
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Legendrian Loop Actions on the Lagrangian Concordance Monoid

Permalink
https://escholarship.org/uc/item/1c30x80w

Author
Hughes, James Michael

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1c30x80w
https://escholarship.org
http://www.cdlib.org/


Legendrian Loop Actions on the Lagrangian Concordance Monoid

By

James Hughes
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Roger Casals

Eugene Gorsky

Andrew Waldron

Committee in Charge

2023

i



© James M. Hughes, 2023. All rights reserved.



Contents

Abstract iii

Acknowledgments iv

Chapter 1. Introduction 1

1.1. Context and main results 2

1.2. Background 9

Chapter 2. Lagrangian fillings in A-type and their Kálmán loop orbits 44
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Legendrian Loop Actions on the Lagrangian Concordance Monoid

Abstract

In this work we investigate the conjectural ADE classification of exact Lagrangian fillings of

Legendrian links.We begin by showing that two methods of constructing exact Lagrangian fillings

– Legendrian weaves and decomposable exact Lagrangian cobordisms without Reidemeister I or

II moves – yield Hamiltonian isotopic exact Lagrangian fillings. Using the method of Legendrian

weaves, we construct and distinguish exact Lagrangian fillings in Dn-type. We then investigate

Legendrian loops, Legendrian isotopies fixing a Legendrian link pointwise at time one. Legendrian

loops act on the set of exact Lagrangian fillings by concatenating the trace of the Legendrian

isotopy. We investigate this action first in type An, and then more generally, leveraging techniques

from the theory of cluster algebras and connections to the theory of mapping class groups. In

particular, we give a complete description of the orbital structure of the cluster modular group

action on exact Lagrangian fillings of Legendrian (2, n) torus links.

Beyond type An, we compile and extend known results interpreting Legendrian loops as gen-

erators of cluster modular groups for affine and extended affine type cluster algebras. We show

that Legendrian loops virtually generate these cluster modular groups. By extending an analogy

between cluster modular groups to mapping class groups, we provide new tests for detecting when

a Legendrian loop produces infinitely many distinct exact Lagrangian fillings. Finally, we discuss

possible avenues towards producing generating sets for cluster modular groups using Legendrian

loops.
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helpful conversations. In particular, thank you to Lenny for the question that originally motivated

much of Chapter 2.

I am grateful to the NSF which partially supported this work through grant DMS-1942363 and

to UC Davis for a Dean’s Summer Graduate Fellowship in the summer of 2022.

I would also like to thank the many people responsible for shaping my experience in grad school:

first, Eugene Gorsky, for teaching interesting reading courses nearly every quarter. Almost none

of the material from those courses has made its way into this work, but I hope that I am a more

well-rounded mathematician because of his efforts. Thanks also to Elysée Wilson-Egolf for all of

their efforts towards improving the lives of graduate students here at UC Davis. In addition, thank

you to Edgar Jaramillo-Rodriguez, Kayden Mimmack, and Eli Moore for getting me through the

first year of grad school and for helping keep me sane throughout. Finally, thanks to Daping Weng

and Orsola Capovilla-Searle for being wonderful lab mates and collaborators, and for putting up

with all of my questions.

I owe an enormous debt of gratitude to many of the teachers and professors responsible for

getting me here. In particular, thank you to Jennifer Taback, for planting the seed of the idea of

becoming a mathematician. Her example continues to be an inspiration to me.

Thank you to my family, especially my mom, Patty Hughes, who made sure that I didn’t fail

my very first algebra class and who was excited that I got to attend a grad school where I could

think about doughnuts all day, even if she’s still not sure why they’re interesting.

Lastly, a special thank you to my wife, Sarah Sears, for her incredible patience and encourage-

ment. I endlessly appreciate her ability to put up with my pacing and my frequent loss of ability

to form coherent sentences. Thank you for all of your support, even when geography does its best

to intervene.

iv



CHAPTER 1

Introduction

A contact manifold is an odd-dimensional manifold that is equipped with a plane field satisfying

certain conditions that generalize physical properties from optics or thermodynamics. In R3, the

standard contact structure ξst is the 2-plane field given as the kernel of the 1-form αst =

dz − ydx. Symplectic manifolds, the even-dimensional analogues of contact manifolds, arise from

generalizations of classical mechanics. A symplectic structure is given by equipping the manifold

M with a closed, non-degenerate 2-form. In R4, the standard symplectic form is the 2-form

ωst = dx1 ∧ dy1 + dx2 ∧ dy2.

It is often useful to study manifolds by analyzing their submanifolds. For a contact manifold

(M2n+1, ξ), submanifolds that respect the contact structure ξ are either transverse to the contact

hyperplanes at every point, or tangent at every point. An n-dimensional submanifold satisfying

the latter condition is called Legendrian. Similarly, for a submanifold L of a symplectic manifold

(M2n, ω), we can have that the restriction ω|L either uniformly vanishes or is always positive. We

call an n-dimensional submanifold Ln ⊆M2n Lagrangian if the symplectic form ω vanishes when

restricted to L.

In this work we consider Legendrian links in standard contact (R3, ξst), i.e. embeddings of S1

into R3 always tangent to ξst. Any smooth link in (R3, ξst), equivalently, (S3, ξst), admits infinitely

many Legendrian isotopy classes. However, all of the links studied in this work will admit a unique

representative that maximizes a classical invariant known as the Thurston-Bennequin number (tb).

We restrict ourselves only considering such representatives from this point onward.

One tool in the study of Legendrian links – and symplectic topology more generally – is an

understanding of their exact Lagrangian fillings. These are orientable Lagrangian surfaces

L ⊆ (D4, ωst) with boundary equal to a given Legendrian λ ⊆ (S3, ξst) and satisfying the condition

that ω|L = df for some function f on L. We consider exact Lagrangian surfaces up to Hamil-

tonian isotopy, equivalently, exact Lagrangian isotopy. The exactness condition can be thought of
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as ensuring that the Lagrangian surface respects the Legendrian condition at the boundary. In

the smooth setting, such surfaces can be arbitrarily complicated. However, the exact Lagrangian

condition is rigid enough to make a conjectural classification of these objects possible, at least for

certain classes of Legendrian links. This conjectural classification and various techniques involved

in understanding it comprise the main area of study of this work.

1.1. Context and main results

In this work, all of the specific examples of Legendrian links we consider are Legendrian isotopic

to the rainbow closure of a positive braid β. We will specifically note when we have results that

yield implications for more general classes of Legendrian links. As pictured in Figure 1.1, the

rainbow closure λ(β) of a positive braid β is Legendrian isotopic to the (−1)−closure of β∆2 where

∆ denotes a half twist of the braid. In order to construct exact Lagrangian fillings of these links,

we consider two main constructions. The first consists of representing the exact Lagrangian filling

as a series of elementary Lagrangian cobordisms involving traces of Legendrian isotopies and a

saddle cobordism. The second construction, more recently developed, comes from the method

of Legendrian weaves. Legendrian weaves are a geometric construction of Casals and Zaslow

used to combinatorially encode the information of a Legendrian surface via the singularities of its

(front) projection [CZ21, Section 2]. Legendrian weaves are crucial tools in proving the existence

of additional structure on the set of exact Lagrangian fillings, as we will explain below. As our first

result, we show that the two constructions considered in this work agree.

Figure 1.1. Front projections of the Legendrian isotopic links given as the rainbow
closure (left) and (−1)-framed closure (right) of the positive braids β and β∆2. Here
∆ denotes a half twist of the braid.
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Theorem 1.1.1 (Theorem 1.1, [Hug21]). For any exact Lagrangian filling of λ(β) constructed

via a sequence of pinching cobordisms and traces of Reidemeister III moves, there is a unique

Hamiltonian isotopic weave filling up to Hamiltonian isotopy.

The restriction on the type of elementary cobordisms appearing in Theorem 1.1.1 follows nat-

urally from the Legendrian weave construction and in practice does not exclude any known con-

structions of exact Lagrangian fillings.

Our next results concern constructions of exact Lagrangian fillings for particular Legendrian

links. Let us denote by σi the ith Artin generator of the n-stranded braid group Brn. Among

rainbow closures of positive braids, we have several distinguished families, including λ(An) =

λ(σn+1
1 ), λ(Dn) = σn−2

1 σ2σ
2
1σ2 and λ(E6), λ(E7), and λ(E8), corresponding to positive braids clo-

sures of σ1σ
2
2σ

2
1σ

i−3
2 for i = 6, 7, and 8, respectively. Smoothly, these are the links of the complex

algebraic singularities labeled by the same Dynkin type.

In general, one is able to construct and distinguish exact Lagrangian fillings using modern

techniques and invariants, but showing that one has obtained all possible fillings remains an elu-

sive problem. In particular, the uniqueness of the exact Lagrangian disk filling of the standard

Legendrian unknot is the only complete classification currently known [EP96]. Later work in con-

structing [EHK16] and distinguishing [Pan17] decomposable exact Lagrangian fillings of λ(An)

gave a Floer theoretic proof of the existence of at least a Catalan number Cn = 1
n+1

(
2n
n

)
of Hamil-

tonian isotopy classes of such fillings. A Catalan number of exact Lagrangian fillings of λ(An) was

also constructed using Legendrian weaves and it was remarked that these two sets of fillings most

likely coincided [TZ18, Section 2.3]. As a corollary of Theorem 1.1.1, we immediately obtain a

proof of this statement. This corollary provides additional evidence for the following conjectural

classification of exact Lagrangian fillings by Casals.

Conjecture (Conjecture 5.1, [Cas21]). Let λ be a rainbow closure of a positive braid. Up to

Hamiltonian isotopy there are precisely

• Cn exact Lagrangian fillings of λ(An);

• (3n− 2)Cn−1 exact Lagrangian fillings of λ(Dn);

• 833, 4160, 25080, exact Lagrangian fillings of λ(E6), λ(E7) and λ(E8);
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• and infinitely many exact Lagrangian fillings of λ otherwise.

The precise numbers appearing above reflect a connection between exact Lagrangian fillings

and cluster theory, as will be explained in much greater detail below. Our next result, concerning

exact Lagrangian fillings of λ(Dn), provides further support for Conjecture 1.1.

Theorem 1.1.2 (Theorem [Hug22] ). There are at least (3n−2)Cn−1 exact Lagrangian fillings

of λ(Dn) up to Hamiltonian isotopy.

In fact, the proof of Theorem 1.1.2 yields a stronger result, namely that each of the exact

Lagrangian fillings is related to one of the others by a specific series of local geometric moves

known as weave mutations.

1.1.1. Legendrian loops. In order to discuss the existence of infinitely many exact La-

grangian fillings where predicted by Conjecture 1.1 we turn to the study of Legendrian loops.

These are isotopies of a Legendrian link that fix it pointwise at time one and act on the set of

exact Lagrangian fillings of Legendrian links via concatenating the trace of the Legendrian iso-

topy to a given filling. They were first introduced by Kálmán in his study of the fundamental

group of the space of embeddings of Legendrian torus links [Kál05]. More recently, Legendrian

loops have appeared as crucial tools in constructing infinitely many exact Lagrangian fillings of

large families of Legendrian links, including all rainbow closures of positive braids not of Dynkin

type [CG22,CN21,CS22,GSW20b].

Nearly all of the works cited above show the existence of faithful Z actions on the Lagrangian

concordance monoid. However, the very first proof of infinitely many exact Lagrangian fillings by

Casals and Gao provides hints of a richer structure, showing in particular the existence of faithful

PSL2(Z) and MCG(S2, 4) actions on the set of fillings of Legendrian torus links λ(3, 6) and λ(4, 4),

respectively. Here MCG(S2, 4) denotes the mapping class group of the 4-punctured sphere. The

remainder of this work will focus on understanding additional structures of Legendrian loop actions

on the Lagrangian concordance monoid.

As an initial attempt at providing more granular data about the action of particular loops,

we start with the simplest case of λ(An). We define the Kálmán loop to be the Legendrian loop

pictured as taking the leftmost crossing of the positive braid β = σn
1 and dragging it up past the
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left cusps, around top two strands of the front projection λ(β), and down past the right cusps until

it becomes the rightmost crossing. Studying the action of this Legendrian loop yields the following.

Theorem 1.1.3. The action of the Kálmán loop on the set Pn, the Catalan number of exact

Lagrangian fillings of A-type satisfies:

The number of Kálmán loop orbits of fillings of λ(An) is

Cn+1

n+ 3
+

C(n+1)/2

2
+

2Cn/3

3

where the C(n+1)/2 and Cn/3 terms appear if and only if the indices are integers.

This theorem gives a complete description of the orbital structure of the action of the Kálmán

loop on the conjectural set of exact Lagrangian fillings of λ(An). Chapter 2 also includes additional

combinatorial characterizations for identifying exact Lagrangian fillings of various orbit sizes. Such

a detailed understanding of Legendrian loop actions is not currently feasible in general, but with

the help of cluster theory we can still pursue a richer understanding.

1.1.2. Clusters and cluster modular groups. In order to investigate Legendrian loop ac-

tions and distinguish exact Lagrangian fillings, we require the use of certain invariants of Legendrian

links. There are two main packages of modern invariants that we use to distinguish Legendrian

links and their exact Lagrangian fillings. The first is a sheaf-theoretic moduli arising from the

microlocal theory of sheaves developed by Kashiwara and Schapira [KS85]. The second is the Leg-

endrian contact differential graded algebra, often known simply as ‘the DGA’, which comes from a

Floer-theoretic count of pseudoholomorphic disks with boundary. As it is often difficult to extract

information from the DGA, we will often consider the augmentation variety, which in our setting

can be thought of as the zeroeth homology of the DGA. Both invariants are functorial with respect

to exact Lagrangian cobordism [EHK16,Li21]; given two Legendrians λ1, λ2, an exact Lagrangian

cobordism from λ2 to λ1 induces a morphism M1(λ1) → M1(λ2) from the sheaf moduli of λ1 to

the sheaf moduli of λ2. An analogous statement holds for the augmentation variety. In particular,

concatenating the trace of a Legendrian loop φ to λ induces an automorphism φ̃ ofM1(λ).

For the remainder of our discussion here, we will focus our attention on the sheaf moduli in

order to discuss cluster structures. Analogous statements hold for Floer-theoretic invariants with
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an appropriate choice of additional data. Informally, a cluster variety is an algebraic variety

with an atlas of toric charts (C×)n such that the gluing maps are a particular form of birational

transformation. Cluster theory appears in many disparate contexts, including high energy physics,

hyperbolic geometry, and number theory. In our setting, an exact Lagrangian filling L of λ induces

a toric chart (C×)b1(L) in the corresponding M1(λ). Casals and Weng showed that for certain

classes of Legendrians λ (including λ = λ(β)), these toric charts glue together in such a way as to

yield the structure of a cluster variety for M1(λ). A local surgery operation (see Section 1.2.1.3)

taking one Lagrangian filling to another induces the birational transformation that glues together

the corresponding toric charts.

Cluster varieties admit a finite type ADE classification matching the conjectural classification

of exact Lagrangian fillings above. In fact, Conjecture 1.1 can be rephrased as stating that exact

Lagrangian fillings of λ are in bijection with distinct cluster charts of M1(λ). Cluster varieties

also have several families that admit infinitely many cluster charts but are nevertheless relatively

well behaved. These include affine type and extended affine type, obtained from Dynkin type in a

straightforward way, as well as surface-type cluster varieties, which correspond to triangulations of

surfaces with boundary and marked points.

In our contact-geometric setting, a loop φ of a Legendrian λ necessarily preserves the set of

exact Lagrangian fillings of λ, implying that the induced action φ̃ permutes the set of toric charts

induced by these fillings in a way that respects the cluster structure. From this, it follows that φ̃ is

a cluster automorphism ofM1(λ). The set of all cluster automorphisms forms a group known

as the cluster modular group. Our goal of studying Legendrian loop actions on the Lagrangian

concordance monoid can therefore be rephrased in terms of understanding the cluster modular

group G(M1(λ)).

A systematic study of cluster modular groups was first undertaken by Assem, Schiffler, and

Shramchenko in [ASS12], where they computed group presentations for several well-behaved fam-

ilies, including Dynkin, affine, and surface type cluster algebras. Later work of Fraser explored

cluster modular groups for cluster structures on (top-dimensional positroid cells) of Grassman-

nians [Fra18]. Most recently, Kaufman and Greenberg [KG21] have consolidated and extended

several known results using a particular combinatorial construction that we explain in Section 4.1.
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Few computations of cluster modular groups exist beyond the cases listed above. However, in all

of the cases that arise in this work, there is a central element of the cluster modular group known

as the Donaldson-Thomas transformation, denoted DT. This automorphism has been explicitly

constructed as the induced automorphism of a Legendrian isotopy composed with an involutive

contactomorphism [CW22, Theorem 5.8] and plays a central role in establishing the existence of

a cluster structure forM1(λ). Somewhat more concretely, for rainbow closures of positive braids,

the automorphism DT2 is induced by the Legendrian loop rotating all of the crossings around the

Legendrian [GSW20b].

In Section 4.1 we compile results about Legendrian loops and describe them as generators of

cluster modular groups for certain families of cluster varieties. In addition to the links we have

already encountered, the families of Legendrian links we consider are defined as follows:

• λ(D̃n) is the (−1) closure of β = (σ2σ1σ3σ2)
2σn−4

1 ∆2 for n ≥ 4.

• λ(Ẽn) is the (−1) closure of β = (σ2σ1σ3σ2)
2σ3σ

n−5
1 ∆2 for n ∈ {6, 7, 8}

• λ(E
(1,1)
7 ) is the (−1) closure of β = (σ2σ1σ3σ2)

2σ2
3σ

2
1∆

2

• λ(E
(1,1)
8 ) is the (−1) closure of β = (σ2σ1σ3σ2)

2σ3σ
4
1∆

2

Here D̃n is read as “affine” Dn while the (1, 1) appearing in E
(1,1)
7 indicates extended affine type.

The Legendrians above are all Legendrian isotopic to rainbow closures of positive braids, but

defining them as (-1) closures affords additional clarity when investigating Legendrian loops. Note

that λ(E
(1,1)
7 ) and λ(E

(1,1)
8 ) are Legendrian isotopic to the Legendrian torus links λ(4, 4) and λ(3, 6),

respectively.

Let us denote byH the set of links above along with the finite type links λ(An), λ(Dn), λ(E6), λ(E7),

and λ(E8). We also consider a particular subset

H′ := {λ(An), λ(Dn), λ(E6), λ(E7), λ(E8), λ(Ẽ7), λ(Ẽ8), λ(E
(1,1)
8 )}.

By comparing Legendrian loop actions to known presentations of cluster modular groups we show

that we can generate a finite index subgroup of the cluster modular group with Legendrian loops.

If we add DT to our generating set, we can often obtain a stronger result.
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Theorem 1.1.4. For λ ∈ H, the cluster modular group G(M1(λ)) is virtually generated by

Legendrian loops. Moreover, if λ ∈ H′, the group G(M1(λ)) is generated by Legendrian loops and

DT.

The methods we use suggest ways to produce generators of cluster modular groups, even in

cases where the full group is not known. We discuss some additional applications of this insight in

Sections 4.1 and 4.2.

1.1.3. Connections to Mapping Class Groups. Cluster theory also gives us additional

tools to analyze Legendrian loops. Fock and Goncharov originally motivated much of their work

on cluster varieties by exploring higher Teichmuller theory for surfaces with boundary and marked

points [FG06b]. In this context, cluster charts correspond to triangulations of a fixed surface

Σ and the cluster modular group is intimately connected to the mapping class group MCG(Σ).

Work of Ishibashi and collaborators [Ish19,Ish20,IK21,AIK22] has extended this connection by

investigating classical results from the study of mapping class groups in a cluster-theoretic context.

In Section 4.2, we intepret Ishibashi’s cluster Nielsen-Thurston classification of cluster auto-

morphisms in the context of Legendrian loops. We define (cluster) periodic, reducible, and pseudo-

Anosov Legendrian loops and discuss a fixed point property of their action on the positive real part

ofM1(λ).

Theorem 1.1.5. A Legendrian loop is infinite order if its induced action on the positive real

part of X(β) orM1(Λ(β)) has no fixed points.

In addition, we show that Legendrian loops coincide with specific generators of the cluster

modular group known as cluster Dehn twists. This allows us to recover results of Kaufman and

Greenberg that are analogous to a classical theorem from the study of mapping class groups.

Theorem 1.1.6 ( [KG21], Corollary 6.5). For λ ∈ H, the cluster modular group G(M1(λ))

is virtually generated by cluster Dehn twists. Moreover, if λ ∈ H′, then G(M1(λ)) is generated by

cluster Dehn twists.

Organization: Section 1.2 below reviews the necessary background material related to con-

structions of exact Lagrangian fillings of Legendrian links, their invariants, and cluster theory. The
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remainder of this dissertation is then presented in alphabetical order, with results pertaining to An-

type in Chapter 2, results pertaining to Dn-type in Chapter 3, and results pertaining to everything

else in Chapter 4. More specifically, Chapter 2 contains proofs of Theorems 1.1.1 and 1.1.3 as well

as additional combinatorial characterizations of exact Lagrangian fillings of λ(An). In Chapter 3,

we prove Theorem 1.1.2. Finally, Chapter 4 discusses results relating Legendrian loops to known

cluster modular groups, including a proof of Theorem 1.1.4. The chapter closes with proofs of

Theorems 1.1.5, and 1.1.6, contact-geometric interpretations of Ishibashi’s analogy linking cluster

modular groups and mapping class groups.

1.2. Background

We begin with the necessary background material from contact and symplectic topology. The

standard contact structure ξst in R3 is the 2-plane field given as the kernel of the 1-form α = dz−ydx.

A link λ ⊆ (R3, ξst) is Legendrian if λ is always tangent to ξst. As λ can be assumed to avoid a

point, we can equivalently consider Legendrians λ contained in the contact 3-sphere (S3, ξst) [Gei08,

Section 3.2]. We consider Legendrian links up to Legendrian isotopy, i.e. ambient isotopy through

a family of Legendrians.

The symplectization of contact R3 is the symplectic manifold (Rt × R3, d(etα)). Given two

Legendrian links λ− and λ+, an exact Lagrangian cobordism L ⊆ (Rt ×R3, d(etα)) from λ− to λ+

is a cobordism Σ such that there exists some T > 0 satisfying the following:

(1) d(etα)|Σ = 0

(2) Σ ∩ ((−∞, T ]× R3) = (−∞, T ]× λ−

(3) Σ ∩ ([T,∞)× R3) = [T,∞)× λ+

(4) etα|Σ = df for some function f on Σ.

An exact Lagrangian filling of the Legendrian link λ ⊆ (R3, ξst) is an exact Lagrangian cobor-

dism L from ∅ to λ that is embedded in the symplectization Rt × R3. Equivalently, we consider L

to be embedded in the symplectic 4-ball with boundary ∂L contained in contact (S3, ξst).

We will depict a Legendrian link λ ⊆ (R3, ξst) in either of two projections; the front projection

Π : (R3, ξst) → R2 given by Π(x, y, z) = (x, z) or the Lagrangian projection π : (R3, ξst) → R2

given by π(x, y, z) = (x, y). In the Lagrangian projection, crossings of π(λ) correspond precisely to

9



Reeb chords of λ, integral curves of the Reeb vector field ∂z that start and end on λ. In the front

projection, the Legendrian condition Txλ ⊆ ker(dz − ydx) implies that y = dz
dx . Therefore, Reeb

chords are given by pairs of points (x1, z1), (x2, z2) with x1 = x2 and dz1
dx1

= dz2
dx2

. The key geometric

content in proving Theorem 1.1.1 in Section 2.1 will involve a careful comparison of Reeb chords

in the front and Lagrangian projections of slicings of elementary cobordisms.

1.2.1. Legendrian weaves. Let us now describe Legendrian weaves, a geometric construction

of Casals and Zaslow that can be used to produce exact Lagrangian fillings of a Legendrian link

λ(β) [CZ21]. The key idea of Legendrian weaves is to combinatorially encode a Legendrian surface

Λ in the 1-jet space J1D2 = T ∗D2 ×Rz by the singularities of its front projection in D2 ×Rz. The

Lagrangian projection of Λ then yields an exact Lagrangian surface in T ∗D2.

The contact geometric setup of the Legendrian weave construction is as follows. Let β be a

positive braid and let ∆ := σ1σ2σ1 . . . σnσn−1 . . . σ1 denote a positive half twist in the braid group

Brn. We construct a filling of λ(β) – equivalently, the (−1)-framed closure of β∆2, pictured in

Figure 1.1 (right) – by first describing a local model for a Legendrian surface Λ in J1D2 = T ∗D2×Rz.

We equip T ∗D2 with the symplectic form d(erα) where ker(α) = ker(dy1 − y2dθ) is the standard

contact structure on J1(∂D2) and r is the radial coordinate. This choice of symplectic form ensures

that the flow of erα is transverse to J1S1 ∼= R2 × ∂D2 thought of as the cotangent fibers along

the boundary of the 0-section. The Lagrangian projection of Λ is then a Lagrangian surface in

(T ∗D2, d(erα)). Moreover, since Λ ⊆ (J1D2, ker(dz− erα)) is a Legendrian, we immediately obtain

the function z : π(Λ)→ R satisfying dz = erα|π(Λ), demonstrating that π(Λ) is exact.

The boundary of π(Λ) is taken to be a positive braid β in J1S1 so that we regard it as a

Legendrian link in a contact neighborhood of ∂D2. As the 0-section of J1S1 is Legendrian isotopic

to a max-tb standard Legendrian unknot, we can take ∂π(Λ) to equivalently be the standard

satellite of the standard Legendrian unknot. Diagramatically, this implies that the braid β in J1S1

can be given as the (−1)-framed closure of β in contact S3.

1.2.1.1. N -Graphs and Singularities of Fronts. To construct a Legendrian weave surface Λ in

J1D2, we combinatorially encode the singularities of its front projection in a colored graph. Local

models for these singularities of fronts are classified by work of Arnold [Ad90, Section 3.2]. The
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three singularities that appear in our construction describe elementary Legendrian cobordisms and

are pictured in Figure 1.2.

Figure 1.2. Singularities of front projections of Legendrian surfaces. Labels cor-
respond to notation used by Arnold in his classification.

Since the boundary of our singular surface Π(Λ) is the front projection of anN -stranded positive

braid, Π(Λ) can be pictured as a collection of N sheets away from its singularities. We describe

the behavior at the singularities as follows:

(1) The A2
1 singularity occurs when two sheets in the front projection intersect. This singu-

larity can be thought of as the trace of a constant Legendrian isotopy in the neighborhood

of a crossing in the front projection of the braid β∆2.

(2) The A3
1 singularity occurs when a third sheet passes through an A2

1 singularity. This

singularity can be thought of as the trace of a Reidemeister III move in the front projection.

(3) AD−4 singularity occurs when three A2
1 singularities meet at a single point. This singularity

can be thought of as the trace of a 1-handle attachment in the front projection.

Having identified the singularities of fronts of a Legendrian weave surface, we encode them by a

colored graph Γ ⊆ D2. The edges of the graph are labeled by Artin generators of the braid and we

require that any edges labeled σi and σi+1 meet at a hexavalent vertex with alternating labels while

any edges labeled σi meet at a trivalent vertex. To obtain a Legendrian weave Λ(Γ) ⊆ (J1D2, ξst)

from an N -graph Γ, we glue together the local germs of singularities according to the edges of Γ.

First, consider N horizontal sheets D2×{1}⊔D2×{2}⊔ · · · ⊔D2×{N} ⊆ D2×R and an N -graph

Γ ⊆ D2 × {0}. We construct the associated Legendrian weave Λ(Γ) as follows [CZ21, Section 2.3].
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• Above each edge labeled σi, insert an A2
1 crossing between the D2 × {i} and D2 × {i+ 1}

sheets so that the projection of the A2
1 singular locus under π : D2 ×R→ D2 ×{0} agrees

with the edge labeled σi.

• At each trivalent vertex v involving three edges labeled by σi, insert a D−4 singularity

between the sheets D2×{i} and D2×{i+1} in such a way that the projection of the D−4

singular locus agrees with v and the projection of the A1
2 crossings agree with the edges

incident to v.

• At each hexavalent vertex v involving edges labeled by σi and σi+1, insert an A3
1 singularity

along the three sheets in such a way that the origin of the A3
1 singular locus agrees with

v and the A2
1 crossings agree with the edges incident to v.

(i+1,i+2)

1

i

i+1

N

(i,i+1)

(i,i+1) (i,i+1)

...
...

1

i

i+1

N

...
...

(i,i+1)

1

i

i+1

N

...
...

1

i
i+1

N

...
...

i+2

(i,i+1)

(i,i+1)

(i,i+1)
(i+1,i+2)

(i+1,i+2)

Figure 1.3. The weaving of singularities of fronts along the edges of the N -graph
(courtesy of Roger Casals and Eric Zaslow, used with permission). Gluing these
local models according to the N -graph Γ yields the weave Λ(Γ).

If we take an open cover {Ui}mi=1 of D2 × {0} by open disks, refined so that any disk contains

at most one of these three features, we can glue together the resulting fronts according to the

intersection of edges along the boundary of our disks. Specifically, if Ui ∩ Uj is nonempty, then

we define Π(Λ(U1 ∪ U2)) to be the front resulting from considering the union of fronts Π(Λ(U1)) ∪

Π(Λ(Uj)) in (U1 ∪ U2)× R.

Definition 1.2.1. The Legendrian weave Λ(Γ) ⊆ (J1D2, ξst) is the Legendrian lift of the front

Π(Λ(∪mi=1Ui)) given by gluing the local fronts of singularities together according to the N -graph Γ.
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The immersion points of a Lagrangian projection of a weave surface Λ correspond precisely

to the Reeb chords of Λ. In particular, if Λ has no Reeb chords, then π(Λ) is an embedded

exact Lagrangian filling of ∂(Λ). In the Legendrian weave construction, Reeb chords correspond

to critical points of functions giving the difference of heights between sheets. Every weave surface

in this work admits an embedding where the distance between the sheets in the front projection

grows monotonically in the direction of the boundary, ensuring that there are no Reeb chords.

1.2.1.2. Homology of Weaves. In this subsection, we describe the homology of a Legendrian

weave Λ(Γ). The smooth topology of Λ(Γ) is that of an N -fold branched cover over D2 with simple

branched points corresponding to each of the trivalent vertices of the N -graph Γ. Assuming that

Λ(Γ) is connected, the genus of Λ(Γ) is then computed using the Riemann-Hurwitz formula:

g(Λ(Γ)) =
1

2
(v(Γ) + 2−Nχ(D2)− |∂Λ(Γ)|)

where v(Γ) is the number of trivalent vertices of Γ and |∂Λ(Γ)| denotes the number of boundary

components of Γ.

Example 1.2.1. If we apply this formula to the 3-graph Γ0(D4), pictured in Figure 1.13 (left),

we have 6 trivalent vertices and 3 link components, so the genus is computed as g(Λ(Γ0(D4))) =

1
2(6 + 2− 3− 3) = 1.

We now describe a recipe for finding elements of H1(Λ(Γ));Z) combinatorially in terms of the

N -graph Γ. We first consider an edge connecting two trivalent vertices. Closely examining the

sheets of our surface, we can see that each such edge corresponds to a 1-cycle, as pictured in Figure

1.4 (left). We refer to such a 1-cycle as a short I-cycle. Similarly, any three edges of the same

color that connect a single hexavalent vertex to three trivalent vertices correspond to a 1-cycle, as

pictured in 1.5 (left). We refer to such a 1-cycle as a short Y-cycle. See figures 1.4 (right) and 1.5

(right) for a diagram of these 1-cycles in the front Π(Λ(Γ)). We can also consider a sequence of edges

starting and ending at trivalent vertices and passing directly through any number of hexavalent

vertices, as pictured in Figure 1.6. Such a cycle is referred to as a long I-cycle. Finally, we can

combine any number of I-cycles and short Y-cycles to describe an arbitrary 1-cycle as a tree with

leaves on trivalent vertices and edges passing directly through or branching at hexavalent vertices.
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Figure 1.4. A short I-cycle γ(e) for the edge e ∈ G pictured in the front Π(Λ(Γ))
(left) and a vertical slicing of Π(Λ(Γ)) (right).
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Figure 1.5. A short Y-cycle γ(e) defined by the edges e1, e2, e3 ∈ G pictured in
the front Π(Λ(Γ)) (left) and a vertical slicing of Π(Λ(Γ)) (right).

Figure 1.6. A pair of long I-cycles, both denoted by γ. The cycle on the left passes
through an even number of hexavalent vertices, while the cycle on the right passes
through an odd number.

The intersection form ⟨·, ·⟩ onH1(Λ(Γ)) plays a key role in distinguishing our Legendrian weaves.

If we consider a pair of 1-cycles γ1, γ2 ∈ H1(Λ(Γ)) with nonempty geometric intersection in Γ, as

pictured in Figure 1.7, we can see that the intersection of their projection onto the graph Γ differs

from their intersection in Λ(Γ). Specifically, we can carefully examine the sheets that the 1-cycles
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cross in order to see that γ1 and γ2 intersect only in a single point of Λ(Γ). If we fix an orientation on

γ1 and γ2, then we can assign a sign to this intersection based on the convention given in Figure 1.7.

We refer to the signed count of the intersection of γ1 and γ2 as their algebraic intersection and denote

it by ⟨γ1, γ2⟩. For the remainder of this manuscript, we will fix a counterclockwise orientation for

all of our cycles and adopt the convention that any two cycles γ1 and γ2, intersecting at a trivalent

vertex as in Figure 1.7 have algebraic intersection ⟨γ1, γ2⟩ = −1.

Notation: For the sake of visual clarity, we will often represent an element of H1(Λ(Γ);Z)

by a colored edge. This also ensures that the geometric intersection more accurately reflects the

algebraic intersection. The original coloring of the edges can be readily obtained by examining Γ

and its trivalent vertices. □

Figure 1.7. Intersection of two cycles, γ1 and γ2. The intersection point is indi-
cated by an orange star. If we orient both cycles counterclockwise, then we will set
⟨γ1, γ2⟩ = −1 as our convention.

In our correspondence between N -graphs and weaves, we must consider how a Legendrian

isotopy of the weave Λ(Γ) affects the N -graph Γ and its combinatorially encoded homology basis.

We can restrict our attention to certain isotopies, referred to as Legendrian Surface Reidemeister

moves. These moves create specific changes in the Legendrian front Π(Λ(Γ)) studied by Arnol’d

[Ad90]. From [CZ21], we have the following theorem relating surface Reidemeister moves to the

corresponding N -graphs.

Theorem 1.2.1 ( [CZ21], Theorem 4.2). Let Γ and Γ′ be two N -graphs related by one of the

moves shown in Figure 1.8. Then the associated weaves Λ(Γ) and Λ(Γ′) are Legendrian isotopic

relative to their boundaries. □
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FlTw PT

PT-1

IV V

Figure 1.8. Legendrian Surface Reidemeister moves for N -graphs. Clockwise from
top left, a candy twist, a push-through, a flop, and two additional moves, denoted
by I, II, III, IV, and V respectively.

See Figure 1.9 for a description of the behavior of elements of H1(Λ(Γ);Z) under Moves I, II

and III. The behavior under Move V can be deduced from Move III. In the pair of graphs in Figure

1.9 (center), we have denoted a push-through by II or II−1 depending on whether we go from left

to right or right to left. We will sometimes refer to Move II−1 as a reverse push-through.

Figure 1.9. Behavior of certain homology cycles under Legendrian Surface Reide-
meister moves.

Remark 1.2.1. It is also possible to verify the computations in Figure 1.9 by examining the

relative homology class of a cycle; given a basis of the relative homology H1(Λ(Γ), ∂Λ(Γ);Z), the

intersection form on that basis allows us to determine a given cycle by Poincaré-Lefschetz duality.
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1.2.1.3. Mutations of weaves. In this section we describe Legendrian mutation, a geometric

operation that we can use to generate additional Legendrian weaves. Given a Legendrian weave

Λ(Γ) and a 1-cycle γ ∈ H1(Λ(Γ);Z), the Legendrian mutation µγ(Λ(Γ)) outputs a Legendrian

weave smoothly isotopic to Λ(Γ) but that is generally not Legendrian isotopic to Λ(Γ).

Definition 1.2.2. Two Legendrian surfaces Λ0,Λ1 ⊆ (R5, ξst) with equal boundary ∂Λ0 = ∂Λ1,

are mutation-equivalent if and only if there exists a compactly supported Legendrian isotopy {Λ̃t}

relative to the boundary, with Λ̃0 = Λ0 and a Darboux ball (B, ξst) such that

(i) Outside the Darboux ball, we have Λ̃1|R5\B = Λ1|R5\B

(ii) There exists a global front projection π : R5 → R3 such that the pair of fronts Π|B∩Λ̃1
and

Π|B∩Λ1 coincides with the pair of fronts in Figure 1.10 below.

□

Figure 1.10. Local fronts for two Legendrian cylinders non-Legendrian isotopic
relative to their boundaries.

We briefly note that these two fronts lift to non-Legendrian isotopic Legendrian cylinders in

(R5, ξst), relative to the boundary, and that the 1-cycle we input for our operation is precisely the

1-cycle defined by the cylinder corresponding to Λ0.

Combinatorially, we can describe mutation in terms of the N -graph associated to a weave.

Figure 1.11 (left) depicts mutation at a short I-cycle, while Figure 1.11 (right) depicts mutation at

a short Y-cycle. In the N = 2 setting, we can identify 2-graphs with triangulations of an n−gon,

in which case mutation at a short I-cycle corresponds to a Whitehead move. In order to describe

mutation at a short Y-cycle, we can first reduce the short Y-cycle case to a short I-cycle, as shown in

Figure 1.12, before applying our mutation. See [CZ21, Section 4.9] for a more general description

of mutation at long I- and Y-cycles in N -graphs.
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Figure 1.11. Mutations at a short I-cycle (left) and short Y-cycle (right). In both
cases, the dark green edge depicts the effect of mutation on any cycle intersecting
the orange cycle.

The geometric operation above coincides with the combinatorial manipulation of the N -graphs.

Specifically, we have the following theorem.

Theorem 1.2.2 ( [CZ21], Theorem 4.2.1). Given two N -graphs, Γ and Γ′ related by either of

the combinatorial moves described in Figure 1.11, the corresponding Legendrian weaves Λ(Γ) and

Λ(Γ′) are mutation-equivalent relative to their boundary. □

Figure 1.12. Mutation at a short Y-cycle given as a sequence of Legendrian Surface
Reidemeister moves and mutation at a short I-cycle. The Y-cycle in the initial graph
is given by the three blue edges that each intersect the yellow vertex in the center.

1.2.1.4. Quivers from Weaves. We complete our discussion of Legendrian weaves by describing

quivers and how they arise via the intersection form on H1(Λ(Γ);Z). A quiver is a directed graph
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without loops or oriented 2-cycles. In the Legendrian weave setting, the data of a quiver can be

extracted from a given weave and a basis of its first homology via the intersection form. The

intersection quiver is defined as follows: for every basis element γi ∈ H1(Λ(Γ);Z) we have a vertex

vi in the quiver; there are k arrows pointing from vj to vi if ⟨γi, γj⟩ = k for k > 0. See Figure 1.13

(left) for an example of the quiver Q(Λ(Γ0(D4)), {γ(0)i }) defined by Λ(Γ0(D4)) and the indicated

basis for H1(Λ(Γ0(D4);Z).

Figure 1.13. 3-graphs Γ0(D4) (left) and Γ1(D4) (right) obtained by mutation
at the homology cycle γ3, pictured with their associated intersection quivers

Q(Γ0(D4), {γ(0)i }) and Q(Γ1(D4), {γ(0)i }). The Legendrian surface Λ(Γ0(D4) is
smoothly a 3-punctured torus, so that H1(Λ(Γ0(D4));Z) has rank 4. The basis

{γ(0)i } for H1(Λ(Γ0(D4));Z) is depicted by the colored cycles drawn in the graph.

The combinatorial operation of quiver mutation at a vertex v is defined as follows, see e.g.

[FWZ20a, Definition 2.1.2]. First, for every pair of incoming edges and outgoing edges, we add an

edge starting at the tail of the incoming edge and ending at the head of the outgoing edge. Next,

we reverse the direction of all edges adjacent to v. Finally, we cancel any directed 2-cycles. If we

started with the quiver Q, then we denote the quiver resulting from mutation at v by µv(Q). See

Figure 1.13 (bottom) for an example. Under this operation, we can naturally identify the vertices
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of Q with µv(Q), just as we can identify the homology bases of a weave before and after Legendrian

mutation.

Remark 1.2.2. The crucial difference between algebraic and geometric intersections is captured

in the step canceling directed 2-cycles. This cancellation is implemented by default in a quiver

mutation, as the arrows of the quiver only capture algebraic intersections. In contrast, the geometric

intersection of homology cycles after a Legendrian mutation will, in general, not coincide with the

algebraic intersection. This dissonance will be explored in detail in the proof of Theorem 1.1.2 in

Chapter 3. □

The following theorem relates the two operations of quiver mutation and Legendrian mutation:

Theorem 1.2.3 ( [CZ21], Section 7.3). Given an N -graph Γ, Legendrian mutation at an em-

bedded cycle γ induces a quiver mutation for the associated intersection quivers, taking Q(Γ, {γi})

to µγ(Q(Γ, {γi})). □

See Figure 1.13 for an example showing the quiver mutation of Q(Γ0(D4), {γ(0)i }), i ∈ [1, 4],

corresponding to Legendrian mutation applied to Λ(Γ0(D4)).

1.2.2. The microlocal theory of sheaves. In this section we define the moduli of microlocal

rank-one sheaves with prescribed singular support, one of two families of Legendrian invariants that

we consider in this manuscript. This sheaf-theoretic invariant of a Legendrian is defined with the

auxiliary data of a front projection. The singular support of a sheaf encodes the codirection along

which a sheaf fails to propagate. Informally, the moduli we consider is the space of all constructible

sheaves (with some additional conditions) for which the singular support is contained within a given

Legendrian front. In the setting we work in, this reduces to computations involving spaces of flags

of vector spaces. Standard references are [KS90,STZ17]. See also the appendices of [CL22] for a

careful explanation of the relationships between various categories involved in defining this moduli

in greater generality.

1.2.2.1. Singular support. We first consider the dg-category of complexes of sheaves of C−modules

on M with constructible cohomology sheaves, denoted Sh(M). For our purposes, M can either be

taken to be S1 or D2. The following definition introduces the notion of the singular support of F .
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Intuitively, this notion captures the (co)directions along which the map induced by restriction fails

to be a quasi-isomorphism. Let RΓ denote the derived sections functor.

Definition 1.2.3. The singular support SS(F) ⊆ T ∗M of a complex of sheaves F ⊆ Sh(M)

is the closure of the set of covectors (x, ξ) ∈ T ∗M such that there exists an open neighborhood Ux

about x, a smooth function φ ∈ C∞(M) satisfying dφ = ξ, φ(x) = 0, and

Cone(RΓ((φ < −δ) ∩ Ux,F)→ RΓ((φ < δ) ∩ Ux,F)) ̸∼= 0.

We denote the unit cotangent bundle of M by T∞M and note that it carries a canonical contact

structure inherited from the symplectic structure on T ∗M . As defined, the singular support SS(F)

is a conical Lagrangian submanifold of the cotangent bundle T ∗M . If we quotient by the R+ scaling

action, then SS(F) becomes a Legendrian submanifold of T∞(M). We identify the unit cotangent

bundle T∞,−(M × R) with the first jet space J1(M).

Given a Legendrian link λ in J1S1 the front projection Π(λ) stratifies S1×R. We can then ask

the following question: for what sheaves F ∈ Sh(S1 × R) do we have SS(F ) ⊆ Π(λ)? For a front

without cusps and with binary Maslov potential in J1(S1), we can restrict our attention to sheaves

concentrated in degree 0 [STZ17, Proposition 5.17]. In this work, we will further simplify to only

consider locally constant sheaves of vector spaces that are 0 in a neighborhood of S1 × {−∞}. For

a Legendrian λ in J1M , we denote byM(λ) the space of sheaves F ∈ Sh(M ×R) satisfying these

conditions.

Theorem 1.2.4 ( [GKS12]). Given a Legendrian isotopy {λt}, t ∈ [0, 1], there is a isomorphism

M(λ0) ∼=M(λ1).

Note that the result in loc. cit. provides a means of explicitly computing the induced iso-

morphism between sheaf moduli. We will not require any such computations using Theorem 1.2.4

in this work. To describe M(λ) in the case of Legendrian links in (J1S1, ξst), one (in practice)

examines the stratification of S1 × R induced by the front projection Π(λ) and locally computes

the conditions on maps f : V • → W • between different regions of S1 × R\Π(λ) in neighborhoods

of arcs, crossings, and cusps [STZ17]. The following definition allows us to simplify our space of

sheaves yet further.
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Definition 1.2.4. The microlocal rank of a sheaf F at a point x ∈ M(λ) is the rank of

Cone(V • →W •).

We denote byM1(λ) the moduli of microlocal-rank one sheaves with singular support on the

Legendrian λ. As noted above, M1(λ) is functorial with respect to exact Lagrangian cobordism

[Li21]. For a Legendrian weave Λ(Γ), away from a D−4 singularity, the front is locally of the form

arc × [a, b] or crossing × [a, b]. A computation of the singular support around a D−4 singularity

shows that no new singular support condition is imposed there [TZ18, Section 4.1.2], see also

[CZ21, Theorem 5.3]. As a result, an embedded, orientable Legendrian weave Λ(Γ) induces a

map Loc(Λ(Γ)) ↪→M1(∂Λ(Γ)). In the following subsection, we explicitly describe how to compute

M1(∂Λ(Γ)) and a toric chart induced by Λ(Γ).

1.2.2.2. Flag moduli. For a front without cusps and with binary Maslov potential in J1(S1),

we can describe the sheaf moduli as a space of flags with certain transversality conditions given by

the front. If β is a positive braid, then the (-1) closure of β is Legendrian isotopic to a front in

J1S1 without cusps and with binary Maslov potential.

Let λ ⊆ J1S1 be the (-1) closure of an N -stranded positive braid β ∈ Br+N . The crossing

singularities of the front Π(β) ⊆ S1 × R divide S1 × R into regions [ai, ai+1] × R. Given our

description ofM1(λ) above, each sheaf F ∈ M1(λ) has as a stalk a locally constant vector space

in each region of [ai, ai+1] × R, divided by the strands of β. The microlocal rank-one condition

implies that the rank of these vector spaces increases by one as we pass from a region to the one

immediately above it. This sequence of vector spaces 0 ⊆ V 1
i ⊆ · · · ⊆ V n

i = Cn can be thought

of as a flag V •i in CN . The singular support condition at the crossing corresponding to the Artin

generator σj implies that the two flags V •i and V •i+1 differ at the jth position; in other words, V j
i is

transverse to V j
i+1. The spaceM1(λ) can then be understood as the space of flags satisfying these

transversality conditions, modulo a choice of basis.

For a Legendrian weave Λ(Γ) defined by the N -graph Γ, we have a similar story. As described

in [CZ21, Section 5.3] the data ofM1(Λ(Γ)) is equivalent to providing:

(i) An assignment to each face F (connected component of D2\G) of a flag V •(F ) in the

vector space CN .
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(ii) For each pair F1, F2 of adjacent faces sharing an edge labeled by σi, we require that the

corresponding flags satisfy

V j(F1) = V j(F2), 0 ≤ j ≤ N, j ̸= i, and V i(F1) ̸= V i(F2).

Finally, we consider the moduli space of flags satisfying (i) and (ii) modulo the diagonal action of

GLN (C) on V •. The precise statement [CZ21, Theorem 5.3] we require is that the flag moduli

space, denoted C(Γ) is isomorphic to the space of microlocal rank-one sheaves M1(Λ(Γ)). Since

M1(Λ(Γ)) is an invariant of Λ(Γ) up to Hamiltonian isotopy, it follows that C(Γ) is an invariant as

well.

To better understand local systems on Λ(Γ), we give examples of the flag moduli space in a

neighborhood of homology cycles of Λ(Γ). In the short I-cycle case, when the edges are labeled by

σ1, the moduli space is determined by four lines a ̸= b ̸= c ̸= d ̸= a, as pictured in Figure 1.14 (left).

If the edges are labeled by σ2, then the data is given by four planes A ̸= B ̸= C ̸= D ̸= A. Around

a short Y-cycle, the data of the flag moduli space is given by three distinct planes A ̸= B ̸= C ̸= A

contained in C3 and three distinct lines a ⊊ A, b ⊊ B, c ⊊ C with a ̸= b ̸= c ̸= a, as pictured in

Figure 1.14 (right).

Figure 1.14. The data of the flag moduli space given in the neighborhood of a
short I-cycle (left) and a short Y-cycle (right). Lines are represented by lowercase
letters, while planes are written in uppercase. The intersection of the two lines a
and b is written as ab.

To describe a cluster algebra structure on C(Γ), we need to specify the toric chart (C×)b1(Λ(Γ))

associated to the quiver Q(Λ(Γ), {γi}) via the microlocal monodromy functor µmon. This is a
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functor from the category C(Γ) to the category of rank one local systems on Λ(Γ). As described

in [STZ17,STWZ19], the functor µmon takes a 1-cycle as input and outputs the isomorphism

of sheaves given by the monodromy about the cycle. Since it is locally defined, we can compute

the microlocal monodromy about an I-cycle or Y-cycle using the data of the flag moduli space in

a neighborhood of the cycle. If we have a short I-cycle γ with flag moduli space described by the

four lines a, b, c, d, as in Figure 1.14 (left), then the microlocal monodromy about γ is given by the

cross ratio
a ∧ b

b ∧ c

c ∧ d

d ∧ a

Similarly, for a short Y-cycle with flag moduli space given as in Figure 1.14 (right), the microlocal

monodromy is given by the triple ratio

B(a)C(b)A(c)

B(c)C(a)A(b)

where we interpret the plane B as a covector in C3 to define the pairing B(a). As described

in [CZ21, Section 7.2], the microlocal monodromy about a 1-cycle gives rise to anX-cluster variable

at the corresponding vertex in the quiver. Under mutation of the 3-graph, the cross ratio and triple

ratio transform as cluster X-coordinates. Specifically, if we start with a 3-graph with cluster

variables xj , then the cluster variables x′j of the 3-graph after mutating at γi are given by the

equation

x′j =


x−1j i = j

xj(1 + x−1i )−⟨γi,γj⟩ ⟨γi, γj⟩ > 0

xj(1 + xi)
−⟨γi,γj⟩ ⟨γi, γj⟩ < 0

See Figure 1.15 for an example.

1.2.3. Preliminaries on cluster theory. In this subsection, we define cluster structures and

discuss how to use the ingredients described above to define them. We start by introducing cluster

algebras and cluster varieties and then discuss some specific cluster algebras related to tagged

triangulations of surfaces. The subsection ends with a description of cluster modular groups.

See [FWZ20a,FWZ20b] for an introductory reference on cluster theory.
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Figure 1.15. Prior to mutating at γ1, we have ⟨γ1, γ2⟩ = −1. Computing the
cross ratios for γ1 and µ1(γ1) we can see that the cross ratio transforms as µ1(γ1) =
b∧c
c∧e

e∧a
a∧b = x−11 under mutation. Similarly, computing the cross ratios for γ1 and

µ1(γ2) and applying the relation e ∧ b · a ∧ c = b ∧ c · e ∧ a + a ∧ b · c ∧ e, we have
µ1(x2) =

e∧a
a∧c

c∧d
d∧e
(
1 + a∧b

b∧c
c∧e
e∧a
)
.

1.2.3.1. Definition of a cluster algebra. We follow [FWZ20a] for describing a cluster algebra

associated to an initial quiver Q0. To an initial quiver Q0 with n vertices, we associate an initial set

of variables a1, . . . an, one for each vertex. Together, the n−tuple a = (a1, . . . ,an) and the quiver

Q0 form a cluster seed (a,Q0). We designate a subset of vertices Qmut
0 to be the mutable part

of the quiver. The vertices in Q0\Qmut
0 are designated as frozen and we require that there are no

arrows between them. There are two types of cluster algebras, type A or type X, depending on the

precise form of the birational map relating different cluster variables.

Definition 1.2.5. Let (a,Q) be a cluster seed and k ∈ Qmut be a mutable vertex. The cluster

A seed mutation µk is an operation taking as input the seed (a,Q) and outputs the new seed

(a′,Q′) where Q′ is related to Q by quiver mutation at vertex k and a′ is related to a by a′i = ai for

all i ̸= k and

aka
′
k =

∏
i→k

anumber of edges i→k
i +

∏
i←k

anumber of edges i←k
i

where i→ k denotes an edge from i to k in Q.

Note that seed mutation is an involution, so that µ2
k(a,Q) = (a,Q).

Denote by F the field of rational functions C(a1, . . . an) and consider an initial seed (a,Q0) ⊆ F .

Definition 1.2.6. The type A cluster algebra generated by (a,Q0) is the C-algebra generated

by all cluster variables arising in arbitrary mutations of the initial seed.
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The type X cluster algebra is generated from an initial seed (x,Q0) by the mutation formula

x′j =


x−1j i = j

xj(yk + 1)number of edges j←k j ̸= k, j ← k

xj(x
−1
k + 1)−number of edges j→k j ̸= k, j → k

A cluster algebra is of finite type if it has only finitely many distinct cluster seeds. Otherwise,

it is of infinite type. Cluster algebras admit an ADE classification.

Theorem 1.2.5 (Theorem 1.4, [FZ03]). Cluster algebras are of finite type if and only if their

quiver is mutation equivalent to a Dynkin diagram of finite type with any orientation given to its

edges

For the simply-laced cases, this restricts our attention to ADE-type. We discuss some of the

combinatorial ingredients for understanding cluster algebras of types An and Dn in Subsection

1.2.3.2. Beyond finite-type cluster algebras, the next simplest families are clusters arising from

quivers of finite mutation type. These are cluster algebras with an underlying quiver that is

mutation equivalent to only finitely many quivers. These are classified in [FST12]. Among the finite

mutation type cluster algebras, we have types Ãn, D̃n, and others corresponding to triangulations

of surfaces (See e.g. [FST08]), as well as types Ẽ6, Ẽ7, Ẽ8, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 and two additional

exceptional quivers.

For the purposes of understanding invariants of Legendrians via cluster theory, we briefly discuss

the notion of a cluster variety introduced by Fock and Goncharov [FG06a,FG06b]. In short, cluster

varieties are varieties constructed by gluing together algebraic tori (corresponding to cluster seeds)

using maps corresponding to cluster mutation so that the coordinate ring of regular functions on an

algebraic variety with a cluster structure is an (upper) cluster algebra. An abbreviated statement of

the main theorem of Casals and Weng tells us that cluster varieties arise naturally from symplectic

geometry. The class of Legendrians they consider arises from a combinatorial construction known

as a (complete) grid plabic graph. This class includes all Legendrian links considered in this work.

Theorem 1.2.6 (Theorem 1.1 [CW22]). For λ a Legendrian arising from a complete grid

plabic graph, the coordinate ring C[M1(λ)] is a cluster algebra. Moreover, there is an explicitly
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constructed Legendrian weave filling L of λ with intersection quiver and sheaf moduliM1(L) giving

the data of the initial seed.

Note that Casals and Weng obtain cluster X-variables using the microlocal monodromy functor

described in Section 1.2.2. They also obtain cluster A-variables by studying relative homology

cycles of the Legendrian weave, and computing microlocal merodromies along these relative cy-

cles [CW22, Section 4]. Frozen variables correspond to marked points or homology cycles in

a Legendrian weave filling L that do not bound embedded Lagrangian disks in the complement

D4\L. In the setting of rainbow closures of positive braids, one can obtain a basis of embedded

mutable homology cycles from a Legendrian weave and may generally avoid considering frozen

variables, as we do in this work.

1.2.3.2. Combinatorics of (tagged) triangulations. The combinatorics of (tagged) triangulations

of punctured surfaces play a key role in defining and understanding many of the simpler classes of

cluster algebras. For An, Dn and D̃n type, many of the computations of cluster modular groups are

most accessible through the combinatorics of tagged triangulations. More generally, we can define

surface-type cluster algebras as cluster algebras whose underlying quiver comes from a (tagged)

triangulation of a punctured surface. In this subsection, we discuss the necessary combinatorial

ingredients for understanding tagged triangulations of surfaces in the context of cluster theory.

Let Sn1,...,nk
be a surface with ni marked points on the ith boundary component. We allow for

ni = 0 and interpret this as a puncture. Following [FST08], we define (tagged) arcs, and (tagged)

triangulations.

Definition 1.2.7. An arc γ ∈ Sn1,...,nk
is a curve in S such that:

• the endpoints of γ lie on marked points;

• the interior of γ does not intersect itself;

• the interior of γ is disjoint from ∂S and marked points;

• γ does not cut out an unpunctured monogon or an unpunctured bigon.

The last condition ensures that no arc is contractible to a point or into the boundary of S. We

consider arcs equivalent up to isotopy. Two (isotopy classes of) arcs are said to be compatible if

there are two arcs in their respective isotopy classes that do not intersect in the interior of Sn1,...,nk
.
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A triangulation of Sn1,...,nk
is then a maximal pairwise compatible collection of (isotopy classes of)

arcs.

From a triangulation T , we can produce a cluster algebra as follows. For every edge γi in T , we

assign a vertex vi in our quiver QT . The vertices corresponding to boundary edges of T are declared

to be frozen. We add an edge between vi and vj if there is a face where γj is counterclockwise from

γi and at least one of vi or vj is mutable. Note that we must cancel any oriented two-cycles once we

have accounted for all of the edges in this fashion. To each vertex in the quiver, we assign a cluster

variable which can be thought of as measuring the length of the arc in an appropriate hyperbolic

geometric context [FT18]. Mutation is given by exchanging one diagonal of a quadrilateral for the

other.

As defined, triangulations of Sn1,...,nk
do not realize every possible cluster seed in the corre-

sponding cluster algebra if the number of punctures is at least 1. This is because of the appearance

of self-folded triangles, which produce arcs that cannot be mutated at. In order to represent all

possible cluster seeds as a triangulation, we require additional decorations.

We arbitrarily divide an arc into two ends and allow each end to be either tagged or untagged.

To produce a tagged triangulation, we introduce additional compatibility relations.

Definition 1.2.8 (Definition 7.4 [FST08]). Two tagged arcs γ1 and γ2 in Sn1,...,nk
are com-

patible if:

• the untagged arcs corresponding to γ1 and γ2 are compatible;

• if the untagged arcs corresponding to γ1 and γ2 represent distinct isotopy classes and they

share an endpoint a, then the tagging at the ends of γ1 and γ2 incident to a coincide;

• if the untagged arcs corresponding to γ1 and γ2 lie in the same isotopy class, then at least

one end of γ1 must be tagged in the same way as the same end of γ2.

In general, (tagged) triangulations of a disk with either 0, 1, or 2 punctures correspond to cluster

algebras of type An, Dn, and D̃n, respectively. To obtain a quiver from a tagged triangulation, we

treat tagged arcs as normal arcs. For an arc γ sharing the same endpoints as γ′, we use the face

obtained by deleting γ′ to compute the direction of the arrows in the quiver. See Figure 4.6 (left)

for an example.
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1.2.3.3. Cluster modular groups. Given a cluster variety, one can consider maps that act on the

variety by permuting the cluster tori, thereby preserving the cluster structure. More explicitly, a

cluster automorphism of a cluster algebra A is a permutation of the cluster variables of A that

preserves cluster seeds and commutes with mutation. A result of Assem-Schiffler-Shramchenko

implies that any cluster automorphism can be defined by the image of a single seed and necessarily

preserves the underlying quiver up to a simultaneous change of orientation on all of the arrows

[ASS12, Proposition 2.4]. Therefore, we have the following definition.

Definition 1.2.9. The (orientation preserving) cluster modular group G(A) of a cluster algebra

A is the group of maps π permuting cluster variables and commuting with mutation such that the

induced map on quivers Q(x)→ Q(π(x)) is an (orientation preserving) quiver automorphism.

Example 1.2.2. For an A2 cluster algebra, the cluster modular group G(A2) is isomorphic to

Z5 and is generated by a 2π/5 rotation of the triangulation corresponding to the initial quiver.

Viewing each diagonal Di,j of the triangulation as the image of a Plücker coordinate ∆i,j in the

top-dimensional positroid strata of the Grassmannian Gr(2, 5), we can see that this cluster auto-

morphism is given by the map ∆i,j 7→ ∆i−1,j−1 for all 1 ≤ i < j ≤ 5.

For all classes of cluster algebras discussed in this work, any cluster automorphism φ can be

given as a finite sequence of mutations µv1µv2 . . . µvm and a permutation π ∈ Sn of the quiver vertex

labels. In order to avoid confusion, we fix the notation µv1µv2 . . . µvm as denoting a sequence of

mutations starting with µv1 and ending with µvm . When we need to specify the particular data of

a cluster automorphism φ, we denote it by the tuple φ = (µv1µv2 . . . µvm , π) with the permutation

π expressed in cycle notation. Following the conventions of [ASS12,KG21], we allow for cluster

automorphisms φ defined solely as a permutation of the quiver vertex labels without any mutations.

Example 1.2.3. Consider an A2 quiver with vertices labeled 1 and 2 and an edge from 1 to 2.

The cluster automorphism φ = (µ1, (12)) also generates G(A2) and corresponds to a rotation of an

initial triangulation of the pentagon by 6π/5.

Cluster modular groups have been computed for finite, affine, and surface-type cluster algebras

[ASS12]. The case of extended affine types was also computed in [KG21], building on work of
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Chris Fraser investigating cluster modular groups of Grassmannians [Fra18]. Results relevant to

this manuscript are summarized in Tables 4.1 and 4.2.

We highlight here the results related to the theory of mapping class groups and tagged trian-

gulations, as they will reappear in crucial arguments below. We define the mapping class group

MCG(Sn1,...,nk
) of a surface Sn1,...,nk

with ni marked points on the ith boundary component as the

group of orientation-preserving homeomorphisms of Σ fixing the set of punctures up to homeomor-

phisms isotopic to the identity. The tagged mapping class group MCGtag(Sn1,...,nk
) is defined to be

the semidirect product of MCG(Sn1,...,nk
) with Zp

2 where p is the number of punctures of Σ. The

product structure is given by the action of simultaneously swapping tags at all arcs incident to a

particular punctures.

Denote by A(Sn1,...,nk
) the surface-type cluster algebra associated to Sn1,...,nk

. The following

theorem relates the tagged mapping class group of a surface and the cluster modular group of the

associated cluster algebra.

Theorem 1.2.7 (Proposition 8.5, [BS15]). Assume that Sn1,...,nk
is not a once or twice-punctured

disk with four or fewer marked points on the boundary. Then MCGtag(Sn1,...nk
) ∼= G(A(Sn1,...,nk

)).

We introduce the following notion in order to compare cluster automorphisms defined on dif-

ferent initial seeds.

Definition 1.2.10. Two cluster automorphisms φ1 and φ2 are conjugate if they act identically

on the set of cluster charts.

In Subsection 4.1.2.3 we will use the combinatorics of tagged triangulations to show that clus-

ter automorphisms induced by Legendrian loops are conjugate to cluster automorphisms coming

directly from quiver combinatorics.

1.2.4. The Legendrian contact DGA and the augmentation variety. In this subsection,

we describe the Legendrian contact DGA, a Floer-theoretic invariant of Legendrian knots and

their exact Lagrangian fillings. We first give the Ekholm-Honda-Kálmán construction for exact

Lagrangian cobordisms and then describe the necessary Floer-theoretic background in the context

of understanding exact Lagrangian fillings of λ(An).
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1.2.4.1. The pinching cobordism and pinching sequence fillings. The following definition gives a

condition for being able to perform a local move resolving a crossing in the Lagrangian projection.

We refer to such a cobordism as a pinching cobordism See also [EHK16, Definition 6.2] and [CN21,

Section 2.1].

Definition 1.2.11. A crossing in the Lagrangian projection Π(λ) of a Legendrian λ is con-

tractible if there is a Legendrian isotopy of λ inducing a planar isotopy of Π(λ) making the length

of the corresponding Reeb chord arbitrarily small.

We now describe the precise topological construction of the elementary cobordisms defining

pinching sequence fillings, i.e. exact Lagrangian fillings of built out of pinching cobordisms and

Legendrian isotopies. Consider a neighborhood of a contractible crossing depicted in the Lagrangian

projection. Attaching a 1-handle at the crossing yields an exact Lagrangian cobordism in the

symplectization (Rt × R3, d(et(dz − ydx))) [EHK16, Section 6.5]. In the Lagrangian projection,

this 1-handle attachment is diagrammatically given as a 0-resolution of the crossing, as depicted in

Figure 1.16. If λ is the rainbow closure of a positive braid, as is the case for λ(An−1), then every

crossing of the braid is contractible [CN21, Proposition 2.8].

Figure 1.16. A local model of a pinching cobordism as a 0-resolution of a con-
tractible crossing in the Lagrangian projection. The direction of the arrow indicates
a cobordism from the concave end to the convex end.

Let us consider λ ⊆ (R3, ξst) and its front projection Π(λ). In order to describe a pinching

cobordism in terms of a projection of λ, we introduce the Ng resolution. This is a Legendrian

isotopy λt such that λ0 = λ and the Lagrangian projection π(λ1) can be obtained from the front

projection Π(λ1) by smoothing all left cusps and replacing all right cusps with small loops [Ng03].

See Figure 1.17 for an example. A pinching cobordism in the front projection of the link λ(β) is

then given by first taking the Ng resolution of λ(β), performing a 0-resolution at a crossing in the

Lagrangian projection as specified above, and then undoing the Ng resolution.
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Figure 1.17. A front projection of λ(A2) (left) and its Ng resolution (right). The
three leftmost crossings are contractible.

Given that λ(An−1) has n crossings, a pinching sequence filling can be characterized by a

permutation σ in Sn. Such a permutation specifies an order in which to apply these elementary

cobordisms to the n contractible crossings in the Ng resolution of λ(An−1). Given a permutation

σ, we will denote it in one line notation σ(1) . . . σ(n). If σ is of the form σ(1) . . . i j . . . k . . . σ(n) for

i > k > j, the permutation σ′ = σ(1) . . . j i . . . k . . . σ(n) obtained by interchanging i and j gives an

order of resolving crossings that yields the same Floer-theoretic invariant1 [Pan17]. This leads us

to consider only a subset of permutations in Sn.

Definition 1.2.12. A 312-avoiding permutation is a permutation σ ∈ Sn such that any triple

of letters i, j, k appearing in order in σ does not satisfy the inequality i > k > j.

Distinct 312-avoiding permutations yield distinct Hamiltonian isotopy invariants of exact La-

grangian fillings, i.e. restricting the indexing set from Sn to 312-avoiding permutations yields the

existence of at least a Catalan number of fillings of λ(An−1) up to Hamiltonian isotopy [Pan17, The-

orem 1.1].

1.2.4.2. The Legendrian contact DGA. For a Legendrian link λ, the Legendrian contact differ-

ential graded algebra (DGA) is a powerful Floer-theoretic invariant of λ [Che02]. We denote the

DGA of λ by A(λ;R), or by A(λ) when we wish to suppress the dependence on the coefficient

ring R. In our description below we will generally take R to be Z[H1(λ)] or Z[H1(L)] for an exact

1The two fillings corresponding to σ and σ′ yield identical augmentations ϵσ and ϵσ′ of the DGA A(λ(An−1)). This is
because the presence of the crossing labeled j prevents the existence of any holomorphic strip with positive punctures
occurring at both crossings i and k. Therefore, resolving crossing k (resp. i) has no effect on the generator zi (resp.
zk) in the DGA A(λ(An−1)).
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Lagrangian cobordism L. We refer the interested reader to [EN19] for a more general introduc-

tion to the Legendrian contact DGA and [CN21, Section 3] for a discussion of different choices of

coefficient rings.

To describe the algebra A(λ;R), we introduce the auxiliary data of a set of marked points on λ

and a corresponding set of capping paths. We label a marked point on the component λa of λ by

t±1a . In order for the grading to be well defined, we require one marked point for every component

of λ and that the oriented tangent vectors to Π(λ) ⊆ R2
xy at the marked points t1, . . . , tm are all

parallel. Note that the collection t1, . . . tm of marked points can be thought of as encoding H1(λ).

Given a Reeb chord z with ends za and zb lying on components λa and λb, a capping path γz is the

concatenation of paths following the orientation of λ from za to ta and tb to zb. Here we require

that za corresponds to the undercrossing of z in the Lagrangian projection. The data of the DGA

is then given as follows.

Generators: For a knot λ, the Legendrian contact DGA is freely generated over the Lau-

rent polynomial ring R = Z[t±11 , . . . t±1m ] by the Reeb chords of λ ⊆ (R3, ξst). In the Lagrangian

projection, we can equivalently think of these generators as the crossings of λ.

Grading: We restrict our attention to the case of Legendrian links where each component has

rotation number zero, as is the case for every link considered in this manuscript. In this setting,

each ti and t−1i is assigned grading 0. We define the grading for a Reeb chord z as follows. As we

traverse the capping path γz, the unit tangent vector to Π(λ) makes a number of counterclockwise

revolutions. We can perturb λ in such a way that the tangent vectors at a crossing of Π(λ) are

always orthogonal and the number r(γz) of such revolutions is always an odd multiple of 1
4 . The

grading of z is then defined to be |z| := 2r(γz)− 1
2 . Grading is extended to products of generators

|yz| additively by |yz| = |y|+ |z|.

In the case of rainbow closures of a positive braid β, every Reeb chord that corresponds to a

crossing of β in the Ng resolution has degree zero while the remaining Reeb chords at the right of

the diagram have degree one.

Differential: The differential is given by counts of certain holomorphic disks in the following

way. We first decorate each quadrant of a crossing of Π(λ) with two signs, a Reeb sign and

an orientation sign. The Reeb sign is specified as pictured in Figure 1.18 (left), where opposite
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quadrants have the same sign and adjacent quadrants have different signs. The orientation sign is

given as in Figure 1.18 (right), where the shaded regions are decorated with orientation sign − and

unshaded regions are decorated with orientation sign +.

The differential considers immersions u from a punctured disk into R2 with boundary punctures

on Π(λ) up to reparametrization. We refer to any puncture appearing at a quadrant with a positive

(resp. negative) Reeb sign as a positive (resp. negative) puncture. We restrict to immersions that

have a single positive puncture and arbitrarily many negative punctures. For any such immersion

u, denote by w(u) the product of generators given by the negative boundary punctures. If the

boundary of u passes through any marked point ti, then we obtain w′(u) as the product of w(u) by

t±1i . The power is assigned according to whether the orientation of u at the relevant marked point

agrees (ti) with the orientation of λ or does not agree (t−1i ) with the orientation of λ. To each

disk u, we also assign the quantity sgn(u) ∈ {±1} given by the product of the orientation signs

appearing at boundary punctures of u. The differential at z is then given by

∂(z) =
∑

sgn(u)w′(u)

where the sum is taken over all immersed disks u with a single positive puncture at z. We extend

the differential to products z1z2 by the Leibniz rule ∂(z1z2) = ∂(z1)z2 + (−1)|z1|z1∂(z2)

Figure 1.18. Reeb signs (left) and orientation signs (right) at a crossing of Π(λ).
The quadrants shaded dark gray carry negative orientation signs, while the unshaded
quadrants are positive.

Example 1.2.4. The DGA of λ(A2) is freely commutatively generated over Z[t, t−1] by gen-

erators a1, a2, z1, z2, z3, labeled in Figure 1.19. The gradings are given by |a1| = |a2| = 1 and

|zi| = |t1| = 0. The differential on generators ai is given by
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∂(ai) =


z1 + z3 + z1z2z3 + t−11 i = 1

1 + t1 + z2 + t1z3z2 + t1z1z2 + t1z1z2z3z2 i = 2

The differential on the remaining generators vanishes for degree reasons. Note that setting t1 = −1

implies ∂(a2) = −z2∂(a1) □

Figure 1.19. The Lagrangian projection of the Legendrian trefoil decorated with
Reeb signs and orientation signs. The light gray disk labeled u has a positive
puncture at a1 and a single negative puncture at z1. Thus, it corresponds to the
term z1 appearing in ∂(a1).

1.2.4.3. Augmentations. The Legendrian contact DGA can be difficult to extract information

from, so it is often useful to consider augmentations of the DGA. Augmentations are DGA maps

from A(λ) to some ground ring. Here we consider the ground ring of Laurent polynomials in n− 1

variables with coefficients in Z, understood as a DGA with trivial differential and concentrated in

degree 0. In this subsection, we define augmentations and the related Legendrian isotopy invariant,

the augmentation variety.

Augmentations of A(λ) are intimately tied to exact Lagrangian fillings of λ. This relationship

can be understood through the functoriality of the DGA with respect to exact Lagrangian cobor-

disms. More precisely, Ekholm-Honda-Kálmán show that an exact Lagrangian cobordism L from

λ− to λ+ induces a DGA map ΦL from A(λ+;Z2) to A(λ−;Z2) [EHK16, Theorem 1.2]. Their

result was upgraded to make use of Z2[H1(L)] coefficients with an appropriate choice of marked

points encoding H1(L) by Pan [Pan17, Proposition 2.6]. Pan’s use of H1(L) coefficients is crucial
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for her ability to distinguish Cn Lagrangian fillings of λ(An−1), as Ekholm-Honda-Kálmán are only

able to identify (2n+1 − (−1)n+1)/3 distinct Lagrangian fillings working over Z2 [EHK16, Theo-

rem 1.6]. The following result of Karlsson further improves Pan’s coefficient ring to consider the

augmentations over Z[H1(L)].

Proposition 1.2.1. [Kar20, Theorem 2.5] An exact Lagrangian cobordism L from λ− to λ+

induces a DGA map ΦL : A(λ+;Z[H1(λ+)])→ A(λ−;Z[H1(L)]).

See also [CN21, Section 3.3] for a discussion on Karlsson’s choice of signs, as well as a geometric

understanding of the induced map. As a result of Proposition 1.2.1, we can think of an augmentation

of λ as a map induced from A(λ;Z[H1(λ)]) to the DGA of the empty set induced by an exact

Lagrangian filling of λ.

Definition 1.2.13. An augmentation ϵL induced by a Lagrangian filling L of λ is a DGA map

ϵL : A(λ,Z[H1(λ)])→ Z[H1(L)]

where we think of Z[H1(L)] as a DGA concentrated in degree zero with trivial differential.

The functoriality of the DGA motivates the study of augmentations of A(λ) in order to better

understand Lagrangian fillings of λ. The space of all augmentations of A(λ), denoted by Aug(λ),

is an invariant of λ. In the case where λ is the rainbow closure of a positive braid, Aug(λ) has

the structure of an affine algebraic variety and is known as the augmentation variety. We may

tensor our coefficients ring with C in order to consider augmentations over a field.2 When the

grading of A(λ) is concentrated in non-negative degrees, as is the case for rainbow closures of

positive braids, then Aug(λ) ∼= SpecH0(A(λ)), see e.g. [GSW20a, Corollary 2.9]. Since Spec

is contravariant, ϵL induces a map Spec(C[s±11 , . . . , s±1b1(L)
]) → SpecH0(A(λ;C[H1(λ)])), where we

have identified the ground ring of Laurent polynomials with complex coefficients C[H1(L)] with the

group ring C[s±11 , . . . , s±1b1(L)
]. We interpret this map as the inclusion of a toric chart (C×)b1(L) into

the augmentation variety

Spec(C[s±11 , . . . , s±1b1(L)
]) ∼= (C×)b1(L) ↪→ Aug(λ).

2To clarify, complexifying is solely for the purpose of simplifying the algebro-geometric discussion in this paragraph.
For all other purposes relating to computations with the DGA, we will continue to use integer coefficients.
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The image of degree-zero generators under an augmentation give local coordinate functions on

the corresponding toric chart. In order to describe these local coordinate functions, we discuss

Pan’s explicit computation of induced DGA maps in the context of Lagrangian fillings of λ(An−1)

with a lift to Z[H1(L)] following [CN21, Section 4.2]. For a pinching cobordism, the induced map is

given by a certain count of holomorphic disks, similar to the differential. The homology coefficients

are determined by the intersection of these disks with relative homology classes in H1(L, λ− ⊔ λ+),

which is identified with H1(L) via Poincaré duality.

Pan describes a set of generators for H1(L, λ− ⊔ λ+) for a sequence of pinching cobordisms. In

this setting, a relative homology cycle γσ(i) starts from the saddle point originally labeled zσ(i) and

extends downwards to λ− where it meets the boundary in sσ(i) and s−1σ(i). In order to consider signs,

we orient this relative cycle so that the two halves of the cycle are labeled by sσ(i) and −s−1σ(i), as

in Figure 1.20. In a slicing of the symplectization, γσ(i) meets the Lagrangian projection of λ(Ak)

in two points labeled sσ(i) and −s−1σ(i), so that in practice, these generators reduce the computation

of the coefficients to a combinatorial count of marked points.

Figure 1.20. A local model of a relative cycle encoding the homology of a pinching
cobordism L. At the top of the figure, the length of the Reeb chord zσ(i) is 0, i.e.
the two strands intersect at the point zσ(i). The bottom of the figure depicts a

0-resolution of the crossing where marked points labeled −s−1σ(i) and sσ(i) encode

H1(L).

Given a pinching cobordism Lσ(i) at the Reeb chord zσ(i) as part of a Lagrangian filling Lσ, the

induced map Φi on the generator zj is computed as a sum over all immersed disks with positive

punctures at both zσ(i) and zj . As before, we denote by w′(u) the product of negative punctures of
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the immersed disk u and intersections of u with marked points counted with orientation. Likewise,

sgn(u) is given by the product of the orientation signs appearing at boundary punctures of u.

Definition 1.2.14. The DGA map Φi induced by a pinching cobordism at the Reeb chord zσ(i)

is given by

Φi(zj) = zj +
∑

sgn(u)w′(u).

The Reeb chord zσ(i) is sent to sσ(i) by Φi.

Figure 1.21. A Legendrian Hopf link obtained from the knot pictured in Figure
1.19 by pinching at the Reeb chord labeled by z2.

Example 1.2.5. Pinching at the Reeb chord labeled by z2 of the Legendrian trefoil pictured in

Figure 1.19 yields the Legendrian Hopf link, pictured in Figure 1.21 with the addition of marked

points s2 and −s−12 . The induced map Φ1 on the DGA is given by

z1 7→ z1 − s−12 , z2 7→ s2, z3 7→ z3 − s−12 .

Performing another pinch at z1 induces the map Φ2 given by

z1 7→ s1, s2 7→ s2, z3 7→ z3 + s−11 s−22 .

The map on z3 is determined by the disk with positive punctures at z1 and z3 passing through

s2 and −s−12 . □
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Pan gives a purely combinatorial description of the map Φi induced by opening the crossing

labeled zσ(i) [Pan17, Definition 3.2]. First, define the set

T i
σ = {j ∈ {1, . . . , n}|σ−1(j) > σ−1(i) and if i < k < j or j < k < i, then σ−1(k) < σ−1(i)}.

For j ∈ T
σ(i)
σ and 1 ≤ i ≤ n, the DGA map is given by

Φi(zj) = zj + s−1σ(i)

∏
j<k<σ(i) or
σ(i)<k<j

s−2k

and for j = σ(i), Φi(zj) = sj . Otherwise, we take Φi to be the identity.

Lemma 1.2.1. The lift of Pan’s combinatorial formula for Φi to Z[H1(L)] is given by

Φi(zj) = zj + (−1)|j−σ(i)|+1s−1σ(i)

∏
j<k<σ(i) or
σ(i)<k<j

s−2k .

Proof. To upgrade Pan’s formula to Z[H1(L)] coefficients, we note that the number of pairs

of marked points that appear between zj and zσ(i) is precisely |j−σ(i)|. Since each pair of marked

points contributes a −1 factor to sgn(u) and the disk u with positive punctures at zj and zσ(i) picks

up an additional −1 factor from the orientation sign of the leftmost positive puncture, we arrive at

the formula given above. □

To compute an augmentation of A(λ;Z[T ]), we also need to describe the map induced by the

minimum cobordism. This minimum cobordism is given by filling a standard Legendrian unknot

λU with an exact Lagrangian disk. It induces a map Φmin sending the Reeb-chord generator of

A(λU ;Z[T ]) to 0. The map on the marked point generators can be deduced from the fact that Φmin

is a DGA map and therefore we must have Φmin ◦ ∂ = 0. In the context of a filling Lσ of λ(An−1),

this tells us that s1 . . . sn+t1 = 0. For knots, we also obtain −(s1 . . . sn)−1+1 = 0, implying that t1

is mapped to −1. For links, we have (s1 . . . sn)
−1 + t2 = 0, implying only that t1t2 = 1. Pan avoids

this ambiguity by computing augmentations of A(λ(A2n−1;H1(λ(A2n−1)) induced by fillings Lσ of

λ(An) where σ(1) = n + 1. This is equivalent to setting t1 = −1, from which we obtain t2 = −1.
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Therefore, the DGA map induced by the minimum cobordism is given by the following formula.

Φmin(sn) = s−11 . . . s−1n−1

For si ̸= sn, Φmin is the identity map. For marked points ti, we have Φmin(ti) = −1.

Together, the maps Φi and Φmin give us the ingredients to define the augmentation induced by

a pinching sequence filling of λ(An−1).

Definition 1.2.15. The augmentation ϵLσ induced by the Lagrangian filling Lσ of λ(An−1) is

given by the DGA map

ϵLσ := Φmin ◦ Φn ◦ · · · ◦ Φ1

To simplify our computations involving the DGA and the Kálmán loop, we will always set

t1 = −1 and t2 = −1 for the remainder of this manuscript. By our definition of ϵLσ , this does not

affect the augmentation induced by Lσ.

1.2.4.4. Braid matrices. For λ(An−1), the polynomials defining the augmentation variety have

a combinatorial description as a specific entry in a product of matrices. These matrices originally

appeared in [Kál06] as a means for encoding the immersed disks contributing to the differential.

More recently, they were used in [CGGS20] to give a holomorphic symplectic structure on the

augmentation variety. We adopt the conventions of [CGGS20] in defining the braid matrix.

Definition 1.2.16. The braid matrix B(zi) is given by B(zi) :=

0 1

1 zi

 .

Intuitively, one can think of the matrix B(zi) as encoding whether or not an immersed disk has a

negative puncture at the crossing labeled by zi. A product of braid matrices can be used to compute

the differential of A(λ(An−1;Z) as follows. First, label the crossings of λ(An−1) by a1, a2, z1, . . . zn,

as in Figure 1.19. From [Kál06, Section 3.1], we have that ∂(a1) = −1+[
∏n

i=1B(zi)](2,2) where the

subscript denotes the (2, 2) entry of the product and the−1 appears due to our choice of conventions.

See also [CN21, Proposition 5.2] for a similar computation. An analogous computation to the case

of λ(A2) implies that the differential of a2 is given by ∂(a2) = −∆2,n+1(∂(a1)).

The computation of the differential via braid matrices also allows us to express the augmentation

variety Aug(λ(An−1)) in a similar manner. As augmentations are DGA maps, they satisfy ϵ ◦ ∂ =
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∂ ◦ ϵ. Since ϵ respects the grading, it must vanish on generators of nonzero degree, implying that

for such generators a, we have ∂ ◦ ϵ(a) = 0. Therefore, any augmentation ϵ of A(λ(An−1)) satisfies

ϵ ◦ ∂(a1) = ∂(a2) = 0. Since ∂(a2) is a multiple of ∂(a1), the vanishing of ∂(a1) is both necessary

and sufficient to satisfy the vanishing condition for ϵ ◦ ∂, so that the augmentation variety is cut

out by the vanishing of the equation ∂(a1) = 0.

Lemma 1.2.2. The augmentation variety Aug(λ(An−1)) is the zero set of the polynomial

Xn := −1 +

[
n∏

i=1

B(zi)

]
(2,2)

In addition to computing the augmentation variety, braid matrices also define regular functions

∆i,j on Aug(λ(An−1)) that will play an important role in Section 2.3.

Definition 1.2.17. The regular function ∆i,j ∈ Z[Xn] is given by ∆i,j :=
[∏j−2

k=i B(zk)
]
(2,2)

.

We specify the value of ∆i,i+1 to be 1. We collect some useful identities relating the ∆i,j

functions to the theory of continuants below.

Example 1.2.6. Consider the Legendrian trefoil, λ(A2). The augmentation variety Aug(λ(A2))

is the zero set of the polynomial X3 = −1 + z1 + z3 + z1z2z3. The regular functions ∆i,j are of the

form ∆i,i+2 = zi or ∆i,i+3 = 1 + zizi+1, for 1 ≤ i ≤ 3. □

1.2.4.5. Continuants. Continuants are a family of polynomials Kn(x1, . . . xn) studied by Euler

in his work on continued fractions [Eul64]. Continuants are defined by the following recursive

formula:

Kn(x1, . . . xn) = x1Kn−1(x2, . . . xn) +Kn−2(x3, . . . xn)

K0() = 1,K1(x1) = x1.

As mentioned above, the regular functions ∆i,j are related to continuants.

Lemma 1.2.3. Let n = j − 2− i and xk = zi+k−1. Then

Kn(x1, . . . xn) = ∆i,j .
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Proof. The following is a classical property of continuants (see e.g. [Fra49, Section 1]) that

allows us to understand the defining recursion relation in terms of braid matrices.Kn−2(x2, . . . , xn−1) Kn−1(x2, . . . , xn)

Kn−1(x1, . . . xn−1) Kn(x1, . . . , xn)

 = B(x1) . . . B(xn).

This follows inductively from applying the recursion relation in computing the matrix product0 1

1 x1

Kn−3(x3, . . . , xn−1) Kn−2(x3, . . . , xn)

Kn−2(x2, . . . xn−1) Kn−1(x2, . . . , xn)

 =

Kn−2(x2, . . . , xn−1) Kn−1(x2, . . . , xn)

Kn−1(x1, . . . xn−1) Kn(x1, . . . , xn)

 .

Therefore,

Kn(x1, . . . , xn) =

[
n∏

k=1

B(xk)

]
(2,2)

Replacing xk with zi+k−1 yields the desired identification. □

As a consequence, we obtain the continuant recursion relation in the context of the ∆i,j func-

tions.

(1.1) ∆i,j = zi∆i+1,j +∆i+2,j

Continuants satisfy several identities, the most general of which is Euler’s identity for continu-

ants. We present this identity in the context of the ∆i,j functions:

∆1,µ+ν+2∆µ+1,µ+κ+2 −∆1,µ+κ+2∆µ+1,µ+ν+2 = (−1)κ+1∆1,µ+1∆µ+κ+2,µ+ν+2

for µ ≥ 1, κ ≥ 0, ν ≥ κ + 1 [Ust06]. We require a special case of this identity for our algebraic

proof of Theorem 1.1.3. Namely, when µ = 1, κ = k − 3 ≥ 0, ν = n− 1 ≥ k − 2, we obtain

(1.2) ∆1,n+2∆2,k −∆1,k∆2,n+2 = (−1)k∆1,2∆k,n+2.

1.2.4.6. The Kálmán loop. In [Kál05], Kálmán defined a geometric operation on Legendrian

torus links that induces an action on their exact Lagrangian fillings. In the case of λ(An−1), this

operation consists of a Legendrian isotopy that is visualized by dragging the leftmost crossing

clockwise around the link until it becomes the rightmost crossing. The graph of this isotopy is an
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exact Lagrangian cylinder in the symplectization of (R3, ξst). Concatenating this cylinder with a

Lagrangian filling L of λ(An−1) yields another filling, generally not Hamiltonian isotopic to L. As

computed in [Kál05, Proposition 9.1], this induces a map on the DGA A(λ(An−1);Z2), which in

turn induces an automorphism ϑ on the augmentation variety Aug(λ(An−1)). Following [CN21,

Section 3], we can compute this induced action with integer coefficients. The additional information

of this integral lift consists solely of a choice of signs for terms in the image of ϑ, as can be seen

in Kálmán’s example computation over Z[t, t−1] in the case of the λ(A2) [Kál05, Section 5].3 The

map ϑ on generators zi is then given by

ϑ(zi) =


−∆2,n+2 i = 1

zi−1 2 ≤ i ≤ n

In the ∆i,j functions, this is expressed as ϑ(∆i,j) = ∆i−1,j−1 for i > 1, and

ϑ(∆1,j) = −

[
B(∆2,n+2)

j−3∏
i=1

B(zi)

]
(2,2)

.

3Note that Kálmán uses a different choice of sign conventions than Casals and Ng. By [CN21, Proposition 3.14],
these different sign conventions yield equivalent induced augmentations.
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CHAPTER 2

Lagrangian fillings in A-type and their Kálmán loop orbits

2.1. Isotopies of exact Lagrangian Cobordisms and Kálmán loop orbits of λ(An)

In this chapter we investigate exact Lagrangian fillings of Legendrian torus links λ(2, n) ∼=

λ(An−1) and their behavior under the action of the Kálmán loop. We start with a proof of Theorem

1.1.1 and use that to relating Legendrian weave fillings to exact Lagrangian fillings obtained via

a sequence of elementary cobordisms. In Section 2.3, we give an alternative proof of the orbital

structure of the induced action of the Kálmán loop on the Legendrian contact DGA. The classically

known Euler’s identity for continuants makes a key appearance in establishing the required algebraic

description of the induced action. Finally, Section 2.4 contains combinatorial characterizations of

exact Lagrangian fillings with a given orbit size and explains how to realize the Kálmán loop action

in terms of both Legendrian weaves and 312-avoiding permutations.

2.2. Proof of Theorems 1.1.1 and 1.1.3

In this section we prove that a pinching sequence filling is Hamiltonian isotopic to a correspond-

ing Legendrian weave filling. We first relate the elementary cobordisms used to construct these

fillings.

Proposition 2.2.1. The pinching cobordism and D−4 cobordism described below are Hamilton-

ian isotopic relative to their boundaries.

We prove this by giving a local model for the D−4 cobordism as a sequence of diagrams in both

the front and Lagrangian projections and then describing an exact Lagrangian isotopy between

the two cobordisms that fixes the boundary. Since compactly supported Lagrangian isotopy is

equivalent to Hamiltonian isotopy [FOOO09, Theorem 3.6.7], this implies the proposition. We

then use Proposition 2.2.1 to prove Theorem 1.1.1 in the general case of Lagrangian fillings of λ(β).
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To relate pinching sequence fillings and weave fillings of λ(An−1), we will describe a combi-

natorial bijection between 312-avoiding permutations σ and triangulations Tσ dual to Legendrian

weaves. Denote by Lσ or LTσ the exact Lagrangian filling of λ(An−1) defined by the given combi-

natorial input. In the specific case of λ(An−1), Theorem 1.1.1 then implies the following corollary.

Corollary 2.2.1. The pinching sequence filling Lσ is Hamiltonian isotopic to the weave filling

LTσ .

The vertical weave construction we use in the proof of Corollary 2.2.1 also allows us to argue

that a 312-avoiding permutation yields a unique pinching sequence filling up to Hamiltonian isotopy,

as we explain below. Finally, we conclude the section with a proof of Theorem 1.1.3 as a further

corollary of Theorem 1.1.1.

2.2.0.1. The D−4 cobordism. As preparation for relating Legendrian weaves to elementary exact

Lagrangian cobordisms, we now give a precise definition of aD−4 cobordism. As theD−4 singularity is

not a generic Legendrian front singularity, we consider a generic perturbation of the D−4 singularity,

as described in [CZ21, Remark 4.6] and pictured in Figure 2.1 (top). A slicing of the Legendrian

front, depicted in Figure 2.1 (bottom), gives a movie of fronts describing the cobordism as follows.

Near a Reeb chord trapped between two crossings, we apply a Reidemeister I move and Legendrian

isotopy to shrink the Reeb chord. We then add a 1-handle to remove this Reeb chord and apply

another pair of Reidemeister I moves to simplify to a diagram with one fewer crossing than we

started with. The trace of this movie of fronts forms a surface in J1[a, b] and yields an exact

Lagrangian cobordism in symplectic R4 by taking the Lagrangian projection of its embedding in

contact R5. By convention, we will identify the remaining crossing with the leftmost crossing of

the original pair.

Remark 2.2.1. Note that in our definition of the D−4 cobordism above, the direction of the

arrow in Figure 2.1 indicates a Lagrangian cobordism from the concave end to the convex end.

In contrast, the Legendrian surface given as the Legendrian lift of the (perturbed) D−4 singularity

has no inherent directionality. Nevertheless, in our embedding of the Legendrian weave into J1D2,

thought of as the contactization of the symplectization of J1S1, we choose to orient it so that two
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Figure 2.1. A local model of a generic perturbation of the D−4 singularity as the
front projection of a Legendrian surface (top, courtesy of Roger Casals and Eric
Zaslow, used with permission) and as a movie of 1-dimensional fronts (bottom).
The Reeb chord is depicted as a dashed red line. We first apply a Reidemeister
I move before adding a 1-handle and applying two more Reidemeister I moves to
arrive at a diagram with a single crossing.

of the edges appearing in the D−4 singularity point towards the boundary in order to project to an

embedded exact Lagrangian surface. Indeed, one can see that in cases where we do not require this,

our Legendrian weave Λ(Γ) develops additional Reeb chords that then project to immersed points

of π(Λ(Γ)). This subtlety will also be clarified by the fact that the vertical weave construction in

the following subsection allows us to unambiguously associate a decomposable exact Lagrangian to

a Legendrian weave. □

2.2.1. Local models of exact Lagrangian saddle cobordisms. We now have the necessary

ingredients for a proof of Proposition 2.2.1.

Proof of Proposition 2.2.1. We give two local models of a D−4 cobordism, depicted in

Figures 2.2 and 2.3 as movies in the front (top) and Lagrangian (bottom) projections. The first

local model depicts the removal of a Reeb chord trapped between a pair of crossings and a 0-

resolution of the rightmost crossing. The second local model depicts the removal of a Reeb chord

originally appearing to the left of the leftmost crossing and a 0-resolution of this crossing. This is

accomplished by first applying a Legendrian isotopy to create a pair of crossings with this Reeb

chord trapped between them and proceeding as in the first local model.
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The main difficulty in our comparison of these local models to the pinching cobordism is to

unambiguously relate the Reeb chord removed in the D−4 cobordism to the Reeb chord removed in

the pinching cobordism. This means that we must carefully manipulate the slope of the Legendrian

in the front projection to ensure that no new Reeb chords are introduced throughout the process.

The local models allow us to verify by inspection that no new Reeb chords appear at any point

in this cobordism, as the slopes of the front projection are specified so that no new intersections

appear in the Lagrangian projection.

Armed with a local model for the slicing of the D−4 cobordism, we now describe an exact

Lagrangian isotopy between this local model and the pinching cobordism. Starting in the front

projection of λ(β), a slicing of the pinching cobordism as defined in Subsection 1.2.4.1 consists of

applying the Ng resolution, resolving a crossing, and then undoing the Ng resolution. Restricting

to a neighborhood of a crossing allows us to describe the desired isotopy.

First, consider a contractible Reeb chord with a neighborhood resembling one of the two models

shown in Figures 2.2 and 2.3. In such a neighborhood, the exact Lagrangian isotopy between the

two cobordisms is visible when examining the Lagrangian projection of the local models depicted in

Figures 2.2 and 2.3 (bottom). Indeed, after applying the Ng resolution, the only difference between

these local models and the pinching cobordism in the Ng resolution is the rotating of the strand

before resolving. Therefore, the movie of movies realizing the exact Lagrangian isotopy from the

D−4 cobordism to the pinching cobordism consists of incrementally applying the Legendrian isotopy

of the Ng resolution, rotating the crossing before pinching, and then undoing the Ng resolution.

Now consider a Reeb chord that does not admit a neighborhood resembling one of our two local

models. In this case, we can rotate all of the crossings that appear to the left of the Reeb chord past

the cusps by applying the local model appearing in Figure 2.4 so that we obtain a neighborhood

resembling the initial figure in 2.3. We then apply the local model given in Figure 2.3 to resolve

this crossing. Finally, we rotate the remaining crossings back, and by analogous reasoning to above,

the resulting cobordism is Hamiltonian isotopic to the pinching cobordism at z. □

Now that we have established the equivalence between the pinching cobordism and the D−4

cobordism, Theorem 1.1.1 follows as a corollary.
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(v)

(i) (ii) (iii)

(iv)

Figure 2.2. Local model of a D−4 cobordism applied to a pair of crossings in the
front (top) and Lagrangian (bottom) projections. Reeb chords are depicted by red
dashed lines. The direction of the arrows indicate a cobordism from the concave
end to the convex end.

Proof of Theorem 1.1.1. By construction, any weave filling is a decomposable Lagrangian

filling made up of elementary cobordisms corresponding to Reidemeister III moves and D−4 cobor-

disms. By Proposition 2.2.1, the D−4 cobordism is Hamiltonian isotopic to a pinching cobordism.

Therefore, a Legendrian weave filling is Hamiltonian isotopic to a decomposable Lagrangian filling

made up of Reidemeister III moves and pinching cobordisms. □

2.2.2. Exact Lagrangian fillings of λ(An). To complete the proof of Corollary 2.2.1 we

describe a bijection between 312-avoiding permutations of Sn and triangulations of the n + 2-gon

and show that it gives a one-to-one correspondence between fillings that resolves crossings in the

same order.

For a 312-avoiding permutation σ, we denote the corresponding triangulation by Tσ and a

diagonal between vertex i and vertex j of Tσ by Di,j . Adopting the terminology of [Reg13], we

refer to a triangle in Tσ with sides Di,i+2, Di,i+1, Di+1,i+2, two of which lie on the (n + 2)-gon, as
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(v)

(i) (ii) (iii) (iv)

(vi) (vii)

(viii) (ix) (x)

Figure 2.3. Local model of the leftmost crossing in the front (top) and Lagrangian
(bottom) projections with a single Reeb chord depicted by a red dashed line. We
first apply a Reidemeister II move in order to artificially introduce an additional
crossing so that there is a single Reeb chord trapped between the new crossing and
the original crossing. The D−4 cobordism is performed in (iii)-(vi) and the remaining
part of the cobordism undoes the Reidemeister II move without creating any new
Reeb chords.

an ear of the triangulation. Note that any triangulation must have at least two ears and that the

middle vertex of an ear necessarily has no diagonal incident to it.

Given a triangulation of the (n+2)-gon, the clip sequence bijection is defined as follows. First,

label the vertices in clockwise order from 1 to n + 2. Remove the middle vertex of the ear with

49



Figure 2.4. Local model for rotating crossings past cusps in order to isolate a
desired crossing. The direction of the arrows again indicates a cobordism from the
concave end to the convex end when concatenated with a cobordism described by
the local model in Figure 2.3.

the smallest label, record the label and delete all edges of the (n + 2)-gon incident to the vertex.

Repeat this process with the ear whose middle vertex is now the smallest of the remaining vertices

in the resulting triangulation of the (n + 1)-gon. Continue this process until no triangles remain.

The main result of [Reg13] is that this map is defines a bijection between the set of 312-avoiding

permutations in Sn and triangulations of the (n+ 2)-gon.

The clip sequence bijection allows us to explicitly define a weave filling with the input of a

312-avoiding permutation σ.

Definition 2.2.1. The Lagrangian filling LTσ is the weave filling defined by the 2-graph dual

to the triangulation Tσ.

See Figure 2.5 for a computation of the 312-avoiding permutation corresponding to the trian-

gulation dual to the 2-graph example given above.

2.2.2.1. Vertical weaves. In order to relate weave fillings to decomposable fillings described by

a sequence of elementary cobordisms we will make use of an equivalent way of describing weaves,

combinatorially presented in [CGGS20] and slightly modified here. This construction arranges the

N -graph vertically, with ∂D2 at the top and rest of the N -graph appearing below. This construction

has the advantage of allowing us to unambiguously associate elementary Lagrangian cobordisms.

Let Γ ⊆ D2 be an N -graph and Λ(Γ) ⊆ J1(D2) be the associated weave. In order to produce

the associated vertical weave ΛV (Γ), we foliate the disk by copies of S1, as shown in Figure 2.6

(left). We then consider a diffeomorphism φ taking D2\{pt} to S1 × (−∞, 0]. We define φ in such

a way that the image of the foliation of D2\{pt} is a foliation of R × (−∞, 0] by horizontal lines

that are identified at ±∞ to form a foliation of S1 × (−∞, 0]. The diffeomorphism φ induces a

contactomorphism φ̃ : J1(D2)→ J1(D2).
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Figure 2.5. An example computation of the clip sequence bijection. Starting with
our initial triangulation, we remove and record the smallest numbered vertex with
no incident diagonals. From the sequence pictured, we get the 312-avoiding permu-
tation σ = 15 4 3 6 2. The diagonal D2,8 yields the function ∆1,3 after adding 1 to
both indices and reducing mod 8.

Definition 2.2.2. The vertical weave ΛV (Γ) is the Legendrian weave encoded (in the sense of

Definition 1.2.1) by the N−graph φ(Γ).

After a planar isotopy of Γ, corresponding to a Legendrian isotopy of Λ(Γ), we can assume

that there are no pairs of hexavalent or trivalent vertices appearing in the same horizontal strip

R × {t}. The purpose of this modification is to unambiguously decompose a weave filling into

elementary Lagrangian cobordisms in order to relate it to a decomposable Lagrangian filling in the

symplectization of contact R3. Other than our manipulation of the ambient contact manifold, the

vertical weave construction is identical to the Legendrian weaves described in Section 1.2.1. See

Figure 2.6 for an example comparing Legendrian weave fillings of λ(A5).

We list our choice of conventions for vertical weave fillings of λ(An−1) below for ease of reference.

• In a vertical weave, we encode λ(β) with the braid word ∆β∆ appearing at R× {0}.

• In a vertical weave, the edge exiting below a trivalent vertex with incoming edges i and

i+ 1 inherits the label i.

• In a 2-graph Γ dual to a triangulation T , the edge of Γ most immediately clockwise from

vertex i of T is labeled by i.
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Figure 2.6. A pair of 2-graphs representing the same weave filling of λ(A5). On
the left, the 2-graph Γ is inscribed in its dual triangulation of the octagon. On the
right, the corresponding vertical weave is the image of the diffeomorphism φ. The
edges of the vertical 2-graph are labeled by the nearest counterclockwise label of the
dual triangulation. The dotted lines on the left give a foliation of D2, corresponding
to the foliation of R× (−∞, 0] depicted on the right.

Note that our choice of labeling edges differs slightly from the conventions of [CGGS20]. The

choice of labeling given there corresponds to resolving the leftmost crossing of the pair in the D−4

cobordism. With our choice of conventions, we can see that the clip sequence bijection yields

Hamiltonian isotopic fillings.

Proof of Corollary 2.2.1. Let σ be a 312-avoiding permutation indexing a pinching se-

quence filling Lσ of λ(An−1) and consider the vertical weave corresponding to the triangulation

Tσ. By construction, a 0-resolution at the crossing i in λ(An−1) corresponds to a trivalent vertex

where the incident rightmost edge is labeled by i. By Proposition 2.2.1, these denote Hamiltonian

isotopic exact Lagrangian cobordisms applied to corresponding Reeb chords. Thus, the filling Lσ

is Hamiltonian isotopic to the weave filling dual to the triangulation Tσ. □

It is claimed without proof in [EHK16, Section 8.1] that, in addition to yielding the same Floer-

theoretic invariant, there is a Hamiltonian isotopy between pinching sequence fillings represented

by permutations σ = . . . i k . . . j . . . and σ′ = . . . k i . . . j . . . in Sn. This claim implies that a 312-

avoiding permutation represents a unique equivalence class of Lagrangian filling up to Hamiltonian

isotopy. The claim follows from Corollary 2.2.1 and the lemma below.
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Lemma 2.2.1. Let (xi, zi), (xj , zj), and (xk, zk) denote the coordinates of three trivalent vertices

in the 2-graph Γ satisfying xi < xj < xk and zj < zk < zi. The planar isotopy between Γ and

the 2-graph Γ′ with trivalent vertices at (xi, zk), (xj , zj), and (xk, zi) lifts to a compactly supported

Hamiltonian isotopy of the fillings LΓ and L′Γ fixing the boundary.

Proof. By construction, the planar isotopy between Γ and Γ′ lifts to a Legendrian isotopy

between the weaves Λ(Γ) and Λ(Γ′) in J1(D2). Note that this planar isotopy can be taken to be the

identity at the boundary ∂Λ(Γ). Considering the Lagrangian projection of this sequence of weaves

yields a compactly supported exact Lagrangian isotopy between the Lagrangian fillings LΓ and L′Γ.

By [FOOO09, Theorem 3.6.7], this implies the existence of a compactly supported Hamiltonian

isotopy between the two fillings. □

By Corollary 2.2.1, the exact Lagrangian isotopy of the weave filling extends to pinching se-

quence fillings. Thus, our result together with [Pan17, Theorem Theorem 1.1] implies that there

are exactly a Catalan number Cn of pinching sequence fillings1 of λ(An−1) up to Hamiltonian

isotopy.

We conclude this section with a proof of the orbital structure described in Theorem 1.1.3 as a

corollary of Theorem 1.1.1. Namely, the orbital structure of the Kálmán loop action on pinching

sequence fillings of λ(An−1) can be obtained from the Hamiltonian isotopy between the pinching

sequence filling Lσ and weave filling LTσ .

Proof of Theorem 1.1.3. Let Lσ be a filling of λ(An−1) and consider the Hamiltonian iso-

topic weave filling LTσ with corresponding 2-graph Γ dual to the triangulation Tσ. The Kálmán

loop action on weave fillings is geometrically described as a cylinder rotating the entire 2-graph

Γ by 2π
n+2 radians counterclockwise. This can be readily observed from the fact that crossings of

λ(An−1) are represented by edges of the dual graph intersecting the boundary of the (n + 2)-gon.

Therefore, the correspondence between triangulations Tσ and weave fillings LTσ implies that the

orbital structures of triangulations under the action of rotation and weave fillings under the action

of the Kálmán loop coincide.

1Note that a precise classification of fillings currently only exists for the Legendrian unknot. In general, it is not
known whether every filling is constructible, i.e. can be given as a series of elementary cobordism.
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The number of orbits of the set of triangulations of the (n + 2)-gon under the action of coun-

terclockwise rotation is given by the formula

Cn

n+ 2
+

Cn/2

2
+

2C(n−1)/3

3

where, as previously, the terms with Cn/2 and Cn/3 only appear if the indices are integers.

These terms correspond, respectively, to triangulations with no rotational symmetry, rotational

symmetry by π, and rotational symmetry by 2π
3 . No other rotational symmetry of a triangulation

is possible. The orbit sizes are n+ 2, n+2
2 and n+2

3 , where again the corresponding orbit size only

occurs if the relevant fraction is an integer. □

Note here the appearance of λ(An−1) as the (−1)-framed closure of the braid σn+2 in the

description of the weave filling. This geometrically describes why the Kálmán loop action on the

rainbow closure of σn has order n+2 as an action on the n+2 crossings of the (−1)-framed closure.

2.3. Algebraic Proof of Theorem 1.1.3

In this section we give an algebraic proof of Theorem 1.1.3 by examining the Kálmán loop

action on the augmentation variety Aug(λ(An−1)) of the Legendrian link λ(An−1). As discussed in

Subsection 1.2.4.2, an embedded exact Lagrangian filling yields the inclusion of an algebraic torus

into the augmentation variety Aug(λ(An−1)). From [Pan17], we have an explicit computation of a

set of coordinate functions {s1, . . . sn−1} on an induced toric chart coming from a pinching sequence

filling L; namely, this set of coordinates is in bijection with the relative cycles associated to the

unstable manifolds of the saddle critical points for L. Naively, we might hope to distinguish the

Hamiltonian isotopy classes of the Lagrangian fillings under the Kálmán loop action by studying

the associated toric charts and their si coordinate functions. In practice, these local coordinate

functions are somewhat difficult to compare under this particular action. Instead, we consider the

action of the Kálmán loop on the set of global regular functions {∆i,j} with ∆i,j ∈ Z[Aug(λ(An−1))],

defined in Subsection 1.2.4.4. In fact, ∆i,j ∈ Z[z1, . . . , zn] are globally defined polynomials, which

restrict to global regular functions on the augmentation variety Aug(λ(An−1)) ⊆ Zn.

When considering the restriction of the ∆i,j functions to the toric chart induced by the aug-

mentation ϵσ, Theorem 2.3.1 below establishes that the correspondence between diagonals Di−1,j−1

54



of the triangulation Tσ and the functions ∆i,j is a Zn+2-equivariant map. We then show in Sub-

section 2.3.2 that the ∆i,j functions corresponding to diagonals of a triangulation Tσ restrict to

a coordinate basis of the toric chart defined by Lσ. In addition, we give an explicit formula for

these coordinate functions as monomials in the si local coordinates. It follows that the induced

action on the set of augmentations ϵσ in the augmentation variety Aug(λ(An−1)) is equivalent to

the action of rotation on triangulations of the (n+2)-gon, from which we can conclude the orbital

structure as given in Theorem 1.1.3. See Subsection 2.3.3 for a cluster-algebraic motivation for the

∆i,j functions and triangulations of the (n+ 2)-gon.

2.3.1. The Kálmán loop action on {∆i,j}. Let us start by describing the action of the

Kálmán loop on the global regular functions ∆i,j using Euler’s identity for continuants. All indices

in this section are modulo n + 2. Recall that we denote by ϑ ∈ Aut(Z[Aug(λ(An−1))]) the au-

tomorphism induced by the Kálmán loop acting on the augmentation variety Aug(λ(An−1)) =

{(z1, . . . , zn)|Xn = 0} ⊆ Zn, where Xn ∈ Z[z1, . . . , zn] is the polynomial defined by Xn =

−1 + ∆1,n+2. The action of the Kálmán loop on the set of global regular functions {∆i,j} is

described in the following algebraic restatement of Theorem 1.1.3.

Theorem 2.3.1. The global regular functions ∆i,j in Z[Aug(λ(An−1))] satisfy the equation

(2.1) ϑ(∆1,k+1) + (−1)k∆k,n+2 = −∆2,kXn

as global polynomials in ambient Zn for 2 < k < n+ 2.

As a corollary, we see that the action of ϑ on the augmentation variety Aug(λ(An−1)) coincides

with the action of rotation on triangulations of the (n+ 2)-gon.

Corollary 2.3.1. As regular functions on Aug(λ(An−1)) the ∆i,j satisfy

ϑ(∆i,j) =


(−1)j−1∆j−1,n+2 i = 1

∆i−1,j−1 i ̸= 1

and the map ∆i,j → Di−1,j−1 is a Zn+2-equivariant map.
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Proof of Corollary 2.3.1. The case of i > 1 is discussed in Subsection 1.2.4.6 and follows

from the formula for ϑ(∆i,j) given there. In the case of i = 1, restricting to Aug(λ(An−1)) =

{Xn = 0} causes the right hand side of Equation 2.1 to vanish. Therefore, by Theorem 2.3.1, the

Kálmán loop action on the restriction of ∆1,j to Aug(λ(An−1)) is ϑ(∆1,j) = (−1)j∆j−1,n+2. Under

rotation, the diagonal Di−1,j−1 maps to Di−2,j−2. It follows that the correspondence between ∆i,j

restricted to the toric chart induced by ϵσ and a diagonal Di−1,j−1 of the triangulation Tσ is a

Zn+2-equivariant map. □

We now give a proof of the behavior of the ∆i,j as ambient polynomials in Zn. Note here the

appearance of Euler’s identity for continuants in the form of Equation 1.2.

Proof of Theorem 2.3.1. We first rewrite the left hand side of the desired equation using

the continuant recursion relation (1.1) and the action of ϑ.

ϑ(∆1,k+1) + (−1)k−1∆k,n+2 = ϑ(z1∆2,k+1 +∆3,k+1) + (−1)k−1∆k,n+2

= −∆2,n+2∆1,k +∆2,k + (−1)k−1∆k,n+2.

We substitute this expression into the left hand side of the desired equation from Theorem 2.3.1

to obtain

−∆2,n+2∆1,k +∆2,k + (−1)k−1∆k,n+2 = −∆2,k(∆1,n+2 − 1).

In order to verify that this equation holds, we will apply the special case of Euler’s identity for

continuants given in Equation 1.2. To do so, we distribute the right hand side and subtract ∆2,k

from both sides to get

−∆2,n+2∆1,k + (−1)k−1∆k,n+2 = −∆2,k∆1,n+2.

This expression is equivalent to

∆1,n+2∆2,k −∆1,k∆2,n+2 = (−1)k∆k,n+2,

which is the identity given in Equation (1.2). Thus, we have established Theorem 2.3.1. □
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2.3.2. The Kálmán loop action on the augmentation variety. We now prove that the

∆i,j functions corresponding to the diagonals of the triangulation Tσ define a coordinate basis on

the toric chart induced by the filling Lσ. To do so, we first show that the ∆i,j functions can be

written as monomials in the local si coordinate functions defined by the augmentation ϵσ. We then

define a bijection between the ∆i,j corresponding to the triangulation Tσ and the si variables on the

toric chart induced by Lσ. Throughout the remainder of this section, let σ denote a 312-avoiding

permutation corresponding to a pinching sequence filling and Di,j be a diagonal of the triangulation

Tσ. The goal of this subsection will be to prove the following proposition.

Proposition 2.3.1. The Laurent polynomial ring Z[∆±1i,j ] corresponding to the diagonals of the

triangulation Tσ is isomorphic to the ring of regular functions on the toric chart induced by the

augmentation ϵσ.

The technical lemma introduced below will be used to prove the first part of Proposition 2.3.1.

Lemma 2.3.1. For any diagonal Di−1,j−1 in the triangulation Tσ, the image of the regular

function ∆i,j in the toric chart induced by the augmentation ϵσ is given by ϵσ(∆i,j) = si . . . sj−2.

Assuming the lemma, we first prove Proposition 2.3.1.

Proof of Proposition 2.3.1. We first define a bijection φ between the set of triangles in

the triangulation Tσ and the local toric coordinates s1, . . . , sn−1 induced by the augmentation ϵσ.

Let T be a triangle in Tσ with sides Di−1,j−1, Dj−1,k−1 and Di−1,k−1. We define the map φ by

φ(T ) := (∆i,j)
−1(∆j,k)

−1∆i,k.

where we recall that ∆i,i+1 = 1 by definition. By Lemma 2.3.1, we have

(∆i,j)
−1(∆j,k)

−1∆i,k = (si . . . sj−2)
−1(sj . . . sk−2)

−1si . . . sk−2 = sj−1.

To see that φ is injective, consider two triangles T and T ′ belonging to the triangulation Tσ with

sides {Di−1,j−1, Dj−1,k−1, Di−1,k−1} and {Di′−1,j′−1, Dj′−1,k′−1, Di′−1,k′−1}, respectively. Assume

that φ(T ) = φ(T ′). Then sj−1 = sj′−1, and therefore j = j′. Since T and T ′ share a middle

vertex, and belong to the same triangulation, they must be the same triangle. We can conclude
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immediately that φ is bijective because it is an injective map between two sets of n− 1 elements.

Thus, the set of ∆i,j functions corresponding to diagonals Tσ form a coordinate basis for the toric

chart induced by the augmentation ϵσ.

□

We now give a proof of Lemma 2.3.1 by carefully examining the effect of the DGA map Φ on

the braid matrices defining ∆i,j .

Proof of Lemma 2.3.1. Consider ∆i,j corresponding to some diagonal Di−1,j−1 of a trian-

gulation Tσ. By definition, we have

Φ(∆i,j) =

[
j−2∏
k=i

B(Φ(zk))

]
(2,2)

.

Therefore, Lemma 2.3.1 is equivalent to the claim that the (2, 2) entry of
∏j−2

k=i B(ϵσ(zk)) is

precisely
∏j−2

k=i sk. To verify this statement, we show inductively that applying Φl ◦ · · · ◦ Φ1 yields

a product of B(zk) for k ∈ {i, . . . , j − 2}\{σ(1) . . . , σ(l)} with a particular collection of diagonal

matrices, upper triangular and lower triangular matrices.

Define the matrices

C(s) :=

1 s

0 1

 U(s) :=

−s−1 1

0 s

 L(s) :=

−s−1 0

1 s

 D(s) :=

−s−1 0

0 s


Denote by AT the transpose of the matrix A. The following identities are immediate.

B(z ± s) = B(z)C(±s)(2.2)

B(z ± s) = CT(±s)B(z)(2.3)

C(s± t) = C(s)C(±t)(2.4)

C(−s−1)B(s)CT(−s−1) = D(s)(2.5)

C(−s−1)B(s) = L(s)(2.6)

B(s)CT(−s−1) = U(s)(2.7)
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Equipped with this set of identities, we proceed with the proof of Lemma 2.3.1. First, we may

assume that σ(1), . . . , σ(k) all lie in the set {i, . . . j − 2}. Indeed, for σ(l) not in {i, . . . j − 2}, the

map Φl is the identity on the polynomial Φl−1 ◦ · · · ◦ Φ1(∆i,j). This follows from the observation

that if Di−1,j−1 is in the triangulation Tσ, then i appears before i−1 and j−2 appears before j−1

in σ under the clip sequence bijection. Therefore, σ−1(i) < σ−1(i−1) and σ−1(j−2) < σ−1(j−1),

which implies that no elements of the set T l
σ appear in terms of Φl−1 ◦ · · · ◦ Φ1(∆i,j).

Denote byM+
l andM−l the maximum and minimum of the set {i, . . . , j−2}\{σ(1), . . . , σ(l−1)}.

We claim that the result of applying Φl to Φl−1 ◦ · · ·◦Φ1(∆i,j) results in the replacement of B(zσ(l))

in the product
∏j−2

k=i B(Φl−1 ◦ · · · ◦ Φ1(zk)) with one of three possibilities depending on l:

(1) For σ(l) = M−l , the map Φl replaces B(zσ(l)) by the upper triangular matrix U(sσ(l)).

(2) For σ(l) = M+
l , the map Φl replaces B(zσ(l)) by the lower triangular matrix L(sσ(l)).

(3) For M−l < σ(l) < M+
l , the map Φl replaces B(zσ(l)) by the diagonal matrix matrix

D(sσ(l)).

We prove this claim by induction. For the base case, we consider the three possibilities listed

above.

(1) If σ(1) = M−1 = i, then we have

Φ1(∆i,j) = B(si)B(zi+1 − s−1i )B(zi+2) . . . B(zj−2)

= B(si)C
T(−s−1i )B(zi+1) . . . B(zj−2)

= U(si)B(zi+1) . . . B(zj−2)

where the second equality follows from Equation (2.3) and the final one from Equation

(2.7).

(2) If σ(1) = M+
1 = j − 2, then Equations (2.2) and (2.6) imply that

Φ1(∆i,j) = B(zi) . . . B(zj−3)C(−s−1j−2)B(sj−2) = B(zi) . . . B(zj−3)L(sj−2).
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(3) If i < σ(1) < j − 2, then we apply Equations (2.2), (2.3), and (2.5) to Φ1(∆i,j) to obtain

Φ1(∆i,j) = B(zi) . . . B(zσ(1)−1)C(−s−1σ(1))B(sσ(1))C
T(−s−1σ(1))B(zσ(1)+1) . . . B(zj−2)

= B(zi) . . . B(zσ(1)−1)D(sσ(1))B(zσ(1)+1) . . . B(zj−2).

Assume inductively that applying the composition Φl−1 ◦ · · · ◦ Φ1 replaces each B(zσ(k)) for

1 ≤ k ≤ l − 1 with either U(sσ(k)), L(sσ(k)), or D(sσ(k)) depending on whether σ(k) = M−k ,

σ(k) = M+
k , or M−k < σ(k) < M+

k respectively. We consider the same three cases for Φl:

(1) If σ(l) = M−l , then T l
σ has a single element l′ and by the combinatorial formula for Φl, we

have

B(Φ(zσ(l′))) = CT(±s−1σ(l)s
−2
σ(l)+1 . . . s

−2
σ(l′)−1)B(zσ(l′))

where the sign is given by (−1)|σ(l)−(σ(l′)−1)|. By the inductive hypothesis, we have that

the matrices appearing between B(Φ(zσ(l))) = B(sσ(l)) and CT(s−1σ(l)s
−2
σ(l)+1 . . . s

−2
σ(l′)−1) are

of the form D(sσ(l)+1) . . . D(sσ(l′)−1). We then compute

B(sσ(l))

(
σ(l′)−1∏

m=σ(l)+1

D(sm)

)
CT(±s−1σ(l)s

−2
σ(l)+1 . . . s

−2
σ(l′)−1) =

±s−1σ(l) . . . s
−1
σ(l′)−1 sσ(l)+1 . . . sσ(l′)−1

0 sσ(l) . . . sσ(l′)−1


= U(sσ(l))

(
σ(l′)−1∏

m=σ(l)+1

D(sm)

)
,

showing that applying Φl replaces B(zl) by U(sl).

(2) If σ(l) = M+
l , then T l

σ again has a single element l′′ and we have

C(±s−2σ(l′′)+1 . . . s
−2
σ(l)−1s

−1
σ(l))

(
σ(l)−1∏

m=σ(l′′)+1

D(sm)

)
B(sσ(l)) =

(
σ(l)−1∏

m=σ(l′′)+1

D(sm)

)
L(sσ(l)).

(3) Finally, if M−l < σ(l) < M+
l , then T l

σ has two elements, denote them by l′ and l′′ with

l′ > l′′. Then we must consider the product of

C(±s−2σ(l′′)+1 . . . s
−2
σ(l)−1s

−1
σ(l))

(
σ(l)−1∏

m=σ(l′′)+1

D(sm)

)
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with

B(sσ(l))

(
σ(l′)−1∏

m=σ(l)+1

D(sm)

)
CT(±s−1σ(l)s

−2
σ(l)+1 . . . s

−2
σ(l′)−1)

where the two signs of entries of C and CT need not agree. We apply our computation

from the previous case and simplify(
σ(l)−1∏

m=σ(l′′)+1

D(sm)

)
L(sσ(l))

(
σ(l′)−1∏

m=σ(l)+1

D(sm)

)
CT(±s−1σ(l)s

−2
σ(l)+1 . . . s

−2
σ(l′)−1)

=

(
σ(l)−1∏

m=σ(l′′)+1

D(sm)

)
L(sσ(l))

 ∓(sσ(l)+1 . . . sσ(l′)−1)
−1 0

±(sσ(l)sσ(l)+1 . . . sσ(l′)−1)
−1 sσ(l)+1 . . . sσ(l′)−1



This yields the product
∏σ(l′)−1

m=σ(l′′)+1D(sm), as desired.

Thus, by induction, Φl replaces B(zl) with an upper triangular, lower triangular, or diagonal

matrix for 1 < l < j − 2− i. Therefore, when we arrive at the final Φj−2−i map, we have Bsσ(j−2−i)

multiplied on the left by the product of some number of upper triangular and diagonal matrices

with the corresponding s variable appearing in the (2, 2) entry and multiplied on the right by some

number of diagonal and lower triangular matrices with the same condition. Since multiplication by

a diagonal matrix preserves the property of being upper or lower triangular, the result is a product

of the form UB(sσ(j−2−i))L where U and L are upper and lower triangular matrices. Therefore the

(2, 2) entry of this product is the product of the (2, 2) entries of each of the factors. It follows that

the (2, 2) entry of Φ(∆i,j) is si . . . sj−2, as desired. □

Together, Corollary 2.3.1 and Proposition 2.3.1 allow us to give an algebraic proof of Theorem

1.1.3.

Proof of Theorem 1.1.3. By Proposition 2.3.1, the set of ∆i,j corresponding to a triangu-

lation Tσ gives a basis for the toric chart induced by the augmentation ϵσ. Therefore, the image

of ϵσ under ϑ corresponds to the image of the set of ∆i,j corresponding to Tσ. By Corollary 2.3.1,

we know that the induced action of the Kálmán loop on the augmentation variety of λ(An−1) is

equivalent to the action of rotation on the (n+ 2)-gon. □
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2.3.3. Relation to cluster theory. The appearance of the ∆i,j functions and the combi-

natorics of the (n + 2)-gon is explained by a cluster structure on the augmentation variety, the

existence of which was recently proven by Gao-Shen-Weng in [GSW20a]. In brief, a cluster vari-

ety is an algebraic variety containing a set of toric charts (cluster charts) with coordinate functions

(cluster variables) that transform according to a specific operation (cluster mutation) under the

chart maps. See [FWZ20a,FWZ20b] for more on cluster algebras.

For a Legendrian λ given as the rainbow closure of a positive braid, [GSW20a] describes a

cluster structure on Aug(λ) by proving a natural isomorphism to double Bott-Samelson cells. In

particular, the cluster structure on Aug(λ(An−1)) is a cluster algebra of An−1-type. An−1-type

cluster algebras were originally defined and studied by Fomin and Zelevinksy in the context of

regular functions on the affine cone of the Grassmanian Gr×(2, n + 2) [FZ03]. If we consider

the Plücker coordinate Pi,j of the (ordinary) Grassmanian Gr(2, n + 2), then its image in the

affine cone is precisely the function ∆i,j . The combinatorics of the relationship between cluster

charts is captured by the flip graph, where a single cluster seed is given by all ∆i,j corresponding

to diagonals Di,j of a triangulation. In the context of this manuscript, [GSW20a] implies the

existence of cluster coordinates on Aug(λ(An−1)) while Proposition 2.3.1 gives a precise formula.

The special case of Euler’s identity for continuants that appears in the algebraic proof of Theorem

1.1.3 can be understood as a three-term Plücker relation describing mutation at the diagonal ∆1,k

or ∆2,n+2.

Also of interest in the cluster setting is the fact that the Kálmán loop induces a cluster au-

tomorphism of the augmentation variety Aug(λ(An−1)). Subsection 2.4.2 explicitly realizes this

automorphism as a sequence of mutations. For an An−1-type cluster algebra, Assem, Schiffler, and

Shramchenko showed that the cluster automorphism group is Zn+2 [ASS12]. Theorem 2.3.1 implies

that the order of the Kálmán loop action on Aug(λ(An−1)) is precisely n + 2, so we immediately

deduce the following corollary.

Corollary 2.3.2. The induced action of the Kálmán loop on Aug(λ(An−1)) is a generator of

the An−1-type cluster modular group.
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2.4. Combinatorial Characterizations

In this section, we describe the combinatorial properties of the Kálmán loop action on a pinching

sequence filling Lσ of λ(An−1) purely in terms of the corresponding 312-avoiding permutation σ.

We first present an explicit algorithm for determining the orbit size of Lσ from σ in Subsection

2.4.1. The end of the subsection includes a table where orbit sizes are computed for the case n = 4,

corresponding to triangulations of the hexagon. We then give a recipe for constructing a geodesic

path in the flip graph that describes a counterclockwise rotation of the triangulation Tσ. Since

the weave filling LTσ is Hamiltonian isotopic to the pinching sequence filling Lσ by Theorem 1.1.1,

this geodesic path describes the Kálmán loop action on Lσ as a sequence of edge flips. Finally,

we discuss the behavior of 312-avoiding permutations under a single edge flip in the flip graph.

Together, these last two results give a combinatorial characterization of the Kálmán loop action

on fillings purely in terms of 312-avoiding permutations. As in previous sections, all indices are

computed modulo n+ 2.

2.4.1. Orbit size. To produce an algorithm for determining orbit size of a pinching sequence

filling, we give explicit criteria in Lemmas 2.4.3 and 2.4.4 for when a filling of λ(An−1) has orbit

size n+2
2 or n+2

3 under the action of the Kálmán loop. If it does not satisfy either of these criteria,

then it necessarily has orbit size n+2. We start by describing the permutations that arise from an

orbit of size n+2
2 .

Consider some 312-avoiding permutation σ ∈ Sn. In order for the filling Lσ to have orbit size

n+2
2 , the triangulation Tσ must have rotational symmetry through an angle of π. Therefore, Tσ has

a diameter Di,i+n+2
2

and the triangulated polygons on either side of this diameter must be mirror

images. We consider the diameter as an external edge of two (n+2
2 + 1)-gons, one containing both

vertices labeled n+1 and n+2, and the other containing at most one of them. For any 312-avoiding

permutation σ such that Tσ has a diameter Di,i+n+2
2
, we define the 312-avoiding permutation τ in

Sn+2
2

corresponding to half of the triangulation Tσ as follows.

Definition 2.4.1. The permutation τ in the letters i + 1, i + 1, . . . , i + n+2
2 − 1 is the 312-

avoiding permutation obtained from applying the clip sequence bijection to the triangulation Tτ of

the (n+2
2 + 1)-gon containing at most one of the vertices labeled by n+ 1 and n+ 2.
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We can always unambiguously identify τ from the permutation σ.

Lemma 2.4.1. Let σ ∈ Sn be any 312-avoiding permutation such that Tσ has rotational symmetry

through an angle of π. The permutation τ is the first subword of σ of length n
2 letters forming a

subinterval of the integers {1, . . . , n}.

Proof. Let σ ∈ Sn correspond to a triangulation Tσ with rotational symmetry through an

angle of π. Under the clip sequence bijection, there may be letters of σ that appear before τ .

Therefore, to identify τ as a subword of σ we search for the first 312-avoiding permutation of

length n
2 that appears in σ. A diameter Di,i+n+2

2
forces the condition that any letters appearing

before τ will be less than i, so that even if i appears directly after τ , there is no ambiguity in

identifying τ .

Explicitly, we identify τ by first checking if the set {σ(1), . . . σ(n2 )} of the first n
2 letters of σ is

equal to a subinterval of the integers {1, . . . , n} of length n
2 . If not, we check the {σ(2), . . . , σ(n2+1)}.

We continue in this way until we have either identified the subword τ or exhausted all possibilities.

If no such subword exists, then σ does not have the assumed rotational symmetry. □

We now state a preparatory lemma regarding details of the clip sequence bijection that may

give some insight into the structure of the orbit size algorithm below. We consider the most general

case where Tτ is a subtriangulation of Tσ with vertices i, . . . , i+ k for i+ k ≤ n+ 1.

Lemma 2.4.2. Let k ∈ N satisfy j < i+k ≤ n+1. The 312-avoiding permutation τ ends in the

letter j if and only if the subtriangulation Tτ contains the triangle labeled by vertices i, j, and i+ k.

In this case, all letters taking values strictly between i and j appear before any other letters in τ .

Proof. The first claim follows from the definition of the clip sequence bijection because the

diagonal Di,i+k must appear in the final triangle remaining after removing the previous n − 1

vertices. Therefore, j is the final letter of τ , if and only if it is also the third vertex of this triangle.

The second claim follows by similar reasoning to the case of the diameter, as the existence

of the diagonal Di,j implies that there must be some ear Dl,l+2 with i < l < j − 2. Therefore,

l+ 1 appears before j and we can repeat this argument for the subtriangulation of Tτ obtained by

removing the vertex l + 1. □

64



We now give explicit criteria for determining whether the filling Lσ has orbit size n+2
2 solely in

terms of σ.

Lemma 2.4.3. The following algorithm detects whether a 312-avoiding permutation σ in Sn

yields a filling Lσ of orbit size n+2
2 under the action of the Kálmán loop.

(1) Identify τ from σ as in the proof of lemma 2.4.1.

(2) Define σ′ to be an empty string and set τ ′ = τ . Find the smallest j for which j ≥ n+2
2 and

some k > j appears before j in τ. For the first such k appearing in τ ′, append k − n+2
2 to

σ′, remove k from τ ′ and repeat until no such letters remain in τ ′. Append τ to σ′.

(3) While τ ′ ends in the largest (resp. smallest) number remaining in τ ′ not equal to n+2
2 − 1

(resp. n+2
2 ), then append the next largest (resp. next smallest) number in {1, . . . , n}\σ′

less than the smallest number (resp. greater than the largest number) of τ ′ to σ′ and

delete the final number of τ ′.

(4) If τ ′ does not end in its largest or smallest remaining number, then add n+2
2 to all num-

bers less than the final number and append to σ′ in the order they appear. Delete the

corresponding numbers from τ ′.

(5) Now τ ′ ends in its smallest remaining number, so return to Step (3) and repeat until

only one number remains in τ ′. The final number of σ′ is then determined by the unique

number remaining in {1, . . . , n}\σ′.

(6) σ has orbit size n+2
2 if it is equal to σ′.

Example 2.4.1. Consider the 312-avoiding permutation σ = 15 4 3 6 2. We can identify τ =

54 3 as the first length 3 subword appearing in σ and the diameter of the triangulation Tσ is therefore

D2,6. Applying the above algorithm to τ , we see that Step (2) yields σ′ = 15 4 3 because 5 precedes

4. Then 3 is the smallest number appearing in τ , so we append 6 to σ′. Finally, we append 2, to

get σ = σ′, indicating that the filling labeled by σ has orbit size 4 under the Kálmán loop. □

Proof. Let σ ∈ Sn be a 312-avoiding permutation with orbit size n+2
2 . Denote the diameter of

Tσ as Di,i+n+2
2

for some 1 ≤ i ≤ n+2
2 −1 and the permutation corresponding to the triangulation of

the (n+2
2 +1)-gon given by the vertices i, . . . , i+ n+2

2 by τ. We will show that the algorithm detects

when the triangulation Tσ is obtained from the triangulation Tτ by gluing Tτ to a rotation of Tτ
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by π along the diagonal Di,i+n+2
2
. The lemma then follows from the observation that τ is uniquely

determined from σ.

Under the clip sequence bijection, we delete the smallest vertex with no incident diagonal at

each step and append the label to the permutation. Therefore, any letter k of σ appearing before

τ is less than i. Moreover, any diagonal Dj,k or Dk,j (should it exist) incident to the vertex k has

endpoint j in the set {n + 2, 1, . . . , i}. Therefore any triangle with vertices j, k,and l with j, k, l

given in clockwise order must also have j, l ∈ {n + 2, 1, . . . , i}. The rotational symmetry of Tσ

implies that the triangle with vertices j + n+2
2 , k + n+2

2 , l + n+2
2 appears in Tτ . It follows from

Lemma 2.4.2 that in τ the letter k + n+2
2 precedes j for some j ≥ n+2

2 and that all such k appear

before τ in σ. Therefore, Step (2) produces all letters of σ that appear before τ .

To determine the letters following τ in σ, we first consider the case where one of the diameter

vertices, i or i + n+2
2 , has no incident diagonals with endpoint taking values in the set of vertices

labeled by letters appearing after τ in σ. If this is the case, then the appropriate diameter vertex

label immediately follows τ in σ under the clip sequence bijection. We also observe that when i

(respectively, i + n+2
2 ) is such a vertex, then there is a triangle in Tσ with vertices i, i − 1, and

i + n+2
2 (resp. i, i + n+2

2 , i + n+2
2 + 1). Therefore, the rotational symmetry of Tσ implies that we

have a triangle with vertices i, i + n+2
2 − 1 and i + n+2

2 (resp. i, i + 1, and i + n+2
2 ) in Tτ . By

Lemma 2.4.2, the vertex i+ n+2
2 − 1 (resp. i+ 1) appears as the final letter in τ . The vertex i− 1

(resp. i+ n+2
2 +1) then appears immediately following τ . The same reasoning applies if we replace

the diameter Di,i+n+2
2

with the diagonal Di−1,i+n+2
2
, Di,i+n+2

2
+1, or any such longest remaining

diagonal arising under the clip sequence bijection in this way, so long as n + 1 or n + 2 do not

appear as endpoints of this diagonal.

If both diameter vertices have diagonals incident to them with endpoints in the remaining

vertices, then the letter following τ under the clip sequence bijection labels the smallest vertex

greater than i+ n+2
2 with no incident diagonals. By previous reasoning, we know that the diameter

is one side of a triangle with vertices i, k, i + n+2
2 in Tσ. The rotational symmetry of Tσ implies

that the triangle labeled by i, k − n+2
2 , i+ n+2

2 appears in Tτ . It follows from Lemma 2.4.2 that k

appears as the final letter of τ and any letter j with j < k appearing before k in τ
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This process continues until we have eliminated all numbers from τ except for either n + 1 or

n+ 2. This unambiguously determines the final number of our permutation. By construction, we

have shown that the above algorithm yields the 312-avoiding permutation σ with Tσ constructed

by gluing a rotated copy of Tτ to Tτ . □

We now consider the case of a 312-avoiding permutation σ with orbit size n+2
3 . In order to ex-

hibit the appropriate rotational symmetry, the triangulation Tσ must have a central triangle labeled

by vertices i, i + n+2
3 , i + 2(n+2)

3 , dividing the triangulation up into three identical triangulations

of (n+2
3 + 1)−gons. Two of these polygons do not contain the pair of vertices n + 1 and n + 2,

so a permutation σ with Tσ having rotational symmetry through an angle of 2π
3 must have two

subwords τ1 and τ2 of length n+2
3 − 1 that differ by n+2

3 and are immediately followed by i+ n+2
3 .

We determine the third subword from τ1 using the same reasoning as in the n+2
2 orbit size case.

Lemma 2.4.4. The following algorithm detects whether a 312-avoiding permutation σ in Sn

yields a filling Lσ of orbit size n+2
3 under the action of the Kálmán loop.

(1) Determine τ1 by finding the first subword of length n+2
3 −1 in σ with letters i, . . . , i+ n+2

3 −1

for some i. If no such τ1 exists, then σ does not have orbit size n+2
3 .

(2) Set σ′ to be the empty word. For any numbers greater than n+2
3 that appear after n+2

3

or some other number greater than n+2
3 , add 2(n+2)

3 (mod n+ 2) to them and append the

result to σ′. Append τ1 to σ′. Add n+2
3 to each entry of τ1 to get τ2 and append to σ′.

Append i+ n+2
3 to σ′. Delete the corresponding number from τ1.

(3) So long as τ1 ends in the largest (resp. smallest) number remaining in τ1 not equal

to n+2
3 − 1 (resp. n+2

3 ), then append the next largest (resp. next smallest) number of

{1, . . . , n}\σ′ less than the smallest number (resp. greater than the largest number) of τ1

to σ′ and delete the final number in τ1.

(4) If τ1 does not yet end in the largest or smallest remaining number, add n+2
3 to all numbers

less than the final number and append. Delete the corresponding numbers from τ1.

(5) Now τ1 ends in the smallest remaining number, so return to Step (3) and continue until one

number remains in τ1. The final number of σ′ is then determined by the unique number

appearing in {1, . . . , n}\σ′.
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(6) σ has orbit size n+2
3 if it is equal to σ′.

Example 2.4.2. We can identify σ = 21 5 4 3 6 7 as a permutation with orbit size 7+2
3 = 3 using

the above algorithm. First identify τ1 as the first length 2 subword with two consecutive letters, i.e.,

τ1 = 21 ∈ S2. Then τ2 = 54 and the string 2 1 5 4 3 must appear in σ in order for it to have orbit

size 3. We can also determine that no letters appear before τ1 because 1 and 2 already appear in

our word. Since τ1 ends with the smallest letter of the triangulation Tτ1 , we append 6. The final

remaining number is 7, so we see that σ′ = σ and therefore σ has orbit size 3. □

We conclude this subsection with a table of orbit sizes of pinching sequence fillings of λ(A3),

i.e. the case n = 4.

Permutation Orbit Size

1 2 3 4 6

1 2 4 3 3

1 3 2 4 2

1 3 4 2 6

1 4 3 2 3

2 1 3 4 3

2 1 4 3 6

2 3 1 4 3

2 3 4 1 6

2 4 3 1 2

3 2 1 4 6

3 2 4 1 3

3 4 2 1 3

4 3 2 1 6

2.4.2. Rotations of Triangulations. In this subsection, we describe a counterclockwise ro-

tation of the (n+2)-gon through an angle of 2π
n+2 as a sequence of edge flips in a given triangulation.

As remarked in [TZ18, Remark 1.6], Legendrian mutation of a Legendrian weave surface dual to

a triangulation corresponds to exchanging diagonals of a quadrilateral in the original triangulation
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to form a new triangulation. Such an exchange of diagonals is depicted in Figure 2.9, and we refer

to it as an edge flip. See Subsection 2.3.3 for more on the cluster-algebraic interpretation of this

operation in terms of cluster mutation. The flip graph or associahedron is then defined to have

vertices given by triangulations and an edge between two vertices if the triangulations are related

by a single edge flip. The diameter of the flip graph was first investigated via geometric methods

by Thurston, Sleator and Tarjan in [STT88] and later combinatorially by Pournin in [Pou14]. In

general, there is no known algorithm for determining geodesics of the flip graph. Below, we present

a description of the Kálmán loop as a sequence of edge flips in the flip graph and describe the

result of a single edge flip on a 312-avoiding permutation, thus providing a characterization of the

Kálmán loop action as a geodesic path in the flip graph.

We refer to any triangle with edges made up solely of diagonals Di,i+j for j ≥ 2 as an internal

triangle, and we denote the number of internal triangles in a triangulation Tσ by tσ.

We will say that a diagonal Di,j is (counter)clockwise to another diagonal Di,j′ if the vertex j

is (counter)clockwise to j′. Similarly, Di,j is (counter)clockwise to Di′,j if i is (counter)clockwise to

i′. Given a triangulation Tσ, the following algorithm describes a sequence of n − 1 + tσ edge flips

that produce a rotation of Tσ by 2π
n+2 radians in the counterclockwise direction.

(1) For any diagonals Di,j with no incident diagonal counterclockwise to it, perform an edge

flip at Di,j to get Di−1,j−1. Continue to flip any such diagonals not previously flipped

until no such diagonals remain.

(2) Choose an internal triangle T with a diagonal Di,j not previously flipped and admitting

no incident diagonal Di′,j counterclockwise to it.

Perform an edge flip at Di,j and then flip any diagonals not previously flipped that

have no incident counterclockwise diagonals.

(3) If a diagonal Di′,j′ of T does have incident counterclockwise diagonals, then perform an

edge flip at the counterclockwise-most of these incident diagonals. Flip any diagonals not

previously flipped that now admit no incident counterclockwise diagonals.

(4) Repeat Step (3) until no diagonals counterclockwise to Di′,j′ remain. Perform an edge flip

at Di′,j′ . Once the second and third diagonals of T have been flipped, perform an edge

flip at the initial diagonal previously belonging to T .
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(5) Repeat Steps (3) and (4) starting with the remaining diagonals in the triangle corre-

sponding to the counterclockwise diagonal flipped in Step (3). Continue until all possible

diagonals have been flipped at.

Example 2.4.3. If the triangulation Tσ only contains diagonals of the form Di,j1 , . . . , Di,jn−1,

then the instructions above reduce to simply performing edge flips in reverse order of indexing,

starting with Di,jn−1 and ending with Di,j1. See Figure 2.7 for a more involved example with three

internal triangles.

Remark 2.4.1. Theorem 2.4.1 appears previously in work of Cormier, Dillery, Resh, Ser-

hiyenko, and Whelan in the context of automorphisms of cluster algebras and quiver combinatorics.

The argument below was written without knowledge of their work but follows a similar line of rea-

soning. The interested reader is referred to their paper [CDR+16] for a more detailed discussion

of the topic phrased in terms of maximal green sequences of cluster algebras.

Theorem 2.4.1 (Theorem 1.1, [CDR+16]). The number of edge flips required to realize a

counterclockwise rotation of a triangulation Tσ of the (n+ 2)-gon by 2π
n+2 is n− 1 + tσ. The above

instructions describe a sequence of n− 1 + tσ edge flips realizing such a rotation.

Proof. We first argue that the number of flips needed to rotate a triangulation is at least

n−1+ tσ. Since no diagonal of our original triangulation is a diagonal of our rotated triangulation,

a rotation of the triangulation Tσ requires at least n − 1 edge flips, i.e. as many edge flips as

diagonals of Tσ. However, in an internal triangle, it is not possible to apply a single edge flip to

any of the three sides (or any other diagonal) so that the result is a side of the rotated triangle, or

indeed any diagonal of the rotated triangulation. This is because each of the three sides prevents

the side immediately counterclockwise to it from rotating in a counterclockwise direction. If none

of the internal triangles share a side, then the claim follows. Otherwise, we argue that any two

triangles sharing an edge still require at least two extra edge flips to rotate. The only possible way

we could have fewer is if we could perform an edge flip at the shared side and then rotate the two

triangles with a single edge flip of each of the remaining sides. However, if we apply an edge flip
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Figure 2.7. Counterclockwise rotation of a triangulation of the dodecagon by 10-
1+3=12 edge flips. The red diagonals are diagonals of the rotated triangulation,
while the blue diagonals with a red mark are diagonals that are the result of a
previous edge flip but are not diagonals of the rotated triangulation.

at the shared side, then the remaining sides of the two triangles prevent the opposite pair from
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achieving the desired rotation. Therefore, we must have at least n− 1+ tσ edge flips for a rotation

of 2π
n+2 .

The algorithm given above describes a path in the flip graph of length n − 1 + tσ since we

have two edge flips for a single diagonal in each internal triangle and one for every other diag-

onal. It remains to show that the result is a rotation of the initial triangulation Tσ. In Step

(1), an edge flip at a diagonal Di,j results in the diagonal Di−1,j−1 precisely because there are

no diagonals counterclockwise to it and therefore Di,j is a diagonal of the quadrilateral with sides

Di,j−1, Dj−1,j , Di−1,j , Di−1,i. It follows that each edge flip in Step (1) results in a diagonal of the

rotated triangulation. If the triangulation Tσ has no internal triangles, then applying Step (1) to

each of the n− 1 diagonals results in the desired rotation.

Suppose that Tσ has at least one internal triangle. In Step (2), an edge flip at the diagonal

Di,j in an internal triangle {Di,j , Dj,k, Di,k} with no diagonal counterclockwise to it, results in the

diagonal Dj−1,k. Once the remaining diagonals of the triangle have no incident counterclockwise

diagonals, Step (4) applies an edge flip to them so that Di,k becomes Di−1,j−1 and Dj,k becomes

Dj−1,k−1. Step (4) then flips Dj−1,k to Di−1,k−1. Crucially, the order of edge flips ensures that

during Steps (2)-(4), we strictly decrease the number of counterclockwise incident diagonals to Dj,k

and Di,k at each step. After rotating our initial triangle, we can continue this process with the

next internal triangle.

It remains to show that in Step (2), a diagonal Di,j of an internal triangle with no incident

counterclockwise diagonals Di′,j always exists If Di,j has an incident counterclockwise diagonal not

belonging to an internal triangle, then Step (1) will apply an edge flip at such a diagonal so that it

is no longer counterclockwise to Di,j . If Di,j has an incident counterclockwise diagonal that belongs

to an internal triangle, then there is some counterclockwise-most diagonal Di,j′ also belonging to an

internal triangle. Note that an edge flip at Di,j′ removes one of the diagonals counterclockwise to

Di,j , so we can repeat this argument until we have performed an edge flip at all such diagonals. □

Remark 2.4.2. For triangulations that allow for a choice of ordering edge flips, it follows from

a theorem of Pournin’s [Pou14, Theorem 2] that naively proceeding with any of the equivalent

options will still yield a geodesic. We can reinterpret this in the cluster algebraic setting as the fact

72



that distant mutations commute. In this context, any geodesic path gives the mutations describing

the cluster automorphism induced by the Kálmán loop. □

2.4.3. Edge flips in terms of permutations. In this subsection, we describe an edge flip

at a diagonal Dj,l of the triangulation Tσ in terms of the 312-avoiding permutation σ.

Let σ ∈ Sn be a 312-avoiding permutation with corresponding triangulation given by the clip

sequence bijection. Consider a quadrilateral with sides Di,j , Dj,k, Dk,l and Di,l appearing in the

triangulation Tσ. Figure 2.8 depicts this quadrilateral with two possible diagonals, Di,k and Dj,l

separating it into two triangles. An edge flip at one of these diagonals yields the other.

Figure 2.8. Schematic of an edge flip depicting the triangulation Tσ (left) and the
result of applying an edge flip to Tσ at Di,k (right). The dotted lines represent
arbitrarily many edges of the (n+ 2)-gon and the indices are chosen so that either
1 ≤ i < j < k < l ≤ n+ 1 or j < k < l = n+ 1, i = n+ 2. The labels τ1, τ2, and τ3
represent subwords of σ corresponding to different section of Tσ. If any of the edges
of the quadrilateral lie on the (n+2)-gon, then we consider the corresponding τi to
be the empty word.

As in the orbit size algorithm, we can determine the structure of σ based on the existence of

the edges of the quadrilateral. Specifically, σ admits subwords τ1, τ2, and τ3, where the subword τ1

contains the letters i + 1, . . . , j − 1, the subword τ2 contains letters j + 1, k − 1, and the subword

τ3 contains letters k+1, . . . l− 1. From this construction, we can deduce the effect on σ of a single

edge flip at Di,j .

Theorem 2.4.2. Given a triangulation Tσ containing a quadrilateral ijkl with diagonal Di,k,

the 312-avoiding permutation σ is of the form . . . τ1τ2jτ3k . . . . An edge flip at the diagonal Di,k

yields a permutation of the form . . . τ1τ2τ3kj . . . .
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Proof. The theorem follows from the observation that each τi must contain at least one ear –

a triangle of with edges Di,i+1, Di,i+2, Di+1,i+2 – of the triangulation Tσ. Therefore, under the clip

sequence bijection, the word τi appears before τj if i < j. Moreover, the vertex labels j, k appear

only after the two quadrants immediately adjacent to the vertex have been deleted under the clip

sequence process. Thus, the two 312-avoiding permutations corresponding to the triangulation Tσ

and the triangulation resulting from applying an edge flip are precisely of the form described. □

Example 2.4.4. Consider the permutation σ = 15 4 3 6 2. If we wish to apply an edge flip

to the diagonal D2,6, then we can identify the vertex labels of the relevant quadrilateral as i =

2, j = 3, k = 6, and l = 7. This immediately tells us that τ1 and τ3 are both empty and τ2 is

the subword 5 4. Therefore, Theorem 2.4.2 above implies that we simply interchange j and k to

get the resulting permutation µ(σ) = 1 5 4 6 3 2. See Figure 2.9 for the triangulations Tσ and the

triangulation resulting from the edge flip. □

Figure 2.9. An edge flip at the diagonal D2,6 in the triangulation T1 5 4 3 6 2 yields
the permutation 1 5 4 6 3 2.

Together with Theorem 2.4.1, the above computation gives an explicit combinatorial construction

of Kálmán loop in terms of geodesics paths of the flip graph and the corresponding behavior of

312-avoiding permutations.
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CHAPTER 3

Weave realizability for D-type

In this chapter, we prove Theorem 1.1.2 by showing that each quiver mutation is weave realiz-

able. By definition, a sequence of quiver mutations for Q(Γ0(Dn), {γ(0)i }) is weave realizable if each

quiver mutation in the sequence can be realized as a Legendrian weave mutation at an embedded

homology cycle of the 3-graph. For an alternative construction of the exact Lagrangian fillings of

λ(Dn), as well as λ(En), λ(D̃n), and λ(Ẽn), see [ABL22].

The following definitions relate the algebraic intersections of cycles to geometric intersections

in the context of 3-graphs.

Definition 3.0.1. A 3-graph Γ with associated homology basis {γi}, i ∈ [1, b1(Λ(Γ)] of H1(Λ(Γ);Z)

is sharp at a cycle γj if, for any other cycle γk ∈ {γi}, the geometric intersection number of γj

with γk is equal to the algebraic intersection ⟨γj , γk⟩.

Γ is locally sharp if, for any cycle γ ∈ {γi}, there exists a sequence of Legendrian Surface

Reidemeister moves taking Γ to some other 3-graph Γ′ such that Γ′ is sharp at the corresponding

cycle γ′ ∈ H1(Λ(Γ
′);Z).

A 3-graph Γ with a set of cycles Γ is sharp if Γ is sharp at all γi ∈ {γi}. □

For 3-graphs that are not sharp, it is possible that a sequence of mutations will cause a cycle

to become immersed. This is the only obstruction to weave realizability. Therefore, sharpness is a

desirable property for our 3-graphs, as it simplifies our computations and helps us avoid creating

immersed cycles. We will not be able to ensure sharpness for all Γ(Dn) that arise as part of our

computations, (e.g., see the type III.i normal form in Figure 3.2) but we will be able to ensure that

each of our 3-graphs is locally sharp.
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3.1. Weave Realizability for λ(Dn)

The following result is slightly stronger than the statement of Theorem 1.1.2, as we are able to

show that each 3-graph in our sequence of mutations is locally sharp.

Theorem 3.1.1. Let µv1 , . . . , µvk be a sequence of quiver mutations, with initial quiver

Q(Γ0(Dn), {γ(0)i }). Then, there exists a sequence Γ0(Dn), . . . ,Γk(Dn) of 3-graphs such that

i. Γj−1(Dn) is related to Γj(Dn) by mutation at a cycle γj and by Legendrian Surface Rei-

demeister moves I, II, and III. The cycle γj represents the vertex vj in the intersection

quiver and it is given by one of the cycles in the initial basis {γ(0)i } after mutation and

Reidemeister moves.

ii. Γj(Dn) is sharp at γj.

iii. Γj(Dn) is locally sharp.

iv. The basis of cycles for Γj(Dn), obtained from the initial basis {γ(0)i } by mutation and

Reidemeister moves, consists entirely of short Y-cycles and short I-cycles.

The conditions ii-iv allow us to continue to iterate mutations after applying a small number of

simplifications at each step. Theorem 1.1.2 thus follows from Theorem 3.1.1.

Proof. We proceed by organizing the 3-graphs arising from any sequence of mutations of

Γ0(Dn) into four types, in line with the organization scheme introduced by Vatne for quivers

of Dn-type [Vat10]. Vatne’s classification of quivers in the mutation class of Dn-type uses the

configuration of a certain subquiver to define the different types. Outside of that subquiver, there

are a number of disjoint subquivers of An-type that are referred to as An tail subquivers. We will

refer to the corresponding cycles in the 3-graph as An tail subgraphs, or simply An tails when it

is clear from context whether we are referring to the quiver or the 3-graph. For each type, Vatne

describes the results of quiver mutation at different vertices, which can depend on the existence of

An tail subquivers. See Figures 3.3, 3.9, 3.13, and 3.17 for the four types and their mutations.
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Notation. As mentioned in the previous section, cycles are pictured as colored edges for the

sake of visual clarity. Throughout this section, we denote all of the dark green cycles by γ1, light

green cycles by γ2, orange cycles by γ3, light blue cycles by γ4, pink cycles by γ5, purple cycles by

γ6, and olive cycles by γ7. With this notation, γi will correspond to the vertex labeled by vi in the

quivers given below.

An Tails. We briefly describe the behavior of the An tail subquivers, as given in [Vat10], in

terms of weaves. Any of the n vertices in an An tail subquiver can have valence between 0 and 4.

Cycles in the quiver are oriented with length 3. If a vertex v has valence 3, then two of the edges

form part of a 3-cycle, while the third edge is not part of any 3-cycle. If v has valence 4, then two

of the edges belong to one 3-cycle and the remaining two edges belong to a separate 3-cycle.

Any An tail of the quiver can be represented by a sharp configuration of n I-cycles in the

3-graph. See Figure 3.1 for an identification of I-cycles with quiver vertices of a given valence.

Mutation at any vertex vi in the quiver corresponds to mutation at the I-cycle γi in the 3-graph,

so it is readily verified that mutation preserves the number of I-cycles and requires no application

of Legendrian Surface Reidemeister moves to simplify. The sequences of mutations given in the

remainder of the proof As a consequence, any sequence of An tail mutations is weave realizable,

and a sharp 3-graph remains sharp after mutation at An tail I-cycles that only intersect other An

tail I-cycles.

Figure 3.1. All possible arrangements of I-cycles in an An tail of the 3-graph
corresponding to a given vertex in the An tail subquiver of valence between 0 and
4.
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Normal Forms. For each of the four types of Dn quivers described in [Vat10], we give a set

of specific subgraphs of Γ(Dn), which we refer to as normal forms. These normal forms are pictured

in Figure 3.2. We indicate the possible existence of An tail subgraphs by an unfilled circle. In our

discussion below, we will say that an edge of the 3-graph carries a cycle if it is part of a homology

cycle. We will generally use this terminology to specify which edges cannot carry a cycle.

Figure 3.2. Normal forms labeled by their type. The possible addition of I-cycles
corresponding to An tails of the quiver are represented by unfilled circles appended
to the end of edges that do not intersect the boundary.

For each possible quiver mutation, we describe the possible mutations of the 3-graph and show

that the result matches the quiver type and retains the properties listed in Theorem 3.1.1 above. In

addition, the Legendrian Surface Reidemeister moves we describe ensure that the An tail subgraphs

continue to consist solely of short I-cycles. If the mutation results in a long I-cycle or pair of long

I-cycles connecting our An tail to the rest of the 3-graph, we can simplify by applying a sequence of

n push-throughs to ensure that these are all short I-cycles. It is readily verified that we can always
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do this and that no other simplifications of the An tails are required following any other mutations.

We include An tail cycles only where relevant to the specific mutation. In our computations below,

we generally omit the final steps of applying a series of push-throughs to make any long I or Y-cycles

into short I or Y-cycles. Figure 3.8 provides an example where these push-throughs are shown for

both an I-cycle and a Y-cycle.

In order to simplify the overall presentation of the normal forms and the computations below,

we allow for the following variations in the Type I and Type IV cases. In the Type I case, mutating

at either of the short I-cycles γ1 or γ2 in the Type I normal form produces one of four possible

configurations of the cycles γ1, γ2, and γ3 in a 3-graph corresponding to a Type I quiver. Since

these mutations are readily computed, we simplify our presentation by giving a single normal form

rather than four, and describing the relevant mutations of two of the four possible 3-graphs in

figures 3.4, 3.5, 3.6, and 3.7. The remaining cases can be seen by swapping the cycle(s) to the left

of the short Y-cycle with the cycle(s) to the right of it. This symmetry corresponds to reversing

all of the arrows in the quiver. In general, we will implicitly appeal to similar symmetries of the

normal form 3-graphs to reduce the number of cases we must consider. In the Type IV case, the

edge(s) corresponding to γ3, γ5 or γ6 need not carry a cycle. See the discussion of Type IV quiver

mutations below for a more detailed description.

Type I. We start with 3-graphs, always endowed with a homology basis, whose associated

intersection quivers are a Type I quiver. See Figure 3.3 for the relevant quiver mutations.

i. (Type I to Type I) There are two possible Type I to Type I mutations of 3-graphs depicted

in Figure 3.4 (left) and (right). As shown in Figure 3.4 (left), mutation at γ1 only affects

the sign of the intersection of γ1 with the γ3. This reflects the fact that the corresponding

quiver mutation has only reversed the orientation of the edge between v1 and v3. Mutating

at any other I-cycle is equally straightforward and yields a Type I to Type I mutation as

well.
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Figure 3.3. From top to bottom, two Type I to Type I quiver mutations, Type
I to Type II quiver mutations, and Type I to Type IV quiver mutations. The
arrow labeled by µvi indicates mutation at the vertex vi. Unfilled circles represent
potential An tails. In each line, the first quiver mutation shows the case where v3
is only adjacent to one An tail vertex, while the second quiver mutation shows the
case where v3 is adjacent to two An tail vertices. Note that reversing the direction
of all of the arrows simultaneously before mutating gives additional possible quiver
mutations of the same type.

Figure 3.4. Type I to Type I mutation. Arrows labeled by µ indicate mutation at
a cycle of the same color.

ii. (Type I to Type I) For the second possible Type I to Type I mutation, we proceed as pic-

tured in Figure 3.4 (right). Mutation at γ3 does not create any new additional geometric
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or algebraic intersections. Instead, it takes positive intersections to negative intersections

and vice versa. This is reflected in the quivers pictured underneath the 3-graphs, as the

orientation of edges has reversed under the mutation. As explained above, we could sim-

plify the resulting 3-graph by applying a push-through move to each of the long I-cycles

to get a sharp 3-graph where the homology cycles are made up of a single short Y-cycle

and some number of short I-cycles.

iii. (Type I to Type II) In Figure 3.5 we consider the cases where the Y-cycle γ3 intersects one

I-cycle (top) or two I-cycles (bottom) in the An tail subgraph. Mutation at γ3 introduces

an intersection between γ2 and γ4 that causes the second 3-graph in of each mutation

sequences to no longer be sharp. Applying a push-through to γ2 resolves this intersection

so that the geometric intersection between γ2 and γ4 matches their algebraic intersection.

This simplification ensures that the result of µγ3 is a sharp 3-graph that matches the Type

II normal form. If we compare the mutations in the top and bottom sequences, we can

see that the presence of the An tail cycle γ5 does not affect the computation.

iv. (Type I to Type IV.i) We now consider the first of two Type I to Type IV mutations,

shown in Figure 3.6. Starting with the configuration of cycles at the left of each sequence

and mutating at γ3 causes γ1 and γ2 to cross. Applying a push-through to γ1 or to γ2 (not

pictured) simplifies the resulting intersection and yields a Type IV.i normal form made up

of the cycles γ1, γ2, γ3, and γ4. The sequences on the top and bottom of Figure 3.6 differ

only by the presence of the An tail cycle γ5.

v. (Type I to Type IV.ii) In Figure 3.7, we consider the cases where γ1 intersects one I-cycle

(top) or two I-cycles (bottom) in the An tail subgraph, as we did in the Type I to Type

II case. As in the Type I to Type II case, we must apply a push-through to resolve the

new intersections between that cause the second 3-graph in each sequence to fail to be
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Figure 3.5. Type I to Type II mutations. Legendrian Surface Reidemeister are
moves labeled as in Theorem 2, Figure 1.8.

sharp. When we include both γ4 and γ5 in the sequence on the right, we get two new

intersections after mutating, and therefore require two push-throughs. Note that in the

IV.ii case, we must first apply the push-through to γ1 and γ2 in order to ensure that we

can apply a push-through to any additional cycles in the An tail subgraph. This causes

the Y-cycles of the graph to correspond to different vertices in the quiver than in the Type

IV.i normal form, which is the main reason we distinguish between the normal forms for

Type IV.i and Type IV.ii.
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Figure 3.6. Type I to Type IV.i mutations.

In Figure 3.8 we show how to apply push-throughs to completely simplify the long I- and Y-cycles

pictured in the Type I to Type IV.ii graph. As mentioned above, these push-throughs are identical

to any other computation required to simplify our resulting 3-graphs to a set of short I- and Y-cycles.

The above cases describe all possible mutations of the Type 1 normal form. Each of these mutations

yields a sharp 3-graph with short I-cycles and Y-cycles, as desired.

Type II. We now consider mutations of our Type II normal form. See Figure 3.9 for the

relevant quivers. As shown in the figure, performing a quiver mutation at the 2-valent vertices

labeled by v1 or v2 yields a Type III quiver, while a quiver mutation at the vertices labeled v3 or
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Figure 3.7. Type I to Type IV.ii mutations.

v4 yields either another Type II quiver or a Type I quiver, depending on the intersection of v3 or

v4 with any An tail subquivers.

i. (Type II to Type I) We first consider the sequence of 3-graphs pictured in Figure 3.10.

Mutation at γ4 results in a new geometric intersection between γ2 and γ3 even though their

algebraic intersection is zero. We can resolve this by applying a reverse push-through at
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Figure 3.8. Push-through examples. The first push-through move simplifies the
long I-cycle labeled γ1, while the second simplifies the long Y-cycle labeled γ4.

Figure 3.9. From top to bottom, Type II to Type I, Type II to Type II, and Type
II to Type III quiver mutations.

the trivalent vertex where γ2 and γ3 meet. The resulting 3-graph is sharp, as γ2 and γ3

no longer have any geometric intersection. This computation is identical if γ3 were to

intersect a single An tail cycle and we mutated at γ3 instead. Note that here we require

the red edge adjacent labeled e to not carry a cycle, as specified by our normal form.
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Figure 3.10. Type II to Type I mutations. The red e labels an edge in the 3-graph
that does not carry a cycle.

Figure 3.11. Type II to Type II mutations.

ii. (Type II to Type II) We now consider the sequence shown in Figure 3.11. After mutating

at γ4, we have the same intersection between γ2 and γ3 as in the previous case. We again

resolve this intersection by applying a reverse push-through at the same trivalent vertex.

In this case, we also have an intersection between γ1 and γ6, which we resolve via push-

through of γ1. As a result, γ6 becomes a Y-cycle, and the Type II normal form is now

made up of the cycles γ1, γ2, γ4, and γ6, while γ3 becomes an An tail cycle.

iii. (Type II to Type III.i) Mutation at γ1 or γ2 in the Type II normal form yields either of

the Type III normal forms. In the sequence on the left of Figure 3.12, mutation at γ2 leads
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Figure 3.12. Type II to Type III mutations.

to a geometric intersection between γ3 and γ4 at two trivalent vertices. Since the signs

of these two intersections differ, the algebraic intersection ⟨γ3, γ4⟩ is zero, so the resulting

3-graph is not sharp. However, it is sharp at γ1 and γ2, and applying a flop to the 3-graph

removes the geometric intersection between γ3 and γ4 at the cost of introducing the same

intersection between γ1 and γ2. Therefore, applying the flop does not make the 3-graph

sharp, but it does show that the 3-graph resulting from our mutation is locally sharp at

every cycle.

iv. (Type II to Type III.ii) In the sequence on the right of Figure 3.12, mutation at γ1 yields

a sharp 3-graph that matches the Type III.ii normal form.

Type III: Figure 3.13 illustrates the Type III quiver mutations. Figures 3.14, 3.15, and 3.16

depict the corresponding Legendrian mutations of the Type III normal forms.

i. (Type III.i to Type II) We first consider the sequence of 3-graphs in Figure 3.14 (left).

Mutating at γ1 or γ2 immediately yields a Type II normal form. Mutating at γ1 and γ2

in succession yields a Type III.ii normal form. Note that if the 3-graph were not sharp

at γ1 or γ2 we would first need to apply a flop. We can always apply this move because

the 3-graph is locally sharp at each of its cycles. See the Type III.i to Type IV.i subcase
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Figure 3.13. Type III to Type II quiver mutations (top) and Type III to Type IV
quiver mutations (bottom).

Figure 3.14. Type III.i to Type II mutations (left) and Type III.ii to Type II
mutations (right).

below for an example where we demonstrate this move.

ii. (Type III.ii to Type II) In the sequence on the right of Figure 3.14, mutation at either γ1

or γ2 yields a Type II normal form. Mutation at γ1 and γ2 in succession yields a Type

III.i normal form. Therefore, applying these two moves in succession can take us between

both of our Type III normal forms.
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Figure 3.15. Type III.i to Type IV mutations.

iii. (Type III.i to Type IV) We now consider the sequence of 3-graphs in Figure 3.15. Since

the initial 3-graph is not sharp at γ4, we must first apply a flop before mutating. After

applying this flop, γ4 is a short I-cycle and the 3-graph is sharp at γ4. Mutating at γ4

then yields a Type IV.i normal form. The short I-cycles γ5 and γ6 are included to indicate

where any An tail cycles would be sent under this mutation.

Figure 3.16. Type III.ii to Type IV mutations.

iv. (Type III.ii to Type IV) In Figure 3.16, mutation at γ4 causes γ1 and γ2 to cross while

still intersecting γ3 and γ4 at either end. We resolve this by first applying a push-through
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to γ2 and then applying a reverse push-through to the trivalent vertex where γ1 and γ3

intersect a red edge. This results in a sharp 3-graph with γ1, γ2, γ3, and γ4 making up

the Type IV normal form. We again include γ5 and γ6 as cycles belonging to a poten-

tial An tail subgraph in order to show where the An tail cycles are sent under this mutation.

Type IV: Figure 3.17 illustrates all of the relevant Type IV quivers and their mutations. In

general, the edges of a Type IV quiver have the form of a single k−cycle with the possible existence

of 3-cycles or outward-pointing “spikes” at any of the edges along the k−cycle. At the tip of each

of these spikes is a possible An tail subquiver. We will refer to a vertex at the tip of any of the

spikes (e.g., the vertex v3 in Figure 3.17) as a spike vertex and any vertex along the k−cycle will be

referred to as a k−cycle vertex. A homology cycle corresponding to a spike vertex will be referred

to as a spike cycle. Mutating at a spike vertex increases the length of the internal k−cycle by one,

while mutating at a k−cycle vertex decreases the length by 1, so long as k > 3. Figures 3.18, 3.19,

3.20, and 3.21 illustrate the corresponding mutations of 3-graphs for Type IV to Type I and Type

IV to Type III when k = 3.

i. (Type IV.i to Type I) We first consider the sequence of 3-graphs in Figure 3.18. Mutation

at γ1 causes γ2 and γ4 to cross. Application of a reverse push-through at the trivalent

vertex where γ2 and γ4 intersect a red edge removes this crossing and yields a Type I

normal form where γ1 is the sole Y-cycle.

ii. (Type IV.ii to Type I) Mutation at γ3 in Figure 3.19 yields a 3-graph with geometric

intersections between γ1 and γ5 and between γ2 and γ4. The application of reverse push-

throughs at the trivalent vertex intersections of γ1 with γ5 and γ2 with γ4 removes these

geometric intersections, resulting in a Type I normal form where γ1 is the sole Y-cycle.

We also apply a candy twist (Legendrian Surface Reidemeister move I) to simplify the
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Figure 3.17. From top to bottom, Type IV to Type I, Type IV to Type III, Type
IV spike vertex (left) and cycle vertex (right) quiver mutations. The presence or
absence of the An tail vertices v6 and v7 in the quiver mutation depicted in the first
column, third row correspond to the presence or absence of spikes appearing in the
resulting quiver.

Figure 3.18. Type IV.i to Type I mutations.

intersection at the top of the resulting 3-graph.
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Figure 3.19. Type IV.ii to Type I mutations.

Figure 3.20. Type IV.i to Type III mutations.

iii. (Type IV.i to Type III) We now consider the two sequences of 3-graphs in Figure 3.20.

Mutation at any of γ1, γ2, γ3, or γ4 in the Type IV.i normal form yields a Type III normal
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form. Specifically, mutation at γ4 yields a Type III.i normal form that requires no sim-

plification, while mutation at γ3 (not pictured) yields a Type III.ii normal form that also

requires no simplification. The computation for mutation at γ1 is pictured in the sequence

on the right and is identical to the computation for mutation at γ2. The first step of the

simplification is the same as the Type IV.i to Type I subcase described above. However,

we require the application of an additional push-through to remove the geometric intersec-

tion between γ2 and γ5. This makes γ5 into a Y-cycle and results in a Type III normal form.

Figure 3.21. Type IV.ii to Type III mutations.

iv. (Type IV.ii to Type III) Mutation at γ1 in our Type IV.ii normal form, depicted in Figure

3.21, results in a pair of geometric intersections between γ3 and γ5. Application of a flop

removes these geometric intersections and results in a sharp 3-graph with Y-cycles γ1 and

γ4, which matches our Type III.ii normal form. Note that the computations for mutations

involving a Type IV.ii 3-graph with a single spike cycle are identical.

The remaining three subcases are all Type IV to Type IV mutations.

v. (Type IV.ii to Type IV) Figure 3.22 depicts mutation of a Type IV.ii normal form at a

spike cycle. Mutating at γ5 results in an additional geometric intersection between γ1 and
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γ3. We first apply a reverse push-through at the trivalent vertex where γ1, γ2 and γ3 meet.

This introduces an additional geometric intersection between γ2 and γ3, that we resolve

by applying a push-through to γ3. Application of a reverse push-through to the trivalent

vertex where γ1 and γ5 intersect a red edge resolves the final geometric intersection be-

tween γ1 and γ5. The Y-cycles of the resulting 3-graph correspond to k−cycle vertices

of the quiver. As shown below, none of the other Type IV to Type IV mutations result

in Y-cycles corresponding to spike vertices. Therefore, assuming we have simplified after

each of our mutations in the manner described above, the only possible way a Type IV.ii

3-graph arises is by mutating from the initial Type I graphs in Figure 3.7. Hence, all other

Type IV 3-graphs only have Y-cycles corresponding to k−cycle vertices in the quiver. The

computations involving a Type IV.ii 3-graph with a single spike cycle are again identical.

Figure 3.22. Type IV.ii graph mutation at a spike cycle.

vi. (Type IV to Type IV) Figure 3.23 depicts Type IV to Type IV mutations when the length

of the quiver k−cycle is greater than 3. When mutating at a homology cycle correspond-

ing to a k−cycle vertex of the quiver, we have two possibilities. Figure 3.23 (top) shows

the case where γ4 intersects another Y-cycle γ2, which corresponds to a k−cycle vertex in

the quiver. Figure 3.23 (bottom) considers the case where γ4 only intersects I-cycles. In

both of these cases we must apply a reverse push-through to the trivalent vertex where γ3

and γ4 intersect a red edge in order to simplify the 3-graph. This particular simplification

requires that neither of the two edges adjacent to the leftmost edge of γ4 carry a cycle
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before we mutate. A similar computation (not pictured) involving the Y-cycle γ2 would

also require that neither of the two edges adjacent to the bottommost edge of γ2 carry a

cycle. Crucially, our computations show that Type IV to Type IV mutation preserve this

property, i.e., that both of the Y-cycles have an edge that is adjacent to a pair of edges

which do not carry a cycle. When k = 4, the resulting 3-graph resulting from the compu-

tations in the top line will have a short I-cycle adjacent to γ2 and γ3, while the 3-graph

resulting from the computations in the bottom line will have a short Y-cycle adjacent to

γ2 and γ3.

Figure 3.23. Type IV to Type IV mutations at homology cycles corresponding to
k−cycle vertices in the quiver. Mutating at γ2, γ3, or γ4 (corresponding to k−cycle
vertices in the quiver) in the 3-graphs on the left decreases the length of the k−cycle
in the quiver by 1.

vii. (Type IV to Type IV) Figure 3.24 depicts mutation at a spike cycle. Since we have already

discussed the Type IV.ii spike cycle subcase above, we need only consider the case where
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Figure 3.24. Type IV to Type IV mutations at spike cycles. Mutating at the spike
cycles γ1 or γ5 in the 3-graphs on the left increases the length of the k−cycle in the
intersection quiver by 1.

each of the spike cycles is a short I-cycle. γ7 and γ6 are included to help indicate where

An tail cycles are sent under this mutation. The computation for mutating at a spike

edge for Type IV.i (i.e. the k = 3 case) is identical to the k > 3 case. We have omitted

the case where each of the cycles involved in our mutation is an I-cycle, but the compu-

tation is again a straightforward mutation of a single I-cycle that requires no simplification.

In each of the Type IV to Type IV subcases above, mutating at a Y-cycle or an I-cycle and

applying the simplifications as shown preserves the number of Y-cycles in our graph. Therefore,

our computations match the normal form we gave in Figure 3.2 with k − 2 short I-cycles in the

normal form 3-graph not belonging to any An tail subgraphs.

This completes our classification of the mutations of normal forms. In each case, we have

produced a 3-graph of the correct normal form that is locally sharp and made up of short Y-cycles

and I-cycles. Thus, any sequence of quiver mutations for the intersection quiver Q(Γ0(Dn), {γ(0)i })

of our initial Γ0(Dn) is weave realizable. Hence, given any sequence of quiver mutations, we can

apply a sequence of Legendrian mutations to our original 3-graph to arrive at a 3-graph with

intersection quiver given by applying that sequence of quiver mutations to Q(Γ0(Dn), {γ(0)i }), as

desired.

□
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Having proven weave realizability for Γ0(Dn), we conclude with a proof of the following corollary.

Corollary 3.1.1. Every cluster chart of the moduli of microlocal rank-1 sheaves C(Γ0(Dn)) is

induced by at least one embedded exact Lagrangian filling of λ(Dn) ⊂ (S3, ξst). In particular, there

exist at least (3n − 2)Cn−1 exact Lagrangian fillings of the link λ(Dn) up to Hamiltonian isotopy,

where Cn denotes the nth Catalan number.

3.1.1. Proof of Corollary 3.1.1. We take our initial cluster seed in C(Γ) to be the cluster

seed associated to Γ0(Dn). The cluster variables in this initial seed exactly correspond to the mi-

crolocal monodromies along each of the homology cycles of the initial basis {γ(0)i }. The intersection

quiver Q(Γ0(Dn), {γ0i }) is the Dn Dynkin diagram and thus the cluster seed is Dn-type. By def-

inition, any other cluster seed in the Dn-type cluster algebra is obtained by a sequence of quiver

mutations starting with the quiver Q(Γ0(Dn), {γ0i }) and its associated cluster variables. Theorem

1.1.2 implies that any quiver mutation of Q(Γ0(Dn), {γ0i }) can be realized by a Legendrian muta-

tion in Λ(Γ0(Dn)), so we have proven the first part of the corollary. The remaining part of the

corollary follows from the fact that the Dn-type cluster algebra is known to be of finite mutation

type with (3n− 2)Cn−1 distinct cluster seeds. □
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CHAPTER 4

Legendrian loops and mapping class groups

In this chapter, we investigate Legendrian loops as elements of cluster modular groups. While

the granular data of the orbital structure of exact Lagrangian fillings under the action of a Legen-

drian loop is not as accessible beyond the case of λ(An), we are able to give a contact-geometric

interpretation of known results from the cluster literature to build on the initial work of Casals

and Gao. In addition to realizing specific group presentations, we also gain insights into various

Legendrian loop actions via Ishibashi’s work comparing cluster modular groups and mapping class

groups. In particular, we apply a cluster Nielsen-Thurston classification for cluster modular group

elements to our study of Legendrian loops. This approach yields new techniques for showing that

a Legendrian loops produces infinitely many fillings by studying fixed points of its induced action

on the positive real part of the cluster variety and by understanding a process known as cluster

reduction. The richness of the theory of mapping class groups promises further applications for

this approach.

4.1. Legendrian loops as generators of cluster modular groups

In this section, we give presentations for cluster modular groups and finite-index subgroups of

Legendrian links corresponding to a subset of simply-laced finite, affine, and extended affine cluster

types. We start by describing the quiver combinatorics used in [KG21] to give presentations for

cluster modular groups of affine and extended affine types. We then define plabic fences, which

we will use to compute sequences of mutations associated to nearly all of the Legendrian loops we

consider. With this combinatorial approach, we are able to show that the induced action of our

Legendrian loops matches with the presentations of cluster modular groups given.

4.1.1. Presentations of cluster modular groups via Tn quivers. In [KG21], the authors

give a particular presentation for quivers that are associated to affine and extended affine cluster

algebras. They use this presentation to explicitly describe the generators of known cluster modular
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v1a2a3an1

b2b3bn2 v0 c2 c3 cn3

k2 k3 knk

Figure 4.1. A Tn1,...nk
quiver. Deleting the vertex v0 results in a quiver with

central vertex v1 and tails of length ni − 1 (not including the vertex v1) where the
vertices alternate as either sources or sinks for the two incident edges.

groups and in some cases derive previously unknown cluster modular groups. We make use of

their work by showing that the initial quivers from plabic fences for affine and extended affine type

yield nearly identical combinatorial presentations. We begin by defining Kaufman and Greenberg’s

quivers for simply-laced type.1

Definition 4.1.1. Given a vector n = (n1, . . . , nk) of natural numbers ni ≥ 2, a Tn quiver is

a quiver with a pair of special vertices v1 and v0 and a collection of k ‘tails’ of vertices of length

n1, . . . , nk, as pictured in Figure 4.1.2

In this work, we will always consider the case of k = 3. The particular cluster types we

consider are listed in Tables 4.1 and 4.2 along with the corresponding Tn quiver. Tn quivers admit

a particular class of quiver automorphisms, which we will denote τ1, . . . , τk. Recall that we denote

a cluster automorphism by a tuple with the first entry a sequence of quiver mutations and the

second entry a permutation describing the relabeling of the quiver vertices. For a tail of length ni

in Tn, we denote iodd = {ij |3 ≤ j ≤ ni, j odd} and ieven{ij |3 ≤ j ≤ ni, j even}. The automorphism

τi is then given by

τi = (µioddµievenµi2µv0µv1 , (i2 i0 i1))

where µiodd denotes a sequence of mutations starting at ij for j < ni the largest number in iodd

and ending at the vertex i3. The mutation sequence µieven is defined analogously. Denote by Γτ the

subgroup of G generated by τ1, . . . , τk. In addition to the τi, we also have graph automorphisms

σ ∈ Aut(Tn) acting on Γτ by swapping tails i and j of length ni = nj . The utility of the Tn quiver

construction is demonstrated by the following theorem.

1Kaufman and Greenberg also use folding to obtain quivers corresponding to non-simply-laced type, but contact-
geometric interpretation of cluster automorphisms in this setting is not as clear.
2The quiver pictured in Figure 4.1 is actually opposite to the one considered in [KG21]. The pictured orientation is
chosen to match our previous conventions.
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Theorem 4.1.1 ( [KG21], Theorems 5.2 and 6.1). For a cluster algebra A of affine type,

G(A)) ∼= Γτ ⋊Aut(Tn). For a cluster algebra A of extended affine type, Γτ ⋊Aut(Tn) is isomorphic

to a finite index subgroup of G(A).

Kaufman and Greenberg also conjecture that G(A)) ∼= Γτ ⋊Aut(Tn) for cluster algebras A that

admit a Tn quiver and are not of extended affine type [KG21, Conjecture 4.7].

We now give a more explicit description of the group structure of Γτ . The following algebraic

statement will have a geometric interpretation in terms of Legendrian loops.

Theorem 4.1.2 (Theorem 4.11, [KG21]). Γτ is an abelian group with relations τni
i = τ

nj

j .

Denote by γ := τni
i . By the above theorem, any choice of i results in a well-defined element of

Γτ . The Donaldson-Thomas transformation can then be defined by DT = γ2
∏k

i=1 τiγ
−1 [KG21,

Theorem 4.14]. For the cluster algebras we investigate here, this simplifies to DT = τ1τ2τ3γ
−1.

4.1.2. Legendrian loops in affine and extended affine type. In this subsection, we ex-

plain how to geometrically realize Kaufman and Greenberg’s presentation of cluster modular groups

for affine type. We introduce plabic fences as a combinatorial means of obtaining a sequence of

mutations induced by a Legendrian loop. We then describe fronts with initial quivers that are

mutation equivalent to Tn quivers and Legendrian loops that induce automorphisms conjugate to

the τi generators of Γτ .

4.1.2.1. Plabic fences. Due to the variety of weave equivalence moves, it is often difficult to

determine a sequence of mutations that induces the same cluster automorphism as a Legendrian

loop. Even when we can compute the sequence of mutations via other combinatorial means, it

can be challenging to show that the mutation sequence in the weave agrees with the Legendrian

loops. For example, see Appendix A for a somewhat involved computation of a short mutation

sequence induced by a Legendrian loop. Therefore, in order to determine a sequence of mutations

corresponding to the induced action of most of the Legendrian loops we consider, we require a com-

binatorial way to relate quivers to weaves. In An-type, we were able to understand the Kálmán loop

via triangulations dual to 2-weaves, but arbitrary cluster types do not admit a similar construction.

Instead, we use the combinatorics of plabic graphs.
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Plabic graphs are a general combinatorial object related to cluster theory and were first studied

by Postnikov [Pos06]. The term ‘plabic fence’ that we use for the particular graphs we work with

was coined in [FPST22] and refers to a particular form of plabic graph, as we describe below. We

will follow the recipe of [CW22] for producing a Legendrian weave from a plabic fence and use the

graph to encode the combinatorics of Legendrian loop mutations.

Definition 4.1.2. A plabic fence is a planar graph with univalent or trivalent vertices colored

either black or white constructed as follows:

(1) Stack n horizontal lines of the same length on top of each other, each starting with a white

vertex on the left and ending with a black vertex on the right.

(2) Add vertical edges between adjacent pairs of horizontal lines with trivalent vertices where

they meet colored so that each endpoint of the vertical edge is a different color.

From the plabic fence G, we can extract a quiver QG as follows:

(1) Assign a mutable vertex to each face of G.

(2) For every edge e ∈ G connecting two faces, add an arrow between the corresponding

vertices oriented so that the white endpoint of e is to the right of the edge when traveling

in the direction of orientation.

Given a plabic fence G, we can associate a Legendrian link λG and an initial Legendrian weave

surface with boundary λG, following the recipe from [CW22, Sections 2 and 3]. To describe the

process for obtaining a positive braid β from G such that λG ∼= λ(β), first label the horizontal lines

from bottom to top with the numbers 1 through n and label the vertical edges between horizontal

lines i and i+1 by σi. We refer to a vertical edge by the color of its top vertex, so that a vertical edge

between lines i and i+1 is white if the vertex on line i is colored white. In the front projection, one

should think of the black vertical edges as denoting crossings appearing above cusps, while white

vertical edges correspond to crossings below cusps. More precisely, from G, we obtain braid words

β1 from white vertical edges and β2 from black vertical edges by scanning G from left to right.

The Legendrian link is Legendrian isotopic to the rainbow closure of the braid β1β
◦
2 or equivalently

β◦2β1 where β◦2 is obtained from β2 by reading the braid word from right to left and replacing σi

with σn−i for all i.
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Figure 4.2. Local move of a plabic fence corresponding to the braid move exchang-
ing σiσi+1σi and σi+1σiσi+1.

From λG, Casals andWeng construct an initial weave Λ(G) [CW22, Definition 3.24]. By [CL22,

Theorem 1.2], the combinatorial data of the seed corresponding to the plabic graph G agrees with

this choice of initial weave Λ(G). More precisely, the Legendrian λG given here is Legendrian isotopic

to the Legendrian obtained as the conormal lift of zig-zag strands and the conjugate Lagrangian

surface associated to an initial seed is Hamiltonian isotopic to the Lagrangian projection of the

initial weave. As a result, the intersection quiver of Λ(G) agrees with the initial quiver QG coming

from the plabic fence.

4.1.2.2. Mutation sequences induced by Legendrian loops. In order to compute the sequence of

mutations induced by Legendrian loops we decompose our Legendrian loops into a series of simple

Legendrian isotopies and describe how to realize them in the plabic fence. The first Legendrian

isotopy we consider is a Reidemeister III move. In terms of our braid, this swaps σiσi+1σi and

σi+1σiσi+1, so the plabic fences Gβ and Gβ′ corresponding to the two braid words β and β′ differ

by the local move pictured in Figure 4.2. Combinatorially, we can see that QGβ
differs from QGβ′

by a mutation at the vertex corresponding to the face. In the sheaf moduli, the Legendrian isotopy

induces a map betweenM1(Λ(Gβ)) andM1(Λ(Gβ′) that is an isomorphism, but generally not an

automorphism. The following lemma states that this isomorphism agrees with cluster mutation.

Lemma 4.1.1 (Proposition 6.10, [CLSBW23]). The initial seeds ofM1(Λ(Gβ) andM1(Λ(Gβ′)

obtained by a left-to-right pinching sequence are related by mutation at the cluster variable corre-

sponding to the face in the plabic fence.

In addition to the Reidemeister III move, we also perform a sequence of isotopies corresponding

to rotating the leftmost crossing of our braid clockwise around our Legendrian link until it becomes

the rightmost crossing. This modifies the braid word by conjugation. In a plabic fence with all
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Figure 4.3. A square move in a plabic fence, corresponding to mutation at the
vertex represented by the face.

white vertical edges, we can interpret this isotopy as flipping the leftmost white edge to black,

moving it past all of the white vertical edges in the row to its right, and then flipping it back to

white. Each time we move a black edge past a white one, we perform the local move pictured in

Figure 4.3, known as a square move. As with the Reidemeister III move, the local move induces

an isomorphism between sheaf moduli that corresponds to a cluster mutation between the initial

seeds.

Lemma 4.1.2. [CW22, Section 5.3] The initial seeds of M1(Λ(G)) and M1(Λ(G′)) corre-

sponding to plabic fences G and G′ related by the local move pictured in Figure 4.3 are related by

mutation at the cluster variable corresponding to the face in the plabic fence.

Together, Lemmas 4.1.1 and 4.1.2 give a sequence of mutations corresponding to a Legendrian

loop. We will use this to connect Legendrian loops to known descriptions of cluster automorphisms.

One automorphism of particular importance, the Donaldson-Thomas transformation (DT) is

not known to be induced by a Legendrian loop. Instead, Casals and Weng describe a Legendrian

isotopy and a strict contactomorphism that induce DT [CW22, Section 5]. This procedure is

roughly described as rotating all of the crossings from the strands below the cusps to the strands

above the cusps and then performing the strict contactomorphism x 7→ −x, z 7→ −z. Starting with

a plabic fence of all white edges, the first component of DT can be combinatorially realized by

repeatedly flipping the leftmost white edge to black and moving it past the remaining white edges

in its row by square moves until it becomes the leftmost black edge. The contactomorphism then

takes all black edges to white edges, so that we return to the initial plabic fence. Recording the

square moves involved in this process gives an explicit mutation sequence.

Remark 4.1.1. In order to match the conventions of Legendrian loops rotating crossings in a

clockwise orientation, our description above is reversed from that of [CW22]. The automorphism

we describe above actually corresponds to DT−1.
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Figure 4.4. Plabic fence G corresponding to λ(D̃n). The dots correspond to n− 6
additional vertical edges

4.1.2.3. Legendrian loops conjugate to τi. Using Lemmas 4.1.1 and 4.1.2, we can compute an

explicit mutation sequence for the families of Legendrian loops we are interested in. This compu-

tation, together with work of Kaufman and Greenberg on combinatorially understanding cluster

modular groups of affine and extended affine types will allow us to describe cluster automorphisms

as Legendrian loops.

Let us define a family of positive braids βk,n1,n2 by

βk,n1,n2 := (σ2σ1σ3σ2)
2kσn1−2

1 σn2−2
3

for k, n1, n2 ∈ N and n1, n2 ≥ 2. For Legendrian links corresponding to affine and extended affine

type cluster algebras, we will require k = 1 and n1 and n2 agreeing with the corresponding values

for Tn quivers. See Tables 4.1 and 4.2 below. Denote by Λ(k, n1, n2) the initial weave filling of

λ(βk,n1,n2).

Lemma 4.1.3. The intersection quiver QΛ(1,n1,n2) is mutation equivalent to Tn1,n2,2.

Proof. A plabic fence corresponding to λ(β1,n1,n2) can be obtained from the plabic fence in

Figure 4.4 by the addition of n2 − 2 vertical edges between the top two horizontal lines. We then

get an initial quiver by adding n2 − 2 vertices to the quiver pictured in Figure 4.4 in a manner

identical to the tail labeled by vertices v6, . . . , vn. Mutating at vertices v3 and v4 of QΛ(1,n1,n2)

yields a Tn1,n2,2 quiver up to the alternating behavior of the arrows in the tails. This alternation

can be obtained by observing that the tails are A−type subquivers. □
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Figure 4.5. The Legendrian loop ϑ1 for the braid β1,n1,n2 pictured in J1S1. The
loop takes one of the n1 − 2 crossings appearing in the box and drags it around the
front, following the path of the dotted arrows.

To present Legendrian loops of λ(βk,n1,n2), we will consider the Legendrian isotopic link given

as the (-1) closure of the braid (σ2σ1σ3σ2)
2kσn1−2

1 σn2−2
3 σ2

1σ
2
3(σ2σ1σ3σ2)

2. Note that in either front,

the Legendrian link λ(βk,n1,n2) can be described as a pair of Legendrian (2, n) torus links λ1 and

λ2 that are linked together in a nontrivial way. With this description, we immediately obtain two

ϑ loops, the first, defined by commuting a single σ1 crossing around λ1 and the second defined by

commuting a single σ3 crossing around λ2. See Figure 4.5 for an example. Note that when ni = 2,

ϑi can still be identified because of our choice of braid word for ∆2.

The following result geometrically realizes the algebraic statements of Theorem 4.1.2. In the

statement below, we use ∼= to denote Hamiltonian isotopy of traces of Legendrian loops fixing their

boundaries.

Lemma 4.1.4. The Legendrian loops ϑ1 and ϑ2 satisfy ϑ1 ◦ ϑ2
∼= ϑ2 ◦ ϑ1 and ϑn1

1
∼= ϑn2

2 .

Proof. Consider the trace of the isotopy ϑ2 ◦ ϑ1. This exact Lagrangian cobordism can be

described by first performing ϑ1 during time t1 and then performing ϑ2 during time t2 for 0 ≤ t1 <
1
2

and 1
2 ≤ t2 ≤ 1. The isotopy required for commutativity is simply the isotopy defined by gradually

increasing t1 and gradually decreasing t2.

The second part of the lemma follows from our description of the Legendrian loops ϑ1 and ϑ2

as being performed on crossings of separate copies of Legendrian (2, n) torus links. The loop ϑn1
1

can then be understood as passing all of the crossings of λ1 around the link λ2, which is equivalent

to passing all of the crossings of λ2 around the link λ1. □

We now show that our description of Legendrian loops coincides with Γτ .
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Figure 4.6. A pair of tagged triangulations of D2
n−2,0,0. The triangulation on

the left corresponds to the quiver Tn−2,2,2, while the triangulation on the right
corresponds to the quiver G(λ(1, n1, n2)) and is obtained from the triangulation on
the left by mutation at edges labeled 3 and 4. The dotted lines on the left represent
a zig-zag pattern of n− 6 edges, while the dotted lines on the right represent n− 6
edges all sharing the top vertex.

Lemma 4.1.5. For any Legendrian λ(β1,n1,n2), the cluster automorphisms ϑ̃1 and ϑ̃2 induced by

the corresponding Legendrian loops are conjugate to τ1 and τ2.

Proof. We first establish the lemma in the case of λ(D̃n) ∼= λ(β1,n−2,2) using the combinatorics

of tagged triangulations of a twice-punctured disk. We then leverage these combinatorics for the

case of n2 > 2.

Consider the plabic fence G(D̃n) depicted in Figure 4.4, corresponding to the Legendrian

link λ(D̃n) ∼= λ1,n−2,2. The sequence of mutations corresponding to ϑ1 can be determined from

G(D̃n) using Lemmas 4.1.1 and 4.1.2. In particular, ϑ1 induces the mutation sequence ϑ̃1 =

(5 0 3 1 1 4 6 . . . n, (1 4 5 0 3)) and ϑ2 induces the mutation sequence ϑ̃2 = (1 4, (1 4 0 3)). This is

shown by explicit computation in the initial weave filling Λ(G(D̃n)). See Appendix A for the

computation. Note that the use of Legendrian weaves for this computation appears to be nec-

essary, as the crossings involved in the Legendrian loop ϑ2 do not appear in the rainbow closure

λ((σ2σ1σ3σ2)
2σn−3

1 ) and therefore are not captured by the combinatorics of the plabic fence.
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Figure 4.7. Sequence of mutations induced by the Legendrian loop ϑ1 in the tagged
triangulation corresponding to QG(D̃n)

. The second triangulation is obtained from

the first by mutating at edges labeled 5, 0, and 3 in order. The third triangulation
is obtained from the second performing the remaining mutations of ϑ1.

Figure 4.6 depicts two tagged triangulations of a twice-punctured disk. The triangulation T1

(left) corresponds to a quiver identical to QG(D̃n)
, while the triangulation T2 (right) corresponds

to a quiver identical to Tn−2,2,2. The generator τ1 corresponds to a rotation of the boundary of

the disk by 2π/n [KG21, Lemma B.3]. Therefore, to show that τ1 and ϑ̃1 are conjugate, we need

to show that ϑ̃1 also corresponds to a rotation of the boundary of the disk by 2π/n. This is done

explicitly in Figure 4.7.

Similar to the case of τ1, the generator τ2 corresponds to a half twist about the two punctures

in the triangulation T2. Figure 4.8 shows the computations for ϑ̃2.

For n2 > 2, we observe that the sequence of mutations induced by ϑ̃1 or ϑ̃2 fixes the quiver

vertices corresponding to the other tail. Freezing or deleting these vertices therefore yields a D̃n

quiver and we can simply apply our above reasoning to show that cluster automorphisms are

conjugate. □

4.1.2.4. Proof of Theorem 1.1.4. We are now able to give a proof of Theorem 1.1.4, restated

below for additional clarity.
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Figure 4.8. Sequence of mutations induced by the Legendrian loop ϑ2 in the tagged
triangulation corresponding to QG(D̃n)

.

Theorem 4.1.3. For λ ∈ H, the cluster modular group ofM1(λ) is virtually generated by Leg-

endrian loops. Moreover, if λ ∈ H′, the cluster modular group ofM1(λ) is generated by Legendrian

loops and DT.

We break the proof into three cases: (1) affine type (2) extended affine type, and (3) finite type.

Proof. (1) Recall that the cluster modular group G of affine type cluster algebras is

isomorphic to Γτ ⋊Aut(Tn) and that Γτ is generated by τ1, τ2, and τ3. By Lemma 4.1.5,

we can realize τ1 and τ2 as Legendrian loops, and the relation τn1
1 = τn2

2 = τn3
3 implies

that the subgroup generated by τ1 and τ2 is a finite index subgroup of G.

In the case of Ẽ7 or Ẽ8, an inspection of the quiver Tn verifies that that Aut(Tn) is

trivial. Therefore, we need only show that we can generate Γτ by Legendrian loops and DT.

By [KG21, Theorem 4.14], we have that DT = τ1τ2τ3γ
−1. Solving for τ3 = DT τ−11 τ−12 γ

therefore gives the remaining generator of Γτ .

(2) By [CG22, Theorems 1.1 and 1.3], we have Legendrian loops generating PSL2(Z) and

MCG(S2, 4) subgroups of G(M1(λ(3, 6))) and G(M1(λ(4, 4)), respectively. Fraser shows

that these subgroups are isomorphic to the quotient G/Z(G). The center of each of these

cluster modular groups is generated by DT. However, Kaufman and Greenberg identify a

quiver automorphism σ ∈ Aut(T4,4,2) corresponding to the case of λ(4, 4). Therefore, the
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Legendrian loops of Casals and Gao virtually generate the cluster modular group in this

case.

(3) For λ(E6), λ(E7), λ(E8), the cluster modular group is generated solely by DT, so the

statement follows immediately from [CW22, Theorem 5.8].

For λ(An), the Kálmán loop has order n + 3 and generates G(M1(λ(An))), as stated

in Corollary 2.3.2.

v2

v1

v4 vnv3

Figure 4.9. Plabic fence G(Dn) with corresponding quiver. The dots represent
n− 5 additional vertical edges.

For λ(Dn), we use the combinatorics of tagged triangulations of once-punctured n-

gons. By [ASS12, Theorem 1.2], the generators of the cluster modular group correspond

to rotation of the n-gon by 2π/n and simultaneous changing of the tags at the puncture

when n ≥ 5. Let G(Dn) be the plabic fence pictured in Figure 4.9. The corresponding

Legendrian λ(G(Dn)) is Legendrian isotopic to the link λ(Dn) defined in Section 1.1.

Depicting λ(Gn) as the (-1) closure of σ2σ
2
1σ2σ

n
1σ2σ

2
1σ2 allows us to define a Legendrian

loop ϑ by commuting a σ1 past each of the σ2σ
2
1σ2 subwords. As in the D̃n case, we can

compute the induced sequence of mutations. In Figure 4.10 we give a tagged triangulation

with a quiver equivalent to QG(Dn) and show by explicit computation that the sequence

of mutations induced by ϑ corresponds to rotation of the punctured n-gon by 2π/n. In

addition, DT induces a sequence of mutations that corresponds to a rotation of the once-

punctured n-gon by 2π/n and a simultaneous changing of all the taggings at the puncture.

Therefore, the pair ϑ and DT generate the cluster modular group G(M1(λ(Dn))).
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Figure 4.10. Once-punctured disks depicting the mutation sequence
(3 2 4, . . . n, (1 2 3)) induced by the Legendrian loop ϑ of λ(Dn).

Cluster Type Cluster modular group Generated by Tn quiver type
An Zn+3 ρ –
Dn n > 4 Zn × Z2 ϑ1,DT –
E6, E7, E8 Z14,Z10,Z16 DT –

Ẽ7 (Z2 × Z) DT, ϑ1 (4, 3, 2)

Ẽ8 Z8 DT (5, 3, 2)

E
(1,1)
8 G1 (6, 3, 2)

Table 4.1. Cluster modular groups generated by Legendrian loops. The final
column contains the information of the vector n in cases where there is a Tn quiver
in the mutation class. The letter ρ denotes the Kálmán loop. The group G1 is
isomorphic to PSL2(Z)⋊ Z6

.

Cluster Type Cluster modular group Tn quiver type
D4 Z× S3 –

D̃n n odd (Z2 × Z2)⋊ (Z2 × Z) (n-2, 2, 2)

D̃n n even (Z2 × Z2)⋊ Z (n-2, 2, 2)

Ẽ6 (S3 × Z) (3, 3, 2)

E
(1,1)
7 G2 (4, 4, 2)

Table 4.2. Cluster modular groups virtually generated by Legendrian loops. The
group G2 is isomorphic to MCG(S2, 4)⋊ (Z4 × Z2).

□

Remark 4.1.2. By Lemma 4.1.5 and the fact that τ3 can be obtained from τ1, τ2 and DT, we are

able to generate Γτ for all Tn1,n2,2. Therefore, for n1 ̸= n2, we obtain the conjectured cluster modular

group, while for n1 = n2, we obtain an index 2 subgroup (see [KG21, Conjecture 4.7]). Moreover,
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we claim without proof that in the case of n1 = n2, the order two element generating Aut(Tn)

is induced by a Legendrian isotopy swapping the two sublinks of λ(β1,n1,n2) given as satellites of

different strands.

4.2. Nielsen-Thurston classification of Legendrian loops

In this section, we consider qualitative properties of Legendrian loops by investigating con-

nections between cluster modular groups and mapping class groups. We start by describing a

Nielsen-Thurston classification of cluster automorphisms due to Ishibashi and then use this frame-

work to give some general statements about fixed point properties of Legendrian loop actions. We

conclude with a pair of examples.

We take the following characterization of cluster automorphisms to be our Nielsen-Thurston-

like classification. Our definition differs from Ishibashi’s original definition in order to give a more

natural description in the context of Legendrian loops. See [Ish19] for alternate characterizations

in terms of fixed points of automorphisms acting on the cluster complex.

Definition 4.2.1. A cluster automorphism φ ∈ G(M1(λ)) is

(1) periodic if it is of finite order.

(2) cluster reducible if it fixes a set of cluster variables.

(3) cluster pseudo-Anosov if no power of φ is cluster reducible.

Note that the cyclic subgroup generated by any cluster automorphism will correspond to at least

one of these classes. We say that a Legendrian loop is (cluster) periodic, reducible, or pseudo-Anosov

if its induced cluster automorphism is of the corresponding type. Below, we provide examples of

periodic and reducible Legendrian loops.

Example 4.2.1. Consider the sheaf moduli M1(λ(k, n)) of the Legendrian torus link λ(k, n).

This cluster variety is known to have the same mutable part as the top-dimensional positroid cell of

the Grassmannian Gr(k, n+ k), which itself admits a cluster structure. The Kálmán loop induces

the cyclic shift ρ, which acts on column vectors in the matrix representation of the top-dimensional

positroid cell by vi 7→ vi−1. By construction, ρ has order k+n, which implies that the Kálmán loop

is always periodic.
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Note that for torus links λ(k, n), we have DT2 = ρk+n, so that DT is also periodic in this case.

Example 4.2.2. Let λ = λk,n1,n2 with k ∈ 2N and n1, n2 ≥ 2. The cluster automorphisms ϑ̃1

or ϑ̃2 induced by the Legendrian loops defined above fix at least k
2 cluster variables and are therefore

cluster reducible.

In the case of cluster pseudo-Anosovs, the condition that no power of a given cluster automor-

phism fixes no set of cluster variables in any seed is more challenging to verify. We conjecture

that the image of the braid group element σ1σ
−1
2 ∈ MCG(S2, 4) ⊆ G(M1(λ(4, 4))) gives a cluster

pseudo-Anosov automorphism, as σ1σ
−1
2 is a pseudo-Anosov mapping class in MCG(S2, 4).

4.2.1. Cluster Reduction. In this section, we discuss the process of cluster reduction, anal-

ogous to the concept of a reduction system in the theory of mapping class groups. From a reducible

mapping class φ, one can obtain a mapping class on a simpler surface by cutting along curves

fixed by φ. The analogous process in cluster theory allows us to gain additional information about

certain Legendrian loops.

We define a cluster reducible automorphism to be proper reducible if in addition to fixing some

collection of cluster variables setwise, it also fixes at least one cluster variable. Note that any cluster

reducible automorphism yields a proper reducible automorphism after raising it to a high enough

power. Analogous to the notion of a reduction system in the theory of mapping class groups,

Ishibashi defines the process of cluster reduction. Given a cluster reducible cluster automorphism

φ, one freezes quiver vertices corresponding to cluster variables fixed by some power of φ. This

induces a cluster automorphism of a cluster algebra with a smaller mutable part.

Example 4.2.3. For λ(D̃n), the Legendrian loop ϑ1 fixes a single cluster variable. The clus-

ter reduction of this quiver produces a new quiver with the fixed cluster variable either frozen or

deleted. Upon inspection, the mutable part of the quiver obtained by cluster reduction corresponds

to a (tagged) triangulation of an annulus with n marked points on the outer boundary and two

marked points on the inner boundary. Note that this triangulation, pictured in Figure 4.11, can be

readily obtained from the triangulation of twice punctured disk we started with. The induced cluster

automorphism is a 2π/n rotation of the outer boundary component.
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Figure 4.11. Triangulation of D2
n1−2,2 corresponding to the cluster reduction of

ϑ1. Note that replacing the inner boundary component by a single edge recovers
the triangulation of the twice-punctured disk in Figure 4.6 (right).

Remark 4.2.1. Note that the process of cluster reduction presented here is entirely algebraic.

From a contact geometric perspective, it does not appear to be possible to isolate an arbitrary

homology cycle γ in a Legendrian weave in order to remove it and still obtain an embedded exact

Lagrangian surface. One can instead consider modifying the ambient symplectic manifold of the

Lagrangian projection of the weave so that the cycle γ no longer bounds an embedded Lagrangian

disk with which to perform a mutation. This modification might reasonably be obtained by removing

the Lagrangian 2-disk bounding γ from the Lagrangian skeleta of (D4, ωst) constructed in [Cas21,

Section 1.1]. The full details of this construction lie beyond the scope of this work. □

The previous example motivates the notion of a cluster Dehn twist, which we introduce below..

Denote by Qi the quiver with two mutable vertices and i edges from vertex v1 to vertex v2. The

quiver Qi admits a cluster automorphism twi = (µ1, (12)). We have the following definition due to

Ishibashi [Ish20].

Definition 4.2.2. A cluster Dehn twist is a cluster automorphism φ such that after a finite

number of cluster-reductions, the induced automorphism φ̃ satisfies φ̃n = twm
k for some nonzero

integers m,n and i ≥ 2.
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Figure 4.12. The mutable subquiver (right) resulting from cluster reduction of ϑ1

acting onM1(λ(βk, n1, n2)) and its corresponding triangulation.

Similar to above, we say that a Legendrian loop is a cluster Dehn twist if its induced action

is. Note that a cluster Dehn twist is necessarily of infinite order because the induced cluster

automorphism is of infinite order. Any Dehn twist (or half twist) of a tagged triangulation is a

cluster Dehn twist [Ish20]. Indeed, the quiver Q2 corresponds to an annulus with one marked

point on each boundary component and tw2 corresponds to a Dehn twist in this annulus. Example

4.2.3 give us an example of a Legendrian loop that is a cluster Dehn twist. More generally, we have

the following.

Theorem 4.2.1. The Legendrian loops ϑ1 and ϑ2 acting on M1(λ(βk,n1,n2)) are cluster Dehn

twists.

Proof. Let Q(k, n1, n2) be the quiver corresponding to the plabic fence G(βk,n1,n2). Freezing

the quiver vertices fixed by ϑ1 results in a quiver corresponding to the triangulation of the surface

Sn1+k−1,2,...,2, i.e. a disk with n1+k−1 marked points on the boundary and k additional boundary

components, each with 2 marked points, as pictured in Figure 4.12. The induced action of ϑ1 is a

2π
n1+

k
2
−1 rotation about the outer boundary of the surface. The argument for ϑ2 is exactly analogous

when n2 > 2. □

Remark 4.2.2. The technique for this proof follows an argument of Fraser related to cluster

modular groups of Grassmannians.3 Based on his argument, we expect that this technique can be

3Chris Fraser, Personal Communication, 2/22/22.
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applied more generally to braids of the form ∆2kσni
i β′ where β′ contains no σi−1, σi, or σi+1. More

precisely, we conjecture that the cluster reduction of the induced action of an analogous Legendrian

loop is a partial Dehn twist about the boundary of an annulus with some number of boundary

components and marked points.

As a corollary of Theorem 4.2.1, we show that the Legendrian loops ϑ1 and ϑ2 considered above

produce infinitely many exact Lagrangian fillings.

Corollary 4.2.1. The Legendrian loops ϑ1 and ϑ2 have infinite order onM1(λ(βk,n1,n2)).

Note that in the case of k = 2, we also have that DT is a cluster Dehn twist, as DT2 = ϑn1
1 .

As a result, we obtain an additional corollary, extending the analogy with mapping class groups.

See also [KG21, Corollary 6.5].

Corollary 4.2.2. For any λ ∈ H, the group G(M1(λ)) is virtually generated by cluster Dehn

twists. Moreover, if λ ∈ H′, then G(M1(λ)) is generated by cluster Dehn twists.

4.2.2. Fixed points. Continuing the analogy between mapping class groups and cluster mod-

ular groups, we study the fixed points of Legendrian loop actions on M1(λ). Define the positive

real partM1(λ)>0 of the cluster varietyM1(λ) to be the space given by requiring all of the cluster

variables of the initial seed to be strictly positive real numbers. This definition gives a well-defined

notion of positivity, because the cluster variables in a cluster seed are efficient positivity tests, i.e.

positivity is preserved under mutation. Note that M1(λ)>0 is homeomorphic to an open ball of

dimension equal to the first Betti number of a filling of λ.The cluster modular group acts on this

space by permuting cluster charts. Interpreting [Ish19, Theorem 2.2] in the context of contact

geometry yields the following statement.

Lemma 4.2.1. Any finite order Legendrian loop φ of a Legendrian λ has a fixed point in

M1(λ)>0.

We define a group action of a group G on a topological space X to be properly discontinuous if

for every compact subset K ⊆ X, the set {g ∈ G|gK ∩K ̸= ∅} is finite. Ishibashi shows that if the

cluster modular group action on the cluster variety is properly discontinuous, then the implication
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of Lemma 4.2.1 can be upgraded to an equivalence. We accordingly upgrade our lemma to the

following theorem.

Theorem 4.2.2. Assume that the cluster modular group acts properly discontinuously onM1(λ)>0.

A Legendrian loop φ has a fixed point inM1(λ)>0, if and only if the induced automorphism φ̃ has

finite order.

The cluster modular group action is properly discontinuous in the case of surface-type cluster

algebras [Ish19, Theorem 3.8]. As a result, we can apply our reasoning from Theorem 4.2.1 to

obtain the following statement about Legendrian loops of λ(βk,n1,n2).

Theorem 4.2.3. The induced actions of the Legendrian loops φ1 and φ2 of λ(βk,n1,n2) have no

fixed points inM1(λ(βk,n1,n2))>0.

Proof. In the proof of Theorem 4.2.1, we showed that the cluster reduction of ϑi induces a

fractional Dehn twist on a surface-type cluster algebra A′. Since this induced automorphism is of

infinite order, [Ish19, Theorem 3.8] implies that it has no fixed points in A′>0 obtained by freezing

the cluster variables fixed by ϑi. Since A′ was obtained fromM1(λ(β) by freezing the fixed cluster

variables, it follows that no point ofM1(λ(β)>0 is fixed by ϑi. □

We can also use Theorem 4.2.1 to detect Legendrian loops of infinite order. In fact, we can

make a slightly stronger statement. The following description mimics a definition of Casals and Ng

given for Legendrian loops in the augmentation variety.

Definition 4.2.3. The induced action φ̃ of a Legendrian loop is entire on a toric chart CL =

(C×)n induced by an exact Lagrangian filling L of λ if for k ̸= l ∈ Z we have

φk(CL) ̸= φl(CL).

As a direct consequence of Lemma 4.2.1, we obtain the following.

Theorem 4.2.4. The induced action of a Legendrian loop onM1(λ) is entire if it has no fixed

points inM1(λ)>0.
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Proof. Let φ be a Legendrian loop of λ with no fixed points in M1(λ)>0. Since φ has no

fixed points, this in particular implies that no power of it can fix an entire cluster chart. Therefore,

φk(CL) ̸= φl(CL) for any k ̸= l ∈ Z. □

Note that the fixed point property of a Legendrian loop is independent of any choice of initial

chart, in contrast with the methods used by Casals and Ng to obtain entirety of Legendrian loops

in the augmentation variety.

4.2.3. Examples. We present examples of the fixed point behavior of Legendrian loops of

λ(An) and λ(E
(1,1)
8 ).

Example 4.2.4. Consider the initial seed x1 ← x2 in M1(λ(A2)). The cluster automorphism

ρ̃ induced by the Kálmán loop has a single fixed point x1 = x2 = 1+
√
5

2 . In the case of An-type, we

know that since the quiver corresponds to triangulations of a disk with n+ 3 marked points on the

boundary, the cluster modular group action is properly discontinuous onM1(λ(An))>0. Therefore,

this fixed point recovers the fact that ρ has finite order.

Example 4.2.5. Now consider the initial seed of λ(3, 6) corresponding to the front λ(β) for

β = (σ1σ2)
6. The loop σ1 defined in [CG22] has no fixed points in M1(λ(3, 6))>0, recovering

the fact that σ1 (conjugate to ϑ1 by [KG21, Theorem 6.1]) has infinite order and implying that it

is entire on any seed. This is verified by showing that there are no positive real solutions to the

system of equations obtained from performing the Legendrian loop and setting the corresponding

cluster variables equal to each other.
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a1 =
a2 + a3 + a1a4

a2

a2 = a4

a3 =
a2 + a3

a1

a4 =
a3a6 + a4a7

a5

a5 =
a1a3a6 + (a1a4 + (a2 + a3)a5)a7

a1a3a5

a7 =
a1a3a5a6a8 + (a1a3a

2
6 + ((a1a4 + (a2 + a3)a5)a6)a7)a9 + (a1a3a6a7 + (a1a4 + (a2 + a3)a5)a

2
7)a10

a1a3a5a7a8

a8 = a10

a9 =
a1a3a5a8 + (a1a3a6 + (a1a4 + (a2 + a3)a5)a7)a9

a1a3a5a7

a10 = a9

Note that the cluster variable a6 is fixed by the induced (cluster reducible) automorphism.

Inputting the above system of equations into a computer algebra system such as Sage verifies that

no positive real solutions exists.
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APPENDIX A

Mutation sequence computation via Legendrian weaves

In this appendix, we show that the Legendrian loop ϑ2 defined for λ(D̃n) induces the cluster

automorphism ϑ̃2 = (1 4, (1 4 0 3)), computed as a sequence of mutations in the initial quiver coming

from the plabic fence G(D̃n) pictured in Figure 4.9. We do this by mutating at cycles γ1 and γ4 in

the initial weave Λ(G(D̃6)) – constructed following [CW22, Section 3.3] – and then showing that

the resulting weave simplifies to the concatenation of the trace of ϑ2 with the initial weave, up to

relabeling the homology cycles. The example readily generalizes to λ(D̃n) by replacing the dashed

blue short I-cycle by n− 5 blue short I-cycles.

In the figures below, homology cycles are color coded as follows: γ0 is light blue, γ1 is orange, γ2

is light green, γ3 is purple, γ4 is pink, γ5 is yellow, and γ6 is the dashed blue short I-cycle. When an

edge of the 4-graph carries two cycles, as in the second and third weaves of Figure A.1, we choose

one of the colors for the edge itself and then highlight the edge in the color corresponding to the

additional homology cycle. The numerals correspond to Legendrian surface Reidemeister moves;

we freely apply Move IV by passing edges labeled by σ3 (colored dark green) and edges labeled by

σ1 (colored blue) over each other. In cases where multiple push-through moves are used, we omit

some intermediate steps when the computation is otherwise straightforward.

Note that the choice of braid word for ∆2 appearing in the weave Λ(G(D̃n)) differs from the

choice of braid word for ∆2 appearing in the Legendrian front pictured in Figure 4.5. The front for

∂Λ(G(D̃n)) differs from the front appearing in Figure 4.5 by a sequence of Reidemeister III moves

collecting a pair of σ1 and σ3 crossings at the left of the braid word for ∆2. The front appearing in

Figure 4.5 displays the Legendrian loops in a more recognizable way, but because the Reidemeister

moves only involve crossings in the ∆2 portion of the braid, the sheaf moduli obtained from the

two fronts are equal.
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II

II

Figure A.1. From top to bottom: a sequence of three push-throughs to isolate γ1
as a short I-cycle; mutation at γ1; a push through to remove the edge carrying cycles
γ1 and γ4.
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II

II-1

III

II

Figure A.2. A series of weave equivalence moves designed to produce γ4 as a long
I-cycle.
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II-1

II-1

II-1

Figure A.3. Mutation at γ4 and a sequence of reverse push-throughs simplifying
γ1.
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II-1

III

II-1

II-1

Figure A.4. A sequence of weave equivalence moves removing the geometric in-
tersections between γ1 and γ0.
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II

I

V

II-1

Figure A.5. From top to bottom: a candy twist to introduce the necessary σ2−σ3
hexavalent vertices appearing in ϑ2; Move V; simplification of the left half of the
weave starting with a pair of reverse push-throughs involving the leftmost cycle in
the weave; a push-through involving γ0 and γ3.
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I

V

I

II

Figure A.6. A series of weave equivalence moves continuing to simplify the left
half of the weave
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III

II

II

II-1

Figure A.7. A series of weave equivalence moves continuing to simplify the right
half of the weave
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II

II

II

Figure A.8. The final weave appearing here differs from the one above it by planar
isotopy and freely applying Move IV. It is readily identified with the concatenation
of the trace of ϑ2 to the initial weave appearing in Figure A.1 up to relabeling the
cycles by the permutation (1 4 0 3).
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[EHK16] T. Ekholm, K. Honda, and T. Kálmán, Legendrian knots and exact Lagrangian cobordisms, J. Eur.

Math. Soc. (JEMS) 18 (2016), no. 11, 2627–2689.

128



[EN19] J. Etnyre and L. Ng, Legendrian contact homology in R3, https://arxiv.org/pdf/1811.10966.pdf, 2019.

[EP96] Y. Eliashberg and L. Polterovich, Local Lagrangian 2-knots are trivial, Ann. of Math. (2) 144 (1996),

no. 1, 61–76.

[Eul64] L. Euler, Specimen algorithmi singularis, Novi Commentarii academiae scientiraum Petropolitanae 9

(1764), 53–69.

[FG06a] V. V. Fock and A. B. Goncharov, Cluster x-varieties, amalgamation, and Poisson-Lie groups, Algebraic

geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 27–68.
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[KS90] , Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292, Springer-

Verlag, Berlin, 1990, With a chapter in French by Christian Houzel.

[Li21] W. Li, Lagrangian cobordism functor in microlocal sheaf theory, arxiv:2108.10914, 2021.

[Ng03] L. L. Ng, Computable Legendrian invariants, Topology 42 (2003), no. 1, 55–82.

[Pan17] Y. Pan, Exact Lagrangian fillings of Legendrian (2, n) torus links, Pacific J. Math. 289 (2017), no. 2,

417–441.

[Pos06] A. Postnikov, Total positivity, Grassmannians, and networks, 2006, math/0609764.

[Pou14] L. Pournin, The diameter of associahedra, Adv. Math. 259 (2014), 13–42.

[Reg13] A. Regev, A bijection between triangulations and 312-avoiding permutations, (2013).

[STT88] D. D. Sleator, R. E. Tarjan, and W. P. Thurston, Rotation distance, triangulations, and hyperbolic

geometry, J. Amer. Math. Soc. 1 (1988), no. 3, 647–681.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow, Cluster varieties from Legendrian knots, Duke

Math. J. 168 (2019), no. 15, 2801–2871.

[STZ17] V. Shende, D. Treumann, and E. Zaslow, Legendrian knots and constructible sheaves, Invent. Math. 207

(2017), no. 3, 1031–1133.

130



[TZ18] D. Treumann and E. Zaslow, Cubic planar graphs and Legendrian surface theory, Adv. Theor. Math.

Phys. 22 (2018), no. 5, 1289–1345.

[Ust06] A. V. Ustinov, A short proof of Euler’s identity for continuants, Mat. Zametki 79 (2006), no. 1, 155–156.

[Vat10] D. F. Vatne, The mutation class of Dn quivers, Comm. Algebra 38 (2010), no. 3, 1137–1146.

131


	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Context and main results
	1.2. Background

	Chapter 2. Lagrangian fillings in A-type and their Kálmán loop orbits 
	2.1. Isotopies of exact Lagrangian Cobordisms and Kálmán loop orbits of (An)
	2.2. Proof of Theorems 1.1.1 and 1.1.3
	2.3. Algebraic Proof of Theorem 1.1.3
	2.4. Combinatorial Characterizations

	Chapter 3. Weave realizability for D-type 
	3.1. Weave Realizability for (Dn)

	Chapter 4. Legendrian loops and mapping class groups 
	4.1. Legendrian loops as generators of cluster modular groups
	4.2. Nielsen-Thurston classification of Legendrian loops

	Appendix A. Mutation sequence computation via Legendrian weaves 
	Bibliography



