω and α, can both be tuned to achieve better

agreement with experiments. The typical implementation of HSE, known as HSE06 [24],

uses α = 0.25 and ω = 0.2 Å−1 and has been used to obtain quantitatively accurate phys-

ical parameters (such as band gaps and formation enthalpies) of semiconductors [26].

2.3 The Wave Function in DFT

The eigenenergies εi and the wave functions ψi of the single-particle states obtained

in the Kohn-Sham DFT scheme are technically auxiliary variables [only the eigenenergy

of the VBM (εV BM) in an finite system has physical meaning)]. Nonetheless, the Kohn-

Sham non-interacting system tends to capture enough of the physics of the real many-

particle system that the Kohn-Sham states are often used to help understand how the

actual wave functions of the solid-state system behave. In this section, we will examine
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how the wave function in the solid state is treated in DFT implementations.

2.3.1 Blochs Theorem and Periodicity

The problem of solving a quantum system with a small number of atoms is well-

defined in the Kohn-Sham scheme: we simply have to solve for the eigenenergies and

wave functions of a single non-interacting Hamiltonian. However, explicit solutions of

this single-particle problem are still difficult to obtain for systems with large numbers of

atoms. Fortunately, in the case of crystalline solids, we can take advantage of periodicity

since the external potential is given by a periodic lattice of positively charged nuclei. The

periodicity in the external potential means that solutions to the Kohn-Sham equations

need to be expressed as Bloch waves [27], which are the product of a plane wave and a

lattice-periodic function u:

ψj,k(r) = eik·ruj,k(r) . (2.28)

Note that due to the periodicity of the external potential, the crystallographic wave

vector k is a valid quantum number that describes the state along with the band index

j. A key property of Bloch wave functions is the periodicity of the wave function for any

reciprocal lattice vector G,

ψj,k+G = ψj,k . (2.29)

The equivalence of k and k + G means that while there are an infinite range of wave

vectors, we only need to consider the wave vectors (commonly called k points) in the first

Brillouin zone (1BZ).

Since the resulting wave functions ψj,k depend explicitly on the wave vector k, the

electron density n(r) can be written as an integral over the 1BZ,

n(r) =
n∑
j

∫
1BZ

|ψj,k(r)|2 dk . (2.30)
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In principle, we are still stuck because we have just traded the countably large number

(all the electrons in a crystal ≈ 1023) of wave functions to solve for a uncountably large

continuum of solutions for each k. However, while the non-interacting single particle

systems give independent solutions, all of the eigen-energy and Bloch wave functions

vary slowly with k. This means that all of the integrals above can be approximated with

a summation over a finite, in fact modest, set of k points:

n(r) =
n∑
j

Nk∑
k

|ψj,k(r)|2 dk . (2.31)

The number of k points needed can be further reduced by exploiting the symmetries in

the problem; integrations (or summations) need to be carried out only over the irreducible

Brillouin zone. A common scheme for selecting optimal k points is the Monkhorst-Pack

method [28]. In fractional coordinates, the Monkhorst-Pack method uses a rectangular

grid with Mx ×My ×Mz spaced evenly in the 1BZ.

2.3.2 The Plane-Wave Pseudopotential Approach

In any practical implementation of DFT, solutions to the Kohn-Sham equation [Eq. (2.20)]

must be expanded in a set of linearly independent basis functions. Since the solutions for

solid-state systems are Bloch periodic, the natural basis for expanding the lattice-periodic

part of a wave function [ui(r)] is a plane-wave basis set. The periodicity in reciprocal

space [Eq. (2.29)] means that only plane waves with wave vectors k + G (where G is

a reciprocal lattice vector). The lattice-periodic part of the wave function can then be

expressed as a Fourier expansion:

ui(r) =
∑
G

ci(G)eiG·r . (2.32)
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In practical DFT implementations the infinite series in Eq. (2.32) is truncated by limiting

the energy associated with the wave vector with some cut-off energy

~2

2me

|k + G|2 < Ecut . (2.33)

A major drawback of the plane-wave method is that a high cut-off energy, and thus a

large number of plane-wave coefficients, is needed to capture the rapid fluctuations of the

wave function near the atomic core. This issue can be circumvented by using using the

pseudopotential (PP) framework, where only a few of the electrons in the outer shell of

the atom are treated as Kohn-Sham states. The core electrons are essentially eliminated,

so that the Schrödinger equation will have a modified effective potential whose solutions

are identical to the all-electron wave functions outside of the core. Since the core electrons

are no longer considered, the valence electrons can be described by pseudo-wave functions

that are smoother near the atomic core. This approach is much more computationally

efficient since the number of plane waves needed to describe the smoothed functions is

greatly reduced.

There exist a large variety of schemes for constructing PPs. A common method

utilizes the concept of norm-conserving pseudopotentials (NCPPs) [29]. The NCPPs

are constructed by solving the Kohn-Sham equations for an isolated atom. Since the

isolated atom is a spherically symmetric system, the Kohn-Sham equations can be solved

efficiently on a radial grid with all of the electrons treated explicitly. Then, the NCPP

for angular momentum l is constructed on a Cartesian grid so that:

1. The resulting valence orbitals are identical with the corresponding all-electron or-

bitals for r larger than some l-dependent cut-off radius rcutl .

2. The norm of the atomic orbitals inside the sphere of radius rcutl is conserved between
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the rapidly fluctuating all-electron wave functions and the smoother pseudized wave

functions.

Note that condition 1 automatically ensures that the eigenvalues of a pseudized orbital

are the same as for the all-electron orbital since the eigenenergies directly determine

the asymptotic decay of the orbitals. The PPs are obtained on a dense radial grid and

then translated to a Cartesian grid to be used for the plane-wave calculations. For the

construction of the PP inside of the core region different procedures have been suggested,

among which the Troullier-Martins [30] approach is widely used.

NCPPs have been used countless times to compute the properties of solid state mate-

rials. Since the potential is smooth, it can be stored on a sparse Cartesian grid along with

the Kohn-Sham wave functions, which makes the problem much more computationally

tractable. This gives us a convenient and easily accessible basis of orthonormalized wave

functions, which can be used to evaluate the matrix elements of various interactions.

2.3.3 Projector Augmented Wave Potentials

A major drawback of the traditional pseudopotential approach is that the smoothing

of the wave functions near the nucleus is not physically meaningful, and important infor-

mation about the atomic core is lost. To overcome this, the projector augmented wave

(PAW) method [31] was developed. The PAW method allows the wave function to retain

its complex structure in the atomic core but simultaneously requires fewer plane-wave

coefficients for convergence, compared to NCPPs. In the PAW method, space is divided

into core and non-core regions by an augmentation sphere Ωa around each atom indexed

by a. The pseudo-wave function |ψ̃〉 is defined to be identical to the true Kohn-Sham

wave function |ψ〉 (often called the all-electron wave function) everywhere outside the
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augmentation spheres. We seek a linear transformation T between |ψ̃〉 and |ψ〉,

T |ψ̃〉 = |ψ〉 , (2.34)

We want to find solutions |ψ̃i〉 to the Schrödinger equation for the augmented KS Hamil-

tonian:

T †ĤKST |ψ̃i〉 = εiT †T |ψ̃i〉 . (2.35)

Note that the linear transformation T is not unitary (i.e. T †T is not the identity). This

makes PAWs cumbersome to work with since the augmented wave functions |ψ̃i〉 are not

orthogonal.

Since the wave functions are already smooth in the space between the atoms (outside

the Ωa’s), T should only modify the wave function in the core region, and we can define

T =
∑
a

Ta , (2.36)

where each Ta is only nonzero inside Ωa. Inside the Ωa’s, we can expand the true wave

function |ψ〉 in terms of the atomic-like partial wave orbitals, φia, with the requirement

that:

|φai 〉 = (1 + Ta) |φ̃ai 〉 (2.37)

Once Ta is defined for each atom a, T is completely defined. The partial waves define a

complete basis, so we can expand the augmented wave function at each atom,

|ψ̃n〉 =
∑
i

P a
ni |φ̃ai 〉 ( inside Ωa ) (2.38)

with expansion coefficients P a
ni. Using Eq. (2.34), we find that the true wave function
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|ψ〉 expanded in the |φi〉,

|ψn〉 = T |ψ̃n〉 =
∑
i

P a
ni |φai 〉 (inside Ωa ), (2.39)

has the exact same expansion coefficients as ψ̃ in Eq. (2.38).

Since we require the T to be linear the coefficients P a
ni must be linear functionals of

|ψ̃an〉, meaning that

P a
ni = 〈p̃ai |ψ̃n〉 , (2.40)

where |p̃i〉 are a fixed set of functions called the smooth projector functions. Since there is

no overlap between the augmentation spheres, inside each sphere Ωa Eq. (2.38) becomes

|ψ̃an〉 =
∑
i

|φ̃ai 〉 〈p̃ai |ψ̃n〉 . (2.41)

Thus the smooth projector functions must satisfy

∑
i

|φ̃ai 〉 〈p̃ai | = 1 (2.42)

inside each augmentation sphere. From Eqs. (2.39)–(2.42), the Ta operators can be

written as

T̂ = 1 +
∑
a

∑
i

(|φai 〉 − |φ̃ai 〉) 〈p̃ai | (2.43)

We can now evaluate matrix elements for a local operator Ô taken between the states

|ψn〉 and |ψm〉, with the general expression:

〈Ô〉 = 〈ψn|Ô|ψm〉 = 〈ψ̃n|Ô|ψ̃m〉+
∑
a

∑
i,j

(
〈φ̃ai |Ô|φaj 〉 − 〈φai |Ô|φ̃aj 〉

)
Da
ij (2.44)
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where

Da
ij = 〈ψ̃n|p̃ai 〉 〈p̃aj |ψ̃m〉 , (2.45)

The first term in 2.44 is just the matrix element evaluated using the pseudo-wave func-

tions on a cartesian grid, and the second term contains the corrections to the partial wave

orbitals due to the PAWs. The PAW formalism provides a mathematically rigorous way

to evaluate important quantities such as wave function overlaps and matrix elements of

the operators. However, since the ψ̃’s and φ’s are stored on different grids, the evalu-

ation of matrix elements is often complicated. The impact of including the corrections

to the partial wave orbitals due to the PAWs is usually small, since the weight of the

wave functions close to the core is typically low (< 15%); it is therefore often a good

approximation to neglect these corrections.

Thoughout this thesis we will use PAW and NCPP wave functions to solve the Kohn-

Sham equations in different situations. The approximations in NCPP works well for

s/p-bonded bulk systems. However in special cases where localized orbitals, especially

those with high l quantum numbers are involved, a full PAW treatment is required.

2.4 Shockley-Read-Hall Recombination

The focus of this thesis is on calculating recombination rates directly from the in-

formation available in first-principles calculations. The recombination rate due to an

interaction Hamiltonian Ĥ is given by Fermi’s golden rule:

Ri→f =
2π

~

∣∣∣〈Ψi

∣∣∣ Ĥint

∣∣∣Ψf

〉∣∣∣2 δ(Ef − Ei) , (2.46)

where Ψi and Ψf are the initial and final states of the electron with energy Ei and Ef . The

delta function, δ, ensures the conservation of energy. The precise expression for a specific
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recombination process depends on the Hamiltonian Ĥint of the interaction. In principle,

the wave functions must be the many-body wave functions. However, we can simplify

the situation dramatically in the case of the interactions we are interested in (SRH and

Auger recombination), since each interaction event only changes the occupation of a few

states.

Defect levels in the middle of the band gap can interact with carriers at the band

edges via electron-phonon interactions. These interactions allow for the capture of elec-

trons (see Fig. 2.6) and holes. The theory of defect-assisted carrier loss was formulated

independently by Shockley and Read [5] and Hall [6] in 1952. The rate coefficient of the

capture process is different for electrons (Cn) and holes (Cp). At a given impurity density

N and for n = p, the SRH recombination rate is characterized by the coefficient A:

A = N
CnCp
Cn + Cp

. (2.47)

From Eq. (2.47), it is clear that the SRH process is rate-limited by the smaller of the two

carrier capture coefficients, either Cn or Cp.

2.4.1 Transition Levels and Configuration-Coordinate Diagrams

As we have discussed above, SRH recombination requires a defect level in the band

gap of the semiconductor to facilitate the capture of electrons and holes. In this section,

we will cover what the defect level in Fig. 1.2 means, and how we obtain this quantity

from first-principles calculations.

In the dilute limit, the formation energy (Ef ) of a given defect is related to the con-

centration of that defect via the Boltzmann relation [32]. The environment surrounding

a defect will affect its electronic properties, and this is reflected in a dependence on

the Fermi level (EF), which is the chemical potential of the reservoir of electrons in the
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crystal. The Fermi level of semiconductors typically resides within the band gap of the

material. The formation energy of a defect (denoted by X) in the charge state q is given

by:

Ef [Xq] = Etot[X
q]− Etot[bulk] +

∑
i

niµi + qEF + ∆q , (2.48)

where Etot[X
q] is the total energy of the supercell containing the defect with charge q

(attained by addition/removal of electrons), and Etot[bulk] is the total energy of the

pristine supercell. The chemical potentials µi represent the energy cost of adding (ni =

−1) or removing (ni = +1) an atom in the process of creating a defect. Finally, the

finite-size charge correction ∆q can be determined using the Freysoldt scheme [32].

At a given Fermi level, the most stable state of a defect is determined by the charge

state with the lowest formation energy . Thus the formation energy of a defect is given

by the lower hull of the different linear functions expressed by Eq. (2.48) for the different

charge states. The charge-state transition levels correspond to the kinks in the formation-

energy plot where the slope changes. For a hypothetical deep acceptor defect that has

q = +1 and q = 0 as the stable states in the band gap, the formation energy is simply

a piecewise linear function with a single kink where the formation energies of these two

charge states are equal. The Fermi level at which this kink occurs is the defect transition

level in the SRH recombination process (see Fig. 2.3).

The two different charge states at a given transition level will relax to two distinct

atomic configurations (labeled A− and A0 in the case of the deep acceptor). We define

a configuration coordinate Q that captures the change in atomic configuration between

the two different defect structures.

We construct a so-called configuration coordinate diagram (CCD) by plotting the

energy as a function of the configuration coordinate. The energy in each charge state
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Figure 2.3: Schematic of the formation energy plot for a deep acceptor.

is assumed to be parabolic around the relaxed structure, so the two charge states are

represented by two parabolas in the CCD. The configuration-coordinate offset between

the minima of the two parabolas is given by the mass-weighted difference in their atomic

configurations:

∆Q2 =
∑
α

mα |Rα;A− −Rα;A0 |2 , (2.49)

where α is the atomic index, m is mass and R the atomic position of a given atom. The

variation of this this scalar quantity represents a continuous interpolation between the

ground-state structures of the two charge states, as shown in Fig. 2.4.

The schematic of the CCD for a deep acceptor type defect is shown in Fig. 2.5.

The curvature of parabolas can be obtained from additional calculations of interpolated

structures between the two distinct ground-state structures. The energy offset ∆E is

the energy difference between the defect level and the band edge of the captured carrier.

33



Figure 2.4: Illustration of the parameterization of the local distortions of a charged
defect as the charge state is changed.

Conversely, this ∆E can be thought of as the ionization energy of the defect. In the case

of a deep acceptor capturing a hole, the ∆E represents the energy difference between the

defect level and the VBM.

While we are focusing on the nonradiative capture of electrons and holes, it is worth-

while to note that these CCDs are useful tools in studying the optical properties of

defects. The absorption and emission energies are represented in the CCD as vertical

energy transitions between the defect configurations, and can be directly compared with

peaks in absorption and luminescence spectra. The energy difference ∆E corresponds

to the optical transition energy when no phonons are involved and is often called the

zero-phonon line in optical spectroscopy.

2.4.2 Modeling the Capture Process

A fully quantum mechanical treatment of carrier capture from first principles has been

developed in the Van de Walle group [12]. To illustrate the methodology, the process of

the electron capture by a deep donor is shown in Fig. 2.6. The process is illustrated in two

different representations: (a) using a band diagram and (b) using a CCD. In the CCD

representation, the capture of the electron can be viewed in terms of two distinct steps.
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Figure 2.5: Schematic of a CCD for a deep acceptor defect. The negative charge
state, with a free hole at the VBM ss the excited state and and the neutral defect is
considered the ground state.

In step (1), a hole is captured by the given defect in the negative charge state (A−)

in a capture event mediated by electron-phonon interactions. This leaves the system

in a high-energy vibronic state whose energy is subsequently lowered, in step (2), by

emission of phonons into the crystal lattice. The vibronic relaxation in step (2) occurs

on a time scale of a few picoseconds [33], while the electron capture event in step (1) is

the rate-limiting step, with a typical time scale on the order of nanoseconds [34].

The carrier capture rate can be obtained from Fermi’s golden rule [Eq. (2.46)] with
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Figure 2.6: Schematic illustration of the capture process of a hole at a deep acceptor.
The capture process is shown in two different representations: (a) band diagram
and (b) configuration coordinate diagram. For illustration purposes, we assume the
defect is unoccupied in the neutral charge state and singly occupied in the −1 charge
state. The ionization energy of the acceptor is ∆E, and the difference between the
atomic structures of the two charge states is given by the difference in the generalized
configuration coordinate ∆Q. In (b), process (1) represents the capture of a hole via
electron-phonon interactions, and process (2) is the relaxation of the vibronic state
via the emission of phonons.

the electron-phonon interaction as the perturbation, giving the expression

Ri→f =
2π

~
g
∑
m

wm
∑
n

|∆He−ph
im;fn|δ(Eim − Efn) . (2.50)

In Eq. (2.50), wm is the thermal occupation of the vibrational state m of the initial

charge state, and Eim and Efn are total energies of the initial and the final state; g is

the degeneracy factor of the final state, which reflects the fact that there might exist

a few equivalent energy-degenerate (or nearly degenerate) atomic configurations of the

final state. ∆He−ph
im;fn is the electron-phonon coupling matrix element.

In principle ∆He−ph
im;fn depends on both the electronic degrees of freedom {x} and the
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ionic degrees of freedom {Q} [35]. The {x} and {Q} degrees of freedom are coupled to

each other; however, certain approximations allow us to separate them in our calculations.

The first of these approximations is the linear coupling approximation [36], where ∆He−ph
im;fn

is expanded as a Taylor series of the atomic configuration around the minimum energy

configuration {Q0}. To first order, the matrix element ∆He−ph
im;fn is given by:

∆He−ph
im;fn =

∑
k

〈
Ψi

∣∣∣∣∣ ∂Ĥ∂Qk

∣∣∣∣∣Ψf

〉
︸ ︷︷ ︸

W k
if

〈χim|Qk −Q0;k|χfn〉 (2.51)

The sum k runs over all atomic degrees of freedom, which can be very large for a supercell

defect calculation, and Q0;k represents the relaxed atomic configuration. The evaluation

of the electron-phonon coupling matrix element W k
if will be discussed in Sec. 2.3.3.

The key approximation in Fig. 2.6 is called the single phonon approximation. A

phonon can be described by a generalized displacement vector connecting two states i

and f ,

∆Q =
∑
α

√
mα(Rα;i −Rα;f ) , (2.52)

where α is the atomic index, m is the mass and R is the atomic position. The special

phonon in the single phonon approximation connects the relaxed atomic configurations

of the two defect charge states before and after carrier capture. Alkauskas et al. [12]

showed that this approximation captures enough of the relevant physics to give quanti-

tative predictions of the capture coefficients. We have confirmed the validity of this ap-

proximation [37] by comparing our calculated capture rates with an alternative method

which more fully includes the effects of all phonons [38, 39].

The ionic displacement matrix element [second integral in Eq. (2.51)] is analogous

to the evaluation of the position operator between two off-set harmonic potentials with
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different frequencies. This is a frequently encountered problem in quantum chemistry,

which was solved a long time ago within that community; detailed expressions can be

found in Refs. [40] and [41]. Only the evaluation of the matrix element W k
if remains.

Evaluating the Electron-Phonon Matrix Element with PAWs

Methods for evaluating electron-phonon interactions in solids from ab initio calcula-

tions are well established [42]. We use the frozen-phonon method, whereby all the atoms

in a supercell are displaced according to the eigenmode of the special phonon [42]. The

coupling between of the atomic displacements and the electronic properties of the system

is represented by the electron-phonon matrix element (epME). The epME of the special

phonon (parameterized by Q) is given by:

Wif =

〈
Ψi

∣∣∣∣∣ ∂Ĥ∂Q
∣∣∣∣∣Ψf

〉
. (2.53)

In the equation above, the Ψ{i,f} are in principle many-body wave functions, and Ĥ is

the many-body Hamiltonian. However, since we are simulating the capture of a single

charge carrier, the initial and final states differ in the occupation of a single electron, and

we can replace the many-body Hamiltonian and wave functions with their single-particle

counterparts ĤKS (which will be denoted ĥ) and ψ{i,f} [12],

Wif =

〈
ψi

∣∣∣∣∣ ∂ĥ∂Q
∣∣∣∣∣ψf

〉
. (2.54)

The typical outputs of first-principles calculations are eigenvalues and eigenstates of

the Kohn-Sham Hamiltonian, and the ∂ĥ
∂Q

in Eq. (2.54) is not readily accessible. However,

the expression can be modified by evaluating the initial wave function ψi(δQ) at some

finite (but small) atomic displacement δQ along the eigenmode of the special phonon.

The wave function at δQ can be expressed as the wave function of the relaxed structure
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ψi plus the correction from first order perturbation theory:

|ψi(δQ)〉 = |ψi〉+
∑
m6=i

|ψm〉
〈
ψm

∣∣∣ ∂ĥ∂QδQ ∣∣∣ψi〉
εi − εm

, (2.55)

where m is dummy band index and the ε’s are the corresponding eigenvalues. If we take

the inner product of the expression above with the final state and move the displacement

parameter δQ outside the integral, we get:

〈ψf |ψi(δQ)〉 =

〈
ψf

∣∣∣ ∂ĥ∂Q ∣∣∣ψi〉
εi − εf

δQ . (2.56)

which can be rearranged to:

〈
ψf

∣∣∣∣∣ ∂ĥ∂Q
∣∣∣∣∣ψi
〉

= (εi − εf )
〈ψf |ψi(δQ)〉

δQ
. (2.57)

The equation above allows us to obtain the epME from two first-principles DFT calcu-

lations at slightly different atomic configurations. In practice, we calculate the wave-

function overlap 〈ψf |ψi(δQ)〉 for a few values of δQ and obtain the slope.

We use the PAW-based Vienna Ab initio Simulation Package (VASP) to perform the

structural relaxation and defect-formation energy-calculations. This choice was made

because PAWs, especially in the VASP implementation, allow us to perform the more ac-

curate HSE hybrid functional calculations at a reasonable computational cost. However,

this increase in accuracy and speed come at the cost of a more complicated data structure

used to store the wave functions, making the evaluation of the overlap in Eq. (2.57) more

complicated. To circumvent this problem, previous efforts in the Van de Walle group used

a NCPP-based code called Car-Parrinello Molecular Dynamics (CPMD) [43] to obtain the

pseudo-wave functions once the atomic structure has been relaxed in VASP [12, 44, 45],
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and used these pseudo-wave functions in place of the all-electron wave functions (ψ) in

order to evaluate the epMEs. Aside from the the fact that this entails some inconsistency,

this process also suffers from the limitation that the CPMD code is orders of magnitude

slower than VASP, so even doing static calculations with the VASP-relaxed structure

is time consuming. Additionally, because CPMD uses NCPP, the features of the wave

function near the core are significantly modified. While this has minimal effects for de-

fects with mostly s and p orbital character, it becomes a problematic approximation if

the defect states involves d-orbitals that are closer to the atomic core. Hence, performing

these calculations consistently with the VASP code using PAWs is desirable.

Because the typical output of DFT codes are the pseudo-wave functions (ψ̃) and they

are conveniently stored on a Cartesian grid, we would like to express the wave function

overlap in terms of the ψ̃’s. The wave function overlap in Eq. (2.57) can be considered a

special case of Eq. (2.44) with Ô = Î, the identity:

〈ψn|Î|ψm〉 = 〈ψ̃n|ψ̃m〉+
∑
a

∑
i,j

〈ψ̃n|p̃ai 〉
(
〈φai |φ̃aj 〉 − 〈φ̃ai |φaj 〉

)
〈p̃aj |ψ̃m〉 . (2.58)

Hence, we can define an overlap operator Ŝ,

Ŝ = Î +
∑
a

∑
i,j

|p̃ai 〉
(
〈φai |φ̃aj 〉 − 〈φ̃ai |φaj 〉

)
〈p̃aj | , (2.59)

which only depends on the atomic (φ) and pseudoatomic (φ̃) orbitals. The atomic orbital

overlaps φ{i,j} are naturally expressed on a radial grid, so evaluating their overlap is

straightforward. Now we can express the epME in terms of the ψ̃’s:

〈
ψf

∣∣∣∣∣ ∂ĥ∂Q
∣∣∣∣∣ψi
〉

= (εi − εf )

〈
ψ̃f

∣∣∣ Ŝ ∣∣∣ ψ̃i(δQ)
〉

δQ
. (2.60)
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The above process of evaluating the epME using PAWs was implemented in VASP

with the help of Manuel Engel and Prof. Georg Kresse from the University of Vienna.

With this improved methodology, we have studied the SRH recombination for the Ca

defect in GaN, the details of which will discussed in the Chapter 4.

2.5 Auger Recombination

Similarly to the SRH recombination rates, Auger recombination rates can also be

calculated with Fermi’s golden rule. The method for calculating the Auger coefficient

from first principles was first developed by Kioupakis et al. in the Van de Walle group [11].

We will give an overview of the methodology and then discuss how it can be extended to

systems with strong spin-orbit splitting.

Auger recombination is nominally a three-carrier interaction; if the additional Auger

carrier is an electron the process is termed the electron-electron-hole (eeh) process, and

if the carrier is a hole the process is termed the hole-hole-electron (hhe) process. While

the interaction only involves three charge carriers, the matrix element that enters Fermi’s

golden rule [Eq. (2.46)]must involve the final state of the electron. The initial (I) and

final (F ) states of a recombination event are given by two different anti-symmetrized

many-body wave functions ΨI and ΨF . Since the net result of an Auger recombination

event is two electrons moving to different states, ΨI and ΨF only differ in the occupations

of two orbitals, and the rate is given by:

RI→F =
2π

~

∣∣∣〈ΨI

∣∣∣ Ĥint

∣∣∣ΨF

〉∣∣∣2 δ(EF − EI) , (2.61)

Auger recombination is facilitated by the two-body screened-Coulomb interaction

Ĥint = Ŵ (r1, r2), which only depends on two positional arguments r1 and r2 (we refer to
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Ref. [11] for details on how the screened-Coulomb matrix element is calculated). From

Eq. (4.22) of Grosso et al. [46], we find for the evaluation of a two-body operator between

many-body states where two orbitals differ (m→ µ and n→ ν):

〈
Ψm,n

∣∣∣ Ŵ ∣∣∣Ψµ,µ

〉
=
〈
ψmψn

∣∣∣ Ŵ ∣∣∣ψµψν〉︸ ︷︷ ︸
Md

mnµν

−
〈
ψmψn

∣∣∣ Ŵ ∣∣∣ψνψµ〉︸ ︷︷ ︸
Mx

mnµν

. (2.62)

Just as in the case of SRH recombination, we have reduced the many-body matrix el-

ements to matrix elements that only depend on single-particle states. For simplicity,

we will call the two integrals on the right side of the expression the direct (Md
mnµν) and

exchange (Mx
mnµν) terms.

We can represent all the states in the band structure by a combined index i = (k, n),

where k is the momentum quantum number and n is the band index. For each state i

there are two possible spin quantum numbers σi = ±1
2
. The Coulomb interaction does

not flip spins, so the total Auger recombination rate, obtained by summing over all initial

and final states, is given by:

Rdirect =
2π

~
∑
1234

∑
σ1σ2σ3σ4

f1f2(1− f3)(1− f4)

∣∣Md
1234δσ1σ3δσ2σ4 −Mx

1234δσ1σ4δσ2σ3
∣∣2

δ(ε1 + ε2 − ε3 − ε4) , (2.63)

where fi denotes the Fermi occupation number of the electronic state indexed by i with

energy εi. We have used the superscript “direct” to distinguish this rate from the “indi-

rect” phonon-assisted Auger process that will be discussed later. After the implicit spin

summation over the 24 = 16 combined spin configurations, we recover the expression for
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the Auger rate from Ref. [11]:

Rdirect =2
2π

~
∑
1234

f1f2(1− f3)(1− f4)(∣∣Md
1234 −Mx

1234

∣∣2 +
∣∣Md

1234

∣∣2 + |Mx
1234|

2
)

δ(ε1 + ε2 − ε3 − ε4) . (2.64)

The screened Coulomb interaction Ŵ conserves momentum between the initial and

final states. This fact, combined with the Dirac delta function in Eq. (2.64), enforces

both energy and momentum conservation of each Auger recombination event, as shown

in Fig. 2.7 (a).
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Figure 2.7: Schematic of the (a) direct and (b) phonon-assisted eeh Auger recombi-
nation processes.

The strict requirements for energy and momentum conservation turn out to be difficult

to satisfy in many wide-band-gap semiconductors (for instance, gallium nitride) resulting

in low direct Auger recombination coefficients [47]. In such cases, a phonon-assisted

process, which uses the extra momentum of a phonon to facilitate the Auger process, can

43



become dominant [48]. The rate of the phonon-assisted process is given by a second-order

Fermi’s golden rule:

RI→F =
2π

~

∣∣∣∣∣∑
M

HIMHMF

EM − EI

∣∣∣∣∣
2

δ(EF − EI) , (2.65)

where M represents an intermediate state. The two matrix elements will consist of one

screened-Coulomb matrix element plus one epME. An example of such a second-order

interaction is shown in Fig. 2.7(b), where ĤIM =
〈

ΨI

∣∣∣ Ŵ ∣∣∣ΨM

〉
represents the screened-

Coulomb interaction and ĤMF =
〈

ΨM

∣∣∣ ∂Ĥ∂Q ∣∣∣ΨF

〉
represents the electron-phonon inter-

action. The electron-phonon scattering process only involves a single electron so the

many-body wave functions ΨM and ΨF can only differ in the occupation of a single

orbital. Hence, the scattering rate to the intermediate state ΨM state is completely

determined by the scattering via single-particle states indexed by m.

By summing over all the initial and final states, and following the same derivation

as for the direct Auger process above, we obtain an expression for the phonon-assisted

Auger rate (also outlined in Ref. [11]):

Rindirect =2
2π

~
∑

1234,νq

f1f2(1− f3)(1− f4)

(
nνq +

1

2
± 1

2

)
× |M̃1234;νq|2δ(ε1 + ε2 − ε3 − ε4 ∓ ~ωνq) . (2.66)

Here, ν and q are the band index and wave number of phonons, the nνq are the phonon-

occupation numbers from Bose-Einstein statistics:

nνq =
1

e~ωνq/kBT − 1
, (2.67)

and the phonon energy (~ωνq) is accounted for in the energy-conservation delta function.
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The upper (lower) sign represents the phonon-emission (-absorption) process. The gen-

eralized matrix element that appears in Eq. (2.66) (M̃ , with the subscript omitted) is

given by:

|M̃ |2 =
∣∣∣M̃1 + M̃2 + M̃3 + M̃4 − M̃5 − M̃6 − M̃7 − M̃8

∣∣∣2
+
∣∣∣M̃1 + M̃2 + M̃3 + M̃4

∣∣∣2 +
∣∣∣M̃5 + M̃6 + M̃7 + M̃8

∣∣∣2
where each term (M̃1 to M̃8) represents an phonon-assisted screened-Coulomb interaction

listed below and depicted in Fig. 2.8:

M̃1
1234;νq =

∑
m

g1m;νM
d
m234

εm − ε1 ± ~ωνq + iη
(2.68)

M̃2
1234;νq =

∑
m

g2m;νM
d
1m34

εm − ε2 ± ~ωνq + iη
(2.69)

M̃3
1234;νq =

∑
m

Md
12m4gm3;ν

εm − ε3 ∓ ~ωνq + iη
(2.70)

M̃4
1234;νq =

∑
m

Md
123mgm4;ν

εm − ε4 ∓ ~ωνq + iη
(2.71)

M̃5
1234;νq =

∑
m

g1m;νM
x
m234

εm − ε1 ± ~ωνq + iη
(2.72)

M̃6
1234;νq =

∑
m

g2m;νM
x
1m34

εm − ε2 ± ~ωνq + iη
(2.73)

M̃7
1234;νq =

∑
m

Mx
12m4gm3;ν

εm − ε3 ∓ ~ωνq + iη
(2.74)

M̃8
1234;νq =

∑
m

Mx
123mgm4;ν

εm − ε4 ∓ ~ωνq + iη
. (2.75)

where m is the single-particle state index of an intermediate state and η is the inverse

lifetime of that intermediate state. The direct (Md) and indirect (Mx) screened Coulomb

matrix elements are defined in Eq. (2.62). The electron-phonon matrix elements (g)

between two states, for example 1 and m, can be indexed by ν alone since the momentum
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difference is precisely the momentum q of the phonon. To connect with our notation from

Sec. 2.4 the epMEs are given by:

gab;ν =

〈
ψa

∣∣∣∣∣ ∂ĥ

∂Qq,ν

∣∣∣∣∣ψb

〉
. (2.76)
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Figure 2.8: Schematic diagrams corresponding to each of the microscopic indi-
rect Auger recombination processes (M̃1–M̃8). The expressions are given in Eqs.
(2.68)–(2.75).

Unlike the case for the SRH recombination, where we are interested in a particular

mode in the a supercell containing a defect, Auger recombination requires the calculation

of the epME on a dense grid of phonons. For this purpose, density functional perturbation

theory (DFPT) [49] is much better suited compared to the frozen-phonon approach we

used for SRH recombination.

Under typical LED operating conditions, the density of electrons (n) and holes (p) can

be assumed to be equal. For a particular density we can calculate the Fermi occupation

factors fi. Using Eq. (2.64) and Eq. (2.66), we can determine the Auger recombination

rates at a given carrier concentration. The Auger coefficient is given by each rate devided
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by the cube of the carrier concentration:

C
{direct,indirect}
{n,p} =

R
{direct,indirect}
{n,p}

n3
, (2.77)

where n/p denote the charge of the Auger carrier so it corresponds to the eeh/hhe process.

Considerations for Spin-Orbit Coupling

In materials with heavier atoms, such as indium or lead, relativistic effects can have

a dramatic impact on the band structure and thus the Auger coefficients. The two main

types of relativistic effects that need to be accounted for in solid-state systems are scalar-

relativistic effects and spin-orbit coupling (SOC). The Kohn-Sham equation contains

neither of these effects, but their inclusion into the DFT framework is well established

[50, 51].

The relativistic effects can be incorporated into DFT by way of an effective perturbing

Hamiltonian [50]:

∆Ĥrel = ∆ĤSR[n] + ∆ĤSOC . (2.78)

The scalar relativistic term is included by default in most modern DFT implementations.

The SOC term is given by:

∆ĤSOC =
∑
l 6=0

|l〉Vl(r)L̂ · Ŝ 〈l| , (2.79)

where L̂ is the orbital angular momentum operator and Ŝ is the spin operator. A rigorous

determination of the Vl(r) term involves treatment of the Dirac equations and will not

be discussed here. We simply note that the perturbing Hamiltonian can be obtained for

NCPPs [51] and rewritten in the basis of solutions to the Kohn-Sham equation [Eq. (2.20)]

with two insertions of the identity. The new Hamiltonian can be written and diagonalized
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at each k point in reciprocal space:

ĤKS(k) + ∆ĤSOC(k) (2.80)

= εk,i,σiδi,jδσi,σj +
∑
i,j

|ψi,σi(k)〉 〈ψi,σi(k)|∆ĤSOC|ψj,σj(k)〉 〈ψj,σj(k)| , (2.81)

where ĤKS(k) is the Hamiltonian without SOC and ψi,σi(k) are the wave function solu-

tions of ĤKS(k) indexed by the momentum (k), band (i), and spin (σi) quantum numbers.

The eigenvalues for the system with SOC are obtained by diagonalizing this new Hamil-

tonian.

In the non-SOC case, the two spin states ψi,↑ and ψi,↑ are degenerate, so they are

pure product states of the wave function ψi(k) and the spin:

|ψi(k)〉 ⊗ |↑〉 . (2.82)

With the inclusion of SOC, the perturbing Hamiltonian couples to the spin and σi is

no longer a valid quantum number. Hence, the spin-degenerate wave functions must be

replaced with a spinor wave function where the two spin components are independent:

|ψ↑i (k)〉 ⊗ |↑〉+ |ψ↓i (k)〉 ⊗ |↓〉 , (2.83)

where we have condensed the crystal momentum and band number into a combined index

i = (k, n).

Assuming we have N spin-degenerate bands in our non-SOC system, the transforma-

tion from the size-2N spin-degenerate basis of ĤKS (indexed by j and σj) to the size-2N
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spin basis of ĤKS + ∆ĤSOC is given by:

Ui,jσj =
(
|ψ↑i 〉 ⊗ |↑〉+ |ψ↓i 〉 ⊗ |↓〉

)
〈ψj| ⊗ 〈σj| . (2.84)

Without the degenerate spin, we will not be able to do the implicit spin summation

that converted Eq. (2.63) to Eq. (2.64). As such, the direct Auger rate for systems with

SOC is given by:

Rdirect =
2π

~
∑
1234

f1f2(1− f3)(1− f4)

∣∣Md
1234 −Mx

1234

∣∣2 δ(ε1 + ε2 − ε3 − ε4) . (2.85)

Here the Arabic-numeral is the index of the new spinor basis, and the matrix elements

(M) are transformed from the spin-degenerate basis by Ui,jσj . The direct and exchange

terms in the new basis are given by:

Md
1234 ≡

〈
12|Ŵ |34

〉
=〈ψ↑1ψ

↑
2|Ŵ |ψ

↑
3ψ
↑
4〉+ 〈ψ↑1ψ

↓
2|Ŵ |ψ

↑
3ψ
↓
4〉

〈ψ↓1ψ
↑
2|Ŵ |ψ

↓
3ψ
↑
4〉+ 〈ψ↓1ψ

↓
2|Ŵ |ψ

↓
3ψ
↓
4〉 and (2.86)

Mx
1234 ≡

〈
12|Ŵ |43

〉
=〈ψ↑1ψ

↑
2|Ŵ |ψ

↑
4ψ
↑
3〉+ 〈ψ↑1ψ

↓
2|Ŵ |ψ

↑
4ψ
↓
3〉

〈ψ↓1ψ
↑
2|Ŵ |ψ

↓
4ψ
↑
3〉+ 〈ψ↓1ψ

↓
2|Ŵ |ψ

↓
4ψ
↓
3〉 . (2.87)

The same basis transformation can be applied to the epME (g) in the expression for
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the phonon-assisted Auger rate to give:

Rindirect =
2π

~
∑

1234,νq

f1f2(1− f3)(1− f4)

(
nνq +

1

2
± 1

2

)
× |M̃1234;νq|2δ(ε1 + ε2 − ε3 − ε4 ∓ ~ωνq) , (2.88)

where the new generalized matrix element is given by:

|M̃|2 =
∣∣∣M̃1 + M̃2 + M̃3 + M̃4 − M̃5 − M̃6 − M̃7 − M̃8

∣∣∣2 . (2.89)

Each of the terms (M̃1 to M̃8) are defined similarly to Eq. (2.68)–(2.75) in the new

spinor basis. In practice, both the spinor wave functions and the transformation matrices

are stored during the calculation. The spinor wave functions are used directly in the

calculation of M̃d and M̃x, while the transformation matrices are used to transform the

epME obtained from the DFPT calculation on the non-SOC system.
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Chapter 3

Electronic structure of BAlN alloys

The band gap is one of the most important features of the electronic structure of a

material. As we will see later, the SRH and Auger recombination mechanisms both show

strong dependence on the value of the band gap. In this chapter we will present a case

study of how the band gap of a material can change based on the chemical composition.

In an alloy system, translational symmetry is broken so Eq. (2.29) is no longer satisfied

for G, the reciprocal lattice vectors of the unit cell. Alloys can be simulated in supercells

that explicitly include the chemical and positional disorder. While the wave function no

longer has the periodicity of the unit cell, some features of the bulk wave function still

remain in the alloy wave function. We will focus on the wave function characteristics

of the VBM and CBM states, and use the information to track the eigenvalues of the

band-edge states as the chemical composition changes.

The material system we will focus on is boron aluminum nitride (BAlN), an alloy

of boron nitride and aluminum nitride. Boron-containing nitride alloys such as BAlN

are being explored as novel members of the nitride family of materials for electronic and

optoelectronic applications. Using hybrid density functional calculations we determine

structural properties, band gaps and band-gap bowing of random wurtzite BAlN alloys.
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The fundamental band gap of BN is indirect while AlN is a direct-band-gap semiconduc-

tor. This leads to a crossover in the band gap from direct to indirect at 28% boron. We

find that the direct band gap experiences very large bowing, leading to a fundamental

gap that changes very little up to 17% boron incorporation.

3.1 Introduction

Ternary alloys based on wurtzite AlN, GaN and InN have enabled the development

of light-emitting diodes [52], laser diodes [53] and high-power electronics [54]. Large-

band-gap nitride alloys are required to push optoelectronic devices into the ultraviolet

(UV) spectrum, and large polarization discontinuities at the interface of III-nitride het-

erostructures would enable devices that host high-density two-dimensional electron gases

(2DEGs). Use of boron nitride as a member of the III-nitride family may help in achieving

these goals. Wurtzite BN is predicted to have the largest spontaneous polarization [55]

among the III-nitrides [56]. Alloying boron into AlN could expand the range of band

gaps and polarization charges that can be accessed by alloys of the III-nitrides, making

BAlN alloys a promising material for an array of technological applications.

The ground state of BN is hexagonal [57], but the wurtzite phase [see Fig. 3.1(a)] is

of high interest in light of experimental efforts to alloy boron at low concentrations into

wurtzite AlN using metal-organic vapor phase epitaxy (MOVPE) [58] or molecular-beam-

epitaxy (MBE) [59, 60]. While the large lattice mismatch between BN and AlN leads to

a large miscibility gap [61], BAlN alloys are still expected to be stable in the wurtzite

phase [58] for low boron concentrations. Given the potential technological impact of

BAlN alloys, it is essential to know their structural and electronic properties and how

they compare to those of the parent compounds, AlN and BN.

Since BN is not stable in the wurtzite phase, no experimental information is avail-

able to enable predictions of the properties of wurtzite BAlN alloys, highlighting the
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Figure 3.1: (a) The crystal structure and (b) Brillouin zone of wurtzite AlN and
BN. The cation sites (blue) can be occupied by either Al or B, while the anion sites
(green) are occupied by N. The solid black lines in (a) indicate the primitive cell and
the red lines in (b) indicate the standard high symmetry path.

importance of predictive first-principles calculations. The electronic structure of zinc-

blende [62, 63, 64] and wurtzite [65] BAlN alloys has been examined in a number of den-

sity functional calculations. These studies used the local density approximation (LDA),

which is known to significantly underestimate the band gaps of semiconductors. Kumar

et al. [64] attempted to correct for the band gap by using the modified Becke-Johnson

functional for their calculations of zinc-blende BAlN alloys. However, the band gaps of

the parent compounds were still severely underestimated, affecting a quantitative de-

scription of the alloy electronic structure. Zhang et al. [65] used a scissor shift to correct

the LDA band gaps in their calculations of wurtzite BAlN alloys. However, their pro-

cedure for identifying the character of conduction-band extrema is unclear. In addition,

some of their alloy band structures included low-dispersion bands that could be indicative

of localized states, which can lead to a spurious reduction in the calculated band gap.

Our present work overcomes these problems by using a hybrid functional to consistently

calculate structural as well as electronic properties of wurtzite BxAl1−xN alloys. Hybrid
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density functional theory (DFT) has previously been successfully applied to the parent

compounds, wurtzite AlN [66] and hexagonal BN [55].

Since AlN is a direct-band-gap semiconductor and BN is indirect, a crossover from

direct to indirect band gap will occur. If information about the wurtzite phase of BN

is available, one can attempt linear interpolation of the band gaps to identify the boron

concentration at which the direct-to-indirect crossover occurs. However, we will see that

the direct band gap of BAlN is strongly nonlinear as a function of boron content, i.e.,

it exhibits a large bowing, while the bowing of the indirect band gap is much weaker.

Explicit alloy calculations are therefore essential. We identify the direct and indirect

band gaps and predict the direct-to-indirect crossover to occur at 28% boron incorpo-

ration. While maintaining a direct gap up to high boron concentration is favorable for

optoelectronic applications, a key conclusion from our work is that the value of this gap

barely increases above the AlN value.

3.2 Methodology

3.2.1 First-Principles Calculations

Our DFT calculations use the hybrid functional of Heyd, Scuseria and Ernzerhof

(HSE) [24] as implemented in the VASP code [67, 68]. The mixing parameter α is

set to 0.33, which leads to an accurate description of the band gaps and structural

properties of the parent compounds, AlN and BN, in their respective ground-state phases.

Our calculations use projector augmented wave (PAW) potentials [31] and a plane-wave

cutoff energy of 420 eV. For the calculations of the primitive unit cells of the parent

compounds we use a 8 × 8 × 6 Γ-centered k point grid. To account for the Van der

Waals interactions in our calculations of hexagonal BN (h-BN) we use the semi-empirical
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Grimme-D3 method [69]. For the alloy supercell calculations, a 2×2×2 Monkhorst-Pack

grid is used.

The calculations of BxAl1−xN alloys are performed using a 3×3×2 wurtzite supercell

that contains 72 atoms. For each boron concentration, we generate ten BAlN alloy

structures with a random distribution of B atoms. The lattice mismatch between the

two parent compounds is large (19%). The lattice parameters are varied linearly as a

function of boron content in accordance with Vegard’s law. For example, the in-plane

lattice parameter, aBxAl(1−x)N of the BAlN alloy is:

aBxAl1−xN = xaBN + (1− x)aAlN (3.1)

where x is the boron content, aBN is the in-plane lattice parameter of wurtzite BN (wz-

BN) and aAlN is the in-plane lattice parameter of wz-AlN. The atomic positions within

the supercell were allowed to relax using HSE until all of the forces are below 20 meV/Å.

We verified the accuracy of Vegard’s law for a subset of alloy structures by allowing both

the lattice parameters and atomic positions to relax. In all cases, the variation in the

lattice parameters was close to linear, i.e., it followed Vegard’s law.

3.2.2 Determination of Alloy Band Edges

The conduction-band minima of wurtzite AlN and BN lie at different high-symmetry

points in the Brillouin zone (BZ) [Fig. 3.1(b)]; the CBM is at Γ in AlN and at K in

BN. At a critical boron concentration, a direct-to-indirect crossover will occur. The alloy

calculations are performed in supercells, which have a smaller Brillouin zone than the

parent compounds. Zone folding will occur, which complicates the identification of direct

and indirect band gaps in the alloy band structures. Calculations of direct-to-indirect

crossovers in alloy band gaps can be based on identifying band degeneracies [70, 64].
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However, examining the degeneracies is challenging for alloys of wz-AlN because some

conduction-band extrema at other high-symmetry points are similar in energy to the value

at K, and many supercell configurations will fold these points together. In addition, the

large size mismatch between Al and B leads to large lattice relaxations that lower the

symmetry and split degeneracies, making it even more challenging to identify conduction

band states that correspond to AlN or BN via band degeneracies. To overcome these

challenges, we utilize a different approach, which is in the spirit of unfolding the band

structure of an alloy supercell by projecting the wave functions onto the supercell of a

pure material [71, 72].

Our projection scheme is based on 3× 3× 2 BAlN alloy supercells and pristine AlN

and BN supercells strained to the same size. Since we are interested in BAlN alloys at

low B content, we project onto wave functions in an AlN supercell. The K point, which

occurs at the corner of the Brillouin zone (1/3,1/3,0) for the 4-atom primitive cell of AlN,

is folded to Γ in the 3× 3× 2 supercell, as illustrated in Fig. 3.2.

The band structure of the primitive cell of AlN is shown in Fig. 3.3(a). The conduction-

band states at Γ and K (Γc and Kc) as well as the valence-band state at Γ (Γv) are all

folded to Γ (ΓAlN) in the AlN supercell. The supercell states that correspond to states

of interest in the primitive cell can be identified by their eigenenergies, atomic orbital

contributions, and degeneracies. For the BAlN supercells, we project the states at Γ

(ΓSC) onto the states of the AlN supercell that we identify with Γv, Γc and Kc. Each

band in the alloy supercell gives us a projection weight defined as:

∣∣〈ΓAlN, n|ΓSC,m〉
∣∣ , (3.2)

where |ΓSC,m〉 is a state at Γ in the BAlN alloy supercell with band index m, and |ΓAlN, n〉
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b2
Figure 3.2: In-plane reciprocal lattice for the wurtzite structure. The Brillouin zone
corresponding to the primitive unit cell is indicated in blue, and the reciprocal lattice
vectors b1 and b2 are shown. The high-symmetry path is shown in red. The Brillouin
zone of the 3× 3× 2 supercell is shown in black. Note that the K point corresponding
to the primitive unit cell is folded onto the Γ point of the supercell.

is one of the states at Γ identified above for the (strained) pristine AlN supercell.

We compute these projection weights for each band index m in the BAlN alloy su-

percell. This allows us to identify the states at ΓSC in the BAlN supercell that have the

largest projection weight associated with the Γv, Γc and Kc states. Once the states of

interest have been identified, the direct band gap is taken to be the energy difference

between the eigenvalues of the states that have strongest projection weight onto Γc and

Γv, and the indirect band gap is given by the energy difference between the eigenvalues

of the BAlN states that have the strongest projection weight onto Kc and Γv.

To take different atomic arrangements in the alloy into account, ten randomly con-

structed atomic configurations are generated at each boron content. We do not use

Special Quasi-random Structures (SQS) [73] here. While the SQS approach is often pro-
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Figure 3.3: Band structures of wurtzite bulk (a) AlN and (b) BN calculated with the
HSE functional. The color of each band indicates the angular momentum character
of the states, according to the color bar below the plot. The VBM at Γ was used as
the zero-energy reference in each plot. The isosurfaces correspond to the Γv and Γc
wave functions are shown for each material.

ductively used to model alloy properties, the shape of the SQS supercell would preclude

performing the projections onto states of the parent compounds that allow identifying

the states corresponding to the CBM at Γ and K. Full atomic relaxation is allowed for

each of our ten random configurations. Average direct and indirect band gaps at a given

boron content are then obtained by averaging the band gaps calculated for these ten

atomic configurations of our alloy supercells. We feel that this approach to determin-

ing the band edges approximates the results that would be obtained from experimental

measurements that probe the electronic structure of the alloy.

By identifying the direct and indirect band gaps of BAlN as a function of boron

content we can evaluate the bowing parameters for each transition. For example, the
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bowing parameter bdir for the direct band gap of BAlN is defined as:

Edir
g (BxAl1−xN) = xEdir

g (BN)

+ (1− x)Edir
g (AlN)− bdirx(1− x) (3.3)

where Edir
g (BN) is the direct band gap of wz-BN and Edir

g (AlN) is the direct band gap of

AlN (both at Γ). A similar bowing parameter can be defined for the indirect band gap

using the constituent indirect band gaps (corresponding to the CBM at K) of wurtzite

AlN and BN.

3.3 Results and Discussions

3.3.1 Parent Compounds

We first examine the structural and electronic properties of AlN and BN. AlN is stable

in the wurtzite structure (Fig. 3.1). The ground state of BN is the hexagonal structure,

in which B and N atoms are arranged in an in-plane, sp2 bonded honeycomb lattice. The

BN layers are weakly bonded to each other by Van der Waals forces in an AB stacking

configuration. BN can also be stabilized in the wurtzite structure, which is of primary

interest for the present study.

The structural and electronic properties of AlN and BN in the wurtzite and hexagonal

phases are summarized in Table 3.1. Our choice of α = 0.33 for the HSE mixing parameter

yields lattice parameters for wz-AlN and h-BN that are generally within 1% of the

experimental parameters for each material, with only a slightly larger deviation (1.5%)

for the c lattice parameter of h-BN. We also obtain a direct band gap of 6.18 eV for

wz-AlN, which is within the range of experimentally measured gaps (6.12 eV − 6.19

eV) [74, 75]. For wz-BN, no experimental values are available, but α = 0.33 produces an
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Table 3.1: Lattice parameters a and c and band gaps Eg of bulk AlN and BN
in their wurtzite (wz) and hexagonal (h) phases. Values calculated with the HSE
functional are compared with results from experimental studies. The nature of the
transition (VBM → CBM) corresponding to the direct and indirect gaps Eg is shown
in parentheses. The calculated values for the transitions of interest for the wurtzite
materials are shown in the last two columns.

Material Method a [Å] c [Å] Eg [eV] Γv → Γc [eV] Γv → Kc [eV]

wz-AlN
HSE 3.08 4.93 6.18 (Γ→ Γ) 6.18 6.82

Exp. 3.11a 4.98a 6.12–6.19b - -

h-AlN
HSE 3.26 4.10 5.42 (Γ→ Γ) - -

Exp. - - - - -

wz-BN
HSE 2.52 4.17 6.84 (Γ→ K) 13.90 7.21

Exp. 2.55c 4.21–4.22c - - -

h-BN
HSE 2.49 6.56 5.98 (∼ H→∼ M) - -

Exp. 2.50–2.51d 6.66-6.68d 5.75–6.08e - -

a Ref. [77]
b Ref. [74, 75]
c Ref. [78, 79]
d Ref. [80, 81]
e Ref. [82, 76]

indirect band gap of 5.98 eV for h-BN, very close to the indirect band gap of 6.08 eV [76]

measured in bulk h-BN.

The HSE-calculated band structures of wurtzite AlN and BN are shown in Fig. 3.3.

The orbital contribution to the states in the band structure is illustrated by a distinct

color: yellow for s-states and purple for p-states. The fundamental band gap of AlN is

direct at Γ. The CBM of AlN at Γ is primarily composed of s states while the VBM at Γ

is primarily composed of p states. The wurtzite crystal field splits the VBM of AlN into

a doubly degenerate Γ6 and a singly degenerate Γ1 state. The topmost Γ1 valence-band

state in AlN (labeled Γv) has strong pz character, as evidenced by the isosurface shown
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in the inset of Fig. 3.3(a).

Wurtzite BN, unlike AlN, is an indirect band gap semiconductor with the VBM at Γ

and CBM at K. For the purposes of expressing the direct and indirect band gaps of BAlN

alloys with respect to those of the parent compounds (and extracting bowing parameters)

we need to focus on the band gaps of wz-AlN and wz-BN determined relative to the band

edges that have the same character. Since we are interested in BAlN alloys with low B

content, we focus on identifying valence- and conduction-band states in BN that have the

same character as in AlN. In wz-BN, the Γ1 valence-band state with pz character occurs

at 0.27 eV below the VBM; this state is labeled Γv in Fig. 3.3(b). For the conduction

band, the singly degenerate Γc conduction-band state in wz-AlN has its equivalent in a

state in wz-BN [also labeled Γc in Fig. 3.3(b)] that is composed primarily of s states at

13.90 eV above Γv.

3.3.2 Alloy Structure

In a BAlN alloy, each B and Al cation is tetrahedrally coordinated by four N atoms.

In our wz-AlN calculations the Al-N bond length is 1.90 Å for the axial bond along the

c-axis and 1.89 Å for the other bonds (which we refer to as planar bonds). In wz-BN

the axial bond length is 1.58 Å and the planar bond length 1.56 Å. We have analyzed

the distribution of nearest-neighbor Al-N and B-N bond lengths as a function of boron

concentration. For each concentration and configuration we average over the planar

and axial Al-N and B-N bond lengths. The results are illustrated in Fig. 3.4 for the

lowest and highest boron concentrations investigated in our study. While Fig. 3.4 shows

the bond length averaged over ten atomic configurations, the bond-length distribution

for each individual configuration closely resembles the average. The nearest-neighbor

bond lengths exhibit a bimodal distribution, peaked near the bond lengths of the parent
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compounds. For the lowest boron concentration that we investigate (x = 0.03) the

distribution in the B-N bond lengths is consistent with the bond lengths one would

expect from ternary alloys in the dilute limit [83]. As the boron content increases up

x = 0.17, the distributions of the Al-N and B-N bond lengths are both broadened, as

illustrated in Fig. 3.4.

Figure 3.4: Distribution of nearest neighbor cation-nitrogen bonds for boron concen-
trations of x=0.03 and x=0.17. The in-plane (d‖) and out-of-plane (d⊥) bond lengths
for AlN and BN are indicated on the top axis.
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3.3.3 Alloy Band Structure

We now use the projection scheme outlined in Sec. 3.2.2 to identify the direct and

indirect band gaps of BxAl1−xN alloys. We limit our calculations to a boron content of

x=0.17; for higher boron concentrations the band-edge states for the alloy exhibit larger

contributions from BN, and our scheme of identifying states based on projecting on AlN

states becomes less reliable. We checked for the presence of localized states within the

band gap by plotting the wave functions of states in the vicinity of the band edges. Our

alloy band structures calculated consistently within HSE do not show any evidence of

localized states.

Since AlN has a direct gap and BN an indirect gap, we expect to see a direct-to-

indirect crossover in the band gap of wurtzite BAlN alloys at a critical boron concentra-

tion. Linear interpolation between the gaps of the parent compounds would place this

critical boron concentration at x=0.08 (see Fig. 3.5). However, alloy band gaps exhibit

bowing, which can be particularly large if the lattice mismatch is large, and these non-

linearities will affect the crossover. One expects different bowing parameters [Eq. (3.3)]

for the direct and indirect band gaps of BAlN. A least-squares fit of the calculated BAlN

band gaps to a second order polynomial leads to a bowing parameter of 8.55 eV for

the direct band gap and a bowing parameter of 1.49 eV for the indirect gap. Using

these bowing parameters to describe the alloy band gaps leads to the direct-to-indirect

crossover occurring at 28% boron, illustrated by the vertical line in Fig. 3.5.

The description of the band gap with Eq. (3.3) using a single bowing parameter is only

an approximation, particularly in the case of large lattice mismatch and strong bowing.

A better description might be obtained by using a higher-order polynomial; alternatively,

a composition-dependent bowing parameter can be defined by determining a value for

b based on Eq. (3.3) at each composition x. It turns out that, over the range of boron
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Figure 3.5: Direct Γv → Γc and indirect Γv → Kc band gaps of wurtzite BxAl1−xN
alloys as a function of boron concentration x. Linear interpolations of the direct and
indirect band gaps are indicated by dashed lines. The spread of calculated values
at each concentration is illustrated by the vertical bars. The solid curves indicate
a quadratic fit to the calculated data [Eq. (3.3)]. The crossover between direct and
indirect band gap at 28% is indicated by the vertical dotted line. The inset zooms in
on the concentration range between 0 and 0.2.

concentrations considered in our study, the bowing parameter is not particularly sensitive

to the composition. For the direct gap, the bowing parameter bdir varies from 8.38 eV

at x=0.03 to 8.67 eV at x=0.17, small variations compared to the value of bdir = 8.55

eV obtained by a fit over the entire range. Similarly, for the indirect gap, the bowing

parameter varies from 1.65 eV at x=0.03 to 1.46 eV at x=0.17 (compared to 1.49 eV

obtained from the full-range fit). We conclude the direct and indirect band gaps of the

BAlN band gaps are well described by a single bowing parameter.

The spread (standard deviation) in the direct and indirect band gaps for each set
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of atomic configurations at a given boron content is illustrated in the inset of Fig. 3.5,

and tabulated in Table 3.2. For boron concentrations up to 17% this spread is quite

small. At the lowest simulated boron concentration (x =0.03) only one Al atom in the

supercell is replaced by B, which means that only a single atomic configuration needs

to be calculated. At the next boron concentration (x =0.06), the spread in band-gap

values is still very low. The band-gap value in the structure where the boron atoms are

furthest apart compared to the structure where the boron atoms are closest together (i.e.,

on nearest-neighbor cation sites) is 41 meV higher for the direct band gap and 62 meV

higher for the indirect band gap. At x=0.17 the spread in the direct band gap is 100

meV and the spread in the indirect band gap is 80 meV.

The success of our projection scheme is based on our ability to project states of the

alloy onto states of AlN and thus distinguish states that have Γc and Kc character. As

an example, for the KC state, the (normalized) magnitude of the projection [Eq. (3.2)]

goes from 0.98 at x=0.03 to 0.53 at x =0.17. This is of course accompanied by an

increased energy spread of the projections, but this distribution is quite peaked and for

concentrations up to x=0.17 this provides an unambiguous identification of the band

edges. For concentrations beyond x=0.17 the magnitude of the projections onto the AlN

states decreases since the conduction-band states attain more contributions from BN.

Hence, our ability to clearly distinguish between Γc and Kc states decreases. For this

reason, we limit our calculations to a concentration of 17% boron.

Table 3.2: Standard deviation of the computed direct and indirect band gaps in units
of meV.

x 0.03 0.06 0.08 0.11 0.14 0.17

direct 0 26 46 61 52 100

indirect 0 25 37 35 65 80
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3.3.4 Implications for Applications of BAlN Alloys

Finally, we comment on the implications of our results for applications of BAlN alloys.

Our calculations indicate it is possible to maintain a direct band gap of the BAlN alloy

up to x=0.28, a much larger concentration than would be estimated based on simple

linear interpolation.

However, it is doubtful that this actually offers any benefit in the case of optoelectronic

devices, where an important goal would be to increase the band gap above the AlN value.

We find that, due to large band-gap bowing, the band gap is actually slightly reduced at

low B concentrations (by 0.02 eV at x=0.05). After that it increases only by a nominal

amount before reaching the direct-to-indirect crossover at x=0.28, where an increase

of the direct gap by 0.45 eV is calculated. Since BAlN alloys probably exhibit poor

miscibility due to the large lattice mismatch between AlN and BN [61], it is doubtful

that at the B concentrations for which homogeneous alloys can be achieved any increase

in band gap will be observed.

Finally, we note that the band edges of BAlN alloys may be sensitive to the effects

of short-range order [84]. These effects could be explored in future work if experimental

evidence for short-range order emerges.

3.4 Conclusions

We have investigated the structural and electronic properties of wurtzite BAlN alloys

using first-principles calculations based on hybrid density functional theory and a pro-

jection scheme to identify band edges. We find a large bowing of the direct band gap

(bowing parameter bdir=8.55 eV) for the direct band gap and a weaker bowing (bind=1.49

eV) for the indirect band gap. Our results indicate that BAlN alloys will have a direct

band gap up to a boron concentration of x=0.28, a much larger concentration than would
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be estimated based on linear interpolation. However, the increase in the direct gap over

the AlN value is very modest.
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Chapter 4

SRH recombination at calcium

defects in InGaN

In Chapter 3, we looked at how the band gap of a material can change as a function

of the alloy concentration. This change in the band gap can have dramatic effects on the

Shockley-Read-Hall (SRH) and Auger recombination coefficients. In this chapter we will

look at how the changing band gap of an alloy (InGaN in this case) influences the SRH

coefficients calculated using the first-principle methodology outlined in Sec. 2.4.

Calcium (Ca) can be unintentionally incorporated during growth of semiconductor

devices. Using hybrid functional first-principles calculations we assess the role of Ca

impurities in GaN. Ca substituted on the cation site acts as a deep acceptor with a level

∼1 eV above the GaN valence-band maximum. We found that for Ca concentrations of

1017 cm−3, the SRH recombination A coefficient in InGaN exceeds 106 s−1 for band gaps

less than 2.5 eV. A coefficients of this magnitude can lead to significant reductions in the

efficiency of light-emitting diodes (LEDs).
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4.1 Introduction

The group-III nitrides are key materials for LEDs [85]. Although the internal quantum

efficiency (IQE) of III-nitride LEDs in the blue region of the spectrum exceeds 90%, the

efficiency in the green and yellow region of the spectrum is much lower [86]. Within the

ABC model the IQE is defined in Eq. (1.2), which we restate here:

IQE =
Bn2

An+Bn2 + Cn3
, (4.1)

where A is the SRH recombination coefficient, B is the radiative coefficient and C is

the Auger coefficient. Deep-level defects are common in III-nitride materials, and they

can facilitate nonradiative SRH recombination, which may affect the peak efficiency of

nitride LEDs.

The defects responsible for SRH could be native point defects. For instance, gal-

lium vacancies and their complexes have been suggested as nonradiative recombination

centers in nitride LEDs [87], and recent computational studies have identified a micro-

scopic mechanism by which such complexes act as SRH centers in InGaN [44]. However,

impurities should also be taken into consideration as potential sources of nonradiative

recombination. Building on the recent observation that the presence of calcium is cor-

related with efficiency loss [88], we have conducted a comprehensive investigation of the

microscopic mechanisms by which Ca impurities cause nonradiative recombination.

Alkaline earth impurities such as calcium have previously been observed to be un-

intentionally incorporated during growth of GaInNAs using MBE [89, 90, 91]. In these

studies, calcium was identified through secondary-ion-mass-spectroscopy (SIMS) with

concentrations ranging from 1015 to 1017 cm−3. Wafer polishing steps were identified as

the source of the unintentional Ca incorporation. It was suggested that Ca rides on the
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growth surface until growth conditions that support Ca incorporation occur. Calcium

contamination can potentially also occur through the In source. Indium is commercially

extracted as a byproduct of zinc [92], a process that involves leaching of zinc using sul-

phuric acid followed by a neutralization step using calcium carbonate. In recent work by

Young et al. [88] calcium was found with concentrations as high as 1018 cm−3 in InGaN

layers grown by ammonia MBE. The origin of Ca was determined to be contamination

on the GaN templates prior to MBE growth. Systematic studies showed that Ca exhibits

strong surface segregation in the MBE environment.

Here we report a first-principles study of the structural and electronic properties of Ca

in GaN, and identify a mechanism by which Ca leads to SRH recombination in InGaN.

4.2 Computational Approach

Our calculations are based on density functional theory (DFT) [17, 18] with the

hybrid functional of Heyd, Scuseria and Ernzerhof (HSE) [93], as implemented in the

VASP code [67, 68]. The fraction of screened Fock exchange α was set to 31% which

results in a GaN band gap of 3.48 eV, in agreement with the experimental value. A 400

eV energy cutoff was used and spin polarization was included. Ga d states were treated as

part of the core. Impurity calculations were performed in a 96-atom GaN supercell, with a

(2×2×2) Monkhorst-Pack t grid. For a generic impurity, the likelihood of incorporation is

determined by its formation energy given by Eq. (2.48); for the example of substitutional

Ca on the Ga site in GaN this is defined as:

Eform(CaqGa) = Etot(CaqGa)− Etot(GaN) + µGa − µCa + q(EF) + ∆q . (4.2)
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Eform(CaqGa) is the total energy of the 96-atom GaN supercell with Ca on the Ga site

in charge state q, Etot(GaN) is the total energy of the pristine GaN supercell, µGa and

µCa are the chemical potentials of Ga and Ca, which depend on the growth conditions.

We will show results for Ga-rich conditions (which are basically a “worst case” for incor-

poration of Ca on the Ga site) and with µCa chosen to correspond to equilibrium with

Ca3N2 (∆Hf=−3.95 eV in HSE). The Fermi level (EF) is referenced to the valence-band

maximum (VBM) of GaN, and ∆q is a finite-size correction obtained using the Freysoldt

scheme [94].

Calculations of nonradiative capture coefficients utilize our previously developed method-

ology to describe nonradiative capture of carriers by multiphonon emission [12] (see

Sec. 2.4.2). The electron-phonon matrix elements for electron and hole capture are ob-

tained using the projector-augmented wave all-electron wave functions [31].

4.3 Results and Discussions

4.3.1 Thermodynamics of Ca Defects in GaN

Three configurations of the Ca impurity in GaN were considered: Ca on the Ga

site (CaGa), Ca on the N site (CaN), and Ca in an interstitial configuration (Cai). The

formation energies for CaGa and Cai are shown in Fig. 4.1. Substitutional Ca on the N

site has a high formation energy, due to the large mismatch in the ionic radii between Ca

and N; CaN is thus unlikely to incorporate in appreciable concentrations. When calcium

is incorporated as an interstitial it is stable in the q=2+ charge state across the entire

GaN band gap and thus acts as a shallow double donor. Since having a thermodynamic

transition level within the gap is a prerequisite for nonradiative capture, Cai does not

contribute to SRH recombination.
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Figure 4.1: Formation energies vs. Fermi level for CaGa, CaN and Cai in various
charge states under Ga-rich conditions. The atomic geometry and impurity wave
function of neutral CaGa are illustrated in the inset.

Consistent with prior calculations [95] we find that substitutional Ca on the Ga site

acts as a deep acceptor, with a (0/−) acceptor level at 1.01 eV above the VBM. The

larger ionic radius of Ca compared to Ga leads to an outward relaxation of the nearest-

neighbor nitrogen atoms when Ca is substituted on the Ga-site. In the negative charge

state the four nearest neighbor nitrogen atoms are uniformly displaced outwards by 13%

of the Ga-N bond length. In the neutral charge states we find an asymmetric distortion

of the Ca-N bonds: one of the in-plane Ca-N bonds increases by 15% of the Ga-N bond

length, while the other three are increased by 12–13% of the Ga-N bond length.
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4.3.2 SRH Recombination at Ca Defects in GaN

We now focus on the role of CaGa as a recombination center. A configuration co-

ordinate diagram (CCD) illustrating electron and hole capture into the (0/−) level of

CaGa is shown in Figure 4.2. The transition energy ∆E (which is also called the “zero-

phonon line” in the context of optical transitions) is given by the position of the (0/−)

transition level (from Fig. 4.1) relative to the relevant band edge: the conduction-band

minimum (CBM) in the case of electron capture, leading to a transition energy ∆En, and

the valence-band maximum (VBM) in the case of hole capture, leading to a transition

energy ∆Ep.
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Figure 4.2: Configuration coordinate diagram illustrating electron and hole capture
processes. ∆E is the transition energy and Eb is the classical barrier for the nonra-
diative process; the superscripts indicate whether the quantity applies to electron (n)
or hole (p) capture. Solid circles denote calculated values, solid lines parabolic fits.
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A complete recombination cycle requires capture of an electron by the neutral im-

purity, followed by capture of a hole by the negatively charged impurity. The overall

recombination rate is thus governed by the slower of the two processes. Nonradiative

capture rates decrease roughly exponentially with the energy of the transition [36]. In

GaN, the (0/−) level of CaGa is much closer to the VBM, and therefore the nonradiative

capture coefficient for holes, Cp, is expected to be orders of magnitude larger than that

for electrons, Cn. Slow electron capture will thus limit the SRH recombination rate for

CaGa in GaN.

4.3.3 SRH Recombination in InGaN

The situation dramatically changes in InGaN, which constitutes the active layer in

visible LEDs. As the In content in InGaN increases the band gap decreases; we now

examine how the position of the CaGa (0/−) level shifts with respect to the band edges as

a function of In content. We continue to use the notation “CaGa” as a generic designation

for incorporation of Ca on a group-III site in the InGaN alloy. We follow the procedure

outlined in Ref. [96], where it was shown that the primary effect on the defect level

is due to the lattice expansion that occurs upon increasing the In content of the alloy.

We thus calculate the thermodynamic transition level for CaGa using lattice parameters

corresponding to InGaN alloys with In contents of 5%, 10% and 25%. To apply this

information to actual InGaN alloys, we align the VBM in the expanded cell with that of

unstrained GaN using the absolute valence-band deformation potential of GaN [97]. The

band edges in the InGaN alloy, again aligned with respect to unstrained GaN, are taken

from Ref. [98].

The results are shown in Fig. 4.3. We observe that the energy difference between the

(0/−) level and the CBM is indeed significantly reduced in InGaN alloys.
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Figure 4.3: Calculated position of the (0/−) transition level of CaGa within the band
gap of InGaN as a function of In content.

Using these results, we now determine the nonradiative electron and hole capture

coefficients for CaGa as a function of In content. The capture coefficients, Cn and Cp are

shown as a function of the band gap of the InGaN alloy in Fig. 4.4, assuming a typical

internal operating temperature of 390 K. Because the (0/−) transition level increases only

slightly with respect to the VBM of InGaN [Fig. 4.3] the hole capture coefficient, Cp,

does not change dramatically over the plotted range. For electron capture, the transition

energy decreases rapidly with indium content, resulting in a dramatic rise in Cn.

At a given impurity density N , the SRH recombination rate is characterized by the

coefficient A where

A = N
CnCp
Cn + Cp

. (4.3)
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Figure 4.4: Electron (Cn) and hole (Cp) capture coefficients for the (0/−) level of
CaGa in InGaN calculated at 390 K. The SRH coefficient A is calculated for a Ca
density of 1017 cm−3.

The A coefficient, calculated for a Ca impurity concentration N=1017 cm3, is also shown

in Fig. 4.4. The figure shows that at low In content (large band gap) the rate-limiting

step is electron capture, while at higher In content (low band gap), hole capture limits

the rate. This crossover is directly related to the position of the CaGa (0/–) level within

the band gap. As the In content increases, the energy difference between the CBM and

the (0/–) level decreases faster than the slight increase in the energy difference between

the VBM and the (0/-) level [Fig. 4.3].

We can now assess the impact of unintentional Ca incorporation on the IQE of an

LED, again assuming N=1017 cm3. To do so, we compare the rate of nonradiative

SRH recombination, An, with the rate of radiative band-to-band transitions, Bn2; or,
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alternatively, the magnitude of A with the magnitude of Bn. We assume an operating

carrier density of n= 1018 cm−3. The recombination coefficient in an InGaN quantum well

is given by B = 4×10−11 cm3s−1 [99], and hence Bn = 4×107 cm−3s−1. Figure 4.4 shows

that in the blue region of the spectrum the A coefficient is sufficiently low to not cause

loss of carriers. However, as the In content increases and the band gap decreases towards

the green region of the spectrum, the A coefficient increases significantly: for a band

gap of 2.3 eV the SRH coefficient is approximately 107 s−1; comparing this value with

Bn, we conclude that 20% of carriers would be lost due to SRH recombination. Control

of Ca during nitride growth is thus very important. The study by Young et al. [88]

showed that alternating high-temperature/low-temperature MBE layers can effectively

incorporate Ca in the low-temperature layers and thus reduce the Ca concentration in

the active layer to as low as 1014 cm−3.

4.4 Conclusions

In conclusion, we have used first-principles calculations to determine the thermody-

namic transition levels and nonradiative recombination properties due to Ca in GaN. We

find that CaGa behaves as a deep acceptor with a level ∼1 eV above the GaN VBM. For

a Ca impurity concentration of 1017 cm−3, we find SRH coefficients exceeding 106 s−1 for

InGaN band gaps below 2.5 eV. SRH coefficients of this magnitude can severely limit the

IQE of nitride LEDs [100].
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Chapter 5

Auger recombination in InAs

As we see in Fig. 4.4, the Shockley-Read-Hall (SRH) process shows a strong depen-

dence on the band gap of the material. The Auger recombination coefficient is also known

to decrease rapidly as the band gap increases, at least for materials with band gaps below

about 1 eV [47]. InAs, with a band gap of 0.35 eV, is observed to have one of the highest

Auger coefficients. Still, a detailed analysis of the exact source of the high Auger re-

combination has been lacking, for example on the role (if any) of phonon-assisted Auger

recombination in this material. In addition to improving the understanding of the Auger

process in InAs, computing the Auger recombination coefficient in this well-studied mate-

rial will serve as a benchmark for the extension of the first-principles Auger methodology

to account for spin-orbit coupling (SOC), outlined in Sec. 2.5. This type of validation

will lend confidence to our investigations of less well studied materials in Chapter 6.

We compute the direct and phonon-assisted Auger coefficients in indium arsenide

InAs and related alloys from first principles. The direct process involves only Coulomb

interaction, while the indirect process is mediated by phonons. We have adapted the

methodology to explicitly include spin-orbit coupling. We show how the spin-orbit split-

off states allow for efficient direct Auger recombination, greatly enhancing the excitation
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rate of Auger holes due to a near-resonance between the spin-orbit splitting and the band

gap of the material. We find that the direct hhe Auger recombination coefficient decays

exponentially with increasing band gap, while the eeh decays faster than exponentially.

Additionally, we modeled the phonon-assisted process in InAs and show that the direct

Auger process is dominant.

5.1 Introduction

Auger recombination is an important nonradiative carrier recombination mechanism

in semiconductors. It reduces the efficiency of light-emitting devices at high power and

has been shown to play a significant role in the efficiency-droop and green-gap problems

of nitride light-emitting diodes [101, 48, 99]. Auger processes also contribute to efficiency

loss in photovoltaics [102] and limit the direct current performance of bipolar transis-

tors [103]. Auger recombination is particularly critical in narrow-gap semiconductors

such as InAs-based heterostructures. These materials find applications in mid-wavelength

infrared (3–5µm) diode lasers [104] as well as in interband cascade lasers (ICLs) with

InAs/GaInSb quantum wells (QWs) [105]. The reduction in quantum efficiency due to

Auger recombination tends to govern the lasing threshold, especially at high carrier con-

centrations and high temperatures [106]. Understanding the microscopic details of the

Auger recombination mechanism in these materials will aid in identifying engineering

solutions to mitigate its impact.

In the Auger process (Fig. 5.1), the energy resulting from an electron-hole pair re-

combination is not emitted as a photon but transferred to a third carrier, either an Auger

electron (in the e–e–h process) or an Auger hole (h–h–e). In the direct e–e–h process

illustrated in Fig. 5.1(b), an initial electron-hole pair (states 1 and 3) recombines across

the band gap and transfers its energy to a third electron (state 2) that gets excited to
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a high-energy state in the conduction band (state 4). Such direct Auger recombination

is mediated purely by Coulomb interactions. However, additional second-order interac-

tions involving the emission or absorption of a phonon [Fig. 5.1(c)] can also contribute

significantly to the total Auger rate [48, 107].
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Figure 5.1: (a) Calculated band structure of InAs. The indicated region near the cen-
ter of the Brillouin zone is enlarged in panels (b) and (c) to illustrate Auger processes:
(b) shows the direct e–e–h process, (c) the phonon-assisted h–h–e process.

5.2 Computational Approach

First-principles calculations based on density functional theory (DFT) are well suited

for the predictive modeling of optoelectronic materials [108]. Auger carriers are excited

to states with energy approximately equal to the gap away from the band edges. DFT

calculations can reliably predict the energies and wave functions throughout the Brillouin

zone (BZ) and at higher energies. Based on such calculations, it was revealed that in
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wide-band-gap semiconductors such as GaN Auger recombination is dominated by the

indirect, phonon-assisted process [48, 11]. It is still an open question to what extent

phonon-assisted processes contribute to Auger recombination in smaller-gap materials.

Calculations of the Auger rate in narrow-gap materials require an accurate treatment

of spin-orbit (SO) interactions, which modify the band structure near the band extrema.

In InAs, the magnitude of the SO splitting (0.39 eV [109]) is comparable to the band

gap (0.35 at 300 K [110] and 0.43 eV at 0 K [109]) and enables additional direct Auger

recombination processes that would otherwise be forbidden by energy and momentum

conservation. In addition, the lack of inversion symmetry in InAs breaks the spin degen-

eracy of the bands. Hence, careful consideration of the SO interaction is needed.

We have performed a fully first-principles prediction of SO-coupling effects in direct

and phonon-assisted Auger recombination, which required significant modifications to

previously developed methodology [11]. When applied to InAs, the results show that

SO interactions significantly enhance direct Auger recombination. The resulting rate for

the direct Auger process in InAs is a factor of 50 larger than for the phonon-assisted

process. We also find that, as the band gap of the material increases, the direct Auger

process becomes comparatively less relevant. The Auger recombination coefficients decay

approximately exponentially as a function of band gap, and this strong dependence means

that the direct Auger process can be significantly reduced by alloying.

Our computational approach is based on time-dependent perturbation theory using

Fermi’s golden rule. The direct Auger recombination rate, Rdirect
Auger, is given by

Rdirect
Auger =

2π

~
∑
1234

f1f2(1− f3)(1− f4) |M1234|2

× δ(ε1 + ε2 − ε3 − ε4) ,

(5.1)

where the bold indices [1 ≡ (n1k1), etc.] are composite band (n1) and wave vector (k1)
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indices, εi are the band energies, and fi are the Fermi occupation numbers of the states.

In the presence of SO coupling, a generalization of the formalism in Ref. [11] is necessary.

The anti-symmetrized screened Coulomb (W ) matrix elements are written in terms of

the single-particle spinor states (such as |1〉 = |ψ↑1〉 ⊗ |↑〉+ |ψ↓1〉 ⊗ |↓〉):

M1234 ≡ 〈12|W |34〉 − 〈12|W |43〉 , (5.2)

where the first term is a direct term and the second an exchange term, accounting for

the anti-symmetry under fermion exchange. Details of the formalism for including SO

interactions are presented in Sec. 2.3.3.

A similar generalization can be made for the phonon-assisted Auger rate:

Rphonon
Auger =

2π

~
∑
1234

f1f2(1− f3)(1− f4)
∣∣∣M̃1234,νq

∣∣∣2
×(nνq +

1

2
± 1

2
)× δ(ε1 + ε2 − ε3 − ε4 ± ~ωνq) ,

(5.3)

where nνq are the Bose-Einstein phonon occupation numbers and ωνq are the vibrational

frequencies of the phonon mode ν and phonon wave vector q. The phonon-assisted matrix

elements (M̃1234,νq) contain eight terms [11], which must again be generalized to account

for SO effects (see Sec. 2.3.3).

Our first-principles calculations are based on DFT [17, 18]. The electronic structure

is computed with projector augmented wave (PAW) potentials as implemented in the

VASP [67, 68]. The Auger rate is highly sensitive to the eigenvalues near the band

extrema, requiring an accurate description of the band structure. We use the effective-

mass-fitted modified Becke-Johnson functional within the local density approximation

(mBJLDA), as described in Ref. [111]. The phonon spectra and electron-phonon coupling

matrix elements are obtained with density functional perturbation theory [49]. Since
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electron-phonon interactions are not implemented in VASP at this time, we have used

the Quantum espresso code [112]. Perturbations to the wave functions due to SO

interactions are implemented using the vector part of the ab initio pseudopotentials [51].

The reciprocal space is sampled with a 60 × 60 × 60 Γ-centered k-point mesh for

the electron and phonon states. The screened Coulomb interaction is evaluated using a

static model dielectric function [11] and the experimental dielectric constant of 12.3 for

InAs [113]. We account for the screening by free carriers with the Debye model. For

the evaluation of the phonon-assisted Auger rate we assume that the initial states of the

three carriers are all at Γ—the same approximation as employed in Refs. [107, 99] to

render the problem computationally tractable.

5.3 Results and Discussions

5.3.1 Auger Coefficients in pure InAs

We assume equal densities of free electrons and holes (n = p), which is typical in

optoelectronic devices with high carrier injection. The Auger coefficients can be defined

by CAuger = RAuger/n
3. The resulting direct and phonon-assisted coefficients are tabu-

lated in Table 5.1. At the experimental band gap of 0.35 eV we computed a direct Auger

coefficient (e–e–h + h–h–e) of 8.60 × 10−28 cm6s−1. The computed phonon-assisted co-

efficient, 1.7 × 10−29 cm6s−1, is more than an order of magnitude smaller. A survey of

experimental literature [114, 115, 116, 117, 118] reveals significant variations among the

reported Auger coefficients, ranging from 1 − 3 × 10−28 cm6s−1 in InAs based quantum

wells [119] to bulk values of 6.0× 10−27 in Ref. [116] and 6.5× 10−26 cm6s−1 in Ref. [114].

The model theory of Takeshima [120] predicted an Auger coefficient of 1.8×10−27 cm6s−1

(at T = 300 K and n = 1018 cm−3).
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Table 5.1: Computed Auger coefficients C (in units of 10−30cm6s−1) for InAs at
300 K with a carrier concentration of 1018 cm−3. The coefficients calculated without
SO interactions are shown in parentheses.

Direct Direct Phonon Phonon

(no SO) (no SO)

e–e–h 496 387 9 10

h–h–e 364 84 6 9

Total 860 471 15 19

While the experimental measurements of the Auger recombination rates are con-

ducted at room temperature, the effective temperature of the carriers can be much higher

than the lattice temperature. To evaluate the Auger coefficients at higher carrier temper-

atures, we performed a series of calculations for the direct Auger process between 150 K

and 450 K, and fit the results to an Arrhenius law [121] [C(T ) = C∞ exp(−EA/kBT )],

as shown in Fig. 5.2. The resulting activation energies are Ee-e-h
A = 0.021 eV and

Eh-h-e
A = 0.011 eV.

5.3.2 Auger Coefficients in InAs alloys

Our results can be extrapolated to InAs-based alloys, for instance with GaAs (band

gap 1.43 eV ) or InSb (band gap 0.17 eV), both of which have band structures similar to

InAs [111]. Explicit alloy calculations require large supercells and are computationally

prohibitive with the k-point densities needed for the Auger calculations. We therefore

approximate the alloy electronic structure by modifying the band gap of InAs while keep-

ing all of the Coulomb and electron-phonon matrix elements fixed—commonly referred

to as a scissors shift. In doing so we are neglecting additional scattering mechanisms due

to alloy disorder and focusing purely on the band-gap dependence. Figure 5.3 shows the
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Figure 5.2: Computed direct Auger coefficients at the experimental band gap
(Eg =0.35 eV) with a carrier concentration of 1018 cm−3, for temperatures between
150 K and 450 K, fitted to an Arrhenius relationship.

calculated coefficients as a function of alloy band gap.

Figure 5.3 shows that direct Auger is stronger than indirect Auger across the entire

range of band-gap values for both e–e–h and h–h–e. The decrease of the direct e–e–h

Auger coefficient as a function of increasing band gap can be attributed to the lack of

higher-energy states (roughly one band gap higher in energy than the conduction-band

minimum) near the center of the BZ. This renders energy and momentum conservation

difficult to satisfy when three of the states must come from the same highly dispersive

conduction band [states 1, 2 and 4 in Fig. 5.1(b)]. The decrease in the direct h–h–e

coefficient is less dramatic, as energy and momentum conservation is easier to satisfy

by scattering among the multiple valence bands. The overall decay then follows an

exponential trend, reflecting the tail of the Fermi-Dirac distributions. The same trends

can be observed in previous studies of GaN [11] and GaAs [107].
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Figure 5.3: Auger coefficient vs. scissors-shift-adjusted band gap for direct (solid
blue) and phonon-assisted (solid red) Auger recombination due to (a) e–e–h and (b)
h–h–e processes. The calculated coefficients without SO interactions for the direct
(dashed blue) and phonon-assisted (dashed red) process are included for comparison.
The gray vertical line indicates the experimental band gap of InAs. The calculations
are carried out at 300 K with a carrier concentration of 1018 cm−3.

5.3.3 Effects of Spin-Orbit Coupling

Inclusion of SO effects modifies the band structure near the valence-band maxi-

mum and significantly enhances the h–h–e direct Auger coefficient. This is most evi-

dent for band-gap values close to the SO-splitting energy of InAs (see Fig. 5.3), where

a near-resonance occurs. At the band gap of InAs, the h–h–e Auger coefficient is

3.64×10−28 cm6s−1 when SO interaction is included (see Table 5.1), more than a factor of

four greater than the coefficient computed without SO interactions (8.4× 10−29 cm6s−1).

The inclusion of SO interaction has a less dramatic effect on the e–e–h process (4.96 ×

10−28 cm6s−1 with SO interaction and 3.87×10−28 cm6s−1 without). The near-coincidence

of the band gap with the SO splitting makes InAs close to a worst case scenario in terms
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of impact of SO coupling on Auger recombination.

5.3.4 Effects of Phonons

In contrast to the direct process, in the indirect process a phonon supplies the ad-

ditional momentum (the phonons do not contribute much to energy conservation), in

principle allowing the Auger electron/hole to be scattered anywhere in the BZ. At the

carrier concentrations and temperatures considered here, the initial electron and hole

states represent a very small portion of the BZ—0.03% for electrons and 2% for holes.

Any small amount of momentum difference in the initial states can easily be compensated

by the additional phonon, which justifies our approximation that the initial states are all

at Γ. The small momentum differences will modify the matrix elements; however, any

corrections to the phonon-assisted rate would not change our conclusion that the direct

process dominates across the entire range of band gaps considered in Fig. 5.3.

Figure 5.4 shows contributions to the total Auger rate from phonons of different

absolute wave numbers. At the 0.35 eV band gap of InAs [Fig. 5.4(a)], the vast majority

of phonon-assisted Auger contributions comes from the center of the BZ, near Γ. In this

regime, the energy and momentum conservation for the phonon-assisted Auger processes

is very similar to the direct process, and the phonon-assisted Auger process behaves as a

higher-order correction to the direct Auger recombination, with the phonon-assisted rate

more than an order of magnitude smaller than the direct rate (Table 5.1).

In contrast, at larger band gaps [Fig. 5.4(b)], states from other regions of the BZ can

be involved via a phonon. These states account for a much greater portion of the total

phonon-assisted Auger rate, with barely any contributions coming from the zone center

(since there are no states in the vicinity of Γ that would allow energy conservation to be

satisfied with a low-wave-number phonon). For even higher band gaps, the majority of
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Figure 5.4: Normalized contributions to the phonon-assisted Auger rate plotted as a
function of phonon wave number q for (a) a band gap of 0.35 eV, and (b) a band gap
of 1.1 eV.

states involved in the recombination process are no longer near the zone center (where

the direct process occurs), and indirect Auger becomes stronger relative to the direct

process.

In wide-band-gap materials (e.g., GaN [11] with a band gap of 3.5 eV) the phonon-

assisted process becomes the dominant process. This is because the direct Auger co-

efficient falls off exponentially at large band gaps, while the phonon-assisted coefficient

decays much slower, roughly as an inverse power law above 0.5 eV. An extrapolation of

our calculations shows the cross-over between the direct and phonon-assisted rates oc-

curs at 1.8 eV. We acknowledge that this is well beyond the limit where our approximate
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treatment of alloys is expected to be accurate. However, we believe the trends to be

correct, and the observation that direct Auger recombination dominates in direct-gap

materials at lower band gaps while phonon-assisted Auger becomes dominant at higher

band gaps should be general [47].

Since the Auger coefficients generally decrease with increasing band gap, suppression

of Auger recombination can in principle be achieved with band-gap engineering. This

can be accomplished by alloying or straining the material, but is not always feasible

if specific band-gap values are required. However, the strong dependence of the Auger

coefficient on SO coupling opens an additional dimension in the design space, allowing

for suppression of Auger recombination by eliminating the resonance between the SO

splitting and the band gap [122].

5.4 Conclusions

In conclusion, we have developed methodology to include spin-orbit coupling in first-

principles simulations [11] of direct and indirect Auger recombination. Our calculations

for InAs show that inclusion of SO interactions enhances the h–h–e recombination co-

efficient by more than a factor of four. The direct Auger process is dominant in InAs,

accounting for more than 98% of the total Auger rate. The direct process decreases

exponentially with increasing band gap, making the phonon-assisted process relatively

more important in larger-gap materials.
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Chapter 6

Auger Recombination in Halide

Perovskites

While the method of scissors-shifting the band gap to approximate alloying is rela-

tively simple, it was able to capture the strong dependence of the Auger coefficient on

the band gap as we have shown in Chapter 5. We can put this into a broader context

by considering the Auger coefficients of different materials. The Auger recombination

coefficient of various semiconductors have been tabulated in Ref. [47] and plotted vs. the

band gap in Fig. 6.1. For the traditional semiconductors tabulated, the trend indicates

that indirect-band-gap materials have a low Auger coefficient, around 10−30 cm6s−1, and

direct-band-gap materials exhibits a exponential dependence of the Auger coefficient on

the band gap for band gaps below 1 eV. In this chapter, we will investigate Auger re-

combination in halide perovskites, a class of materials that has recently received a great

deal of attention. For the prototypical halide perovskite (methyl-ammonium lead iodide

(MAPbI3)), with the chemical formula CH3NH3PbI3, we find an Auger coefficient of

7.3× 10−29 cm6s−1 which is much larger than expected for a material with a 1.6 eV gap.

The emergence of halide perovskites for photovoltaic applications has triggered great
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Figure 6.1: Auger coefficient vs. band gap for various direct (yellow circle) and
indirect (green square) band gap materials. The lines are drawn to guide the eye.
The computed Auger coefficient of MAPbI3 is shown with a star.

interest in these materials for solid-state light-emission. Higher-order electron-hole re-

combination processes can critically affect the efficiency of such devices. In this chapter,

we compute the Auger recombination coefficient of MAPbI3 using first-principles calcu-

lations. We demonstrate that Auger recombination is responsible for the exceptionally

high third-order recombination coefficient observed in experiment. We attribute the

large Auger coefficient to a coincidental resonance between the band gap and interband

transitions to a complex of higher-lying conduction bands. Additionally, we find that

the distortions of PbI6 octahedra contribute significantly to the high Auger coefficient,

offering potential avenues for materials design.
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6.1 Introduction

Halide perovskites comprise a group of materials with the chemical formula ABX3, in

which the A-site cation is either a metallic element or an organic molecule, the B-site is

occupied by a metallic element and X is a halogen anion such as I−, Br−, and Cl−. Methyl-

ammonium lead iodine (MAPbI3, MA=CH3NH3) [123] is the archetypal member of this

family, where the A-site molecule (MA+) sits in a lattice of PbI6 octahedra (see Fig. 6.2).

These materials have attracted widespread attention as candidates for affordable and

efficient photovoltaics; within a few years reported power conversion efficiencies have risen

from 3% to over 20% [124, 125, 126], and a worldwide effort to improve the conversion

efficiency of these materials is still underway.

Given the high solar conversion efficiency, detailed balance in the Shockley-Queisser

formulation suggests that radiative recombination will be efficient [127]. Halide per-

ovskites should therefore also make good light emitters, and light-emitting diodes (LEDs)

have indeed been fabricated [128] and have been shown to cover the entire visible spec-

trum [129]. However, the operation of LEDs requires much higher carrier densities (typ-

ically around 1018 cm−3) [130] compared to photovoltaics, where the carrier density is

fundamentally limited by the availability of solar radiation. At these higher carrier den-

sities, nonradiative recombination mechanisms might play a much more important role

than in solar cells. The prospect of making efficient LEDs based on halide perovskites

thus hinges on the behavior of carrier recombination at higher carrier densities.

Higher-order recombination processes play an important role in determining the quan-

tum efficiency of an LED. Under typical LED operating conditions, the non-equilibrium

densities of electrons (n) and holes (p) can be assumed to be equal. The internal quantum
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Figure 6.2: 12-atom unit cell of MAPbI3 where the I atoms are at the ideal face-center
positions. The arrows indicate displacement of the I atoms upon relaxation within a
cubic cell shape. For clarity the length of the displacement vector is enhanced by a
factor of five.

efficiency (IQE) is then described by:

IQE =
k2n

2

k1n+ k2n2 + k3n3
, (6.1)

where k1, k2, and k3 represent the mono-, bi- and trimolecular recombination coefficients

respectively. For MAPbI3, peak IQEs of greater than 70% have been achieved [128, 131].

The IQE peaks around n = 1018 cm−3 and falls off rapidly as carrier density increases;

the fall-off is due to the trimolecular recombination dominating at higher carrier densi-

ties. Transient spectroscopy [132, 133, 134] and photoluminescence [135, 131] measure-
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ments have obtained trimolecular recombination coefficients ranging from 5.4×10−29 to

1.6×10−28 cm6s−1.

In this chapter we set out to determine from first principles whether Auger recom-

bination can explain the observed efficiency loss at high carrier densities. Auger is a

trimolecular process in which the energy released by electron-hole recombination pro-

motes a third charge carrier to an excited state. This process is nonradiative, as the

excess energy of the excited carrier is lost to phonons. If that third charge carrier is an

electron, the Auger process is called an electron-electron-hole (eeh) process; in case it is

a hole, it is called a hole-hole-electron (hhe) process.

In common semiconductor materials, the Auger coefficient C spans seven orders of

magnitude (from 10−30 to 10−23 cm6s−1), decreasing exponentially with the band gap [47].

The measured k3 coefficients in MAPbI3 are two orders of magnitude higher than the

Auger coefficients C in other materials with similar band gaps [47], prompting the ques-

tion whether Auger is actually the responsible mechanism. Our first-principles calcula-

tions allow us to examine whether the Auger process is really so much stronger than in

traditional semiconductors, and what the underlying mechanisms are.

We use first-principles methods (Sec. 6.2) to compute the Auger recombination coef-

ficient in MAPbI3, and investigate its relationship with key features in the band struc-

ture. We find that the unexpectedly high Auger coefficient in MAPbI3 originates from

unique features in its band structure induced by large spin-orbit coupling (SOC) [136]

(Sec. 6.3.1). We also find that k-space splitting of the band edges significantly enhances

Auger recombination, and that this splitting is correlated with structural distortions

(Sec. 6.3.2). It turns out distortions can be engineered by strain or by alloying, resulting

in a suppression of Auger recombination. In this spirit, we search for other perovskite

iodides that minimize the degree of internal distortion, thus identifying promising can-

didates for higher-efficiency light emitters. Finally, we discuss how the Auger effect of
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MAPbI3 compares with other common semiconductors (Sec. 6.3.3), and demonstrate that

the experimentally observed third-order recombination coefficient is indeed due to Auger

recombination.

6.2 Methodology

Fully ab initio calculations of Auger recombination rates have recently been developed

and applied to III-V semiconductors [11]. Our calculations of eigenvalues and wave

functions are based on density functional theory (DFT) [17, 18] and norm-conserving

pseudopotentials as implemented in the Quantum ESPRESSO package [112]. A plane-

wave energy cutoff of 100 Ry along with a 6 × 6 × 6 k-point grid were used in the

calculations of structure and charge density. We use the local density approximation

(LDA) for the exchange-correlation functional. To account for the LDA underestimation

of the band gap, the conduction-band energies are shifted relative to the valence bands

(commonly referred to as a scissors shift). The overall shape of the scissors-shifted band

structure agrees well with the quasiparticle band structure [137], at a fraction of the

computational cost.

The large SOC and lack of inversion symmetry lead to non-collinear spins. The

spin-orbit interactions are included via a perturbing Hamiltonian (∆HSOC) constructed

using the vector part of the ab initio pseudopotentials [51]. The corrections to the spin-

degenerate eigenvalues are obtained by diagonalizing ∆HSOC in the spin-degenerate basis

(see Sec. 2.5 for details). To ensure that the spinor wave functions can be represented as

a linear combination of the spin-degenerate wave functions we included 40 unoccupied

conduction bands in our band structure.

Each state in the band structure can be labeled by a general state index I ≡ [k,m],

where k is the crystal momentum in reciprocal space and m is the band index. A
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20× 20× 20 k-space grid was used for the calculations of the Auger rates. As discussed

in Sec. 2.5, the Auger rate is given by Fermi’s golden rule [11]:

RAuger =
2π

~
∑
1234

f1f2(1− f3)(1− f4) (6.2)

|M1234|2 δ(ε1 + ε2 − ε3 − ε4),

where I = 1,2,3,4 represent the four single-particle states involved in the Auger process,

fI are Fermi occupation factors, and the δ function enforces energy conservation. The

matrix element M1234 is the anti-symmetrized screened-Coulomb matrix element:

〈ψ1ψ2|W |ψ3ψ4〉 − 〈ψ1ψ2|W |ψ4ψ3〉, (6.3)

computed from the single-particle wave functions ψI. If we assume equal densities of

electrons and holes, we can define an Auger coefficient as C = RAuger/n
3. The matrix

elements are nonzero only if momentum is conserved (i.e., k1 + k2=k3 + k4).

In our calculations of the Auger coefficients for the eeh (Cn) and hhe (Cp) processes,

we treat the scissors-shifted band gap as an adjustable parameter to model the effect of

alloying MAPbI3 with other materials and to better understand the interplay between

the Auger coefficient and features in the band structure. Results for MAPbI3 itself are

obtained at the experimental band-gap value of 1.60 eV [138].

6.3 Results and Discussions

The low-temperature ground-state phase of MAPbI3 is orthorhombic (Pnma), where

the PbI6 octahedra are significantly tilted and deformed. At slightly above room temper-

ature (327 K), MAPbI3 undergoes a transition to the cubic phase (Pm3̄m) [139]. In our
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simulations we focus on this cubic phase with a 12-atom unit cell. While the overall cell

shape is cubic, atomic relaxation leads to significant deviations from the ideal perovskite

positions (see Fig. 6.2). Using the Pb atom as the reference point at the center of the cu-

bic unit cell, we find that the three iodine atoms are displaced 0.28, 0.39 and 0.43 Å from

their face-centered positions, and such internal distortions lead to an effective Rashba

splitting [140], which significantly modifies the band structure near the band edges and

breaks the spin degeneracy. This splitting can be observed in the band structure of the

relaxed unit cell shown in Fig. 6.3.

The states near the conduction-band minimum (CBM) have predominantly Pb-p

character, and the valence-band maximum (VBM) states predominantly I-p character.

When SOC is included, the six spin-degenerate bands near the CBM at R split into two

bands at the band edge and four bands at 1.29 and 1.46 eV above the CBM, and the

band gap changes from a direct gap at R to a slightly indirect transition between states

slightly off R. These key features of our band structure agree well with the quasiparticle

band structure of Brivio et al. [137]

We choose 1018 cm−3 as a typical carrier density for an LED. At this density, the

initial states are restricted to the portion of the Brillouin zone near the band extrema

around R. Since Auger recombination must conserve energy and momentum, the process

will be strong if final states are available with energies approximately one band gap away

from the band edges. Such states (labeled as 4 in Fig. 6.3) are clearly available in the

MAPbI3 band structure, for both the eeh and hhe processes.

At the experimental band gap of 1.60 eV, we obtain Auger coefficients of Cn =

2.7×10−29 cm6s−1 and Cp = 4.6×10−29 cm6s−1. These values are two orders of magnitude

larger than Auger coefficients in semiconductors with similar band gaps [47]. We now

explore the physical mechanisms responsible for this enhancement.

97



R
2

1

0

1

2

3

4

5
E

n
e
rg

y
 [
e
V

]

a)

M R M

b)

1 2

1 2

4

3

4

3

Figure 6.3: Band structure of MAPbI3 including SOC, with the gap adjusted to the
experimental value, plotted along the a) R → Γ and b) R → M directions. Auger
recombination events for the eeh a) and hhe b) processes are indicated.

6.3.1 Coincidental Resonance

For the hhe process, an array of valence bands is available that can serve as final states

for Auger recombination, explaining the high Cp value (4.6×10−29 cm6s−1). For the eeh

process, Fig. 6.4 b) shows our calculated Auger coefficient as a function of band gap.

This plot is obtained by computing Cn as a function of the scissors-adjusted gap, while

keeping the matrix elements in Eq. (6.2) fixed. This provides an approximation to the

Auger coefficients for materials that could be produced by alloying, but it also elucidates
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the mechanisms responsible for the high Auger rate. If Auger transitions are restricted

to the first two conduction bands (CB1 and CB2) [see Fig. 6.4 a)], the computed Auger

coefficient falls off rapidly as a function of band gap—a behavior similar to intraband eeh

processes in conventional direct-gap semiconductors [107]. If transitions to the higher-

lying four bands (CB3–CB6) are included the Auger coefficient is dramatically increased,

and shows a distinct maximum when the band gap is equal to the energy difference

between CB1-CB2 and the higher-lying conduction bands (CB3-CB6) [Fig. 6.4 b)]; this

happens to occur very close to the band gap of MAPbI3, where Cn is enhanced by three

orders of magnitude relative to the case where transitions to the higher-lying conduction

bands would not occur. We conclude that most of the high eeh Auger recombination

rate observed in MAPbI3 can be attributed to the coincidental resonance of the band

gap with interband transitions to a complex of higher-lying conduction bands.
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Figure 6.4: a) Schematic of Auger processes involving only the CB1-CB2 bands versus
processes with transitions to the CB3-CB6 bands. b) Computed Auger coefficients
as a function of scissors-adjusted band gap at a carrier density n = 1018 cm−3, for
processes restricted to CB1-CB2 versus processes with transitions to all conduction
bands bands. The dashed line represents the experimental band gap of 1.60 eV.
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6.3.2 Effects of Lattice Distortions on Auger

Spin-orbit coupling not only leads to the splitting of the conduction bands that re-

sults in the enhancement of the eeh Auger rate, but (in combination with a breaking of

inversion symmetry) it also causes a splitting of states near the band extrema [141]. We

will see this splitting also has a distinct effect on the Auger coefficients.

The CBM and VBM of MAPbI3 are each comprised of two spinor states. When the

PbI6 octahedra are undistorted (by fixing the Pb atom at the center of the unit cell, and

the iodine atoms at the ideal face-center positions), the bands at the CBM and VBM are

degenerate. When the atoms are allowed to relax, the bands split into two bands. Most

noticeably, the internal distortions lead to a linear-k splitting of the band edges, which

directly influences the distribution of states involved in the Auger process.

A schematic of how the CBM changes due to structural distortion is shown in Fig. 6.5.

In the case of undistorted (ideal) Pb and I positions, the VBM and CBM are both at the

high-symmetry R point. Structural relaxations lead to a linear-k splitting, which in turn

results in a ring of states around R. The band edge of the relaxed structure has a higher

dimensionality, and thus many more states available for the Auger process. Therefore, at

the same carrier density, each of the states at the band edge for the relaxed structure will

have a lower quasi-Fermi occupation factor than in the ideal structure. This is evident

in the fact that the quasi-Fermi level is lower for electrons (and higher for holes) in the

relaxed atomic configuration than in the ideal structure.

To examine the distributions of band-edge states that participate in Auger recom-

bination, we can compute the extent of the region in the Brillouin zone occupied by

electrons or holes. Table 6.1 shows results for % BZ corresponding to a volume in which

99% of the electrons(holes) reside, for the case of a carrier density of 1018 cm−3. The

table shows that in the ideal structure the charge carriers are much more concentrated

100



Figure 6.5: Schematic of the CBM energy dispersion of MAPbI3 near the R point
for a) the ideal and b) the relaxed structure. The band-edge states are shown in red.

near the R point, making it significantly harder to simultaneously satisfy energy and

momentum conservation.

Table 6.1: Quasi-Fermi level µF (referenced to the CBM/VBM) and extent of Bril-
louin-zone filling (% BZ) for electrons/holes, for ideal and relaxed atomic configura-
tions of MAPbI3. The sign of µF is positive in case of degenerate doping for electrons
(Fermi level above the CBM), and negative in case of degenerate doping for holes
(Fermi level below the VBM). The computed Auger coefficients (Cn/p) are also listed.
All values are obtained for a carrier density of 1018 cm−3.

Carrier Structure µF [eV] % BZ Cn/p [cm6s−1]

electrons
ideal 28.9 0.2 2.2× 10−30

relaxed −15.7 0.6 2.7× 10−29

holes
ideal −26.2 0.3 4.6× 10−30

relaxed 30.3 0.8 6.5× 10−29

The Auger coefficients versus band gap for the ideal and relaxed structures are shown

in Fig. 6.6. The Auger coefficient is clearly significantly lower for the ideal structure. The

Auger coefficients at the experimental band gap of 1.60 eV are listed in Table 6.1. The

concentration of charge carriers near the R point causes the eeh Auger coefficient for the
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ideal structure to be 92% lower than in the relaxed structure; the hhe Auger coefficient

experiences a similar drop, by 86%. These Auger coefficients for the ideal structure are

close to the value of ≈ 10−30 cm6s−1 that seems to be a lower limit for Auger coefficients,

as observed across a wide range of materials spanning a large range of band gaps [47].
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Figure 6.6: a) eeh and b) hhe Auger coefficients vs. scissors-shifted band gap for the
ideal and relaxed structures.

The connection between distortions and higher Auger coefficient is evident. Schemes

for controlling the octahedral distortion have been proposed, such as using anisotropic

strain [142] or alloying with other halide perovskites [143]. Atomic substitutions can of

course have other effects on the band structure; still, looking for materials with lower

internal distortions can be a useful criterion in the search for materials with lower Auger

coefficients.

The degree of distortion of the perovskite octahedra can be characterized by the
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variance of the angles subtended by the bonds at the Pb atom [144]:

σ2
θ(oct) =

1

11

12∑
i=1

(θi − 90◦)2 . (6.4)

We have computed the bond-angle variance σ2
θ(oct) for a number of inorganic and hybrid

iodide perovskites. The results, shown in Fig. 6.7, show a clear trend with the size of

the cations: smaller distortions occur for larger A-site cations as well as for smaller B-

site cations. A similar general trend is observed as a function of tolerance factor: the

tolerance factor increases for larger A-site cations as well as for smaller B-site cations,

and materials with larger tolerance factors tend to have smaller distortions [145]. We feel

that the bond-angle variance provides a more direct measure of the distortions.
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Figure 6.7: Bond-angle variance of several inorganic and hybrid halide perovskites.
The calculations were done using LDA assuming the cubic phase.
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6.3.3 Implications for Device Efficiency

We now discuss the impact of the Auger coefficient on the efficiency of LEDs. At

the experimental band gap of 1.60 eV, the combined Auger coefficient (eeh+hhe) from

our calculations is 7.3 × 10−29 cm6s−1 for the relaxed structure and 8.6 × 10−30 cm6s−1

for the ideal structure. In Fig. 6.8 we plot the IQE as a function of the carrier density

n [Eq.(6.1)] using our calculated Auger coefficient as k3. For the radiative recombina-

tion coefficient k2 we use a calculated value of 8.4 × 10−11 cm3s−1 [146], and for k1 the

value reported by Richter et al. [131] We compare our results with an IQE curve cal-

culated using experimentally determined recombination coefficients k1 = 5 × 106 s−1,

k2 = 8.1× 10−11 cm3s−1, and k3 = 1.1× 10−28 cm6s−1, obtained in Ref. [131] from fitting

transient absorption (TA) measurements. In Ref. [131] it was also demonstrated this

curve matched results from photoluminescence quantum yield measurements. The cal-

culated and experimental IQE agree very well with each other, thus confirming that the

third-order recombination observed in MAPbI3 is primarily due to Auger recombination.

Figure 6.8 indicates that Auger recombination causes the IQE of MAPbI3 to drop off

above a carrier density of 2.5× 1017 cm−3, and also reduces the peak IQE. However, as

discussed in Sec. 6.3.2 and Fig. 6.6, Auger recombination can be dramatically reduced

if lattice distortions are suppressed. This reduced Auger coefficient results in an IQE

with a peak that increases from 69% to 86%, with the carrier density at peak efficiency

shifting to 7.6× 1017 cm−3 (Fig. 6.8).

6.4 Conclusions

We have computed the Auger recombination coefficient of the prototypical halide

perovskite, MAPbI3. Our calculations result in a total Auger coefficient (eeh+hhe) of

7.3 × 10−29 cm6s−1, in good agreement with the third-order recombination coefficients
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Figure 6.8: Internal quantum efficiency calculated as a function of carrier density
[Eq. (6.1)] using k3 values corresponding to our calculated Auger coefficients for the
relaxed (solid curve) and ideal (dashed black curve) perovskite structures, and com-
pared to experimental values.

reported by experiments [135, 132, 133], confirming that Auger is the dominant loss

mechanism in MAPbI3 at high carrier concentrations.

The high Auger recombination coefficient for the eeh process is mainly due to the

coincidental resonance of the band gap with states that are roughly one band gap away

from the band edges. We also found that if the distortions in the metal-halide lattice are

removed, Auger recombination can be dramatically suppressed. To aid future attempts

at engineering this feature, we computed the octahedral distortions in a number of halide

perovskites. In order for halide perovskites to reach quantum efficiencies comparable to

those of traditional III-V semiconductor devices, materials will have to be identified that
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avoid the coincidental resonance that is present in MAPbI3, and that minimize distortions

of the metal-halide lattice.
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Chapter 7

Looking Forward

Throughout this thesis, we have demonstrated methodology for studying the nonradia-

tive recombination of carriers in different materials. We have shown that first-principles

calculations can be a powerful tool in understanding how basic properties such as atomic

distortions and band gap can influence the recombination processes in a given material.

The work presented here can be extended to address additional problems in materials

research and to gain better understandings of the underlying physics, and the method-

ologies can also be improved to allow for more efficient calculations.

7.1 Auger in IR detectors

Materials systems such as InSb, InAsSb, and InAs/GaSb quantum wells emitting

in the infrared regime are of great interest in photonics. One potential application is

in next-generation on-chip energy-efficient CO, CO2, and CH4 gas sensors. As we have

shown in Chapter 5, Auger recombination in these lower-band-gap materials is dominated

by the direct Auger process. Strategies to suppress the Auger recombination involve

various kinds of band-structure engineering, aimed at making energy and momentum
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conservation more difficult to satisfy. Our methodology allows testing many of these

strategies, such as (i) reducing the band-edge density of states, (ii) eliminating the final

states for the excited carriers. Such investigations can produce an assessment of the

effectiveness of specific approaches in a well-controlled environment.

7.2 Band-Gap Independence of Indirect Auger

A striking observation of the available Auger data in Fig. 6.1 is that in the higher-

band-gap materials, where phonon-assisted Auger is the dominant recombination mech-

anism, the Auger coefficient is essentially independent of band gap. Our calculations do

show evidence that the phonon-assisted Auger coefficient is less sensitive to the value

of the band gap at higher band gaps (Fig. 5.3). The physical origin of this band-gap-

independence of the recombination coefficient across many materials is still not clear,

and requires further investigation.

7.3 Improving the SRH Calculations

The SRH methodology relies on the single-phonon approximation (discussed in Sec .2.4.2).

In a separate study [37], we have shown that this approximation yields quantitatively

accurate results when compared to methods that consider all lattice degrees of free-

dom [38, 39]. As discussed in the original paper by Alkauskas et al. [12], the single-

phonon approximation is most reliable when the local displacement between the different

charge states of a defect is large relative to the natural vibrations of the crystal. At these

large displacements, the potential-energy curve we have used to calculate the vibrational

contributions to the electron-phonon matrix element in Eq. (2.51) could well have an-

harmonic contributions. Fortunately, in the nitride materials that we have investigated

108



thus far, there was little anharmonicity in the configuration coordinate diagrams for the

special phonon. However, there is evidence that the anharmonicity is an issue for defects

in methyl-ammonium lead iodide (MAPbI3) [147]. Considering that the defect tolerance

of MAPbI3 (i.e., the fact that MAPbI3 exhibits low carrier trapping despite the rela-

tively crude synthesis process) remains one of the mysteries of this material [148], this is

a promising direction for future projects.

7.4 Improving the Auger Calculations

A significant barrier to performing calculations of the Auger recombination coefficient

on a larger scale is the fact that a dense k-point mesh is needed to capture the distribution

of carriers at the band edges. In order to reduce the computational cost, some type of

interpolation scheme is needed. This can be accomplished by projecting onto either

maximally localized Wannier functions [149] or onto atomic orbital basis functions [150].

Both interpolation schemes are regularly used to evaluate the band structure and the

electron-phonon matrix elements on a fine grid, but have yet to be applied to the four-

body Coulomb scattering matrix elements needed in the Auger calculations. A promising

direction of future research will be to implement this type of interpolation scheme for the

Auger calculations. This could decrease the computational load by more than an order

of magnitude and allow studying many more materials in the future.

109



Bibliography

[1] B. K. Ridley, Quantum Processes in Semiconductors (Oxford Science Publications),
Oxford University Press, 2000.

[2] W. Pauli, Z. Angew. Phys. 1925, 31, 765.

[3] Out of the Crystal Maze, Oxford University Press, 1992.

[4] A. H. Wilson, Proc. R. Soc. Lond. A 1931, 133, 458.

[5] W. Shockley, W. T. Read, Phys. Rev. 1952, 87, 835.

[6] R. N. Hall, Phys. Rev. 1952, 87, 387.

[7] W. van Roosbroeck, W. Shockley, Phys. Rev. 1954, 94, 1558.

[8] A. R. Beattie, P. T. Landsberg, Proc. R. Soc. A Math. Phys. Eng. Sci. 1959, 249,
16.

[9] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.

[10] M. A. Reshchikov, J. D. McNamara, A. Behrends, M. S. Mohajerani, A. Bakin,
A. Waag, Phys. Status solidi C 2013, 10, 507.

[11] E. Kioupakis, D. Steiauf, P. Rinke, K. T. Delaney, C. G. Van de Walle, Phys. Rev.
B 2015, 92, 035207.

[12] A. Alkauskas, Q. Yan, C. G. Van de Walle, Phys. Rev. B 2014, 90, 075202.

[13] P. A. M. Dirac, Proceedings of the Royal Society of London A: Mathematical, Phys-
ical and Engineering Sciences, vol. 123, The Royal Society, 1929 pages 714–733.

[14] E. Fermi, Z. Angew. Phys. 1928, 48, 73.

[15] F. R. S. D. R. Hartree, W. Hartree, Proc. R. Soc. Lond. A 1935, 150, 9.

[16] V. Fock, Z. Angew. Phys. 1930, 61, 126.

110



[17] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.

[18] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.

[19] D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 1980, 45, 566.

[20] J. P. Perdew, R. G. Parr, M. Levy, J. L. Balduz Jr, Phys. Rev. Lett. 1982, 49, 1691.

[21] R. M. Dreizler, E. Engel, Density Functional Theory: An Advanced Course,
Springer, 2011.

[22] A. D. Becke, The Journal of chemical physics 1993, 98, 1372.

[23] J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.

[24] J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2006, 124, 219906.

[25] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[26] M. Marsman, J. Paier, A. Stroppa, G. Kresse, J. Phys. Condens. Matter 2008, 20,
064201.

[27] F. Bloch, Z. Angew. Phys. 1929, 52, 555.

[28] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
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