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Abstract

Asymmetric LPM morphogenesis: the heart and soul of organ laterality in zebrafish

Sally Horne

Many vertebrate organs display morphological asymmetry with respect to the

midline, yet little is known about the mechanisms used to translate the left-right (L-R)

positional information provided by asymmetrically expressed genes into organ laterality.

In this dissertation, I show that the zebrafish heart and soul (has) mutation causes

striking defects in the L-R morphogenesis of the heart and digestive organs. Importantly,

asymmetric gene expression appears to be unaffected in has mutants, indicating that has

disrupts the transfer of L-R positional information from the lateral plate mesoderm

(LPM) to the developing organs. Through positional cloning of the gene, I show that has

encodes atypical protein kinase CA, a gene known to be required for the establishment of

apico-basal polarity in epithelial cells. This finding led to the investigation of a number

of epithelial defects in has mutants and suggested that a defect in epithelial integrity

could be responsible for the defects in asymmetric organ morphogenesis. In fact, I go on

to show that a defect in the epithelial integrity of the LPM appears to be responsible for

the L-R morphogenetic defects observed in the digestive organs of has mutants.

By combining my initial work on has mutants with studies of other mutant and

wild-type embryos, I show that zebrafish employ at least two mechanisms to transfer L-R

positional information from the LPM to the endoderm during asymmetric organ

morphogenesis. Genes expressed asymmetrically within the LPM first act cell non

autonomously to provide a signal for the initial leftward budding of the liver and then act
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autonomously within the LPM to drive asymmetric morphogenesis within this tissue. I

further show that the LPM undergoes a dynamic asymmetric migration that appears to

provide the motive force to displace the endoderm to the left during gut looping and to

reinforce the leftward position of the liver. These data provide new insights into the

cellular mechanisms that drive asymmetric morphogenesis downstream of L-R gene

expression.
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Introduction

When viewed externally, the left and right sides of the vertebrate body plan

appear to be symmetric. However, vertebrate internal organs often display

morphological asymmetries with respect to the left-right (L-R) axis. The development of

the L-R axis has been described as a three-step process: (1) initial break in symmetry; (2)

establishment of asymmetric gene expression; and (3) transfer of positional information

to developing organs [1]. The majority of what we understand about L-R asymmetry

falls under the first two steps. The initial break in symmetry appears to involve the

rotation of localized monocilia, which leads to asymmetric gene expression in the lateral

plate mesoderm (LPM) [2, 3]. Little is known, however, about the mechanisms that

underlie the transfer of positional information from the LPM to the developing organs.

Genetics should provide the tools necessary to investigate the molecular and

cellular mechanisms that drive L-R organ morphogenesis. To date, however, no

mutations have been described that specifically disrupt this third step in the development

of the L-R axis. Many mutations have been described that disrupt either the first or

second step [1,4]. These types of mutations also affect all subsequent steps in the

cascade. For instance, the mouse iv mutation disrupts a dynein gene [5] required for

proper function of the node monocilia [6]. Consequently, iv mutants also display defects

in asymmetric gene expression and organ laterality [7, 8]. However, a mutation that



specifically disrupts the transfer of L-R positional information to the developing organs

should show defects in asymmetric organ morphogenesis in the presence of normal L-R

gene expression.

The zebrafish heart and soul (has) mutation causes striking defects in the L-R

morphogenesis of the heart and digestive organs, yet asymmetric gene expression appears

to be normal. This mutation has formed the foundation of my thesis work and has

provided invaluable information on the mechanisms used to translate L-R positional

information into organ asymmetry. In this chapter, I will first review the types of

asymmetric morphogenesis that occur in the zebrafish heart and digestive organs up to 48

hours post fertilization (hpf). I will next review our current knowledge of asymmetric

gene expression in zebrafish and relate the observed patterns, where possible, to L-R

morphogenetic events.

Heart morphogenesis

Morphological changes in the developing heart tube provide the first obvious

instance of L-R asymmetry in the vertebrate embryo. In all vertebrates, the heart tube

undergoes dextral looping, a morphogenetic process in which the linear tube bends into

an S-like structure with the ventricle to the right of the atrium. In some vertebrates there

is also an earlier asymmetry, in which the atrial end of the linear heart tube is positioned

to the left of the midline prior to looping. This phenomenon has been described in mice

[9], but has been predominantly studied in zebrafish, where it has been termed cardiac

jogging [10]. In this section I will detail our current understanding of the early stages of

L-R morphogenesis in the zebrafish heart.



The first major event in cardiac morphogenesis occurs during mid-somitogenesis

stages when the cardiac precursors migrate toward the midline. The cardiac precursors

arise as bilateral cell populations in the anterior LPM (Figure 1.1a). As components of

the LPM, the pre-cardiac cells undergo differentiation and migrate as part of the LPM

epithelia. The cardiac precursors give rise to two major cell populations: the

myocardium, which makes up the outer muscular layer of the heart tube and the

endocardium, which forms the endothelial lining of the tube. The myocardial precursors

migrate with the rest of the anterior LPM toward the midline, while the endocardial

precursors appear to exit the LPM and undergo their medial migration independent of the

LPM epithelium (Le Trinh personal communication). During the medial migration of the

anterior LPM, the myocardial precursors further differentiate into ventricular precursors,

which lie at the medial edges of the heart field and atrial precursors, which are situated

laterally [11].

When the myocardial precursors meet at the midline, between 18 and 20 somites,

they begin to form the heart tube. The sheets of myocardial cells fuse at their anterior

and posterior ends, but leave a central lumen, such that the myocardium looks like a ring

when viewed dorsally. However, this ring is actually a three-dimensional structure

known as the cardiac cone [12] (Figure 1.1b). The apex of the cone points dorsally and

corresponds to the ventricular end of the heart tube, while the wide base of the cone rests

ventrally upon the yolk. In order for the heart tube to elongate, the cone tilts by

approximately 90°, shifting its lumenal axis from a dorsal-ventral orientation to an

anterior-posterior orientation [11] (Figure 1.1c). Tilting occurs around 22 somites and it

is at this point that L-R symmetry is first broken in the zebrafish heart. The cone tilts



such that the apex points toward the right posterior, causing the heart tube to elongate

toward the left anterior. It is the diagonal position of the heart tube with respect to the

midline that inspired the term cardiac jogging [10, 11, 13] (Figure 1.1d).

The next occurrence of asymmetric morphogenesis in the heart is dextral looping.

During heart tube elongation, the ventricular end of the tube stays near the midline, while

the atrial end elongates toward the left. Once the tube is formed, the atrial end gradually

migrates back toward the midline, such that the organ once again becomes symmetrical

with respect to the L-R axis. Looping occurs between 30 and 48 hpf when the midline

heart tube bends to place the ventricle to the right of the atrium.

Digestive organ morphogenesis

Some of the most dramatic examples of asymmetric organ morphogenesis in

response to left-right (L-R) positional cues occur in the digestive system, where the liver

and pancreas occupy asymmetric positions with respect to the midline, and the intestine

bends and folds in a complex pattern for proper packing into the abdominal cavity [14].

However, the relatively late stage at which the digestive organs form and their depth

within the embryo have made L-R morphogenesis of these endodermal organs highly

understudied when compared to the heart. Zebrafish provide an ideal system for the

study of endodermal organ laterality. In zebrafish the asymmetric positioning of the

intestine, liver and pancreas occur between 24 and 30 hpf [15, 16], even earlier than heart

looping. Furthermore, the recent development of a transgenic line expressing GFP

throughout the endodermal organs, the gut GFP line, has greatly enhanced the visibility

of digestive organs in both live and fixed embryos [15].



One of the most interesting aspects of endodermal organ morphogenesis in

vertebrates is that all of the digestive organs arise from a common intestinal primordium.

In most vertebrates the intestinal primordium takes the form of an epithelial tube of

endodermal cells and organs such as the liver and pancreas bud as evaginations of the

endodermal epithelium. In zebrafish, the intestinal primordium is a solid rod of

endodermal cells and accessory organs bud as solid protrusions from this rod [15, 16].

Intestinal lumen formation in zebrafish occurs subsequent to most of the budding events

through a process of cavitation [17].

At 48 hpf, approximately one day after the intestinal rod assembles at the ventral

midline, the endodermal organs display striking asymmetry with the liver on the left, a

portion of the intestine looped to the left, and the pancreas on the right (Figure 1.2c).

How does this pattern emerge? In the case of the intestine and liver, asymmetric

morphogenesis occurs in close spatial and temporal proximity. Within the midline

endodermal rod, the region that will loop lies between the caudal border of the

pharyngeal endoderm and the pancreatic islet (Figure 1.2a). Concurrent with gut looping,

the anterior two-thirds of the looping region becomes thickened as the liver buds from the

ventral side of the looping endoderm toward the left side of the embryo (Figure 1.2b)

[15]. Subsequent morphogenesis of the surrounding LPM eventually separates the liver

from the intestinal endoderm, leaving a small connection at the hepatic duct (Figure 1.2c)

[15]. The pancreas arises from two buds, one from the anterior edge and one from the

posterior edge of the looping region. The posterior bud, which corresponds to the

pancreatic islet, moves from the dorsal aspect of the developing intestine to its right side

immediately following looping (Figure 1.2b). When the anterior bud emerges four hours



later, the posterior bud loses its attachment to the future intestine and the two buds fuse

on the right side of the looped gut. The single pancreas maintains its attachment to the

gut at the origin of the anterior bud (Figure 1.2c) [16].

L-R positional information in zebrafish

L-R positional information is supplied to individual organs by genes whose

expression is restricted to one side of the midline. In zebrafish asymmetric gene

expression has been observed in the LPM and the brain. However, it is the LPM

expression that is believed to regulate L-R morphogenesis in the heart and digestive

organs; as such we will focus exclusively on asymmetric expression in this tissue. In

mouse and chick, asymmetric gene expression has been described for both the left and

right LPM. To date, however, all genes that show asymmetric expression in zebrafish are

located on the left.

Nodal is a TGF■ signaling molecules that is believed to sit at the top of the L-R

gene expression hierarchy in all vertebrates. cyclops (cyc) was the first nodal-related

gene described in zebrafish that showed asymmetric LPM expression [18, 19]. The role

of cyc within the LPM appears to be minor, however, as cyc point mutants have no clear

defects in visceral organ laterality [10]. Recently a second nodal-related gene, southpaw

(spaw), has emerged as the predominant nodal family member affecting L-R asymmetry

in the zebrafish LPM [20]. Asymmetric spaw expression begins in the left LPM between

the 10 and 12 somite stage, making it the earliest molecular marker of L-R asymmetry in

zebrafish. Importantly, reducing spaw function using morpholino-knockdown eliminates

all L-R gene expression from the LPM (including spaw itself) and disrupts the

asymmetric morphogenesis of the heart and digestive organs ([20], Chapter 5).



During most of the period when spaw shows left-sided LPM expression, its

transcripts are found throughout the A-P extent of this tissue. However, other genes that

show asymmetric expression downstream of spaw show A-Prestriction within the LPM

to regions of L-R organ morphogenesis. spaw induces the asymmetric expression of its

downstream antagonist, lefty2, only in the heart forming region [21]. In the case of pitx2,

a downstream effector of Nodal signaling, spaw induces two domains of asymmetric

expression: one in the heart forming region [22] and one in the gut looping region [22,

23].

Several genes show asymmetric expression in the heart cone just prior to cardiac

tilting/jogging. Like lefty2 and pitx2 (mentioned above), bmp4 [10] and nkx2.5 [25] also

show asymmetric expression in the cardiac cone, although their relationship to the Nodal

pathway is less clear. The asymmetric localization of these genes within the myocardium

just prior to the onset of L-R morphogenesis is highly suggestive of a direct role for these

genes in regulating tilting/jogging. However, it is unclear whether this localized

expression also regulates cardiac looping. Most asymmetric gene expression disappears

from the heart concurrent with the tilting of the cone and several mutants have been

identified that genetically uncouple the direction of jogging from the direction of looping

[13]. These data suggest that there must be a second source of positional information

regulating looping morphogenesis that acts either independently of or in addition to

asymmetric gene expression in the myocardium.

The pattern of asymmetric gene expression in the gut looping region appears to be

much simpler. To date, pitx2 is the only gene that shows A-P restriction to the left LPM

adjacent to the looping endoderm. This domain of pitx2 expression is present during the



time when the intestinal primordium is still in the midline [22, 23], however, it may

persist as late as 30 hpf, through the early stages of L-R morphogenesis in the endoderm

(Brent Bisgrove, personal communication). In the heart, it is likely that asymmetrically

expressed genes act autonomously within the myocardium to regulate L-R

morphogenesis. However, the mechanism used to transmit positional information from

the LPM to the endoderm is unclear.

Overview

This dissertation addresses several aspects of asymmetric organ morphogenesis in

zebrafish. Chapter 2 shows that the heart and soul (has) mutation causes novel defects in

the L-R morphogenesis of the heart and digestive organs. To further investigate the role

of has in organ laterality, Chapter 3 details the positional cloning of the has gene and

shows that it encodes atypical protein kinase C A (apkCA). aPKCs had previously been

shown to be required for the establishment of apico-basal polarity in epithelial cells.

Consistent with this role for aPKCs, Chapter 4 demonstrates that has mutants display

defects in the formation and maintenance of a number of embryonic epithelia. This

finding raised the intriguing possibility that a defect in epithelial integrity was responsible

for the L-R morphogenetic defects in has mutants. Chapter 5 shows that, for the gut

looping defect in has mutants, the defective epithelium appears to be the LPM. This

observation and others led to a model for gut looping in which a dynamic asymmetric

migration of the LPM provides the motive force to displace the gut endoderm to the left.

Chapter 6 then expands on the role of the LPM in endodermal organ asymmetry by

showing that leftward liver budding occurs in two steps: one that appears to depend on

signal from the LPM and one that depends on the asymmetric morphogenesis of the



Figure 1.1 Early heart tube morphogenesis in zebrafish

(a) The cardiac precursors arise as bilateral populations in the LPM. (b) The bilateral

fields migrate toward the midline and fuse to form a three-dimensional structure called

the cardiac cone. (c) In order for the heart tube to elongate, the cardiac cone tilts by

approximately 90°, shifting its lumenal axis from a dorsal-ventral orientation to an

anterior-posterior orientation. It is during tilting morphogenesis that L-R symmetry is

first broken in the zebrafish heart. The cone tilts such that the apex points toward the

right posterior, causing the heart tube to elongate toward the left anterior. (d) The

diagonal position of the heart tube with respect to the midline is called cardiac jogging.
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Figure 1.2 L-R morphogenesis of the digestive organs in zebrafish

(a) At 24 hpf the intestinal primordium is in the midline. The gray bracket marks the gut

looping region between the caudal border of the pharyngeal endoderm and the posterior

pancreatic bud (pancreatic islet; red bracket). (b) By 30 hpf the gut has looped, the liver

is budding to the left (blue bracket) and the pancreatic islet has moved from the dorsal

aspect of the developing intestine to the right (red bracket). (c) By 48 hpf the asymmetric

pattern has become much more elaborate. The liver is on the left (L) the intestinal bulb is

looped to the left (I) and the two pancreatic buds have fused to create a single pancreas

on the right (P). In all images anterior is to the top and left is to the left.
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Organ morphogenesis defects
in heart and Soul mutants

In recent years the zebrafish has emerged as a premier model organism for the

study of vertebrate organogenesis. External fertilization combined with the optical clarity

of the embryo facilitates easy visualization of deep tissues in both living and fixed

embryos. One of the greatest strength of zebrafish is the ability to do forward genetics.

Two large-scale screens for embryonic lethal mutations have identified many mutants

with discrete and novel defects in organ formation [1,2].

The heart and soul (has) mutation was isolated in one of these large-scale screens

[1] based on a number of morphological defects that are easily visualized in live

embryos. These include: a small heart, patchy retinal pigmented epithelium, retinal

degeneration, failure of the brain ventricles to inflate and general body curvature (Figure

2.1b) [3-5]. My initial interest in the has mutant was in understanding the small heart

phenotype. Visual inspection of the heart in live has mutant embryos 1 day post

fertilization revealed that, unlike wild-type embryos that have a contractile heart tube

extending out over the yolk, has mutants have only a small dense lump of beating tissue

tucked beneath the head [5].

In this chapter we report that the small heart phenotype observed in has mutants is

due to a gross malformation of the heart tube. The atrium, which lies posterior to the

ventricle in wild-type embryos, surrounds the ventricle in has mutants. This morphology
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arises when the cardiac cone fails to tilt from a dorsal-ventral (D-V) to anterior-posterior

(A-P) orientation. The tilting of the cardiac cone produces the first morphological L-R

asymmetry in the zebrafish heart, therefore, we further examined has mutants for defects

in L-R morphogenesis in the digestive organs. In has mutants, the gut fails to loop and

the liver and pancreas are both symmetrical with respect to the midline. Our data indicate

that Has is required by several organs for the execution of proper L-R morphogenesis.
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Results

Malformation of the heart tube in has mutants

Given the small appearance of the heart in live has mutants [5], we initially

investigated whether a defect in myocardial differentiation was responsible this

phenotype. We used wholemount in situ hybridization and immunohistochemistry to

examine a number of myocardial markers in has mutants at various stages (data not

shown). This analysis revealed that the small, dense nature of the has heart is not due to

a reduced amount of myocardium, but rather to a gross malformation of the heart tube.

Staining with the myosin heavy chain markers MF20 and S46 revealed that, the atrium,

which lies posterior to the ventricle in the wild-type heart (Figure 2.2a), surrounds the

venticle in the has heart (Figure 2.2b, c).

The has mutation blocks heart tube assembly at an intermediate stage

In zebrafish, the ventricular precursors initially lie medial to the atrial precursors

in the bilateral cardiac fields [6]. Therefore, the aberrant orientation of the atrium with

respect to the ventricle that we observe in has mutants could be the result of an early

disruption of the medial-lateral (M-L) patterning of the myocardial precursors.

Alternatively, initial M-L patterning could be normal and the mutation might instead

disrupt a morphogenetic process independent of the proper specification of ventricular

and atrial lineages. To distinguish between these two possibilities and identify the point

at which heart tube morphogenesis goes awry in has mutants, we followed the expression

of cardiac myosin light chain 2 (cmlc2) and ventricular myosin heavy chain (vmhc)

during heart tube assembly.
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In has mutants, the myocardial precursors migrate toward the midline in a normal

manner and fuse to from the cardiac cone (Figure 2.2d-f). At the 23 somite stage,

however, when the apex of the cone normally tilts to allow for the elongation of the heart

tube (Figure 2.2g), the has cone remains stationary (Figures 2.2h, i). The mutant heart

remains a cone-like structure, but becomes increasingly dysmorphic throughout the time

that the more lateral regions of the cone are coalescing into a tube in wild-type siblings

(Figures 2.25-1). In time, the atrial precursors that make up the wide base of the has cone

fold back over the ventricular precursors in the apex, resulting in the atrium being inside

out over the ventricle (Figures 2.2b, c).

These data suggest that the abnormal chamber orientation in has mutants is

unlikely to be caused by improper specification of ventricular and atrial lineages, as

cmlc2 and vnmhc expression are normal though the formation of the cardiac cone (Figures

2.2d-f; and data not shown). Instead, the has mutation blocks heart tube assembly at an

intermediate stage. Has function appears to be required for the tilting of the cone that

normally facilitates the conversion of the M-L pattern of myocardial precursors into the

A-P pattern of the heart tube.

Defects in L-R morphogenesis of the digestive organs in has mutants

The tilting of the cardiac cone marks the point in heart morphogenesis when the

M-L arrangement of the ventricular and atrial precursors is converted to an A-P

orientation, but it also corresponds to the first occurrence of morphological L-R

asymmetry in the zebrafish heart. To investigate whether other organs in has mutants

display defects in L-R morphogenesis, we used wholemount in situ hybridization with

foxa 3 to examine the digestive organs in has mutants.
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By 30 hours post fertilization (hpf) in wild-type, the gut tube primordium loops to

the left [7]. In has mutants, the gut primordium fails to loop and remains in the midline

(data not shown). At 48 hpfin wild-type, the intestine remains on the left and now the

primordia of three organs are present. The liver is on the left; the swimbladder is dorsal

and lies roughly in the midline and the pancreas projects to the right (Figure 2.3a). In has

mutants, the swimbladder is small and the liver and pancreas adopt symmetrical positions

(Figure 2.3b). In the case of the pancreas, the two pancreatic buds have not fused; the

anterior bud is symmetrical across the midline (or perhaps duplicated) and the posterior

bud (pancreatic islet) is small and remains associated with the dorsal side of the gut tube

(Figure 2.3b). These data indicate that the developing digestive organs in has mutants

display striking morphogenetic defects with respect to the L-R axis.
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Discussion

We have shown that the small appearance of the heart in has mutants is caused by

a malformation of the heart tube in which the atrium folds inside out over the ventricle.

This observation was also made independently by Jau-Nian Chen and Mark Fishman [8].

The aberrant chamber orientation arises from a failure of the cardiac cone to tilt from a

D-V to A-P position. The tilting of the cardiac cone marks the first occurrence of

morphological L-R asymmetry in the zebrafish heart. Concurrent with the D-V to A-P

transition, the ventricular apex of the cone points toward the right posterior, which allows

the heart tube to elongate toward the left anterior. This early leftward outgrowth of the

heart tube has been termed cardiac jogging [9]. Over the course of several hours the

heart tube moves back to the midline where it undergoes looping morphogenesis, which

places the ventricle to the right of the atrium.

Many zebrafish mutations have been identified that affect the leftward jogging of

the heart tube [7, 9, 10]. In all cases described to date, however, the D-V to A-P tilting of

the cone occurs but with randomized orientation. In these mutants, the heart can jog to

the left, to the right, or grow out in the midline. has represents a new class of heart L-R

asymmetry mutant, as it is the only mutant currently described in which tilting/jogging

morphogenesis is blocked as opposed to randomized. Mutants that show randomization

in jogging often show defects in the midline or D-V patterning that result in disrupted L

R gene expression. We have not observed any obvious midline or D-V patterning defects

in has mutants (data not shown). Asymmetric gene expression will need to be analyzed

to better determine the extent of the laterality defect in has mutants (See Chapter 5).
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We have further shown that has mutants display striking morphogenetic defects in

the digestive system. L-R morphogenesis of the digestive organs has been far less

studied in zebrafish than heart morphogenesis. Studies that have examined digestive

organ asymmetry in L-R mutants have typically examined only one organ per study, such

as the liver or pancreas, and the position of that organ is typically randomized [7, 10].

Using foxA3, a marker that labels most of the digestive tract endoderm, we have shown

that the liver, pancreas and gut are all symmetrical in has mutants, further supporting our

hypothesis that has represents a new class of L-R asymmetry mutant.
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Materials and Methods

Zebrafish strains

The has” and has” alleles were used interchangeably, as these alleles are

phenotypically indistinguishable.

Immunofluorescence

Wholemount immunofluorescence was performed as previously described [11], using the

monoclonal antibodies MF20 [12] and S46 (generous gift of Dr. Frank Stockdale). The

secondary reagents, goat anti-mouse IgG1-FITC and goat anti-mouse IgG2b-TRITC

(Southern Biotechnology Associates) recognize S46 and MF20, respectively. Double

exposure photographs were taken using Fujichrome 1600 ASA film and a Zeiss Axioplan

microscope; images were processed using Adobe Photoshop 4.0.

In situ hybridizations

In situ hybridizations were performed as previously described [6]. Embryos older than

24hpf were raised in 0.003% 1-phenyl-2-thiourea (PTU, Sigma) in egg water to inhibit

production of pigment. Probes used include: cmlc2 [6], vnhc [6], and foxA3 (forkhead 2)

[13].
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Figure 2.1 Comparison of wild-type and has mutant embryos at 33 hpf.

(a) wild-type. (b) has. has mutants were first identified based on clearly visible defects

in the heart (red arrowhead), a patchy retinal pigmented epithelium (black arrowhead),

degeneration of the neural retina, failure of the brain ventricles to inflate (blue

arrowhead) and a general body curvature.
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Figure 2.2 has disrupts heart tube assembly at an intermediate stage.

(a-c) 27 hpf embryos stained with MF20 (TRITC) and S46 (FITC), anterior to the left.

Red fluorescence indicates MF20 staining of ventricular tissue, while yellow

fluorescence indicates the overlap of S46 and MF20 staining in atrial tissue. (a) Lateral

view of a wild-type embryo. The atrium (yellow) lies posterior to the ventricle (red). (b)

Lateral view of a has mutant. (c) Ventral view of a has mutant. The atrium (yellow)

surrounds the ventricle (red). (d-l) Dorsal views, anterior at the top. (d, g, j) Expression

of cmlc2 in wild-type embryos. (e, h, k) Expression of cmlc2 in has mutants. (f, i, 1)

Expression of vmhc in has mutants. (d-f) 21-somite stage; the cardiac cone has formed

and has mutants are indistinguishable from their wild-type siblings. (g-i) 23-somite

stage; while the apex of the cone has tilted in wild-type embryos (g), the cone in has

rrn Litants remains stationary (h, i). (j-l) 24 hpf; the has heart still retains a cone-like

stri-Lacture (k, 1), even as formation of the wild-type heart tube is nearly complete (j).
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Figure 2.3. Morphological defects in the digestive organs of has mutants.

(a,b) Dorsal views, anterior to the top. Wholemount in situ hybridization with foxA3

reveals the general shape of the digestive tract. (a) In wild-type embryos the intestinal

primordium (I) and liver (L) are on the left, the swimbladder (S) is in the midline and the

pancreas (P) on the right. (b) In has mutants, the intestinal primordium and a small

swimbladder are in the midline and the liver and pancreas adopt symmetrical positions.

The two pancreatic buds have not fused; the anterior bud (ap) is symmetrical across the

midline (or perhaps duplicated) and the posterior bud (pp) is small and remains

associated with the dorsal side of the gut tube
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heart and Soul encodes

atypical protein kinase C A

In the previous chapter, we showed that the has mutation represents a new class

of L-R asymmetry mutant, in which L-R morphogenesis of the heart and digestive organs

is blocked as opposed to randomized. In order to further investigate the role of has in L

R morphogenesis, we must identify the gene disrupted by the mutation. In this chapter

we describe the positional cloning of the has gene and show that it encodes atypical

Protein Kinase C A (apkCA). In collaboration with Dan Lin, Geraldine Mbamalu and

Tony Pawson, we use biochemical studies to show that the truncated proteins encoded by

the has” and has” alleles are kinase inactive. We further show that injection of

wild-type aPKCA is sufficient to rescue has mutants and that injection of a morpholino

antisense oligo against aPKCA can phenocopy has. Finally we describe the dynamic

pattern of aPKCA mRNA expression during development. has represents the first

mutation identified in a gene from the highly conserved Par-3/Par-6/aPKC complex in a

vertebrate organism and it is therefore likely to be an important tool for the study of cell

polarity, epithelial formation, and L-R organ morphogenesis in vertebrates.
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Results

Positional cloning of has

The has mutation was mapped to LG2 by half tetrad analysis [1], through linkage

to the centromeric marker Z4300. Fine mapping on 2940 meioses placed has 0.2 cM

proximal to elrà. A contiguous stretch of genomic DNA was constructed across the has

region and further fine mapping localized has to two overlapping PACs, 70N12 and

238M4 (Figure 3.1a). To identify individual genes within this region, we radiolabelled

each PAC insert and probed a normalized cDNA library prepared from 24 hpf embryos.

31 positive clones were chosen for analysis, of which nine mapped to one or both of the

PACs by PCR analysis. Sequencing revealed that the nine clones corresponded to three

different genes. Two of these genes mapped exclusively to the 238M4 PAC and showed

no obvious homology to other genes in the database. The third gene mapped to both the

70N12 and 238M4 PACs and showed high homology to aPKCA.

Genetic lesions in apkCA

To test whether the has phenotype is due to a mutation in apkCA, cDNA

sequences from the wild-type and mutant alleles were compared. This analysis revealed

that both alleles encode truncated proteins. The m 129 allele contains a base change from

C → T at position 1519 that creates a premature stop codon, removing 73 amino acids

from the C-terminus of the protein. Likewise, a G → A mutation at position 1532 in the

m567 allele results in a premature stop codon that truncates the protein by 69 amino acids

(Figure 3.1b). The striking proximity and similarity of these two lesions corresponds

well with the observation that these two alleles are phenotypically indistinguishable.
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The m129 and m567 truncations render murine apkCA kinase-inactive

Although the catalytic domain of aPKCA is left intact in these alleles, we wished

to determine whether the kinase activity of the truncated proteins is affected. To test this,

site-directed mutagenesis was employed to introduce the corresponding m129 and m567

mutations in the murine PkcA cDNA. To assay catalytic activity, an in vitro kinase

reaction was performed. Specifically, exogenously expressed Flag-tagged aPKCA

proteins were immunoprecipitated and incubated with Myelin Basic Protein (MBP) as a

substrate. Figure 3.2a shows that, in contrast to the wild-type Flag-apkCA, both the

m 129 and m367 truncated proteins exhibit little to no kinase activity toward MBP. In

fact, the kinase activity of the mutant proteins is indistinguishable from a form of the

protein rendered kinase-inactive by a K273E mutation. The kinase assay gave similar

results using Enolase as a substrate (data not shown).

One explanation for the loss of catalytic activity in the corresponding m 129 and

m567 mutations in murine aPKCA is that both truncated proteins lack a highly conserved

3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) binding site that is located in the

C-terminus of aPKCA [2]. Presence of this critical docking site is required for an

activating phosphorylation of aPKCs on a conserved threonine residue in the T-loop of

the kinase domain by PDK1 [3]. To test this hypothesis, we employed an antibody that

specifically recognizes the phosphorylated state of Thr-402 within the T-loop of the

protein. Comparison of the exogenously expressed wild-type protein with the truncated

mutant gene products on a western blot revealed that only the wild-type protein was

phosphorylated on Thr-402 by endogenous PDK1 in transiently transfected 293T cells
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(Figure 3.2b). Together, these data strongly suggest that the gene products of the m129

and m367 alleles are catalytically inactive.

Injection of aPKCA mRNA rescues has

To gain final confirmation that has corresponds to apkCA, we microinjected

aPKCA mRNA into zebrafish embryos at the 1-4 cell stage and showed that this was

sufficient to rescue the has mutant phenotype. 64% of injected mutant embryos showed

partial rescue, in which wild-type character was restored to either the heart or the RPE.

For example, many partially rescued embryos had a wild-type heart tube and a disrupted

RPE. Subsequent PCR genotyping of all injected embryos revealed that 13% of

homozygous mutants had been scored as wild-type with respect to the heart and RPE

phenotypes. In total, ~ 75% of has embryos injected with aPKCA mRNA showed at least

partial rescue of the mutant phenotype (Figure 3.3a, b).

Morpholino knockdown of aPKCA phenocopies has

To complement the rescue experiments we also injected a morpholino antisense

oligonucleotide [4] against aPKCA. Injection of 4 ng of the morpholino oligo

phenocopied the has mutation in > 95% of embryos injected (n > 1000). Interestingly,

the phenotype produced by the morpholino appeared to be somewhat stronger than

m129 m$67has"?” and has" (Figure 3.3a). To address this difference in phenotypic strength, we

compared protein levels of wild-type, has mutant, and morpholino-injected embryos at 32

hpf on a western blot. We used a monoclonal antibody that specifically recognizes the C

terminal end of wild-type aPKCA, which fails to detect the truncated alleles. Figure 3.3c

shows that some full-length protein is present in m367 (-/-) embryos. Similar
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observations were made for the m 129 allele (data not shown). The full-length protein

observed in these mutants could be due to maternal contribution or may result from

readthrough of the premature stop codon. In the morpholino-injected embryos, however,

levels of full-length protein are further reduced, which likely accounts for the more

severe phenotype. Together with the genetic linkage and biochemical evidence, these

data strongly argue that has encodes apkCA.

Dynamic expression of aPKCA mRNA during embryogenesis

To gain an understanding of the pattern of aPKCA gene expression, we performed

wholemount in situ hybridization on both wild-type and mutant embryos between the

stages of 8 cells and 50 hpf. No difference in mRNA levels was observed between wild

type and mutant embryos at any stage. There is strong maternal expression of aPKCA

(Figure 3.4a) and early zygotic expression is present throughout the axial and paraxial

regions of the embryo (Figure 3.4b). Starting from about the 12 somite stage, expression

is down-regulated in the tail and dorsal trunk, but remains high in the brain, eyes and a

ventral region of the axis (Figure 3.4c). Over time, the ventral staining in the posterior of

the embryo declines and expression becomes restricted to the anterior 1/3 of the embryo

(Figure 3.4d). Also starting from about the 12 somite stage, expression is observed close

to the yolk and lateral to the head, which may represent expression in the lateral plate

mesoderm (Figure 3.4e). By the 28 somite stage, expression begins in the fin buds

(Figure 3.4f, h). Then at 28 hpf, increased expression can be seen in the ventral midline

at the level of the fin buds (Figure 3.4f). This domain of expression is likely to represent

endodermally derived organs in this region, as it is absent in casanova mutant embryos

(data not shown), which lack all endoderm [5]. Finally, between 40 and 50 hpf,
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uniformity of staining within the head and eyes is lost and staining appears to be split into

a dorsal and ventral domain in the brain (Fig 3.4g). Expression in the pharyngeal region

also begins at this time (Figure 3.4g).
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Discussion

We have positionally cloned has and shown that it encodes apKCA. During

development, aPKCs are thought to participate in a highly conserved complex with Par3

and Par6 to regulate cell polarity [6]. Examples include: the establishment of early

anterior-posterior polarity in the C. elegans zygote, and regulation of apico-basal polarity

in polarized epithelial cells [6]. has represents the first mutation in this complex to be

described in a vertebrate.

We were quite surprised to find that the has mutation, which appears to cause

discrete defects in L-R organ morphogenesis, disrupts a gene required for a basic cell

biological process such as the establishment of apico-basal polarity in epithelia. The

apparent late onset of phenotypes in has mutants is unlikely to be due to a hypomorphic

m 129mutation, as our biochemical data suggest that has” and has” encode null alleles.

We have observed, however, a strong maternal contribution of the aPKCA transcript

(Figure 3.4a) and most vertebrates have two apKCs, A and Ç. It is likely, therefore, that

aPKCC and maternal apkCA show some functional overlap with zygotic apkCA to

produce the relatively late phenotypes we observe in has mutants.

The patchy appearance of the retinal pigmented epithelium (RPE), is the only

phenotype in has mutants, that on the surface, appears to be consistent with a defect in

epithelial integrity. Intriguingly, five zebrafish mutations have been identifed that show a

similar RPE defect to that of has [7,8]. Two of these, oko meduzy (ome) [9] and mosaic

eyes (moe), [8] have been shown to have polarity defects in the retinal neuroepithelium.

To date, has is the only patchy RPE mutant to have been cloned, but it appears likely that

this phenotype is a hallmark for genes involved in the formation of polarized epithelia.
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Further investigation will be required to determine if the defects in organ

morphogenesis in has mutants are due to an underlying defect in epithelial polarity or to

some previously unknown function of aPKCA. It will also be interesting to investigate

whether mutations like ome and moe cause defects in L-R organ morphogenesis similar

to those seen in has mutants.

41



Materials and Methods

Genetic mapping and positional cloning

A mapping strain was created by crossing a has” AB male to a wild-type WIK female.

Early pressure (EP) embryos were used to initially place has on LG2 and subsequent

linkage analysis was performed on a combination of haploid and homozygous mutant

diploid embryos. PCR primers within the 3’ UTR of elrà were used to initiate a

chromosome walk to has using YAC (Research Genetics) and PAC clones [10].

Sequences from the recovered ends of each genomic clone were then used to identify

additional clones and determine clone overlap. Further fine mapping with single-strand

conformational polymorphisms localized the has gene to two overlapping PACs, 70N12

and 238M4. To identify cDNAs encoded on the 70N12 and 238M4 PACs, the inserts

were excised with Not■ and purified by pulse field gel electrophoresis. Radiolabeled

probes were prepared as described [11] and used to screen a 24 hpf normalized cDNA

filter (RZPD). Sequences from several partial cDNA clones and one full-length cDNA

clone (ICRFp524H1816208) were used to assemble the full-length sequence for

zebrafish apkCA. To identify the mutant lesions, cDNA was prepared from pools of 60

has” and has” mutant embryos. Three overlapping fragments from the coding

sequence of aPKCA were PCR amplified from both cDNA pools and cloned into the

pGemT vector (Promega) for sequencing.

DNA constructs and mutagenesis

Murine aPKCA pCMV5 Flag and kinase-inactive aPKCA pCMV5 Flag were obtained

from Christopher L. Carpenter (Division of Signal Transduction, Beth Israel Deaconess

Medical Center). To engineer the m 129 and m:567 truncations it was necessary to
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generate aPKCA with an amino-terminal Flag epitope tag. To accomplish this, the

carboxy-terminal Flag epitope was removed by restoring the natural stop codon using

PCR mutagenesis and the cDNA was then subcloned into prlag CMV2 (Kodak). The R

– stop mutation at position 513 (corresponding to the m 129 allele) and the W — stop

mutation at position 517 (corresponding to the m567 allele) were made using the

QuikChange site-directed mutagenesis kit (Stratagene). All constructs and mutations

were confirmed by sequencing.

Immunoprecipitation and westerns

2937 cells were cultured in DMEM supplemented with 10% FBS. Transient

transfections were performed using Lipofectin and Opti-MEM medium (Life

Technologies) as described in the manufacturer’s instructions. Transfected cells were

rinsed once in phosphate buffered saline (PBS) and lysed in phospholipase C (PLC) lysis

buffer with 10 ugmL'aprotonin, 10 ugml" leupeptin, 1 mM sodium vanadate

(NavO3) and 1 mM PMSF [12]. For immunoprecipitations, lysates were incubated with

goat anti-mouse sepharose and with anti-Flag antibodies at a concentration of 1 pig mL'

for 2h at 4 °C. Beads were washed three times in PLC lysis buffer. Proteins were

separated by SDS-PAGE, transferred to Immobilon-P membrane (Millipore), and

immunoblotted with the appropriate antibody. The antibodies were the mouse

monoclonal anti-Flag M2 antibody (Kodak) and the Sheep polyclonal anti-phospho

PRK2 that recognizes PDK1 phosphorylation sites in a variety of enzymes including

pThr-402 of aPKCA (Upstate Biotechnology). Blots were developed by enhanced

chemiluminescence (Pierce).
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Protein kinase assay

Immunoprecipitates were washed twice in PLC lysis buffer, twice in kinase reaction

buffer (50 mM Hepes pH 7.5, 25 mM MgCl2, 4 mM MnCl2) containing 0.1 mM NavO3

and resuspended in 25 plkinase reaction buffer containing 5pCi [Y-*P] ATP and 2.5 |19

myelin basic protein (MBP) as a substrate. Reactions were incubated at room

temperature for 30 min and halted by the addition of 25 pull 2x SDS-PAGE sample buffer.

Samples were resolved by SDS-PAGE on a 12% gel and incorporation of”P was

detected by autoradiography.

Injections

For rescue experiments, capped mRNA was synthesized from the ICRFp524H18162O8

EST plasmid using the T7 promoter and the mMessage mMachine Kit (Ambion) and 50

pg of capped RNA was microinjected into has mutants at the 1 to 4 cell stage.

Phenotypic analysis was performed between 30 and 48 hpf, with special attention paid to

the heart and RPE defects, as they are fully penetrant and easily visible under a dissecting

microscope. The aPKCA morpholino (5’ TGTCCCGCAGCGTGGGCATTATGGA-3’)

was designed by and purchased from Gene Tools. 4 ng of the morpholino oligo was

injected into embryos at the 1 to 4 cell stage.

PCR genotyping of has”

To detect has”, we designed a co-dominant marker using the dCAPs system (5'-

GGCCCATCCTTTTTTCCCAAATGTAGAC-3',5'-TTCAGGCTCCAGGTAAGTCC

-3’) to amplify a 170 bp PCR fragment. We digested the PCR products with Xcml



(NEB) to selectively remove 24 bp from the wild-type allele and resolved the bands on a

3.5% agarose gel.

Morpholino western

To examine the effectiveness of has morpholino knockdown, zebrafish embryos were

manually dechorionated, pooled, de-yolked and lysed in a solution of 10mM Tris-HCl

(pH 7.5), 1mM EDTA, 50mM KCL, 1% SDS, 1mM leupeptin and 1mM PMSF. Total

protein concentration was determined using a Coomassie Protein Assay kit (Pierce). 10

pig of total protein was loaded in each lane and separated by SDS-PAGE. Protein was

transferred onto Hybond ECL Nitrocellulose membrane (Amersham Pharmacia Biotech)

and immunoblotted with the mouse monoclonal anti-PKCA antibody (Transduction

Labs). Blots were developed using ECL (Amersham Pharmacia Biotech).

In situ hybridizations

In situ hybridizations were performed as previously described [13]. Embryos older than

24 hpf were raised in 0.003% 1-phenyl-2-thiourea (PTU, Sigma) in egg water to inhibit

production of pigment. To produce the aPKCA antisense probe, a 580 bp fragment was

amplified from the 3' UTR of the gene (5'-TCCTTTAGTTTGCAGAGTCCG-3',5'-

GGTCCTGCATTGAAGAAAGC-3') and TA cloned into the pGemT vector (Promega).

The plasmid was linearized with Not■ and transcribed using T7.

45



Figure 3.1 Positional cloning reveals that has encodes apkCA

(a) Positional cloning of the has gene. PCR primers to the elrà gene were used to

initiate a chromosome walk and a contiguous stretch of genomic DNA was constructed

across the has region using YAC and PAC clones. The numbers between each genetic

marker represent the number of recombinational breakpoints between the markers

examined. Markers proximal to has were tested on 2569 meioses and markers distal to

has were tested on 2940 meioses. The 70N12 and 238M4 PACs were subsequently used

to screen cDNA filters and both PACs contain the aPKCA gene. (b) Sequence alignment

of aPKCA from human, mouse and zebrafish and DaPKC from Drosophila. Dark

shading indicates conserved residues and light shading marks similar residues. has”

and has” encode truncated proteins; the positions of the premature stop codons are

marked with red arrows. m.129 is R → stop and m367 is W — stop. The conserved

PDK1 docking site is underlined in blue and the conserved threonine, which is

phosphorylated by PDK1 is marked with a blue arrowhead.
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Figure 3.2 The m 129 and m$67 truncations render murine apkCA kinase-inactive

(a) Kinase assay to examine the effect of the m 129 and m567 truncations on aPKCA

activity. Site-directed mutagenesis was used to recreate the m 129 and m$67 mutations in

mouse apkCA in order to compare the kinase activity of the resulting truncated proteins

with wild-type and kinase-inactive (K273E) versions of the enzyme. Constructs were

Flag-tagged and transfected into 293T cells. Proteins were immunoprecipitated from cell

lysates and relative protein levels were examined on a western blot using an antibody

against the Flag epitope (lower panel). In the kinase-inactive lane of the western blot, the

band appears as a triplet likely due to the use of two alternate methionine start sites in this

construct. Kinase activity was assessed in vitro using myelin basic protein (MBP) as a

substrate. The activity of the m 129 and m367 truncations is indistinguishable from the

kinase-inactive version of the protein (upper panel). (b) Western blot to examine the

phosphorylation state of Thr-402 in the T-loop of aPKCA. Transfections and

immunoprecipitations were carried out as described above. The upper panel shows that

only the wild-type protein is phosphorylated on Thr-402. In the lower panel, the upper

bands in lanes 2-4 demonstrate that protein levels from the immunoprecipitation are

roughly equivalent, while the lower band present in all lanes is the immunoglobulin

heavy chain from the FLAG antibody. unt., untransfected.
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Figure 3.3 Injection of wild-type mRNA and morpholino oligos for aPKCA.

(a) Phenotypic comparison of wild-type, has, apKCA injected, and morpholino (MO)

injected embryos. The top row shows live embryos with arrowheads marking the RPE.

The bottom row shows wholemount in situ hybridization for cardiac myosin light chain 2

and arrows mark the position of the heart. The has mutants shown with partial rescue

have wild-type heart morphology and a disorganized RPE. Injection of an apKCA MO

into wild-type embryos essentially phenocopies the has mutation. Anterior is to the left

and dorsal to the top. (b) Table showing percentages of full and partial rescue among has

mutants injected with aPKCA mRNA. The genotype of all embryos was determined by

PCR (see methods). (c) Western blot using an antibody that specifically recognizes the

C-terminus of aPKCA to detect levels of full-length aPKCA protein in extracts from 32

hpfembryos. In has” mutants, there is still a detectable amount of full-length protein

as compared to embryos injected with aPKCA MO. This full-length protein may be due

to maternal contribution and/or occasional readthrough of the premature stop codon.
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Figure 3.4 Dynamic expression of aPKCA mRNA

(a) 8-cell stage; animal pole to the top. aPKCA shows strong maternal expression. (b) 10

somites (14 hpf) lateral view. Expression is uniform throughout the axial and paraxial

regions of the embryo. (c) 20 somites (19 hpf); lateral view. aPKCA expression becomes

more restricted to anterior and ventral regions of the embryo. (d-f) 28 hpf. (d) Lateral

view. Expression becomes further restricted to the anterior of the embryo. (e) Dorso

anterior view. aPKCA is expressed heavily throughout the brain and eyes. There is also

expression ventral and lateral to the head, which may correspond to the anterior lateral

plate mesoderm (arrows). (f) Dorso-posterior view. The arrow denotes expression in the

fin buds and the arrowhead marks expression in digestive organs. (g,h) 50 hpf (g)

Lateral view. Expression in the brain is less uniform and there is now strong expression

in the pharyngeal region (arrow). (h) Dorsal view. Anterior is to the left in all panels

except (a).
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Epithelial defects in
heart and Soul mutants

The formation, maintenance and movement of epithelial sheets are critical

processes during development. Mature epithelial cells have a polarized configuration

with separate apical and basolateral membrane domains. These domains have distinct

cornplements of lipids and proteins that are separated by a large junctional complex at the

apical side of the lateral membrane. In vertebrates, this apical junctional complex

COrnsists of the zonula adherens and the zonula occludens. The zonula adherens is

COrr aprised of cadherin/catenin-based adherens junctions, which provide cell-cell adhesion

anci facilitate apical constriction of cells [1]. The zonula occludens is located just apical

to the zonula adherens and consists of tight junctions. These provide a regulated barrier

to Paracellular diffusion and prevent the mixing of lipids and proteins between the apical

anci basolateral membrane compartments [2].

In recent years, a highly conserved protein complex has been identified that

*■ ulates cell polarity in a wide range of cell types and organisms. The core of this

Sºmplex consists of the PDZ-containing proteins, Par-3 and Par-6, and an atypical

Protein Kinase C (aPKC). The role of these proteins in the formation of polarized

*Pithelia is best understood from work in Drosophila. Bazooka (Drosophila Par-3) [3,

*l, Dmpar-6 [5] and DaPKC [6] localize to the apico-lateral membrane in a number of
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embryonic epithelia. Immunohistochemical analysis has shown that this complex

partially overlaps with and extends just apical to Armadillo (B-catenin) localization at the

zonula adherens. Loss of function of any one of these genes in Drosophila results in a

number of epithelial defects including loss of apical adherens junctions, changes in cell

shape, and mislocalization of proteins in the plasma membrane.

Less is understood about the role of the Par-3/Par-6/apKC complex in vertebrate

epithelia. In MDCK II cells, Par-3 (ASIP), Par-6 and the two vertebrate aPKCs, A and Ç,

co-localize with the tight junction protein, ZO-1, indicating that this complex localizes to

the zonula occludens in mature, polarized epithelia [7,8]. This conclusion is further

supported by immunogold electron microscopy, which places Par-3 at the tight junction

in the rat intestinal epithelium [7]. Further studies have shown that a dominant negative

form of aPKCA can disrupt the deployment of tight junction proteins including Claudin

anci Occludin when MDCK II cells are depolarized and then repolarized using a calcium

Svºritch [8]. aPKCA and Par-3 have also been observed to co-localize with ZO-1 at

ad Haerens junctions in NIH 3T3 cells [7], suggesting that these proteins may localize to

other cell junctions in the absence of tight junctions.

In order to gain a firm understanding of the role of this complex in the formation

anci maintenance of polarized epithelia in vertebrates, loss of function mutations need to

be identified and analyzed. In the previous chapter we reported that the zebrafish heart

*** soul (has) mutation disrupts apKCA. In this chapter we extend the phenotypic

Sharacterization of has mutants by investigating epithelial defects in mutant embryos.

We find that has mutants display epithelial defects in organs where we have previously

described morphogenetic defects, such as the heart and certain digestive organs. In
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collaboration with Salim Abdelilah-Seyfried and Juh-Nung Jan we also describe

epithelial defects within the has mutant retina. Our data indicate that aPKCA regulates

the clustering and maintenance of apical adherens junctions and that has is required for

the formation of the zonula adherens, as opposed to the zonula occludens, during early

epithelial development in vertebrates.
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Results

Epithelial defects in the myocardium of has mutants

When we first reported that the has mutation disrupts the tilting of the cardiac

cone, we believed that the structure of the myocardium was essentially normal and that

the defect was specific to the tilting morphogenesis. Differences seen in cone structure

were attributed to variations in the time of fusion of the myocardial precursors within a

given clutch of embryos. Identification of the has genetic lesion has enabled us to

unambiguously identify homozygous mutant embryos through PCR genotyping. It is

now clear that the epithelial structure of the cardiac cone is abnormal in has mutants prior

to the stage when tilting occurs. Figure 4.1 shows dorsal views of three wild-type cones

and three mutant cones stained for cardiac myosin light chain 2 expression at the 22

Somite stage. In general, has cones tend to be wider, have a ragged appearance and

Occasionally show incomplete fusion of the myocardial precursors at the midline. In

wild-type embryos, myocardial cell shape is fairly regular, whereas in has mutants there

is nauch more variability in cell morphology (Fig. 4.1a). Over time, the myocardium

*sins to show defects that are consistent with a defect in cell adhesion. Figure 4.1g

shov vs that strings of myocardial cells appear to dissociate from a stalled cardiac cone in

*tart embryos at 32 hpf. These data indicate that the myocardium in has mutants

°xhibits epithelial phenotypes prior to the defect in tilting morphogenesis and that

"><><ardial cell adhesion is appears to be strongly affected later in development.

E Pithelial defects in the digestive organs of has mutants

Identifying a potential epithelial defect that coincides with the morphogenetic
d

- • - - - - - -*fect in has mutant hearts prompted us to examine whether there are epithelial defects in
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the digestive organs as well. To better visualize cell and organ morphologies, we stained

transverse sections through the digestive organs with rhodamine-phalloidin. In addition

to labeling the cortical actin in each cell, phalloidin also marks the apical actin belt at the

zonula adherens, providing general information about epithelial polarity within these

organs. Figure 4.2a shows a cross section through a wild-type embryo at 48 hpf. The

endodermal portion of the esophagus is near the midline, surrounded by a thick layer of

mesodermal mesenchyme, and the liver projects to the left of the esophagus. By contrast,

the liver in has mutants is a single, elongated structure ventral to the esophagus (Figure

4.2b).

In a more posterior section through wild-type (Figure 4.2c), the swimbladder

appears as a large, round structure near the midline. The bulk of this organ primordium is

Composed of mesodermal mesenchyme, but there is also a thin endodermal lining, which

forms a polarized epithelium (note the strong apical localization of actin). The intestine

is to the left of the swimbladder and the pancreas lies ventral and to the right. In has

ºutants, the endodermal lining of the swimbladder is morphologically indistinguishable

from the surrounding mesenchyme, as it fails to form a polarized epithelium, and the

"testine is in the midline (Figure 4.2d). These data indicate that aPKCA plays a critical

role in digestive organ morphogenesis as well as in the formation of a polarized

‘Pithelium in the swimbladder.

|-es= Elization of aPKC isoforms within the digestive organs

To help elucidate the role of aPKCA during epithelial formation and endodermal

*sar, morphogenesis, we employed a polyclonal antibody that recognizes both vertebrate

Kic proteins, A and 3, to examine the distribution of aPKC isoforms in these tissues.

60



Since this antibody was generated against the C-terminal 20 amino acids of the protein, it
m 129 mj67does not recognize the truncated proteins encoded by has"?’ and has". By comparing

wild-type and mutant embryos, the staining domains of the two family members can be

distinguished. Staining that is present exclusively in wild-type embryos likely

corresponds to aPKCA. Any immunoreactivity observed in has mutants must be due to

aPKCé and/or residual levels of full-length aPKCA.

We find that aPKCA is the only aPKC expressed in the endodermal components

of the liver, pancreas, and swimbladder. There is strong, patchy staining in the liver

(Figure 4.2e) and pancreas (Figure 4.2g), which may correspond to the formation of

ductal structures within these organs. There is also diffuse staining throughout the liver.

In addition, aPKCA shows strong apical localization within the endodermal epithelium of

the swimbladder (Figure 4.2g). These staining patterns are not observed in has mutants

(Figures 4.2f, h).

In addition to apkC immunoreactivity within the endodermal component of these

Organs, there is also staining throughout the digestive tract mesoderm. This staining is

most apparent in the mesenchyme surrounding the esophagus (Figure 4.2e) and in the

mesodermal component of the swimbladder (Figure 4.2g). Once again, this

immunoreactivity appears to be exclusive to aPKCA, as it is missing in has mutants

(Figures 4.2f, h).

Finally, we observed three expression domains that are likely to include aPKCº.

The pronephric ducts are epithelial tubules, which are part of the primitive zebrafish

kidney. These are not endodermally derived structures, but we do observe clear apical

localization of aPKC proteins within them (Figure 4.2e). Because has mutants have a
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significant amount of staining in these structures and no apparent pronephric defects

(Figures 4.2e, g), it appears that aPKCé is strongly expressed in these tubules. There is

also apical localization of aPKCs in the polarized epithelium lining the esophagus (Figure

4.2e). This staining is present but reduced in has mutants, suggesting that both A and &

are expressed in this tissue (Figure 4.2f). Finally, there is strong apical localization of

aPKCs in the polarized epithelium of the intestine (Figure 4.2g). aPKCé is clearly

present, as there is strong staining in has mutants (Figure 4.2h). However, subtle polarity

defects in the intestinal epithelium, discussed below, point to a role for aPKCA in this

tissue as well.

aPKCA directs the apical clustering of adherens junctions during intestinal

lumen formation

The intestinal epithelium in has mutants typically forms well along most of its

length. However, when wider parts of the has intestine are viewed in cross section at 60

hpf, the structure may have two or even three lumens (Figure 4.3g). On first inspection,

the apico-basal polarity of these cells appears normal, as most cells surrounding the

lumens have a columnar shape with strong apical localization of actin (Figure 4.3g),

aPKCº., and ZO-1 (data not shown).

To address how these multiple lumens arise, we examined a time course of

rhodamine phalloidin staining during gut tube formation. In wild-type zebrafish,

endodermal cells migrate to the midline and initially form a multicellular rod with no

visible lumen. With time, these cells rearrange in space, polarize and produce a lumen in

the center. Because phalloidin strongly labels the actin associated with adherens

junctions, we were able to follow the clustering and apical targeting of these structures
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during lumen formation. We find that small foci of adherens junctions form locally

between a few cells at a time within the rod (Figure 4.3a). These foci appear to move

toward the center and merge with one another, until there is a single focus of adherens

junctions in the middle of the rod (Figure 4.3b). At this time the cells display apico-basal

polarity, but the apical domain appears to be very small. Finally, a lumen forms within

this central spot (Figure 4.3c). It is unclear how lumen formation occurs, but we

speculate that it could be due to expansion of the apical membrane domain. In the case of

has mutants, this central clustering of adherens junctions appears to be delayed and

generally less efficient than in wild-type (Figure 4.3e). Multiple lumens result when

lumen formation begins before the clusters of adherens junctions have converged to the

center of the rod (Figure 4.3f). These observations suggest that aPKCA regulates the

apical clustering of adherens junctions during initial polarization of intestinal epithelial

cells.

The zonula adherens is not maintained in has mutant neural retinae

One of the original defects reported in has mutants was retinal degeneration. To

investigate whether an epithelial defect might be responsible for this phenotype, we

examined this tissue in has mutants. Prior to neuronal differentiation and lamination, the

neural retina exists as a single sheet of pseudostratified epithelial cells, with its apical

(ventricular) surface facing the RPE and its basal (vitreal) domain apposed to the lens.

Immunohistochemistry shows distinct apical localization of aPKC proteins within the

wild-type retinal neuroepithelium at 32 hpf (Figure 4.4a). This staining is slightly apical

to and partially overlapping with staining for the junctional protein ZO-1 (Figure 4.4b).

We believe that these two proteins localize to the zonula adherens, as this domain also
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overlaps with apical actin (data not shown). It appears that aPKCA is the predominant

aPKC expressed in this tissue at this stage, as immunoreactivity is greatly reduced in has

mutants. Despite the low level of aPKC protein, apical adherens junctions form in has

mutants. Localization of ZO-1 (Figure 4.4c) and junctional actin (data not shown) are

both normal, and mutant cells show the same elongated morphology as in wild-type (data

not shown).

Between 30 and 60 hpf, the bulk of the various neuronal and non-neuronal cell

types in the retina exit the cell cycle, differentiate, and organize into functional laminae

[9]. Throughout this process, there continues to be a clear clustering of adherens

junctions at the ventricular surface of the neural retina in wild-type embryos, and aPKCs

continue to co-localize at these junctions with ZO-1 and fl-catenin (Figures 4.4d, e).

Over this same time period, apical adherens junctions are progressively lost from has

mutant retinae. At 60 hpf, there is a complete lack of ZO-1 and fl-catenin positive

junctions at the ventricular surface in has mutants (Figure 4.4f). Finally, at 70 hpf wild

type retinae have a columnar layer of epithelial cells at the ventricular surface, whereas

mutant retinae only have round, disorganized cells in this location (Figures 4.4g, h).

Apical adherens junctions are also progressively lost from the ventricular surface of the

neural tube during the same stages (data not shown). These data indicate that aPKCA is

not only required for the formation of the zonula adherens, as seen in the digestive tract,

but for its maintenance as well.



Discussion

We have previously shown that the zebrafish has gene encodes apKCA. has

represents the first mutation identified in the highly conserved Par-3/Par-6/aPKC

complex in a vertebrate organism. Previous work in mammals has suggested that

localization of this complex to the tight junction is required for proper apico-basal

polarity in epithelial cells [7,8]. Here we provide genetic evidence that aPKCA is

required for the formation and maintenance of the zonula adherens during early stages of

epithelial morphogenesis. It is possible that localization to tight junctions may

correspond to a later role for this protein in mature epithelia.

m 129 m$67While our results from Chapter 3 strongly suggest that has” and has" encode

kinase-inactive versions of aPKCA, some aPKC activity is provided by aPKC, and

maternal apkCA in has mutants. The partial functional overlap of these aPKCs helped

reveal discrete aspects of aPKCA’s role in establishing epithelial polarity. Zygotic

aPKCA appears to be the only aPKC expressed within the endodermal epithelium of the

swimbladder. Consequently, these cells do not form a clear epithelium in has mutants.

In the intestine, where aPKCé is also expressed, a polarized epithelium forms, but some

aspects of zonula adherens formation are abnormal in has mutants. Our results show that

adherens junctions cluster less efficiently during initial cell polarization and lumen

formation in this organ. In Drosophila, Par-3 (Bazooka) directs the apical clustering of

spot adherens junctions to form the zonula adherens during gastrulation [3], which

suggests that this particular function of the Par-3/Par-6/aPKC complex may be conserved

between flies and vertebrates. Finally, the progressive loss of apical adherens junctions

in the neural retina of has mutants demonstrates a requirement for aPKCA in the
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maintenance of the zonula adherens. It is probable that maternal apkCA is sufficient to

establish the zonula adherens in these tissues and that the junctions gradually degrade

when there is no functional zygotic protein to replace maternal stores.

Although there is considerable evidence that aPKCs play a role in the formation

and maintenance of polarized epithelia, no role has yet been described for aPKCs in

mesenchymal tissues during development. It is interesting to speculate that loss of

aPKCA from the mesenchyme surrounding the digestive tract is responsible for the

defects in gut looping and organ budding in has mutants. Indeed, there is extensive

communication between the mesoderm and endoderm during digestive tract formation

[10]. In addition, we have found that the genetic reduction of digestive tract mesoderm

leads to defects in gut looping and endodermal organ morphogenesis that are extremely

similar to those seen in has mutants (unpublished observations). It will be important to

determine whether proteins such as Par-3 and Par-6 interact with aPKCA within this

mesenchymal tissue or if this phenotype represents a role for this protein in an entirely

different pathway.

In addition to the cell polarity defects we have observed in the intestine,

swimbladder and retina, we have observed other cell adhesion defects in has mutants.

Following the morphogenetic defect in heart tube assembly, cardiomyocytes appear to

dissociate from the stalled cardiac cone. This phenotype is reminiscent of the cardiac

defect in N-cadherin (-/-) mice, in which clusters of cardiomyocytes dissociate from the

primitive heart tube but remain loosely aggregated with one another [11]. Since

cadherins are major components of adherens junctions, this phenotype may also point to a

role for aPKCA in regulating these structures in the myocardium, a tissue that does not
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appear to form a classical polarized epithelium. Furthermore, the patchy appearance of

the retinal pigmented epithelium [12], one of the first phenotypes described in has, is also

likely due to defects in cell adhesion (data not shown).
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Materials and Methods

In situ hybridizations

In situ hybridizations were performed as previously described [13]. Embryos

older than 24hpf were raised in 0.003% 1-phenyl-2-thiourea (PTU, Sigma) in egg water

to inhibit production of pigment. The probe was cmlc2 [13].

Antibody and phalloidin staining

For most antibody stainings, embryos were fixed for 1 hr at RT in 4% PFA in PBS.

After several rinses, embryos were embedded in 5% bactoagar or 4% SeaPlaque agarose

(BioWhittaker Molecular Applications) and 200 pum sections were cut with a Leica

VT1000S vibratome. Incubations and washes for antibody stainings were performed on

floating sections in a solution of 0.1% tween, 1% DMSO and 5% normal goat serum in

PBS. Phalloidin stainings followed a similar protocol, excluding the goat serum.

We used the following antibodies: rat polyclonal anti-PKC& (C-20) at 1:1000 (Santa

Cruz Biotechnology), mouse monoclonal anti-ZO-1 [14] at 1:25 (gift of S. Tsukita), and

rabbit polyclonal anti-fl-catenin [15] at 1:500 (gift of P. Hausen). We used secondary

antibodies conjugated to Rhodamine or Cy2 (Molecular Probes) at 1:400. To visualize

actin, embryos were incubated in phalloidin conjugated with either rhodamine or Alexa

568 at 1:100 (Molecular Probes).

Fluorescence images were produced using either a Leica TCS NT confocal

microscope or a Nikon TE 300 inverted microscope equipped with a BioPad Confocal

Laser (BioPad MRC) and BioPad Laser Sharp version 3.2 software.
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Figure 4.1 Epithelial defects in the myocardium of has mutants

(a-g) Wholemount in situ hybridization for cmlc2; dorsal views, anterior to the top.

(a,c,e) Abnormal morphology of the cardiac cone in has mutant embryos at 22 somites

(20 hpf). The cones are generally wider, have a more ragged appearance and can have

patches of cells with abnormal morphology (arrow in a). (b,c,f) Cardiac cones of wild

type siblings at 22 somites. (g) Morphology of the stalled cardiac cone in a has mutant at

32 hpf. Strings of cardiomyocytes appear to have dissociated from the bulk of the organ

suggesting a defect in cell adhesion.
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Figure 4.2 Epithelial Defects in the digestive organs of has mutants

(a-d) Transverse sections stained with rhodamine-phalloidin, dorsal to the top. (a) In

wild-type embryos, the esophagus lies near the midline and the liver is on the left. (b) In

has mutants, the liver is ventral to the esophagus. The phalloidin strongly stains the

apical actin belt in the esophageal endoderm (a,b). (c) There is strong apical actin

staining in the endodermal linings of the swimbladder and the intestine in wild-type

embryos. (d) In has mutants, the endodermal lining of the swimbladder does not form a

polarized epithelium and the intestine is in the midline. We have not yet identified the

pancreas in cross section at these stages. (e-h) Transverse sections stained with an

antibody that recognizes the C-terminus of both aPKCA and aPKC. Because the m 129

and m367 alleles of has lack the C-terminus, they are not recognized by this antibody. In

wild-type, there is strong apical staining in the polarized epithelia of the esophagus and

pronephric ducts (e) as well as in the endodermal lining of the swimbladder and intestine

(g). Patchy staining is observed in the liver (e) and pancreas (g). Finally, aPKCA is

found throughout the mesodermal mesenchyme surrounding the digestive organs (e,g).

has mutants lack much of this staining, indicating that aPKCA is the predominant aPKC

in these regions. However, there is immunoreactivity in the pronephric ducts and

intestine (h). There is also weak staining in the esophagus (f). This staining observed in

has mutants may be due to the presence of aPKC, or residual full-length aPKCA.

Throughout the figure, the embryos are 48 hpf. L, liver; S, swimbladder; P, pancreas; E,

esophagus; I, intestine; PD, pronephric duct.
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Figure 4.3 Loss of aPKCA disrupts the apical clustering of adherens junctions

during lumen formation in the intestine

(a-g) Photographs show transverse sections through the intestine stained with rhodamine

phalloidin. In the diagrams, red spots correspond to foci of adherens junctions. (a-d)

Formation of the intestinal lumen in wild-type embryos. (a,b) 36 hpf. Initially small foci

of adherens junctions form locally between a few cells at a time within the rod of gut

endoderm (a). These foci appear to move toward the apical side of the cells, merging

with one another, until there is a single focus of adherens junctions in the center of the

rod (b). (c) 42 hpf. Eventually, a lumen opens within the central spot of adherens

junctions. (d) At 60 hpf the wild-type intestine has a large, single lumen. (e-g) Apical

clustering of adherens junctions is disrupted in has mutants. (e) 42 hpf. Clustering of

adherens junctions occurs in has mutants but is far less efficient. (f) 48 hpf. Multiple

lumens result when lumens open before all the foci of adherens junctions have made it to

the center of the rod. (g) At 60 hpfin has mutants, much of the intestine has a single

lumen, but occasional regions with multiple lumens are found. In each image, dorsal is to

the top.
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Figure 4.4 The zonula adherens is not maintained in has mutant neural retinae

(a-c) Subcellular localization of aPKCA (red) and ZO-1 (green) in the pseudostratified

retinal neuroepithelium at 32 hpf (a) apkCA localizes to the ventricular surface in the

neural retina. (b) apkCA is slightly apical to and partially overlapping with with ZO-1 at

apical adherens junctions in wild-type embryos. (c) In has mutants, aPKCA shows

similar localization with respect to ZO-1, but the amount of aPKCA protein is greatly

reduced. (d-f) 60 hpf. (d) aPKCA (red) continues to localize near ZO-1 (green) at the

ventricular surface of the neural retina in wild-type embryos. (e) ZO-1 (green) co

localizes with fl-catenin (red), indicating that aPKCW likely localizes to adherens

junctions. (f) There are no ZO-1 or fl-catenin positive junctions at the ventricular surface

in has mutants, indicating that apical adherens junctions are missing by 60 hpf (g,h)

AlexaS68-conjugated phalloidin staining (in grayscale) of the neural retina at 70 hpf (g)

In wild-type, a columnar epithelium of photoreceptor cells is present at the ventricular

surface of the neural retina. (h) In has mutants, a disorganized layer of rounded cells is

observed at the ventricular surface. With the exception of (a), the apical or ventricular

side is to the top.
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Asymmetric migration of the
lateral plate mesoderm drives
gut looping in zebrafish

While many vertebrate organs adopt asymmetric positions with respect to the

midline, little is known about the cellular changes and tissue movements that occur

downstream of left-right (L-R) gene expression to produce this asymmetry. Some of the

most dramatic examples of asymmetric organ morphogenesis in response to left-right (L-

R) positional cues [1-3] occur in the digestive system, where the liver and pancreas

occupy asymmetric positions with respect to the midline, and the intestine bends and

folds in a complex pattern for proper packing into the abdominal cavity. In zebrafish, the

first leftward bend in the developing intestine arises through a morphogenetic process

known as gut looping. All of the digestive organs in zebrafish originate from a solid rod

of endodermal cells that forms at the ventral midline during mid to late somitogenesis [4].

Looping occurs between 26 and 30 hours post fertilization (hpf), when the region of the

endodermal rod that will give rise to the esophagus, intestinal bulb, and liver curves to

the left (Fig. 1a, b).

The heart and soul (has) mutation causes striking defects in asymmetric organ

morphogenesis, in which gut looping fails to occur and the liver and pancreas are both

symmetrical with respect to the midline [5]. has encodes an atypical protein kinase C,

aPKCA[5, 6], which localizes to the apical junctional complex in epithelial cells and has
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been shown to be required for the establishment of epithelial polarity [7]. Consistent

with this function, has mutants show defects in the formation and maintenance of several

embryonic epithelia [5]. These observations led us to hypothesize that an epithelial tissue

plays a critical role in gut looping.

In this chapter we provide evidence that the looping of the zebrafish gut results

from the asymmetric migration of the neighboring lateral plate mesoderm (LPM).

Mutations that disrupt the epithelial structure of the LPM perturb this asymmetric

migration and inhibit gut looping. Furthermore, asymmetric LPM migration can still

occur when endoderm is genetically ablated from the gut looping region, showing that the

LPM can autonomously provide a motive force for gut displacement. Finally, reducing

left-sided Nodal activity randomizes the pattern of LPM migration and gut looping. This

work reveals a cellular framework for the regulation of organ laterality by asymmetrically

expressed genes.
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Results

The LPM forms a columnar epithelium in the gut looping region.

To determine which epithelial tissue might affect visceral L-R morphogenesis, we

examined the localization of aPKCs A and (, in the gut looping region at 30 hpf. We

found that the endoderm at this stage is a compact mass of cells with little to no

polarization and weak expression of aPKCs (Figure 5.1g, h). In contrast, the lateral plate

mesoderm (LPM) forms a highly polarized epithelium with strong expression and apical

localization of aPKCs (Figure 5.1g, h). The left and right LPM epithelia each have a U

shaped structure in which the apical side of the epithelium corresponds to the inside of

the U and each arm of the U is comprised of either columnar or squamous cells (Figure

5.1g, h, g’, h'). The most striking feature of the LPM epithelia, however, is that the left

and right sides show a distinct asymmetry in their morphology and position. The left

LPM is dorsal to the endoderm with its columnar cells on the ventral arm of the U while

the right LPM is ventro-lateral to the endoderm, with its columnar cells on the dorsal arm

of the U (Figure 5.1g, h).

The LPM is a structure that spans the entire anterior-posterior (A-P) extent of the

trunk in vertebrate embryos. Intriguingly, we only observe these columnar cells and the

asymmetric placement of the left and right sides of the LPM in the A-P region of the

embryo where gut looping occurs (Figure 5.1g, h). Posterior to the looping region, the

LPM cells still express aPKCs but the cells appear squamous and both sides of the LPM

lie dorsal to the endoderm (Figure 5.1i). These data show that the two sides of the LPM

form columnar epithelia with morphological L-R asymmetry specifically in the A-P

region where gut looping occurs.
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Asymmetric migration of the LPM

To further investigate this process, we examined the structure and position of the

LPM at earlier times in development. Prior to looping, the endodermal rod lies in the

midline and both sides of the LPM are symmetrical and at approximately the same dorso

ventral level as the endodermal rod (Figure 5.1e). During looping, however, the LPM

undergoes an unexpected asymmetric migration: both sides of the LPM migrate

medially, but the left side moves dorsal to the endoderm, while the right side undergoes a

ventro-lateral migration directly abutting the endodermal rod (Figure 5.1 f-h).

Intriguingly, the morphology of the LPM is markedly asymmetric before the endoderm is

displaced from the midline (Figure 5.1f). The early morphological asymmetry in the

LPM combined with the close apposition of the right LPM to the endoderm throughout

its migration past the midline (Figure 5.1.h) suggest that the LPM may push the

developing intestine to the left.

Gut looping defects in has and nok mutants

To test the hypothesis that the asymmetric migration of the LPM is required for

gut looping, we examined this process in has and nagie oko (nok) mutants. nok, which

encodes a membrane associated guanylate kinase (MAGUK), is required, like

has/apKCA, for the establishment of epithelial polarity [8]. We examined endodermal

morphogenesis in nok mutants and found that, as in has mutants, the gut does not loop

(Figure 5.2a-c). To assess whether the non-looping phenotype in these mutants is due to

a defect in L-R gene expression, we examined two genes that are asymmetrically

expressed within the left LPM of the gut looping region, the Nodal gene southpaw

(spaw)[9] and the transcription factor gene pitx2|[10]. In both has and nok mutants, spaw
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and pitc2 expression appears normal (Table 5.1), indicating that the failure of their guts to

loop is unlikely to be due to a defect in L-R gene expression.

Since L-R gene expression appears to be unaffected in has and nok mutants, the

failure of the gut to loop is likely to be due to a defect in the morphogenetic process

itself. Examination of transverse sections through the gut looping region in has and nok

mutants revealed that the epithelial structure of the LPM is severely disrupted, and that

the ventro-lateral migration of the right LPM is perturbed (Figure 5.2d, e). Although

some cells from the right LPM move in the direction of the ventro-lateral migration, the

majority migrates dorsal to the endoderm (Figure 5.2d, e), similar to what is seen in non

looping regions of the intestine (Figure 5.1 i). Together with the high expression of Has

and Nok (Figure 5.2f) proteins in the LPM during looping stages, the mutant phenotypes

suggest that a defect in the LPM is responsible for the non-looping gut phenotype

observed in has and nok mutants, and that the asymmetric migration of the LPM provides

the motive force for gut looping.

Asymmetric LPM migration can occur in the absence of endoderm

If the LPM provides the motive force to displace the endoderm to the left,

ablation of the looping endoderm should not affect the asymmetric migration of this

tissue. Mutants that completely lack endoderm, like casanova, have numerous defects in

the migration of mesodermal tissues toward the midline [11]. bonnie and clyde (bon)

mutants have a reduced number of endodermal cells [12] and correspondingly fewer

defects in mesodermal migration (data not shown). We examined a single transverse

section through the gut looping region of 44 randomly selected bon mutants at 30 hpf,

and found that 35 (80%) showed clear asymmetric migration of the LPM past the midline
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(Figure 5.3e, f). Out of these 35 sections, 23 (66%) completely lacked endoderm (Figure

5.3f), and in the rest the amount of endoderm was significantly reduced (Figure 5.3e).

Furthermore, the left LPM was dorsal to the right LPM in 97% of the sections showing

asymmetric LPM migration (Figure 5.3e, f). These data show that asymmetric migration

of the LPM can occur in the absence of endoderm and suggest that the force for gut

displacement is autonomous to the LPM.

Reducing spaw function randomizes LPM migration

To investigate whether the asymmetric migration of the LPM is dependent on

normal L-R positional cues, we injected embryos with a morpholino antisense oligo

(MO)[13, 14] targeted against the Nodal gene southpaw (spaw). MO-knockdown of

spaw abolishes left-specific gene expression in the LPM in 80-100% of injected embryos,

yet, unlike the reported zebrafish mutations that affect L-R gene expression, the spaw

MO does not appear to disrupt developmental processes other than L-R asymmetry [9].

Whole mount in situ hybridization with foxA3 revealed that gut looping is randomized in

spaw-MO injected embryos (data not shown). More importantly, we found that injection

of the spaw-MO randomizes LPM migration. Out of 60 injected embryos, 22 (37%)

showed the normal pattern of LPM migration (Figure 5.4a), 25 (41%) showed a reversed

pattern of LPM migration (Figure 5.4b), 7 (11%) showed bilateral dorsal migrations

(Figure 5.4c), and 6 (10%) showed bilateral ventro-lateral migrations (Figure 5.4d). The

epithelial structure of the LPM appears normal in spaw-MO injected embryos (Figure

5.4a-d), indicating that it is unlikely that has and nok act as morphogenetic effectors

downstream of the Nodal pathway. These data show that the pattern of LPM migration

and gut looping is regulated by L-R gene expression.
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Discussion

Previous work on vertebrate L-R asymmetry has largely focused on signaling

events that establish and pattern the L-R axis. Little is known, however, about how these

L-R signals ultimately affect cell and tissue behavior to generate organ asymmetry. Our

data suggest that the LPM undergoes a dynamic asymmetric migration that in turn causes

the initial leftward bend in the developing intestine in zebrafish. An alternative model is

that the endoderm autonomously loops to the left and the LPM follows. However, both

wild-type and mutant analyses strongly suggest that the LPM provides the motive force

for looping. For example, the LPM displays marked morphological asymmetry prior to

the leftward displacement of the endoderm in wild-type embryos (Figure 5.1 f).

Furthermore, studies with has and nok mutants show that the gut fails to loop when

asymmetric migration of the LPM is perturbed, and studies with bon mutants show that

asymmetric LPM migration can occur in the absence of endoderm. In the future, it will

be important to investigate the cellular mechanisms that drive asymmetric LPM

morphogenesis. It is possible that the LPM epithelia are actively migratory; alternatively

the medial movement could result from concerted cell shape changes or proliferation

within the plane of the epithelium. It will also be of great interest to understand how

asymmetric gene expression within the LPM regulates the pattern of migration of this

tissue.

86



Materials and Methods

Zebrafish strains

Confocal studies were performed on wild-type, has”, and nok” embryos carrying the

gut GFP transgene [15]. For studies involving genetic ablation of the endoderm, embryos

were obtained from bon” heterozygous females crossed to bon” homozygous males

(gift of Le Trinh), bon” homozygous males were created by injecting wild-type bon

mRNA into homozygous mutant embryos at the 1 to 4 cell stage to rescue embryonic

defects.

Antibody and phalloidin staining

Embryos were fixed for 1 hour at RT in 4% Paraformaldehyde in phosphate buffered

saline (PBS) and embedded in 4% SeaPlaque agarose (BioWhittaker Molecular

Applications). 200 or 300 pum sections were cut with a Leica VT1000S vibratome.

Staining and washes were performed on floating sections in a solution of 0.1% tween, 1%

DMSO and 5% goat serum in PBS. We used the following antibodies: anti-PKCC (C-20)

(Santa Cruz Biotechnology), which recognizes zebrafish aPKC A and Ç, at 1:1000, anti

Nok[8] at 1:800 and a goat anti-rabbit secondary antibody conjugated to rhodamine red-X

(Molecular Probes) at 1:200. To visualize actin, embryos were incubated in Alexa-488

phalloidin (Molecular Probes) at 1:50. Fluorescence images were produced using either a

Leica TCS NT confocal microscope or a Zeiss LSM5 Pascal confocal microscope.
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In situ hybridization

In situ hybridizations were performed as previously described[16]. Embryos older than

24 hpf were raised in 0.003% 1-phenyl-2-thiourea (PTU, Sigma) in egg water to inhibit

pigment production.

Analysis of L-R gene expression

We performed wholemount in situ hybridizations with spaw[9] and pitx2|10] (probe

recognizes both a and c isoforms) on 20-24 somite embryos from has” and nok”

heterozygous crosses in addition to wild-type crosses. All embryos were raised at >

25°C. has” embryos were genotyped as described [5]. To detect nok”, we designed

primers (5’-GGACAGGTTTGCTGGACCT-3',5'-CGTTTGCCTCAGCGTCAC-3’) to

amplify the mutant lesion. We digested the PCR products with Sall (NEB), which

selectively cleaves the wild-type allele, and resolved the bands on a 3.5% agarose gel.

Morpholino knockdown of spaw

The morpholino oligo is targeted against the putative translational start site of the spaw

gene, and has been previously designated spaw-MO1(9]. We injected approximately 6

ng of MO in a volume of 4.6 ml into the yolks of embryos at the 1-4 cell stage.
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Figure 5.1 The LPM undergoes asymmetric migration in the gut looping region.

(a-b) Whole mount in situ hybridization with foxA3 reveals endodermal morphology

prior to (a) and immediately following (b) looping morphogenesis. The looping region

(brackets) lies between the caudal border of the pharyngeal endoderm and the pancreatic

islet. Dorsal views, anterior to the top. (c) Diagram of the looped gut at 30 hpf. Blue

lines indicate position of sections in (g-i). (d) Key for the diagrams in (e”-i’). (e-i)

Transverse sections through the endoderm and LPM. aPKCs (red) show weak expression

in the endoderm but are highly expressed and apically localized in the LPM epithelium.

Most cells are outlined with cortical actin (green) and endodermal cells have weak

cytoplasmic GFP. Dorsal to the top. (e) At 20 hpf the endodermal rod lies in the midline

and both sides of the LPM are at the same dorso-ventral level as the endodermal rod. (f)

At 26 hpf both sides of the LPM have migrated medially. The left LPM is dorsal to the

endoderm and the right LPM is beginning to migrate ventro-laterally. Although the LPM

is markedly asymmetric at this stage, the developing intestine is still in the midline.

Asymmetry seen within the endoderm is due to leftward budding of the liver, which can

be genetically uncoupled from gut looping [15]. (g-h) At 30 hpf the migration is

complete. The developing intestine has shifted to the left and the position of the left

versus the right LPM is highly asymmetric. (i) Posterior to the looping region, the LPM

cells appear squamous and both sides of the LPM are dorsal to the endoderm. (e'-i')

Diagrams of the relative positions of the LPM and endoderm in confocal images (e-i).
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Figure 5.2 Gut looping defects in has and nok mutants.

(a-c) Whole mount in situ hybridization with foxA3 reveals endodermal morphology.

Dorsal views, anterior to the top. In wild-type (a) the gut loops to the left, whereas in has

(b) and nok (c) mutants it remains medial. Brackets denote the looping region. (d-f)

Transverse sections through the gut looping region, dorsal to the top. Most cells are

outlined with cortical actin (green) and endodermal cells contain weak cytoplasmic GFP.

In has (d) and nok (e) mutants, the epithelial structure of the LPM is severely disrupted

and the right LPM fails to undergo the ventro-lateral migration seen in wild-type. aPKCs

are in red (d-e). Red staining is low in has mutants (d) as the aPKC antibody does not

recognize the truncated protein encoded by has”. (f) Nok (red) is weakly expressed

in the endoderm but strongly expressed and apically localized in the LPM. All images at

30 hpf.
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Table 5.1. L-R gene expression in the LPM appears to be normal in has and nok mutants.

The table shows the percentage of embryos that had L-R gene expression either in the left

LPM, the right LPM, bilaterally in the LPM, or absent from the LPM. PCR genotyping

of a subset of the embryos from the has and nok crosses showed that aberrant expression

of spaw or pitx2 did not segregate with either mutation (data not shown).

Total Left (%) Right (%) Bilateral (%) Absent (%)

Wt spaw 462 96.97 0.65 1.95 0.43

pitz2 368 92.66 3.53 2.45 1.36

has spaw 471 96.6 0.64 2.34 0.42

pitx2 417 95.2 0.96 1.92 1.92

nok spaw 439 92.03 2.05 4.78 1.14

pitx2 417 91.96 3.35 2.90 1.79
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Figure 5.3 Asymmetric LPM migration can occur in the absence of endoderm.

(a-d) Whole mount in situ hybridization with foxA3. Brackets denote the gut looping

region. Dorsal views, anterior to the top. (a) wild-type. (b-d) Endoderm is greatly

reduced in bon mutants. The 74 mutants scored fell into three classes: (b) those with a

reduced, but continuous stretch of endoderm in the gut looping region (14%), (c) those

with small, discontinuous, patches of endoderm (red arrowhead) in the gut looping region

(8%), (d) and those with a complete absence of endoderm in the gut looping region

(78%). (e-f) Transverse sections through the gut looping region of bon mutants, dorsal

to the top. actin (green), aPKCs (red). We examined a single transverse section in 44

randomly selected bon mutants and found that 35 (80%) showed clear asymmetric

migration of the LPM past the midline (e-f). Out of these 35 sections, 12 (34%)

contained endoderm, but the amount was significantly reduced (e); 23 (66%) showed

asymmetric LPM migration in the complete absence of endoderm (f). In 34 out of the 35

sections that showed asymmetric LPM migration the left LPM had migrated dorsal to the

right LPM (e”-f') Diagrams of the relative positions of the LPM and endoderm in

confocal images (e-f). All images at 30 hpf. Dotted lines mark the midline.
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Figure 5.3
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Figure 5.4 Reducing spaw function randomizes LPM migration.

(a-d) Transverse sections through the gut looping region at 30 hpf, dorsal to the top.

Sections are stained as in Fig. 5.1. Out of 60 injected embryos, 22 showed the normal

pattern of LPM migration: left dorsal, right ventro-lateral (a) 25 showed a reversed

pattern of LPM migration: right dorsal, left ventro-lateral (b) 7 had both sides of the

LPM migrate dorsally (c) and 6 had both sides of the LPM migrate ventro-laterally (d).



Figure 5.4
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A two step model for leftward
budding of the liver

Many vertebrate organs display morphological asymmetry with respect to the L-R

axis. Among different organs and organ systems, this asymmetry can take many forms.

For instance, discrete organs such as the liver and pancreas can adopt positions on one

side of the midline. Organs that have a tube-like structure such as the heart and intestine

undergo directional looping or coiling. Bilaterally paired structures such as the lungs or

habenular nuclei of the brain can show morphological differences on the left vs. the right

and in the case of some blood vessels, there can be selective degeneration on one side of

the embryo [1].

The development of the L-R axis has been described as a three-step process: (1)

initial break in symmetry; (2) establishment of asymmetric gene expression; and (3)

transfer of positional information to developing organs [2]. The majority of what we

understand about L-R asymmetry falls under the first two steps. The initial break in

symmetry appears to involve the rotation of localized monocillia, which eventually leads

to the asymmetric expression of Nodal pathway genes in the left lateral plate mesoderm

(LPM) [1, 3]. Little is known, however, about the mechanisms that underlie the transfer

of positional information from the LPM to the developing organs.

Given the variety of ways in which organs display L-R asymmetry, a variety of

mechanisms may be used to impart L-R positional information to individual organs. In
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chapter 5, we showed that gut looping in zebrafish results from a dynamic asymmetric

migration of the LPM that displaces the gut endoderm to the left. In zebrafish, all of the

digestive organs originate from a solid rod of endodermal cells that forms at the ventral

midline during mid to late somitogenesis [4]. Prior to gut looping, the U-shaped epithelia

of the LPM lie on either side of the endodermal rod (Figure 6.1a). During looping,

however, both sides of the LPM migrate medially, but the left side moves dorsal to the

endoderm, while the right side undergoes a ventro-lateral migration directly abutting the

endoderm (Figure 6.1b). In the case of gut looping, L-R positional information within

the LPM (i.e. asymmetric gene expression) is transferred to the gut endoderm indirectly

through the asymmetric morphogenesis of the LPM itself.

It is likely, however, that a different mechanism is used to impart L-R positional

information during liver morphogenesis. As the gut is looping, the anterior two thirds of

the endoderm in the looping region appears thicker than more posterior regions of the

developing intestine. This aggregation of cells marks the origin of the liver, which buds

from the ventral side of the intestinal rod toward the left side of the embryo [5].

Although gut looping and liver budding occur with close temporal and spatial proximity,

studies employing morpholino-knockdown of the no tail (ntl) gene have shown that these

morphogenetic processes can be genetically uncoupled [5]. This result, in turn, suggests

that the liver and gut may receive L-R positional information in different ways.

In this chapter we describe a two-step model for L-R morphogenesis of the liver

in zebrafish. We show that the leftward budding of hepatocytes from the endodermal rod

appears to be the first occurrence of L-R asymmetry in the gut and that this occurs prior

to any morphological asymmetry in the neighboring LPM. We further show that the

101



asymmetric migration of the LPM then reinforces the leftward position of the liver by

inducing a clockwise rotation in the endoderm and creating a physical barrier with the

right LPM. This model appears to explain the complex laterality phenotypes observed in

the digestive organs of several zebrafish mutants. Furthermore, this model points to at

least two strategies for transferring positional information from the LPM to the

endodermal organs. Genes expressed asymmetrically within the LPM first act non-cell

autonomously to provide a signal for the initial budding of hepatocytes then act

autonomously within the LPM to drive gut looping and reinforce the leftward position of

the liver.
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Results

Relationship between liver budding and gut looping

In zebrafish, the relative positions and timing of liver budding and gut looping are

very similar, and yet genetic manipulations have suggested that these two events can be

uncoupled [5]. To further investigate the relationship between these morphogenetic

processes, we examined transverse sections through the liver region at 24 hpf. These

sections revealed that the liver buds to the left prior to the appearance of morphological

asymmetry in the LPM. Figure 6.1a shows that, while the intestinal primordium is still in

the midline and the LPM is symmetrical, presumptive hepatocytes appear to grow out in

close apposition to the basal side of the left LPM epithelium. This observation suggests

that the leftward budding of the liver is the first break in morphological L-R symmetry in

the digestive system and supports the prior assertion that liver position is independent of

gut looping.

Although LPM migration does not appear to be required for the initial leftward

budding of the liver, the relative positions of the LPM and endoderm later in

development suggest that LPM migration may play a role in reinforcing the leftward

position of the liver. By comparing transverse sections through the liver region at 24 and

30 hpf, we observed that the endoderm appears to undergo a clockwise rotation

concurrent with the leftward displacement of gut looping. At 24 hpf a right angle (dotted

line) can been superimposed over the future alimentary canal and liver (Figure 6.1a). The

same right angle can be drawn over these structures at 30 hpf, but now the angle is

rotated by approximately 45 degrees (Figure 6.1b). These data suggest that the

asymmetric migration of the LPM may rotate the endoderm as it is being displaced to the
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left. This rotation would, in turn, shift the hepatocytes from a position predominantly

ventral to the developing intestine (Figure 6.1a) to a position predominantly to the left of

this structure (Figure 6.1b).

The morphology of the right LPM in the liver region following its asymmetric

migration suggests that the LPM may also play a second role in reinforcing the leftward

position of the liver. The ventro-lateral migration path of the right LPM varies at

different A-P levels (data not shown) within the looping region. Adjacent to the liver, the

migration path of the right LPM is more ventral than lateral (Figure 6.1b) and the

resulting morphology of the right LPM appears to create a physical barrier that could help

to maintain the liver on the left as it grows (compare liver size in Figure 6.1 a and b).

The comparison of LPM and liver morphologies between 24 and 30 hpf suggests

a two-step model for the leftward positioning of the liver (Figure 6.2). In the first step,

asymmetric expression of the Nodal pathway genes within the left LPM first acts non-cell

autonomously to provide a signal for the initial leftward budding of the hepatocytes. In

the second step, these same signals act cell autonomously within the LPM to direct its

asymmetric migration. The asymmetric LPM migration rotates the endoderm, such that

the hepatocytes shift from the ventral to the left side of the developing intestine, and the

ventral migration of the right LPM creates a physical barrier that helps restrict the liver to

the left as it grows.

Initial hepatocyte budding is normal in has and nok mutants

To investigate the validity of the two-step model for L-R liver morphogenesis, we

have characterized several mutants with defects in liver laterality. heart and soul (has)

and nagie oko (nok) are two mutations that are known to disrupt epithelial polarity in
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zebrafish [6, 7]. has and nok both have symmetrical livers and unlooped guts at 48 hpf

([6]; Figure 6.3b, c and Table 6.1). In these mutants L-R gene expression appears to be

normal; the gut fails to loop because a defect in the epithelial structure of the LPM causes

both sides to migrate dorsal to the endoderm (Chapter 5).

Since L-R gene expression appears to be unaffected in has and nok, our model

predicts that initial leftward liver budding should be normal in these mutants. We expect

that transverse sections through the liver of a has or nok mutants at 24 hpf would be

indistinguishable from wild-type (Figure 6.1a), however, this experiment has not yet been

done (see future directions). We have, however, used wholemount in situ hybridization

with foxA3 to examine endodermal morphology between 30 and 32 hpf. We were unable

to score the liver using this method in 27% of the mutants examined (see future

directions), but in 2 70% of the mutants with scorable livers, there was a distinct leftward

bias to the liver (Figure 6.3e, f and Table 6.1). We have observed a similar leftward bias

to the liver in transverse sections of has and nok mutants at 30 hpf (Figure 5.3d, e and

data not shown). These data suggest that the initial leftward budding of the liver is

normal in the majority of has and nok mutants.

To determine how the liver becomes bilateral in has and nok mutants by 48 hpf,

we next examined the aspects of liver laterality that appear to depend on asymmetric

LPM migration. As we have previously reported, transverse sections through the liver

region in has and nok mutants at 30 hpf show a strong disruption in the epithelial

structure of the LPM that results in both sides migrating dorsal to the endoderm. We

have reexamined these sections to assess the affect of bilateral dorsal migrations on gut

rotation and have found that endodermal rotation occurs in has and nok mutants but is
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reduced compared to wild-type (data not shown). These data indicate that the dorsal

migration of the left LPM, which is relatively unaffected in has and nok mutants, still

induces some endodermal rotation. It is likely, therefore, that the bilateral livers observed

in these mutants at 48 hpf result from the loss of the barrier function normally provided

by the ventro-lateral migration of the right LPM.

Early liver budding is bilateral in ntl mutants

The observation that early leftward liver budding is typically normal in has and

nok mutants strengthens our hypothesis that asymmetric gene expression within the LPM

acts non-cell autonomously to provide the early directional cue for liver budding. To

further investigate the relationship between L-R gene expression and liver

morphogenesis, we examined this process in no tail (ntl) mutants. The ntl mutation,

which disrupts the zebrafish homologue of Brachyury [8], causes defects in notochord

differentiation that lead to bilateral LPM expression of Nodal pathway genes such as

spaw [9] and pitx2 [10, 11]. Similar to has and nok mutants, the liver is symmetrical in

ntl mutants by 48 hpf, however, gut looping occurs, but is randomized ([5]; Figure 6.4b

and Table 6.1).

If the initital direction of liver budding is directly controlled by signals from the

adjacent LPM, early hepatocytes should bud bilaterally in ntl mutants. Ideally we would

like to examine transverse sections through the liver of ntl mutants at 24 hpf, as we

expect that this would clearly show bilateral outgrowth, however, this experiment has not

yet been done (see future directions). We have, however, examined liver budding in ntl

mutants using wholemount in situ hybridization with foxA3 between 30 and 32 hpf.

Among the 46 mutant embryos examined, 89% showed bilateral livers at this stage
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(Figure 6.4e,f and Table 6.1), indicating that the initial direction of liver budding

correlates with the bilateral pattern of L-R gene expression in ntl mutants.

To gain a better understanding of the effect of asymmetric LPM migration on gut

and liver laterality in ntl mutants, we next examined transverse sections through the liver

region at 30 hpf. Consistent with the previous observation that gut looping is randomized

when Ntl function is reduced [5], this experiment revealed that the ntl mutation

randomizes the pattern of LPM migration. Out of 17 mutant embryos, 6 showed the

normal pattern of LPM migration (Fig. 6.4g), 6 showed a reversed pattern of migration

(Fig. 6.4h), 3 showed bilateral dorsal migrations, and 2 showed bilateral ventro-lateral

migrations (data not shown). Although asymmetric LPM migration does occur in ntl

mutants, the early bilateral outgrowth of hepatocytes partially blocks the ventro-lateral

migration of the LPM, overriding its proposed barrier function and often leading to a

rounded morphology in this structure (Figure 6.4g, h). Furthermore, the partial block in

LPM migration appears to reduce the amount of endodermal rotation in ntl mutants as

compared to wild-type (Figure 6.4g, h).

Liver and gut laterality are coordinated in sur mutants

Our studies of the has, nok and ntl mutants have shown that the initial pattern of

hepatocyte outgrowth appears to correlate with the pattern of L-R gene expression in the

adjacent LPM. We next wanted to investigate L-R liver morphogenesis in the absence of

L-R gene expression in the LPM. The schmalspur (sur) mutation disrupts the

fast 1/foxH1 gene, which acts as a transcription factor in the Nodal signaling pathway [12,

13]. Similar to injection of the spaw-MO [9], the sur mutation abolishes all known L-R

gene expression within the LPM [11]. We examined endodermal morphology in sur
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mutants at 48 hpf (n=26) and found that gut looping is randomized (Figure 6.5 a-d).

Intriguingly, the position of the liver correlated with the position of the gut in all cases

(Figure 6.5 a-d). These data indicate that there is coordination between the L-R

morphogenesis of the liver and gut in the absence of L-R gene expression in the LPM.

Our model predicts that there should be no directionality to the initial budding of

the liver in the absence of L-R gene expression in the LPM. In fact, we think that it is

likely that the hepatocytes simply bud ventrally from the endodermal rod, however,

transverse sections at 24 hpf will be required to test this hypothesis (see future

directions). Previous work with the spaw-MO indicates that asymmetric LPM migration

occurs in the absence of L-R gene expression, but is randomized (Chapter 5). Therefore,

later aspects of liver laterality that depend on asymmetric LPM migration likely do occur

in sur mutants and could override the lack of direction found in the initial stage of liver

morphogenesis. The complete dependence of both liver and gut laterality on asymmetric

LPM migration would then explain the coordination between these organs observed in

Sur mutants.
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Discussion

We have used wild-type and mutant analyses to investigate L-R liver

morphogenesis in zebrafish. Our results indicate that the leftward positioning of the liver

in zebrafish is a two-step process. The first step appears to be independent of asymmetric

LPM migration, as initial leftward liver budding occurs when the LPM is still symmetric.

In the second step, the asymmetric migration of the LPM reinforces leftward liver

budding by rotating the gut endoderm and providing a physical barrier that may restrict

the liver to the left as it grows. This two step model appears to explain the complex

laterality phenotypes observed in the digestive organs of several zebrafish mutants

(Figure 6.6). Furthermore, when combined with our previous work showing that

asymmetric LPM migration induces the first leftward bend in the developing intestine,

these studies show that a variety of mechanisms are used to transmit L-R positional

information from the LPM to individual organs undergoing L-R morphogenesis.

L-R positional information can be transferred to endodermal organs

through signaling from the LPM

We have shown that, in wild-type embryos, the initial leftward budding of the

hepatocytes from the endodermal rod occurs prior to any morphological asymmetry in the

LPM. This result indicates that asymmetric gene expression within the left LPM likely

controls a signal from the LPM to the endoderm that regulates the initial direction of liver

outgrowth. This hypothesis is supported by our observation that, in three different

mutants that show bilateral livers at 48 hpf, the initial direction of liver outgrowth

correlated with the pattern of L-R gene expression. In has and nok mutants, L-R gene

expression appears unaffected and the liver initially shows normal leftward budding in

109



the majority of mutants examined. In ntl mutants, however, the L-R genes are expressed

bilaterally and the early hepatocytes bud to both sides. Although we do not yet have

direct evidence, we speculate that in the absence of L-R gene expression in the LPM, the

early hepatocytes will show no direction and will simply bud ventrally from the

endodermal rod.

The close apposition of the hepatocytes to the basal surface of the left LPM

during early budding may tell us something about the nature of the signal from the LPM.

It is possible that expression of Nodal pathway genes within the left LPM leads to the

deposition of a guidance cue in the basal lamina of this columnar epithelium. As the

earliest hepatocytes emerge from the ventral side of the endodermal rod, they would

recognize this guidance cue and begin to migrate along the basal surface of the

epithelium that presented it. Alternatively, there could be a diffusible signal from the left

LPM, perhaps even Nodal itself, which regulates the direction of liver budding. The

Stainier lab has recently completed a screen for mutations affecting liver morphogenesis

and it will be of great interest to see if any of these mutants reveal the molecular nature of

the signal from the LPM to the liver.

L-R positional information can be transferred to endodermal organs

through LPM morphogenesis

The L-R genes also appear to act cell autonomously within the LPM to regulate

the asymmetric migration and morphogenesis of this tissue. We have previously shown

that the asymmetric migration of the LPM appears to provide the motive force to displace

the developing intestine to the left during gut looping (Chapter 5). In this report, we

describe a second role for asymmetric LPM migration - reinforcing the leftward position
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of the liver. In both cases L-R positional information contained within the LPM in the

form of asymmetrically expressed genes is transferred to the endoderm indirectly through

morphogenesis of the LPM.

In addition to driving the L-R morphogenesis of the gut and liver, the asymmetric

migration of the LPM may also contribute to the lateral morphogenesis of the pancreas.

In zebrafish the pancreas arises from the fusion of two buds from the gut endoderm [14].

The posterior bud, which corresponds to the pancreatic islet, sits on the dorsal aspect of

the endodermal rod prior to gut looping, but is found on the right immediately following

looping morphogenesis [14]. We have shown that asymmetric migration of the LPM

induces a clockwise rotation in the endoderm that shifts the position of the early liver

from a position predominantly ventral to the developing intestine to a position

predominantly to the left of the developing intestine. It is likely that this endodermal

rotation likewise shifts the position of the posterior pancreatic bud from the dorsal side of

the gut endoderm to the right. This model is consistent with what is seen in mammals

where early leftward bending and rotation of the duodenum brings the two pancreatic

buds together and places the pancreas on the right [15].

The liver and LPM respond differently to L-R positional information

In this report we have used wild-type and mutant analyses to described two

strategies for transmitting L-R positional information from the LPM to the endoderm.

Importantly, these data have also revealed that the LPM and liver respond to L-R

positional information in different ways. The liver appears to respond to the presence of

Nodal activity within the LPM. If the Nodal pathway is active on the left, the liver buds

to the left; if it is active on both sides, the liver buds bilaterally; and if Nodal activity is
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missing from the LPM, we speculate that the liver buds ventrally. These data suggest

that Nodal activity within the LPM provides an instructive cue for the directional budding

of the hepatocytes.

The LPM, however, appears to respond to a difference in Nodal signaling

between the left and right sides. When Nodal expression is restricted to the left,

asymmetric LPM migration is biased such that the left LPM migrates dorsal to the

endoderm, while the right LPM migrates ventro-laterally. However, if Nodal activity is

the same on both sides (either bilateral or absent), the pattern of LPM migration is

randomized. It will be of great interest in the future to investigate the cellular

mechanisms that underlie these distinct modes employed by different tissues to interpret

L-R positional information.

Asymmetric gene expression and heart morphogenesis

The hypothesis that asymmetric gene expression within the LPM acts cell

autonomously within this tissue to regulate its morphogenesis is likely to also be

important when thinking about L-R morphogenesis of the heart. The heart is the first

organ to display morphological asymmetry in vertebrates. In all vertebrates, the primitive

heart tube loops to the right, but in zebrafish there is also an earlier asymmetry, termed

cardiac tilting [16] or jogging [17], in which heart tube elongation occurs with a distinct

leftward bias. The heart is a derivative of the anterior LPM and, just prior to cardiac

jogging, the myocardial precursors reside within U-shaped epithelial structures that are

remarkably similar to those observed in the LPM of the gut looping region (S. H-B and

Le Trinh unpublished observations). Like the LPM adjacent to the gut, the U-shaped

epithelia that contribute to the heart undergo a medial migration and show asymmetric
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expression of Nodal pathway genes. It will be of great interest, therefore, to further

investigate the level of similarity between the asymmetric LPM morphogenesis that

drives gut looping and the LPM morphogenesis that underlies cardiac tilting/jogging.
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Future Directions

This work on L-R liver morphogenesis in zebrafish is preliminary and will require

a number of experiments before it can be submitted for publication. A new graduate

student in the lab, Chantilly Munson, plans to complete the experiments detailed below

so that a paper can be submitted sometime within the next year.

The first and most important thing that will need to be done is to examine

transverse sections of has, nok, ntl, and spaw-MO injected embryos (sur), at 24 hpf to

determine the direction of initial liver budding in these mutants. Ideally, we would like

to have a liver-specific marker to label the hepatocytes at this stage, but we currently do

not have one available. It is fairly easy to identify hepatocytes by position and

morphology, however. I have gleaned some preliminary information from some of these

mutants by examining wholemount embryos stained with foxA3 at 30-32 hpf, but these

experiments have many caveats. Much of the liver is ventral to the developing intestine,

even after looping/rotation, therefore it is often difficult to score the direction of liver

budding when the entire gut endoderm is stained. Put simply, I do not believe that one

can rigorously score liver position under these conditions and may remove these data

prior to publication. These experiments were also performed at a relatively late stage

when asymmetric LPM migration was complete, which complicates our analysis given

that asymmetric LPM migration also plays a role in positioning the liver on the left.

Transverse sections through the liver region of has and nok mutants at 24 hpf may

also provide evidence to support our hypothesis that a guidance cue for liver budding is

deposited in the basal lamina of the left LPM. During my examination of embryos

stained with foxas at 30-32 hpf, I found that I was not able to see any directional liver
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outgrowth in 27% of the has and nok mutants examined. This phenomenon could be due

to a delay in liver morphogenesis in these mutants. Alternatively, it could indicate that

the liver had budded ventrally and was being obscured from view by the overlying

intestine. The epithelial polarity defect in the LPM of has and nok mutants is highly

variable and can range from a relatively normal looking epithelium, to an disorganized

array of rounded-up cells. When examining transverse sections at 24 hpf, it will be most

interesting to determine whether initial leftward budding of the liver in these mutants

occurs only when the left LPM epithelium is relatively intact. If there is a guidance cue

on the basal surface of the left LPM, it is likely that proper apico-basal polarity is

required for the directed secretion of this signal. In cases where the polarity of the left

LPM is severely disrupted, there may be no localized guidance cue and the liver could

bud ventrally.

Within this chapter, I have used the sur mutation to examine liver morphogenesis

in the absence of L-R gene expression in the LPM. Unfortunately, it is nearly impossible

to identify sur mutants before 48 hpf, making the experiments involving transverse

sections at 24 hpf quite difficult. For the paper, it would be best to use the spaw-MO to

eliminate L-R gene expression in the LPM. In general, I have always believed that it is

better to use mutants over morpholinos because it is very difficult to determine the

developmental age of an injected embryo. However, the difficulty in scoring sur mutants

makes this case exceptional.

Finally, there are a few cases in the current data set where we might want to

increase the numbers of embryos scored. In particular, we may wish to examine more

transverse sections at 30 hpf of has, nok and ntl mutants.
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Materials and Methods

Zebrafish strains

Confocal studies were performed on wild-type, has”, nok”, and nt■ ” embryos

carrying the gut GFP transgene. Studies with the sur mutant used the m768 allele.

Antibody and phalloidin staining

Embryos were fixed for 1 hour at RT in 4% Paraformaldehyde in phosphate buffered

saline (PBS) and embedded in 4% SeaPlaque agarose (BioWhittaker Molecular

Applications). 200 or 300 pum sections were cut with a Leica VT1000S vibratome.

Staining and washes were performed on floating sections in a solution of 0.1% tween, 1%

DMSO and 5% goat serum in PBS. We used the following antibodies: anti-PKC. (C-20)

(Santa Cruz Biotechnology), which recognizes zebrafish aPKC A and Ç, at 1:1000 and a

goat anti-rabbit secondary antibody conjugated to rhodamine red-X (Molecular Probes) at

1:200. To visualize actin, embryos were incubated in Alexa-488 phalloidin (Molecular

Probes) at 1:50. Fluorescence images were produced using a Leica TCS NT confocal

microscope.

In situ hybridization

In situ hybridizations were performed as previously described. Embryos older than 24

hpf were raised in 0.003% 1-phenyl-2-thiourea (PTU, Sigma) in egg water to inhibit

pigment production.
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Figure 6.1 The relationship between liver budding and gut looping

(a-b) Transverse sections through the liver region. The LPM shows apical localization of

aPKCs (red). Most cells are outlined with cortical actin (green) and endodermal cells

have weak cytoplasmic GFP. Dorsal to the top. (a) At 24 hpf hepatocytes can be seen

budding from the ventral side of the future alimentary canal along the basal side of the

left LPM epithelium. (b) By 30 hpf the endoderm has rotated, such that the hepatocytes

are now predominantly to the left of the future alimentary canal. Compare dotted lines in

(a) and (b). (a’-b’) Diagrams of the sections in (a) and (b). (c) Key for the diagrams in

(a’) and (b’).
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Figure 6.3 Liver position in has and nok mutants

Wholemount in situ hybridization with foxA3. (a-c) Endodermal morphology at 48 hpf.

In wild-type embryos the liver is on the left and the intestine loops to the left (a). In has

(b) and nok (c) mutants the liver is symmetrical and the intestine is in the midline. (d-f)

Endodermal morphology at 30–32 hpf. Black arrowheads mark position of the liver. In

wild-type embryos the liver and developing intestine are both on the left (d). In 2 70% of

has (e) and nok (f) mutants, the liver has budded to the left even though the gut has not

looped (e). All images are dorsal views, anterior to the top.
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Figure 6.4 Liver position in ntl mutants

(a-f) Wholemount in situ hybridization with foxA3. Dorsal views, anterior to the top. (a-

c) Endodermal morphology at 48 hpf. In wild-type embryos the liver is on the left and

the intestine loops to the left (a). In ntl mutants the liver is symmetrical and gut looping

is randomized (b-c). (d-f) Endodermal morphology at 30–32 hpf. Black arrowheads

mark position of the liver. In wild-type embryos the liver and developing intestine are

both on the left (d). In 89% of ntl mutants, initial liver budding was bilateral (e-f). In (e)

the gut is looped to the left and in (f) the gut is looped to the right. (g-h) Transverse

sections through the liver region of ntl mutants at 30 hpf. The LPM shows apical

localization of aPKCs (red). Most cells are outlined with cortical actin (green) and

endodermal cells have weak cytoplasmic GFP. Dorsal to the top. In ntl mutants, the

early bilateral outgrowth of the liver partially impedes the ventro-lateral LPM migration,

blocking its proposed barrier function and resulting in reduced endoderm rotation. (g) ntl

mutant with normal LPM migration pattern — left dorsal, right ventro-lateral. (h)ntl

mutant with reversed LPM migration pattern — right dorsal, left ventro-lateral. (g’-h’)

Diagrams of the sections in (g) and (h).
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Table 6.1 Liver position in has, nok and ntl mutants.

Total Left (%) Bilateral (%) Right (%)

has 30–32 hpf mut 46 72 28 O

Wt 61 95 2 3

48 hpf mut 54 2 96 2

Wt 48 96 2 2

nok 30–32 hpf mut 48 70 28 O

Wt 74 91 0 9

48 hpf mut 59 13 83 4

Wt 65 85 5 10

ntl 30-32 hpf mut 46 O 89 11

Wt 56 82 O 18

48 hpf mut 52 O 98 2

Wt 48 98 2 0

Note: could not score a liver in 27% of 30-32 hpf has and nok mutants examined.
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Figure 6.5 Liver position in sur mutants

(a-d) Wholemount in situ hybridization with foxA3 reveals endodermal morphology at

48hpf Dorsal views, anterior to the top. (a) In wild-type embryos the liver is on the left

and the intestine loops to the left. (b-d) In sur mutants, the gut can loop to the left (b),

loop to the right (d), or remain in the midline (c).

125



Figure 6.5
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Figure 6.6 Summary of mutant phenotypes

(a) In wild-type embryos, genes such as spaw and pitx2 are asymmetrically

expressed in the left LPM. The liver buds to the left prior to any morphological

asymmetry in the LPM and then asymmetric LPM morphogenesis reinforces the leftward

position of the liver. (b) In has and nok mutants asymmetric gene expression and initial

liver budding both appear to be normal. However, a defect in the epithelial structure of

the LPM perturbs its asymmetric morphogenesis and abolishes the presumed barrier

function of the right LPM, allowing the liver to spread to both sides as it grows. (c) In ntl

mutants, spaw and pitc2 are expressed bilaterally and the liver initially buds to both sides.

Although asymmetric LPM morphogenesis does occur the early budding of hepatocytes

to both sides appears to override the presumed barrier function of the right LPM, leading

to a symmetrical liver at 48 hpf. (d) In sur mutants and spaw-MO injected embryos,

expression of spaw and pitx2 is missing from the LPM. We presume that the hepatocytes

bud ventrally under these circumstances, but this is not yet known. Later aspects of liver

laterality that depend on asymmetric LPM morphogenesis then override the initial lack of

liver direction, leading to the coordination of liver and intestinal position at 48 hpf.
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L-R morphogenetic defects in the digestive organs

of hands off mutants

Tissue recombination experiments in chick and mouse have suggested that the

cardiac mesoderm plays an inductive role in liver formation [1]. Elke Ober decided to

test this hypothesis in zebrafish by examining liver formation in hands off (han) mutants.

han encodes the bhLH transcription factor hand2, and the mutation leads to defects in

the differentiation, patterning and morphogenesis of the anterior lateral plate mesoderm

(LPM), including the cardiac precursors [2]. When Elke examined liver formation in han

mutants, she found no defect in liver induction, but rather observed defects in the L-R

morphogenesis of the digestive organs. It is likely that this laterality phenotype is due to

defects within the LPM of the gut looping region, as hand2 is expressed throughout the

LPM during somitogenesis stages and is never expressed in the endoderm ([2] and

unpublished observations).

In this appendix, I provide a more detailed description of the laterality defects in

han mutants, which include: unlooped guts, randomized liver position and the reduction

or absence of L-R gene expression in the LPM. This particular combination of organ

laterality and gene expression defects is unique among the L-R asymmetry mutants we

have investigated to date. We further show that the pattern of LPM migration appears to

vary at different anterior-posterior (A-P) levels within the gut looping region in han

mutants. LPM migration is randomized adjacent to the liver, however, posterior to the

liver region, both sides of the LPM migrate dorsal to the endoderm. These preliminary

tº
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data suggest that the han mutation may perturb asymmetric organ formation in two ways:

by disrupting L-R gene expression in the LPM and by affecting LPM morphogenesis K

downstream of L-R gene expression.
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Results

han mutants have defects in L-R organ morphogenesis

To further characterize the defect in L-R organ morphogenesis that Elke observed

in han mutants, we have used wholemount in situ hybridization to examine endodermal

morphology in han mutants at 48 hpf. In han mutants, the intestine is always in the

midline, but liver position appears to be randomized. Out of 24 mutants examined, 10

(42%) showed symmetrical livers (Figure A1.1a), 6 (25%) had the liver on the left

(Figure A1.1b), 5 (21%) had the liver on the right (Figure A1.1c), and 3 (12%) showed a

“restricted liver” phenotype (Figure A1.1d), where the liver remains close to the gut tube.

As is typical when the gut fails to loop, the pancreatic islet in han mutants remains dorsal

to the intestine and the anterior bud is duplicated.

han mutants have defects in L-R gene expression

The observation that han mutants have midline gut tubes and randomized liver

position makes han unique among previously described laterality mutants in zebrafish.

Therefore, we next wanted to investigate whether han also causes defects in asymmetric

gene expression in the LPM. We examined two genes that are asymmetrically expressed

within the left LPM of the gut looping region, the Nodal gene southpaw (spaw) [3] and

the transcription factor gene pitx2 [4]. We found that the expression of both genes was

missing from the LPM in approximately 25% of embryos derived from parents

heterozygous for han (Table A1.1). These data suggested that han mutants may lack L-R

gene expression in the LPM.

To further investigate whether han mutants lack asymmetric gene expression in

the LPM, we performed additional experiments on some of the pitx2-stained embryos
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described above. We PCR genotyped one of the han clutches. This experiment did not

work well, but of the 19 embryos that appeared to be han mutants by PCR genotyping, 12

lacked pitx2 expression (data not shown). Another clutch was stained both with pitx2 and

cmlc2. The presence of cmlc2 revealed the cardiac defect in han mutants and allowed the

mutant embryos to be unambiguously sorted from their wild-type siblings. Of the 37 han

mutants examined, 73% had a complete absence of pitx2 expression in the LPM and 24%

showed reduced left-sided expression of pitx2 (data not shown). Together these data

indicate that there is some variability in the L-R gene expression defect in han mutants; it

appears that L-R gene expression can be either absent or reduced.

han mutants show A-P differences in the pattern of LPM migration

Given that the asymmetric migration of the LPM is required both for gut looping

and the left-sided position of the liver, we next wanted to investigate the pattern of LPM

migration in han mutants. We examined a single transverse section through the gut

looping region in 18 han mutants at 30 hpf. In 11 of these mutants, the transverse

sections occurred at the level of the liver and the pattern of LPM migration appeared to

be randomized; 4 of the sections showed asymmetric LPM migrations (Figure A1.1e), 1

showed bilateral ventro-lateral migrations (data not shown), and 4 showed bilateral dorsal

migrations (Figure A1.1 f). The remaining 7 sections cut through more posterior levels of

the looping region, where the endoderm predominantly contributes to the intestinal bulb.

In all of these sections the LPM showed bilateral dorsal migrations (Figure A1.1 g).

These data suggest that the pattern of LPM migration varies at different anterior-posterior

(A-P) levels within the gut looping region.
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Discussion

A-P regionalization within the LPM of the gut looping region

Our preliminary studies of han mutants indicate that the han mutation causes

variations in the pattern of LPM migration at different A-P levels within the gut looping

region[1]. The ability of this mutation to affect discrete regions of the asymmetrically

migrating LPM in different ways may reflect inherent A-P regionalization in wild-type

embryos. In general there is a high degree of A-P regionalization within the LPM that is

evidenced by differences in gene expression and/or cell morphology. We have

previously shown that the LPM in the gut looping region is distinguishable from the

surrounding LPM by its ability to form columnar cells that undergo asymmetric medial

migration. These new data suggest that there may be further subdivisions within this

already distinct population of LPM cells.

The hypothesis that there may be subpopulations of LPM cells within the looping

region is consistent with unpublished observations we have made of LPM morphology in

transverse sections of wild-type embryos at 30 hpf. Conceptually, the endoderm in the

looping region can be broken down into two regions: an anterior region that gives rise to

liver and intestinal bulb and a more posterior region that contributes almost exclusively to

the intestinal bulb. It is predominantly the behavior of the right LPM that varies between

these two regions. Adjacent to the liver, the medial migration of the right LPM is more

ventral than lateral and the dorsal side of the right LPM is predominantly contacts the

endoderm over the length of its migratory path (Figures 5.1 g and 6.1a). In contrast, the

medial migration of the right LPM in more posterior regions is more lateral than ventral
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and the dorsal side of the LPM predominantly contacts the left LPM over the length of its

migratory path (Figure 5.1.h).

These differences in morphology of the right LPM between the liver region and

the intestinal region may, in turn, correspond to the two roles that we have described for

asymmetric LPM migration during L-R morphogenesis of the endodermal organs.

Within the liver region, there is very little lateral displacement of the endoderm that will

give rise to the alimentary canal (Figures 5.1 g and 6.1a), indicating that the deep ventral

migration of the right LPM in this region may predominantly function to reinforce

leftward liver budding. It is in the more posterior region that we observe the most

significant displacement of the future alimentary canal from the midline (Figure 5.1.h).

Therefore, we hypothesize that it is the lateral migration of the right LPM in this more

posterior region that is predominantly responsible for gut looping.

In fact, the phenotypes observed in the digestive organs of han mutants support

this model for different A-P functions of the LPM in the looping region. The gut fails to

loop in 100% of han mutants examined. Importantly, all han mutants also show bilateral

dorsal LPM migrations in the posterior portion of the looping region. Bilateral dorsal

migrations have also been associated with midline gut tubes in has and nok mutants.

Asymmetric LPM migration does occur in the liver region of some mutants, yet this is

clearly not sufficient to displace the gut endoderm to the left. It is likely that the mutants

that show asymmetric migration in the liver region correspond to the mutants that have

livers on the left or right side at 48 hpf.
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han disrupts asymmetric gene expression in the LPM

We have shown that the majority of han mutants fail to express spaw (as well as

its downstream effector pitx2) in the LPM adjacent to the gut looping region. Zebrafish

mutants that show defects in L-R gene expression tend to fall into one or more of three

categories: mutations that disrupt Kuppfer's vesicle (presumed location of the monocilia

involved in the establishment of L-R asymmetry in zebrafish), mutations that disrupt the

midline, and mutations that disrupt components of the nodal signaling pathway [3,5,6].

Given that han expression has only been reported in derivatives of the LPM and neural

crest [2], we find it highly unlikely that han falls into either of the first two categories.

However, it is reasonable to speculate that han function may be required to facilitate

nodal signaling within the LPM.

How might a transcription factor that is expressed bilaterally within the LPM

regulate asymmetric gene expression? Two components of the nodal signaling pathway,

one eyed pinhead (oep) [7] and schmalspur (sur)/foxh1 [8], show bilateral expression in

the LPM prior to the onset of left-sided spaw expression [3]. Mutation of either oep or

sur abolishes L-R gene expression in the LPM, likely due to the requirement for a

positive feedback loop to establish a stable domain of nodal expression. It will be most

interesting, therefore, to determine whether han is required for the bilateral expression of

Oep and/or sur.

h an disrupts LPM morphogenesis downstream of L-R gene expression

Previous experiments, with embryos that had reduced function of spaw or sur,

have shown that the pattern of LPM migration is randomized in the absence of nodal

signaling in the LPM (Chapters 5 and 6). Therefore, the absence of asymmetric gene
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expression in the LPM is sufficient to explain the randomization of LPM migration in the

liver region of han mutants. However, the loss of asymmetric gene expression does not

seem to explain the bilateral dorsal migrations seen more posteriorly. Our results show

that some han mutants retain pitx2 expression within the LPM, and yet 100% of han

mutants show defects in gut looping. These data suggest that the han mutation may also

disrupts another aspect of LPM morphogenesis downstream of L-R gene expression.
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Future Directions

As has been previously stated in the text, this work on the laterality defects in han

mutants is preliminary. The conclusions I have drawn from these data are based on very

low numbers and, therefore, all of the experiments detailed in this appendix will need to

be repeated. In particular, more genotyping will need to be done on clutches stained with

spaw and pitx2 to better determine the extent of the defect in L-R gene expression in han

mutants. Furthermore, during the experiment where I examined transverse sections of

han mutants at 30 hpf, I failed to keep track of the left and right sides of the embryos.

Based on the randomization of liver position at 48 hpf, I assume that the asymmetric

LPM migration observed in the liver region is also randomized, but this will have to be

confirmed in future experiments.

As was mentioned in the discussion, it would be interesting to investigate the

basis for the L-R gene expression defect in han mutants. One obvious experiment is to

use wholemount in situ hybridization to examine the expression of oep and sur in han

mutants. It will also be interesting to investigate the defects in LPM morphogenesis that

appear to occur downstream of L-R gene expression.
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Materials and Methods

Zebrafish strains

Confocal studies were performed on han” embryos carrying the gut GFP transgene.

Antibody and phalloidin staining

Embryos were fixed for 1 hour at RT in 4% Paraformaldehyde in phosphate buffered

saline (PBS) and embedded in 4% SeaPlaque agarose (BioWhittaker Molecular

Applications). 200 or 300 pum sections were cut with a Leica VT1000S vibratome.

Staining and washes were performed on floating sections in a solution of 0.1% tween, 1%

DMSO and 5% goat serum in PBS. We used the following antibodies: anti-PKC. (C-20)

(Santa Cruz Biotechnology), which recognizes zebrafish aPKC A and Ç, at 1:1000 and a

goat anti-rabbit secondary antibody conjugated to rhodamine red-X (Molecular Probes) at

1:200. To visualize actin, embryos were incubated in Alexa-488 phalloidin (Molecular

Probes) at 1:50. Fluorescence images were produced using a Leica TCS NT confocal

microscope.

In situ hybridization

In situ hybridizations were performed as previously described. Embryos older than 24

hpf were raised in 0.003% 1-phenyl-2-thiourea (PTU, Sigma) in egg water to inhibit

pigment production. L-R gene expression was examined between 20 and 24 somites.

Genotyping han mutants

PCR genotyping of han mutant embryos was performed as described [2], using the

following primers: 5’-AATTTCCCACTACGGACATTGGA-3’ and 5’-

AGAGACAGAAATAGATAATGAACGT-3”.
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Figure A1.1 L-R morphogenetic defects in the digestive organs of han mutants

(a-d) Wholemount in situ hybridization with foxA3 reveals endodermal morphology in

han mutants at 48 hpf. Dorsal views, anterior to the top. In han mutants the intestine is

always in the midline, but liver position appears to be randomized. Out of 24 mutants

examined 10 (42%) had symmetrical livers (a), 6 (25%) had livers on the left (b), 5

(21%) had livers on the right (c), and 3 (12%) had restricted livers (d). (e-g) Transverse

sections through the gut looping region of han mutants at 30 hpf. The LPM shows apical

localization of aPKCs (red). Most cells are outlined with cortical actin (green) and

endodermal cells have weak cytoplasmic GFP. Dorsal to the top. In han mutants, the

apico-basal polarity of the cells is relatively normal, but the pattern of LPM migration

appears to vary at different A-P levels within the gut looping region. In the liver region,

LPM migration appears to be randomized. (e) Shows an example of asymmetric LPM

migration in the liver region and (f) shows an example of bilateral dorsal migrations. In

more posterior regions, both sides of the LPM migrate dorsal to the developing intestine

(g).
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Figure A1.1
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Table A1.1 L-R gene expression is often missing from the LPM of han mutants.

Total Left (%) Right (%) Bilateral (%) Absent (%)

han Spaw 38 76 O 3 21

pitx2 179 67 2 7 24
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Future directions for the study of cardiac tilting

When I first joined the Stainier Lab I intended to study early L-R morphogenesis

in the heart. Specifically, I wanted to investigate the cellular mechanisms that drive

tilting morphogenesis and describe the role of heart and soul (has) in this process.

However, as is so often the case in science, I became distracted by other projects and did

not have a chance to pursue these studies. In this appendix, I will present some of my

thoughts on tilting morphogenesis, which could provide the basis for future

experimentation.

Epithelial integrity and tilting morphogenesis

I have shown that has mutants have defects in the epithelial integrity of the LPM

that is associated with the heart (Chapter 4) and the looping region of the gut (Chapter 5).

My data indicate that epithelial defects in the LPM of the gut looping region disrupt the

asymmetric morphogenesis of this tissue. However, the epithelial defects in the

myocardium of the heart cone may not be sufficient to explain the tilting defect observed

in has mutants. I have examined heart morphology in two other mutants that have

epithelial defects similar to has, nagie oko (nok) [1] and oko meduzy (ome) [2]. The

morphology of the cardiac cone in nok and ome mutants is remarkably similar to the

morphology of the cone in has mutants (Figure 4.1), however, the cones in nok and ome

mutants do tilt and go on to form heart tubes. Heart morphogenesis is far from normal in

nok and ome mutants – heart tube assembly is delayed and circulation is weak - but it

'.
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does progress much further than in has mutants. This is quite intriguing because the

other epithelial defects shared by these three mutants appear to be much more severe in

nok and ome mutants than they are in has mutants. These data suggest that aPKCA may

play a specific role in tilting morphogenesis that is at least partially independent of its

role in establishing and maintaining epithelial polarity.

Studies with the small molecule concentramide may help to elucidate the role of

aPKCA in tilting morphogenesis. Treating wild-type zebrafish embryos with

concentramide leads to a block in tilting morphogenesis that is very similar to the defect

observed in has mutants [3]. Although the identity of the protein that is

pharmacologically inhibited by concentramide is not yet known, two things can be said

about the action of this small molecule. First, concentramide does not appear to inhibit

aPKCA, as the only phenotype shared by concentramide-treated embryos and has mutants

is the cardiac defect. Second, concentramide does not appear to affect epithelial integrity

in the heart ([3] and Le Trinh, personal communication). It is possible that the protein

targeted by concentramide works together with aPKCA to drive tilting morphogenesis in

the heart. Therefore, it will be of great interest to identify the protein targeted by

concentramide as this information may shed light on the biochemical pathway in which

aPKCA participates to regulate cardiac morphogenesis.

Comparison of asymmetric LPM morphogenesis during cardiac tilting and

gut looping

Many parallels can be drawn between the asymmetric LPM morphogenesis that

occurs in the gut looping region and the asymmetric LPM morphogenesis that occurs

during cardiac tilting. In both cases, bilaterally situated, U-shaped epithelia undergo
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medial migration and begin asymmetric morphogenesis shortly after reaching the

midline. Some aspects of the morphogenesis itself can even look quite similar. Le Trinh

recently showed me a striking transverse section through the lumen of a tilted cone, in

which the endocardial precursors sat in the midline with the left LPM dorsal to the

endocardium and the right LPM ventro-lateral to the endocardium. Furthermore, the

LPM in both the heart and gut regions also show A-Prestricted expression of pitx2 in the

left LPM that is participating in the asymmetric behavior.

Although there are many similarities between gut looping and cardiac tilting, it is

likely that the morphogenetic events that drive tilting are far more complicated than those

that drive gut looping. In the case of gut looping, the direction of the morphogenesis is to

the left and is therefore easily explained by migration of the right LPM past the midline.

During cardiac tilting, the direction of morphogenesis is diagonal to the midline - toward

the left-anterior. Furthermore, the two sides of the LPM are fused just anterior to and

posterior to the central lumen of the cone. These aspects of cardiac morphogenesis

suggest that tilting requires a much more complex rearrangement of the LPM than is

required for gut looping.

The apparent complexity of tilting morphogenesis may explain the large number

of genes that show asymmetric expression in the cardiac cone. There have been 5 genes

reported to show left sided expression specifically in the cardiac cone (pitx2, cyclops,

lefty2, bmp4 and nkx2.5) as opposed to one gene that has been reported for the gut

looping region (pitc2). Brent Bisgrove has created a beautiful diagram detailing the

complex and partially overlapping pattern of the five genes expressed in the cardiac

region [4]. The gene that shows the most interesting pattern of expression in the cardiac

º
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cone, however, is pitx2. pitx2 is expressed bilaterally in an anterior region of the cone,

but the expression extends a little more posteriorly on the left side. The result is that the

portion of pitc2 expression that is asymmetric in the cone is situated in the left-anterior,

highly indicative of the direction of cardiac tilting. This very specific localization of

pitx2 in the cone combined with the localization of this gene in the gut looping region

may indicate that pitx2 is the primary regulator or asymmetric morphogenesis in both

regions. It will be of great interest therefore to investigate the downstream targets of

pitx2, as they are likely to represent direct regulators of asymmetric LPM morphogenesis.
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