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SHORT REPORT

Meta-analysis of 49 549 individuals imputed with the
1000 Genomes Project reveals an exonic damaging
variant in ANGPTL4 determining fasting TG levels
Elisabeth M van Leeuwen,1 Aniko Sabo,2 Joshua C Bis,3 Jennifer E Huffman,4,5

Ani Manichaikul,6 Albert V Smith,7,8 Mary F Feitosa,9 Serkalem Demissie,10

Peter K Joshi,11 Qing Duan,12 Jonathan Marten,4 Jan B van Klinken,13 Ida Surakka,14

Ilja M Nolte,15 Weihua Zhang,16,17 Hamdi Mbarek,18 Ruifang Li-Gao,19

Stella Trompet,20,21 Niek Verweij,22 Evangelos Evangelou,16,23

Leo-Pekka Lyytikäinen,24,25 Bamidele O Tayo,26 Joris Deelen,27

Peter J van der Most,15 Sander W van der Laan,28 Dan E Arking,29

Alanna Morrison,30 Abbas Dehghan,1 Oscar H Franco,1 Albert Hofman,1

Fernando Rivadeneira,31 Eric J Sijbrands,31 Andre G Uitterlinden,1,31

Josyf C Mychaleckyj,6 Archie Campbell,32 Lynne J Hocking,33

Sandosh Padmanabhan,34 Jennifer A Brody,3 Kenneth M Rice,35 Charles C White,36

Tamara Harris,37 Aaron Isaacs,1 Harry Campbell,11 Leslie A Lange,12 Igor Rudan,38

Ivana Kolcic,39 Pau Navarro,4 Tatijana Zemunik,39 Veikko Salomaa,40 The LifeLines
Cohort Study Angad S Kooner,41 Jaspal S Kooner,17,41,42 Benjamin Lehne,16

William R Scott,16,17 Sian-Tsung Tan,41 Eco J de Geus,18 Yuri Milaneschi,43

Brenda W J H Penninx,43 Gonneke Willemsen,18 Renée de Mutsert,19 Ian Ford,44

Ron T Gansevoort,45 Marcelo P Segura-Lepe,16 Olli T Raitakari,46,47

Jorma S Viikari,48,49 Kjell Nikus,50,51 Terrence Forrester,52 Colin A McKenzie,52

Anton J M de Craen,21 Hester M de Ruijter,28 CHARGE Lipids Working Group
Gerard Pasterkamp,28,53 Harold Snieder,15 Albertine J Oldehinkel,54

P Eline Slagboom,27 Richard S Cooper,26 Mika Kähönen,55,56 Terho Lehtimäki,24,25

Paul Elliott,57 Pim van der Harst,22,58 J Wouter Jukema,20

Dennis O Mook-Kanamori,19,59,60 Dorret I Boomsma,18 John C Chambers,16,17,42

Morris Swertz,58,61 Samuli Ripatti,14,62,63 Ko Willems van Dijk,13,64 Veronique Vitart,4

Ozren Polasek,39 Caroline Hayward,4 James G Wilson,65 James F Wilson,4,11

Vilmundur Gudnason,7,8 Stephen S Rich,6 Bruce M Psaty,3,66,67,68 Ingrid B Borecki,9

Eric Boerwinkle,2,30 Jerome I Rotter,69,70,71 L Adrienne Cupples,5,9

Cornelia M van Duijn1

▸ Additional material is
published online only. To view
this file please visit the journal
online (http://dx.doi.org/10.
1136/jmedgenet-2015-
103439)

For numbered affiliations see
end of article.

Correspondence to
Professor Cornelia M van
Duijn, Genetic Epidemiology
Unit, Department of
Epidemiology, Erasmus Medical
Center, Postbus 2040,
Rotterdam 3000 CA,
The Netherlands;
c.vanduijn@erasmusmc.nl

Received 4 August 2015
Revised 19 November 2015
Accepted 23 November 2015
Published Online First
1 April 2016

To cite: van Leeuwen EM,
Sabo A, Bis JC, et al. J Med
Genet 2016;53:441–449.

ABSTRACT
Background So far, more than 170 loci have been
associated with circulating lipid levels through genome-
wide association studies (GWAS). These associations are
largely driven by common variants, their function is often
not known, and many are likely to be markers for the
causal variants. In this study we aimed to identify more
new rare and low-frequency functional variants
associated with circulating lipid levels.
Methods We used the 1000 Genomes Project as a
reference panel for the imputations of GWAS data from
∼60 000 individuals in the discovery stage and ∼90 000
samples in the replication stage.
Results Our study resulted in the identification of five
new associations with circulating lipid levels at four loci.

All four loci are within genes that can be linked
biologically to lipid metabolism. One of the variants,
rs116843064, is a damaging missense variant within
the ANGPTL4 gene.
Conclusions This study illustrates that GWAS with
high-scale imputation may still help us unravel the
biological mechanism behind circulating lipid levels.

INTRODUCTION
Genome-wide association studies (GWAS) for circu-
lating lipid levels (high-density lipoprotein choles-
terol (HDL-C), low-density lipoprotein cholesterol
(LDL-C), total cholesterol (TC) and triglycerides
(TG)) have identified over 170 loci.1–3 These
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studies have been based on imputations to the HapMap refer-
ence panel2 or primary versions of the 1000 Genomes Project
(1kG)1 or genotyping on the Illumina Exome Chip.3 None has
used imputations with the Phase 1 integrated release v3 of the
1kG which allows the imputation of rare and low-frequency
functional variants and structural variations with more preci-
sion. Evidence of rare and low-frequency functional variants
associated with circulating lipid levels comes from recent studies
in which exome sequencing of the NPC1L1 gene identified rare
variants associated with reduced LDL-C levels and reduced risk
of coronary heart disease.4 Moreover, exome sequencing of
LDLR and APOA5 identified rare variants associated with an
increased LDL-C and increased TG levels5 and exome sequen-
cing of APOC3 identified rare variants associated with reduced
TG levels and reduced risk of coronary heart disease.6

Our goal in this study was to identify rare and low-frequency
functional variants associated with circulating lipid levels in a
larger sample size compared with the exome sequencing of can-
didate gene approach. To this end, we imputed genotypes for
study samples participating in the cohorts of the Cohorts for
Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium using the Phase 1 integrated release V. 3
of the 1kG and conducted a meta-analysis of about approxi-
mately 60 000 individuals, followed by a replication in an inde-
pendent set of 90 000 individuals.

METHODS
Please see online supplementary methods for complete descrip-
tions of the methods. In summary, for the discovery stage of this
project, we used the data from 20 cohorts of the CHARGE con-
sortium (see online supplementary methods). All cohorts were
imputed with reference to the 1kG reference panel (version
Phase 1 integrated release V.3). The total number of individuals
in the discovery stage was 59 409 for HDL-C, 48 780 for
LDL-C, 60 024 for TC and 49 549 for TG. Online supplemen-
tary tables S1 and S2 contain the baseline characteristics per
cohort and more details about SNP genotyping and genotype
imputations. Within each cohort, each variant was tested for
association with each of the lipid traits, assuming an additive
genetic model. The association results of all cohorts for all var-
iants were combined using inverse variance weighting. We used
the following filters for the variants: 0.3<R2 (measurement for
the imputation quality) ≤1.0 and expected minor allele count
(expMAC=2×MAF (minor allele frequency)×R2×sample size)
>10 prior to meta-analysis. After meta-analysis of all available
variants, we excluded the variants that were not present in at
least four cohorts, to prevent false positive findings. In order to
select only variants that were independently associated with
each of the lipid traits, we used the genome-wide complex trait
analysis (GCTA)7 tool, V.1.13. To identify novel loci we selected
from the list of variants identified by GCTA, those variants
located more than 0.5 Mb away from previously identified
loci of the corresponding trait2 3 and which were significant
(p value<5×10−8) in the initial discovery stage. To prevent the
identification of false positive loci, we added a second replica-
tion stage within 23 independent cohorts. The experiment-wide
significance threshold required to keep type I error rate within
the replication stage at 5% is 2.63×10−3 (Bonferroni correction
based on 19 variants). We also meta-analysed the individuals of
the discovery and replication stage together and per ethnicity
using a fixed-effect approach. We also repeated this analysis
with genome-wide association meta analysis (GWAMA) (V.2.0.5)
using a random effect approach as the individuals in discovery
and replication stages come from multiple ethnicities.

RESULTS
The association of all variants with HDL-C, LDL-C, TC and
TG was tested in all discovery cohorts (see online supplemen-
tary figures S1 and S2). The association results of all discovery
cohorts for all variants were combined in a fixed-effect
meta-analysis using METAL (see online supplementary figures
S3 and S4). We significantly replicated 88.1% of the loci
described by Teslovich et al2 despite a sample size of about 80%
(see online supplementary figure S5 and supplementary table
S3). We also significantly replicated 43.4% of the loci described
by the Global Lipids Genetics Consortium (GLGC)3 despite a
sample size of about 30% (see online supplementary figure S6
and supplementary table S4).

A conditional and joint analysis using GCTA identified 185
independent variants for HDL-C, 174 for LDL-C, 214 for TC
and 119 for TG. Next, we excluded all variants that were not
genome-wide significant (p value<5×10−8) in the initial discov-
ery stage, which resulted in 56 variants for HDL-C, 50 for
LDL-C, 66 for TC and 37 for TG. And we excluded all variants
which are within 0.5 Mb of a loci previously published by
Teslovich et al2 or GLGC,3 which resulted in three variants for
HDL-C, three for LDL-C, seven for TC and six for TG. These
variants are located at 17 different loci and include one deletion
(figure 1 and table 1).

These 19 variants were selected for replication. The total
number of individuals in the replication stage was 84 598,
72 486, 83 739 and 73 519 for HDL-C, LDL-C, TC and TG,
respectively (see online supplementary tables S1 and S2 for
baseline characteristics and information about SNP genotyping
and imputation details). The sample size in the replication stage
was larger than the initial discovery sample for 17 out of the 19
variants. The frequencies of the variants were similar between
the discovery and replication cohorts. The directions of effect
were the same in the discovery and replication cohorts for 16
out of the 19 variants (see online supplementary figure S7).
We used a Bonferroni corrected threshold for significance
(p value<2.63×10−3). Five out of the 19 variants were
significantly replicated (table 1): rs6457374 (TC), rs186696265
(LDL-C and TC), rs77697917 (HDL-C) and rs116843064 (TG).
The frequency of these variants ranged between 0.012 and 0.249
within the discovery sample. Online supplementary table S5
shows the heterogeneity for the 19 variants after the meta-analysis
of all discovery cohorts and of all replication cohorts. We also
meta-analysed all variants in the individuals of the discovery
cohorts and replication cohorts combined (table 1 and see online
supplementary tables S5 and S6) and per ethnicity (see online
supplementary table S6) using a fixed-effect meta-analysis
approach. We found that the five significantly replicated variants
we identified in this study are only significant within the
European samples, thereby noticing that there are much more
European samples in this study, compared with the African and
Asian samples. When using a random-effect meta-analysis to
account for the multiple ethnicities in our sample (see online sup-
plementary table S7), we found that of the five replicated variants,
one attained genome-wide significance (p value<5×10−8) and
the other four nominal significance (p value<0.05).

DISCUSSION
We conducted a GWAS that included GWAS data imputed to
the 1kG to identify rare and low-frequency, potentially func-
tional, variants associated with circulating lipid levels. To this
end, we imputed genotypes in approximately 60 000 individuals
from 20 cohorts in the CHARGE consortium with the 1kG
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reference panel. The meta-analysis, followed by GCTA analysis
revealed 19 associations with MAF ranging from 0.01 to 0.48.
Of the 19 associations, we were able to replicate five in an inde-
pendent sample of approximately 90 000 individuals.

One of the five associations we identified is between TG and
rs116843064, an exonic variant in the ANGPTL4 gene on
chromosome 19 (figure 2C). This missense variant changes the
amino acid glutamic acid into lysine (Glu40Lys) and is predicted
to be damaging for the structure and function of the protein by
Polyphen2,8 MutationTaster9 and likelihood ratio test (LRT).10

ANGPTL4 is significantly associated with the Kyoto Encyclopedia
of Genes and Genomes (KEGG) term fatty acid metabolism, the
GO process lipid storage and the gene ontology (GO) cellular
component lipid particle (p value of 1.10×10−6, 1.31×10−10

and 2.87×10−18, respectively, genenetwork.nl). ANGPTL4 has
been associated with HDL-C before using the GWAS approach2

and with TG before using an exome sequencing approach11 and
more recently using the GWAS approach.1 We therefore do not
claim this finding as novel, though this is the smallest study in
which this variant was genome-wide significantly associated with
TG and replicated in an independent sample.

The second new finding we identified is the association
between TC and rs6457374, an intergenic variant located
on chromosome 6 between the genes HLA-C and HLA-B
(figure 2A). Both genes are associated with the KEGG term ATP
binding cassette (ABC) transporters (p value of 4.29×10−5 and
3.84×10−5 for HLA-C and HLA-B, respectively, genenetwork.
nl) which is in line with, among others, a previously published
association between TC and an exonic variant in the ABCA6
gene which is also an ABC transporter.12 ABC transporters
transport a wide variety of substrates across extracellular and
intracellular membranes, including lipids.13

The third finding of this study is the association between
HDL-C and rs77697917, an intergenic variant on chromosome

17 between the genes SOST and DUSP3 (figure 2B). DUSP3 is
associated with the regulation and function of
carbohydrate-responsive element-binding protein (ChREBP) in
the liver (p value=3.03×10−5, genenetwork.nl). ChREBP med-
iates the activation of several regulatory enzymes involved in
lipogenesis.14–18 This variant is in high linkage disequilibrium
(D0=0.936) in the 1 kG with rs72836561, an exonic variant in
the gene CD300LG (MAF=0.027, β=−2.437, seβ=0.381, p
value=1.51×10−10 in the discovery stage). This missense
variant changes the amino acid arginine into cysteine
(Arg82Cys) and is predicted to be damaging for the structure
and function of the protein by Polyphen2,8 MutationTaster9

and LRT.10 This amino acid polymorphism has been associated
with HDL-C in exome-wide association studies19 and TG in
GWAS1 before.

The fourth variant we identified is rs186696265, which is
located on chromosome 6 and associated with LDL-C and TC
(figure 2D, E). This intergenic variant is between the LPA
(Lipoprotein, Lp(A)) gene and the PLG (Plasminogen) gene.
The LPA gene has been associated before with LDL-C and TC
before.2 The reported lead SNP was rs1564348, which in the
newer human genome versions is annotated to the SLC22A1
(Solute Carrier Family 22 (Organic Cation Transporter),
Member 1) gene instead of the LPA gene. This explains why we
again identified a locus near the LPA gene, which has been iden-
tified by others as well.1

Fourteen out of the 19 variants were not replicated despite
similar sample sizes and similar frequencies within the replica-
tion stage as compared with the discovery stage. Of those 14
variants, 11 exhibited effect sizes in the same direction in both
stages. A possible explanation might be that the replication
sample size is much larger compared with that of the discovery
sample size. Two variants might have lacked significant replica-
tion due to small sample size, rs60839105 and rs151198427.

Figure 1 Manhattan plots for HDL-C (A), LDL-C (B), TC (C) and TG (D) after the meta-analysis of all discovery cohorts. Variants that were present
in at least four cohorts and that are not within 0.5 Mb of a previously published loci2 3 were included. The black line indicates the genome-wide
significant line (5×10−8), the black and red dots the variants identified by GCTA which are not genome-wide significant and which are
genome-wide significant, respectively. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol;
TG, triglycerides.
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Table 1 The results for the 19 variants after the meta-analysis of all discovery cohorts, all replication cohorts and all cohorts combined

Discovery cohorts Replication cohorts All cohorts combined

Trait Chr:Position rs identifier nearest gene A1/A2 Freq N β SEβ p Value Freq N β SEβ p Value Freq β SEβ p Value

HDL-C 3:72 067 255 rs75909755 PROL2-EIF4E3 T/C 0.03 62 607 1.593 0.275 7.27E-09 0.03 86 252 −0.019 0.031 5.45E-01 0.03 0.002 0.031 9.57E-01
TC 6:31 272 261 rs6457374 HLA-B T/C 0.75 46 839 2.339 0.339 5.32E-12 0.81 74 417 0.057 0.016 4.23E-04 0.81 0.062 0.016 1.18E-04
LDL-C 6:31 325 323 rs9266229 HLA-B C/G 0.53 37 981 −2.201 0.344 1.62E-10 0.41 61 582 −0.025 0.014 7.37E-02 0.41 −0.029 0.014 4.04E-02
TG 6:36 648 275 – CDKN1A CAG/C 0.45 53 425 −0.019 0.003 7.63E-09 0.49 59 018 −0.003 0.004 5.20E-01 0.46 −0.013 0.003 5.93E-07
TG 6:13 983 949 8 rs608736 – C/G 0.48 53 425 −0.019 0.003 5.67E-09 0.49 73 512 −0.008 0.003 2.67E-02 0.48 −0.013 0.002 9.10E-09
TG 6:16 085 176 6 rs376563 SLC22A3 T/C 0.46 47 036 −0.02 0.003 3.37E-09 0.46 73 512 −0.001 0.003 8.22E-01 0.46 −0.010 0.002 1.36E-05
LDL-C 6:16 111 170 0 rs186696265 LPA-PLG T/C 0.01 49 221 11.247 1.241 1.31E-19 0.01 59 497 0.263 0.076 5.42E-04 0.01 0.304 0.076 6.17E-05
TC 6:16 111 170 0 rs186696265 LPA-PLG T/C 0.01 59 859 10.004 1.162 7.20E-18 0.01 75 821 0.238 0.075 1.46E-03 0.01 0.278 0.075 1.93E-04
HDL-C 7:80 492 357 rs60839105 SEMA3C T/C 0.07 7882 3.355 0.571 4.26E-09 0.08 4971 1.067 1.228 3.85E-01 0.07 2.948 0.518 1.25E-08

TC 8:68 351 787 rs151198427 CPA6 A/G 0.11 17 361 6.552 1.147 1.12E-08 0.13 1419 −2.858 2.396 2.33E-01 0.11 4.797 1.035 3.56E-06
LDL-C 9:78 728 065 rs146369471 PCSK5 T/C 0.99 43 398 8.529 1.449 3.99E-09 0.99 51 367 0.068 0.103 5.11E-01 0.99 0.110 0.103 2.84E-01
TC 9:78 728 065 rs146369471 PCSK5 T/C 0.99 53 787 7.978 1.413 1.64E-08 0.99 70 241 0.015 0.103 8.84E-01 0.99 0.057 0.103 5.79E-01
TC 12:51 207 704 rs829112 ATF1 A/G 0.68 56 924 1.448 0.258 2.02E-08 0.73 87 659 0.009 0.012 4.63E-01 0.73 0.012 0.012 3.18E-01
TG 13:11 454 402 4 rs7140110 GAS6 T/C 0.71 48 221 −0.021 0.004 3.65E-08 0.72 60 437 −0.006 0.005 2.68E-01 0.72 −0.015 0.003 5.13E-07
TG 15:43 726 625 rs150844304 TP53BP1 A/C 0.97 52 720 −0.083 0.01 2.52E-17 0.95 63 884 −0.026 0.015 8.85E-02 0.96 −0.066 0.008 9.52E-16
TC 17:18 046 290 rs8065026 MYO15A T/C 0.79 56 924 −1.644 0.292 1.76E-08 0.81 76 913 −0.026 0.013 4.93E-02 0.81 −0.029 0.013 2.66E-02
HDL-C 17:41 840 849 rs77697917 SOST-DUSP3 T/C 0.02 45 052 −2.717 0.407 2.38E-11 0.03 67 843 −0.222 0.036 4.27E-10 0.03 −0.241 0.035 1.04E-11
TG 19:8 429 323 rs116843064 ANGPTL4 A/G 0.03 35 643 −0.101 0.016 6.46E-11 0.03 44 194 −0.065 0.019 4.53E-04 0.03 −0.087 0.012 3.83E-13
TC 20:17 844 684 rs2618566 BANF2-SNX5 T/G 0.65 63 300 −1.566 0.251 4.68E-10 0.60 88 946 −0.024 0.011 2.83E-02 0.60 −0.027 0.011 1.38E-02

The variants in bold are the significantly replicated variants.
A1 is allele 1 and A2 is allele 2, Freq is the frequency of A1, β is the effect of A1.
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides.
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Both variants only pass quality control in the cohorts in the
discovery stage that contain individuals of African ancestry
(see online supplementary figure S7). Although there are several
cohorts with individuals of African ancestry in the replication
stage, both variants did not pass quality control in most cohorts
which leads to the conclusion that these variants might be
population-specific. This is also suggested by the 1 kG data
(Phase 3) as the frequency of the C-allele is 92% in African
samples and 100% in the European samples for rs60839105
and the frequency of the G-allele is 86% in the African samples
and 100% in the European samples for rs151198427.
Imputations of cohorts with individuals of African ancestry
with the African Genome Variation Project20 might confirm

the association of rs60839105 with HDL-C and rs151198427
with TC.

To our knowledge, this is the first GWAS of circulating lipid
levels using the Phase 1 integrated release V.3 of the 1 kG, there-
fore we cannot compare the positive replication rate with other
studies. However, we did replicate 88.1% of the findings of
Teslovich et al2 and 43.4% of the findings of GLGC3 despite
our smaller sample. A high replication rate is expected based on
the high overlap of our samples with the samples of Teslovich
et al2 and with the samples of GLGC3 though it indicates that
when using the 1000 Genomes instead of the HapMap refer-
ence panel, we can achieve a high replication rate using a
smaller sample size. We also tried to replicate findings from

Figure 2 The regional association results of the initial meta-analysis of all discovery cohorts for (A) TC on chromosome 6, (B) HDL-C on
chromosome 17, (C) TG on chromosome 19, (D) LDL-C on chromosome 6 and (E) TC on chromosome 6. HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides.
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exome sequencing of candidate genes. The p.Arg406X mutation
in the NPC1L1 gene (rs145297799), which was reported to be
associated with reduced LDL-C levels and reduced risk of cor-
onary heart disease,4 is not available in the 1kG reference panel
and, therefore, we were not able to replicate this finding. Do
et al5 described the exome sequencing of the genes LDLR and
APOA5 and identified rare variants associated with an increased
risk of myocardial infarction, increased LDL-C and TG levels.
Of those rare variants, only two in the LDLR gene and seven in
the APOA5 gene exist in our discovery meta-analysis.
Both LDLR variants are associated with TG in our
discovery meta-analysis (rs34282181, β=−0.093, SEβ=0.023,
p value=4.827×10−5 and rs2075291, β=0.219, SEβ=0.046,
p value=2.092×10−6), but not significantly associated with
LDL-C (rs34282181, β=−3.939, SEβ=1.861, p value=0.034
and rs2075291, β=−2.316, SEβ=3.001, p value=0.440). None
of the seven APOA5 variants were significantly associated with
TG or LDL-C in our discovery meta-analysis (lowest p value is
for LDL-C with rs72658860, β=−18.430, SEβ=7.140, p
value=9.848×10−3). The third published finding we tried to
replicate, was the association between APOC3 and TG levels.6

Of the seven variants reported, only one existed in our discov-
ery meta-analysis (chromosome 11, position 116 701 354),
which is associated with TG (β=−0.343, SEβ=0.113, p
value=2.311×10−3). Those authors also reported an association
between an APOA5 variant (rs3135506) and TG as the most sig-
nificant finding. This variant was also significantly associated
with TG in our discovery meta-analysis (β=0.129, SEβ=0.007,
p value=1.099×10−87). These replication efforts demonstrate
that many of the published results of exome sequencing can be
replicated through the use of 1 kG imputations.

In conclusion, we identified and replicated five variants asso-
ciated with circulating lipid levels. These variants are in genes
that can be linked biologically to lipid metabolism. Although
there were a large number of variants that did not replicate at
the accepted genome-wide significance threshold, the low-cost,
hypothesis-free approach that we applied uncovered five var-
iants. This study, therefore, illustrates that GWAS may still help
us unravel the biological mechanisms behind circulating lipid
levels.
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