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ABSTRACT

A distributed signal of opportunity (SOP)-aided inertial navigation system (INS) framework is presented and studied
for vehicles collaborating in an imperfect communication channel. The following scenario is considered. Multiple
autonomous vehicles (AVs) are aiding their onboard INSs with global navigation satellite system (GNSS) signals.
The AVs draw pseudorange observations from unknown SOPs in their vicinity and fuse these observations through an
estimator to improve the quality of their navigation solution while simultaneously mapping the SOPs’ states. While
navigating, GNSS signals become unavailable, at which point the AVs continue navigating by aiding their INSs’
with SOP pseudorange observations. The AVs exchange INS data, pseudorange observations, and state estimates
over a lossy channel. This paper presents a distributed framework for AVs to share INS information and studies this
framework by varying both the number of collaborating AVs and the probability of communication failure. Simulation
and experimental results for unmanned aerial vehicles (UAVs) are presented demonstrating the performance of the
distributed framework in lossy communication channels.

I. INTRODUCTION

As autonomous vehicles (AVs) move towards full autonomy, requirements on the accuracy and resiliency of the
vehicle’s navigation system become ever more stringent. Navigation systems on board AVs today mainly rely on
integrating global navigation satellite system (GNSS) with an inertial navigation system (INS). However, in the
inevitable event when GNSS signals become unavailable, uncorrected INS errors cause the AV’s navigation solution
to diverge. Recently, signals of opportunity (SOPs) have been considered to enable navigation whenever GNSS signals
become inaccessible or untrustworthy [1–3]. AVs could exploit SOPs to correct INS errors in the absence of GNSS
signals [4–6]. Collaborating AVs can share information gathered from SOPs to improve INS error corrections [7].
Unfortunately, this improvement comes with concerns inherent in communication: increased complexity, unreliable
data transmission, and compromised privacy.

Navigation systems onboard AVs today typically include other sensors (e.g., cameras [?], lasers [8], and sonar [9])
to aid the AV’s INS whenever GNSS signals become unusable. However, such aiding sensors may violate cost, size,
weight, and power (C-SWAP) constraints. In contrast, SOPs (e.g., AM/FM radio [10, 11], cellular [3, 12–15], digital
television [16, 17], iridium [18,19], and Wi-Fi [20, 21]) are free to use and could alleviate the need for expensive and
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bulky aiding sensors. SOPs are abundant and transmitted at a wide range of frequencies and directions, making
them attractive aiding sources for an INS whenever GNSS signals become unavailable. However, unlike GNSS space
vehicle (SV) states, the states of SOPs, namely their position and clock error states, may not be known a priori, in
which case they must be estimated alongside the AV’s states.

This estimation problem is similar to the simultaneous localization and mapping (SLAM) problem in robotics [22].
However, in contrast to the static environmental feature map in typical SLAM problems, the SOP map is more
complex since SOP clock error states are dynamic and stochastic. Recently, SLAM-type frameworks have been
adopted to exploit unknown SOPs for navigation (radio SLAM) as a standalone alternative to GNSS [23, 24] and
as an aiding source for an INS when GNSS signals become unavailable [5]. In [7] a centralized collaborative radio
SLAM framework was presented where multiple AVs shared their inertial measurement unit (IMU) data and mutual
pseudorange observations on SOPs to improve the quality of their individual INS state estimates, while building
a more accurate SOP map compared to a single AV performing radio SLAM. The improvement in estimation
performance is attributed to the AVs’ states becoming correlated when mutual observations are fused through a
central fusion center (CFC), e.g., through an extended Kalman filter (EKF) update. Therefore, when any one of the
AVs processes an observation, the entire team of AVs benefit from a reduction of uncertainty in their state estimates.

Three major challenges in any collaborative navigation strategy are: (i) maintaining the cross-correlations between
vehicles, (ii) large requirements on communication bandwidth, and (iii) communication link failures [?]. These
challenges are particularly problematic for a collaborative SOP-aided INS, since each AV’s uncertainty propagation
is dependent on local IMU data. Therefore, propagating the cross-correlation between any two AVs requires the
availability of IMU data from both AVs. Transmitting IMUS data to a CFC could be impractical since it requires (1)
access to internal IMU signals from each AV, (2) a large communication bandwidth, and (3) a lossless communication
channel between the AVs and the CFC. This paper’s contribution is to address some of these challenges for the
following scenario.

Consider multiple AVs navigating by aiding their onboard INSs with GNSS pseudoranges. The AVs draw pseudorange
observations from unknown SOPs in their vicinity and fuse these observations through an estimator to improve the
quality of their navigation solution while simultaneously mapping the unknown SOPs’ states. While navigating,
GNSS signals become unavailable, at which point the AVs continue navigating by aiding their INSs’ with the SOP
pseudoranges. A distributed approach for INS aiding, which exploits the structure of the INS error state transition
matrix, is presented and studied over lossy communication channels. This approach does not require transmitting
IMU data and allows each AV to maintain cross correlations. The performance is studied in terms of the number of
vehicles in the environment and the reliability of the communication channel. The AVs are assumed to communicate
only intermittently with a Bernoulli packet loss model [25].

The remainder of this paper is organized as follows. Section II describes the dynamics model of the SOPs and
navigating AVs as well as the receivers’ observation model. Section III provides an overview of the centralized
collaborative framework and identifies the difficulty of maintaining the cross-correlations in a distributed framework.
Section IV introduces a distributed SOP-aided INS framework. Section V presents a performance analysis of the
distributed SOP-aided INS framework over varying quantity of AVs and communication channel reliability. Section
VI presents experimental results demonstrating multiple AVs navigating with cellular signals using the distributed
SOP-aided INS framework. Concluding remarks are given in Section VII.

II. MODEL DESCRIPTION

A. SOP Dynamics Model

Each SOP will be assumed to emanate from a spatially-stationary terrestrial transmitter, and its state vector will

consist of its 3-D position states rsopm
,

[

xsopm
, ysopm

, zsopm

]T

and clock error states xclk,sopm
,

[

cδtsopm
, cδ̇tsopm

]T

,

where c is the speed of light, δtsopm
is the clock bias, δ̇tsopm

is the clock drift, m = 1, . . . ,M , and M is the total
number of SOPs.

The SOP’s discretized dynamics are given by

xsopm
(k + 1) = Fsop xsopm

(k) +wsopm
(k), k = 1, 2, . . . , (1)



where xsopm
=

[

rT

sopm
, xT

clk,sopm

]T

, Fsop = diag [I3×3, Fclk], wsopm
is the process noise, which is modeled as a

discrete-time (DT) zero-mean white noise sequence with covariance Qsopm
= diag

[

03×3, c
2Qclk,sopm

]

, and

Fclk =

[

1 T

0 1

]

, Qclk,sopm
=

[

Swδtsop,m
T + Swδ̇tsop,m

T 3

3 Swδ̇tsop,m

T 2

2

Swδ̇tsop,m

T 2

2 Swδ̇tsop,m
T

]

,

where T is the constant sampling interval. The terms Swδtsop,m
and Swδ̇tsop,m

are the clock bias and drift process

noise power spectra, respectively, which can be related to the power-law coefficients,
{

hα,sopm

}2

α=−2
, which have

been shown through laboratory experiments to characterize the power spectral density of the fractional frequency

deviation of an oscillator from nominal frequency according to Swδtsop,m
≈

h0,sopm

2 and Swδ̇tsop,m
≈ 2π2h−2,sopm

[26].

B. Vehicle Dynamics Model

The nth AV-mounted navigating receiver’s state vector xrn is comprised of the INS states xBn
and the receiver’s

clock error states xclk,rn ,

[

cδtrn , cδ̇trn

]T

, i.e., xrn =
[

xT

Bn
, xT

clk,rn

]T

, where n = 1, . . . , N , and N is the total

number of AVs.

The INS 16-state vector is

xBn
=

[

B
Gq̄

T

n
, rT

rn
, vT

rn
, bTgn , bTan

]T

,

where B
Gq̄n

is the 4-D unit quaternion in vector-scalar form which represents the orientation of the body frame with
respect to a global frame [27], e.g., the Earth-centered inertial (ECI) frame; rrn and vrn are the 3-D position and
velocity, respectively, of the AV’s body frame expressed in a global frame; and bgn and ban

are the gyroscope and
accelerometer biases, respectively.

B.1 Receiver Clock State Dynamics

The nth AV-mounted receiver’s clock error states will evolve in time according to

xclk,rn(k + 1) = Fclkxclk,rn(k) +wclk,rn(k), (2)

where wclk,rn is the process noise vector, which is modeled as a DT zero-mean white noise sequence with covariance
Qclk,rn , which has an identical form to Qclk,sopm

, except that Swδtsop,m
and Swδ̇tsop,m

are now replaced with receiver-

specific spectra Swδtr,n
and Swδ̇tr,n

, respectively.

B.2 INS State Dynamics

The IMU on the nth AV contains a triad-gyroscope and a triad-accelerometer which produce measurements zimun
,

[

ωT

imun
, aT

imun

]T

of the angular rate and specific force, which are modeled as

ωimun
= Bωn + bgn + ngn (3)

aimun
= R

[

Bk

G q̄
n

]

(

Gan − Ggn

)

+ ban
+ nan

, (4)

where Bωn is the 3-D rotational rate vector, Gan is the 3-D acceleration of the IMU in the global frame, Bk

G q̄
n

represents the orientation of the body frame in a global frame at time-step k, R [q̄n] is the equivalent rotation matrix
of q̄n,

Ggn is the acceleration due to gravity of the nth AV in the global frame, and ngn and nan
are measurement noise

vectors, which are modeled as zero-mean white noise sequences with covariances σ2
gn
I3×3 and σ2

an
I3×3, respectively.

It is worth noting that a non-rotating global reference frame is assumed in the above IMU measurement models.
For rotating frames, such as the Earth-centered Earth-fixed frame (ECEF), the rotation rate of the Earth and the
Coriolis force should also be modeled, as discussed in [28].



The orientation of the INS will evolve in DT according to

Bk+1

G q̄
n
=

Bk+1

Bk
q̄
n
⊗ Bk

G q̄
n
, (5)

where
Bk+1

Bk
q̄
n
represents the relative rotation of the nth AV’s body frame from time-step k to k + 1 and ⊗ is the

quaternion multiplication operator. The unit quaternion
Bk+1

Bk
q̄
n
is the solution to the differential equation

Bt

Bk
˙̄q
n
=

1

2
Ω
[

Bωn(t)
]

Bt

Bk
q̄
n
, t ∈ [tk, tk+1], (6)

where tk , kT and for any vector ω ∈ R
3, the matrix Ω [ω] is defined as

Ω [ω] ,

[

−⌊ω×⌋ ω

−ωT 0

]

, ⌊ω×⌋ ,





0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0



 ,

where ωi are the elements of the vector ω.

The velocity evolves in time according to

vrn(k + 1) = vrn(k) +

∫ tk+1

tk

Gan(τ)dτ . (7)

The position evolves in time according to

rrn(k + 1) = rrn(k) +

∫ tk+1

tk

vrn(τ)dτ. (8)

The evolution of bgn and ban
will be modeled as random walk processes, i.e., ḃan

= wan
and ḃgn = wgn with

E[wgn ] = E[wan
] = 0, cov[wgn ] = σ2

wgn
I3, and cov[wan

] = σ2
wan

I3. The above attitude, position, and velocity

models are discussed in detail in [29].

C. Receiver Observation Model

The pseudorange observation made by the nth receiver on the mth SOP at time-step j, after discretization and mild
approximations discussed in [23], is related to the receiver’s and SOP’s states by

zrn,sopm
(j) = ‖rrn(j)− rsopm

‖2 + c ·
[

δtrn(j)− δtsopm
(j)

]

+ vrn,sopm
(j), (9)

where vrn,sopm
is modeled as a DT zero-mean white Gaussian sequence with variance σ2

rn,sopm
. The pseudorange

observation made by the nth receiver on the lth GNSS SV, after compensating for ionospheric and tropospheric delays
is related to the receiver states by

zrn,svl
(j) = ‖rrn(j)− rsvl

(j)‖2 + c · [δtrn(j)− δtsvl
(j)] + vrn,svl

(j), (10)

where, zrn,svl
, z′rn,svl

−cδtiono−cδttropo, δtiono and δttropo are the ionospheric and tropospheric delays, respectively;
z′rn,svl

is the uncorrected pseudorange; vrn,svl
is modeled as a DT zero-mean white Gaussian sequence with variance

σ2
rn,svl

; l = 1, . . . , L; and L is the total number of GNSS SVs.

III. CENTRALIZED COLLABORATIVE SOP-AIDED INERTIAL NAVIGATION OVERVIEW

In this section, an overview the centralized collaborative SOP-aided INS framework that was presented in detail in
[7] is provided and the difficulty in moving from a centralized to a distributed framework is discussed.



A. Centralized Framework

Consider N navigating AVs, each of which is equipped with an IMU and receivers that are capable of producing
pseudoranges to the same L GNSS SVs and M unknown SOPs. The purpose of the collaborative SOP-aided INS
framework is to (i) exploit SOPs to supplement a GNSS-aided INS to improve the accuracy of each AV’s navigation
solution, (ii) use SOP pseudoranges exclusively as an aiding source to correct the accumulating errors of their INSs
when GNSS pseudoranges become unavailable, and (iii) fuse IMU data, GNSS and SOP pseudoranges, and state
estimates of all collaborating AVs through an extended Kalman filter (EKF)-based central fusion center (CFC) to
improve the estimation performance compared to a single AV using an SOP-aided INS [5].

To exploit SOPs for navigation, their states must be known [30, 31]. However, in many practical scenarios, the
SOP transmitter positions are unknown. Furthermore, the SOPs’ clock states are dynamic and stochastic; therefore,
they must be continuously estimated. To tackle these problems, in addition to estimating the AVs’ states, the
states of all available SOPs are simultaneously estimated in a radio collaborative SLAM framework. Specifically, the
central estimator produces an estimate x̂(k|j) , E[x(k)|Zj ] of x(k) and an associated estimation error covariance
P(k|j) , E[x̃(k|j)x̃T(k|j)|Zj ] where

x ,

[

xT

r1
, . . . ,xT

rN
, xT

sop1
, . . . ,xT

sopM

]T

, z ,
[

zT

sv, z
T

sop

]T

,

zsv ,
[

zT

r1,sv, . . . , z
T

rN ,sv

]T

, zsop ,
[

zT

r1,sop, . . . , z
T

rN ,sop

]T

,

zrn,sv = [zrn,sv1
, . . . , zrn,svL

]T , zrn,sop =
[

zrn,sop1
, . . . , zrn,sopM

]T

,

where k ≥ j, j is the last time-step an INS-aiding source was available, and Zj , {z(i)}ji=1. A high-level diagram
of this framework is illustrated in Fig. 1.

AV 1

EKF

Update

Central

INS

zimu1

Tightly-coupled CFC

SOP

Prediction

and

SOP
Receiver

GPS
Receiver

Actuator

IMU

AV N

SOP
Receiver

GPS
Receiver

Actuator

IMU
zimuN

P(jjj)

x̂(kjj)

P(kjj)

Current

Estimate

x̂(jjj)

zr1;sop
zr1;sv

zrN ;sop
zrN ;sv

Fig. 1. Centralized collaborative SOP-aided INS. All N collaborating AVs send their IMU data zimun , GNSS pseudoranges zrn,sv , and
SOP pseudoranges zrn,sop to a tightly-coupled EKF-based CFC, which produces a state estimate x̂ and a corresponding estimation error
covariance P.

B. Centralized State and Covariance Prediction

Between EKF updates, which take place when either GPS or SOP pseudorange become available, the central estimator
uses IMU data transmitted from all AVs and the clock model described in Section II to propagate the state estimate
from x̂(j|j) to x̂(k|j) and produce a corresponding prediction error covariance P(k|j). Assuming there are K = k− j

steps between EKF updates, the K-step prediction can be shown to be given by

P(k|j) = F(k, j)P(j|j)FT(k, j) + Q̄(k, j), (11)

F(k, j) , diag
[

Fr1(k, j), . . . , FrN (k, j), F
K
sop, . . . , F

K
sop

]

,

Q̄(k, j) , diag
[

Q̄r1(k, j), . . . , Q̄rN (k, j), Q̄sop1
(k, j), . . . , Q̄sopM

(k, j)
]

,



where Frn(k, j) is the nth AV’s DT error state-transition matrix from time-step j to time-step k and

Q̄rn(k, j) ,

k
∑

i=j

Frn(i, j)Qrn(i)F
T

rn
(i, j), Q̄sopm

(k, j) ,

k
∑

i=j

F(i−j)
sop Qsopm

[FT

sop]
(i−j),

Fκ
sop =

{

∏κ

l=1 Fsop κ > 0,

I5×5 κ = 0,

and Qrn(i) , diag
[

Qd,Bn
(i), c2Qclk,rn

]

, where Qd,Bn
is the nth AV’s DT linearized INS state process noise covari-

ance. The detailed derivations and the structure of Qd,Bn
are described in [28, 32].

To analyze the structure of (11) after the prediction, consider the partitioned form

P(k|j) =

[

Pr(k|j) Pr,sop(k|j)
PT

r,sop(k|j) Psop(k|j)

]

,

where Pr is the covariance associated with all the AVs’ states, Psop is the covariance associated with all the sops’
states, and Pr,sop is their cross-covariance. The prediction of Pr has the form

Pr(k|j) =







Fr1(k, j)Pr1(j|j)F
T

r1
(k, j)+Q̄r1(k, j) Fr1(k, j)Pr2(j|j)F

T

r2
(k, j) . . .

Fr2(k, j)Pr2(j|j)F
T

r1
(k, j) Fr2(k, j)Pr2(j|j)F

T

r2
(k, j)+Q̄r2(k, j)

...
. . .






, (12)

where Frn(k, j) , diag
[

ΦBn
(k, j), FK

clk

]

and ΦBn
is the nth AV’s DT linearized INS state transition matrix, which

has the structure

ΦBn
(k, j) =













I3×3 03×3 03×3 Φqbgn
(k, j) Φqban

(k, j)
Φpqn

(k, j) I3×3 I3×3T Φpbgn
(k, j) Φpban

(k, j)
Φvqn

(k, j) 03×3 I3×3 Φvbgn
(k, j) Φvban

(k, j)
03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3













,

where the blocksΦqbgn
,Φqban

,Φpqn
,Φpbgn

,Φpban
,Φvqn

,Φvbgn
, andΦvban

are 3×3matrices whose elements depend
on the IMU data from AV n. The challenge in moving from a centralized to a distributed aided INS is revealed in
the structure of (12). Specifically, the propagation of the cross-covariance term between any two vehicles n and n′

requires both ΦBn
and ΦBn′

, which are dependent on the respective vehicle’s IMU data between time tk and tj .
In a central estimator, under a perfect communication channel assumption, this is not an issue since the prediction
(12) is readily calculated using IMU data reliably transmitted from each AV to a CFC. However, this approach may
be impractical due to several reasons: (1) transmitting all IMU data requires a large communication bandwidth,
(2) real communication channels are imperfect (lossy), and (3) access to the raw IMU data may not be available.
Motivated by these concerns, a distributed approach that can compute (12) with minimal communication between
AVs is desired.

IV. DISTRIBUTED SOP-AIDED INERTIAL NAVIGATION

In this section, the distributed framework depicted in Fig. 2 is described. Each AV employs its own EKF that
maintains the global estimate x̂ (maintained in the Aiding correction block). Instead of transmitting IMU data to
a central estimator, each AV, uses its own local IMU data zimun

between tj to tk to propagate x̂(j|j) to x̂(k|j) and
produce ΦBn

(k, j). When a set of pseudoranges becomes available, each vehicle broadcasts a packet:

Λn(k) , {x̂Bn
(k|j),ΦBn

(k, j), zrn,sv(k), zrn,sop(k)} . (13)

Note that the state predictions
{

x̂clkrn
(k|j)

}N

n=1
and {x̂sop(k|j)}

M

m=1 are not transmitted, since their dynamics
(2) and (1) are linear time-invariant; therefore, the predictions can be performed at each vehicle. Assuming a fully
connected graph, i.e., all AVs can send and receive packets to all AVs as depicted in Fig. 2, this framework will perform
equivalently to the centralized framework depicted in Fig. 1 for the following reasons: (i) the global propagation
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Fig. 2. Distributed SOP-aided INS framework with a fully connected graph.

(12) can be performed at each vehicle, (ii) each vehicle has access to all {x̂rn(k|j)}
N

n=1, which are necessary for the
computation of the measurement Jacobians, and (iii) each vehicle has access to all measurements. For these reasons,
each AV can perform the global centralized update. However, the transmission of ΦBn

is costly, since it is a 15× 15
matrix, which requires the transmission of 225 elements every update. Nevertheless, by exploiting the sparsity of
ΦBn

, one can reduce the transmitted elements to 72.

V. PERFORMANCE CHARACTERIZATION

A. Channel Loss Model

The successful arrival of the data packets {Λn(k)}
N

n=1 will be governed by a Bernoulli independent and identically
distributed sequence. This can be shown to modify the measurement update to take the form

x̂(k|k) = x(k|j) + γ(k)K(k) [z(k) − ẑ(k)] ,

P(k|k) = P(k|j)− γ(k)K(k)H(k)P(k|j),

where

γ(k) ∼ B(1− p) =

{

p γ(k) = 0

1− p γ(k) = 1,

where K is the Kalman gain matrix, ẑ is the predicted measurement, H is the measurement Jacobian evaluated
at the state prediction x̂(k|j), and γ is a Bernoulli random variable with probability of failure p [33]. Immediately
following the update, k is set to j (k ≡ j). The structures of H and K are dependent on how the pseudoranges
are fused in the estimator, e.g., as time-of-arrival (TOA) or time-difference-of-arrival (TDOA), and are described in

detail in [7]. Note that if communication of the data packets {Λn(k)}
N

n=1 fail (γ(k) = 0), the updated state and
covariance is simply set to the predicted values x(k|j) and P(k|j), respectively. Subsequently, k is set to j and the
estimator returns to the prediction (11).

B. Simulation Settings and Results

An environment comprising six SOPs and N = 4 AVs were simulated. The clock states for each AV-mounted receiver
was simulated according to (2), with {h0,rn , h−2,rn}

4
n=1 = {9.4× 10−20, 3.8× 10−21}, which corresponds to a typical



temperature-compensated crystal oscillator (TCXO). Each simulated trajectory corresponded to an unmanned aerial
vehicle (UAV), whose trajectories were generated using a standard six degree-of-freedom (6DoF) kinematic model of
airplanes [28].

IMU data from a triad gyroscope and a triad accelerometer were generated at 100 Hz according to (3) and (4),
respectively. The magnitude of the bias errors and their driving statistics are determined by the grade of the IMU.
Data for a consumer-grade IMU was generated for this work.

GPS L1 C/A pseudoranges were generated at 1 Hz according to (10) using SV orbits produced from Receiver
Independent Exchange (RINEX) files downloaded on May 31, 2017 from a Continuously Operating Reference Station
(CORS) server [34]. The GPS signals were set to be available for t ∈ [0, 50) seconds, and unavailable for t ∈ [50, 170]
seconds. Pseudoranges were generated to six SOPs at 5 Hz according to (9) and the SOP dynamics discussed in
Subsection II-A. Each SOP was set to be equipped with a typical oven-controlled crystal oscillator (OCXO), with

{h0,sopm
, h−2,sopm

} = {8 × 10−20, 4 × 10−23}, where m = 1, ..., 6. The SOP emitter positions
{

rsopm

}6

m=1
were

surveyed from cellular tower locations in Portland, Oregon. The simulated trajectories, SOP positions, and the
vehicles’ positions at the time GPS was set to become unavailable are illustrated in Fig. 3. To avoid cluttering the
figure, the trajectories of AV 3 and AV 4 are not shown; however, their trajectory profiles are identical to AV 1 and
AV 2, respectively, their initial positions started towards the bottom left and right of the figure, respectively, and
their initial heading was towards the center of the figure.

Three runs were simulated. In the first two runs, the distributed SOP-aided INS was employed in an environment with
a probability of packet loss set to p = 0 and p = 0.7, respectively. The resulting position and orientation estimation
errors and corresponding 3σ bounds are plotted in Fig. 4 for using (i) the centralized framework described in Section
III and (ii) the distributed framework discussed in Section IV. The third run employs a traditional GPS-aided INS
for a comparative analysis.

Vehicles' trajectories GPS cut off locationSOPs' positions

0km 1km

AV 1AV 2

Fig. 3. True UAVs’ traversed trajectories (yellow), SOP locations (blue pins), and the vehicles’ positions at the time GPS was cut off
(red).

The following may be concluded from these plots. First, note that the distributed trajectories (black for p = 0 and
blue for p = 7) are coincident with the centralized trajectories. Second, even with p = 0.7, the estimation errors
produce by the distributed SOP-aided INS appear to be bounded after GPS cut-off. To further investigate the affect
of the probability of packet loss p, 60 simulations were conducted. The probability of loss was swept over p ∈ [0, 0.9]
with increments of ∆p = 0.1. For each p, N was varied from N = 2, . . . , 6. The resulting 3-D root mean squared
error (RMSE) time histories of AV 1, RMSE(k) =

√

tr[Pr1(k)], is plotted in Fig. 5 and the final RMSE versus p

and N is plotted in Fig. 6. Similar figures were noted for the other AVs.



The plots in Fig. 5 indicate that even with a probability of packet drop as large as p = 0.9, the errors reduce when
a measurement update is processed. The error growth due to the increase in p can be compensated for partially
by deploying additional collaborating AVs into the environment. This relationship is made more clear in the final
RMSE surface plot in Fig. 6. The black grid represents the final RMSE of a single AV navigating with an SOP-aided
INS, which inherently has p = 0. The points on the surface below the grid can be used to determine how many AVs
are required in an environment with a probability of packet loss p to perform comparably to a single AV navigating
with an SOP-aided INS.
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Fig. 4. Position and orientation estimation errors and corresponding 3σ bounds for N = 4 AVs and a probability of packet loss p. The
black and blue estimation error trajectories correspond p = 0 and p = 0.7, respectively. The errors produced by the centralized framework
are plotted in green for each case.
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Fig. 5. RMSE time history for a varying number of AVs N = 2, . . . , 6 and probability of packet loss p = 0, 0.3, 0.6, and 0.9 for AV 1.
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Fig. 6. Final RMSE surface for an AV using a distributed SOP-aided INS after 120 seconds of GPS unavailability in an environment with
six SOPs. The number of collaborating AVs was varied from N = 2, ...,6 and the probability of packet loss was varied from p = 0, ...,0.9.
Each point on the surface corresponds to one of the AV’s final RMSE of its position estimate, given by RMSE(k) =

√

tr[Pr1 (k)]. The
black grid corresponds to the same AV’s final RMSE navigating without collaboration (p = 0) using an SOP-aided INS.

VI. EXPERIMENTAL RESULTS

A field experiment was conducted in Riverside, California to demonstrate the performance of the distributed SOP-
aided INS framework with intermittent communication. To this end, two unmanned aerial vehicles (UAVs) were each
equipped with a two-channel Ettus R© universal software radio peripheral (USRP) and a consumer-grade cellular and
GPS antenna. Each USRP was tuned to 1575.47 MHz and 883.75 MHz to synchronously sample all available GPS
L1 C/A signals and all Verizon cellular base transceiver stations (BTSs) whose signals were modulated through code
division multiple access (CDMA). The signals were processed off-line through the Multichannel Adaptive TRansceiver
Information eXtractor (MATRIX) SDR, which produced pseudorange observables to all GPS SVs in view and two
cellular BTSs [13]. The IMU data was sampled from each UAV’s on-board proprietary navigation system, which was
developed by Autel Robotics R©. Communication between the UAVs was simulated to be intermittent according to a
Bernoulli channel model with packet delivery failure probability p. The experimental setup is illustrated in Fig. 7.

The UAVs flew commanded trajectories over a 90 second period in the vicinity of the two BTSs as illustrated in Figs.
8 (a)-(c). Three estimators were implemented to estimate the flown trajectories: (i) the centralized collaborative
SOP-aided INS with perfect communication (p = 0), as described in Section III, (ii) the distributed SOP-aided
INS with intermittent communication (p = 0.3), as described in Section IV, and for comparative analysis, (iii) a
traditional GPS-aided INS.

Each estimator had access to GPS SV pseudoranges for only the first 75 seconds of the run. The North-East
RMSEs of the traditional GPS-aided INSs’ navigation solutions after GPS became unavailable were 9.9 and 14.55
meters, respectively. The RMSEs of the UAVs’ trajectories for the SOP-aided INS (p = 0) were 4.0 and 4.3 meters,
respectively, and the final localization error of the cellular BTSs were 25.9 and 11.5 meters, respectively. The RMSEs
of the UAVs’ trajectories for the SOP-aided INS with intermittent communication (p = 0.3) were 8.4 and 4.9 meters,
respectively, and the final localization error of the cellular BTSs were 43.5 and 27.8 meters, respectively. The North-
East 99th-percentile initial and final uncertainty ellipses of the BTSs position states are illustrated in Fig. 8 (a),
(d), and (e). The UAVs’ RMSEs and final errors are tabulated in Table I. It is worth noting that this experiment
consisted of only two AVs collaborating AVs exploiting two cellular SOP BTSs. It is expected that the increase of
the RMSE when p got increased from p = 0 to p = 0.3 to be less significant when more AVs and SOPs get included.

TABLE I

Experimental Estimation Errors

Framework Unaided INS SOP-aided INS (p = 0) (p = 0.3)

Vehicle UAV 1 UAV 2 UAV 1 UAV 2 UAV 1 UAV 2

RMSE (m) 9.9 14.5 4.0 4.3 8.4 4.9

Final error (m) 27.8 24.5 6.3 4.3 14.0 6.1
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Fig. 7. Experimental hardware setup.
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Fig. 8. Experimental results demonstrating two UAVs collaboratively aiding their INSs by exploiting two cellular SOP BTSs with the
framework depicted in Fig. 2. The white initial and final BTS position uncertainty ellipses in (a),(d), and (e) correspond to a probability
of packet loss p = 0, whereas the red correspond to p = 0.3. Image: Google Earth.

VII. Conclusions

This work studied a distributed SOP-aided INS framework subject to intermittent communication between AVs. It
was shown that a distributed approach performs identically to a centralized framework when all AVs transmit their
linearized DT INS state transition matrix along with pseudorange observations on SOPs and state estimates. The
performance of the framework was characterized over the probability p of communication failure using a Bernoulli
packet loss model and the number of collaborating AVs N . Moreover, experimental results were presented demon-
strating two UAVs navigating using two cellular CDMA BTSs in the absence of GPS. The UAVs’ trajectory final
error reductions were 77.3% and 82.4%, respectively, with perfect communication and 49.6% and 75.1%, respectively,
with intermittent communication using p = 0.3, when compared to unaided INSs.
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