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EPIGRAPH

I think that it is a relatively good approximation to truth - which is much too complicated

to allow anything but approximations - that mathematical ideas originate in empirics.

But, once they are conceived, the subject begins to live a peculiar life of its own and is ...

governed by almost entirely aesthetical motivations. In other words, at a great distance

from its empirical source, or after much "abstract" inbreeding, a mathematical subject is

in danger of degeneration. Whenever this stage is reached the only remedy seems to me to

be the rejuvenating return to the source: the reinjection of more or less directly empirical

ideas.

John von Neumann, The Mathematician, 1947
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Neuroscience and machine learning often operate at two ends of a spectrum. The

former sometimes finds itself entrenched in the details of experimentation, and the latter

sometimes finds itself drifting into the expanse of theory. Both fields can mutually coex-

ist, and when they do, have produced invaluable results in computational neuroscience

towards more plausible models of biological solutions. This dissertation presents two de-

tailed investigations into the benefits of this interdisciplinary field: a model for cognition

and a model for vision. Experiments during these investigations led us to a third result:

a new learning approach called neural network tomography.

We introduce our universal theory of cognition, Confabulation Theory, and dis-

cuss its biological plausibility. Confabulation Theory posits that the cerebral cortex, in
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conjunction with the thalamus, is implementing a repeated functional architecture of

thalamocortical modules, each encoding one attribute which an object in the individ-

ual’s mental universe may possess. These modules are interconnected with concurrence

statistics called knowledge links, are capable of confabulating a state, and are carefully

controlled with action commands. We use Confabulation Theory to build a model for

natural language processing and present striking results in sentence generation with con-

text.

Subsequently, we focus on the task of texture classification, which we argue is

a more primitive operation than object recognition, and therefore, appropriate for in-

vestigation with the goal of elucidating biology’s solution for processing visual stimuli.

We develop a hierarchical model for texture classification, carefully informed by neuro-

science results, and demonstrate state-of-the-art performance on a challenging texture

classification dataset in the context of our human psychophysical experiment.

Finally, we survey existing methods in neural network learning and propose a

new approach with several valuable theoretical advantages. By rephrasing the task of

function approximation as replicating the topology and weights of an existing universal

approximator network, we show that several of the drawbacks of classical backpropagation

learning can be avoided. We define a new objective function, mean squared curvature

(MSC), and demonstrate that minimizing the MSC of the difference between the net-

works during the replication process produces favorable results and allows networks to

be reverse-engineered iteratively.
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Chapter 1

Introduction

Researching the mammalian anatomy alone, even in great detail, does not eluci-

date the intricate mechanisms that interact to allow us to process information, otherwise

Constantin von Economo would have understood how the cerebral cortex works in 1925

with his cytoarchitectonic study of the adult human cerebral cortex [von Economo &

Koskinas, 1925; von Economo, 1929; von Economo & Koskinas, 2008]. Researching the

physiology alone (e.g. mammalian vision, see Chapter 3) only provides glimpses at the

outputs of the functional contributions made by different stages of the visual processing

stream black box, otherwise the emergence of orientation selectivity in primary visual

cortex would no longer be a highly controversial topic today, fifty years after Hubel and

Wiesel proposed a solution from their physiological studies of receptive fields [Martinez,

2011; Hubel & Wiesel, 1962]. A thorough understanding of the physiology from carefully

controlled experiments [Crick, 1979; Siegel & Callaway, 2004], constrained by monumen-

tal cytoarchitectonic studies of detailed neuroanatomy, is necessary to truly uncover the

mysteries of mammalian cortical information processing. Concurrently modeling these

integrated systems can often inform where the experimental neuroscientists should con-

centrate to elucidate the complexities of the physiology (e.g. the primary visual cortex

simple cell parameterization by Daugman [1985] informing the physiological experiments

by Jones et al. [1987]).

1
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1.1 Comparative Neuroanatomy

One of the most informative sources for neurophysiology is comparative neu-

roanatomy. Two of the most comprehensive comparative neuroanatomy studies were

published over a century ago and, surprisingly, have yet to be reproduced with more

modern neuroscience techniques. Brodmann studied the cytoarchitectonics across 64

different mammalian species with Nissl stains and produced his now widely accepted

magnum opus, a cortical map labeled with 52 discrete areas [Brodmann, 1909], which

was subsequently, but less popularly, extended to 200 regions [Vogt & Vogt, 1919] and

followed by revised nomenclature [von Economo & Koskinas, 1925]. Ramón y Cajal pub-

lished his cytoarchitectonic study comparing human and vertebrate neuroanatomy using

Golgi staining at the end of the 19th century [Ramón Y Cajal, 1899]. Careful observa-

tions of the subtle, and sometimes stark, differences in the neuroanatomy between species

in the context of those species’ behaviors can provide extremely valuable insights into

the function and importance of neurological structures. For example, only large-brained

mammals have unusually large neurons in layer 5 of primary visual cortex with thick

myelinated axons which are thought to be implicated in rapid motion detection of the

magnocellular pathway [Wang et al., 2008]. Without these specialized neurons, conduc-

tion delays over the longer distances in large-brained mammals would likely interfere with

the time-sensitivity of visual motion perception. This comparative neuroanatomy result

and many others provide valuable evidence for understanding the neurophysiology of the

mammalian brain.

Comparative neuroanatomy can also provide clues about which underlying neu-

rophysiological results are less critical to the integrated system neuroscience function.

Hubel and Wiesel reported on the surprisingly organized structure of orientation columns

and ocular dominance columns in the cat striate cortex [Hubel & Wiesel, 1974] and for

decades this property of columnar organization was thought to be a universal character-

istic of mammalian cortical architecture and necessary for high visual acuity. However,

rodents and lagomorphs do not share this property of semiregular, smoothly-varying ori-

entation maps in primary visual cortex and appear not to suffer from any related visual

deficits [Van Hooser et al., 2005]. Perhaps, orientation column organization is not a nec-

essary component of the visual processing stream mechanism and may only be a solution,

when necessary in most mammals, to the retinotopically limited arborization of isotropic

lateral connectivity in primary visual cortex.
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1.2 Lesion Studies

Another compelling set of sources for clues about visual neurophysiology are le-

sion studies. Humans, due to unfortunate circumstances, sometimes suffer from acci-

dental (e.g. head trauma, infection) or necessary (e.g. treatment of epilepsy or tumors)

cortical lesions or severe atrophy. These circumstances, though, have repeatedly pro-

vided crucial insights into the physiology of the affected cortical areas from the observed

behavioral deficits the subjects experience. For example, a very recent functional MRI

(fMRI) study [Cavina-Pratesi et al., 2010] involving two humans suffering from severe

visual agnosia convincingly identified, through behavioral double dissociation and neu-

roimaging dissociation, two areas that are independently implicated in shape recognition

(not object recognition) and surface texture recognition. One subject had damage to

his collateral sulcus (CoS) from infectious encephalitis and could not perform surface

texture recognition (healthy subjects showed activity in the posterior CoS during this

task), but could perform shape recognition. The other subject suffered bilateral lesions

to her lateral occipital cortex (LOC) from a hypoxic episode and could not perform shape

recognition (healthy subjects showed activity in the LOC during this task), but could

perform surface texture recognition.

1.3 Experimental and Model Complexity

In an effort to perfectly replicate mammalian vision in a computational model,

one might be tempted to model every neuron in the biological model, or every synapse

or even every ligand [Markram, 2006]. However, this rapidly becomes computationally

intractable, overparameterized, and largely unnecessary. In classical mechanics, many

problems are drastically simplified with a minimal compromise in uncertainty (e.g. mod-

eling the trajectory of a ball as a particle traveling through a vacuum and neglecting

aerodynamics). Similarly, there exists a minimal degree of complexity at which mam-

malian vision or cognition can be modeled without any substantial loss in explained

variance. Determining that minimum level of complexity, though, is not trivial.

This dissertation presents three related investigations, carefully informed by mod-

ern neuroscience evidence, towards determining this minimum level of complexity in dif-

ferent modalities. First, we present a framework for computationally modeling cognition

and apply it to the task of sentence generation with context. Then, we develop a model
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for computational vision, apply it to the task of texture classification, and compare it

with our measured human performance. Finally, we introduce a new neural network

learning method and demonstrate its advantages, even in trial cases, over classical back-

propagation.
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Chapter 2

Cognition

Here, we briefly describe our Confabulation Theory and discuss experimental re-

sults in its support. Simply put, Confabulation Theory proposes that thinking is like

moving. In humans, the theory postulates that there are roughly 4000 thalamocorti-

cal modules, the “muscles of thought”. Each module performs an internal competition

(confabulation) between its symbols, influenced by inputs delivered via learned axonal

associations with symbols in other modules. In each module, this competition is con-

trolled, as in an individual muscle, by a single graded (i.e., analog) thought control signal.

The final result of this confabulation process is a single active symbol, the expression of

which also results in launching of action commands that trigger and control subsequent

movements and/or thought processes. Modules are manipulated in groups under coordi-

nated, event-contingent control, in a similar manner to our 700 muscles. Confabulation

Theory hypothesizes that the control of thinking is a direct evolutionary outgrowth of

the control of movement.

2.1 Introduction

The formal academic study of human and animal cognition has been underway

for over 2360 years [Finger, 2001] (e.g., Aristotle’s pioneering studies of logical thought

[Barnes, 1984] were published c. 350 BC). Yet, even today, roughly all that can be

stated with certainty is that there is strong evidence suggesting that the storage and

processing of information involved in all aspects of human cognition (seeing, hearing,

planning, language, reasoning, control of movement and thought, etc.) is carried out by

6
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the cerebral cortex and its related subcortical nuclei. Beyond general statements of this

sort (primarily based on deficits after cortical lesions [Catani & Ffytche, 2005; Penfield &

Rasmussen, 1968]), little is known about how cognition (also referred to here as thinking

Theory.

Section 2 provides a conceptual framework for the key elements of Confabulation

Theory. Sections 2.3.1, 2.3.2, 2.3.3 and 2.3.4 detail the four key elements of Confabulation

Theory. Finally, Section 2.4 briefly surveys some natural language processing experiments

using computer implementations of the theory. These illustrate the enormous impact

Confabulation Theory is likely to have on practical information processing. The way

forward to building artificial intelligence systems is now clear, and the mysteries of the

human brain are primed to be finally unlocked.

2.2 A Conceptual Framework for Confabulation Theory

This section presents a general conceptual overview of the four key elements of

Confabulation Theory, the specific details of which are described in Section 2.3.

We hypothesize that cognitive information processing is a direct evolutionary

re-application of the neural circuits controlling movement, and thus functions just like

movement. Brains seem to have developed to utilize sensory inputs to coordinate muscle

contractions [Lieber, 2002; Squire, 2004], which thereby increased the evolutionary fitness

of these animals. Since neural circuitry already existed to contract muscles, the specific

thalamus [Jones, 2007] and six-layered cerebral cortex in mammals [Northcutt & Kaas,

1995] developed to perform cognition utilizing the same control mechanisms as for muscles

(i.e., basal ganglia, brainstem, cerebellum, etc.).

Conceptually, brains are composed of many “muscles of thought” (termed tha-

lamocortical modules in mammals), each of which describes a single attribute which an

object in the individual’s mental universe may possess. A module contains symbols, each

of which is a sparse collection of neurons which functions as a descriptor of the attribute

of that module. For example, if the attribute of a module is the visual form of faces

[Tsao et al., 2006], then a single symbol represents a particular face’s visual form. If the

attribute of the module is words (in some specific human language) describing the name

of an object, then a single symbol represents a particular word.

Each thalamocortical module is connected to many other modules through the

cortical white matter in the brain. When two symbols are active simultaneously, each in
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different modules, they are said to co-occur, which creates the opportunity to associate the

two symbols. For instance, after seeing a face and hearing a name together, the symbols

representing each may become associated. These learned associations are implemented

by unidirectional axonal synaptic connections between the neurons representing each of

the pair of symbols. Each strengthened unidirectional association between two symbols

is termed a knowledge link. Collectively knowledge links comprise all cognitive knowledge.

Each thalamocortical module performs the same single information processing

operation, which can be thought of as a “contraction of a list of symbols”, termed a

confabulation. Throughout a confabulation, input excitation is delivered to the module

through knowledge links from active symbols in other modules’ lists of candidate con-

clusion symbols, driving the activation of these knowledge link’s target symbols in the

module performing the confabulation. When a thalamocortical module’s list of candidate

conclusion symbols contracts, there is no physical movement in the brain, rather symbols

currently on the list compete (based upon their relative excitation levels) for eventual

exclusive activation (a so-called “winner-take-all” competition) within that module and,

as a result, the number of active symbols is gradually reduced. Crucially, this contrac-

tion of the candidate conclusion symbol list in each thalamocortical module is externally

controlled by a thought control signal delivered to the module (in exact analogy with the

motorneuron input delivered from an external source to a muscle).

Physical muscle contractions are controlled by graded analog inputs provided

by alpha motor neurons [Lieber, 2002]. Similarly, a confabulation in a thalamocortical

module is controlled by a graded analog control input, the thought control signal, which

determines how much overall symbol activity there can be in the module. The thought

control signal determines how many symbols remain in the competition, but has no effect

on selecting which symbols are in the competition. Which symbols are in the competition

is determined by the excitation level of a symbol as it dynamically reacts to knowledge

link input from active symbols in other modules (which cause its excitation level to

increase) or to a reduction or cessation of such input (which causes its excitation level to

fall). Ultimately, the thought control signal is used to dynamically contract the number

of active symbols in a module from an initial many less-active symbols to, at the end of

the confabulation, a single maximally-active symbol. The resulting single active symbol

is termed the confabulation conclusion.

Each time a module reaches a conclusion, the module immediately launches action
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commands (by activating a separate collection of specialized neurons within the module

which have been associated from the conclusion symbol). Some action commands (which

proceed from the module to subcortical nuclei) directly cause a specific movement process

or thought process (each a type of behavioral action) to be launched. Others modify

ongoing actions. The learned association between each symbol of a module and its set of

action commands is termed skill knowledge. Skill knowledge is stored in the module, but

the learning of these associations is controlled by subcortical brain nuclei.

In summary, the brain is composed of many thalamocortical modules (“muscles

of thought”), which, through controlled input, expand and contract the list of active

symbols in the module. The list of active symbols is determined by input from active

symbols in other modules via knowledge links, thus all the modules interact dynamically,

“comparing notes”, while a thought control input contracts the number of active symbols

in each module to a single active symbol conclusion. When a conclusion is reached in a

module, those action commands which have a learned association from that conclusion

symbol are instantly launched. These issued action commands are proposed as the source

of all non-reflexive and non-autonomic behaviors.

Thalamocortical modules performing confabulations, delivering excitation through

knowledge links, and applying skill knowledge through the issuance of action commands

constitute the complete foundation of all mammalian cognition.

2.3 The Key Elements of Confabulation Theory

Confabulation Theory primarily consists of four key elements that form the fun-

damental underpinnings of all cognition. Although Confabulation Theory in its most gen-

eral form likely applies to cognitive information processing in all animal nervous systems,

here we focus on describing Confabulation Theory from the perspective of mammalian

neuroanatomy (with specific emphasis on the human case). The dominant neuronal

structures (gray matter) and gross anatomical projections (white matter) of the cerebral

cortex in all mammals have a virtually identical organization [Striedter, 2005], therefore

the four key elements presented here apply equivalently to all mammals, including hu-

mans. Although all of the important functions of cognition are covered by the four key

elements, many ancillary details are still waiting to be elucidated.
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Figure 2.1: A human thalamocortical module (one of thousands in human cerebral
cortex).
Each thalamocortical module is composed of a localized patch (having an area of a few
tens of square millimeters) of the six-layer cortical sheet along with a uniquely paired,
reciprocal, small zone of specific thalamus. The cortical patch of each module is recipro-
cally axonally connected with the thalamic zone of the module. Although cortical patches
(and thalamic zones) of different modules are largely disjoint, partial overlaps do likely
occur.

2.3.1 Thalamocortical modules and symbols: describing attributes of

objects in the individual’s mental universe

For over a hundred and fifty years, the cerebral cortex has been known to have

localized functionality, for example, vision, language, and movement are each processed

in separate cortical areas [Finger, 2001; Penfield & Rasmussen, 1968]. Even though each

area of the cerebral cortex carries out seemingly different types of information process-

ing, every area of the cortex has the same 6-layered structure and equivalent reciprocal

axonal connections with some part of the thalamus [Brodmann, 1909; Jones, 2007]. The

similarity across all regions of cortex and thalamus strongly suggest that how information

is stored and processed in each cortical area is the same even though what is stored and

processed is different. Surprisingly, given the detailed knowledge of cortical organization,

very little is known about exactly how or exactly what is stored and processed in any

part of cortex. Confabulation Theory proposes that human cerebral cortex is divided

into thousands of thalamocortical modules, each including a localized patch of the corti-

cal sheet with an area on the order of tens of mm2 (see Figures 2.1 and 2.2). Each module

also includes a small zone of thalamus that is reciprocally axonally connected with its
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cortical patch.

Each thalamocortical module is responsible for describing one attribute which an

object (e.g., a sensory object, a language object, a movement or thought process object,

a plan object, etc.) of the individual’s mental universe may possess. To carry out this

job, each module develops and permanently stores a finite set of discrete symbols, each

representing a single descriptor of the module’s attribute. For example, if a particular

module is used (along with other modules) to describe bodies of English text, it might

contain over 200,000 symbols, each describing a single English word, word phrase, or

punctuation (“tree”, “Tree”, “;”, “jet fighter”, “Winston Churchill”, etc.). Similarly, sym-

bols in a visual module might be used to describe the localized visual form of a portion

of a visual object [Tanaka, 2003].

In humans, each module typically possesses thousands to hundreds of thousands

of symbols. Each human cortical module contains hundreds of thousands to millions of

neurons. However, each symbol is represented by a small collection of tens to hundreds

of neurons within each of multiple populations of symbol-representing neurons within the

module. Although neuron collections representing two symbols often overlap by a small

number of neurons, the mathematics of neuronal processing are such that any significant

interference between symbols is exceedingly unlikely [Hecht-Nielsen, 2007] (much like the

probability that all of the air molecules in a room would congregate into one corner).

When a module is being used to describe a particular mental world object, the

neurons representing one specific symbol within one special neuronal population of the

module are all firing at a high level of activity (the exact definition of what action potential

rate and what level of action potential synchrony this involves is not yet known) and all

other such symbol-representing neurons are largely inactive. In this situation, we say

that the module is expressing that one symbol. Often (e.g., during multiconfabulations,

see Section 2.3.3 below) a module will have multiple symbols partially activated.

Only when a symbol is active is it sending excitation through knowledge link

axons to other associated symbols. Because of the sparse coding of symbols, one or

several symbols can be fully or partially active at the same time in a module (or none

may be active). Consider that the human cerebral cortex has a module whose attribute is

the visual form of faces [Tsao et al., 2006], and another whose attribute is words. Suppose

a symbol representing the visual form of “Bob’s” face is active in one module and a symbol

representing Bob’s name is active in another module; and that a knowledge link from



12

Figure 2.2: A thalamocortical module stores and processes symbols.
A primary function of each thalamocortical module is to store and process exactly one
attribute which an object (e.g., a sensory object, a visual object, a language object,
a movement or thought process object, a plan object, etc.) of the individual’s mental
universe may possess. To carry out this function, each module develops and stores a large
collection of symbols, which are each a different descriptor of the attribute of the module
(e.g., a symbol may represent a particular word in a module that describes words, or a
particular face in a module that describes faces). Each symbol representation is composed
of many tens to hundreds of neurons (shown as colored dots within the enlarged depiction
of the module’s cortical patch). When a module is describing an object, typically a
single symbol is active in the module. As shown, a module is composed of a 6-layered
piece of cerebral cortex and small zone of specific thalamus. Within each layer different
populations of neurons have different anatomical projections and, as a result, different
functions. As an example, the conclusion symbol representations (shown here) likely
reside in the lower part of cortical layer 3. These neurons store the symbol conclusions
that are ultimately mapped to action commands in cortical layer 5. Here, a module with
126,008 symbols is depicted.
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the first of these symbols to the second has already been formed. Then, if a symbol

representing the visual form of Bob’s face is active in the first module, excitation will be

delivered to the symbol representing his name in the second module. That such symbol

pair “co-activation-based” knowledge links would be sufficient to explain all aspects of

cognition seems preposterous. Yet, that is exactly the claim of Confabulation Theory.

And, how this works is illustrated in Section 2.4.

Anatomically, thalamocortical modules have the exact same structure in all mam-

mals [Brodmann, 1909; Northcutt & Kaas, 1995], providing strong evidence that cognition

functions identically in all mammals. Understanding the structure of a thalamocortical

module, therefore, is essential to understanding how cognition functions. Within every

thalamocortical module, the same distinct populations of neurons exist (roughly aligned

with the six layers of the cortex and the two layers of thalamus) each having homotyp-

ical white matter projections to different regions of the brain [Barbas & Hilgetag, 2002;

Braitenberg & Schüz, 1998; de No, 1943]. We call each of these separate neuron popula-

tions a neural field. The afferent and efferent connectivity of each neural field defines its

function. Each symbol has a separate sparse neuronal representation within each neural

field. Our computational models suggest the central function of this detailed anatomical

organization is performing the controlled winner-take-all competition of confabulation

using neurons and synapses (see Section 2.3.3).

2.3.2 Knowledge Links: the basis of all cognitive knowledge

In 1949, Donald Hebb [Hebb, 2002] postulated that learning in brains was the

strengthening of synapses linking two groups of neurons (which he called “cell assemblies”)

with axonal connections between them. He postulated that this occurred whenever the

first cell assembly helped cause the second cell assembly to become active (the involved

synapses going in this direction between the two cell assemblies are then strengthened).

Ample neurological evidence supports Hebb’s postulate; however, no comprehensive ex-

amination of the role of cell assemblies in learning has yet occurred (see Figure 2.3 for an

illustration of the role of Hebb’s idea in Confabulation Theory). When two symbols are

co-active they may become associated by strengthening the synapses linking them. The

unidirectional association between two symbols is termed a knowledge link ; a reciprocal

pair of knowledge links may exist between two symbols. Each knowledge link is consid-

ered a single item of knowledge. An active source symbol delivers input excitation to all
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Figure 2.3: A cognitive knowledge link.
Here, a human subject is viewing and considering a red apple. A visual thalamocortical
module contains an active symbol for the color of the apple. At the same time, a language
thalamocortical module contains an active symbol for the English name of the apple.
Pairs of symbols which meaningfully co-occur in this manner have unidirectional axonal
links, termed knowledge links (each considered a single item of knowledge), established
between them via synaptic strengthening. The entire axonal bundle of all unidirectional
knowledge links between two modules is termed a knowledge base. Knowledge bases
compose the vast majority of cortical white matter. Confabulation Theory predicts that
knowledge links must be implemented in vast quantities for cognition to be useful, which
is consistent with known neuroscience; white matter is the single largest structure in the
human brain. The average adult human is postulated to possess billions of knowledge
links, most of which are usually established in childhood.
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target symbols to which it is connected through knowledge links, where the strength of

a knowledge link (a quantity which varies over a limited dynamic range) determines the

amount of input excitation that a target symbol receives. Therefore, a knowledge link

is an ‘association’ between two cell assemblies, as Hebb postulated, albeit with a much

higher level of neuronal complexity than he envisioned. In consonance with the pairwise

associationist doctrine established by Aristotle and his colleagues 2360 years ago and

built up further by a series of leading thinkers on human cognition over the past 500

years, Confabulation Theory contends that such knowledge links—formed on the basis of

symbol pair co-occurrence—are the only type of knowledge used (or needed) in cognition.

In particular, in mammals, knowledge links are formed over two time-scales

[Squire, 2004]. Instantaneous knowledge links are formed indirectly by linking each learn-

able pair of co-active symbols via the hippocampus, entorhinal cortex, and related por-

tions of perirhinal/parahippocampal cortex. Over many subsequent sleep periods this

indirect knowledge link may be consolidated into a direct cortico-cortical knowledge link

from one symbol to another symbol (i.e., no longer through the hippocampus). This

unidirectional consolidated cortico-cortical knowledge link between two symbols will typ-

ically last for decades, even if it is not used. Knowledge links that are used last for life.

The collection of all unidirectional knowledge links connecting a particular source module

to a particular target module is termed a knowledge base.

Figure 2.4 illustrates an example of some knowledge links that may have been

formed by experiencing a red apple. Here, five modules are each expressing a symbol

describing one attribute of the apple. In the center, the symbol representing the English

name of the apple is active. Above that, the symbol representing the apple’s skin texture

is active. To the right, the apple’s visual color is active. And to the left and at the

bottom the motor chewing process for an apple and the gustatory sensation of the apple

are active. When an apple is currently present in the mental world, it is its collection of

knowledge-link-connected symbols which are currently active in many modules. There is

no “binding problem” [von der Malsburg, 1981], because all of these symbols are mutually

“bound” by their previously established pairwise knowledge links.

Confabulation Theory proposes that the mathematics of cognition relies on the

formation, strength, and use of these knowledge links. The strength of a single knowledge

link is logarithmically related to the conditional probability p(�|✏), where � represents

the occurrence of source symbol � and ✏ the occurrence of the target symbol ✏ (see
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Figure 2.4: Billions of pairs of symbols are connected via knowledge links.
The set of all knowledge links joining symbols belonging to one specific source module to
symbols belonging to one specific target module is termed a knowledge base. In the human
brain, knowledge bases take the form of huge bundles of axons termed fascicles, which
together make up a large portion of each cerebral hemisphere’s ipsilateral white matter.
Each module also typically has a knowledge base to its contralateral ‘twin’ module (and
perhaps to a few others near its twin)—which together constitute the corpus callosum fas-
cicle linking the two cerebral hemispheres. Here, reciprocal knowledge links (red arrows),
only some of which are shown, connect various symbols representing different attributes
of an apple pairwise with each other.
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Figure 2.5: Confabulation—the only information-processing operation used in cogni-
tion.
Here, a concrete example involving five thalamocortical modules is shown (for simplicity,
each module is illustrated as a dashed green oval with a list of that module’s symbols
inside it). During a confabulation, active symbols (↵, �, �, �) in four source modules
shown on the left send excitation through knowledge links to symbols in a fifth target
module (shown on the right). Each confabulation on every module is controlled by a
graded analog thought control signal (analogous to the motor neuron input signal that
contracts a muscle). The conclusion of a confabulation operation will ultimately be the
symbol receiving the most input excitation I (symbol 9 shown on the right). See text for
more details.

Figure 2.5). Importantly this quantity is estimated by dividing the number of times �

and ✏ co-occur by the number of total occurrences of the target symbol ✏. Biologically,

this implies that a target symbol (composed of neurons) has a relatively fixed total

strength of incoming knowledge links (synapses) that it can physically support, and that

the total strength of all incoming knowledge links to a single target symbol is limited.

The brain, therefore, cannot form an arbitrary number of strengthened knowledge links,

which explains the need to use temporary knowledge link formation and an entirely

dedicated brain region (the hippocampus) to determine which knowledge links should be

consolidated and become permanent. Such a simple biological constraint on neurons and

the support of synapses may have enabled the exploitation of the underlying mathematics

necessary for cognition.

A major question arises as to whether co-occurrence knowledge of this sort can

be sufficient to account for human and animal “intelligence”. Below, in Section 4, we will

see that they are.
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2.3.3 Confabulation: the universal basic operation of thought

The vague notion that cognition employs some sort of “information-processing”

has been around for millennia. Today, the understanding of the exact nature of this

“cognitive information-pro the first neuroscientist). Confabulation Theory states explic-

itly that cognition involves only one information-processing operation—confabulation: a

simple controlled winner-take-all competition between symbols on the basis of their total

input excitation received from knowledge links.

Figure 2.5 illustrates a confabulation. The four source modules on the left each

have a single active symbol in them: ↵, �, �, and �. Each of these active source symbols

delivers input excitation to many symbols (often hundreds) in the fifth, target module

on the right through knowledge links. The state of the fifth module, which is about to

undergo confabulation, is shown enlarged on the far right (red arrows depict individual

knowledge links). For illustration, symbol 4 of this module is receiving two active knowl-

edge links, whereas symbols 9 and 126,007 are receiving knowledge links from all four

symbols ↵, �, �, and . Each knowledge link is delivering a certain quantity of input ex-

citation to the neurons of its target symbols. The input from the thought control signal

(blue arrow) causes the module to contract, as a result the number of active target sym-

bols decrease. If the manipulation of this thought control signal allowed only two symbols

to be active, then symbols 9 and 126,007 would be active (since they have the most input

excitation) and symbol 4 would end up being shut off by the competition, and thus made

inactive. If the thought control signal manipulations then caused only a single symbol

to be active, then symbol 9, having the most input excitation, would remain active and

symbol 126,007 would be shut off, resulting in a single conclusion symbol: number 9.

The input excitations arriving at symbol k from different knowledge links are

summed to yield the total input excitation for symbol k, I(k) (this summation is noted by

the plus signs between the knowledge links in the enlarged illustration of module five). As

discussed in detail by Hecht-Nielsen [2007], this additive knowledge combination property

of thought is what enables the vast information-processing power and flexibility of human

cerebral cortex. Note that knowledge links are not neuron to neuron connections, but

rather symbol to symbol connections (i.e., many neurons to many neurons); therefore,

many hundreds to thousands of synapses may transmit input excitation from a single

source symbol to a single target symbol, enabling accurate additive combination even in

the presence of large background noise or individual synaptic failure.
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We emphasize that a thalamocortical module does not undergo a confabulation

operation unless commanded to do so, in the same way a muscle contracts only when

commanded to do so by its motorneuron input [Lieber, 2002]. Upon being commanded

to contract its list (by a deliberately supplied thought control signal, illustrated by a

blue arrow in Figure 2.5), each symbol of the fifth module competes with all others for

exclusive activity. During this competition the number of active symbols being considered

decreases in proportion to the thought control signal strength (thus a confabulation is

a “contraction of a list of symbols”). Since the timing of this contraction is controlled,

coordinating the parallel convergence of many modules to a final state may itself involve a

significant amount of learning. This learned coordinated control of convergence is termed

a thought process. Upon converging to a final conclusion, the neurons representing the

symbol with the largest input intensity I (in the example of Figure 2.5, symbol 9) are

highly active and all other symbol-representing neurons are not. This “winner-take-all”

competition is called a confabulation, and the winning symbol is termed its conclusion.

It may seem mysterious that mere neurons can implement controlled, winner-

take-all symbol competition. Within a module, connections between the neural fields in

the module’s cortical patch and its paired thalamic region constitute a neuronal attractor

network [Hecht-Nielsen, 2007], the state of which evolves through cortex-thalamus-cortex

oscillations and is modulated by the thought control signal. Each collection of neurons

representing a symbol is a stable state of the attractor network. A thalamocortical mod-

ule can be held constant with a single active symbol or multiple partially (or fully) active

symbols by means of this cortex-thalamus-cortex oscillation. During the oscillation, ad-

ditional context can be applied through knowledge links to influence the competition.

In this way, modules can be made to converge slowly or quickly, and the number of ac-

tive symbols at any one time can be made to grow or contract to the symbol with the

greatest input excitation. In behavioral experiments, subjects can temporarily retain a

finite set of sensory domain specific information, which has been termed working memory

[Monsell, 1984]. We propose that the underlying neural mechanisms of working memory

is a controlled continuous thalamocortical oscillation of a single (or possibly multiple)

symbols in a single module. Working memory is the controlled cortex-thalamus-cortex

oscillation maintaining symbol activation(s) in a single module. Each module can im-

plement working memory specific to its attribute, thereby distributing working memory

throughout the cortex.
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Confabulation is hypothesized to be the only information-processing operation

of thinking. In the Figure 2.5 example, there is only one confabulation taking place.

Ordinarily, confabulations on multiple modules take place together (with the involved

modules acting as source and target simultaneously), with convergence to the winning

symbols slowed somewhat to allow mutual knowledge-link-mediated interaction (“com-

paring notes” in order to arrive at a mutually consistent confabulation consensus of final

conclusions). In such a multiconfabulation, millions of relevant items of knowledge (i.e.,

knowledge links), each emanating from a viable candidate conclusion, are employed in

parallel in a “swirling” convergence process. Multiconfabulation is a key mechanism

enabling the enormous information-processing power and flexibility of thought [Hecht-

Nielsen, 2007]. As an analogy between movement and thought, a biceps contraction is to

a single confabulation, as the elegant movements of a ballerina are to multiconfabulation.

Confabulation seems quite alien in comparison to existing concepts in neuro-

science, computational intelligence, neural networks, computer science, traditional AI,

and philosophy. For example, computers typically follow the Turing paradigm: when

commanded via a specific, digital, instruction code they execute a pre-defined mathe-

matical instruction on specified variables. Thalamocortical modules, on the other hand,

have only one information-processing “instruction”—confabulation. Further, the thought

control signal delivered to the confabulating module from outside the cerebral cortex,

is not digital, but analog (and often very dynamic). Yet the result of each completed

module confabulation is digital: a single symbol.

A natural question arises as to where the thought control signal originates. The

most likely source of the thought control signal is a small area of the thalamus (VM/VAmc)

close to the mammothalamic tract, which projects diffusely to layer 1 of virtually the en-

tire cerebral cortex [Herkenham, 1980]. Early electrophysiology experiments showed that

stimulation of this thalamic area caused an immediate activation of almost the entire

cerebral cortex [Hanbery & Jasper, 1953] as would be expected from a central thought

control signal. Although the thalamic intralaminar nuclei had for decades largely been

the focus of the layer 1 nonspecific projection [Jones, 2007], we now know that these

intralaminar nuclei predominantly target layers 5 and 6 of the cortex [Herkenham, 1980;

Jones, 2007]. From the Confabulation Theory perspective, the intralaminar nuclei are

quite likely involved with the behavioral triggering of action commands discussed in the

next section. In addition to layer 1 projections, the VM/VAmc nucleus of the thalamus
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also receives projections from both the basal ganglia and cerebellum (both highly in-

volved in movement) giving this small thalamic area all the necessary axonal connections

to function as the “alpha motor neurons of thought”.

2.3.4 Action commands: skill knowledge and the origin of behavior

One of the most obvious aspects of brain function (and therefore one of the most

consistently ignored) is that animals typically launch many behaviors every second they

are awake. Most of these are microbehaviors (small corrective modifications or addenda

to ongoing behaviors), but typically, major new behaviors are launched many times per

hour, often predicated on newly emerged events. Beyond simple reflexes (e.g., knee jerk)

and autonomic reactions (e.g., digestion), no understanding of how and why behaviors

neurologically originate currently exists.

Confabulation Theory proposes the “conclusion → action” principle (see Figure

2.6): every time a confabulation operation on any thalamocortical module reaches a con-

clusion, an associated set of action commands are launched from a specific set of neurons

within the module. Action commands arise from a neural field within the module (proba-

bly the layer 5 pyramidal neurons) that send axons towards subcortical structures. These

action commands either cause the launch of behaviors (movements and/or thoughts) im-

mediately (when originating from layer 5b subcortical projections) or they cause the

immediate consideration of suggested behaviors for further evaluation (when originating

from layer 5a projections to the basal ganglia). Confabulation Theory postulates that all

non-reflexive and non-autonomic behaviors arise in this manner.

The mapping between symbols and action commands represents a different type of

learning product, termed skill knowledge, that requires rehearsal and practice. As opposed

to cognitive knowledge of facts and events (stored by knowledge links), skill knowledge is

not directly consciously accessible [Squire, 2004]. Skill knowledge is a learned association

from the conclusion symbol neural field to the action command neural field within a

thalamocortical module.

The neuroanatomical location and physiological properties of skill knowledge is

very different from cognitive knowledge. First, as opposed to the module-to-module

(symbol-to-symbol) nature of knowledge links, the learned mapping from symbols to

action commands lies entirely within a thalamocortical module. Second, unlike a cogni-

tive knowledge link, which may be extremely robust if consolidated over many nights of
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Figure 2.6: The conclusion action principle: hypothesized to be the origin of all non-
reflexive and non-autonomic behavior.
Here, a thalamocortical module (illustrated abstractly, in consonance with Figure 2.5, as
an oval containing a list of the module’s symbols) has successfully completed a confab-
ulation operation (under control of its externally supplied thought control signal) and
reached a conclusion (symbol number 9, as in Figure 2.5). Whenever a module completes
a confabulation and reaches a conclusion it immediately causes a set of action command
outputs to be launched (these outputs proceed to subcortical nuclei). The action com-
mand outputs that are launched are those which have been previously associated with
the conclusion symbol via a subcortically managed skill-learning process (distinct from
cortical knowledge link learning). The “conclusion → action” principle is the fourth and
last of the key elements of Confabulation Theory.
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sleep, skill knowledge is often fragile and short-lived. The impermanence of skill knowl-

edge is required for rehearsal learning of skills (like playing a musical instrument), where

gradually more competent skill knowledge needs to supplant earlier, less perfected, skill

knowledge. Finally, there are separate learning mechanisms for each of these types of

knowledge. Whereas the learning of cognitive knowledge requires the hippocampus and

its related medial temporal lobe, the learning of skill knowledge requires other subcortical

structures such as the basal ganglia, intralaminar thalamus, and basal forebrain. This is

clearly a topic richly deserving of extensive new neuroscience research.

The application of skill knowledge to the launching of action commands is not part

of cognitive information processing per se (it comes into play only after each thalamo-

cortical information processing operation has completed its job of reaching a conclusion).

However, thought processes are dependent upon the thought control sequences coordinat-

ing confabulations in many thalamocortical modules. In the same way that movement

sequences (actually, postural goal sequences) are learned, stored, and recalled, so are

thought control sequences. These thought control sequences are controlled directly by

action commands launched by thalamocortical modules. Therefore, thought (confabu-

lation) begets action (action commands) and action begets thought in an endless cycle

during wakefulness. The homunculus hiding behind a curtain pulling the control levers

of the brain and body is thus exorcised.

2.4 Confabulation Theory Experiments

Confabulation Theory offers a unified approach to achieving the holy grail of

Artificial Intelligence: a fully integrated intelligent system of human-level capacity.

To glimpse this potential, consider the capabilities of the simple confabulation

architecture (see Figure 2.7). This particular architecture allows sets of three consecutive

sentences from the same paragraph of a well-written newspaper story to be represented

in terms of symbols. At the bottom level, each module has 63,008 symbols, representing

the most common words and punctuation of English. When a sentence is entered, the

symbol representing the corresponding word of the sentence is activated in each module.

Words and punctuations are entered in order from left to right, one per module, and each

module only has one active symbol. Modules to the right of each sentence’s ending period

have no active symbols. The modules of the second and third levels of the architecture

have symbols representing words, word phrases, and punctuation.
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Figure 2.7: A Confabulation Theory architecture for sentence generation.
This confabulation architecture (implemented on a computer) consists of hundreds of
modules (each indicated by a square—only a few of which are shown) and thousands of
knowledge bases (each illustrated by an arrow connecting one module to another—again,
only a few of which are shown). This particular architecture likely captures elements of
thalamocortical module connectivity in the human brain, but should not be viewed as a
reproduction of known connectivity.

As tens of millions of such well-written sentence triples from 1990’s-vintage news-

paper stories are entered into this confabulation architecture and symbols co-occur on

the various connected modules, billions of knowledge links arise. Although this architec-

ture is implemented on a computer, it is important to note that the formation of these

knowledge links is consistent with the known anatomy and physiology of the human brain

[Abeles, 1991; Barbas & Hilgetag, 2002; Braitenberg & Schüz, 1998; de No, 1943].

Once this architecture has completed this “reading” exposure (to a huge amount

of text), its “intelligence” can be explored. Consecutive pairs of novel sentences (ones not

seen during learning) are read into the modules of the system’s first and second sentences

(the “context sentences”). The modules of the third sentence are then commanded to

confabulate. The multiconfabulation swirling of that thought process (see the red arrow in

Figure 2.7) represents coordinated confabulations in many modules, which are interacting

and mutually converging to single symbols. As each module converges to a single symbol

the result is a plausible, although entirely made up (i.e., confabulated), sequence of words

and punctuations in place of a third sentence.

We emphasize that the storage of the knowledge links are consistent with anatomy,

the convergent confabulation operation functions identically in each module and can be
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biologically implemented by a thalamocortical neuronal module, and the coordination of

the confabulations in the multiple modules requires no more neural circuitry than is used

to control the coordination of muscles. Therefore, the simulation of this architecture is

extremely biologically consistent and should be viewed as a basic simulation of a human

thought process.

As an example of the results of this simulated thought processes, if the two novel

consecutive context sentences (obtained from the Detroit Free Press and never before

seen by the architecture) entered are:

Using the same color scheme, Figure 2.8 presents more examples of the operation

of the confabulation architecture of Figure 2.7 (a good fraction of the outputs from

randomly chosen fresh consecutive sentence pairs are of this high quality).

These results suggest that the computer simulation of this confabulation archi-

tecture must somehow be applying a deep knowledge and understanding of the general

functioning of the world. The architecture links context across two previous sentences

and applies that context to generate a cogent third sentence. Additionally, the third

sentence produced is a grammatically correct, well structured English sentence, yet there

are no rules for language in the system. In fact, the identical architecture, will produce

cogent third sentences in any language given training data from that language. Interest-

ingly, when born, all humans have the same grossly fixed brain architecture, yet each can

learn any language provided that they are continually exposed to it. The emergence of

grammatically correct and cogent language production in a biologically consistent archi-

tecture provides significant evidence that Confabulation Theory is in fact describing the

complete fundamental mechanisms of human (mammalian) brain cognitive function.

Another example of a practical application of Confabulation Theory is in speech
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Figure 2.8: Results obtained from using the confabulation architecture after being
exposed to tens of millions of triples of consecutive sentences from 1990’s era news stories.
Here, the first two sentences of each triple (shown, respectively, in red and brown) were
consecutive sentences obtained from the same paragraph of a novel news story from the
Detroit Free Press, which the architecture had not seen during its learning exposure.
The third sentence (shown in green) was the sentence produced by the confabulation
architecture.
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Figure 2.9: Additional results obtained from using the confabulation architecture after
being exposed to triples of consecutive sentences.
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understanding. A different confabulation architecture has demonstrated nearly perfect

recognition accuracy on novel speech recordings [Hecht-Nielsen, 2007]. Again, billions of

knowledge links are first learned by the architecture and then used in a confabulation

simulation to understand speech.

One striking feature about these confabulation architectures is the extremely large

quantity of knowledge (one knowledge link is a single item of knowledge) they employ

and the effectiveness with which confabulation architectures exploit this knowledge in

demonstrating “intelligence”. Furthermore, this performance is achieved in a biologically

plausible way and lacks traditional “software” or “algorithms”. Since language, speech

recognition, and even visual processing systems have been implemented with nothing

more than modules, symbols, knowledge links, and thought control signals, we know a

wide variety of cognitive tasks can be carried out by confabulation architectures. The

cerebral cortex similarly seems to perform all human capabilities without significant vari-

ation in its fundamental structure between cortical areas.

More sophisticated thought processes, involving interactions between many sen-

sory and behavioral modalities, are possible with confabulation architectures. Such fixed

cognitive tasks (along with movements) can dynamically interact and be selectively acti-

vated by hierarchies of modules [Hecht-Nielsen, 2007]. Thus, enormously powerful ensem-

bles of thought processes and movement processes can be rapidly selected and integrated.

Chapter 2, in full, is a modified reprint of the material as it appears in Physics

of Life Reviews. Solari, Soren; Smith, Andrew T.; Minnett, Rupert C.J.; Hecht-Nielsen,

Robert, Elsevier, 2008. The dissertation author was an investigator and author of this

material.
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Chapter 3

Mammalian Vision

Vision is such a tantalizing sense. Evidence of its function lies right in front of

our eyes every day, yet, despite this wealth of personal experience that the vast majority

of humans have ever had with visual stimuli, how we perceive electromagnetic waves

in our visible spectrum is still very poorly understood. In statistical machine learning

there have been many attempts over the last several decades to provide computers with

working vision, but most have been increasingly deviating from a far superior design,

of which there are currently billions of working examples at our disposal: vertebrate

vision. The solution to almost all computer vision problems lies in the return to a

principled and fundamental understanding of nature’s solution. Furthermore, such a

level of understanding of vertebrate, or specifically human, vision has the potential to

expedite breakthroughs in ophthalmology, neurology, and sensory systems neuroscience

in general.

3.1 Retina

The retina lies on the rear inner surface of the eye onto which an inverted image

of the visual field is projected through the cornea and lens. In vertebrates, the retina is a

0.5 mm thick sheet of three layers of neurons spread over a disc between 30 and 40 mm in

diameter [Kolb et al., 2001]. The deepest layer consists of the photoreceptors (classified

as rods or cones). The middle layer effectively combines neighboring photoreceptors and

projects to the most shallow layer. The shallow layer contains ganglion cells which fire

action potentials and project their axons through the optic nerve to the lateral geniculate

31
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Figure 3.1: The neural basis for mammalian texture classification.
The posterior collateral sulcus (pCoS) appears to be implicated specifically in texture
recognition, and not form recognition [Cavina-Pratesi et al., 2010]. The dominant feed-
forward visual pathway to the pCoS involves visual stimuli passing through the optics in
the eye (grey), projecting onto the retina (grey), transmitting through the optic nerve
(grey) to the lateral geniculate nuclei (LGN; orange), radiating to the primary visual cor-
tex (V1; yellow), followed by the secondary visual cortex (V2; green), and then exciting
the pCoS (blue). The ventral temporal association cortex (VT) is probably implicated in
making the association between the pCoS activity and a semantic label for classification.
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nuclei (LGN) of the thalamus (see Section 3.2). These ganglion cells send their axons

through the retinal sheet, in a 3 mm2 area called the optic disc, to project through

the optic nerve. Consequently, vertebrates have a “blind spot” in their vision where

this occurs since there is an absence of photoreceptors. Cephalopods have a similarly

organized retina, except that the three layers are reversed, with the photoreceptors on

the shallow layer and the ganglion cells on the deep layer, allowing for a projection of

their axons into the optic nerve without any interruption of the sheet of photoreceptors

and without a “blind spot”.

The fovea, located in the center of the visual field (spanning roughly 2 degrees of

eccentricity, or roughly two thumbnail widths at arm’s length for an adult human [Hubel,

1995]) is a specialized area of the retina with a high density of cone photoreceptors, which

are arranged in roughly a hexagonal grid and capable of high acuity vision and have

color sensitivity (trichromatic in humans, some primates and some marsupials [Arrese

et al., 2005], and dichromatic in other mammals), and an absence of rod photoreceptors.

Although the fovea only occupies roughly 1% of the surface area of the retina, through

cortical magnification, roughly 50% of the primary visual cortex is dedicated to processing

these high-acuity cone photoreceptor responses.

In primates, there appear to be over a dozen types of ganglion cells in the retina,

three of which compose roughly 88% of the population: the midget ganglion retina cells,

which project to the LGN parvocellular cells, account for roughly 70%, the parasol gan-

glion retina cells, which project to the LGN magnocellular cells, account for roughly 10%,

and the bistratified ganglion retina cells, which project to the LGN koniocellular cells,

account for roughly 8% [Nassi & Callaway, 2009] (see Figure 3.2). The physiology in

which the other 12% of the ganglion cells are implicated is currently not clear, but may

involve blinking, gaze and pupilary control, and diurnal rhythmns.

The primary goal of sensory neurophysiology is to characterize the functional

relationship between a stimulus and the neuronal response. In the case of experimental

visual neurophysiology, this consists of presenting the biological model with a series of

visual stimuli and recording from single or multiple neurons at a given stage of the

visual processing stream, often initially to discover the stimulus that maximally excites

the neuron(s) and then perturbing the stimulus to record the deviation from maximal

excitation. Experimental studies of the visual system have varied greatly in the types of

visual stimuli presented and methods with which the neuronal responses are recorded.
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Spatial integration of the stimulus begins as early as the ganglion cells in the

retina. Each ganglion cell can be characterized by the stimulus, the location and extent

of which in the visual field is called the receptive field (see Figure 3.5) that most strongly

excites the neuron. Receptive fields in the retina are often characterized by an on-center

or off-center and an isotropic annulus (e.g. a difference of Gaussians, or DoG, filter).

3.2 Lateral Geniculate Nucleus

Most of the ganglion cells in the retina (roughly 90% in primates [Perry & Cowey,

1985]) project contralaterally and in a hemifield organization through the optic nerve and

chiasm to a pair of lateral geniculate nuclei (LGN) on the posterior surface of the tha-

lamus. The remainder of the ganglion cells project to other subcortical nuclei (e.g. the

superior colliculus). The human and primate LGN is organized into six layers, enu-

merated 1 through 6 from the deepest to the most superficial. Layers 1 and 2 contain

magnocellular magnocellular (M cells in humans or Y cells in primates). Layers 3 through

4 contain parvocellular cells (P cells in humans or X cells in primates). Koniocellular

cells (K cells in humans or W cells in primates) are dispersed between and within these

layers [Nassi & Callaway, 2009] (see Figure 3.2). In this dissertation, we concentrate

on the parvocellular pathway, which is implicated in higher-acuity vision and is driven

primarily by foveal stimuli.

The receptive field of LGN neurons, like the ganglion cells in the retina, is often

characterized by an on-center or off-center and a nearly isotropic annulus expressing very

weak orientation (anisotropy in the receptive field) and motion direction selectivity [Xu

et al., 2002]. The on and off channel receptive field features remain separate from retina

through LGN [Sherk & Horton, 1984; Reid & Alonso, 1995] and are roughly equal in the

number of neurons with each preference [Krüger & Fischer, 1975; Kremers et al., 1993].

Due to their similar receptive fields to retinal ganglion cells, the LGN is often

oversimplified as a relay of retinal activations to primary visual cortex, but is likely

to be performing much more complex visual computation with its lateral and cortical

feedback connectivity [Sillito & Jones, 2002]. This is particularly evident when more

complex natural scene stimuli are presented to the subject. Synthetic stimuli (e.g. drifting

gratings) elicit responses in LGN neurons that can be predicted fairly well with a linear

DoG filter model (roughly 78% of the variance can be explained [Mante, 2005]). However,

more complex natural scene stimuli (e.g. a video of what a cat sees walking through the
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grass) elicit responses that fail to be predicted well with a linear model (up to about 46%

of the variance can be explained) [Mante, 2005]. Incorporating more complex nonlinear

computations into the model (luminance and contrast adaptation mediated by lateral

connectivity; see Figure 4.9) recovers this loss of explained variance with natural scene

stimuli (roughly 78% of the variance can be explained) [Mante, 2005].

3.3 Striate Cerebral Cortex

The mammalian cerebral cortex is essentially a thin (on average less than 1 mm

thick in mice to roughly 2 mm thick in humans [von Economo & Triarhou, 2009]) folded

sheet of grey matter (containing the neurons) covering two hemispheres of white matter

(containing the interareal fascicle projections). Hystological studies (e.g. golgi body

staining [Ramón Y Cajal, 1899] and Nissl staining [Brodmann, 1909; von Economo &

Koskinas, 1925; von Economo, 1929; von Economo & Koskinas, 2008]) of the cerebral

cortex have identified six layers, enumerated 1 through 6 from the most superficial to

the deepest; however, these six laminar cortical layers are not clearly distinct in all

areas of the cortex, vary greatly in relative thickness (e.g. the primary sensory areas,

compared with the association areas, and compared with the primary motor area [Solari,

2009; Solari & Stoner, 2011]), and are often subdivided further. These layers have also

been distinguished due to their afferent (feedforward) and efferent (feedback) subcortical,

intra-areal and interareal connectivity.

Over half of the cerebral cortex in non-human primates is devoted to visual pro-

cessing and consists of at least 26 distinguishable regions [Sereno et al., 1995]. Of all of

the cortical areas, primary visual cortex (V1 or Brodmann Area 17 [Brodmann, 1909]) is

greatly overrepresented in the neuroscience literature due to its accessibility on the gyri

surrounding the calcarine sulcus and its reliably and easily excited pyramidal cells using

synthetic stimuli (e.g. bars and drifting gratings). Furthermore, in humans, V1 can be

identified by the naked eye from the stria of Gennari formed by the myelinated axons

terminating in layer 4, hence V1’s alias: the striate cortex for its stripes.

The intracortical V1 circuit is complex and involves many collateral and feedback

projections, but the dominant feedforward parvocellular pathway through V1 involves

thalamocortical afferents combining LGN receptive fields and terminating in V1 layer

4C�, whose pyramidal cells then project to V1 layer 3 (often referred to as layer 2/3 due

the unclear physiological boundary in anaesthetised subjects which clearly segregates,
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Figure 3.2: Parallel pathways in the mammalian visual processing stream.
The early mammalian visual processing stream can be roughly decomposed into three
dominant parallel pathways (the vision research in this dissertation concentrates on
the parvocellular pathway, outlined in a dashed bounding box). The long (red) and
medium (green) wavelength cone photoreceptors (mainly in the fovea) drive the midget
cells (roughly 70% of the retinal ganglion cells [Nassi & Callaway, 2009]), which project
through LGN parvocellular cells to V1 layer 4C� pyramidal cells. This parvocellular
pathway is slower to respond, has smaller receptive fields, is insensitive to contrast, and
prefers low temporal and high spatial frequencies. The rod photoreceptors (mainly out-
side of the fovea) drive the parasol cells (roughly 10% of the retinal ganglion cells [Nassi &
Callaway, 2009]), which project through LGN magnocellular cells to V1 layer 4C↵ pyra-
midal cells. This magnocellular pathway complements the parvocellular pathway and is
faster to respond, has larger receptive fields, is sensitive to contrast, and prefers high
temporal and low spatial frequencies. The short (blue) wavelength cone photoreceptors
drive the bistratified cells (roughly 8% of the retinal ganglion cells [Nassi & Callaway,
2009]), which project through the LGN koniocellular cells to the superior colliculus, V1
layer 3B cytochrome oxidase blobs and V1 layer 4A and possibly directly to extrastriate
cortex [Hendry & Reid, 2000]). The koniocellular pathway appears to be implicated in
low acuity vision and blind sight. The remaining 12% of the retinal ganglion cells may
be implicated in blinking, gaze and pupilary control, and diurnal rhythmns. Beyond V1
L4, the parallel pathways are not nearly as separable and appear to follow a bipartite
projection to V2 [Sincich & Horton, 2005], rather than the originally proposed tripartite
projection of color, form, and motion [Livingstone & Hubel, 1988].
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Figure 3.3: The standard linear model of visual neurons.
David Hubel and Torsten Wiesel discovered, almost accidentally (drawing stimuli by hand
on slides for a projector screen failed to excite the neuron, but the motion of removing
the slide from the projector, thereby presenting a sliding bar stimulus, haphazardly man-
aged to excite the cell), the V1 simple cell receptive field [Hubel & Wiesel, 1962] and
consequently won the 1981 Nobel Prize. The neuron’s receptive field extent (grey boxes)
can be coarsely estimated by the boundary at which the stimulus begins to excite the
neuron. A) A bar stimulus, oriented correctly, will only drive the neuron to fire (spike
trains are shown below the stimuli) when presented within the neuron’s receptive field.
B) A bar stimulus will drive the neuron to fire when presented in the receptive field at
the optimal orientation and may suppress the neuron from firing when presented at a
suboptimal orientation. C) Computational models based on the simple cells described
by Hubel & Wiesel [1962] often involve treating the optimal stimulus (receptive field)
as a linear filter, followed by an activation function, to approximate the neuron’s in-
stantaneous firing rate (FR). D) Daugman [1985] estimated the spatial properties of the
receptive field more explicitly and parameterized them as a two-dimensional Gabor filters
([Gabor, 1946]), which were experimentally confirmed by Jones et al. [1987]. E) Adelson
& Bergen [1985] proposed the energy of the response of a quadrature pair of Gabor filters
as a computational model for complex cells.



38

Figure 3.4: The nonlinear model of visual neurons.
Despite its popularity in computer vision, the standard linear model of primary visual
cortex (V1) is incomplete (see Figure 3.3 D and E). When this linear model is presented
with natural stimuli (e.g. a video of what a cat sees walking through the grass), rather
than synthetic stimuli (e.g. bars and drifting gratings), it fails to predict V1 neuron
responses. Rust & Movshon [2005] convincingly argue that the standard model should
be updated to include the nonlinearities that have been observed in V1 and driven with
additional nonlinearly-combined filters, all of which should be discovered with more com-
plex and carefully crafted synthetic stimuli (e.g. [Tanaka & Ohzawa, 2009]) and then
tested with natural stimuli. Adapted from [Rust & Movshon, 2005].

consistently with other cortical areas [Solari & Stoner, 2011], into a feedforward layer 3

and feedback layer 2 [Gur & Snodderly, 2008]).

V1 layer 4 pyramidal cells have been investigated intensely since David Hubel and

Torsten Wiesel discovered the simple cell edge-detecting receptive field [Hubel & Wiesel,

1962] (see Figure 3.3). This strong orientation selectivity exhibited by many simple cells

in V1 layer 4 and simple and complex cells in layer 3 is almost always organized in a

semiregular, smoothly-varying orientation selectivity retinotopic map. These orientation

maps are reproducible simply with feedforward and lateral connectivity [McKinstry &

Guest, 1997, 2001]; however, they are not found in rodents or lagomorphs, which appear

not to suffer from any related visual deficits [Van Hooser et al., 2005]. Consequently,

orientation column organization may not be necessary in V1 and may only be a solution

to the retinotopically limited arborization of isotropic lateral connectivity.

Hubel & Wiesel [1962] described most pyramidal neurons in V1 as belonging to
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one of two classes: simple cells (those whose receptive field consists of distinct excitatory

and suppressive regions and are common in layer 4) and complex cells (those that are not

simple cells and are common in layer 3). Computationally, these simple cells are often

modeled as linear Gabor filters [Gabor, 1946; Jones et al., 1987; Daugman, 1985] and the

complex cells are often modeled as the energy of a quadrature pair of linear Gabor filters

[Adelson & Bergen, 1985] (see Figure 3.3 D and E). Evidence now suggests that these two

classes (which may be prominent due to a selection bias) form two ends of a continuum

mediated by the degree of lateral inhibition and feedback influencing the cells [Priebe

et al., 2004; Mata & Ringach, 2005]. Similarly to LGN, when V1 layer 3 and 4 pyra-

midal neurons are presented with natural scene stimuli, their responses exhibit complex

nonlinearities (e.g. luminance and contrast gain control, cross-orientation suppression,

iso-orientation surround suppression, co-linear long-range facilitation in layer 3, etc.).

However, nonlinear models designed to predict these responses are still incomplete [Rust

& Movshon, 2005]: roughly 84% of the variance in V1 responses to drifting gratings can

be explained by linear models [Carandini et al., 1997], but when presented with natural

scene stimuli, roughly 21% can be explained by linear models and only roughly 40% by

nonlinear models [David & Gallant, 2005].

3.4 Extrastriate Cerebral Cortex

Extrastriate cortex consists of many cortical areas implicated in visual process-

ing. Although drastically oversimplified, these areas are sometimes divided into a ventral

(“what”) pathway for processing visual content and a dorsal (“where”) pathway for pro-

cessing spatial information. The primate ventral pathway projects from V1 to V2 to

V4 to inferotemporal cortex (IT). This pathway can be approximated by a feedfoward

model due to the anatomically similar, but physiologically asymmetrical, interareal con-

nectivity. For example, there is no obvious difference in the axonal or synaptic anatomy

between the V1 to V2 projection and the V2 to V1 projection, yet V1 can drive V2 and

not vice-versa, perhaps due to a tightly temporally synchronized feedforward projection

and a temporally diffuse feedback projection [Anderson & Martin, 2009]. As the visual

stimulus is processed through the ventral pathway, it appears to be processed similarly in

each area with the receptive fields becoming larger (e.g. V2 surround mechanisms appear

to be the same as in V1, but spatially scaled up by a factor of 2 [Shushruth et al., 2009]),

but beyond V1, the physiological differences between cortical layers in poorly understood
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Figure 3.5: Receptive fields in the visual processing stream.
The receptive field (RF) extent of a neuron is the region of the visual field that excites a
neuron. A) Moving the optimal stimulus in and out of the RF to estimate the minimum
response receptive field (mRF) boundaries [Hubel & Wiesel, 1962] tends to underestimate
the RF’s spatial extent (⇠ 0.5� diameter at ⇠ 5

� eccentricity [Angelucci et al., 2002] . B)
Estimating the classical receptive field (cRF) size through reverse correlation methods
(e.g. spike triggered averaging) is more accurate [Jones et al., 1987]. C) Although stimuli
outside of the cRF, but inside the extraclassical RF (ecRF; diameter at ⇠ 5

� eccentric-
ity [Angelucci et al., 2002]) cannot sufficiently depolarize the neuron past the spiking
threshold, they can modulate the response (e.g. iso-orientation surround suppression).
D) Low contrast stimuli result in a larger cRF (⇠ 2

� diameter at ⇠ 5

� eccentricity), per-
haps mediated by horizontal monosynaptic extent, than with high contrast stimuli (⇠ 1

�

diameter at ⇠ 5

� eccentricity), mediated by geniculocortical afferents [Angelucci et al.,
2002]. The extrastriate (V2) feedback also appears to be coextensive with, and perhaps
the source of, the ecRF [Angelucci et al., 2002; Schwabe et al., 2006]. E) More complex
synthetic stimuli (with higher-order features) estimate anisotropic and nonconcentric fa-
cilitatory and suppressive regions whose major axes are parallel and not correlated with
the orientation selectivity of the neuron [Tanaka & Ohzawa, 2009].
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[Shipp, 2007]. There is increasing evidence that texture, color and form are processed

independently in V2 and V4, before being combined in areas for complex stimuli like

faces and places in IT [Cavina-Pratesi et al., 2010]. V2 and the posterior collateral sul-

cus (pCoS), a human homologue in the medial occipital lobe of part of the primate V4,

specifically appear to be implicated in texture perception [Cavina-Pratesi et al., 2010].

Chapter 3, in part, has been submitted for publication of the material. Minnett,

Rupert C.J.; Hecht-Nielsen, Robert. The dissertation author was the primary investigator

and author of this material.
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Chapter 4

Texture Classification

Texture classification is a particularly good, yet relatively underappreciated, ex-

perimental paradigm for testing computational vision models with the goal of under-

standing mammalian vision. Historically, object recognition has been a far more popular

task to attempt to perform in computer vision, perhaps because of its obvious commercial

value, but neuroscience clearly indicates that object recognition is performed significantly

far downstream in the ventral visual processing stream (mainly in various areas of the

fusiform gyrus of the inferotemporal cortex). The neural basis of texture recognition, on

the other hand, has recently been identified in human patients with visual agnosia as

the posterior collateral sulcus (pCoS) [Cavina-Pratesi et al., 2010], which is roughly part

of the V4 macaque homologue and is posterior (upstream in the ventral visual process-

ing stream) from the fusiform gyrus. Texture recognition, therefore, is probably a more

primitive task than object recognition and more appropriate for elucidating the biological

mechanisms involved in mammalian early vision perception.

4.1 Existing Methods

The experiments that have been performed with computational models of tex-

ture classification can be roughly organized into two groups: biologically inspired methods

and non-biologically inspired methods. The biologically inspired models attempt to draw

insights from monumental neuroscience results and create computationally tractable al-

gorithms. The non-biologically inspired methods seek to optimize classification accuracy

using tools developed in computer vision which are theoretically advantageous and often
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Figure 4.1: Texture classification experimental paradigm typical results.
The typical supervised learning computational experimental paradigm involves exposing
the model to a portion of the labeled dataset for training, predicting the labels on the
rest of the dataset, and reporting the accuracy of the prediction as the proportion of
the dataset used for training is varied (the Monte Carlo variation). In this case the
classification accuracy is 38.4% with only one training image per class and increases
monotonically to 92% with twenty training images per class. Repeated random sub-
sampling validation (typically over 10 to 100 trials) is implemented at each number of
training images per class and the mean and standard deviation are reported, although
the standard deviation is often only reported for the best performing training proportion
step.
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Figure 4.2: Texture classification experimental paradigm typical supervised learning
model.
Existing methods of computational texture classification involve supervised learning with
extracted features from training samples, followed by a classifier operating on the test
samples. The goal of the feature extraction step is to extract information with sufficient
predictive power and discard noise that could detract from the classification performance.
The classification step can be implemented in many ways, some of which are more bio-
logically plausible that others.

easier to implement programmatically, but may bear no resemblance to nature’s solution

to the problem.

4.1.1 Biologically Inspired Features

The scale-invariant feature transform (SIFT) [Lowe, 1999] and its rotationally

invariant counterpart (RIFT) [Lazebnik et al., 2004; Mikolajczyk & Schmid, 2004] are

inspired by some of the observed properties in inferotemporal cortex (IT), parts of which

are often implicated in object recognition. Although there has been significant success

in applying these feature detectors and their variants to many computer vision tasks

[Lazebnik et al., 2004; Serre et al., 2005; Zhang et al., 2006], the algorithm roughly

consists of identifying key points as robustly as possible, heuristically removing key points

that fail to match criteria, and assigning orientations and scales to these key points to

form descriptor vectors. This approach, unfortunately, does not help to reverse engineer

the mammalian solution to invariant feature extraction which could hold the clues to

improved performance and consists of a hierarchy of repeated feature extractions and

invariance recombinations [Fukushima, 1975, 2008].

4.1.2 Non-Biologically Inspired Features

There are also several non-biologically inspired features intended for texture clas-

sification. Most of these feature extraction methods consist of calculating image lumi-

nance statistics, but alone often fail to be robust to noise and fail to be invariant affine
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transformations. The grey-level co-occurrence matrix (GLCM) [Haralick et al., 1973], or

sometimes referred to as the spatial grey-level dependence matrix (SGLDM), is a method

for capturing pair-wise luminance statistics from the entire image. Local binary patterns

(LBP) [Ojala et al., 1994] are a fairly simple rotationally and luminance invariant method

of extracting features by comparing neighboring pixels in a radial fashion and reporting

a positive or negative luminance differential. Patch statistics approaches typically in-

volve extracting the joint distribution of luminance values with compact neighborhoods

to build a texton library [Varma & Zisserman, 2003]. Spin images [Johnson, 1997; John-

son & Hebert, 1999] are a feature extraction method designed to be invariant to rigid

transformations for 3-D surface matching and registration, which alone do not directly

benefit texture classification, but have been successfully combined scale-invariant feature

transforms for this task [Lazebnik et al., 2005].

4.1.3 Biologically Inspired Classifiers

K-nearest neighbors (KNN) [Cover & Hart, 1967]is a popular instance-based clas-

sifier that labels test samples based on the label of a winner-take-all competition amongst

the k nearest (in the chosen metric) neighboring training samples. Training a KNN clas-

sifier is relatively computationally inexpensive, but can require large amounts of storage

and can be computationally expensive during testing. The number of neighbors is a

free parameter that must be chosen heuristically or optimized with cross-validation tech-

niques. Variations of KNN involve weighting training samples, methods for breaking

competition ties, and choosing or learning different or multiple distance metrics. Al-

though KNN was not biologically inspired, with simple distance metrics (e.g. cosine

distance) it is likely to be biologically plausible.

Artificial neural networks (ANN), specifically multilayer perceptrons (MLP) [Rosen-

blatt, 1961], configured as classifiers, and their variants such as learning vector quantiza-

tion (LVQ) [Kohonen, 1995] and self-organizing maps (SOMs) [Kohonen, 1998], are also

likely to be biologically plausible and are certainly biologically inspired. MLPs can be

computationally expensive to train, but are very inexpensive to test and, depending on

their implementation, can be susceptible to complications during training (see Chapter

5).
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4.1.4 Non-Biologically Inspired Classifiers

There are many other classifiers, often designed for specific applications, but are

most likely not biologically plausible. The most popular and successful of which, at least

in computational texture classification, is the support vector machine (SVM) [Cortes

& Vapnik, 1995], a maximum-margin binary classification algorithm which depends on

a kernel function to map the input space into a linearly separable rerepresentation for

discrimination. Some adjustments can be made to make the algorithm more biologically

relevant (e.g. incremental and decremental online learning [Cauwenberghs & Poggio,

2001]); however, choosing, crafting, or learning the correct kernel function for a specific

classification task is still an active field of research. SVMs are designed for discrimination

performance and are not optimized for generalization, which can pose problems if the

training data differ substantially, even if consistently, from the test data [Hayman et al.,

2004].

4.2 Our Approach

Rather than follow the traditional supervised learning paradigm, we draw inspi-

ration from the biological solution: unsupervised learning followed by supervised learning

(see Figure 4.4). Infant humans are exposed to a plethora of visual stimuli long before

they are taught by a caretaker to label those stimuli. Similarly, our system is first exposed

to a corpus of unlabeled natural scene stimuli (see Section 4.4) about which it learns sta-

tistical properties and develops a hierarchy of features. Unlike the previously published

computational texture classification algorithms, which largely consist of a feature extrac-

tion step followed by a classifier, our approach consists of a hierarchy of repeated feature

extraction and invariance before classification.

4.3 Texture Datasets

Several texture datasets have been used as the stimuli for texture classification

experiments in the past, each with their advantages and limitations. The earlier computa-

tional texture classification experiments, in the 1980s, were performed using the Brodatz

dataset [Brodatz, 1981], followed by more complex datasets published and adopted in

the two successive decades. These datasets vary tremendously in their complexity and

the extent of interclass and interclass variations. The Columbia-Utrecht Reflectance and
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Figure 4.3: Previously published classification accuracy on the UIUCTex dataset.
Classification accuracy results on the UIUCTex dataset varying the number of training
images per class and reporting the mean over repeated random sub-sampling validation
(N=100) are reproduced from [Zhang et al., 2006]. The “Global Gabor” method [Ma &
Manjunath, 1996] uses a Gabor filter bank (six orientations and four spatial scales) for fea-
ture extraction and a KNN classifier with a Mahalanobis distance metric. The “VZ-joint”
method [Varma & Zisserman, 2003] creates histograms from pixel patches for feature ex-
traction and a KNN classifier with a �2 distance metric. The “Hayman” method [Hayman
et al., 2004] uses a VZ-MR8 filter bank [Varma & Zisserman, 2002] for feature extraction
and a support vector machine (SVM) [Cortes & Vapnik, 1995] classifier with a radial
basis function (RBF) kernel and a �2 distance metric. The “Lazebnik” method [Lazebnik
et al., 2005] uses affine invariant Harris-Laplace and Laplacian detectors [Lindeberg &
Gȧrding, 1997; Mikolajczyk & Schmid, 2004], spin images [Johnson, 1997; Johnson &
Hebert, 1999] and the rotationally invariant feature transform (RIFT) [Lazebnik et al.,
2004; Mikolajczyk & Schmid, 2004] descriptors with a KNN classifier the Earth Mover’s
Distance (EMD) [Rubner et al., 2000] metric. The “Zhang” method [Zhang et al., 2006]
uses scale and rotation invariant Harris-Laplace and Laplacian detectors, spin images and
RIFT detectors with an SVM classifier and the EMD kernel.



51

Figure 4.4: Our texture classification experimental paradigm unsupervised learning
model.
The biological solution for visual processing involves unsupervised learning from unla-
beled stimuli, followed by supervised learning from labeled data. Following this approach,
especially in multimodal context, has already demonstrated improved performance over
supervised learning alone [de Sa, 1998]. Our approach to texture classification involves
presenting the model with unlabeled natural scene stimuli prior to supervised learning
on the labeled texture dataset.

Texture Database (CUReT) [Dana et al., 1999] introduces the complicated effects of

specularities and shadowing under varying illumination directions. The University of Illi-

nois at Urbana-Champaign Texture Dataset (UIUCTex) [?] introduces very large spatial

scale variations and non-rigid deformations, making it the most challenging of the three

datasets.

4.3.1 Brodatz Dataset

The Brodatz Dataset1 is a collection of 111 (typically 512 by 512 pixels to 632

by 632 pixels) scans of texture photograph negatives from the book. These 111 images

(textures classes) are often divided into sub-images on a 3 by 3 grid (typically 128 by 128

to 215 by 215 pixels depending on the class image source) creating a dataset with 999

texture samples. Some of the textures (e.g. D23 and D27) appear to be pictures of the

same texture at different spatial scales and some (e.g. D101 and D102) simply appear to

be negatives of one another. Models that perform well on this dataset do not necessarily

demonstrate scale invariant texture recognition (and are in fact discouraged to do so due

to textures D23 and D27), yet this has been a popular dataset for many computational
1
The Brodatz dataset is currently available for download at

http://www.ux.uis.no/⇠tranden/brodatz.html.

http://www.ux.uis.no/~tranden/brodatz.html
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Figure 4.5: Samples from the Brodatz Dataset.
Ten of the 111 textures photographs in the Brodatz Dataset.

texture classification experiments.

4.3.2 CUReT Dataset

The CUReT Dataset2 is a large dataset of color images of 61 physical samples

(texture classes) photographed under carefully controlled lighting conditions. These tex-

tures were photographed 205 times (texture samples) from the same focal length at

various viewing angles and illumination directions. Due to the large azimuthal angles

for many of these texture samples, the dataset is often refined to retain only 92 of the

205 texture samples. Also, due to these images consisting of both texture samples in the

foreground and a black background in the periphery, the samples are often cropped from

the original 640 by 480 pixels to the central 200 by 200 pixels3. However, this dataset is

limited only to in-plane rotations and by the physical texture samples chosen.

4.3.3 UIUCTex Dataset

The UIUCTex Dataset4 consists of 25 physical textures (e.g. the bark of a tree, a

brick pathway, a patterned cloth, etc.) photographed 40 times at largely varying viewing

angles and focal lengths. This dataset of 1000 640 by 480 pixel texture samples (see

Appendix B for a complete list of all of the samples) is unique and particularly challenging
2
The CUReT dataset is currently available for download at

http://www1.cs.columbia.edu/CAVE/exclude/curet/dataComp/.

3
The cropped CUReT dataset is currently available for download at

http://www.robots.ox.ac.uk/⇠vgg/research/texclass/data/curetcol.zip.

4
The UIUCTex dataset is currently available for download at

http://www.cs.unc.edu/⇠lazebnik/research/uiuc_texture_dataset.zip.

http://www1.cs.columbia.edu/CAVE/exclude/curet/dataComp/
http://www.robots.ox.ac.uk/~vgg/research/texclass/data/curetcol.zip
http://www.cs.unc.edu/~lazebnik/research/uiuc_texture_dataset.zip
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Figure 4.6: Samples from the CUReT Dataset.
One texture sample from each of the 61 textures in the cropped CUReT dataset.

due to the size (307.2 million pixels compared to 224 million in the cropped CUReT

dataset and 48 million in the Brodatz dataset), the non-rigid deformations (fabrics draped

over staircases), and the large range of focal lengths. Consequently, there is a much larger

interclass and intraclass variation than the other datasets and in some recent studies it has

been avoided, in favor of the less complex CUReT and Brodatz datasets, on the grounds

that “the task of classification in [the UIUCTex] database is beyond the capability of the

proposed method” [Yin et al., 2009].

4.4 UCSD Natural Scenes Dataset

The UCSD Natural Scenes Dataset consists of 100 8 megapixel (3264 by 2448

pixel) grayscale photographs (see Appendix A for a complete list of all of the photographs)

of scenery we took with a Canon digital camera while walking around the UCSD campus.

These images are not labeled with segmented textures, making them inappropriate as

stimuli for a texture classification task, but are a large corpus on which to train a vision

system prior to the classification task.
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Figure 4.7: Samples from the UIUCTex Dataset.
On the left are single textures samples from each of the 25 textures to illustrate interclass
variance. On the right are five texture samples from four of the textures to illustrate
intraclass variance.

Figure 4.8: Samples from the UCSD Natural Scenes Dataset.
Twelve of the 100 photographs of scenery around the UCSD campus that compose the
dataset of unlabeled natural scenes.
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4.5 Computational Model

Traditionally, computer vision algorithms attempting to be biologically plausible

models of mammalian cortical vision processing have focused on modeling primary visual

cortex responses. This is largely because of the wealth of literature on the primary visual

cortex dating back to the original Hubel and Wiesel experiments [Hubel & Wiesel, 1962].

These linear models (see Section 3.3) typically consist of a Gabor [Gabor, 1946; Daugman,

1985] filter bank (sinusoids at various orientations and spatial frequencies modulated by a

Gaussian filter envelope), which predicts the response of striate cortex layer 4 pyramidal

cells to these ideal synthetic stimuli (drifting gratings) fairly well (about 84% of the

variance in the neuronal responses is explained). However, when subjects are presented

with natural stimuli (e.g. a video of what a cat sees walking through the grass), these

models of primary visual cortical neurons perform poorly (only about 21% of the variance

in the neuronal responses is explained). This substantial decrease in predictive power

with natural stimuli, as opposed to synthetic stimuli, could be explained by the complex

nonlinearities that are prevalent in all stages of the visual processing (including as early

as the retina [Enroth-Cugell & Lennie, 1975]). Many attempts (beginning with David

Heeger’s divisive contrast adaptation [Heeger, 1992; Carandini & Heeger, 1994]) have

been made to incorporate some of these nonlinearities into the models and improve their

predictive power of neuronal responses, but even advanced nonlinear system identification

(NLSI) approaches can only explain about 40% of the variance in striate cortex pyramidal

cell responses to natural stimuli [David & Gallant, 2005].

Alternatively, predicting responses of neurons in earlier stages of the visual pro-

cessing stream does not appear to be prone to the same problems. Early models of the

lateral geniculate nucleus (LGN) typically consist of an opposing pair (on-center and

off-center) of isotropic difference of Gaussians (DoG) or Laplacian of the Gaussian (LoG)

linear filters. These linear models predict the response of parvocellular and magnocellu-

lar LGN neurons to ideal synthetic stimuli reasonably well (about 78% of the variance is

explained), but fail to predict their response to more complex natural stimuli (about 46%

of the variance is explained) [Mante, 2005]. Unlike nonlinear models of V1, though, non-

linear models of LGN, which include luminance and contrast adaptation, are much more

robust to the complexity of the stimuli, suggesting that most of the nonlinearities are

accounted. Nonlinear models of LGN can explain up to 96% of the variance in responses

to ideal synthetic stimuli and also explain about 78% of the variance in the responses
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Table 4.1: Explained variance of neuron responses with linear and nonlinear models.

Linear models of striate cortex (V1) typically involve convolving the stimulus with a
receptive field filter determined by spike triggered averaging, followed by a Poisson process
spike train generator. When presented with ideal synthetic stimuli (drifting gratings),
these models can explain about 84% of the variance in the spiking neuronal response
[Carandini et al., 1997]. However, when presented with more complex natural scene
stimuli, these models can only explain about 21% of the variance [David & Gallant, 2005].
Nonlinear models of striate cortex do not perform much better (93% of the variance is
explained with synthetic stimuli [Carandini et al., 1997] and about 40% of the variance
is explained with natural stimuli [David & Gallant, 2005]). This suggests that nonlinear
approaches to modeling the striate cortex are still incomplete. The lateral geniculate
nucleus (LGN), however, appears to be modeled far more robustly. Linear models of
LGN also fail to explain responses to natural stimuli (78% of the variance is explained
with synthetic stimuli and up to 46% of the variance is explained with natural stimuli
[Mante, 2005]), but nonlinear models, which include luminance and contrast adaptation,
recover this loss in predictive power (up to 96% of the variance is explained with synthetic
stimuli and about 78% of the variance is explained with natural stimuli [Mante, 2005]).

to complex natural scene stimuli. This convincing evidence suggests that a hierarchical

computational model of the mammalian visual system should begin with and build upon

a model proved to explain biological phenomena, the LGN nonlinear model.

4.5.1 Retinothalamic Model

We begin our hierarchical computational model of the mammalian visual system

for texture recognition by modeling the transfer function between the stimulus presented

to the eye and the response observed in the LGN [Bonin et al., 2005]. One could inde-

pendently model the retina and the thalamus; however, the evidence presented in recent
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experiments (see Table 4.1) suggests that the retinothalamic transfer function can be

modeled sufficiently accurately and robustly with a nonlinear LGN model (see Figure

4.9). This model consists of five stages: receptive field linear filtering, local luminance

adaptation, local contrast adaptation, surround suppression, and relative firing rate ac-

tivation.

The receptive fields of parvocellular LGN neurons are well characterized by a pair

of opposing difference of Gaussian (DoG) filters:

G(x,y) =

1
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where x and y index the filter, i and j index the input stimulus or output response,

G (•) is the two-dimensional isotropic Gaussian with standard deviation �, M (•) enforces

feedfoward balanced excitation and inhibition (by having a mean of zero), n (•) is the

cardinality of its argument, N (•) L2 normalizes the filter, Don (•) and Doff (•) are the

on-center and off-center DoG balanced and normalized filters with � annulus strengths,

and R (•) is the two-dimensional correlation of the DoG filter with the stimulus, X (•).
The responses from these filters are divisively suppressed by the local luminance

in the stimulus:

L

LGN
k (i, j) =

R

LGN
k (i, j)

G(x,y;�LGN
luminance) �X(i, j)

. (4.8)

The luminance normalized response is then divisively suppressed by the local

contrast in the luminance normalized response cross filters (the statistical independence of

luminance and contrast observed in natural stimuli allows us to cascade these operations
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safely [Mante et al., 2005]):

C
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L

LGN
k (i, j)qP
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The luminance and contrast normalized response is then activated to compute the

relative (to spontaneous) firing rate (RFR) of the kth cortical feature column, Yk(i, j) :
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where A (•) is a sigmoidal mapping of no response, F (•) = 0, to 0 (spontaneous

firing rate), a large positive response to 1 (maximally excited firing rate), and a large

negative response to �.1 (maximally suppressed firing rate, or not spiking).

4.5.2 Striate Visual Cortex Model

The second stage of our computational vision model, the striate visual cortex (V1)

input layer (4C�) model (see Figure 4.11), is implemented similarly to our LGN nonlinear

model. Unlike the LGN model, though, the filter weights are not parametrically defined,

because doing so would render the LGN model unnecessary and could lead to issues of

failing to explain the variance of the V1L4C� pyramidal response to natural scene stimuli

observed in biology (see Section 4.1). Instead these weights are learned in an unsupervised

fashion from natural scene stimuli using a variation of the BCM rule [Bienenstock et al.,

1982]. The BCM learning rule is derived from the classical Hebbian rule [Hebb, 1949],

but introduces a modification threshold, ✓, to address the problems of weight instability

prevalent in Hebbian learning. The BCM rule is also supported by over twenty years

of neuroscience validation in multiple modalities [Shouval et al., 1997; Castellani et al.,

2001; Yeung et al., 2004] and was shown to be, with a few reasonable assumptions, a firing

rate analog to spike-timing dependent plasticity (STDP) [Izhikevich & Desai, 2003]. A

variation of BCM learning, which is designed to model early synaptic development, is

ABS learning, which models online learning and does not require the neuron to fire before

the synaptic weights are updated [Artola & Singer, 1987, 1993]. BCM learning, in the
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Figure 4.9: Lateral geniculate nucleus thalamic feature column model with luminance
and contrast adaptation.
Each dashed box represents the nonlinear model for a single thalamic feature column
type (on-center in the upper half of the figure and off-center in the bottom half of the
figure), which is distributed retinotopically over the stimulus. The stimulus is linearly
filtered by the DoG filter synaptic weights, divisively normalized by the local luminance,
divisively normalized by the local contrast, and activated with a sigmoidal mapping to
calculate the feature column’s relative firing rate.
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context of our model, can be described with the following equations:
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where x and y index the filter or winning input or response patch, i and j index

the input or response, X (•) is now the input to the V1 model from LGN model’s nth

thalamic feature column activation, R (•) is the two-dimensional correlation of the kth

cortical feature column’s weights, Wk (•), with the input, ✓k is the modification threshold

of the kth cortical feature column, h•i denotes a time average over the history of the

cortical feature column’s responses, and ↵ is the learning rate. The weights are initialized

randomly with a uniform distribution, only the most responsive cortical feature column

has its weights updated with each presentation during learning, and they are balanced

with M (•), and normalized with N (•) after each update. BCM learning, though, does

not prevent one cortical feature column’s weights from dominating and preventing other

cortical feature columns from updating. To prevent cortical feature columns from never

winning, we implemented a solution (similar to the rebalancing in [Pinto et al., 2009])

that reinitializes the weights of the least winning filters to those of the most winning

filters with additive noise to force competition in frequently observed regions of the input

space. Adjusting these weights with unsupervised learning on the UCSD Natural Scenes

Dataset until they are stable (✓k = 1� �, � ! 0) yields filters qualitatively similar to the

receptive fields found in biology (see figure 4.10).

The luminance and contrast adaptation nonlinearities evident in LGN are also

found in the responses measured in the input layers of primary visual cortex, namely

V1 layer 4C [Rust & Movshon, 2005]. Additionally, these neurons are characterized by

an extraclassical receptive field. Although stimuli presented in a neuron’s extraclassical

receptive field cannot drive the neuron alone, they certainly modulate its response (see

Section 3.4) [Carandini et al., 2005]. This physiological phenomenon is implemented

with the luminance and contrast normalized response being divisively suppressed by the
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Figure 4.10: A subset of primary visual cortex feature column input layer 4C� synaptic
weights and their linear reconstructions.
A) and C) Synaptic weights from LGN on-center (top row) and off-center (bottom row)
feature columns to 16, 8 in A) and 8 in B), of the 100 V1 feature columns’ layer 4C�
are displayed. B) and D) Reverse correlation (the non-spiking analog of spike-triggered
averaging) is performed with random stimuli presented through the LGN nonlinearies and
the synaptic weight filters. The reconstructed linear components (receptive fields), shown
below each of the corresponding synaptic weights, exhibit properties often observed in
V1 layer 4C� recordings: balanced inhibition, small variations in spatial frequency, most
with strong orientation selectivity, and some with almost isotropic receptive fields.
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activation of other surround responses, which is then activated similarly to the LGN

model:
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It should be noted that this recurrent network topology of activating the column

k, followed by applying the surround suppression using that activation, can be applied

iteratively; however, in practice, the model appears to approach sufficiently close to a

stable state after only one iteration.

The output layer of the V1 model introduces local spatial and slight orientation

invariance and consists of a maximum operation over a small neighborhood within each

column. This operation produces responses similar to those of complex cells observed in

V1 (the excitatory and inhibitory regions of the receptive field are no longer distinct, ori-

entation selectivity is largely still prevalent, and spatial selectivity is relaxed) and is again

followed by luminance and contrast adaptation nonlinearities and surround suppression:
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Figure 4.11: Primary visual cortex feature column input layer 4C� model with surround
nonlinearities.
Each dashed box represents the nonlinear model for a single cortical feature column type,
which is distributed retinotopically over the stimulus. The stimulus is linearly filtered by
the synaptic weights (see Figure 4.10 A), divisively normalized by the local luminance,
divisively normalized by the local contrast, divisively suppressed by the surround activa-
tion and activated with a sigmoidal mapping to calculate the feature column’s relative
firing rate.

where i

0 and j

0 index regions in the neighborhood of Yk(i, j).

4.5.3 Extrastriate Visual Cortex Model

Secondary visual cortex (V2) differs anatomically from primary visual cortex

(V1) in that each cytochrome oxidase stripe appears to have a full retinotopic mapping

(compared with the single retinotopic mapping in V1) [Sereno et al., 1995; Sincich &

Horton, 2002, 2005]. However, physiologically, similar functionality has been identified in

both areas. For example, V2 surround mechanisms appear to be the same as in V1, but

spatially scaled up by a factor of 2 [Shushruth et al., 2009]. Again, we rely on unsupervised

learning constrained by the statistics of natural scene stimuli to develop the feedforward

linear weights between a downsampled (by a factor of 2) activation in the output layer
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Figure 4.12: A subset of secondary visual cortex layer 4 synaptic weights.
Synaptic weights from 50 of the 100 V1 cortical feature columns’ layer 3 to 50 of the
250 V2 cortical features columns’ layer 4. Consistently with observations in neuroscience
[Carandini et al., 2005], the projections appear to be implementing sparse linear combi-
nations of V1 responses over a small neighborhood.

of the V1 model, Zk(i, j), and in the input layer of the V2 model, followed by the same

surround nonlinearities (see Figure 4.11) and maximum pooling operation. Although

the physiology of V2 is not currently very well defined, partially because ideal synthetic

stimuli to drive these neurons are difficult to construct and test, it does appear to be

implementing sparse linear combinations of responses in V1 over a small neighborhood

[Carandini et al., 2005]. Our unsupervised learning method results in exactly these types

of projections (see Figure 4.12).

4.5.4 Examples of the Computational Early Visual Processing Model

In the following figures we demonstrate the feedforward flow of information through

the computational model of the early mammalian visual processing stream given natural

scene stimuli after unsupervised learning from the UCSD Natural Scenes Dataset (see

Section 4.4 and Appendix A). Each figure displays a single LGN feature column (ei-

ther on-center or off-center), a single V1 feature column (of the 100 V1 feature columns

trained), and a single V2 cortical feature column (of the 250 feature columns trained).
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The stimulus is first processed sequentially with a linear filter for the LGN feature col-

umn (upper response in the LGN feature column of each figure) and with luminance

and contrast adaptation (lower response in the LGN feature column of each figure, see

Figure 4.9 for details). The activation of the LGN feature column is then processed with

a linear filter for the V1 feature column (upper left response in the V1 feature column

of each figure), with luminance and contrast adaptation and surround suppression (lower

left response in the V1 feature column of each figure, see Figure 4.11 for details), with a

maximum pooling operation (upper right response in the V1 feature column of each fig-

ure), and again with luminance and contrast adaptation and surround suppression (lower

right response in the V1 feature column of each figure). The activation of the V1 feature

column is then downsampled and processed in the V2 feature column identically to the V1

feature column. Clipping (the response spans a subset of the stimulus with a gap around

the edges) can be observed in each subsequent stage of the model and is implemented to

avoid computing responses from incomplete feedforward projections. Downsampling can

be observed in the increasing granularity of the pixelations in each subsequent stage of

the model. Note the importance of the surround nonlinearities in imposing sparsity in

the output (i.e. the activation pattern in V1L3 and V2L3 is much more dense before the

surround nonlinearities than after) and sparsity in the learned afferent projection (see

Figure 4.12), which is critical for efficient neural coding [Olshausen & Field, 2004] .

4.6 Psychophysical Experiment

We hypothesized that human texture classification accuracy will significantly out-

perform state-of-the-art computational vision models in this task. To investigate this

hypothesis, we constructed a psychophysical experiment and data collection instrument

(see Figure 4.16) to closely replicate the computational texture classification experimental

paradigm (using the UIUCTex Dataset, see Section 4.3.3 and Appendix B) and obtained

UCSD Institutional Review Board (IRB) approval for human subject testing (project pro-

posal #090618). Human subjects (N=22 male; N=8 female; UCSD graduate students

and associates) were recruited and the experiment was conducted in the same room under

fluorescent lighting, on the same computer (Dell Precision T7400), and the same monitor

(Dell E248WFP; 400 candelas/meter2 brightness; 1,000:1 contrast ratio).

The experiment consisted of asking the human subjects to match new test texture

samples to training texture samples they had already been presented in an Adobe Flash
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Figure 4.16: The human texture classification data collection instrument welcome page.

Figure 4.17: The human texture classification data collection instruction pages.
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Figure 4.18: The human texture classification data collection instrument during the
first presentation of the first round.

application we developed. To familiarize the subjects with the data collection instrument,

example textures we collect with a Canon digital camera (see Figure C) were presented

along with instructions for using the interface and performing the texture classification

task (see Figure 4.17). Human subjects, unlike computers, whose memory can be erased

and the experiment repeated over multiple trials, could not be tested on texture sam-

ples they had already been presented. To address this, we began the experiment by

presenting one texture sample (chosen randomly) from each of the 25 classes (presented

in a random order) in the UIUCTex Dataset to the subject, forming the first training

set. Subsequently, a new texture sample (chosen randomly) from each of the 25 classes

(presented in a random order) was presented and the subject was asked to click on the

previously presented texture they perceived it matched (see Figure 4.18). These texture

samples were then treated as training samples and the testing continued with two train-

ing samples per class. This process was repeated until testing was complete with ten

training samples per class (see Figure 4.19) and took between roughly 23 and 46 (mean

of 34) minutes for the subjects to complete.
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Figure 4.19: The human texture classification data collection instrument during the
fifth presentation of the tenth round.

4.7 Human Results

The results from the human subject psychophysical experiment are compiled into

trials (N=30, one for each subject) for comparison with the previously published com-

putational results (see Figure 4.20). The human subjects, to avoid fatigue, stopped the

experiment after being presented with ten training images per class. The computational

results report classification accuracy with up to twenty training images per class and over

repeated random sub-sampling validation (N=100 trials).

4.8 Computational Results

Using our computational model exposed to the UCSD Natural Scenes Dataset

(see Section 4.4 and Appendix A) and trained with unsupervised learning, we perform

the texture classification task for direct comparison with the previously published com-

putational results. The dataset is partitioned into a training set and test set, the size of

the training set is varied from one to twenty training image samples per class, and the

mean and standard deviation of the classification accuracy on the remaining test set is

reported over repeated random sub-sampling validation (N=100 trials).
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Figure 4.20: Human classification accuracy on the UIUCTex dataset.
The human subject psychophysical experiment classification accuracy is presented in the
context of previously published computational results (see Figure 4.3 for a description of
these algorithms). The red dotted line is the mean over the experiment trials (N=30, one
for each subject) and the translucent red background spans the distribution of classifi-
cation accuracies up to ±1 standard deviation. Statistical significance cannot be tested
since the standard deviations are not reported for less than 20 training images per class
[Zhang et al., 2006]. However, the human subjects clearly outperform state-of-the-art
computational vision algorithms by a large margin. Previously published computational
results are reproduced from [Zhang et al., 2006].
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The model, similarly to adult humans, is already trained with unsupervised learn-

ing on stimuli that are not part of the texture dataset. The unsupervised learning allows

the model to develop invariant feature representations from the statistics of the stimuli

it is presented. The supervised learning in the posterior collateral sulcus (pCoS) is im-

plemented by training an extrastriate visual cortex model with k = 100 cortical feature

columns (see Section 4.5.3) for each class, c, by presenting the training texture samples

as stimuli:

Z

c
k(i, j) = A (V

c
k(i, j)) , (4.26)

where Z (•) is the s kth cortical feature column output layer 3 activation in the

texture class c pCoS model.

Each model, therefore, develops features consistent with the statistics of the tex-

ture class being presented (see Figure 4.21). This approach, due largely to the spatial

and rotational invariance of the features learned in the early visual processing stream

model with unsupervised learning, is capable of becoming selective for a single texture

class.

The mapping from each of the trained pCoS extrastriate visual cortex model

responses with each of the test texture samples to the class label can be implemented with

any standard machine learning classifier, although some are less likely to be biologically

plausible than others (see Section 4.1.4). We apply a biologically plausible winner-take-

all (WTA) classifier operating on the most activated feature column in each of the pCoS

models to label the test texture sample with the class used to train that pCoS model:

ĉ, ˆk = argmax
c,k

0

@
X

i

X

j

Z

c
k(i, j)

1

A , (4.27)

where ĉ indexes the pCoS model (and by association, the class label) whose ˆkth

cortical feature column generated the greatest response summed over the stimulus. When

tested on the UIUCTex Dataset, the human texture classification accuracy extremely sig-

nificantly (p < 0.0001 at both one and ten training images per class, Welch’s unpaired
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Figure 4.21: pCoS responses during the texture classification task.
Here we present a subset of the pCoS responses after supervised learning on twenty
training images per class. Two test samples from each of six texture classes are displayed
in the rows. The column headers display one of the twenty texture samples used during
training for these six classes. Each column displays responses from the pCoS model
trained with training samples from that class. When a test sample is presented to the
model and the supervised learning is trained on the correct texture class training samples,
a relatively large response is observed in the most activated pCoS cortical feature column
(e.g. the upper left response compared with the other responses in that row). Using
a simple winner-take-all (WTA) classifier, the test sample is assigned the class label of
the pCoS model whose most activated cortical feature column generated the greatest
response summed over the stimulus.
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Figure 4.22: Human and computational classification accuracy on the UIUCTex dataset.
Our computational texture classification accuracy is presented in the context of the hu-
man texture classification accuracy we recorded and previously published computational
results (see Figure 4.3 for a description of these algorithms). The red solid line is the
mean over the random sub-sampling validation (N=100) and the translucent red back-
ground spans the distribution of classification accuracies up to ±1 standard deviation.
Previously published computational results are reproduced from [Zhang et al., 2006].

t-test) outperforms our computational texture classification accuracy. Our computational

texture classification accuracy significantly (p < 0.0001, unpaired t-test assuming equal

variances) outperforms the previously published state-of-the-art results [Zhang et al.,

2006] with one training image per class, which do not significantly outperform our com-

putational texture classification accuracy (p = 0.07) with twenty training images per

class. We further investigate the performance of our computational texture classification

accuracy by degrading the model (see Figure 4.23) and performing the classification task

on other texture datasets (see Figure 4.24).

4.9 Conclusion

The human texture classification accuracy very significantly (p < 0.0001, Welch’s

unpaired t-test) outperforms our computational texture classification experiment, con-

firming our hypothesis. Although these exact texture image samples are novel to the

human subjects, adults have a vast wealth of prior exposure to similar textures, provid-
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Figure 4.23: Model degradation classification accuracy on the UIUCTex dataset.
The intact model is degraded by removing individual components and reporting the clas-
sification accuracy on the UIUCTex dataset with 20 training images per class. Removing
the contrast adaptation from all feature column models has the least impact, followed by
removing the luminance adaptation. Removing surround suppression from the cortical
feature column model has a very significant impact on the performance and removing the
secondary visual cortex (V2) model entirely has an extremely significant impact on the
performance. The classification accuracy error bars express ±1 standard deviation over
the random sub-sampling validation (N=100). The loss in classification accuracy after
each degradation is statistically significant (p < 0.0001, Welch’s unpaired t-test).
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Figure 4.24: Texture dataset classification accuracy comparison.
Our computational texture classification accuracy (red) is presented in the context of
previously published computational results ([Zhang et al., 2006], [Lazebnik et al., 2005],
[Hayman et al., 2004], [Varma & Zisserman, 2003], and [Ma & Manjunath, 1996], respec-
tively) on the Brodatz (3 of 9 training sub-images per class), CUReT (46 of 92 training
images per class) and UIUCTex (20 training images per class) datasets (see Section 4.3).
Although our model does not outperform the best approach for each dataset, which is
often tailored for performance on that dataset (e.g. key point descriptor approaches do
well on the UIUCTex dataset and the patch and global statistics approaches do well on
the Brodatz dataset), our approach appears to report the most consistently competitive
results. Where reported, the classification accuracy error bars express ±1 standard devi-
ation over the random sub-sampling validation (N=100). The performance improvement
of Hayman et al. [2004] over our model is not statistically significant (p = 0.32, Welch’s
unpaired t-test), but the performance improvement of Zhang et al. [2006] is (p < 0.0001,
Welch’s unpaired t-test), as is our performance improvement over the other three algo-
rithms (p < 0.0001, Welch’s unpaired t-test). Previously published computational results
are reproduced from [Zhang et al., 2006].
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ing them with semantic knowledge about the physical photographed sample (e.g. wood

or cloth as opposed to texture number 1 or 25). Incorporating that knowledge into com-

putational models, at least for this texture classification experiment, could improve their

performance further.

In the experimental results we present here, computational models clearly are not

currently capable of matching human texture classification performance. However, the

results of the human texture classification experiment are not intended to be directly

compared with computational results, but, rather, to provide an upper bound on rea-

sonable performance for a computational model that incorporates adult human semantic

knowledge about textures and adequately encapsulates the mammalian visual processing

stream physiology. Our computational approach is more computationally expensive and

complex than previously published methods, but may provide invaluable insight into the

biological mechanism of performing the texture classification task and may begin a new

direction for research striving to close the performance gap between computational and

human vision.

Chapter 4, in part, has been submitted for publication of the material. Minnett,

Rupert C.J.; Hecht-Nielsen, Robert. The dissertation author was the primary investigator

and author of this material.
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Chapter 5

Neural Network Tomography:

Network Replication from Output

Surface Geometry

Multilayer perceptron networks whose outputs consist of affine combinations of

hidden units using the tanh activation function are universal function approximators

and are used for regression, typically by reducing the MSE with backpropagation. We

present a neural network weight learning algorithm that directly positions the hidden

units within input space by numerically analyzing the curvature of the output surface.

Our results show that under some sampling requirements, this method can reliably recover

the parameters of a neural network used to generate a data set.

5.1 Introduction

Neural networks have been a staple of artificial intelligence since soon after the

field began. Early attempts at assigning weights to produce desired output included tun-

ing them by hand and adaptive techniques [Minsky, 1954], such as the backpropagation

algorithm, presented in [Werbos, 1974] and popularized in the 1980s. Most subsequent

methods of choosing neural network weights are themselves variants of backpropagation,

which uses the chain rule to minimize a loss function, usually the mean squared error

[Nilsson, 1965; Steinbuch, 1965; Widrow et al., 2005]. Shun-ichi Amari, who has since

made significant contributions to this field, came very close to discovering backpropaga-
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tion during the 1960s [Amari, 1967].

There are two aspects of this approach that are not necessarily desirable. First,

every data point in the training set influences every weight to some degree because the

training algorithm treats all weights and all data in the same fashion (i.e. by finding

the derivatives of the error with respect to every weight, evaluated at every data point).

Second, in most applications, the data are treated as being generated by some completely

unknown process. If, on the other hand, the data are assumed to be outputs of some

parameterized system, novel training methods become possible.

We present a simple regression technique that assigns neural network weights

given a data set assumed to be generated by such a parameterized system. Instead of

each point influencing every weight in the same way, regions of the input space are ranked

by relative usefulness in determining where hidden units should be. This method infers

the hidden parameters of a target function by analyzing only its input and output. We

describe this technique as tomographic in analogy to the computed tomography tools in

medical science which infer the internal structures of an intact object by observing the

results of probe signals.

Our method begins with the previously stated assumption about the data set:

the input-output pairs are the inputs and outputs of a neural network, referred to as

the teacher network. The only assumptions about the teacher are that it is a two-

layer perceptron network with the hyperbolic tangent (tanh) activation function in the

hidden units and its outputs are affine combinations of the hidden units. The teacher

parameters, such as its weights or number of hidden units, are unknown. A student

network is constructed one hidden unit at a time by iteratively inferring the parameters

of the teacher network’s hidden units by finding regions of the input space where the

curvature of the output is characteristic of a tanh function. This works because the affine

combinations of the output units preserve curvature. As each new student hidden unit is

added, the effect of the corresponding hidden unit in the teacher network is subtracted

from the function output in the data set, and the procedure terminates when all of the

hidden units have been matched.

The next section contains a history of function approximation and examines the

relation of our new technique in terms of this history. Sections 5.3-5.4 contain a detailed

description of the tomographic method and provide a few examples of its application.

The article concludes with a brief discussion.
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5.2 A Brief History of Function Approximation

The history of function approximation is centuries old and can be roughly di-

vided into several different types of approach: methods that approximate a function by

construction of a polynomial with the same derivatives as the function, approximation

techniques that are based on a trigonometric series, methods that partition the input

space into regions which are independently approximated, and methods that use neural

network-like parameterizations. Interestingly, these different categories of approximation

techniques appeared roughly chronologically.

A side note to the development of the many different function approximation

techniques is the development of methods to estimate values for the parameters of the

approximations. Perhaps surprisingly, one of the most common methods of parameter

estimation today, the method of least squares, was developed at the end of the eighteenth

century [Gauss, 1809]. Gauss used least squares to find orbital parameters of a newly

discovered celestial body, given only a few observations, and became famous for predicting

where this body (the asteroid Ceres) would reappear in the night sky. Despite the instant

fame he gained upon this success, the true discoverer of the least squares method is

unknown and disputed. Though Gauss claimed to have discovered least squares in 1795,

Adrien-Marie Legendre actually published a description of least squares earlier [Legendre,

1805], whereas Gauss did not publish his least squares method until 1809. Gauss’s claim

is only supported by his word; no clear written indication of his use or discovery of least

squares exists before 1805 [Stigler, 1981].

5.2.1 Polynomial-based approximation methods

One of the earliest examples of function approximation is in Newton’s Method

for root finding, written in his De analysi per æquationes numero terminorum infinitas

[Newton, 1669]. This method first appeared in its modern form after further development

[Raphson, 1690]. The resulting Newton-Raphson method finds the roots of arbitrary

functions by successively calculating the zero-crossing of a simple linear approximation

of that function identified by its first derivatives.

This idea of function approximation was generalized to higher derivatives and

actually explored as a function approximation in itself, not as a tool to reach some

other goal, by Methodus Incrementorum Directa et Inversa [Taylor, 1715], stating that

a function of x may be evaluated at any value of x As “seriem terminorum numero
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infinitam,” or a series terminating at infinity, each term of which is constructed from

incrementally higher derivatives of the function. This idea was further explored by the

Scottish mathematician Colin Maclaurin.

5.2.2 Trigonometric methods

An independent approach to function approximation began in the early 19th cen-

tury, when French mathematician, physicist, and Egyptologist Joseph Fourier published

his Mémoire sur la propagation de la chaleur dans les corps solides Fourier [1808]. Fourier

noted that a function could be represented as an infinite trigonometric series:

�(y) = a0 cos
⇡y

2

+ a1 cos 3
⇡y

2

+ a2 cos 5
⇡y

2

+ · · · ,

and that the coefficients ai could be found by integrating

“ ai =

ˆ +1

�1
�(y) cos(2i+ 1)

⇡y

2

dy , ”

or taking the inner product of the original function with the relevant basis function

[Fourier, 1808].

Originally, Fourier decomposed functions into a linear sum of trigonometric terms

because the solution to the heat equation in polar coordinates has that form. In his

Théorie analytique de la chaleur, he exposited the “Development of an arbitrary function

in trigonometric series” [Fourier, 1822], and the beginnings of the field of Fourier analysis.

In contrast to Fourier’s basis of sines and cosines, which are defined by frequency

and phase and therefore have no locality, wavelet bases are defined by the addition of

position and size. For example, Gabor’s logons are designed to constitute a basis, much

like Fourier bases but with the addition that each term in the approximating sum only

influences the function in a local neighborhood [Gabor, 1946]. This was extended to two

dimensions, for example by Daugman, who showed how visual information (functions of

two variables) can be represented in such a basis [Daugman, 1988], and by Daubechies,

who introduced orthogonal bases of wavelets [Daubechies, 1988].

Representation of arbitrary functions by polynomials or by trigonometric series,

differs from our tomographic technique for function approximation in that the basis func-

tions of neural networks are inherently adaptive because of their input weights. Functions

are approximated by polynomials or Fourier series by finding coefficients (corresponding
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to network output weights) with inner products of the function to be approximated with

the exhaustive set of basis functions (or an exhaustive sequence of derivatives). It is

worth noting that the lack of adaptability of the bases functions in these two types of

approaches typically leads to the use of many more terms in an approximation.

5.2.3 Piece-wise methods

The non-global properties of basis elements used in wavelet representations have

a corresponding polynomial analog in piece-wise polynomial interpolation/approximation

techniques developed first by Paul de Casteljau and Pierre Bézier, who were motivated

by practical automotive engineering concerns. Casteljau’s breakthrough was to augment

the set of points through which a curve is to pass with a set of control points which

defined the tangents [Farin, 2002]. The same curve parameterization was independently

derived in terms of cylindrical surface intersections by Bézier, with whose name it became

associated due to his publishing before Casteljau. The work of Casteljau and Bézier lead

directly to the field of spline interpolation, which is applied in computer graphics, for

example, as non-uniform rational B-splines (NURBS). In the case of interpolation, a

variant of function approximation, reduction of complexity (from a large set of points to

a functional parametrization) is not the goal, but rather the creation of a smooth and

continuously differentiable function which evaluates to a defined set of values.

This idea of creating functions from real-world data became known in the field of

statistics as regression. Jerome Friedman presented a new method, multivariate adaptive

regression splines (MARS), in 1991 with several similarities to our new tomographic

technique, and to existing function approximation methods [Friedman, 1991]. Hearkening

back to older techniques, the approximation consists of a weighted sum of simple functions

of the input variables, though these simple basis functions can be multidimensional:

f(x1, x2, x3, . . .) = a0 +
X

Km=1

fi(xi)

+

X

Km=2

fij(xi, xj) +
X

Km=3

fijk(xi, xj , xk) + · · · ,

where Km = d indicates the set of d indices for which a basis function is defined and

each fm() is a weighted basis function: fm() = amB(). Each univariate basis function

is a smoothed piecewise linear function that is zero on the left, and linear on the right
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(or vice-versa), using a cubic term as the segment that smoothes between the two, and

allows for continuity and continuous first derivatives:

C(x|s = +1, t�, t, t+) =

8
>><

>>:

0 x  t�

p+(x� t�)
2
+ r+(x� t�)

3 t� < x < t+

x� t x � t+ ,

where s = +1 indicates that the function grows as x increases (i.e. to the right), and

C(x|s = �1, t�, t, t+) =

8
>><

>>:

�(x� t) x  t�

p�(x� t�)
2
+ r�(x� t�)

3 t� < x < t+

0 x � t+ ,

where s = �1 indicates that the function grows as x decreases. p+/� and r+/� are chosen

to ensure continuity and continuous derivatives. Multivariate basis functions are simply

the products of the univariate basis functions.

This model is an extension of an earlier, non-smooth model which uses the simpler

basis functions:

C(x|s = +1, t) =

8
<

:
0 x  t

(x� t) x > t ,

and C(x|s = �1, t) defined analogously.

The weights ai are fitted in rounds, each of which increases the dimensionality

of the basis functions to be added. Each round is followed by the elimination of terms

which most degraded or least improved the goodness-of-fit in that round. This step-

wise approach is not new to statistics, but Friedman innovated a combination of spline

knots and smoothing provided by the cubic basis functions that yields continuous and

continuously differentiable models fit by dividing up the input space [Friedman, 1991].

Interestingly, the weighted sum of simple basis functions is similar to the weighted sum of

hidden units used in neural network regression (described in 5.2.4); the t parameter(s) of
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the spline knots set the position of the basis function within the input space, analogous

to neural network input weights, and the weighting term ai corresponds to the output

weight (with a0 as the output bias weight).

5.2.4 Neural Network methods

Neural networks have been an active topic of research since the beginnings of Ar-

tificial Intelligence. The first researchers attempted to reproduce the capabilities of the

brain by crudely simulating its functional components, neurons, resulting in the so-called

“perceptron,” a single-neuron computational model that showed promise as a classifier

[Rosenblatt, 1961], but progress was slow until the incorporation of a differentiable sig-

moid activation function and the invention of the backpropagation algorithm [Werbos,

1994]. Since then, neural network classifiers with squared-error loss have been proved to

be Bayes-optimal classifiers [Wan, 1990; Ruck et al., 1990] and neural networks with a

single hidden layer of neurons with sigmoid activation functions and linearly weighted

outputs have been proved to be a universal function approximator, provided that a suf-

ficient number of hidden units are used [Hornik et al., 1989].

A single output of a neural network regression model can be formulated as

ŷt = v0 +
HX

h=1

vhf

 
u0,h +

NX

n=1

un,hxt,n

!
,

where u and v are the weights to the hidden units and weights to the outputs, respectively,

and the activation function f() is a sigmoid activation function, such as the logistic

function or the hyperbolic tangent.

The most common training method is to reduce the value of a loss function, which

is nearly always mean squared error loss:

✏(u, v) =
1

T

TX

t=1

(yt � ŷt)
2 ,

where T is the number of input-output training pairs.

The backpropagation algorithm, invented by Paul Werbos in 1974 [Hecht-Nielsen,

1989], is an efficient method of evaluating the gradient of a loss function with respect

to the weights of a neural network. It is widely claimed that gradient descent with

backpropagation can perform poorly because of local minima on the error surface. Despite
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this frequent claim, we have not been able to find any published proof that sub-optimal

minima exist, although some evidence has been discovered [Fukumizu & Amari, 2000].

Although local minima may or may not exist, from a practical perspective, gradi-

ent descent can be slow in nearly flat regions of the error surface or ineffectually oscillate

in slightly downward-sloping “canyons” in the error surface. A traditional approach to

improving convergence in these situations is to use a “momentum” factor, ↵. The weight

adjustment used is equal to 1 � ↵ times the weight change suggested by the gradient,

plus ↵ times the weight change used in the previous iteration (typically, ↵ is close to 1),

resulting in a series of changes to the weight vector that can only gradually change its

direction and that avoids oscillation. Though momentum is a practical solution for slow

convergence, it is by no means a safeguard against local minima that might be mistaken

for a global minimum; determining an optimal momentum factor to overcome local min-

ima is not necessarily less difficult than determining a step size that would have overcome

the local minimum without using momentum.

Another recent attempt to avoid the potential problem of local minima is to

consider the weights as a point on a manifold embedded in Fisher information space

and adjust the weights in the direction of maximum improvement [Amari, 1998]. The

question of local minima is obviated completely by our tomographic technique which does

not perform a gradient descent on the error surface.

An alternative to neural networks with sigmoid activation functions is the radial

basis function network, in which the hidden units are assigned a position within input

space and, when given input, return some measure of the proximity of that input to

that hidden unit (typically, using the normal distribution density function). The (linear)

output weights can be determined through ordinary least squares [Haykin, 2009]. One

drawback to this type of regression method is that, to ensure complete coverage of the

input space, typically every input training example (or a significant fraction) is used to

create a radial basis function, even if the underlying concept being learned is not complex

[Haykin, 2009]. In contrast, our algorithm iteratively increases model complexity until

no error remains.

5.2.5 GMDH-type methods

In 1968, Ivakhnenko introduced the so-called “Group Method of Data Handling”

(GMDH) [Ivakhnenko, 1971; Galushkin, 2007]. This technique was first used to learn an
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arbitrary-order polynomial approximation of the input/output characteristics of a control

theory “plant” (i.e. a black-box function) given a data set consisting of N pairs of input

vectors and output values.

The GMDH learning algorithm contains several ideas that have been explored

throughout the history of function approximation. GMDH models are network models

with layers of hidden units in which each processing unit Uh,i (hidden layer h, unit index

i) accepts as inputs a small subset of the previous layer’s outputs zh�1,j (where j indexes

the units of the previous layer) and computes its function fh,i(za, zb), analogously to the

activation function of a neural network [Oh & Pedrycz, 2002].

Each of the functions f() is in the form of a linear combination of simple, possibly

nonlinear, functions of the inputs to f(). For example, the polynomial GMDH described

in [Ivakhnenko, 1971] uses, for two input variables x1 and x2,

f(x1, x2) =

5X

i=0

aiei(x1, x2) = a0 + a1x1 + a2x2

+a3x
2
1 + a4x

2
2 + a5x1x2,

where the ai are the six input weights to learn for this unit. In this case, the components

of f() are the functions

e0(x1, x2) = 1

e1(x1, x2) = x1 e2(x1, x2) = x2

e3(x1, x2) = x21 e4(x1, x2) = x22

e5(x1, x2) = x1x2.

This is in contrast to neural networks, which capture nonlinear effects not by

including nonlinear terms, but by applying a nonlinear activation function (e.g. tanh())

to a sum of linear terms f(x1, x2, ...) = tanh(a0 + a1x1 + a2x2 + ...). This approach of

GMDH, in which each unit consists of a linear combination of functions, has an advantage

over neural networks, because parameters can be learned using a matrix pseudo-inverse,

thus learning the optimal parameters efficiently, and at once.

The GMDH model learning algorithm adds successive hidden layers to the net-

work until the predictive accuracy of the model ceases to improve. Each layer learning

phase uses three steps:



92

1. constructing a large number of new hidden units by selecting many small subsets of

the outputs of the previous layer (typically an exhaustive set of subsets with small

cardinality), applying each new hidden unit’s nonlinear transformation functions,

then learning the weights to linearly combine the transformed inputs into the unit’s

output,

2. selecting the best performing newly learned units (i.e. the most predictive sets of

inputs) using a hold-out set and some performance metric, typically squared error,

3. checking for termination (non-decreasing error) [Oh & Pedrycz, 2002].

For example, in using the two-term units above to estimate a function y of d variables,

x1..xd, the first step learns all N(N � 1)/2) sets of 6 weights to minimize the squared

error y � f(xi, xj) where f(xi, xj) = a0 + a1xi + a2xj + a3x
2
i + a4x

2
j + a5xixj (i.e. the

coefficients of a quadratic equation are learned for every pair of inputs to predict the

output).

The second step evaluates the new functions on the hold-out set data, eliminat-

ing those f(xi, xj) with unacceptably high error, either by thresholding, or pruning a

predetermine number of them.

In the third step, the new unit with the smallest summed error is compared to the

smallest summed error in the previous layer. If the error is still decreasing, and further

accuracy is desired, then the process is repeated, otherwise the unit with smallest error

is considered the output of the network.

There are a number of attractive features of GMDH-type algorithms. Because

each unit is a linear combination of fixed functions of that unit’s inputs, the optimal

weights can be calculated directly and because each unit has a small number of inputs

(typically much smaller than the number of samples), these calculations are usually well-

conditioned. The units whose parameters are estimated from ill-conditioned systems are

usually eliminated in the unit selection phase because they poorly predict the outputs of

the hold-out set. Interestingly, the GMDH learning algorithm explicitly induces structure

in its models by rejecting connections (units) in phase 2, unlike neural networks in which

successive layers are usually completely connected. And finally, there is no restriction

on the nonlinear functions that transform the inputs to a unit [Oh & Pedrycz, 2002],

whereas the nonlinear transformations within neural networks are typically all the same

function. This could be useful, for example, for incorporating prior knowledge.



93

Some of the drawbacks of GMDH are consequences of the fact that it is essentially

a greedy algorithm; at each step, some inputs and/or combinations of inputs are irre-

trievably lost because they are not linearly predictive of the function output value, even

though they may have been helpful to later layers of the network. Another restriction is

that because units usually consist of a small number of inputs, the set of learnable unit

outputs is restricted, though this restriction can potentially be overcome with additional

layers.

5.3 Neural Network Tomography

Our neural network tomography procedure for replicating networks, outlined in

Procedure 1, successively adds hidden units to an initially empty (with no hidden units)

student network by estimating the weights of the teacher network hidden units (whose

weights are concealed), effectively canceling the teacher hidden units’ contributions to the

difference surface with each new student hidden unit. Inferring the weights of a student

hidden unit occurs in two phases: initialization of the hidden unit weights (Procedure

1, lines 7-12), followed by fine-tuning of these weights to closely match a teacher hidden

unit (Procedure 1, lines 13-15).

Our method, like other regression techniques, learns a mapping by some target

function, f : RN ! RM , given only the input-output pairs yt = f(xt) for T training

samples, where t = 1 . . . T . Since a two-layer neural network with a tanh activation

function in the hidden units and linear output units has been shown to be a universal

approximator [Hornik et al., 1989], let us consider the target function as having been

approximated by a neural network, the teacher network, with an unknown number of H

hidden units (see Figure 5.1). Such a function can be replicated perfectly by a neural

network, the student network, with ˆH = H hidden units parameterized by any element

of a non-abelian Lie group transformation of the teacher network weights [Sussmann,

1992; Chen et al., 1993]. However, traditional gradient descent by minimizing a mean

squared error (MSE) objective function (e.g. backpropagation) requires choosing ˆH prior

to learning or adaptively adding hidden units during learning, where neither approach is

immune to slow convergence.

We present an alternative objective function to minimize instead of MSE: mean

squared curvature (MSC), not to be confused with Gaussian or mean curvature. We

define the curvature at input sample xt to be a measure of the deviation of the surface



94

Figure 5.1: The teacher and student networks.
A) The teacher network with H hidden units to be matched iteratively by the student
network. The overlaid translucent box illustrates that the teacher hidden units and their
weights are concealed from the student network. B) The student network, after all H
hidden units of the teacher have been learned successfully.
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Table 5.1: Neural network tomography notation.

N = input dimensionality
M = output dimensionality
H = number of teacher hidden units
ˆH = number of student hidden units

an,h = teacher network input weight from input unit n to hidden
unit h

bh,m = teacher network output weight from hidden unit h to output
unit m

un,h = student network input weight from input unit n to hidden
unit h

vh,m = student network output weight from hidden unit h to output
unit m

xt,n = the training data input
yt,m = the teacher network output

= b0,m+

PH
h=1 bh,m tanh

⇣
a0,h +

PN
n=1 xt,nan,h

⌘

ŷt,m = the student network output
= v0,m+

PĤ
h=1 vh,m tanh

⇣
u0,h +

PN
n=1 xt,nun,h

⌘

in a small neighborhood about xt from a planar approximation of the surface in that

neighborhood. This technique allows for the weights of each teacher network hidden unit

to be reliably and sequentially learned by the student network. Since properties of neural

networks with one output generalize to multiple outputs [Sussmann, 1992; Kůrková &

Kainen, 1994], we only consider the case where f : R2 ! R, xt 2 X is a compact subset

of R2, and y 2 Y is a compact subset of R.

Our tomographic procedure begins by adding one zero hidden unit (input and

output weights are zero) to the student network. The difference surface (initially identical

to the teacher output surface) between the teacher and student networks is defined as

d = y � ŷ = y � v1 tanh(Xu), (5.1)

and in expanded form for teacher f : R2 ! R,
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where JT,1 2 RT is a column vector of ones. The MSC of this difference surface is

gradually reduced as hidden units are added to the student network, causing its output

to converge to the teacher network output.

Procedure 1 Neural Network Tomography Outline.
1: X training inputs
2: K  number of nearest neighbors
3: repeat
4: add a zero hidden unit to the student
5: for all xt 2 X Sec. 5.3.1
6: calculate the difference surface curvature,  (xt), using K nearest neighbors of

x Equation 5.3
7: for all x+ 2 X whose  is positive Sec. 5.3.2.1
8: for all x� 2 X whose  is negative
9: evaluate the similarity score, �, using x+ and x� Eqs. 5.4,5.8

10: if � is the largest so far then
11:

�
x

0
+,x

0
�
�
 (x+,x�)

12: set the new student hidden unit input weights using
�
x

0
+,x

0
�
�

Eqs. 5.5-5.7
13: while the MSC is decreasing Sec. 5.3.2.2
14: adjust all the student hidden unit weights to try and minimize the MSC
15: recalculate the difference surface MSC Equation 5.9
16: until the difference surface is close to constant Sec. 5.3.3
17: set the student output bias to minimize error Equation 5.10

5.3.1 Estimated Signed Curvature

Let the function knn(t, k) index the kth nearest neighbor to the input sample xt

using a Euclidean distance metric. The curvature of the network difference surface can

be calculated with the least squares estimate (LSE) of a hyperplane about xt and its K
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nearest neighbors:

p = X

†
tdt =

0

BBBBBB@

x

|
t

x

|
knn(t,1)

...

x

|
knn(t,K)

1

CCCCCCA

†

dt , (5.2)

and in expanded form for teacher f : R2 ! R,

0
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1

CCA =

0

BBBBB@

1 xt,1

1 xknn(t,1),1
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1 xknn(t,K),1
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xknn(t,K),2

1
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BBBBB@

yt � ŷt

yknn(t,1) � ŷknn(t,1)
...

yknn(t,K) � ŷknn(t,K)

1

CCCCCA
,

where † denotes the Moore-Penrose pseudoinverse, xknn(t,k) is the vector of inputs (in-

cluding the input bias) for the kth nearest neighbor to the tth training sample, and Xt

and et are the neighborhood subset about xt of input samples and difference surface

outputs, respectively. The curvature of the difference surface is estimated as the product

of the sign of the LSE residual with the mean squared error of the hyperplane linear fit:

(xt) = �sgn (yt � x

|
tp)

1

K

KX

k=1

�
yknn(t,k) � x

|
tp
�2

. (5.3)

This measure of curvature emphasizes the regions of the difference surface which are

most influenced by an underlying hidden unit. Thus, each point is assigned a curvature

magnitude and sign.

5.3.2 Hidden Unit Parameterization

Each hidden unit of the teacher network is parameterized by N +1+M weights,

namely the input weights, the input bias, and the output weights. The goal of our
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Figure 5.2: Estimated signed curvature.
A 3D (A) and 2D (B) illustration of a teacher network input and output with 2 hidden
units to be replicated by the student network. C) The calculated MSC at each point in
the difference surface. Note that the regions of maximum curvature correspond to the
steeper of the two teacher hidden units.

approach is to estimate each of the teacher network hidden units sequentially, beginning

with the hidden unit contributing most to the MSC. Minimizing the MSE, in many cases,

will fail to achieve this goal (see Figure 5.6). Alternatively, minimizing the MSC of the

difference surface will reliably uncover the weights of one hidden unit at a time.

5.3.2.1 Optimization Initialization

The MSC objective function is prone to local minima (see Figure 5.4B) introduced

in many cases by matching the student hidden unit weights with those of at least one of

the teacher hidden units. Therefore, we must first initialize the optimization procedure

with input weights and an input bias close to the MSC local minimum associated with

the most prominently contributing hidden unit. One way to accomplish this is to use

a comparison kernel to evaluate the similarity of the difference surface curvature and

a hypothetical tanh hidden unit ramp. We define the kernel,  (), as a function of a

pair of training sample inputs (one at which the curvature is positive, x+, and the other

negative, x�) in the form of the second derivative of the hidden layer transfer function,

tanh:

 (t,x+,x�) = tanh

�
x

|
tu

0� sech2
�
x

|
tu

0� , (5.4)

where u

0 is a vector of weights that parameterize a line within input space bisecting the

line segment between the pair of training sample inputs x+ and x�. These weights are:
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Figure 5.3: Hidden unit alignment.
A) The teacher network introduced in Figure 5.2A. B) The teacher hidden unit posi-
tions within input space, indicated by thin lines where tanh (x|

t ah) = 0, overlaid by the
initialized student hidden unit, indicated by a thick line where , and the two training
samples, x+,x�, used for initialization. C) The teacher hidden unit positions overlaid
by the optimized student hidden unit, indicated by a thick line where tanh (x|

t û) = 0.

u01,1 =

x+,1 � x�,1

kx+ � x�k22
(5.5)

u02,1 =

x+,2 � x�,2

kx+ � x�k22
(5.6)

u00,1 =

u01,1
2

(x+,1 + x�,1) +
u02,1
2

(x+,2 + x�,2) . (5.7)

A normalized dot product similarity score, �(), is then calculated between the

kernel and the difference surface curvature over all training samples:

� (x+,x�) =

PT
t=1  (xt) (t,x+,x�)PT

t=1 | (t,x+,x�)|
. (5.8)

The vector of weights, u0, that maximizes the similarity score over any pair of training

sample inputs is used to initialize an optimization procedure to minimize the MSC ob-

jective function. The search for the pair of training samples that maximize the similarity

score begins with samples at which the largest magnitude of curvature was calculated

(Equation 5.3).

5.3.2.2 Optimization

The optimization procedure, initialized within the region of convergence to a local

minimum of the MSC objective function, can now be invoked to fully parameterize the

student hidden unit, including the output weight:
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Figure 5.4: Optimization with the MSC objective function.
A) MSC and MSE objective functions along the u0,1 axis. The inverted triangle and the
cross mark the values of u0,1 prior to and after optimization, respectively. Similarly, B),
C), and D) depict the objective functions along the u1,1, u2,1, and v1 weight axes.

{û, v̂1} = argmin{u,v1}⇢R4
1

T

TX

t=1

0 (xt)
2 , (5.9)

where 0 (xt) is the difference surface curvature at training sample input xt for a student

network with the candidate parameterization of the hidden unit being optimized.

This optimization problem can be solved with any off-the-shelf optimization pack-

age, such as an unconstrained line search, since the initialization step (see Figure 5.3B)

already places the weights close to a minimum.

5.3.3 Iterative Hidden Unit Matching

The parameters found to minimize the MSC objective function above reliably

recover one set of weights of a teacher hidden unit, and, when included in the student
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Figure 5.5: Cancellation of a teacher hidden unit by the student network.
A) The teacher network introduced in Figure 5.2. B) The first student hidden unit
matched to the teacher network. C) The difference surface between the teacher and
student networks after one hidden unit is matched.

network, effectively cancel the contribution of this hidden unit to the error between the

teacher and student network. This technique can be repeated to find the next most

prominently contributing hidden unit by reevaluating the difference surface after adding

the hidden unit to the student network and, again, parameterizing a new zero student

hidden unit.

After each teacher hidden unit is sequentially matched and canceled, the MSC

approaches zero and the difference surface is essentially flat; the stop condition is met.

The final parameter to learn in the student network is the output bias, which is calculated

as the mean of the difference surface over all training samples:

v0 =
1

T

TX

t=1

dt . (5.10)

5.4 Results

Duplicating the weights of a teacher network requires a new approach, such as

our neural network tomography procedure, because minimizing the mean squared error

does not guarantee that the resulting student hidden unit weights will be the same as

the teacher’s. Consider the simple case, a target function approximated by a teacher

network with two hidden units and an insufficiently complex student network (i.e. too

few hidden units) attempting to learn the target function with only a single hidden unit

(see Figure 5.6). Minimizing the MSE will attempt to average across both hidden units of

the teacher network. Whereas our approach, minimizing the MSC, will not only uncover
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Figure 5.6: Comparison between objective functions.

A) A teacher network output with 2 hidden units to be replicated by the student network.
B) A student network output learned by minimizing the MSE with one hidden unit. C)
A student network output learned by minimizing the MSC with one hidden unit. MSE
and MSC are the mean square and the mean squared curvature, respectively, of the
difference surface between the student and teacher networks.

Figure 5.7: MSE progression as hidden units are matched.
A) A teacher network with six hidden units resulting in a radially symmetric output
surface. B) The steadily decreasing MSC, juxtaposed with the MSE, as the student
network replicates each of the hidden units in the teacher network. The dependent axes
are normalized for clarity. Note that the MSE does not monotonically decrease as hidden
units are matched in the student network, and therefore MSE is surprisingly not very
well suited as an objective function for learning.

the true input weights to one of the teacher hidden units, but will also correctly match

the output weight.

The radially symmetric teacher network (see Figure 5.7A) is a particularly useful

example for contrasting our approach with MSE minimization. Neural network tomog-

raphy attempts to minimize the MSC objective function with each appended student

hidden unit. In doing so, the MSE is not monotonically reduced (see Figure 5.7B). Fol-

lowing a gradient descent algorithm to minimize the MSE objective function will not

produce the desired result of matching the student hidden units one at a time.

This technique is also capable of matching the teacher hidden units in more

complex networks. Even when presented with a radially symmetric teacher output surface

or a randomly weighted teacher network with ten hidden units, the student is able to

reliably match the hidden units one at a time (see Figure 5.8).
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Figure 5.8: First and second hidden unit matches for various teacher networks.
For each of three teacher networks, there are six figures displaying the progress of the
student matching hidden units. A) The teacher network with six hidden units used in
5.7A. The first row shows the position in input space of the teacher hidden units followed
with overlays of the first and second student hidden unit matches. The second row shows
the difference surface between the teacher and student networks prior to any matches,
after one match, and after two matches. Observe the steadily decreasing total curvature
as student hidden unit matches cancel the contribution of teacher hidden units to the
error. Similarly B) and C) show matching results for teacher networks with ten randomly
weighted hidden units.
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5.4.1 A Note on Sampling Requirements

In order to achieve a reasonable performance with our method, we acknowledge

that there are minimum sampling requirements. This method, like backpropagation or

any other regression technique, cannot overcome undersampled training data. Therefore,

a minimum sampling density is necessary for the student to reliably recover the teacher

hidden units. Specifically, each hidden unit in the teacher must be sufficiently sampled by

the training data on either side of the tanh (x|
t ah) = 0 line (i.e. the training data domain

must significantly intersect the inflection lines of all teacher hidden units), although we

suspect our algorithm might be improved to perform successfully with a lower sampling

density than what is currently required.

5.5 Discussion

We have presented a neural network weight-finding technique vastly different from

all others of which we are aware. Instead of using every data point to influence every

weight, the hidden units of the network that generated the data set are sequentially

inferred by analyzing the curvature of that network’s output surface. Matching hidden

unit parameters in this fashion allows the student network to replicate the teacher network

iteratively.

This tomographic method has several advantages. It is straightforward to apply,

and requires little of the tuning required with backpropagation (e.g. learning rates or

learning rate schedules, and momentum factors). Our technique has the potential to

be more desirable in some situations than gradient-descent-based approaches, as its per-

formance is not susceptible to the occasionally counterproductive features of the MSE

surface. In addition, this technique is compatible with active-learning techniques, for

instance by focusing queries in regions of high-curvature.

As far as we are aware, our algorithm is the first neural network weight-finding

procedure that directly matches the underlying weights of a hidden network (the teacher)

by analyzing its input-output behavior, a potentially useful method for reverse-engineering

of models, or in situations for which only some of the teacher’s hidden units are sought.

One drawback to our tomographic method is that it is not as universally appli-

cable as backpropagation is to training neural networks. Backpropagation affords the

use of any differentiable loss function. In addition, neural network tomography does not,
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as of yet, have proved bounds on the sampling density required to be guaranteed the

ability to distinguish between similarly aligned hidden units, and we have not established

that its performance is gracefully degraded as the sampling density is lowered. It is our

expectation that these issues will soon be resolved, and our belief that neural network

tomography has great potential.

Chapter 5, in full, is a modified reprint of the material as it appears in Neural

Networks. Minnett, Rupert C.J.; Smith, Andrew T.; Lennon Jr., William C.; Hecht-

Nielsen, Robert, Elsevier, 2011. The dissertation author was the primary investigator

and author of this material.
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Table A.1: UCSD Natural Scenes Dataset samples 1 - 20.
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Table A.2: UCSD Natural Scenes Dataset samples 21 - 40.
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Table A.3: UCSD Natural Scenes Dataset samples 41 - 60.
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Table A.4: UCSD Natural Scenes Dataset samples 61 - 80.
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Table A.5: UCSD Natural Scenes Dataset samples 81 - 100.
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Table B.1: UIUCTex Dataset texture class 1 (bark 1) samples.
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Table B.2: UIUCTex Dataset texture class 2 (bark 2) samples.
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Table B.3: UIUCTex Dataset texture class 3 (bark 3) samples.



118

Table B.4: UIUCTex Dataset texture class 4 (wood 1) samples.
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Table B.5: UIUCTex Dataset texture class 5 (wood 2) samples.
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Table B.6: UIUCTex Dataset texture class 6 (wood 3) samples.
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Table B.7: UIUCTex Dataset texture class 7 (water) samples.
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Table B.8: UIUCTex Dataset texture class 8 (granite) samples.
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Table B.9: UIUCTex Dataset texture class 9 (marble) samples.
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Table B.10: UIUCTex Dataset texture class 10 (floor 1) samples.
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Table B.11: UIUCTex Dataset texture class 11 (floor 2) samples.
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Table B.12: UIUCTex Dataset texture class 12 (pebbles) samples.
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Table B.13: UIUCTex Dataset texture class 13 (wall) samples.
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Table B.14: UIUCTex Dataset texture class 14 (brick 1) samples.
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Table B.15: UIUCTex Dataset texture class 15 (brick 2) samples.
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Table B.16: UIUCTex Dataset texture class 16 (glass 1) samples.
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Table B.17: UIUCTex Dataset texture class 17 (glass 2) samples.
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Table B.18: UIUCTex Dataset texture class 18 (carpet 1) samples.
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Table B.19: UIUCTex Dataset texture class 19 (carpet 2) samples.
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Table B.20: UIUCTex Dataset texture class 20 (upholstery) samples.
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Table B.21: UIUCTex Dataset texture class 21 (wallpaper) samples.
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Table B.22: UIUCTex Dataset texture class 22 (fur) samples.
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Table B.23: UIUCTex Dataset texture class 23 (knit) samples.
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Table B.24: UIUCTex Dataset texture class 24 (corduroy) samples.
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Table B.25: UIUCTex Dataset texture class 25 (plaid) samples.
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Table C.1: Example textures used in the human texture classification data collection
instruction pages.
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