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Abstract

The ability to improve in speed and accuracy as a result of re-
peating some task is an important hallmark of intelligent bio-
logical systems. Although gradual behavioural improvements
from practice have been modelled in spiking neural networks,
few such models have attempted to explain cognitive devel-
opment of a task as complex as addition. In this work, we
model the progression from a counting-based strategy for ad-
dition to a recall-based strategy. The model consists of two
networks working in parallel: a slower basal ganglia loop, and
a faster cortical network. The slow network methodically com-
putes the count from one digit given another, corresponding
to the addition of two digits, while the fast network gradually
“memorizes” the output from the slow network. The faster net-
work eventually learns how to add the same digits that initially
drove the behaviour of the slower network. Performance of
this model is demonstrated by simulating a fully spiking neu-
ral network that includes basal ganglia, thalamus and various
cortical areas. Consequently, the model incorporates various
neuroanatomical data, in terms of brain areas used for calcula-
tion and makes psychologically testable predictions related to
frequency of rehearsal. Furthermore, the model replicates de-
velopmental progression through addition strategies in terms
of reaction times and accuracy, and naturally explains observed
symptoms of dyscalculia.

Keywords: neural engineering framework; semantic pointer
architecture; nengo; cognitive modelling; mathematical abil-
ity; dyscalculia; skill consolidation

Introduction
Adaptability and scalability are two central challenges in cog-
nitive modelling. Building a model that performs some be-
haviour is a daunting enough task, even without considering
how it might improve over time. This is made significantly
more challenging when building a large-scale biologically
plausible model that uses spiking neurons to represent and
communicate information over time.

One example of such a biologically plausible model is
the Semantic Pointer Architecture Unified Network (Spaun),
which is currently the largest behaving model of the human
brain (Eliasmith et al., 2012). This model flexibly performs
eight different cognitive tasks by receiving images of hand-
written digits through its simulated retina and outputting re-
sponses by drawing using its simulated arm. This model
makes some progress in addressing the challenge of scalabil-
ity (Eliasmith, 2013), but lacks the ability to learn from pre-
viously experienced cognitive tasks to permanently improve
its performance (Spaun only changes its long term connec-
tion weights during a simple reinforcement learning task). In
this work, we show that one task from Spaun’s repertoire,
addition-by-counting, can be extended to benefit from this
cognitive ability.

For addition-by-counting, the model is presented with two
digits and asked to draw the digit that corresponds to the sum
of these two digits. The “counting” strategy methodically
computes the result by adding one to a digit, for the number
of times indicated by the other digit. In Spaun, this is ac-
complished by a number of structures that function together.
Visual cortical areas compress the representation of a given
image into a semantic representation, referred to as a seman-
tic pointer. Prefrontal cortical areas transform these pointers,
while maintaining partial results in working memory, and a
basal ganglia and thalamus control loop selects actions to co-
ordinate and drive the behaviour of the system. The cortical
areas of Spaun should, but are currently unable, to recognize
and learn from previous instances of this problem. Including
such learning should translate to performance improvements
in both speed and accuracy.

DeWolf & Eliasmith (2013) have presented a neural model
in which a simple motor skill is consolidated into cortex via
repeated practice. However, the skill being learned in that
case cannot be extended to solve the addition task because
it is unclear how a simple motor action could be general-
ized to counting from any digit to any other. Consequently,
here we consider how consolidation can happen for more so-
phisticated representations, and argue that such representa-
tions may help to explain more complex cognitive phenom-
ena. This is demonstrated by proposing a spiking neural
model that exhibits gradual performance improvement on the
addition-by-counting task.

Mathematical Development
The development of numeracy in children is not a simple pro-
gression of skills. For instance, children learn to count before
they understand how sets relate to numbers. As well, it is
thought that after learning to count, they progressively learn
the relationship between set sizes and numbers until the age
of five, after which they have a complete understanding of
the number scale (Sarnecka & Carey, 2008). This same sort
of complex learning development can be observed in children
learning addition. Typically, children progress through vari-
ous strategies before finally memorizing the results of addi-
tion, as shown in Table 1 (Siegler, 1987).

The Counting strategy involves choosing the larger number
and incrementing it a number of times equal to the smaller
number. The Recall strategy is where the two numbers form
an association to a previously memorized answer, which is
then recalled from long-term memory. Other strategies have
been identified, although we focus here on recall and count-
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Table 1: Percentage of addition strategy use by grade level
(Summarized from Siegler (1987)).

Grade level Counting Recall
Guess or

no response Other

Kindergarten 30 % 16 % 30 % 24 %
Grade 1 38 % 44 % 8 % 10 %
Grade 2 40 % 45 % 5 % 11 %

Table 2: Median solution times (seconds) per addition strat-
egy use by grade level (Summarized from Siegler (1987)).

Grade level Counting Recall
Kindergarten 6.0 s 3.9 s
Grade 1 6.9 s 2.1 s
Grade 2 3.9 s 1.8 s

Table 3: Percentage of errors per addition strategy use by
grade level (Summarized from Siegler (1987)).

Grade level Counting Recall
Kindergarten 19 % 29 %
Grade 1 4 % 17 %
Grade 2 3 % 7 %

ing, since the greatest developmental change is seen with
these two strategies. Additionally, for the sake of simplic-
ity, we focus on the progression from the counting strategy
to recall, using sums less than ten. As demonstrated below,
the model is initially entirely reliant on the counting strategy,
but gradually learns the recall strategy, causing an increase in
accuracy and a decrease in reaction times, consistent with the
data shown in Table 2 and Table 3.

To this point we have characterized the typical develop-
mental path for children. However, there are individuals who
suffer from dyscalculia. Dyscalculia is a learning disabil-
ity characterized by various problems with numeracy, one
of which can be understood as difficulty making the transi-
tion from counting to retrieval. Our model demonstrates how,
without a parallel learning mechanism, symptoms of dyscal-
culia can arise. In particular, our model explains increased ac-
tivation of the prefrontal cortex compared to individuals with
normal numeracy (Kucian & von Aster, 2015) and a lack of
progression to recall based strategies.

Neural Representation of Digit Semantics
To build our model, we make use of the Neural Engineer-
ing Framework (NEF; Eliasmith & Anderson (2003)) and the
Semantic Pointer Architecture (SPA; Eliasmith (2013)) that
were both used to build Spaun.

The NEF may be understood as a “neural compiler” for

mathematical functions using vector spaces. The presented
model relies on two key principles of the NEF as a method
for constructing networks of spiking neurons and connection
weights from a mathematical description of the system. The
first principle describes how a vector can be mapped onto a
distributed representation over neurons. The second principle
characterizes how connections between neurons can trans-
form these vectors.

A vector x(t) is represented by encoding it into the spik-
ing activity of a population of neurons. Each neuron i has an
encoding vector ei (which can be understood as a preferred
direction in the vector space), a gain αi, and a background
current Jbias

i . These parameters determine how the input vec-
tor is translated into the input current Ji(t) to a neural non-
linearity Gi [·]. For our work, this neural nonlinearity is the
leaky integrate-and-fire (LIF) model, which converts the in-
put current into a neural spike train ai(t).

ai(t) = Gi [Ji(t) ] , Ji(t) = αi ei ·x(t)+ Jbias
i (1)

To decode an approximation of the vector back from these
spike trains, they are first convolved with a low-pass filter
h(t) (a decaying exponential modelled after the postsynaptic
current) and then multiplied by a decoding vector di.

x̂(t) = ∑
i

di (ai ∗h)(t) (2)

The decoders di are found using regularized least squares
optimization to minimize the error over the range of inputs x:∫

(x− x̂)2 dx. (3)

To describe how two neural ensembles are connected, we
define a weight matrix as the outer product of the encoders
and decoders ωi j = ei

⊗
d j. The second principle then shows

that the input current to neuron i may be rewritten as a
weighted summation of its postsynaptic potentials, allowing
for the connection of multiple populations of neurons:

Ji(t) = ∑
j

αi ωi j (a j ∗h)(t)+ Jbias
i . (4)

To apply arbitrary transformations to the vector using these
connections, we can minimize the decoding error for the de-
sired function: ∫

( f (x)− f̂ (x))2 dx. (5)

Together, these two principles allow us to construct spiking
neural models of arbitrary functions of vector spaces.

To apply the NEF to cognitive models, the SPA suggests
specific architectural components and organization as well as
a general kind of representation called a semantic pointer. Se-
mantic pointers are compressed neural representations that
can be efficiently manipulated, transformed, and derefer-
enced to retrieve deep semantic information. It has been
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suggested that this approach addresses the symbol ground-
ing problem by defining the semantics of a neural represen-
tation as resulting from the compression of sensory informa-
tion as well as conceptual relations (Eliasmith, 2013). Con-
sequently, the SPA lends itself especially well to representing
concepts which are grounded in multiple modalities but uni-
fied in a single representation. In this model, the semantic
pointers are used to represent digits, which have been shown
to be grounded in auditory and visual modalities (Nieder,
2012), but also include conceptual relationships (e.g. TWO
comes after ONE but before THREE). Conceptual relation-
ships are captured in the SPA by adopting a compression
operator from a specific type of Vector Symbolic Architec-
ture (Gayler, 2004) called a Holographic Reduced Represen-
tation (Plate, 1995).

Modelling the Counting Strategy
Although Spaun serves as the starting point for our model,
it is not practical to simulate all 2.5 million of its neurons.
Instead, a counting circuit based on Spaun’s design was im-
plemented. As shown in Figure 1, after a question input is
received, the procedure consists of three main steps:

1. The digit contained in the working memory neural popula-
tion is routed to a “transformation system”.

2. The digit is transformed by a heteroassociative “increment-
ing memory” to produce the semantic pointer correspond-
ing to the incremented digit.

3. The incremented number is returned to working memory.

This process is continued until the ”Counts finished” are
equal to the ”Total counts to take”. At which point the value
in ”Count result” is routed as the final answer to the output.

TWO

THREE

ZERO

ONE

THREE

Incrementing 
Memory

Incrementing 
Memory

Working Memory
Total counts to takeCount result Counts finished

Basal Ganglia 
and Thalamus

Figure 1: High-level overview of the addition-by-counting
procedure. See text for details.

These steps are controlled by an action selection system
implemented in the basal ganglia and thalamus (Stewart et
al., 2010) in a manner similar to Spaun.

To increment a digit, a predefined heteroassociative mem-
ory is used to associate each semantic pointer with its incre-
mented pointer. This is implemented using a single popula-
tion of neurons, with encoders tuned to each vector of the nu-
merical vocabulary and decoders chosen to apply a transform

to the output to compute the incremented semantic pointer.
Finally, the output layer uses mutual inhibition to form a
winner-take-all (WTA) mechanism, which ensures the trans-
formation system returns only a single pointer. This design
is different from Spaun’s, which relied on the repeated con-
volution of a single vector to indicate a count. While both
approaches are viable, an associative memory is more effec-
tive for simpler, low-dimensional models.

When using a heteroassociative memory, the semantic
pointer corresponding to each digit is taken from a random
ten-dimensional orthonormal basis. This ensures that no prior
information is given to bias the relationship between the ten
digits. Initially, the model only knows how to increment a
digit, as is the situation for learning addition during child-
hood using solely the counting strategy.

The learned heteroassociative memory is identical to the
aforementioned predefined memory, except the decoders can
be learned with experience, so that no action selection mech-
anism is required to cycle through mappings until the desired
result is reached.

Memorization via Reinforcement Learning
The counting circuit that employs the predefined memory is
slow, since information is routed back and forth at the rate
of subvocal rehearsal. We thus refer to the counting portion
of the model as the “Slow-Net”. In the model, other cortical
areas consolidate the function of the Slow-Net by memorizing
its eventual responses. The portion of the network responsible
for the storage and subsequent retrieval of originally counted
answers will be referred to as the “Fast-Net”.

The purpose of the Fast-Net is to learn to associate the two
digits provided as input to the Slow-Net with the Slow-Net’s
eventual response. This heteroassociative memory is highly
nonlinear with respect to the vectors that represent each digit.
Knight et al. (submitted 2016) has shown that by combining
the supervised Prescribed Error Sensitivity (PES; MacNeil &
Eliasmith (2011)) learning rule with the unsupervised Vector
Oja (Voja; Voelker et al. (2014)) learning rule, we can scal-
ably and efficiently learn such complex functions in the NEF.
The Fast-Net leverages the unsupervised learning rule to ef-
ficiently represent the incoming addends and uses the super-
vised learning rule to learn the correct sum from the Slow-Net
output.

Specifically, the PES learning rule minimizes the differ-
ence between the output of a neural population and its desired
value, by adjusting its decoders (di from (2)) in response to
an error signal. However, for discontinuous high-dimensional
functions such as the desired heteroassociative memory, this
supervised learning rule is insufficient. This is because a neu-
ron will often fire in response to multiple inputs, in which
case its decoder will be adjusted to completely overwrite the
past association. To avoid this, a neuron should only fire for a
single input, which is achievable by selecting the encoders (ei
from (1)) to be equal to the semantic pointers for each of the
digits ahead of time, as is done in the predefined heteroasso-
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Figure 2: A high-level view of the model, featuring the paral-
lel Slow-Net and Fast-Net.

ciative memory. However, this would assume that the area of
cortex designated to learn the addition task is already aware
of the set of possible inputs to the Slow-Net.

To keep our approach general, the Voja rule learns to form
a sparse encoding of the possible inputs as they are presented
to the Fast-Net. This is achieved by adjusting the encoders of
any active neurons to become selective to only the current in-
put. This allows PES to learn the correct output without over-
writing past associations, while being able to scale to recall
over 100,000 associations (Knight et al., submitted 2016).

In our model, to enable simultaneous learning and oper-
ation, the Fast-Net is placed in parallel to the Slow-Net, as
shown in Figure 2. Both networks receive the same input,
but the answer from the Slow-Net is projected to modulate
the output of the Fast-Net. This modulatory error signal is
triggered whenever the Slow-Net responds with an answer,
which then provides the feedback for learning via PES. In
summary, the population of neurons in the Fast-Net memory
continually learns to represent the input digits by adjusting its
encoders, while its decoders adjust to associate its input with
the output of the Slow-Net.

The learning rate of the heteroassociative memory can be
adjusted to model developmentally plausible learning. At
high learning rates the model learns mappings after being
shown only a single example and at lower learning rates it
gains confidence gradually, covering the spectrum of human
variability and demonstrating the versatility of the heteroas-
sociative memory. Given the focus of this paper on increasing
the accuracy and speed of reaction, while ignoring realistic
amounts of rehearsals required to learn, an artificially high
learning rate was chosen for the simulation.

Results
The model was built and simulated using Nengo (Bekolay et
al., 2014). The results of the Slow-Net, which implement the
counting strategy, are shown in Figure 3.

As expected, the magnitude of error between the answer
from Fast-Net and the correct answer decreases with re-
hearsal, as shown in Figure 4. Each epoch of training consists
of 20 randomized example additions with no repetition. Give
the fast learning rate of the model, after each epoch there is
a significant drop in error (during each subsequent epoch, the
model is seeing problems it has encountered before). Note
that after the magnitude of error drops below 0.5, the Fast-
Net response will drive the model’s response instead of Slow-
Net, since it has the correct answer. Which network drives the
overall response is determined by the basal ganglia. Notably,
any decrease of error magnitude past 0.5 reflects an increase
in the certainty of the answer.

Additionally, once the Fast-Net becomes confident enough
in its responses to over-ride the Slow-Net, the speed of re-
sponses becomes faster and more uniform, as shown in Fig-
ure 5. The confidence of the response is determined by its
similarity to any known number representation (correct or
incorrect). If the response is incorrect, environmental feed-
back will drive the Fast-Net to change its answer. Given the
high learning rates, such errors are rapidly corrected. The fact
that reaction times regularize with transition to a recall-based
strategy matches experiments investigating addition strate-
gies (Siegler, 1987).

Neuroanatomical Mappings and Dyscalculia
As discussed in Spaun’s mapping of counting (Eliasmith et
al., 2012), parietal areas are more active for stable, learned
transformations while prefrontal areas are more active for
transient, working memory representations. Given that the
Fast-Net responses eventually replace those from the Slow-
Net, we would expect that with practice brain activity will
move from the prefrontal cortex to frontal-parietal areas.

Although this is quite difficult to measure during the nat-
ural development of a child, this hypothesis is supported by
the observation that those with dyscalculia show greater acti-
vation of the prefrontal cortex compared to individuals with
normal numeracy (Kucian & von Aster, 2015). Although
this model make no claims about why dyscalculia occurs,
given that it is a complicated disability usually accompanied
by various comorbidities, it does provide a possible explana-
tion as to why such compensation occurs. Specifically, those
with dyscalculia are unable to consolidate the functional role
of the prefrontal cortex during the counting task within the
frontal-parietal region and must instead rely on their work-
ing memory. Given an excessively noisy input, inaccurate
feedback, or inappropriate modulation of the error signal, the
Fast-Net could fail to learn the mapping between addends and
sum. Consequently, there would be limited progression from
counting to recall and a continued dependence on working
memory.
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Figure 3: The Slow-Net (counting network) answering the questions 2+2 and 1+3. The plots show similarity of neural activity
to semantic pointers over time (colours indicate which pointer). As shown in “Count Result” the model is progressing through
each intermediate digit before reaching the answer. Lines are the similarity between the spiking pattern in the area and the ideal
spiking pattern for each number in the numerical vocabulary.

Discussion and Conclusions

We presented a biologically plausible model that progresses
from a methodical counting procedure to recalling the re-
sponse for an addition task. As specified in Table 3 and shown
in Figure 4, the accuracy of the Fast-Net memory progresses
from noisy to accurate. Once a sufficient accuracy thresh-
old is reached, the memory takes over the process of addition
from the Slow-Net, increasing the reaction times.

These simulations suggest the following prediction: that
performance should increase in proportion to the frequency
of the presented addends. That is, improvement in learning
should be proportional to the amount of rehearsal, as well as
the familiarity of the given addends. For example, continual
presentation of sums with the first addend of “3” should allow
for faster learning of other sums involving the addend “3”,
since the encoders of the heteroassociative memory will have

already adapted to represent this digit.

The model as presented is clearly limited in several re-
spects. For instance, numerical representation in the brain
consists of more structure than the randomly selected or-
thonormal vectors used here. This assumption is reasonable
for small magnitudes, but is untenable for numerical repre-
sentation in general. For instance, there is evidence that neu-
rons tuned to numerical size comparisons are proportional to
a log scale and can be highly sensitive to task saliency (Nieder
& Dehaene, 2009). Capturing such properties will require
different numerical representations.

Finally, this model only describes a handful of the brain
areas associated with numerical calculation. One of the most
surprising areas involved in addition is the cerebellum. It has
been suggested that cerebellar activity might be a develop-
mental artifact persisting from when addition is first learned
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Figure 4: Error magnitude in Slow-Net decreasing with train-
ing received from the feedback of each trial. Note the drop in
error after each training epoch.
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Figure 5: Reaction times decreasing with rehearsal as the
Fast-Net takes over for the Slow-Net for increasingly more
additions.

as a physical combination of objects (Arsalidou & Taylor,
2011). To model cerebellar involvement, counting and group-
ing objects would need to be rehearsed via explicit motor
plans. This could be captured with a more in-depth model
that includes a motor control hierarchy and a visual system
similar to those found in Spaun.
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