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Transient phases of OXPHOS inhibitor resistance reveal 
underlying metabolic heterogeneity in single cells

Nont Kosaisawe, Breanne Sparta, Michael Pargett, Carolyn K. Teragawa, John G. Albeck*

Department of Molecular and Cellular Biology, University of California, Davis, CA 95616

Abstract

Cell-to-cell heterogeneity in metabolism plays an unknown role in physiology and pharmacology. 

To functionally characterize cellular variability in metabolism, we treated cells with inhibitors of 

oxidative phosphorylation (OXPHOS) and monitored their responses with live-cell reporters for 

ATP, ADP/ATP, or activity of the energy-sensing kinase AMPK. Across multiple OXPHOS 

inhibitors and cell types, we identified a subpopulation of cells resistant to activation of AMPK 

and reduction of ADP/ATP ratio. This resistant state persists transiently for at least several hours 

and can be inherited during cell divisions. OXPHOS inhibition suppresses the mTORC1 and ERK 

growth signaling pathways in sensitive cells, but not in resistant cells. Resistance is linked to a 

multi-factorial combination of increased glucose uptake, reduced protein biosynthesis, and G0/G1 

cell cycle status. Our results reveal dynamic fluctuations in cellular energetic balance and provide 

a basis for measuring and predicting the distribution of cellular responses to OXPHOS inhibition.
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eTOC blurb

Kosaisawe et al. develop a live-cell imaging method to interrogate cellular usage of oxidative 

phosphorylation (OXPHOS) for ATP generation. The single-cell resolution enabled by this 

approach reveals a distinct form of heterogeneity in cellular metabolism, in which certain cells rely 

on OXPHOS to maintain energy charge, whereas other cells do not. These states of sensitivity and 

resistance to OXPHOS inhibition interchange over time, modulate AMPK, ERK and mTOR 

activation, and are set by each cell’s balance of glycolytic capacity and ATP turnover.

Introduction

Metabolic functions vary across different cell types and tissues (Hensley et al., 2016; 

Konagaya et al., 2017; Tasdogan et al., 2020), but much less is known about cell-to-cell 

metabolic heterogeneity. Single-cell resolution is important because cellular heterogeneity 

limits drug efficacy (Altschuler and Wu, 2010), and targeting of metabolic functions for 

therapeutic purposes will require identification of resistant subpopulations of cells. Current 

approaches measure the expression profiles of metabolic enzymes (Hartmann et al., 2020; 

Xiao et al., 2019), rather than directly assessing metabolites or their flux. Other work has 

used biosensors to reveal variability in clonal cell lines responding to inhibitors of 

metabolism (Hung et al., 2017) and in cellular metabolic disposition based on responses to 

glucose withdrawal (Depaoli et al., 2018). However, while it is typical for single-cell 

approaches to reveal heterogeneity, it is not clear how the observed variation originates 

within an isogenic population of cells, and what impact it has on pathways downstream of 

the immediate response.

To approach these questions, we focused on inhibitors of oxidative phosphorylation 

(OXPHOS), which are important both as tools to probe cellular metabolism and as 

treatments for diabetes and cancer. Naturally occurring OXPHOS inhibitors, including 

oligomycin, antimycin, and rotenone are produced defensively in microorganisms and 
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plants. Biguanides derived from the plant compound galegine, including metformin and 

phenformin, are weaker inhibitors of OXPHOS. Metformin is used widely to treat type II 

diabetes and also has anti-tumorigenic, anti-fibrotic, and pro-longevity effects (Anisimov, 

2010; Dos Santos et al., 2018). These effects have spurred the search for additional 

OXPHOS inhibitors, leading to the development of compounds including IACS-010759 and 

Gboxin, which are being evaluated as cancer therapies (Molina et al., 2018; Shi et al., 2019). 

Many cancers upregulate OXPHOS and the tricarboxylic acid (TCA) cycle and rely on them 

for ATP production, biosynthesis (Vander Heiden and DeBerardinis, 2017) or resistance to 

chemotherapy (Vashisht Gopal et al., 2019).

By inhibiting ATP generation, OXPHOS inhibitors induce metabolic stress, which can range 

in severity from mild activation of stress pathways to a lethal energetic crisis. Understanding 

the cellular response to OXPHOS inhibition will improve on existing treatments for 

diabetes, cancer, and other conditions (Ashton et al., 2018; Stoker et al., 2019) and 

illuminate the fundamental cell biology of metabolic stress responses (Wu et al., 2016). 

Potent OXPHOS inhibitors (e.g. oligomycin) block oxygen consumption within seconds 

(Ruas et al., 2018), preventing TCA cycle turning and increasing flux through glycolysis to 

compensate for ATP loss (Fan et al., 2013); this adaptation can occur quickly enough that 

ATP levels remain nearly constant (Hao et al., 2010). Cellular responses to OXPHOS 

inhibition involve signaling between the mitochondria and stress response proteins in the 

cytoplasm and nucleus (Quirós et al., 2017). Extracellular nutrients modulate the response to 

OXPHOS inhibition by determining the metabolic pathways available to compensate for the 

loss of oxidative ATP production and NADH oxidation (Gui et al., 2016). However, 

essentially all the known elements of the OXPHOS inhibitor response have been established 

as bulk properties of cell populations, potentially overlooking distinct subpopulations of 

individual cells that vary widely, as tissues do, in their usage of OXPHOS.

OXPHOS usage can be evaluated by the acute change in oxygen consumption upon 

treatment with oligomycin (Buttgereit and Brand, 1995). This perturbation-based approach 

is useful because measuring metabolic fluxes through tracing of labeled metabolites (Jang et 

al., 2018) or model-based reconstruction (Orth et al., 2010) require comprehensive 

measurements (Fendt et al., 2013; Hackett et al., 2016) that are infeasible in single cells. In 

contrast, the response to OXPHOS perturbation can provide a simple, functional 

measurement of a cell’s usage of OXPHOS and glycolysis (Mookerjee et al., 2017) that can 

be compared across different cell types and tumors (Simões et al., 2015). At the single-cell 

level, measurements of oxygen consumption are possible (Dussmann et al., 2017), but other 

live-cell reporters may provide a more accessible quantification of OXPHOS activity. One 

such possibility is AMP-activated protein kinase (AMPK), a primary contributor to the 

OXPHOS inhibition response. AMPK directly binds ATP, ADP, and AMP, and in response 

to decreased cellular energy charge (AMP and ADP relative to ATP)(Hardie and Hawley, 

2001; Oakhill et al., 2011), it phosphorylates an array of substrates to enhance catabolism 

and suppress anabolism (Gowans et al., 2013; Hardie, 2014; Xiao et al., 2011). While 

AMPK is not required for all the effects of OXPHOS inhibition (Griss et al., 2015), its 

activity and phosphorylation status, or phosphorylation of its effectors such as acetyl-CoA 

carboxylase (ACC), are useful indicators of cellular energetic status. Recently, fluorescent 

protein-based FRET reporters have enabled tracking of AMPK activity in living cells, 
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revealing the localization and kinetics of its activity in response to different forms of 

metabolic perturbation, including OXPHOS inhibition (Hung et al., 2017; Konagaya et al., 

2017; Tsou et al., 2011).

Here, we used live-cell measurements of AMPK activity in response to OXPHOS inhibition 

to quantify differences in OXPHOS usage between single cells. We found that prominent 

cell-to-cell differences in AMPK response are common across OXPHOS inhibitors, and we 

confirmed that these changes correspond to perturbation of energy charge, using reporters 

for intracellular ATP concentration (Imamura et al., 2009) or ADP/ATP ratio (Tantama et al., 

2013) and various supporting assays to make unambiguous measurements of metabolic 

changes. We find that individual cells interconvert between sensitive and resistant states on 

the scale of hours, and we demonstrate that each cell’s response to OXPHOS inhibition is a 

function of the rate of insulin-stimulated glucose uptake relative to protein synthesis rate and 

cell cycle status. These findings establish that OXPHOS usage varies in a functionally 

important way between cells, and over time within the same cell.

Results

Variable AMPK responses to OXPHOS inhibition are common

In principle, strong activation of AMPK by OXPHOS inhibition indicates dependence on 

OXPHOS for ATP production (Gowans et al., 2013; Hao et al., 2010). Conversely, cells with 

adequate capacity to generate ATP through other routes such as glycolysis would not 

experience a loss in energy charge and activation of AMPK upon OXPHOS inhibitor 

treatment. In MCF10A non-tumor epithelial cells, OXPHOS inhibitors targeting complexes 

I, III, and V of the electron transport chain induced a similar pattern: a sharp but variable 

initial increase in AMPK activity, followed by alternating cycles of inactivity and activity 

with an approximate period of 3 hours (Fig. 1A). Metformin induced only a small initial 

peak, consistent with its weak inhibitory activity, but it induced subsequent oscillations 

similar to the other inhibitors (Fig. S1A). In contrast to OXPHOS inhibitors, the direct 

AMPK activator AICAR produced a gradual rise to a new steady state of AMPK activity, 

without oscillations (Fig. S1B).

To quantify OXPHOS inhibitor responses, we developed metrics for single-cell AMPK 

activity. We first confirmed that the average AMPKAR2 FRET ratio correlates linearly with 

its phosphorylation status across the full range of metabolic conditions tested (Fig. S1C,D). 

AMPKAR2 phosphorylation ranged from ~30% in cells cultured with full growth medium 

to ~75% in cells deprived of glucose or treated with 2-deoxyglucose, ruling out saturation of 

the reporter and confirming that AMPK retains some activity even under full nutrient 

conditions (Gowans et al., 2013). We show all subsequent AMPKAR measurements as 

AMPKAR2PHOS, the calibrated fraction of AMPKAR2 phosphorylated. On a cell-by-cell 

basis, AMPKAR2PHOS correlated linearly with immunofluorescence (IF) for ACC 

phosphorylated at Ser-79 (pACC; R2=0.63; Fig. 1B and S1E). Both pACC and 

AMPKAR2PHOS were bimodal, and >80% of cells were either double-positive or double-

negative. Because we expect the initial change in AMPK activity to correlate with reliance 

on OXPHOS for ATP production at the time of treatment, we evaluated the baseline-to-peak 

amplitude of AMPKAR2PHOS for each cell within 2 hours following oligomycin treatment 
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(Fig. 1C), which we term AMPKAR2Δ. AMPKAR2Δ was not correlated with basal 

AMPKAR2PHOS (Fig. S1F) and was distributed bimodally (Fig. 1D). Similar distributions 

were found with rotenone, antimycin, and IACS-010759 (Fig. S1G). We termed cells with a 

low AMPKAR2Δ “OXPHOS-independent” (OP-ind) because they were able to withstand 

OXPHOS inhibition with little evidence of energy stress. Cells with a strong AMPK 

response were termed “OXPHOS-dependent” (OP-dep). In contrast to OXPHOS inhibitors, 

maximal doses of AICAR stimulated a uniform increase in AMPK activity across the entire 

population (Fig. S1H), showing that heterogeneous responses are a property of OXPHOS 

inhibition, rather than AMPK activation.

To establish whether heterogeneous AMPK responses are shared by other cell types, we 

stably expressed AMPKAR2 and measured distributions of AMPKAR2Δ in other cell lines, 

including 184A1 (mammary epithelial), MCF7 (breast cancer), U87 (glioblastoma), and 

A549 (non-small cell lung cancer, LKB1-deficient)(Fig. 1E). To compare equivalent 

conditions for all cells, oligomycin challenge was performed in the absence of insulin, which 

resulted in a lower fraction of OP-ind MCF10A cells (12%). Under the same conditions, 

AMPKAR2Δ in 184A1 cells was bimodally distributed, with a higher percentage of OP-ind 

cells (72%), suggesting that they have on average a higher capacity to maintain their ATP 

production independently of OXPHOS. In contrast, nearly 100% of MCF7 cells showed a 

strong AMPKAR2Δ, indicating a greater dependence on OXPHOS to maintain ATP 

homeostasis. U87 cells showed a broad distribution of responses, with both OP-ind and OP-

dep populations. A549 cells, which are deficient for the AMPK activator LKB1, showed 

only weak AMPKAR2Δ, as expected. These data indicate that heterogeneity in the initial 

OXPHOS inhibitor response is common among human cell lines.

Heterogeneous AMPK responses propagate to downstream signaling activity

AMPK inhibits the activities of the RAS/ERK pathway (Shen et al., 2013) and mTORC1 

(Gwinn et al., 2008; Inoki et al., 2003) (Fig. 2A). In MCF10A cells, we investigated whether 

heterogeneous activation of AMPK induces corresponding changes in these connected 

pathways. ERK activity was monitored simultaneously with AMPK using a translocation-

based reporter, ERKTR (Regot et al., 2014). Upon oligomycin treatment, ERKTR detected 

an average decrease in ERK activity (Fig. 2B), consistent with inhibition of this pathway by 

active AMPK. On a cell-by-cell basis, the reduction of ERK activity correlated with the 

magnitude of AMPK activation for each cell (Fig. 2C,i), whereas no correlation was found 

in the absence of oligomycin. By IF, OP-dep cells showed a lower intensity of phospho-ERK 

staining (Fig. 2C,ii). Furthermore, when time courses of AMPKAR2 and ERKTR signals 

were tracked over time in individual cells, a significant anti-correlation was observed where 

pulses of AMPK activity were matched by depressions in ERK activity (Fig. 2D,i), with a 

lag time of 6 minutes or less (Fig. 2E,i,ii).

To detect mTORC1 activity in live cells, we used the nuclear-to-cytosolic translocation of a 

fluorescent protein fusion to transcription factor EB (TFEB-TR), which is stimulated by 

mTORC1-mediated phosphorylation (Fig. 2A) (Li et al., 2018; Settembre et al., 2012). As in 

the case of ERKTR, TFEB-TR cytosolic-to-nuclear ratio was decreased following 

oligomycin treatment (Fig. 2B) and correlated to AMPKAR2PHOS at the single cell level 
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(Fig. 2C,iii). IF for phospho-4E-BP1, an mTORC1 substrate, was also reduced in OP-dep 

cells (Fig. 2C,iv). Cycles of TFEB-TR translocation coincided with AMPK pulses, following 

a ~12 minute lag (Figs. 2D,ii and 2E,iii–iv). These results are consistent with dynamic 

regulation of mTORC1 by AMPK, although they do not rule out the possibility that 

OXPHOS inhibition suppresses mTORC1 independently of AMPK (Kalender et al., 2010). 

Together these data establish that heterogeneity in OXPHOS inhibitor responses has a 

functional impact on the AMPK signaling network.

AMPK responses to OXPHOS inhibition report the dynamics of ATP metabolism

Cell-to-cell variation in AMPKAR2Δ may reflect differences in cellular energy charge 

(Hardie, 2014), but this variation could also arise from variable drug uptake or other forms 

of AMPK regulation (Lin and Hardie, 2017; Zhang et al., 2017). To independently measure 

changes in energy charge, we used the ADP/ATP reporter PercevalHR (Berg et al., 2009; 

Tantama et al., 2013), which reports intracellular ADP/ATP ratio as a spectral shift in 

mVenus excitation, a ratio we refer to as PercevalEX (Fig. 3A). Similar to AMPKAR2PHOS, 

the immediate response of PercevalEX following OXPHOS inhibition was heterogeneous 

(Fig. 3B,i). However, unlike AMPK activity, PercevalEX lacked two distinct modes. Under 

continuous exposure to oligomycin, we observed pulses of PercevalEX 1-2 hours in duration, 

interspaced by 2-4 hours, similar to AMPKAR2PHOS in timing but more variable in 

amplitude. Staining of pACC was correlated with PercevalEX, with agreement of pACC 

staining and PercevalEX responses in ~80% of cells (Fig. 3B,ii and S2A). However, the 

distinction between high- and low-PercevalEX cells was not sharp, and cells at intermediate 

PercevalEX values were distributed between high- and low-pACC subpopulations, consistent 

with findings that factors other than energy charge can influence AMPK activity (Hawley et 

al., 2005; Zhang et al., 2017). Based on these data, differences in energy charge are a 

plausible cause for AMPK variation but are not strictly identical to AMPK activity within 

individual cells.

We next used the FRET-based ATP sensor ATeam 1.03 (Imamura et al., 2009) to track 

intracellular ATP concentrations under the same conditions. Following oligomycin 

treatment, we were unable to detect any change in ATP level, nor any pulsatile 

characteristics as observed for AMPKAR2PHOS or PercevalEX(Fig. 3B,iii). To confirm that 

the lack of ATeam response is not a result of out-of-range ATP concentration, we treated 

these cells with oligomycin in the absence of glucose, which resulted in an immediate and 

sharp decline in ATeam signal (Fig. S2C), followed within 4 hours by visible cell death. We 

confirmed this result using bulk ATP assays, which detected no OXPHOS inhibitor-induced 

change in ATP at 17 mM glucose but a >90% decrease upon inhibitor treatment in the 

absence of glucose (Fig. S2D). When ATeam cells were co-stained with pACC, we observed 

that the rare low-ATeam cells (~10%) were predominantly pACC-positive, as expected for 

cells with low ATP (Fig. 3B,iv and S2B). These results indicate that ATeam accurately 

reports ATP levels within MCF10A, and that cytoplasmic ATP remains stable during 

OXPHOS inhibition, as previously observed (Gowans et al., 2013; Hao et al., 2010).

The differences between AMPK activity, ADP/ATP ratio, and ATP concentration prompted 

us to investigate their relationship. To approach this question, we quantified 
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AMPKAR2PHOS, PercevalEX, or ATeam responses following oligomycin treatment under 

varying concentrations of glucose (Fig. 3C–E). AMPKAR2PHOS responses remained 

bimodal across all conditions, with the frequency of OP-ind cells decreasing from >20% of 

cells at 17 mM glucose (standard MCF10A culture conditions) to 8-9% at 4.25 mM glucose 

(an intermediate physiological concentration) and falling to <1% at lower glucose 

concentrations (Fig. 3C). In contrast, PercevalEX was distributed unimodally in each 

condition, with a mean that increased gradually as glucose concentration was lowered (Fig. 

3D). ATeam showed no response until glucose was reduced below 1 mM, at which point it 

showed a rapid decrease in all cells (Fig. 3E). Together, these data suggest a model 

consistent with previous observations, in which the absolute cytosolic concentration of ATP 

is maintained at a nearly constant level, provided that glycolysis can operate at a sufficiently 

high rate. Rapid equilibration of ATP with ADP and AMP prevents a large drop in absolute 

ATP levels but allows a significant shift in ADP/ATP and AMP/ATP ratios, which are 

detected by AMPK (Hardie et al., 2012). The gradually shifting broad distribution of 

PercevalEX indicates that these ratios vary from cell to cell and are sufficient to induce 

AMPK activity in some cells (OP-dep) but not others (OP-ind). The bimodality observed in 

AMPK activity but not ADP/ATP ratio is consistent with ultrasensitive activation of AMPK 

(Hardie et al., 1999). Thus, the differing relationships between pACC, AMPKAR2, 

PercevalEX, and ATeam can be understood as the outcome of the ATP/AMPK system as it 

operates in single cells that vary in their capacity to maintain ATP production when 

OXPHOS is inhibited.

The results above suggest that energy charge is the primary factor determining AMPK 

activity under OXPHOS inhibition. Bulk measurements of metabolites are consistent with 

this interpretation: oligomycin treatment induced strong and persistent suppression of TCA 

cycle intermediates (Fig. S2E,F), while inference of ATP production (Mookerjee et al., 

2017) confirmed a nearly complete switch from OXPHOS to glycolysis during oligomycin 

treatment (Fig. S2G). Finally, comparison of OXPHOS inhibitor responses under different 

conditions argued that the lack of AMPK activity in OP-ind cells is not an artifact of 

incomplete OXPHOS inhibition (Fig. S3A–G). We conclude that OP-ind cells represent a 

subpopulation with metabolic characteristics inherently distinct from OP-dep cells.

Resistance to OXPHOS inhibition is a heritable but transient state

Our results raise the question of whether OXPHOS inhibitor resistance is a fixed or transient 

cellular property, which we approached using sister cell analysis (Spencer et al., 2009; 

Strasen et al., 2018). We tracked the history of cells prior to OXPHOS inhibitor treatment 

and compared AMPKAR2Δ for sister cell pairs as a function of time since their last mitosis 

(Fig. 4A). If resistance is a permanent characteristic, sister cells would remain similar in 

their response indefinitely (Fig. 4A,i), whereas if resistance is transient, they will be similar 

initially but diverge over time (Fig. 4A,ii). Both OP-ind and OP-dep cells were well 

represented at all times after the last division (Fig. 4B,C), and sister cell pairs within 2 hours 

of their shared mitosis were significantly more likely to have a similar AMPKAR2Δ 

response than random pairs of cells (Fig. 4D,E). However, this similarity in AMPKAR2Δ 

between daughters decayed gradually and approached the level of unrelated cells with a half-

life of ~29 hours (Fig. 4E). These results indicate that OP-ind or OP-dep states are a 
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heritable property that can persist for at least several hours, and that transitions between 

these states occur intermittently within the cell population.

To observe transitions between sensitive and resistant states more directly, we performed 

long-term imaging of cells under continuous oligomycin treatment. Cells classified as OP-

dep entered immediately into a regular oscillatory pattern of AMPK activity (as seen in Fig. 

1A), with a period of approximately 3 hours (Fig. 4F, top). However, we noted that cells 

occasionally exited this oscillatory state and entered a phase with weaker, irregular AMPK 

activity (Fig. 4F, bottom and S4A). For cells that showed such a transition, the median time 

to transition ranged from 0 to 60 hours, with a median of 34 hours. Phases of weak AMPK 

activity persisted for 1-20 hours, with a median of 5.6 hours (Fig. 4H), before cells returned 

to the oscillatory phase. Similarly, cells that initially showed an OP-ind response typically 

underwent a transition into oscillatory activity within 6 hours after oligomycin treatment 

(Fig. 4I). These results are consistent with the sister-cell analysis and indicate that cells 

transition intermittently between an OP-dep-like phase with oscillatory AMPK activity, and 

an OP-ind-like phase with weak AMPK activity. Furthermore, comparison of the duration 

and frequencies of these phases to the overall frequency of OP-ind cells suggests that the 

primary source of initial OP-ind cells are the intermittent phases of weak AMPK activity, 

rather than the 3-hour oscillatory nature of the AMPK response (Fig. S4B).

Glucose uptake and protein synthesis modulate OXPHOS inhibitor resistance

We next addressed the molecular differences that underlie OP-dep and OP-ind responses, 

beginning with the capacity to produce ATP by glycolysis. Treatment with insulin, which 

stimulates glucose uptake and glycolysis through PI3K/AKT signaling, increased the 

frequency of OP-ind responses in MCF10A, MCF7, 184A1, and U87MG cells (Fig. 5A). 

Furthermore, inhibition of AKT, hexokinase, or mTORC1/2 shifted cells toward OP-dep 

responses (Fig. 5B). In contrast, inhibition of fatty acid oxidation or lipolysis failed to 

significantly alter OP-ind responses (Fig. S5A). While these results implicate regulation of 

glucose uptake through insulin/PI3K/AKT signaling, this pathway can potentially affect 

AMPK activation through multiple routes (Suzuki et al., 2013). To test whether OP-ind cells 

can result solely from increased glucose uptake capacity, we overexpressed the glucose 

transporter GLUT1 along with a co-translated red fluorescent protein (RFP) to quantify 

GLUT1 overexpression on a cell-by-cell basis. We removed insulin to eliminate the AKT-

induced component of glucose uptake. Higher expression GLUT1-RFP correlated with 

weaker AMPK responses to OXPHOS inhibitor (Fig. 5C), with 60% of GLUT1-RFP-

expressing cells showing OP-ind behavior, while almost 100% of cells not expressing 

GLUT1-RFP were OP-dep. When insulin was added, OP-ind responses shifted to include 

cells at lower GLUT1-RFP expression levels, consistent with the induction of endogenous 

(unlabeled) glucose transporters (Fig. 5D,E). Accordingly, the predictability of OXPHOS 

inhibitor response as a function of exogenous GLUT1 expression decayed (Fig. 5C–E, 

bottom panels). These data demonstrate that a cell’s OXPHOS inhibitor resistance status can 

be determined by its capacity to take up glucose, and that this status can be predicted based 

on glucose transporter expression when other factors are minimized.
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Most cell lines are cultured in media containing high levels of glucose, and therefore OP-ind 

responses might result from glucose-induced changes in glycolytic gene expression or from 

increased storage metabolites (such as glycogen). To test these possibilities, we cultured 

cells in the absence of glucose for 24 hours, and then added glucose for a short time window 

(30 minutes or 1 minute) prior to treating with oligomycin (Fig. 5F). Because short exposure 

to glucose is unlikely to increase storage pools or expression of glycolytic enzymes, we 

expected that OP-ind cells relying on these mechanisms would become OP-dep during the 

starvation period. However, OP-ind cells were instead detected at a much higher frequency 

following glucose withdrawal (>90% at 17 mM glucose, Fig. 5G) than when cultured in 

glucose continuously (~25% at 17 mM glucose, see Fig. 3C). This result indicates that OP-

ind cells are not simply the result of prolonged high glucose conditions. Rather, it may be 

that during the starvation period, ATP consumption rates decline more than glycolytic 

capacity, resulting in anabolically inactive cells that have relatively low demand but remain 

poised to utilize glucose when it is resupplied (Fig. S5B). Consistent with this interpretation, 

protein synthesis rate as measured by O-propargyl puromycin (OPP) incorporation was 

significantly lower following 24 hour glucose starvation (Fig. S5C). At the same time, the 

frequency of OP-ind cells remained dependent on the concentration of glucose that was 

resupplied for 1 minute (Fig. 5G). Thus, these results support that glycolytic capacity is 

needed for OP-ind responses and implicate ATP turnover as a potential additional factor that 

influences the OXPHOS inhibitor response. We also found that glutamine, which is provided 

in excess in some cell culture media, is not required for OP-ind responses but can increase 

their frequency (Fig. S5D).

Because our results and previous studies (Buttgereit and Brand, 1995) suggest that ATP 

usage (i.e., turnover) by protein synthesis may impact energy charge upon OXPHOS 

inhibition, we tested the effect of translation inhibition by cycloheximide (CHX) using both 

OPP incorporation and a live-cell translation reporter, TOP-H2B-YFP-DD (Han et al., 2014)

(Fig. 6A–C). Pre-treatment with CHX decreased the fraction of OP-dep cells from 60% to 

<10% (Fig. 6D). Furthermore, even 15 minutes after an AMPK response was initiated, 

protein synthesis inhibitors immediately reduced AMPK activity, shortening the pulse length 

from 60 minutes to 20 minutes (Figure 6E, F). This observation suggests that reducing ATP 

consumption by translation lowers the impact of OXPHOS inhibitors on energy charge and 

AMPK activation.

Several observations supported the interpretation that inhibitors of translation limit AMPK 

activity due to a decrease in catabolic activity, rather than activation of feedback or stress 

responses. First, while extended incubation with CHX increased phosphorylation of S6 and 

4E-BP1 as previously reported (Santos et al., 2019), this increase was moderate relative to 

the pre-existing mTORC1 activity level (Fig. S6D,E). Furthermore, culture of cells in 

varying concentrations of essential amino acids (EAA) or non-essential amino acids 

(NEAA) modulated the rate of protein synthesis as measured by TOP-H2B-YFP-DD (Fig. 

6G,H). Under these conditions, the fraction of OP-dep cells measured following oligomycin 

treatment correlated with the protein synthesis rate (R2 =0.53, Fig. 6I). These results support 

that OP-ind cells depend on a low rate of protein synthesis, which makes it possible for 

glycolysis to maintain cellular energy charge above the threshold to trigger AMPK.
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OXPHOS inhibitor response states are inherently multivariate

We investigated the cell division cycle as a potential source of variability, combining 

AMPKAR2 measurements with DNA content, a live-cell S/G2 reporter (mCherry-

Geminin1-330), and staining for phosphorylated Rb protein (pRb). Plotting these 

measurements enabled cell cycle phases to be clearly distinguished (Fig. 7A). We then 

overlaid the oligomycin-induced AMPKAR2Δ measurement for each cell, recorded 

immediately prior to fixation (Fig. 7B). We noted that both high and low AMPKAR2Δ 

measurements were found in all stages of the cell cycle (Fig. 7C,D). However, comparisons 

of the cell cycle phase distributions of OP-dep and OP-ind cells revealed enrichment for 

different phases – OP-ind cells were 2-fold more likely to be in G1 phase relative to OP-dep 

cells, whereas OP-dep cells were more often found in S and G2 phases (Fig. 7E). We noted 

that OPP incorporation increased with progression of the cell cycle (Fig. S7A), providing a 

potential explanation for the higher number of OP-dep cells in S and G2. Live-cell 

recordings in cells expressing both AMPKAR2 and mCherry-Geminin1-330 and treated with 

oligomycin identified OP-ind phases immediately following cell division (Fig. 7F, top 

panel), consistent with their statistical enrichment in G0/G1. However, other cells showed 

continuous OP-dep responses in G0/G1 (Fig. 7F, bottom panel), indicating that OP-ind 

responses are probabilistically related to cell cycle position, but not strictly determined by it.

To understand how multiple factors interact to determine OXPHOS inhibitor responses 

within individual cells, we performed a multivariate analysis using partial least squares 

regression (PLSR). We collected a multiplexed dataset for AMPKAR2Δ, OPP incorporation, 

cell cycle markers (Hoechst-33342 and pRb) and our GLUT1-RFP expression system as a 

surrogate measurement for glycolytic rate. We used Wanderlust (Bendall et al., 2014) to 

represent cell cycle position as a single continuous variable cycle based on DNA content and 

pRb measurements (Fig. S7D). PLSR models were generated to predict each cell’s AMPK 

response based on its individual combination of the other factors. Initially, we excluded cells 

with the highest GLUT1-RFP expression (Fig. S7E) to prevent them from dominating the 

model predictions. In the best fitting models, the first principal component (PC) captured 

approximately 8% of variability in AMPK response between single cells, which was 

increased to 10% by the second PC; additional PCs did not further improve predictivity (Fig. 

7G and S7F). This relatively low predictive power is not unusual for single-cell models of 

signaling responses (Gillies et al., 2017) and indicates that unmeasured factors or stochastic 

variation contribute substantially to the variable AMPK response. Nonetheless, the 

variability captured by the model represents a strong signal relative to control models (Fig. 

7G, gray line) that can be used to understand the interactions between measured variables. In 

the first PC, GLUT1-RFP was the highest weighted input and contributed negatively to 

AMPK response, while pRB and OPP incorporation had smaller positive contributions (Fig. 

7I). Individually, GLUT1, OPP, and pRB predicted 6.9%, 2.4%, and 1.8% of AMPK 

variability, while the inferred cell cycle position was less predictive than pRb (Fig. 7H). As 

expected, when all levels of GLUT1-RFP expression were considered, overall predictivity 

rose to 35% (Fig. S7E,F) but was dominated by the contribution of GLUT1-RFP (Fig. S7G). 

Overall, this analysis demonstrates that each cell’s OXPHOS inhibitor response is a 

multivariate process determined by a combination of glycolytic rate, protein synthesis, and 

RB phosphorylation, as well as other unmeasured parameters.
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Discussion

Cellular heterogeneity can influence the therapeutic efficacy of drugs (Altschuler and Wu, 

2010). We identify a distinct form of heterogeneity that results from transient differences in 

each cell’s balance between the capacity to generate ATP through glycolysis and its ATP 

consumption or turnover rate. While protein synthesis, glucose uptake, and the cell cycle are 

well-known to affect cellular energy balance, our analysis reveals that these processes 

interact at the cellular level to create transient states of resistance to an acute metabolic 

challenge like OXPHOS inhibitor treatment. This variation impacts metabolic stress 

signaling through AMPK, mTOR, and ERK, which are among the intended targets for 

OXPHOS inhibition in both cancer and diabetes (Howell et al., 2017; Kim et al., 2012).

Our data indicate that the response to OXPHOS inhibition depends on multiple factors and is 

difficult to predict for any individual cell. Each cell carries on its own mixture of ATP-

consuming processes, and at the same time has a certain maximal capacity for ATP 

production through glycolysis. The net balance of these processes determines the extent to 

which ATP production can continue when OXPHOS is inhibited (Fig. 7J). Therefore, while 

protein synthesis and AKT signaling are significant drivers of the OXPHOS response, for a 

specific cell they may not be the most consequential, depending on which other ATP-

consuming or generating processes are active. Furthermore, our data suggest that as the 

prevalence of these processes changes over time in a given cell, so does its OXPHOS 

inhibition response. Only when components such as GLUT1 are overexpressed can a cell’s 

response be predicted reliably based on a single factor. This complexity makes the OXPHOS 

inhibitor response useful, as it can interrogate the net ATP production/turnover balance in a 

single measurement.

How does cellular variation in ATP turnover and production arise? While OP-dep and OP-

ind responses correlate to some extent with cell cycle phases, this bias cannot explain most 

variation, as both types of response can be found at any point in the cell cycle. We suggest 

that, because protein synthesis increases throughout the cell cycle (Elliott and McLaughlin, 

1978), ATP turnover increases and OP-dep states become increasingly likely during S and 

G2, explaining their observed enrichment in these phases. Can the remaining variability then 

be attributed to different rates of glucose uptake? This is possible, as we have observed that 

AMPK and AKT activity can fluctuate during normal growth conditions (Hung et al., 2017), 

which would be expected to result in different glucose uptake rates over time. Still another 

possibility is that, as in yeast (Cai and Tu, 2012; Tu et al., 2007) mammalian cells have an 

intrinsic cycle that controls flux through glycolysis and protein synthesis. Our results reveal 

the existence of at least two different but interrelated cellular rhythms: a regular oscillation 

between AMPK activity and inactivity with a period of ~3 hours during OXPHOS 

inhibition, and a longer-term shift between a state in which cells are competent for AMPK 

oscillations and a state in which AMPK activity remains dormant. The longer cycle, on the 

order of 20-30 hours, could be linked to the mammalian cell division cycle (Ahn et al., 2017) 

or circadian rhythms (Bass and Takahashi, 2010). However, it is less clear whether the 

shorter cycles have any relationship to the yeast metabolic cycle, which has a period of 2-3 

hours but is closely linked to the cell cycle.
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Our data reiterate the remarkable adaptability of ATP homeostasis that has previously been 

reported (Gowans et al., 2013; Hao et al., 2010). The stability of ATP concentration under 

severe perturbation of ATP production by OXPHOS inhibitor implies that a large fraction of 

ATP production can be shifted to glycolysis within seconds, despite its low yield of 2 ATP 

per glucose molecule relative to the ~30 produced by OXPHOS. Because ATP homeostasis 

is maintained even in cells without a detectable AMPK response (OP-ind), AMPK is likely 

not required for this initial adaptation. Rather, our data imply that during OXPHOS inhibitor 

treatment, flux through glycolysis is redirected from the production of biosynthetic 

intermediates, which are uncoupled from ATP production (Lunt and Vander Heiden, 2011), 

to prioritize the production of ATP. In OP-ind cells, the ATP consumption load is low 

enough that this shift can occur without a large perturbation of ADP/ATP ratio, precluding 

activation of AMPK. In OP-dep cells, this shift is sufficiently rapid to preserve ATP levels, 

but generates a large enough rise in ADP/ATP ratio to cross the ultrasensitive threshold for 

AMPK activation (Hardie et al., 1999). AMPK likely plays a longer-term role in metabolic 

adaptation, consistent with the finding that it is required for mammalian development 

(Viollet and Foretz, 2016) but not for cellular viability (O’Neill et al., 2011).

Recently developed pharmacological AMPK activators (Cokorinos et al., 2017; Myers et al., 

2017) and OXPHOS inhibitors (Molina et al., 2018; Shi et al., 2019) are expected to be 

useful in the treatment of cancer, diabetes, and inflammatory conditions. Understanding the 

factors that underlie the heterogeneous OXPHOS inhibitor response will be important in 

optimizing this growing class of pharmacological compounds. The ability to predict and 

control the fraction of cells that respond to OXPHOS inhibitors may allow these drugs to be 

tailored toward different goals. Potent induction of energy stress in the largest number of 

cells possible may be desirable in the case of anti-cancer therapy, but heterogeneous 

activation may be preferable when trying to restore physiological energy balance in diabetes 

or metabolic syndrome. Measuring metabolic heterogeneity may also be important for 

predicting responses to other drugs, such as cytotoxic chemotherapies. Our study opens a 

new window into how cellular heterogeneity in drug responses can arise from underlying 

metabolic differences between cells.

Limitations of Study

This study relies on immortalized cell lines, which carry genetic abnormalities, and which 

are cultured in medium that does not correspond to physiological conditions. Thus, this 

study does not bear on whether the heterogeneity we observe occurs within the human body. 

While we identify factors that alter or predict heterogeneous metabolic behavior, our study 

does not identify the underlying process that creates alternating periods of OXPHOS 

inhibitor sensitivity or specify the nature of this process. Changes in gene expression profile 

could underlie shifts in sensitivity, but it is equally possible that post-translational 

modifications of proteins, or changes in metabolic pathway flux generate the observed 

variation; further work will be needed to distinguish these possibilities. Finally, our 

conclusions rely heavily on live-cell reporters of cellular metabolites or kinase activity, and 

though we provide validation of reporter data using alternate methods, we cannot exclude 

the possibility that the reporters show some cross-reactivity to additional factors in the cell.
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STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact John Albeck (jgalbeck@ucdavis.edu).

Materials Availability—Plasmids generated in this study are forthcoming to Addgene. All 

cell lines and plasmids will be made available upon request from the Lead Contact.

Data and Code Availability—All data processing was performed in MATLAB using 

previously described methods (Gillies et al., 2020; Pargett and Albeck, 2018; Pargett et al., 

2017). MATLAB scripts will be provided upon request by the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and media—Routine cell culture for human mammary epithelial cells, 

MCF10A clone 5E (Janes et al., 2010) and 184A cells were performed as previously 

described (Debnath et al., 2003). MCF10A and 184A1 were grown in ‘DMEM/F12 growth 

medium’ (see Media table). Primary stocks from the original clonal derivation 

(MCF10A-5E) or the ATCC (184A1) were used in all experiments. MCF7, U87, and A549 

cell lines were obtained from ATCC and cultured in ‘DMEM growth medium’ (see Media 

composition). All cells were routinely split when they are ~80% confluent.

In live microscopy experiments, we used a custom formulation, termed ‘imaging base-

DMEM/F12’, which consists of DMEM/F12 lacking glucose, glutamine, riboflavin, folic 

acid, and phenol red (Life Technologies or UC Davis Veterinary Medicine Biological Media 

Service) which allows adjustment of available nutrients and avoids fluorescence background. 

All experiments involving MCF10A or 184A1 cell line were performed in ‘Imaging medium 

1’ (see Media composition). ‘Imaging medium 1 – noAA’ was used in experiments that 

involved amino acid perturbation. For experiments with MCF7, U87 or A549 cell lines, 

‘Imaging medium 2’ was used. For all experiments, ‘Imaging medium 1’, ‘Imaging medium 

1 – noAA’ and ‘Imaging medium 2’ were supplied with glucose 17 mM and 25 mM, 

respectively, unless indicated otherwise.

Before imaging, cells were washed twice with their respective media and then cultured in 

imaging experiment media at least 2 hours prior to imaging, unless indicated otherwise. The 

cell to media ratio was maintained at 150-200 cells/μl for all experiments. For experiments 

involving titration of insulin or EGF concentrations, cells were placed in EGF- or insulin-

deficient media for 4 – 6 hours prior to imaging.

Media composition—DMEM/F12 growth media

Component Vendor Catalog number Final Concentration

DMEM/F2 Gibco 11320-033 -

Horse Serum Invitrogen 16050-122 5%
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Component Vendor Catalog number Final Concentration

EGF Peprotech AF-100-15 20 ng/ml

Hydrocortisone Sigma H0888 0.5 mg/ml

Cholera toxin Sigma C8052 100 ng/ml

Insulin Sigma I9278 10 ug/ml

DMEM growth medium

Component Vendor Catalog number Final Concentration

DMEM Gibco 11965-092 -

Fetal bovine serum Gemini bio products 100-106 10%

Imaging medium 1

Component Vendor Catalog number Final Concentration

Imaging base-DMEM/F12 Gibco Custom; equivalent to Gibco 11320-033 lacking 
glucose, glutamine, pyruvate, riboflavin, folic 
acid, and phenol red

-

D-glucose Fisher D16 17 mM

BSA Invitrogen 16050-122 0.1% w/v

Hydrocortisone Sigma H0888 0.5 mg/ml

Cholera toxin Sigma C8052 100 ng/ml

Penicillin-Streptomycin Gibco 15140122 100 U/ml

EGF Peprotech AF-100-15 20 ng/ml

Insulin Sigma I9278 10 ug/ml

Imaging medium 2

Component Vendor Catalog number Final Concentration

Imaging base-DMEM/F12 Gibco Custom; equivalent to Gibco 11320-033 lacking 
glucose, glutamine, pyruvate, riboflavin, folic 
acid, and phenol red

-

D-glucose Fisher D16 25 mM

BSA Invitrogen 16050-122 0.1% w/v

Penicillin-Streptomycin Gibco 15140122 100 U/ml

Imaging medium 1 - noAA
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Component Vendor Catalog number Final Concentration

Imaging base-DMEM/F12-noAA Gibco Custom; equivalent to Gibco 11320-033 
lacking glucose, glutamine, amino acids, 
pyruvate, riboflavin, folic acid, and phenol 
red

-

D-glucose Fisher D16 17 mM

BSA Invitrogen 16050-122 0.1% w/v

Hydrocortisone Sigma H0888 0.5 mg/ml

Cholera toxin Sigma C8052 100 ng/ml

Penicillin-Streptomycin Gibco 15140122 100 U/ml

EGF Peprotech AF-100-15 20 ng/ml

Insulin Sigma I9278 10 ug/ml

Seahorse Assay Medium

Component Vendor Catalog number Final Concentration

Seahorse XF base medium Agilent 103334-100 -

Sodium pyruvate Gibco 11360070 1 mM

L-Glutamine Gibco 35050079 2 mM

METHOD DETAILS

Reporter construction—The reporters AMPKAR2 (Hung et al., 2017) and ERKTR-

mCherry (Sparta et al., 2015) were previously described. PercevalHR (Tantama et al., 2013), 

ATeam1.03 (Imamura et al., 2009), and GLUT1 were obtained from Addgene. TOP-H2B-

YFP-DD (Han et al., 2014) was generously provided by Tobias Meyer. PercevalHR was 

modified with a nuclear export sequence at the C-terminus to compartmentalize the sensor in 

the cytosol. AMPKAR2, PercevalHR, and Ateam1.03 sensors were cloned into a vector 

compatible with piggyBAC transposase-mediated delivery (Yusa et al., 2011) to minimize 

recombination between CFP and YFP. GLUT1-IRES-NLS-mCherry was constructed by 

cloning the GLUT1 coding sequence (Takanaga et al., 2008) into the retroviral vector 

pBabe-neo (BamHI/Xhol); a nuclear localization signal (NLS) was added to mCherry by 

PCR and was cloned into retroviral vector pBabe-neo (BamHI/EcoRI). IRES-NLS-mCherry 

was then inserted at the 3’ end of GLUT1 (Xhol/Sall). pLJM1-TFEB-TR. TFEBTR-

mCardinal was constructed by inserting the coding sequence for TFEB residues 1-237 into 

pLJM1 upstream of and in-frame with the coding sequence of mCardinal. Correct insertions 

for all plasmids were confirmed by sequencing.

Reporter Delivery—Cell lines stably expressing biosensors were generated by retroviral 

transduction or transfection with the PiggyBac transposase system (Yusa et al., 2011). 

PiggyBac plasmids were delivered by electroporation (Amaxa II system, Lonza). After 

transfection or transduction, cells were selected with puromycin (1–2 μg/ml) or geneticin 
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(300 μg/ml); single-cell clones were made by limiting dilution or flow cytometry sorting. 

For each reporter, we isolated multiple stable clones with homogenous expression; data 

reported in this study reflect representative behaviors that were consistent across clones for 

each reporter line. Main reporter cell lines were confirmed to be mycoplasma-negative by 

PCR; results were validated by third-party testing of selected lines (ATCC).

Live-cell fluorescence microscopy—Time-lapse wide-field microscopy was 

performed as described previously (Hung et al., 2017; Pargett et al., 2017). Briefly, 25,000 

cells were plated one day prior to imaging in glass-bottom 96-well plates (Cellvis P96-1.5H-

N, Mountain View, CA) pretreated with type I collagen (Gibco A10483-01) to promote cell 

adherence. For experiments with drug addition, cells were placed in imaging medium until 

the addition of the drug. For drugs dissolved in DMSO, the final DMSO concentration was 

<0.1%. Cells were maintained in 95% air and 5% CO2 at 37°C in an environmental 

chamber. Images were collected with a Nikon (Tokyo, Japan) 20/0.75 NA Plan Apo 

objective on a Nikon Eclipse Ti inverted microscope, equipped with a Lumencor SOLA or 

Lumencor SPECTRA X light engine. Fluorescence filters used in the experiment are: DAPI 

(custom ET395/25x - ET460/50m - T425lpxr, Chroma), CFP (49001, Chroma), Sapphire 

(custom ET420/10x - ET525/50m - T425lpxr, Chroma), GFP (49002, Chroma), YFP 

(49003, Chroma), Cherry (41043, Chroma) and Cy5 (49006, Chroma). For AMPKAR2 and 

Ateam1.03 biosensors, CFP and YFP filters were used to acquire images, while for the 

PercevalHR biosensor Sapphire and GFP filters were used. Images were acquired using 

AndorZyla 5.5 scMOS camera every 6 – 7 minutes with 2x2 binning. Exposure times for 

each channel were 25-50 ms for DAPI; 150 – 250 ms for CFP; 150 – 250 ms for YFP; 500 – 

750 ms for Sapphire; 500 – 750 ms for GFP; 300 – 500 ms for Cherry and 300 – 500 ms for 

Cy5.

Immunofluorescence microscopy—At indicated times during live-cell imaging 

experiment, 8% paraformaldehyde was added directly into imaging media to make 2% 

paraformaldehyde final concentration. Paraformaldehyde fixation was performed for 15 

minutes, followed by permeabilization with 100% methanol. Cells were then washed in 

PBS-T (0.1% Tween-20 in PBS) twice and blocked with Odyssey Blocking Buffer (Li-Cor, 

Lincoln, NE) for 1 hour at room temperature. Reporter fluorophores were bleached as 

described in the CyCIF protocol (Lin et al., 2015). Samples were then incubated with 

primary antibody at the indicated concentrations (see Antibody Table), diluted in blocking 

buffer, overnight at 4°C. Secondary staining was performed with Alexa 647-conjugated anti-

rabbit (Life Technologies, A-21245, diluted at 1:1000 in blocking buffer), followed by DNA 

staining with Hoechst-33342 (Life Technologies, H3570, diluted at 1:1000 in PBS). Plates 

were imaged as described for live-cell microscopy, using DAPI and Cy5 filter sets. After 

imaging, the Afterwards, intensity of fixed-cell images in each condition were matched back 

to the corresponding time-lapse movies.

Single cell protein synthesis estimation by O-propargyl-puromycin (OPP)—To 

estimate global nascent protein synthesis rate, we pulse-labeled cells with the puromycin 

analog O-propargyl-puromycin (OPP; Click Chemistry Tools #1407) at 10 μM final 

concentration for 30 minutes before the end of live-cell imaging. After fixation, 
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permeabilization, and fluorophore bleaching as described earlier, cells were then incubated 

with click chemistry reaction buffer (10 μM Azide dye + 4mM CuSO4 + 50 mM Ascorbic 

acid in 100 mM Tris Buffer pH 8.5) containing Alexa 647 Azide dye (Click Chemistry Tools 

#1299) for 1 hour. Then, samples were washed with PBS three times and imaged as 

described earlier.

Phos-Tag electrophoresis and western blot—All samples for western blot 

experiments were collected from cells cultured in 6 well-plates at 80% confluency. Samples 

were lysed with ice-cold RIPA buffer. For Phos-Tag™ gel electrophoresis, we used 

SuperSep™ Phos-tag™ Precast Gels (Wako; 195-17991). Samples were loaded at 3 ug/lane, 

as measured by BCA protein assay (Thermo Scientific 23225).

The electrophoresis running buffer was Tris-Glycine-SDS solution (25 mM Tris, 192 mM 

Glycine, 0.1% SDS, pH 8.3), supplied with 1.25 mM sodium bisulfite immediately before 

electrophoresis. Electrophoresis was performed at 100V, constant voltage for 3 hours at 4°C. 

After electrophoresis was completed, gels were washed in methanol-free transfer buffer (25 

mM Tris, 192 mM Glycine, pH 8.3, 10 mM EDTA) 3 times, 10 minutes each in order to 

remove divalent cations that would immobilize phosphorylated proteins in the gel. Then gel 

was equilibrated in transfer buffer (25 mM Tris, 192 mM Glycine, pH 8.3, 10 mM EDTA, 

20% v/v Methanol) twice, 10 minutes each. Separated proteins were transferred to PVDF 

membrane using wet blot transfer method at 18V, overnight at 4°C.

Following protein transfer, membranes were stained with 3% w/v Ponceau S to validate 

transfer efficiency, then thoroughly de-stained with Milli-Q water and 0.1%PBST (10 mM 

Tris–HCl (pH 7.5), 100 mM NaCl, and 0.1% v/v Tween-20). Non-specific antibody binding 

was blocked by incubating membranes in Odyssey blocking buffer (Licor; 927-40000) for 1 

hour at room temperature. Primary antibodies (Rabbit Anti-GFP, CST 2956) were diluted to 

1:1000 in blocking buffer and incubated with the membrane overnight at 4°C to detect the 

AMPKAR2 reporter, Following extensive washing in 0.1%PBST (3 times, 10 minutes each), 

membranes were incubated with diluted IRDye 800CW (Licor; 926-32211) secondary 

antibodies for 1 hour, at room temperature. After washing in 0.1%BST (3 times, 10 minutes 

each) immunoreactive bands were recorded with an Odyssey CLx imaging system.

Luminescence ATP determination—ATP concentration for bulk cell populations was 

determined using an ATP determination kit (Thermo Fisher, A22066), using protocol 

provided by the manufacturer with minor modification as follows. Cells were plated in 96-

well plate at 25000 cell/well 1 day before the experiment and treated as previously described 

for live-cell microscopy. Samples were collected at indicated time points by incubation with 

Trichloracetic acid (TCA), final concentration of 2.5% v/v, at 4° C for 30 minutes. After cell 

lysis, samples were diluted five-fold to minimize TCA concentration (now 0.5% v/v). 10 μl 

of diluted sample was added to 90 μl reaction solution (see product manual), in 96-well plate 

assay plate (Corning 3603) followed by incubation for 15 minutes at room temperature. 

Luminescence was monitored by microplate reader (Molecular Device, SpectraMax M5) at 

560 nM, room temperature.
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Measurement of mitochondrial stress responses and ATP flux from glycolysis/
oxidative phosphorylation—XF24 cell culture plates and sensor cartridges (100867–

100) were purchased from Seahorse Bioscience (North Billerica, MA). Cells were plated in 

XF24 cell culture plates at a density determined by optimization experiments (35000 cells/

well) and incubated at 37 °C with 5% CO2 overnight in growth medium; even distribution of 

cells was verified visually. For the mitochondrial stress test, the growth medium was 

completely removed 24 hours after plating, and cells were washed twice with 1,000 ml of 

pre-warmed imaging medium 1. 500 ml of imaging medium 1 was added to each well and 

cells were incubated in a 37 °C incubator without CO2for 1 hr to allow cell equilibration 

with Imaging medium 1 (see Media Table). Oxygen consumption rates were measured with 

the XF24 analyzer under this basal condition followed by sequential addition of different 

oligomycin concentration, as indicated in Supplementary Figure 4A. For ATP fluxes from 

glycolysis and oxidative phosphorylation estimation, the data collected in the previous study 

(Hung et al., 2017) using Seashorse Assay Medium (see Media Table) was applied to 

formula previously described by Mookerjee et al.(Mookerjee et al., 2017).

GC-TOF analysis of metabolites—For GCMS analysis, cells were plated in 10 cm 

plates at 107 cells per plate. After incubation overnight, the growth medium was replaced 

with 10 ml of ‘Imaging medium 1’ supplied with 17 mM glucose. After 4 hours of 

incubation, cells were treated with oligomycin 1.8 μg/ml. Samples were later prepared for 

gas chromatography study as described in (Fiehn, 2016). Briefly, samples were quenched by 

immediately replacing the media with 1 ml of pre-chilled, degassed 3:3:2 v/v 

acetonitrile:isopropanol:water (Fisher) at 0,30,60,150 and 270 minutes following 

oligomycin, representing the average first peak, trough, and second peak of the 

AMPKAR2PHOS response to OXPHOS inhibitors. After quenching, samples were flash-

frozen in liquid nitrogen and stored in −80°C freezer.

Prior to GC-TOF analysis, all samples were thawed at room temperature and centrifuged at 

14,000 rcf. Supernatants were removed, and samples evaporated to dryness using a 

CentrVap. To remove membrane lipids and triglycerides, dried samples were resuspended 

with 1:1 v/v acetonitrile:water, decanted and evaporated to dryness using a CentrVap. 

Internal standards, C8–C30 fatty acid methyl esters (FAMEs), were added to samples and 

derivatized with methoxyamine hydrochloride in pyridine followed by MSTFA (Sigma-

Aldrich 69479) for trimethylsilylation of acidic protons. Derivatized samples were 

subsequently submitted for analysis by GC-TOFMS.

Primary metabolite data was collected using a Leco Pegasus IV time of flight (TOF) MS 

(Leco Corporation) coupled to an Agilent 6890 GC (Agilent Technologies) equipped with a 

30 m long 0.25 mm id Rtx5Sil-MS column (30 m × 0.25 mm; 0.25 μm phase) and a Gerstel 

MPS2 automatic liner exchange system (Gerstel GMBH & Co. KG). The chromatographic 

gradient used a constant flow of 1 ml/min, and an oven temperature ramping from 50°C for 

to 330°C over 22 minutes. Mass spectrometry data were collected using 1525 V detector 

voltage at m/z 85–500 with 17 spectra/sec, electron ionization at −70 eV and an ion source 

temperature of 250°C. QC injections, blanks, and pooled human plasma were used for 

quality assurance throughout the run. Data were processed by BinBase (Fiehn et al., 2005) 

for deconvolution, peak picking, filtering, and metabolite identifications.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Image processing—After background subtraction and flat field correction, image data 

were processed to segment and average pixels within each identified cell’s nucleus and 

cytoplasm, using a custom procedure written for MATLAB (Pargett et al., 2017), with 

modifications in the cytosolic identification protocol as described below. Image data were 

stored in ND2 files generated by NIS Elements and accessed using the Bio-Formats 

MATLAB toolbox. Individual cells were tracked overtime using uTrack 2.0 (Jaqaman et al., 

2008). Cytoplasmic masks were created by watershed method (Vincent and Soille, 1991) 

using cytosolic YFP (for cell lines expressing AMPKAR2 or ATeam1.03) or GFP (for cell 

lines expressing PercevalHR) to identify the cytosolic boundary. The cytosolic area is further 

restricted to the area within 5 pixels from the nuclear border. The resulting single-cell time 

series traces were filtered for quality by a minimum length of trace and maximum number of 

contiguous missing or corrupt data points.

FRET reporter calibration and measurement—To quantify FRET biosensors 

(AMPKAR2 and ATeam1.03), we calculated FRET efficiency exactly as shown previously 

(Gillies et al., 2020), using a spectral model of light propagated through the microscopy 

system, including the live cell specimen. Since AMPKAR2 reporter is a substrate for AMPK 

kinase activity, it is possible to estimate the fraction of sensor that is phosphorylated using 

Phos-Tag™ electrophoresis, followed by immunoblot against GFP (see Phos-Tag 

electrophoresis and western blot). This measurement allows us to convert FRET ratios to the 

fraction of AMPKAR2 sensor that is phosphorylated, AMPKAR2PHOS. Western blot images 

were manually segmented to quantify protein bands using ImageJ and quantified as average 

band intensity. AMPKAR2 phosphorylation fraction was calculated by computing the ratio 

of the phosphorylated band over the summation of phosphorylated and unphosphorylated 

bands. Conditions shown in Supplementary Figure 1C–D (4 replicates per treatment) were 

selected because they exhibit sustained AMPKAR2 activity over a range of intensities. The 

average fraction of reporter phosphorylated was quantified in each condition and compared 

with the average FRET efficiency as calculated from live-cell experiments with 

corresponding treatments and time points. Linear fitting was performed, providing a 

calibrated measurement of the fraction of AMPKAR2 phosphorylated, based on live-cell 

measurements (eq 1).

AMPKAR2PHOS = 2.74[AMPKAR2FRET ratio] − 0.59 (1)

Perceval reporter measurement—Unlike FRET reporters, PercevalHR has only one 

fluorophore, cp173 mVenus, that binds to ATP and ADP differentially, resulting in a shift of 

excitation spectra with peaks at 470 nM (ATP-bound) and 405 nM (ADP-bound)(Tantama et 

al., 2013). To measure the proportions of these forms, we imaged cells expressing 

PercevalHR reporter with Sapphire and GFP filters (see Live-cell fluorescence microscopy). 

To account for variation in microscope light source set up from experiment to experiment, 

we scaled image measurements by the relative excitation intensity and exposure time 

delivered in each channel. The ratio of intensity when excited by Sapphire and GFP filters, 

which we term PercevalEX, reflects the ratio of ADP to ATP.
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Cell age and sister cell analysis—For sister cell analysis, we expressed an NLS-

mCherry nuclear marker in MCF10A-AMPKAR2 cell line to improve nuclei tracking 

accuracy across cytokinesis. Cell division events were first automatically identified by 

uTrack2.0 (Jaqaman et al., 2008) and later manually verified. In total, we were able to record 

more than 5,500 cell division events (11,000 related cells) within 25 hours. This dataset gave 

us estimates on both each cell’s age and their lineage at the time they were challenged with 

oligomycin.

The similarity of AMPKAR2PHOS response between cell sister cells was calculated by 

computing the Euclidean distance of AMPKAR2PHOS responses within the 2-hour window 

after oligomycin treatment. To determine whether AMPKAR2PHOS response between sister 

cells was more similar than that of unrelated cells, we generated 1000 random pairs of cells 

that divided at the same time and computed the average AMPKAR2PHOS Euclidean 

distance. We were able to estimate the Euclidean distance of AMPKAR2PHOS between 

unrelated cells with 95% confidence interval. The age-dependent increase in the 

AMPKAR2PHOS Euclidean distance was fitted by an exponential function to estimate the 

half-life.

Analysis and statistics of kinetics in reporter signals—A custom MATLAB 

algorithm was designed to identify peaks (Gillies et al., 2017) in the time-lapse signals of 

AMPKAR2, PercevalHR, and Ateam1.03 activity. The AMPK, PercevalHR, and Ateam1.03 

were first smoothened using Butterworth low pass filter with a 3-timepoint cutoff period to 

remove spurious noise. Peaks and associated valleys in the index were identified by setting 

two local cutoff values, based on maximum and minimum values of the data within a sliding 

time window (typically 120 minutes for AMPKAR2 and PercevalHR, 30 minutes for 

Ateaml .03). A peak was detected if both cutoff values were crossed by a rise and 

subsequent fall in the index. Typically, more than 300 individual cell recordings were scored 

for each condition and plotted as a histogram.

For long-term AMPK activity analysis, we identified the ‘strong’ phases of low AMPK 

activity (OP-ind) as follows. First, we applied the moving standard deviation with a 3-hour 

sliding window to AMPKAR traces from cells treated with oligomycin. We chose a 3-hour 

sliding window, because the peak-to - peak period of AMPK activity is around 2 hours, 

making 3 hours the Nyquist interval. Next, we used the 95th percentile of the calculated 

moving standard deviation values from all cells treated with vehicle to set a cut-off point for 

‘strong’ AMPK activity (Figure S4A, upper panel). Any sections of AMPK activity trace 

that had a moving standard deviation period below the cut-off for longer than 3 hours were 

designated as ‘’ AMPK response phases

GC-TOF data analysis—Peak heights of each metabolite were used for further statistical 

analysis. First, data were normalized by using the sum of the knowns, or mTIC 

normalization, to scale each sample. Peak heights were then submitted using R to 

DeviumWeb (v0.3.2). The data were normalized further by log transformation and Pareto 

scaling. ANOVA analysis was performed with Tukey post hoc testing with an alpha of 0.05. 

The reported trends in metabolite abundance following oligomycin treatment were robust to 

the normalization scheme and could also be observed in raw peak values.
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Distributions and statistical tests—Statistical tests, including ANOVA, t-tests, and 

Pearson’s correlations, were performed using standard functions in MATLAB. R2 values 

were calculated as the square of the Pearson correlation coefficient. Where indicated in the 

figure legends, a linear regression model was generated, using the MATLAB command 

fitlm. Box and whisker plots show the median value (red line), interquartile range (box), 

range (whiskers), and outliers (plus symbols); for all other cases, definition of centers and 

dispersion measures are listed in the figure legends. Distributions of single-cell 

measurements were plotted and inspected visually to confirm that they met the assumptions 

of the statistical tests used. To test for bimodality, data were fitted to a bimodal Gaussian 

mixture distribution and a panel of unimodal distributions, including (including normal, log-

normal, generalized extreme value, and Weibull). The best-fitted distribution was selected 

using corrected Akaike’s Information Criterion, to account for additional parameter terms 

(Cavanaugh, 1997). Data were considered bimodally distributed if and only if the bimodal 

Gaussian mixture distribution was ranked as the best-fitted distribution.

Pearson’s cross-correlation of time series—The time series to be compared were 

normalized by subtracting by their corresponding averages. To quantify lag between 

reporters for each time series, the maximal cross-correlation value was computed using the 

MATLAB xcorr function. We assumed that each pair of reporters, namely AMPKAR2 and 

TFEB-TR or AMPKAR2 and ERKTR, had a characteristic lag time, estimated as the mode 

of calculated lags across all sampled cells. The lag times identified from this process were 

used to align two time-series data. Pearson’s correlation coefficient was computed from 

these aligned time series for each cell. Significance of the differences between the Pearson’s 

coefficient distributions for different treatments was calculated by t-test.

Partial least squares regression modeling—To evaluate the relative contributions of 

glycolytic activity, protein synthesis rate and cell cycle stage to AMPK responses to 

OXPHOS inhibition, we performed live-cell experiments using MCF10A cells expressing 

AMPKAR2 and GLUT1-NLS mCherry, in which allows glycolytic capacity can be 

estimated by measuring mCherry intensity. After 4 hours of live imaging, cells were pulse-

labeled with OPP for 30 minutes and later treated with oligomycin 1.8 μg/ml for 15 minutes 

prior to fixation. Samples were bleached and stained with phospho-Rb and Hoechst 33342 as 

described earlier. Intensity of mCherry, OPP, phospho-Rb and Hoechst were used as proxies 

of glycolytic activity, protein synthesis rate, G1/S transition, and DNA content, respectively. 

Since the relationship between DNA content and phospho-Rb is not linear, as shown in 

Figure 6A, we created a linearized pseudotime variable for cell cycle progression using 

Wanderlust (Bendall et al., 2014). AMPKAR2Δ in response to oligomycin treatment was 

used as the output variable for PLSR models, while mCherry, OPP, DAPI, phospho-Rb and 

cell cycle pseudotime values were used as input variables. Data were first centered by 

subtracting the mean from each parameter and input parameters were scaled to unit variance. 

The MATLAB implementation of the SIMPLS partial least squares regression algorithm was 

employed to fit paired data sets to a linear model.

Replicates—Numbers of independent replicates are indicated in each figure legend as 

“N”; we define ‘independent replicate’ as a complete, separate performance of a time-lapse 
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imaging experiment with similar culture and treatment conditions, beginning from the 

plating of cells from bulk culture on an imaging plate and occurring on different days from 

other replicates. For all independent replicates, a minimum of 200 cells were imaged and 

tracked in each condition. Unless noted otherwise, where single-cell recordings are shown, 

the displayed cells were chosen by random number generation in MATLAB with a threshold 

for minimum tracking time to eliminate cells in which recording was terminated prematurely 

due to failure of the tracking algorithm. The chosen tracks were manually verified to be 

representative of successfully tracked cells and consistent with the overall range of cell 

behaviors. Cellular measurements determined by manual inspection to have poor tracking or 

quantification accuracy were discarded.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Live-cell imaging during OXPHOS inhibition probes energetic balance in 

single cells

• Transient energetic resistance occurs in multiple cell types and persists for 

hours

• Resistant cells lack AMPK responses and fail to suppress ERK and mTOR 

signals

• The balance of glycolysis and ATP turnover determines OXPHOS inhibitor 

response
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Figure 1 –. Variable AMPK responses to OXPHOS inhibition are common
A: AMPKAR2PHOS responses for cells grown in 17 mM glucose (see STAR Methods, 

imaging media table, for all formulations). Subplots represent single cells selected to depict 

the full range of responses, with population average and interquartile range in the bottom 

subplot. Gray shaded area shows the 2-hour time window used for analysis of peak height. 

N=2; see STAR Methods for definitions of replicates and cell numbers analyzed.

B: Single-cell measurements of AMPKAR2PHOS and pACC IF in MCF10A cells treated 

with 2.5 μg/ml oligomycin. AMPKAR2PHOS was measured in live cells 15-18 minutes after 
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treatment; pACC was measured following fixation and linked to AMPKAR2PHOS for the 

same cell. R2 and p-value are shown for a fitted linear function (dashed line). N=2.

C: Schematic of AMPKAR2 pulse parameterization. Peak activity was defined as the local 

maximum value within 2 hours after perturbation; baseline was defined as the average of 

AMPKAR2 activity for one hour before treatment. Amplitude (AMPKARΔ) was calculated 

by subtraction of baseline from peak.

D: Histogram of AMPKAR2Δ values after treatment with 2.5 μg/ml oligomycin. Green and 

orange lines are fitted Gaussian distributions. The dashed line is defined by the intersection 

between distributions and used as the cutoff for determining the percentage of OP-ind or 

OP-dep cells. N=2.

E: Comparison of AMPK responses across cell lines. Top panels – representative 

AMPKAR2PHOS measurements for cells grown in 17 mM glucose without insulin and EGF, 

treated with 1.8 μg/ml oligomycin. Each subplot represents a single cell measurement, with 

population average and interquartile range in the bottom subplot. Middle panels - histograms 

of AMPKAR2Δ in response to oligomycin (OM) 1.8 μg/ml treatment. Dashed lines are 

defined by the intersection of fitted bimodal distributions using pooled data for treated and 

untreated cells within each cell line. Bottom panels - sample images of AMPKAR2 

responses. N=3.
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Figure 2 –. Heterogeneous AMPK responses propagate to downstream signaling activity
A: Known connections between AMPK, mTORC1 and ERK, and corresponding reporters 

for live-cell analysis. ERKTR and TFEB-TR indicate the activities of ERK and mTORC1, 

respectively, by their cytoplasmic to nuclear ratio.

B: Population average responses of AMPKAR2PHOS (blue) compared to ERKTR (orange) 

and TFEB-TR (green) after oligomycin (OM, upper panels) or vehicle (lower panels) 

treatment. Shaded areas indicate interquartile ranges. N=2.
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C: Correlation of AMPKAR2Δ with signaling markers in single cells. Each dot indicates a 

single cell in which AMPKAR2Δ was measured in tandem with (i) ERKTR (live-cell), (ii) 

phosphorylated ERK (IF), (iii) TFEB-TR (live-cell), or (iv) phosphorylated 4E-BP1. For 

live-cell measurements, values represent amplitude of response. For IF measurements, 

values represent integrated staining intensity for cells fixed immediately following 

measurement of AMPKAR2Δ. R2 and p values are shown for linear regression against 

pooled data for both untreated and oligomycin-treated cells. N=2.

D: Dynamic relationship of AMPK activity with (i) ERK and (ii) mTORC1 reporters. 

Representative single-cell profiles of AMKPAR2PHOS were measured in the same cell as 

ERKTR (orange) or TFEB-TR (green).

E: Cross-correlation analysis for AMPK activity with ERK and mTORC1 reporters. (i) and 

(iii) show distributions of the lag time at which maximum anti-correlation is found between 

AMPKAR2 and ERKTR or between AMPKAR2 and TFEB-TR, respectively, (ii) and (iv) 

show the distribution of Pearson’s cross-correlation coefficients at the lag time with 

maximum correlation (0 minutes for ERKTR, −12 minutes for TFEB-TR). N=2.
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Figure 3 –. AMPK responses to OXPHOS inhibition report the dynamics of ATP metabolism
A: Schematic of ATP metabolism and reporters used. AMPKAR2 indicates AMPK kinase 

activity, PercevalHR reports intracellular ADP/ATP ratio, and ATeam1.03 reports 

intracellular ATP concentration.

B: Responses of ADP/ATP and ATP reporters to OXPHOS inhibition, (i) and (iii) show 

representative single-cell recordings of PercevalHR (i) or ATeam1.03 FRET activity (iii) 

after treatment with 2.5 μg/ml oligomycin. Each subplot represents a single cell 

measurement, with the population average and interquartile range shown at bottom, (ii) and 

(iv) show scatter plots of single-cell measurements of PercevalEX (ii) or ATeam1.03 FRET 
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activity (iv) with phospho-ACC staining intensity in MCF10A cells treated with oligomycin 

(OM) 2.5 μg/ml. Numbers indicate the percentage of cells in each quadrant. R2 values are 

shown for linear fits to the data. N=2.

C, D, and E: AMPK, ADP/ATP, and ATP responses to OXPHOS inhibition when glucose is 

varied. Line plots (left) show the responses for each reporter after cells were cultured in 

media containing the indicated glucose concentration and then treated with 2.5 μg/ml 

oligomycin (OM). Light lines indicate individual cells, and heavy lines the population mean. 

Histograms (right) show the distribution of response amplitudes in each condition, 

calculated as in Figure 1. In (D) and (E), the light gray histograms indicate the distributions 

of reporter measurements for cells treated with vehicle at the same glucose concentration. 

N=2.
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Figure 4 –. OXPHOS inhibitor resistance is a heritable but transient cellular state
A: Schematic of sister cell analysis to distinguish between permanent and time-varying cell 

states determining the response to OXPHOS inhibition.

B: Heatmaps of AMPKAR2PHOS in individual cells. MCF10A-AMPKAR2 cells were 

imaged for 24 hours before treatment with 1.8 μg/ml oligomycin. Each horizontal line 

represents a single cell’s AMPKAR2PHOS profile, beginning with its most recent cell 

division and ending 2 hours after oligomycin (OM) treatment. Cells were sorted by the time 

of their last division. Analysis contains >11,000 individual cells. N=3.
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C: Line plot of the relationship between a cell’s age at the time of oligomycin treatment and 

its recorded AMPKAR2Δ response.

D: Sample traces of AMPK activity from sister cell pairs.

E: Comparison of AMPKAR2PHOS responses in sister cells. Dissimilarity between the 

sisters of each division, or between randomly chosen pairs of cells was calculated (see 

Methods). Solid lines represent effect size, and the shaded areas represent interquartile range 

after bootstrapping. Dashed line represents a fitted exponential function for the decay of 

sister cell similarity over time.

F: Transitions in OXPHOS dependence within single cells. Top panels show two example 

cells in which strong AMPK activity (continued pulsing) persists for the remainder of the 

experiment. Bottom panels show two example cells that transition from strong activity 

(orange) to a state with weak AMPK activity (green). N=2.

G: Distribution of transition times from strong to weak AMPK activity. For all cells showing 

a transition as shown in the bottom panels of (F), the time between oligomycin treatment and 

the first transition is shown as a histogram.

H: Distribution of durations of weak AMPK activity states. For all cells showing both entry 

into and exit from an OP-ind state during the experiment (green phases in (F)), the interval 

between entry and exit is shown as a histogram.

I. Examples of cells transitioning from a weak to a strong AMPK state. Top panels show 

example cells that transition to strong and then return to weak activity. Bottom panels show 

instances of cells that transition to strong activity for the remainder of the experiment.
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Figure 5 –. Glucose uptake capacity is sufficient to drive OXPHOS inhibitor resistance
A: Increase in OP-ind responses stimulated by insulin. Histograms show AMPKAR2Δ 

responses to 1.8 μg/ml oligomycin. N=2.

B: Change in OP-dep responses in response to inhibitor treatment for MCF10A cells under 

17 mM glucose. Inhibitors were added 30 minutes prior to oligomycin. Horizontal black 

lines indicate the fraction of OP-dep cells under control treatment (DMSO); points falling 

outside the gray region are considered significant by t-test. Points represent the mean, and 

error bars standard error of the mean; N=2.
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C, D and E: Effect of increased glucose uptake on OXPHOS inhibitor responses. MCF10A-

AMPKAR2 cells stably overexpressing GLUT1-IRES-NLS-mCherry were cultured with 0 

(C), 100 (D), or 10000 ng/ml (E) insulin and exposed to oligomycin (OM). Each row in the 

heatmaps (upper panels) represents an individual cell; rows are sorted by relative mCherry 

intensity (corresponding to the level of GLUT1 overexpression), which is indicated by the 

color bar to the left. GLUT1 expression levels are normalized to the minimum and 

maximum expression levels in the population. Lower panels show scatter plots of mCherry 

intensity and AMPKAR2Δ following oligomycin treatment. N=2.

F, G: Increase in OP-ind responses following glucose starvation. (F) shows average 

AMPKAR2PHOS recordings for MCF10A cells grown in the absence of glucose for 24 hours 

and then treated with glucose at the specified concentrations, followed by 1.8 μg/ml 

oligomycin at 30 minutes or 1 minute after glucose addition. (G) shows histograms of 

AMPKAR2Δ values after oligomycin treatment for the conditions shown in (F). N=2.
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Figure 6 –. Reducing protein synthesis rate promotes OXPHOS inhibitor resistance
A: Measurement of protein synthesis rates in live cells. MCF10A cells stably expressing 

TOP-H2B-YFP-DD (TOP) were treated with the degron inhibitor trimethoprim (TMP). 

Protein production rate was calculated as the slope of YFP intensity change during the 60 

minutes after TMP treatment (orange shaded area). The effect of CHX inhibition on protein 

production was quantified from the slope for a 60 minute period beginning 90 minutes after 

treatment (blue shaded area); relative protein production rate is calculated as the ratio of 

slopes in the blue and orange regions (S1 and S2 respectively).
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B, C: Quantification of reduced protein synthesis rates. (B) shows mean TOP-H2B-YFP-DD 

intensity for a concentration series of CHX treatments. Shaded areas show interquartile 

ranges. (C) shows calculated single-cell relative protein production rates for each 

concentration of cycloheximide. Each box represents the distribution of >400 cells. N=2.

D: Relationship of average protein production rate to the fraction of OP-dep cells. Protein 

rate was measured as in (A-C). The corresponding fraction of OP-dep responses was 

determined by culturing cells in the same CHX concentrations, followed by oligomycin 

treatment. Points represent the mean, and error bars standard error of the mean; N=2.

E, F: Termination of AMPK activity pulses by protein synthesis inhibition. (E) shows single-

cell traces (light lines) and means (dark lines) for cells treated with oligomycin (OM), 

followed by the protein synthesis inhibitors CHX or geneticin (Gen) at the concentrations 

indicated. (F) shows quantification of single cell AMPKAR2PHOS pulse widths after CHX 

(left panel) or geneticin (right panel) treatment. Pulse widths were calculated as the time at 

which AMPKARPHOS decreased to 50% of the maximum value for each cell following 

treatment with CHX or geneticin. N=2.

G-I: Modulation of protein synthesis and AMPK responses by amino acid availability. (G) 

shows representative mean TOP-H2B-YFP-DD intensity for MCF10A cells cultured in 

essential or non-essential amino acid at the indicated concentrations (X represents fold-

change relative to the concentration in MEM). Shaded areas show interquartile ranges. (H) 

shows quantification of relative protein synthesis rates from the experiment shown in (G). 

Each box represents the distribution of >200 cells. (I) shows the mean protein synthesis rates 

from (G) plotted against the corresponding fraction of OP-dep cells, measured after 

oligomycin treatment in the same amino acid concentrations. Solid line represents a fitted 

linear model, and dashed lines the 95% confidence bounds. N=2.
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Figure 7 –. OXPHOS inhibitor response states are inherently multivariate
A: Scatter plot of single cell measurements of DNA content (Hoechst 33342 intensity) and 

phospho-Rb IF, colored by mCherry-Geminin1-330 intensity. Dotted lines divide the phases 

of the cell division cycle, with the percentage of cells in each phase indicated. N=3.

B: Scatter plot of cell cycle parameters as in (A), colored by AMPKAR2Δ values recorded 

during the 30 minutes immediately prior to fixation and staining. N=3.

C and D: Scatter plots of cell cycle parameters as in (A), divided between OP-dep cells (C) 

and OP-ind cells (D). N=3.
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E: Bar graph comparing the distribution of cell cycle phases for OP-ind and OP-dep cells. 

Error bars represent standard errors of means; N=3.

F: Single cell traces of AMPK activity and mCherry-Geminin1-330 intensity for (top) a cell 

in which OP-ind occurs early in G0/G1, and (bottom) a cell in which no OP-ind phase 

occurs during G0/G1. Markers indicate the time of mitosis.

G: Predictivity of PLSR models of AMPKAR2Δ (percentage of total variance explained) 

including the indicated combinations of measurements. For the “scrambled” model, pairings 

between input and output measurements for each cell were randomly reassigned. Cell cycle 

position was estimated by using the Wanderlust algorithm for non-linear mapping. See 

STAR Methods and Figure S7D for details.

H: Bar chart showing percent of total variance explained by the first PLSR component for 

models using combinations of cellular processes measurement as indicated.

I: Contribution of measured processes to PLSR models for AMPKAR2PHOS response to 

oligomycin treatment. Distributions of parameter coefficients were generated by 

bootstrapping with replacement 10,000 times.

J: Simplified diagrams indicate the state of ATP metabolism in OP-ind and OP-dep cells. 

Blue “pipes” indicate flux of ATP, and red pipes the flux of ADP. Meter icons indicate the 

balance of ATP production capacity relative to ATP consumption. The dotted ‘pipe’ 

indicates reserve glycolytic capacity to supply ATP. OP-dep cells (top panel) have low 

glycolytic capacity with high ATP demand; upon OXPHOS inhibition, these cells maintain 

constant ATP concentration at the expense of an increase in ADP that triggers activation of 

AMPK and inhibition mTORC1 and ERK pathways. OP-ind cells (bottom panel) have high 

reserve glycolytic capacity and relatively low ATP demand. Upon OXPHOS inhibition, 

thesecells can maintain constant ATP and a low concentration of ADP via glycolysis, and 

AMPK consequently remains inactive.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Phospho-Rb (Ser807/811) (D20B12) Cell Signaling Technology RRID:AB_11178658
Cat#8516

Phospho-Acetyl-CoA Carboxylase (Ser79) (D7D11) Cell Signaling Technology RRID:AB_2687505
Cat#11818

Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) Cell Signaling Technology RRID:AB_10694233
Cat#5364

Phospho-4E-BP1 (Thr37/46) (236B4) Cell Signaling Technology RRID:AB_560835
Cat#2855

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) 
(D13.14.4E)

Cell Signaling Technology RRID:AB_2315112
Cat#4370

GFP (4B10) Cell Signaling Technology RRID:AB_1196614
Cat#2955

Goat anti-Rabbit IgG Alexa 647 Life Technologies RRID:AB_2535813
A-21245

Chemicals, Peptides, and Recombinant Proteins

Oligomycin A Sigma Cat#75351

Insulin Sigma Cat#I9278

EGF Peprotech Cat#100-15

Hydrocortisone Sigma Cat#H0888

Cholera Toxin Sigma Cat#C8052

DMEM/F12 Invitrogen Cat#11330-032

Pen/Strep Invitrogen Cat#15070-063

Antimycin A Sigma Cat#A8674

Rotenone Sigma Cat#45656

FCCP Sigma Cat#C2920

Glucose Fisher Cat#D16

MK2206 Selleckchem Cat#S1078

Torin1 Selleckchem Cat#S2827

2DG Sigma Cat#D8375

3PO Selleckchem Cat#S7639

BU99006 Santa Cruz Biotechnology Cat#SC-300307

CAS-648926-15-2 EMD Millipore Cat#361515

Etomoxir Sigma Cat#E1905

6AN Cayman Chemical Cat#10009315

Cycloheximide EMD Millipore Cat#239763

Collagen I, Rat tail Gibco Cat#A10483-01

Bafilomycin A Cayman Chemical Cat#11038

SBI0206965 Sigma Cat#SML1540

PF0175157 Sigma Cat#PZ0299

Paraformaldehyde 8% Electron Microscopy Sciences Cat#157-8-100
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REAGENT or RESOURCE SOURCE IDENTIFIER

Hoechst 33342 Life Technologies Cat#H3570

Cell Culture Media

DMEM/F-12 1:1 Life Technologies Cat#11320

Horse Serum Invitrogen 16050-122

DMEM Life Technologies 11965175

FBS Life Technologies 11965175

Experimental Models: Cell lines

MCF10A Janes et al., 2010 RRID:CVCL_0598

184A1 ATCC RRID:CVCL_3040

MCF7 ATCC RRID:CVCL_0031

U87 ATCC RRID:CVCL_0022

A549 ATCC RRID:CVCL_0023

MCF10A-AMPKAR2 (Hung et al, 2017)

MCF10A-AMPKAR2-ERKTR This report

MCF10A-AMPKAR2-TFEBTR This report

MCF10A-PercevalHR This report

MCF10A-Ateam This report

MCF10A-AMPKAR2-GLUT1_NLSmCherry This report

MCF10A-AMPKAR2-Geminin::mCherry This report

MCF10A-AMPKAR2-NLS::mCherry This report

MCF10A-TOP This report

184A1-AMPKAR2 This report

MCF7-AMPKAR2 This report

U87-AMPKAR2 This report

A549-AMPKAR2 This report

Recombinant DNA

pPBJ-AMPKAR2-puro (Hung et al, 2017)

pLJM-ERKTR::mCherry (Sparta et al., 2015)

GW1-PercevalHR (Tantama et al., 2013) Addgene#49082

pPBJ-PercevaIHR-puro This report

ATeam1.03-nD/nA/pcDNA3 (Imamura et al., 2009) Addgene#51958

pPBJ-Ateam1.03-puro This report

TOP-H2B-YFP-DD (Han et al., 2014) Addgene#96891

pLJM-geminin::mCherry (Hung et al., 2017)

pLJM-TFEBTR::mCardinal This report

pBabe-NLS::mCherry This report

pBabe-GLUT1-NLS::mCherry This report

Software and Algorithms

NIS-Elements AR ver. 4.20 Nikon RRID:SCR_014329
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bio-Formats ver. 5.1.1 (May 2015) OME RRID:SCR_000450

uTrack 2.0 (Jaqaman et al., 2008) http://www.utsouthwestern.edu/labs/
danuser/software/

MATLAB Math works SCR_001622

Other

Glass Bottom Plates, #1.5 cover glass In Vitro Scientific Cat#P24-1.5H-N, P96-1.5H-N
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