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Abstract

Global well-posedness and parametrices for critical Maxwell-Dirac and massive
Maxwell-Klein-Gordon equations with small Sobolev data

by
Cristian Dan Gavrus
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Daniel Tataru, Chair

In this thesis we prove global well-posedness and modified scattering for the massive
Maxwell-Klein-Gordon (MKG) and for the massless Maxwell-Dirac (MD) equations, in the
Coulomb gauge on R (d > 4), for data with small critical Sobolev norm.

For MKG, this work extends to the general case m? > 0 the results of Krieger-Sterbenz-
Tataru (d = 4,5) and Rodnianski-Tao (d > 6), who considered the case m = 0. We proceed
by generalizing the global parametrix construction for the covariant wave operator and the
functional framework from the massless case to the Klein-Gordon setting. The equation
exhibits a trilinear cancelation structure identified by Machedon-Sterbenz. To treat it one
needs sharp L? null form bounds, which we prove by estimating renormalized solutions in
null frames spaces similar to the ones considered by Bejenaru-Herr. To overcome logarithmic
divergences we rely on an embedding property of [J-! in conjunction with endpoint Strichartz
estimates in Lorentz spaces.

For MD, the main components of the proof consist of A) uncovering of the null structure of
Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant
Dirac equation. A key step for achieving both is to exploit and justify a deep analogy
between MD and MKG, which says that the most difficult part of MD takes essentially the
same form as parts of the Maxwell-Klein-Gordon structure. As a result, the aforementioned
functional framework and parametrix construction become applicable.
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Chapter 1

Introduction

1.1 Introduction and main results

In this thesis we consider the massive Mazwell-Klein-Gordon (MKG) equation and the mass-
less Mazwell-Dirac (MD) equation on R+ for d > 4.

The Minkowski space R can be endowed with the metric g = diag(1,—1,...,—1) or
n = diag(—1,+1,...,+1) in the rectilinear coordinates (z°,2!,...,2%). Associated to the
Minkowski metric n are the gamma matrices, which are N x N complex-valued matrices y*
(u=0,1,...,d) satisfying the anti-commutation relations
1
5 (V) = = L, (1.1.1)
where I44 is the N x N identity matrix, and also the conjugation relations
(v")F =", (1.1.2)

On R4, the rank of the gamma matrices v in the standard representation is N = ol
[56, Appendix E]. A spinor field ¢ is a function on R that takes values in CV, on which
~* acts as multiplication.

Let ¢ : R%™! — C be a complex field, while A, : R4 — R is a real 1-form with curvature
Fop = 0,45 — 0gA,.
One defines the covariant derivatives and the covariant Klein-Gordon operator by
D¢ i= (04 +iAs)o,  O4 := DD, + m?

Given a real-valued 1-form A, we similarly introduce the covariant derivative on spinors
D, := 0,4 + 1A, which acts componentwisely on .

The Maxwell-Klein-Gordon equation arises as the Euler-Lagrange equations for the La-
grangian

1 — 1 1
SurclAu, ) = // ~Do¢D¢ + —FogF*® — —m? |¢[* dz dt
]Rd+1 2 4 2
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while Maxwell-Dirac arises from the Lagrangian

Suplt] = [[ D7) = E ™ (. v) dad.
R1+d

Here (1, 1?) := (1?)T¢! is the usual inner product on CV, where ¢ denotes the hermitian
transpose. Furthermore, we use the standard convention of raising and lowering indices using
the Minkowski metric, and the Einstein summation convention of summing repeated upper
and lower indices.

A brief computation shows that the Euler-Lagrange equations for Syixa[A,, ¢ take the
form

9°F,5 = 3(¢Dag),
’ (‘2 ¢) (1.1.3)
(DD, +m*)p =0,
while the Euler-Lagrange equations for Syp[A,, ¢] take the form
aVF v = ) )
oD =mp.

where a# = A% and 3 = Y.
The MKG system ([1.1.3)) is considered to be the simplest classical field theory enjoying

a nontrivial gauge invariance. Indeed, for any real valued potential function y, replacing
b= eXp, Ay Ag — 04X, Do eXDye ™ (1.1.4)

one obtains another solution to (|1.1.3)). The same hold with the transformation (121, 12) =
(A — dx, eXy) of (A,9) in the case of MD. To remove this gauge ambiguity we will work
with the Coulomb gauge

div,A=dA; =0 (1.1.5)

where Roman indices are used in sums over the spatial components. Both systems are
Lorentz invariant and admit a conserved energy, which we will not use here.
When m = 0 the equations are invariant under the scaling

b MO AT);  Ag = AL (M A)

respectively ,
W = A2 (A Ax); Ay = AL (M, Ax)

which implies that o = % — 1 is the critical regularity for MKG. We shall refer to H? x
H°=' x H° x H°"! as the critical space for (¢, A)[0] also when m # 0. In the (m = 0) MD
case, the critical space for (1(0), A[0]) is H°~2 x H x H°~!.

At this regularity, globally in time, the mass term m?2¢ is not perturbative and must be
considered as part of the operator (2.
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In this thesis, we will prove global well-posedness and scattering for the massive MKG
and for the massless (MD)]) (i.e. m = 0) on the Minkowski space R'*? with d > 4 under the
Coulomb gauge condition ([1.1.5]), for initial data which are small in the scale-critical Sobolev
space.

Under the Coulomb gauge condition (|1.1.5)), denoting J, = —J(¢Dy¢), the MKG system

(1.1.3)) becomes
On¢ =0

04; = PiJ, (1.1.6)
AAQ — J(), AatAo — 31(]2

where P denotes the Leray projection onto divergence-free vector fields
P;A = ATTOM(0LA; — 0; A). (1.1.7)

The first result of this thesis consists in extending the results in [31], [47] to the case
m # 0. For a more detailed statement, see Theorem [3.0.1]

Theorem 1.1.1 ([16] Critical small data global well-posedness and scattering). Let d > 4
and o = g — 1. The MKG equation (1.1.6) is globally well-posed for small initial data on
(R4, g) with m? > 0, in the following sense: there exists a universal constant € > 0 such
that:

1. Let (¢[0], A,[0]) be a smooth initial data set satisfying the Coulomb condition (1.1.5)) and
the smallness condition

1$10) ot + [ ALlO) ot < e (1.18)

Then there exists a unique global smooth solution (¢, A) to the system (1.1.6) under the
Coulomb gauge condition (1.1.5) on Rt with these data.

2. For any T > 0, the data-to-solution map (p[0], Az[0]) — (¢, 0, Ay, O;A) extends con-

tinuously to

H? x H" ' x H” x H Y (RY) N {([LI8)} — C([-T,T); H® x H°' x H” x H""}(R?)).

3. The solution (¢, A) exhibits modified scattering as t — Zdoo: there exist a solution
(qﬁiw,A;-'Eoo) to the linear system

DA;EOO =0, DAfmqb =0, such that

16 = &™) [tlll st xrre=s + (A7 = AF) Ml sz — 0 as t — Foo,

where AT is the free solution of JAT™ = 0 with Al"¢[0] = A,[0] and A} = 0.
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For Maxwell-Dirac we have the following result, which was obtained in collaboration with

Sung-Jin Oh [17]:

Theorem 1.1.2 ([17] Critical small data global well-posedness and scattering). Consider
(MD) on (R**,n) withm =0 ford >4 and let 0 = $ —1. There ezists a universal constant
€. > 0 such that the following statements hold.

1.

Let (1(0), A;(0),0:A;(0)) be a smooth initial data set satisfying the Coulomb condition
(1.1.5) and the smallness condition

%O go-1r2ay + sup [[(Ay, 0 A7) (O) o o1 ey < € (1.1.9)

Jj=1,...4

Then there ezists a unique global smooth solution (1, A) to the system (MD)) under the
Coulomb gauge condition (1.1.5) on Rt with these data.

For any T > 0, the data-to-solution map (¢, A;,0;A;)(0) — (¢, A;, 0;A;) extends contin-
uwously to

H Y2 % H? x HYRY N {([I.1.9) holds} — C([0,T]; H"Y/? x H? x H*}(R%)).
The same statement holds on the interval [T, 0].

For each sign £, the solution (¢, A) exhibits modified scattering as t — +o0o, in the sense
that there exist a solution (*>, Ajioo) to the linear system

A =0,
at Dy =0,

such that
1 = 05) Ol gro-r/2(ay + 1(A5 = ATt o sro-1may = 0 as t — Foo.
Here, By =0 and B; can be taken to be either the solution A’ to DA™ = 0 with data

A]free[o] = A] [0], or B] = A;I:oo

For both results the case d = 4 is the most difficult. When d > 5 the argument simplifies,

in particular the spaces N Eé, PWéE, L?L*? are not needed. To fix notation, the reader is
advised to set d = 4, 0 = 1. In fact, for the sake of concreteness, for the MD equation we
focus on the case d = 4, where we present the proof of Theorem in detail and then
refer to Remarks [1.8.5] [3.0.3] [6.3.8] [6.4.3] and for the necessary modifications of the
argument for d > 5.
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Remark 1.1.3. The theorems are stated for Coulomb initial data. However, they can be
applied to arbitrary initial data satisfying the smallness conditions by performing a gauge
transformation. Given a real 1-form A;(0) on R?, one solves the Poisson equation

Ay = div,A;(0), X € H2 nWH(RY).

Then A(0) = A(0) — dy obeys the Coulomb condition (I.1.5). For small €, the small data
condition is preserved up to multiplication by a constant.

In what follows, in the context of MKG we set m = 1, noting that by rescaling, the
statements for any m # 0 can be obtained. Notation-wise, we will write [, rather than ;.
In the case of MD we set m = 0, although by examining the proofs of the MKG estimates it
becomes clear that one could also obtain the similar result for the massive MD.

In the rest of this chapter we describe the physical motivation and the main ideas ideas
of this thesis (null structures, the non-perturbative nonlinearities, the parametrix, adapted
function spaces and the the parallelism between MD and MKG). We also review the previous
work and set up the notation and definitions. Finally, we present the decompositions of the
nonlinearities and state the main estimates as well as the solvability theorems.

In chapter |2l we define the function spaces and present their embeddings properties and
the motivation for the choice of norms. With various localizations, we need X*° Strichartz
and L'L> spaces, Lorentz spaces and adapted L;’SAL%M, LmegzyA spaces.

In chapter [3| we give the proofs of the main theorems using the nonlinear estimates and
the parametrix theorems stated in this chapter. We discuss existence and uniqueness, fre-
quency envelopes bounds, weak Lipschitz dependence, subcritical well-posedness, persistence
of regularity, continuous dependence on the initial data and modified scattering.

In chapter |4 we present the motivation and the construction of the parametrices for
covariant Klein-Gordon and Dirac equations. We give the proofs of Theorems
and Prop. We discuss the main properties of the phases, decomposable estimates,
oscillatory integrals estimates and the conjugation.

Chapter [5|is devoted to a detailed analysis of the core translation-invariant bilinear forms
that play a role in our equations. We discuss the classical Ny, N;; and spinorial null forms,
how to adapt N, to the Klein-Gordon equation, the geometry of frequency interactions as
well as some refinements of Holder’s inequality.

Chapter [ contains the proofs of the bilinear and trilinear estimates from section [I.8
Using the spaces introduced in chapter [2| these proofs rely on the analysis from chapter

1.2 Physical motivation

We begin with a short review of relativistic mechanics and then discuss the historical mo-
tivation of our equations following [14]. The units are chosen such that ¢ = 1. Con-
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sider a free particle on R3*' with Lagrangian L = —my/1 —|v|*>. The conjugate mo-

mentum is p = VL = f“" E while the energy equals £ = p-v — L = 17"‘ e The
energy F and the momentum p = (p,,py,p.) combine into the four-momentum vector

p"* = (E,p). The Minkowski norm of this vector equals the square of the particle’s mass:
P'pu = E* — |p|* = m?.

Now consider a given electromagnetic field with potential A* = (¢, A). The action
functional of a charged particle with mass m and charge e moving in this field is

(tlvml)

S = / —mds — eA,dz".
(to,z0)

Writing the Lagrangian in coordinates (¢,x) we obtain L = —my/1 — \V[2 +eA-v—eop

where v = dx/dt. We compute the canonical momentum

mv

V1-Ivl

p=V,L= +eA = p; + eA.

The corresponding Hamiltonian

m
V1=IvP

In analogy with the free particle we denote by p* the 4-vector consisting of the total energy
H and the canonical momentum p. The last equation states that the Lorentz product equals

H=p-v—L= +ep, and note H:\/m2+|p—€A|2+€¢.

(b~ cA) = (1" — cA")(p, — eA,) = (E — ed)? — |p — cAl* = m”. (1.2.1)

Klein-Gordon and Dirac

The Klein-Gordon and Dirac equations arose out of the desire to obtain relativistic alterna-
tives to the Schrodinger equation

10 = —(1/2m) A + Vb,

In this context the potential V' is meant to be replaced by an electromagnetic field, while
the energy and momentum are quantized by

P — 0", (1.2.2)

Applying this quantization to the energy-momentum relation p*> = m? we obtain the Klein-
Gordon equation['}

(0} — A)p +m*p = 0. (1.2.3)
ntroduced in 1926 by physicists Oskar Klein and Walter Gordon
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Because this equation is second order in the time derivative, we must specify initial values
for both ¢ and 0;¢. Thus ¢ itself cannot maintain the role of determining the probability
density of the position of the particle. To obtain an equation that is of first order in ¢, one
could replace by i0p) = A where A = (—A 4+ m?)Y/2. This would resemble the
Schrodinger equation, but then the resulting equality is no longer a differential equation.

Dirac’s idea was that it is possible to obtain a Lorentz-invariant differential equation of
type

10 = Hy (1.2.4)

provided that one allows vector-valued wave functions 1. If we impose H?> = —A + m? and
consider

H= %(alal + %0y 4+ *05) + mB,
by squaring this operator and collecting the terms, we must have
ok 4+ ool = 20,1, ol + pal =0, pr=1.
Then can be put in the form of the covariant Dirac equationﬂ
iy O = map.

One benefit of this model is that it satisfies a conservation of probability law, unlike the
Klein-Gordon equation: if j# = 1y#4), we have d,j* = 0. Then j, = ¥ is the probability
density of the position of the particle.

Varying with respect to 1 in the action functional

/imﬂauw — manp dadt

one obtains the Dirac equation (while varying v results in the adjoint Dirac equation).
Previously we obtained the energy-momentum vector for a particle in an electromagnetic
field from the 4-vector of a free particle by replacing p* by p* —eA*. This suggests to replace

by
i0" = IO — eA,. (1.2.5)

in the action functional, which results in the equation
Y (i0, — eAy )y —myp = 0.

Most treatments of the Dirac equation consider the electromagnetic field as given and
ignore the Dirac current as a source for the Maxwell equations. To couple the Dirac equation
with the Maxwell equation we add the term —1/4F,, F* to the Lagrangian, where F),, =
0, A, —0,A,. The resulting system is the Maxwell-Dirac equation. Similarly one couples the
Klein-Gordon equation (|1.2.3)) with Maxwell’s equations.

2Formulated in 1928 by the British physicist Paul Dirac.
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1.3 Main ideas

We now provide an outline of the main ideas of this thesis.

Null structures in the Coulomb gauge.

Null structures arise in equations from mathematical physics which exhibit covariance prop-
erties. They manifest through the vanishing of resonant components of the nonlinearities
of such equations, and their presence is fundamental in obtaining well-posedness at low
regularity.

An important component of the proof is uncovering the null structure of in the
Coulomb gauge, which involves both classical (i.e., scalar) and spinorial null forms.

A classical null form for scalar inputs refers to a linear combination of

Nij(6,0) = 0,000 — 0;0010,  No(9,v) = Dadp - 0°¢. (1.3.1)

These null forms initially arose in the study of global-in-time behavior of nonlinear wave
equations with small, smooth and localized data [24]. Remarkably, in the work [26] of
Klainerman and Machedon, it was realized that the same structure is essential for establishing
low regularity well-posedness as well.

Among the first applications of this idea was the proof of global well-posedness at en-
ergy regularity of the Maxwell-Klein-Gordon equations on R'*3 [25]. A key observation
in [25] was that quadratic nonlinearities of Maxwell-Klein-Gordon in the Coulomb gauge
consist of null forms of the type N;;. Furthermore, in the proof of essentially optimal local
well-posedness of MKG in R'*® by Machedon and Sterbenz [34], a secondary trilinear null
structure involving Ay was identified in the system after one iteration.

Both of these structures played an important role in [31], and they also do so here.
However, special care must be taken since the null form N is adapted to the wave equation
while we will also work with Klein-Gordon waves.

Another type of null structures that arise in this work are spinorial null forms. These are
bilinear forms with the symbol

14 (I (n), where TI.(§) := %<14X4 - O"]Tg‘j)7

which were first uncovered by D’Ancona, Foschi, Selberg for the Dirac-Klein—Gordon system
in [9]. These authors further investigated the spinorial null forms in the study of the Maxwell-
Dirac equation on R in the Lorenz gauge (in [10]; see also [11]). In the work of Bejenaru—
Herr [4, 3] and Bournaveas-Candy [6], these null forms were used in the proof of global
well-posedness of the cubic Dirac equation for small critical data.

A more detailed exposition of the null structure of MD-CG is given in Section [5.4, At
this point we simply note that the null structure alone is insufficient to close the proofs due
to the presence of non-perturbative nonlinearity.
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Presence of non-perturbative nonlinearity

As in many previous works on low regularity well-posedness, we take a paradifferential ap-
proach in treating the nonlinear terms, exploiting the fact that the high-high to low inter-
actions are weaker and that terms where the derivative falls on low frequencies are weaker
as well.

From this point of view, the worst interaction occurs in the frequency-localized compo-
nents of the scalar part of MKG

> AL c0.Pid
k

and of the Dirac part of MD
> o' Poc AP,
k

At critical Sobolev regularity these terms are non-perturbative, in the sense that even
after utilizing all available null structure, they cannot be treated with multilinear estimates
for the usual wave, Klein-Gordon and Dirac equations. Instead, following the model set
in the work of Rodnianski-Tao [47] and Krieger—Sterbenz—Tataru [31] on MKG-CG, these
terms must be viewed as a part of the underlying linear operators, and we must prove their
solvability in appropriate function spaces. In fact, in the case of MD we establish solvability
of the covariant Dirac operator o*D,; see Proposition below. We note that this is
the reason why we have modified scattering, as opposed to scattering to a free field.

The presence of a non-perturbative term is characteristic of geometric wave equations
with derivative nonlinearity, whose examples include Wave maps, Maxwell-Klein—Gordon,
Yang-Mills.

Parametrix construction for paradifferential covariant wave
equation

The key to addressing the non-perturbative nonlinearity is through a suitable renormaliza-
tion.

A key breakthrough of Rodnianski and Tao [47] was proving Strichartz estimates for the
covariant wave equation by introducing a microlocal parametrix construction, motivated by
the gauge covariance of 04 = D*D,, under (1.1.4)), i.e., e™"Ou (e’ @) = Oa¢. The idea was
to approximately conjugate (or renormalize) the modified d’Alembertian (1+2iAy_. -V, Py
to [J by means of a carefully constructed pseudodifferential gauge transformation

05 ~ e (t,z, D)0e "+(D, s,y).

These Strichartz estimates were sufficient to prove global regularity of the Maxwell-Klein-
Gordon equation at small critical Sobolev data in dimensions d > 6. We discuss this con-
struction in chapter [4 which also extends to massive case and to the half-wave case.
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As explained below, this construction will also provide the basis for the proof of solvability
of the covariant Dirac equation. Moreover, a renormalization procedure has been also applied
to the Yang-Mills equation at critical regularity [30], [32].

Function spaces

In [31], Krieger, Sterbenz and Tataru further advanced the parametrix idea in d = 4, showing
that it interacts well with the function spaces previously introduced for critical wave maps
in [54], [52]. In particular, the resulting solution obeys similar bounds as ordinary waves,
yielding control of an X*® norm, null-frame norms and square summed angular-localized
Strichartz norms.

Here we will follow their strategy, showing that both the spaces and the renormalization
bounds generalize to the Klein-Gordon (m? > 0) context.

Critical X*%2 spaces, 'null’ energy Ly° L2 and Strichartz L7 L°  spaces in adapted
frames, were already developed for the Klein-Gordon operators Hy Bejenaru and Herr [4]
and we will use some of their ideas. The difficulty here consists in proving the bounds for
renormalized solutions

le=*(t,2, D)llsy < 19100z + 1Tl

We shall rely on TT™ and stationary phase arguments for both Lg‘j’ALfcw’A and wa’ALgf’M
bounds, as well for PoL*L*>, see Corollaries [4.6.9] [4.6.6| and |4.6.4]

However, at low frequency or at high frequencies with very small angle interactions, the
adapted frame spaces do not work and we are confronted with logarithmic divergences. To
overcome this we rely on Strichartz estimates in Lorentz spaces L?L*? and an embedding
property of 07! into L'L>.

Here we have been inspired by the paper [50] of Shatah and Struwe. The difference is
that instead of inverting A by a type of Sobolev embedding |D:,;|71 : LB — [2° we have to
invert [ by

1 w 1 )
22l %:‘Pl Qk/+2lpk/ﬁ : LILQ’I — LIL

See Proposition for more details.

Parallelism between Maxwell-Dirac and Maxwell-Klein—Gordon

In proving solvability of the covariant Dirac operator, as well as uncovering the null structure
of MD-CG, we exploit a deep parallelism between the Maxwell-Dirac and the Maxwell-
Klein—Gordon equations. On one hand, it provides a clear guiding principle that we hope
would be useful in the future study of other Dirac equations. On the other hand, it allows
us to borrow some key bounds directly from the massless Maxwell-Klein—Gordon case [31],
which simplifies the proof.
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Historically, the Dirac equation emerged in an attempt to take the ‘square root’ of the
Klein—-Gordon equation in order to obtain an equation that is first order in time. Thus
‘squaring’ the Dirac component of the system leads to an equation that looks like the Klein—
Gordon part of MKG. Unfortunately, as noted in [10], this idea seems to be of limited use,
since squaring the Dirac equation destroys most of the spinorial null structure.

An alternative, more fruitful approach was put forth in [10], which we follow in this
thesis. The idea is to first take the spatial Fourier transform and diagonalize the Dirac
operator o*d,, decomposing the spinor as ¢ = 1, + 1)_ where 14 obey appropriate half-
wave equations. Splitting ¢ in the nonlinearity o* A, into ¢4 + 1_ as well, we can divide
the equation into two parts: the scalar part, which consists of contribution of ¥, without
multiplication by o*, and the remaining spinorial part. A similar decomposition can be
performed for the nonlinearity of the Maxwell equations.

One of the key observations is that the spinorial part enjoys a more favorable null struc-
ture compared to the scalar part. In particular, it is entirely perturbative, and furthermore
the secondary null structure a la Machedon—Sterbenz [34] is unnecessary. We refer to Re-
mark for a more detailed explanation.

For the remaining scalar part, we observe that its structure closely parallels that of MKG;
see Remark for the detailed statement. As a consequence of this parallelism, we show
that MD-CG exhibits a nearly identical secondary null structure as the one from MKG
(uncovered in [34]); see Section [6.4] Furthermore, the microlocal parametrix construction in
[31] can be borrowed as a black box to establish key estimates in the proof of solvability of
the covariant Dirac equation, which handles the non-perturbative nonlinearity.

1.4 Previous work

The connection between the Maxwell-Klein-Gordon and Maxwell-Dirac equations is that the
MKG equation can be considered a scalar counterpart to MD. The paper [31] of Krieger—
Sterbenz—Tataru was the main motivation and inspiration for both Theorem [1.1.1)and [1.1.2]

Progress on the Maxwell-Klein-Gordon equation has occurred in conjunction with the
Yang-Mills(-Higgs) equations. An early result was obtained by Eardley and Moncrief [12].

On R*™! and R3*! the MKG system is energy subcritical. Klainerman-Machedon [25] and
Selberg-Tesfahun [49] (in the Lorenz gauge) have proved global regularity as a consequence
of local well-posedness at the energy regularity. Further results were obtained by Cuccagna
[8]. Machedon-Sterbenz [34] proved an essentially optimal local well-posedness result. In
[22] in R3*1, global well-posedness below the energy norm was considered.

On R**!, an almost optimal local well-posedness result was proved by Klainerman-Tataru
[28] for a model problem closely related to MKG and Yang-Mills. This was refined by Selberg
[48] for MKG and Sterbenz [51].

At critical regularity all the existing results are for the massless case m = 0. Rodnianski-
Tao [47] proved global regularity for smooth and small critical Sobolev data in dimensions
6 + 1 and higher. This result was extended by Krieger-Sterbenz-Tataru [31] to R4
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The small data R**! energy critical massless result in [31] has been extended to large data
global well-posedness by Oh-Tataru ([41],[42],[43]) and independently by Krieger-Lithrmann
[29]. Proving a similar large data result for the massive case remains an open problem. In
contrast, although is also energy critical on R, the energy for is not coercive;
therefore it remains unclear whether Theorem [1.1.2| may be extended to large data.

Now we provide a brief survey of previous results on Maxwell-Dirac. After early work on
local well-posedness of on R'*3 by Gross [20] and Bournaveas [5], D’ Ancona—Foschi-
Selberg [10] established local well-posedness of on R in the Lorenz gauge 9*A4, =0
for data ¢(0) € H¢, A,[0] € HY/?*<x H~1/2+¢ which is almost optimal. In the course of their
proof, a deep system null structure of in the Lorenz gauge was uncovered. Although we
work in a different gauge, our work develop upon many ideas from [10]. D’Ancona—Selberg
[11] extended this approach to on R'*2 and proved global well-posedness in the charge
class.

Regarding on R¥3 we also mention [7, [18, 13| 46] on global well-posedness for
small, smooth and localized data, [1, [35] on the non-relativistic limit and [36] on uncondi-
tional uniqueness at regularity ¢ € C,H'? A,[] € C,(H' x L?) in the Coulomb gauge.

Finally, we note that optimal small data global well-posedness was proved recently for the
cubic Dirac equation in R and R'™® by Bejenaru-Herr [4, 3] (massive) and Bournaveas—
Candy [6] (massless). This equation features a spinorial null structure similar to what is
considered in this work. Recent works on Yang-Mills include: [30], [32], [40], [39].

1.5 Preliminaries

Notation

We denote 1 )
©p=07"+1EPz, (O =0+ )=

We define A< Bby A< B—C,ASBby A<CBand A=B+0(1) by |A—B| <,
for some absolute constant C'. We say A < B when A < nB for a small constant 0 <7 < 1
and A ~ B when he have both A < B and B < A.

Given C,C' C R? we use the notation —C = {—£: £ €Cland C+C' ={+n: €€
C, n € C'}. Moreover, we define the angular distance between C and C' as

|Z£(C,C"| :==inf{|Z(&n)|: £€C, nel'}.

Frequency projections

Let x be a smooth non-negative bump function supported on [272 2%] which satisfies the
partition of unity property
> x(lg/2¥) =1

k'eZ
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for € £ 0. For ¥ € Z, k > 0 we define the Littlewood—Paley operators Py, P, by
Pk’ (€)= (|f’/2k/ ), ZPkr =Py, for k> 1.

k'<0

The modulation operators @), j[, Qj, Qj[ are defined by

FQi N9 =x(F N Frme. Farneo =x(E ) Free)

and Q; = Qj + @5, Q; = Qj + Qj_ for 7 € Z, where F denotes the space-time Fourier
transform.

Given ¢ < 0 we consider a collection of directions w on the unit sphere which is maximally
2¢_separated. To each w we associate a smooth cutoff function m,, supported on a cap
k C S of radius ~ 2¢ around w, with the property that >, My = 1. We define Py’ (or Py
)to be the spatial Fourier multiplier with symbol m,,(£/|£]). In a similar vein, we consider
rectangular boxes Cp(¢') of dimensions 2¥ x (28+)4=1 where the 2¥ side lies in the radial
direction, which cover R? and have finite overlap with each other. We then define Fe,, )
to be the associated smooth spatial frequency localization to Cy/(¢'). For convenience, we
choose the blocks so that PPy = e, (y).

We will often abbreviate Ay = Py f or ¢, = Pr¢. We will sometimes use the operators
Pk, Qj /<> ]56“’ with symbols given by bump functions which equal 1 on the support of the
multipliers P, Q;/<; and P}’ respectively and which are adapted to an enlargement of these
supports.

Given a sign s € {+, —}, define 7T} as

m(ﬂ f) = 1{T>O}f(77 5)7 j::/f(Ta 5) = 1{T<0}f(T7 5)

For all j, we have Q;/-;Ts = @Q3,_.T,. Moreover, for j < k — 3, we have

J/<3i
PQj<iTs = PQ5 /iy Prulji<j = Z PQ5 /<
se{+,—}

We call a multiplier disposable when its convolution kernel is a function (or measure)
with bounded mass. Minkowski’s inequality insures that disposable operators are bounded
on translation-invariant normed spaces. Examples include Py, P}, .

For any QJQ/Q. € {Qj-, ij,Qj,Q<j} with j € Z, the operator PkQ]D/<]. is disposable if
j >k —C |52, Lemma 3]. In general, one has

1PQ5) i fllparr S 2% fllarr (1< q,r < 00) (1.5.1)

In the case r = 2, we have an unconditional estimate |52, Lemma 4]:

1Pe@5)<i fllparz S NI fllpare (1< g < o00). (1.5.2)
When j > k + 2¢ — C the operator P,P’Qj/<; is disposable [52, Lemma 6]. Similar
considerations apply to QfQj, Py etc.
We also record the following identity.
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Lemma 1.5.1 (Commutator identity). We can write

Pi(fg) = fP<g + L(V.f, Q_kg)

where L is a translation-invariant bilinear operator with integrable kernel.

Proof. See [52, lemma 2]. O

Sector projections

For w € S and 0 < § < 1 we define the sector projections I1¢, by

25u(€) = (1= n(£(&w)0™) (1 = n(£(, —)0™))a(€) (1.5.3)
where 7 is a bump function on the unit scale. We define
T2y =1 - 1IZ,, Iy = §9/2 — 12, (1.5.4)

Adapted frames

Following [4], for A > 0 and w € S~ we define the frame

1 1
W= — (N w), = ——— (1, M), wi € (0,wt 1.5.5
Ve ek &= g LA e e (0 (1:5:9)

and the coordinates in this frame

ty = (t,x) W, z5=(tz) 0, 2 ,=1 w (1.5.6)

w

When A = 1 one obtains the null coordinates as in [54], [52].

For these frames we define the spaces L;’SLQ " L7 L3 ,, in the usual way, which we

denote Ly° L2 \, L7 ALz, to emphasize the dependence on .

Pseudodifferential operators

To implement the renormalization we will use pseudodifferential operators. For symbols
a(z,€) : R? x R? — C one defines the left quantization a(x, D) by

a(z, D)u :/ e Ca(x, £)a(€) dé (1.5.7)
R4
while the right quantization a(D,y) is defined by
a(D,y u—// ey, E)uly) dy dE. (1.5.8)
Rd xRd

Observe that a(z, D)* = a(D,y). We will only work with symbols which are compactly
supported in &.



CHAPTER 1. INTRODUCTION 15

Bilinear forms

We denote by £ a translation-invariant bilinear operator on R? whose kernel has bounded
mass, i.e.,

L1, 9)( / K(x — g1, — y2) f (51)9(52) dyndy

where K is a measure on R? x R? with bounded mass. As a consequence, L(f, g) obeys a
Holder-type inequality
ILCH e S A1 Lo [[g] 2o (1.5.9)

for any exponents 1 < p, ¢, ¢ < oo such that p~! = ¢;' + ¢5 2.
We say that the translation-invariant bilinear form M (¢!, ¢?) has symbol m(&y, &) if

ME @) = [ e )0 (66 d6 e

We make the analogous definition for functions defined on R'*¢ and symbols m(Z!, Z2) where

== (Tia fz)
Stationary/non-stationary phase

We will bound oscillatory integrals using the stationary and non-stationary phase methods.
For proofs of these two propositions as stated here see [21].

Proposition 1.5.2. Suppose K C R" is a compact set, X is an open neighborhood of K
and N > 0. If u € CYN(K), f € CNTYX) and f is real valued, then

’/e“‘f(x)u(x) dz

where C' is bounded when f stays in a bounded set in CNT1(X).

0— sup [D%ul|f/7N, A>0 (1.5.10)
MV jaj<n

Proposition 1.5.3 (Stationary phase). Suppose K C R" is a compact set, X is an open
neighborhood of K and k > 1. If u € CZ*(K), f € C3*TY(X) and f is real valued, f'(xy) =
0, detf"(xg) #0, f#0 in K\ {xo}, then for A > 0 we have

1
// 3
‘/ez/\f(x)u(l,)dx_ iAf(zo) (det( f xO ) § :)\jL u

i<k

1 (0%
<C > sup[D%u| (1.5.11)

o] <2k

where C' is bounded when f stays in a bounded set in C3**Y(X) and |x — xo| / |f'(x)| has a
uniform bound. L; are differential operators of order 2j acting on u at .

Moreover, one controls derivatives in A (see |38, Lemma 2.35)):

1 .
<O J21L (1.5.12)

‘81 / M =1G0) (1) da
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I[P estimates

We will frequently use Bernstein’s inequality, which states that
oz S V1P Jlullz
when @ is supported in a box of volume V and 1 < p < ¢ < co. In particular,
1Peullzs < 269 Peull e, 1Pey, eyl e < 2 DG P oyl 12
For L? estimates we will rely on

Lemma 1.5.4 (Schur’s test). Let K : R" x R" — C and the operator T' defined by

Tf(x)= [ K(x,y)f(y)dy

R

which satisfies

sup/|K(x,y)|dy§M, sup/|K(x,y)|da¢§M.
T Y
Then

HTHLQ(Rn)*)LQ(Rn) S M

We also state a simple abstract summation lemma. Roughly speaking, it is the Cauchy-
Schwarz inequality for an ‘essentially diagonal’ sum.

Lemma 1.5.5. Let {an}aca and {bsg}pen be (countably) indexed sequences of real numbers.
Let J C A x B be such that for each fized o € A, |#{f : (o, ) € T}| < M, and for each
fized B € B, |[#{a: (a,8) € T}| < M. Then we have

| Z aab5| - M(Zai> UQ(Z()%)UQ.

a,Bed acA BeB

We omit the straightforward proof.

Dyadic function spaces

Many function spaces we use will be defined dyadically, i.e., the norm of f will be some
summation of dyadic norms of P.f = fi. Formally, given a sequence of norms (X )xez or
(Xk)ke>0, 1 <p < oo and o € R, we denote by X7 the norm

/p
£ loxe = (@RS x))
k

with the usual modification when p = co.
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Frequency envelopes

We borrow from [52] the notion of frequency envelopes, which is a convenient means to keep
track of dyadic frequency profiles. Given § > 0, we say that a sequence ¢ = (¢j)gez of
positive numbers is a d-admissible frequency envelope if there exists C. > 0 such that for
every k, k' € Z, we have

|Ck/Ck/| S Cc Q(Slk_kll.

Given a sequence (Xj)rez of dyadic norms, we define the X -norm as
1 fllx. = sup e [ Pefllx,
keZ

Dyadically defined norms are controlled in terms of ¢ and || f||x. in the obvious manner:

/p
£l < (@) " Iflx.

k

In the converse direction, we say that ¢ is a frequency envelope for || f||smxo if
1/p
Wlloxo = (3) ™ I1Beflx <
k

Given any f € PX° we can construct a d-admissible frequency envelope ¢ for ||f|wmxo by
defining

=Y 27" Py flx,- (1.5.13)
k./

By Young’s inequality, this frequency envelope inherits any additional £ X regularity of f
for 1 <p' < oo and o € (—0,0), i.e.,

H2gkck||ez>’ N ||f||ZP'XU'

For the Klein-Gordon equation we will use the analogous notion of frequency envelopes,
but indexed by non-negative integer instead. Thus, in this context, given 0 < §; < 1, an
admissible frequency envelope (¢i)>o is defined to be a sequence such that ¢,/c; < C 2% Ip—H|
for any k,p > 0.

We conclude this subsection with a discussion on simple operations on frequency en-
velopes. Given a d-admissible frequency envelope ¢ € 7 (1 < p < 00), we may construct a
new frequency envelope ¢ by taking ¢, = (3°,,_, ck/)"/?. For any ¢ > 0, we see (by shifting
indices) that

|Crre/Ck| < C2%, |G/ Tk < C2°.

In other words, ¢ is also d-admissible.
For §'- and d-admissible frequency envelopes b and ¢, we denote by be = (bgck)rez the
product frequency envelope, which is clearly (4 + §’)-admissible.
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By Cauchy-Schwarz inequality, note that the frequency envelopes (>, . b )rez is
dominated by ((3 41 b3)2(X 0 2 )kez, iee.,

Z bt < ( Z b2,> 1/2< Z cé) 1/2'

k'<k k' <k k'<k

In particular, if b, ¢ € €2, then be € (*.

1.6 Parametrices

We now state the renormalization theorems, which are the massive, respectively half-wave,
versions of the constructions in [47], [31].

As we mentioned earlier, as parts of the structure of the equations we have the following
non-perturbative terms:

S A% 00uPid
k

and

> alPoy_c AP,
k

For the purpose of handling these terms, we define the paradifferential covariant Klein-
Gordon operator

D0t =0+1-2i) AL, ;b (1.6.1)

k>0

and the paradifferential half-wave operators by

. : : - 0;
(i0, + |D|)} = 0, £ |D| Fi» P<k,CAJWPk (1.6.2)
keZ
where A = Afree = (A;, ..., Ay, 0) is a real-valued 1-form defined on R'*? assumed to solve

the free wave equation and to obey the Coulomb gauge condition

OA =0, dA; =0, (1.6.3)
Consider the problem
Dp,A¢ = F
m 1.6.4
Lol 2 (7 64

We have the following two solvability results, which we prove in chapter M The spaces are
defined in chapter . We just mention here that S7 and Si/ ? are the iteration spaces, while

N1 and Nj:/ ? are the spaces for the nonlinearity.
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Theorem 1.6.1. Let A be a real 1-form obeying (1.6.3) on R4 ford > 4. If || A[0)|| o 70—
is sufficiently small, then for any F € N°* NL2H°"% and (f,g) € H° x H°™1 the solution
¢ of (1.6.4) exists globally in time and it satisfies

10llse S NCF O escrre=1 + 1 Fll gosyope-3 (1.6.5)

For the paradifferential half-wave operators operators, we have the following global solv-
ability theorem which we state for d = 4. In the general case d > 4, the theorem holds with
substitutions as in Remark [1.8.5]

Theorem 1.6.2. Let A/ = (0, A" ... AJ™®) be a real-valued 1-form obeying AT = ()
and 9* A} = 0. Consider the initial value problem

(10 + 5| D)’ frecth =F,
1/1(0) =p.

If ||ATee[0] | 1y g2 s sufficiently small, then for any F € N2 L212 and any 1 € HY?
there exists a global (in time) solution ¢ € Sa/? Moreover, for any admissible frequency
envelope ¢, we have

191l 5172, S ol gare + 11Nl w1222y, - (1.6.6)

In particular,
Wl gz S Wollgare + 1F Ny 2 (1.6.7)

Theorem will be established in Chapter 4] by adapting the parametrix construction
for the paradifferential covariant wave equation from |31], which is the massless analogue of

Theorem [L.6.1]

1.7 Decomposition of the equations

In this section we describe the structure of the nonlinearities of the Maxwell-Klein-Gordon
and Maxwell-Dirac equations in the Coulomb gauge.

Maxwell equations in the Coulomb gauge

We begin by describing the Maxwell equations under the Coulomb condition 0‘A4, = 0.
Let J, be a 1-form (called the charge-current 1-form) on R such that 0*J, = 0.
Consider the Maxwell equations
oMF,, =—J,. (1.7.1)

Under the Coulomb condition 8“4, = 0, the Maxwell equations (1.7.1)) reduce to

AAg = Jo, DA; =P, (1.7.2)
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where A := 99y is the Laplacian, O := 90, is the d’Alembertian and P denotes the Leray
projection . Moreover, thanks to 0".J, = 0, we also obtain the following elliptic
equation for 0;Ay:

A(0,Aq) = 0°J,. (1.7.3)

The Maxwell nonlinearity of MKG
Let (¢, A) be a solution of MKG. The charge-current 1-form J reads

Ja = _j((bm)

Remark 1.7.1. When ¢ solves a covariant equation (04 ¢ = 0 for some real 1-form A, denoting
the currents J, = —J(¢D,¢), a simple computation shows 0%J, = 0.

By , A, solves the following equations:
AAy =~ 3(¢Did),
OA; = — P;3(¢D,9).
Moreover, thanks to 9*J, = 0, which holds by Remark [I.7.1], we have
A0, Ag) = —0"I(dD;).

Momentarily ignoring the cubic terms ¢p@A, from the products ¢D, b, we define the main
terms
Au(¢',¢%) == —O7'P3(¢'Vug?),
Ay(9',6°) == — AT13(¢'007).

where here 07! f denotes the solution ¢ to the inhomogeneous wave equation (¢ = f with

¢[0] = 0. Using the formula (1.1.7)) for P; one identifies the null structure (see (1.3.1))

(1.7.4)

Pi(6'V.?) = ATIVING (61, 7). (1.7.5)

Remark 1.7.2. Note that (1.7.5) shows that P;(¢'V,¢?) is a skew-symmetric bilinear form.

The main estimates for these nonlinear terms will be given by Proposition [1.8.1]
Moreover, to isolate the more delicate parts of ((1.7.4)), we define the operators

HoL(o,0) = Y PeQiL(Q<ib, Qi)

J<k'+C2

HL((b, ¢) = Z Hk’L<Pk1¢7 Pk2w)7

k/<k2702*10
kK'€Z, k1,ka>0
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The Klein-Gordon nonlinearity

Moving on to the ¢ nonlinearity, we expand
04 = (O + 1)¢ + 204, + i(0°Au) ¢ — A“Aué.

When A, is divergence free, we can write A; = P;A, which implies
A'Dip = Nij(ViA™' Ay, 9). (1.7.6)

As discussed in the introduction, the most difficult interaction occurs when Ay and A,
have frequencies lower than ¢. To isolate this part, we introduce the low-high paradifferential
operators

w[Alp = Poj_cAa 0P, (1.7.7)

k>0

Moreover, we define

HiL(A,¢) = > QuL(PrQ;A Qo)

J<k'+C3

k' <k—Cs—10
K€z, k,k>0

The necessary estimates are stated in Prop. [1.8.2/ and |1.8.3]

It turns out that the worst part of occurs for a subpart of 7[A (¢, ¢)]¢, namely
H*m[HA (P, ¢)]¢. To estimate it, we will need to use the trilinear null structure identified
by Machedon-Sterbenz [34] which we present now, following [31].

One can write

A%, $")0ut = (Q1 + Qo + Q3)(8", 0%, 8) (1.7.8)

where

Qi(¢". 9%, ¢) =~ 07'3(¢'0a0?) - 079,
Q2(¢17 ¢27 ¢) = _1|:|_1ata j(¢1aoc¢72> : at¢7 (179>
Q3(¢1 ¢2 ¢) . 1|:| 18 81~(¢1a@¢2) aa(ﬁ.
Indeed, plugging in the Hodge projection P = I — VA~V one writes
_ - "0
A9, 0%)0up = ATII(9100?) - Do — O 3(4'0s92) - 8¢ + X0 (<b131¢2) 9;9.
Now add and subtract O~'3(¢'0,¢?) - 0;¢ and write

Aa(¢17 ¢2)aa¢ = Q1(¢17 ¢27 ¢) +N
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Using A~ — 071 = —9?A~1071, AV takes the form
N = -A'O'973(4 0,¢2) - 0sp + AT'D1 O T ($0,02) - 9,0
Adding and subtracting A™'0710°0,3(¢'0;¢?2) - 0,¢ we get
N = Qs(¢", 6%, ¢) + Q3(¢", 0%, ),
thus obtaining .

Diagonalization of the Dirac equation

Our next goal is to rewrite the Dirac operator a/0, in a diagonal form. We follow the
approach of D’Ancona, Foschi and Selberg [9, 10].
For u = 0,...,d, recall the definition a* = v°4*. Hence o’ = 1,4, whereas o’ are

hermitian matrices satisfying
1 . ) .
5(0430/‘7 +afad) = 5714, (1.7.10)

thanks to (1.1.1]) and (1.1.2)). Note that the Dirac operator o0, then takes the form
atd, = —i(id; — o’ D;).

where we use the notation D, = %GN. To diagonalize the operator o’ D;, whose symbol is
a’€;, we introduce the multiplier II(D) with symbol

1 Jg.
(E) = 5 (Lus - %)
Note that II(§) obeys the identities
(e)' =TI(¢), T(E)* =TI(E), TLEM(-E) =0.

For each sign s € {+, —}, we define the multipliers II; with symbols II(¢) := II(s{). By the
preceding identities, I, and II_ form orthogonal projections (i.e., IIl = II,, II> = II, and
II.TI_ = 0). Moreover, we have

N
Lot = L) + (), T2 = TL,(6) ~TL.(¢)
Thus the Dirac operator can now be written in the form
atd, = —z'((i(‘?t + |D\IL.(D) + (i0, — |D|)H_(D)>. (1.7.11)

We now present the key identities for revealing the null structure of (MD)), which are
essentially due to D’Ancona, Foschi and Selberg |9} |10]. We define the self-adjoint operators
R, as

D
Ru::ﬁ for p=0,...,d.

For p=j € {1,...,d}, the operators R; are precisely the (self-adjoint) Riesz transforms.
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Lemma 1.7.3. For each p=j € {1,...,d} and sign s € {+,—}, we have

ol = —sR? + 114, (1.7.12)
Proof. We compute
. . 1 J
o/1s(&) — TI_5(&)a? —s—g—k(oﬂo/C +afal) = —sg—. O
28| i
Remark 1.7.4. For u = 0, the analogue of ((1.7.12)) is
' D
(ﬂ::—gR0+sﬁ%E;||, (1.7.13)

which can be easily justified.

The Riesz transform term R* is scalar in the sense that it does not involve multiplication
by of. Tts contribution in (MD)) resembles the Maxwell-Klein-Gordon system; Remarkably,
the other terms in and (|1.7.13]) turn out to contribute parts with more favorable
structure. Indeed, in the case of (1.7.13)), the presence of the half-wave operator id, + s|D|
(with an appropriate sign s) makes this term effectively higher order. In the case of ,
the following lemma can be used to uncover a null structure.

Lemma 1.7.5. For z € CV, ¢,n € RY and 0 := |Z(&,n)]|, we have
IO (—n)| < C0. (1.7.14)

Proof. Using ((1.7.10]) and the definition of I1(§), we compute

1 al; aFny 1 adE dFng, odafEm,
IEI(=n) == (Laxa — == ) (Lasa + == ) = = (La — —2 + - J
() =7 (Taes = Fg7) (tos = ) = 3 (o = g + T = =)
od & ada rEme — &y Lisca ([€lIn] =& -1
== —— _— — + .
4 <|€| |77|> 8 ( €] Inl ) 1 ( €1 )
Then the lemma follows. O

We remark that the identity (1.7.13]) must be applied judiciously, since R? is well-behaved
on 4 only when the modulation does not exceed the spatial frequency.

Maxwell-Dirac

We are now ready to describe in detail the nonlinearity of the Maxwell-Dirac equation in
the Coulomb gauge (MD-CG).

As explained in the introduction, our overall philosophy is that MD-CG can be split into
two parts: The scalar part, which does not involve multiplication by the matrix o/, and the
spinorial part arising from the spinorial nature of the Dirac equation. The latter part turns
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out to possess a more favorable null structure; in particular, there is no need to perform a
paradifferential renormalization, nor to use a secondary null structure. On the other hand,
the former part is deeply related to the massless Maxwell-Klein-Gordon equation in the
Coulomb gauge, whose small Sobolev critical global well-posedness was proved in [31]. We
refer to Remarks [1.7.9] and [5.4.5| for a further discussion after the nonlinearity of MD-CG is
completely described.

The Maxwell nonlinearity of MD
Let (A,%) be a solution to MD-CG. The charge-current 1-form .J reads
T = ("4, 7)) = (¥, k).
where we used , and the definition of o* in the second identity. By , A,

solves the following equations:

AAy =(1, apy) = — (1, ay) = —(, ), (1.7.15)
DA; =P;(h, cat)). (1.7.16)

Moreover, thanks to 9*.J, = 0 (which holds since 1 solves a covariant Dirac equation, see

remark , we have
A(9,Ag) = 0 (U, anb). (1.7.17)
We now introduce bilinear version of the nonlinearities in (1.7.15)), (1.7.16)) and (1.7.17)),
in order to set up an iteration scheme for solving MD-CG. Let ¢!, ©? be any spinor fields.
For (1.7.15]), we introduce

ME(, 0?) == —(p', ©%). (1.7.18)
We also define
Ao(ph,¢%) = AT MP ("), (1.7.19)
so that Ag = A (1, ) for a solution (A, 1) to MD-CG.
For (|1.7.16)), we use ((1.7.12)) to decompose the nonlinearity as

Pi(w aut) = 3 Piltraall) = D (= sMEW, ) + M5, (,0) ).

S

where
MG (", ¢%) =Pi(", Rog®), (1.7.20)
Mis(('p17902) ::Pj<9017Hfsaa:902>' (1721)

We refer to Mf and Mis as the scalar and spinorial parts, respectively, of the Maxwell
nonlinearity; observe that the scalar part does not involve the matrix a?. We also introduce

Aj(p",¢?) =07"Pi(ph, anp®), (1.7.22)
A(p', %) =07 M, %), (1.7.23)
AF (' %) =07 IME (01 ¢?) (1.7.24)
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For a solution (A,,v) to MD-CG, we have

A= Al A ) = AT+ 37— sATTLY) + AT (0. TL) )

where Af "““ is the free wave with data A;-c "e[o] = A,[0].
Finally, corresponding to (|1.7.17)) we define

OME(pt, %) = 89", au?), (1.7.25)
so that A(9,Ag) = OpMFE (¢, 1) for a solution (A, ) to MD-CG.

Remark 1.7.6. The notation d; in 9; M is merely formal; the actual 9; derivative of M (!, ©?)
agrees with 9, MF (!, ©?) only if

D, (", atp®) = 0.

Such an identity holds if, for instance, ! and <,0~2 obey a (single) covariant Dirac equation
a*(0, +1iA,)p = 0 for some connection 1-form A, which is not necessarily equal to A. We
will be careful to ensure that this is the case in our iteration scheme.

The Dirac nonlinearity
We now turn to the covariant Dirac equation
a*D,1) = 0. (1.7.26)
Expanding D, = 9, +iA,, and using , we may rewrite the above equation as
(10¢ + s|D|)1hs = T (ot AL0). (1.7.27)

where s € {4, —} and 1), is the abbreviation ¢, := I, In view of the half-wave decomposi-

tion, it is natural to expand ¥ = 1, +1_ on the RHS of (1.7.27)). Using Lemma as well
as the formulae A; = P;A, and ¢ = I3, we further decompose each of the nonlinearity

al A, as

a“AM¢8 :AOHSws + Ajajﬂsdjs
=NF(Ag, Tps) — sSNT(A,, ) + N2 (Ag, 1),

where N'P; N'E and N are bilinear forms defined as follows:

NF(Ag, 0) :=Aogp, (1.7.28)
N Ay, @) =(PiA) (R ), (1.7.29)
NE(Ag, ) = =ATT_ (). (1.7.30)

We refer to N¥,NE as the scalar part of the Dirac nonlinearity, as it does not involve
multiplication by a#. The remainder N is called the spinorial part.
We summarize the result of our decomposition so far as follows.
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Lemma 1.7.7. Let ¢ be a spinor field on R'™? and A, be a real-valued 1-form obeying
A; =PjA.. If ¢ is a solution to (1.7.26), then each of Vs = Il (s € {+,—}) solves

I1,(id, + s| D),
SIS (WE (A Ttha) = SN Ay, ) + NS (Any i) (1.7.31)

Conversely, if (4,1_) is a pair of spinor fields solving (1.7.31)), then ¢ := I 1p, + 1)
s a solution to (|1.7.20)).

Remark 1.7.8. In the converse statement, 1), need not belong to the image of Il;, i.e., I
need not equal 9, for s € {+, —}.

Proof. The direct statement has already been proved. To prove the converse statement, we
begin by noticing that

_S/NR(Axa ¢s’) + M€<Ax7 ¢s’) = Ajasz’r(/)s’
by Lemma and A; = P;A,. Therefore, (1.7.31) implies
(i0, + s| D)L, = II, (Aoao(n+w+ YT ) + Ajod (T + H,¢,)).

Defining ¢ := I1 ¢, + I1_1_, adding up the preceding equation for s € {+, —} and using
(1.7.11]), the desired statement follows. [

As discussed earlier, the most difficult interaction is when Ay and A, have frequencies
lower than . To isolate this part, we introduce the low-high paradifferential operators

WE[AO]SO = ZNE<P<1€710A0, Prp) = Z P10A0 Py,
k k
A =Y N (Po_10de, Pup) = Y PijPap_104a R Prep,
k k
T2 [AL)p = Z-/V;S(P<k—10Ax7 Pyp) = Z P_i_104; I (! Ppp).
k k
and the remainders NZ, A/ and ./\~/;S consisting of
NE(Ay, @) = ZNE(sz—lvo, Pyp) = Z Psj_10A0 Pro,
k k
NE(Azy0) = N (Pog10As, Prp) = > PiPor-104: R Prgp,
k k

/\N/;S(Aa;; p) = Z'/\/;S(PZk—IOAJn Prp) = Z Psi_104; H;(Oéjpk;@)-
k k
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We also recall the paradifferential covariant half-wave operator

(Zat 8|D|) free — (Zat _|' S|D|) _| S 7 ]P<k_5A£ R]Pk. (1.;.32)
A
k

so that we have
(10, + 3|D|)1ZWee = (10 + s|D|) + SWR[A{:T%].

Parallelism between MD and MKG

Remark 1.7.9. We are now ready to exhibit more concretely the parallelism between MKG
in the Coulomb gauge and the scalar part of MD-CG.

We start with MD-CG. Applying ((1.7.12)), (1.7.13) to the equations for Ay and keeping
only the Riesz transform terms, we get

AAg == 5 (s, Rothy) + - -- (1.7.33)

8,8’

Furthermore, consider the equations for A, and v with the spinorial parts A° and NZ
removed. Using also (1.7.13)) to the term Aya®y in the Dirac equation and throwing away
the second term in (1.7.13)), we arrive at the equations

- Z Slpj WS, Rst’> +

’ (1.7.34)
(10, + | D))oy = — 1, Y s’ A, RM by +

On the other hand, observe that MKG takes the form
AAp = —Im(¢Do¢)
0A4; = — P;Im(¢D,¢) (MKG-CG)
O¢ = — 21A4,0"p + 10y Aop + A, A D
Using the half-wave decomposition ¢, = 1(¢ + STBT D|¢) (s € {+,—}) and keeping only the
quadratic nonlinearities (except dyAp®, Whlch is harmless), we arrive at

Ady == Im(¢,0b) +

s,s’

(Z@t + S|D’ |D| ZZA o ¢s

Modulo constant factors and balance of derlvatlves, observe the similarity between (|1.7.33)—
(1.7.34]) and (1.7.35]). This similarity will be exploited below to prove a crucial trilinear
null form estimate (Proposition [1.8.8)) and solvability of covariant Dirac equation (Proposi-

tion [T.8.11)).
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1.8 Main estimates

In this section we collect the bilinear and trilinear estimates needed to prove Theorems |1.1.1
and . The spaces are defined in chapter . We just mention here that S and S3/° are
the iteration spaces, while N°~! and Ni/ % are the spaces for the nonlinearity.

For the nonlinearities of the Maxwell parts of MKG we have the following proposition
which, in particular, gives control of the terms (Ag, A,)(¢', ¢?) from (1.7.4).

Proposition 1.8.1. One has the following estimates:

P56 a6 s S 16150 16 (15.1)
10"V s o ooy S 161157 167 (15.2)
1" 6 Al g s drgesios) S 16" o192 5e 1 Allsocy= (153)

Moving on to the Klein-Gordon nonlinearity, we recall definition of H* and 7[A]¢ from

(1.7.7). Then we have:

Proposition 1.8.2.

1. For all ¢ and A = (A,, Ag) such that 0;A; = 0 one has the null form estimates:

[4a0%¢ — T[Al¢| 5o S [ Allsoxyel[dll 50 (1.8.4)
(I = H) [ Al yo-r S [ Allersoxyellllse (1.8.5)
[H 7 (Al o1 S 1Al 2722, [ 0l] 52 (1.8.6)

2. For all ¢ and A = (A, Ay) one has

14°0a8l .ot S I Allsmrell6ls- (1L8.7)

1040l oot S Iollyel0llso (18.8)
N NL*H

JALAZGI e g S IA smcre A syl 5o (1.8.9)

The following trilinear bound contains the more delicate estimates occurring in our sys-
tem. It relies crucially on the cancelation structure given by and to handle it we
will need the norms Lg® L2 | L7 L% , the Lorentz norms L'L>', L*L*? as well as the
bilinear forms from chapter [] ’ ’

Proposition 1.8.3. For A and 7 defined by (1.7.4) and (1.7.7) one has:
I7[A (2", 6"l we-1 < N1 [1s- 119 5o [l ¢llso (1.8.10)
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The remaining term 7[A/7¢]¢ contains the non-perturbative part and to handle it we
will use Theorem [L.6.11

We pause here to give an example of using the estimates above together with Theorem
to solve the Cauchy problem for (04 ¢ = F, in the particular case A = A/ which will

be useful below.
Proposition 1.8.4. Let A = A" be a real 1-form obeying DA =0, 874; =0, Ag=0. If

| A[O]|| o o1 @8 sufficiently small, then for any @[to) € H® x H°™' and any F € N°~1 N
L2H"~3, the solution of O04¢ = F with data ¢[ty] satisfies:

19llse S Nltolll oo + (| F| (1.8.11)

N“*lﬂLQH"_%

Proof. We show that the mapping ¢ +— ¢ given by O0PA¢ = F + M(A, ) with data ¢[t,] at
t =ty is a contraction on S?, where

M(A, ) = 2i(An0%Y — T[A])) — A* A1)

is chosen so that M(A,v) = OPAy — 04, Using (1.8.4), (1.8.7), (1.8.9), noting that
| Allsosxye S|AO| oy o1 < € < 1 (since Ag = 0) we obtain

||M(A7 ¢)||N071QL2HU—% 5 8||¢||5"’

which together with Theorem [1.6.1] proves the existence of ¢ for € small enough. The same

estimates imply (|1.8.11)). [

Now we collect the ingredients needed to prove Theorem [1.1.2, For the sake of concrete-
ness, we restrict to the case d = 4 unless otherwise stated. We use the language of frequency
envelopes, which is a convenient way of expressing the weak interaction among different
dyadic frequency pieces.

Remark 1.8.5. In the case of a general dimension d > 4, all the estimates below hold with
the following substitutions:

LPH? 5 PHS, LPHY? 5 IPHS, L1 = L*HT,

N5 N%, N2 N%T, GV2-5G7,

‘C.O\'

d—3
2

S' 5 8%, Yoy, §2.57

See Remarks [6.3.8] [6.4.3 and |4.3.1]

For the nonlinearity in the Ag and A, equations, we have the following bilinear estimates.
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Proposition 1.8.6. For any admissible frequency envelopes b, c and signs s, s’ € {+, -}, we

have
IME W, D)l 2172y, + 1MW, D) | 2512y, S g1, Il 5172, (1.8.12)
IMG W )l vz, SIN g, 191l g1g2y, (1.8.13)
M5, ) vz vy, SWl g Il gy - (181)

For the nonlinearity in the covariant Dirac equation, we first have the following set of
bilinear estimates.

Proposition 1.8.7. Let a and b be any admissible frequency envelopes. Then the following
statements holds.

1. (Remainders NE NE and K/'S) For any signs s, s', we have

IWE(BW)H(Nl/z SIBllyallell g2y, (1.8.15)
A (A )l sy, A5t g, (1.8.16)
\IHS'/\N/SS(AIW)!I(N;/%@ Sl Alsz 1ol girey, - (1.8.17)
2. (Paradifferential operators 7 and 7f) For opposite signs s' = —s, we have
I (BYl orzy, SB[ (1.8.18)
I Al ey, SlA sl g7, (1.8.19)

3. (Paradifferential operator ©°) For any signs s,s', we have

Tl (Al ey, STAlsplleolgrre, (1.8.20)

4. (High modulation L*L? bounds) For any sign s, we have

INE(B, )l 222y, S I BllvallWoll gurey, (1.8.21)
IN*(Az, V)l z222)0 S NAcllst ¥l G112, (1.8.22)
IVZ (A, )l z222) S 1Aallst 1] g2, (1.8.23)

5. (251/2 bounds) For any sign s, we have
INE(B, ¥)ll gz SIBlva 1]l 172, (1.8.24)
A (A, ) + I gops Sl sy 19 g, (1.8.25)
NG (Aa, V)l 12 SHA sy M1l 272, (1.8.26)
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By (1.8.17), (1.8.20), (1.8.23)) and (1.8.2€]), the spinorial nonlinearity N5 can be han-
dled just with bilinear estimates. On the other hand, Proposition leaves open the
treatment of certain parts of N% and N, namely 7¥[Ag]y and 7f[A,]1». For a solution
to MD-CG, recall the decomposition Ay = Ag(t),?) and A, = A/ + A (1,4). For the
terms mF[Ag (1, ¥)]Y and 7 [A, (¥, 1)]w, which resemble the MKG-CG nonlinearity (see
Remark , we use the following trilinear estimate.

Proposition 1.8.8. For any admissible frequency envelopes b, ¢ and d, let

fo= () (Tar) o 1827

k' <k k' <k

Then for any signs s, s1,se € {+, —}, we have

” (WE[AO(Hﬂ 9017 H82¢2)] - SWR[Ax(Hﬂ 9017 H52¢2)])¢||(N31/2)f

1.8.28
S g 1 o, 19l g, (18.28)
Remark 1.8.9. In the proof of theorem , the frequency envelopes a,b,c inherit ¢%-
summability from the initial data; hence the products ab and bc are ¢'-summable. The
bilinear estimates in Propositions [1.8.6] and [1.8.7] therefore imply that certain parts of the
solution (in particular, Ay and A,) enjoy ¢'-summability of the dyadic norms. As in the
case of the massless MKG [31], this fact allows us to cleanly separate A into A handled by
multilinear estimates (Proposition and Af7¢¢ handled by a parametrix construction

(Theorem [1.6.2)).

The remaining term 7%[A/7¢]¢) cannot be treated perturbatively. The optimal estimate,
stated in terms of frequency envelopes, is as follows.

Lemma 1.8.10. Let Afmec = (0, Al ...  AI™) be a real-valued 1-form obeying AT = (
and 85A£ree = 0. For any admissible frequency envelope a and b, let ey, = (>, aw)by. Then
for any sign s € {+,—}, we have

||7TR[A£7"66]¢||(N81/2)E S ||Afr€€[0]||(H1><L2)a||w||(5,s1/2)b (1829)

A sketch of proof of Lemma [1.8.10| will be given in Remark [6.3.7 Instead, m®[Afre]
should be treated as a part of the underlying linear operator (id; 4 s|D|)" ;,.. for which we
have Theorem [.6.2]

Theorem and the estimates above lead to the following result on solvability of
covariant Dirac equations which, in particular, contains the contribution of A/7¢. The proof
is in Chapter

Proposition 1.8.11. There exists a universal constant €,, > 0 such thqt the following holds.
Let I C R be a time interval containing 0. Given spinor fields 1o € HY? on R* and F on
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I x R* such that TI,F € N2> 0 L2L>* N GY2[1] (s € {+,—}), consider the covariant Dirac
equation

oD =F onl
{ “¢ (1.8.30)

¥(0) =to,
where the potential A = A,dx" is given by

AO - Ao(W; ¢/)> Aj = A;‘cT@@ + Aj(w/a W) on I

for some free wave A;Tee € CCH'NCH2 (j = 1,...,4) and a spinor field i satisfying
' € Si/%[1] and 8,4, o'y = 0. If

sup HHSw/HSSUQ[[] + sup HA;‘cree[O]HH1XL2 S Eesey (1831)
se{+,—} je{1,....4}

then there exists a unique solution v to (1.8.30) on I x R* such that Il € g;/Q[]] for
s € {+,—}. For any admissible frequency envelope ¢, we have

||H877Z)||(§;/2[]])C S ||1_IS¢O||1;161/2 + HHSFH(N;/20L2L20G1/2[I]) (1'8'32)

(&

The implicit constants are independent of I.
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Chapter 2

Function spaces and their embeddings

In this chapter we introduce the main function spaces and their embedding properties that
we will use to prove the main Theorems [1.1.1] and [L.1.2, We build on the spaces defined in
[31], which in turn build on the prior work |54} 52| on wave maps.

2.1 The function spaces

Strichartz and X*’-type spaces.

We first define the admissible Strichartz norms for the d+ 1 dimensional wave equation. For
any d > 4 and any k we set

S]f’tr,W _ ﬂ 2(%—%—%)quLr
%+d:1§%
with norm L
[Fllgsw = sup 277X fllpap, (2.1.1)
%+d:1§%

11 1 _1 11
Next we define the X&, X; 2, the X7 , X, ] and the X&, X * spaces, which are logarithmic
of refinements of the usual X*° space. Their dyadic norms are

11 - =>"279|Q;F 1, |A]l 3 =sup227||Q; A2,
* JEZ KXo jez ’

l. —
[ o) = > " 25|Q;F 1, 113 = sup227[|Q;9| 1z,
JEZL Koo JEL Y

+ _ Linnt
HFHX_% > 2 QFF g, !\wllxi%m—§161522”||Qj¢!u;z

JEZL
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The spaces for the nonlinearity

For the nonlinearity, we define for k > 0 and k' € Z
_ __1 _1
Ny =L'L* + X, 2, Ny = L'L* + X, 2,

with norms

1l %, = g 1Ellzaze + [ 22

__?7

|Flls = ,_inf

_ 1
By duality we can identify N} with L*L? N X2.

HFHNk, = mf

. P llpize + HFzHX;l

_1
Ny =L'"L*+X,} (2.1.2)
pf |z + [ 22 x4

2
,1

For the scalar and spinorial equation,

respectively the A; equation nonlinearities, for s € R we define

2sk 2 _

1PN = 2 I PFII%, 1Fllns =
k>0

[Fllens = 2% | P Flwy, 1|3 =
k'€Z

The iteration space for A

For any d > 4 and k' € Z we define

Z 225k’ HPk/FH?Vki

k'eZ

> 2Py,

k'eZ

1415, = 1Al Gsmw + IAI° +Supsupz 1P Q1 AllSe

where
HAuglf/(l) — 2—(d—1)k’_(d—3)lHAH%QLOO + ) Sup /
For RS0 )

Now we define

1415 = Y 22|V, Pe Ay, + DA

k'€Z

For the elliptic variable of MKG we set

| Aolly~ =

k'eZ

while for the elliptic variable of MD we define [|Ag|lys = ||Vt Aol|

D Vet P ol omsappe-

2—(d—2)k//—(d—3)l’_k/ H_Pc’k// (l/)AH%QLOO .

’ _1p
”AHngcr = Ek/GZ 2(0_1)k (HVtka’A”Sk/ + 2 Qk HDPIC/AHLf’x)a

L2H‘777

(2.1.3)

L2H° %"
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The iteration space for the MKG scalar equation

The solution of the scalar equation will be placed in the space S? for o = 42 where, for any

2
s we define

5 = [1Po(¢, 80) 3, + D 22 VM| Vuu Bidllg, + 10,0)2

L2H3
k>1

I

where S, are defined below.

When d = 4, in addition to , we will also use the Klein-Gordon Strichartz norms
below. In general, using these K-G Strichartz norms at high frequencies does not lead to
optimal estimates. Therefore, we will only rely on them for low frequencies or when there is
enough additional dyadic gain coming from null structures. We set

Ford=4: S5 =85m™Wnask[iL5 N2k L2L* N 23k L2 L4

214
For d >5: Sotr — S,ftr’w ( )

Notice that we incorporate the Lorentz norms L*2. See section for more information.
For low frequencies {|¢| < 1} we define

19115, = l@llsge + el 5 + Sup ||Q<k’¢||sboz(k/) (d=>4) (2.1.5)

where

H¢||%boz(k’) = 2_20kl Z |’PC¢H%2L°°

c=C,/

where (Cj )i is a finitely overlapping collection of cubes of sides ~ 2¥'.
For higher frequencies we define as follows. Let d > 4, k> 1 and

I9l5, = llol5s + ||<25||2 +Supsupz 1P Q% ll5os (2.1.6)

where, for d > 5 we define

l6ll3os ) = lolZge + sup 3 27 @R BT,
k K <k;—k<l'<0 ,
k+2l<k’+l’<k+lc Crr (1)

while for d = 4 we set

1615ee ) = I0l5ge + sup 3 (@7 ReglLapet
K <ki—k<U'<0 o0 ")
k’/

k+20<k'+U'<k+l
_ g
+ 2O Pl + [ Ped ).
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where, for any C = Cy/(I')

_ 1
Olpe = swp o L@EO) Wl 0 AR = gy (1)

£(@,£C)>2-P 2=k ol +K'—k

. ; §
10l pwz = ¢:1§f¢z ¢ ||L§Wi’>\ngi’)\> tw; €C, A= % & = center(C) (2.1.8)

The norms L;° L2 and L7 L  are taken in the frames (L.5.5)), (1.5.6).
In other words, PW;" is an atomic space whose atoms are functions ¢ with ||¢|| IR <
w,A Ty,

1 for some w € £C, where A depends on the location of C = Cy/(I").

The purpose of controlling the N Eg and PVVéE norms lies in using the following type
of bilinear L7, estimate, which was introduced in [54] for the wave equation (see also [52]).
A Klein-Gordon analogue was first developed in |4], which served as inspiration for our
implementation.

Proposition 2.1.1. Let k, ko > 1, k' + C < k,ky; | € [—min(k, ko), C], and let +1,+>
be two signs. Let C,C' be boxes of size 2F x (2€+1)3 located in {|€] ~ 2F} C R* , resp.
{|€] = 2*2} C R* such that

L(£1C, £5C") =~ 2 > max(27 minthk2) btk —min(kk2)) (2.1.9)

Then we have
Pk - rsll 22 oy S 27 19kl gzt HSOkQHpWCﬂ;z (2.1.10)

Proof. The condition (2.1.9)) insures that +,C and £,C’" are angularly separated and the

angle between them is well-defined. Since PW is an atomic space, we may assume the

second factor is an atom with [[pg,[[z2 1 =1 for some w € £,C" and A given by (2.1.8)).
WA Tw,

We choose 2P = |&| ~ 2*2, so that A = A(p) from (2.1.7) so that together with (2.1.9) we
have

= ~Nt
Prllege 22 S 27 [[PeQ2;fkll gz -

Now ([2.1.10]) follows from Holder’s inequality L;?:;),ALCQCW,/\ X wa’ALg‘;,A — Lf’x. O

Remark 2.1.2. When U0, = U0k, = 0 and ¢, ¢, have Fourier support in C, respectively
C’ then one has

3
2

16k - roll L2, me+1y S 2722 )| 6 10| L2 e sy [| 20 [0 L2 21 (2.1.11)

by convolution estimates (see eg. [15], [53]). Thus (2.1.10) is meant as a more general
substitute for (2.1.11)).
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The iteration space for the MD spinorial equation

Let d > 4 and r € R. For the Dirac equation, we need to define analogous spaces adapted
to each characteristic cone {7 = +|¢{|}. Let

4 Str,W 0,2 + 5
Sk = Sk N Xi,goo N Q<k735k'

Remark 2.1.3. The space Sy, is borrowed from [31] (where it is denoted by S) and is defined
below. We have changed the notation because we use Sy, for the A equation. We also note
that Sy = S + Sp, Np = Ny NN and Q% Ni € Ny, Q%4 595k € S
We define
leligs = D (22 Pl + 22250, = | D) Pt 22,2 ).

keR

Let 3 ol
S = S5V N X007 NS,

where S;™® is as in [31, Egs. (6)—(8)]:
1 £[[gams = Siggz 1P Quar f1 20

where, for d = 4:

150 =I1f

S+ 2+ 27 DT Az )
+

+ sup E (||Pck,(ef)f|
K<k, <0, )
k+20<k'4+0' <k+e

27 Py g+ 27 ST Py oz )
+

ézw + 27| Pey o fllve

while for d > 5:

1 llEeq = IIf

2 —(d—2)k' 5—(d—3)¢' 5—k 2
Gaee + sup Y | 2R Pe o [l e
K<k, £'<0 . )
k+20<k/ 40/ <k+e K

Here, the NE and PW T (¢) are the null frame spaces |54} 52| given by

1l o = int / TP P—)
PWL,,) (f) f:f fwl |w7w/‘§2€ +w!

(o)t

Ifllve =sup || ¥udllrer2
w

where the L7 norm is with respect to the variable (* = ¢ +w -z, the L” , norm is defined on
each {¢X = const}, and ¥, denotes derivatives tangent to {{~ = const}.
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Remark 2.1.4. We note here that the full exponent of 2 in the L2L* norm of Sp™ was not
used in [31], but the extra factor of 2-¢/? was actually obtained there in Subsection 11.3 for
the main parametrix estimate (Theorem . As opposed to the Maxwell-Klein-Gordon
case, it turns out that this angular gain is essential here in order to estimate the nonlinear
terms of the Maxwell-Dirac system.

The S, norm must be augmented with an L'L> control for high modulations. To this
end, consider the dyadic norm

10| 22 = 272%]|(i0; = | D)) 1= (2.1.12)

and the corresponding 2-summed norm, given by

2 _ 2rk 2
B = 22 " HW“Z}J@'

keR

Define also
IFllg, = 27| Fllpip=, |IFllg = Z22r'“|\PkFHGk

For 1 localized at frequency {|¢| ~ 2¥} and s € {+, —}, we have
[¥llz¢ < 110 £ [D)ll g, -

The main iteration space g;’ for the s-components of ¢ (s € {4, —}) is defined as

1I1E, = Nlllg; + 1%, (2.1.13)

The L!'L>*-type norms

We now introduce some auxiliary norms for the Maxwell components Ag, A, which will be
used in the proofs of the trilinear estimates. Let C; > 0 be a constant and let

|AIZ, :=sup sup 2‘(‘”)’“262 1PE Qe Al2 e (2.1.14)
€< Cl
| B, :=sup sup 272 EZHPZ’QH%BH%LOO. (2.1.15)
€< C1
or r € R we set zr = Z0s gr = A and the £ -summed norms
F R A 2k A s || B T = 2B L d the ¢! d

Al zr = Z |PeAllzr,  Bllzr, = Z | PeB||z

kER keR

T .
ell,k

Note that Z7;, = 2 A~2Z". Moreover, we define the norms 02" and AZ’ T so that ||Al| 2z =
= [|ABllazy,-
ell ell
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By Lemma we will have
(O x A™) Pyt L'L* x L'L? — 29"V 20 % 79, (2.1.16)

and

~

IA™ P Aol zs, ,, < sup 2120 VF | QL oy Pr Ao 1112 (2.1.17)

Time interval localized norms

In a few places we need to consider time interval localization of the function spaces. Given
an interval J C R and a distribution f on I x R?, we deﬁn

1£llxin = mf{[|fllx : f € X, f=fonl},

where X may denote any norm, e.g., S”, N", Sg or N7. )
Let f € N7[I]. Up to equivalent norms, we may take f above in N to be simply the
extension by zero outside I. Moreover, for f € N", we have

i [ fllvrpr =0, Jim £ |riree) =0 (2.1.18)

Similar properties holds for N]. These statements are justified by the following lemma,
whose proof can be read off from [41, Proposition 3.3].

Lemma 2.1.5. Let f € N" (r € R). For any interval I C R, denote by 1,(t) its characteris-
tic function. Then we have ||17(t) fl|nr S || fllnr. Moreover, we have limp_oy ||110.77(t) f|| nr =
0 and limp_,o || 1p,00) () f||nm = 0.

The same statements hold with N” replaced by NI (s € {+,—}, r € R).

Extra derivatives
For X =S,N,Y,H and X = S, N, H, for any s, p € R we have

xo I fllgsre 2 [1(Ve)" f]

Similar definitions are made for their dyadic pieces, for instance

5; = 2074 ((D2) . 8 el

1A]

xern = [ V2A]

Xs

| P

IWe use the convention inf ) = co.
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Motivation of the norms

We §nd thi§ section with a discussion about the choice of norms in the definition of the
Sk, Sk, Sit, S spaces. For solutions A of the free wave equation JA = 0 we have ||Als, ~

IA[0)|| 12 jy—1- The X%'/? space provides control of L2L? norms that are useful with compo-
nents of high modulation.

Additionally, one looks for norms that are both useful in proving bilinear estimates and
which are controlled for free wave solutions. In fact, by expressing arbitrary functions A
as superpositions of free waves, one can obtain boundedness of ||A||s, in terms of ||JA|w,.
An example of this argument appears in Lemma . The S§'" component corresponds to
well-known Strichartz estimates.

Regarding S;", the (* summation in P and P, () is inherited from the initial data.
The square summed L?L> norms play a particularly important role in the estimates. To
motivate the choice of dyadic exponents, let us check that these exponents are sharp. We
claim that an inequality

| P, ey Pree™Plul| 2o S Chger e lluo 2 (2.1.19)

d=2)K' 9(d=3)¢'9k ~and is optimal when

can be true (uniformly in k, &', ¢') only for CF,, , > 2
the latter is an equality.

We consider the following version of the Knapp example: let u(t,z) be a solution to
Ou = 0 with Fourier support in S = {7 = |[£| ~ 2%, £ € C,(¢')} such that for any [t| < T :=
L2k272 ) one has |u(t,x)| ~ 1 for z in a rectangle of sides ~ 27% x (27¥~¢)?1 dual
to Cr/(¢'). The uncertainty principle suggests that u(¢,-) becomes dispersed after [t| > T
because the smallest rectangular box encompassing S has sides ~ T~! x 2 x (2F+¢")d—1

(where T-! and 2* are measured in the null directions). In fact, for
Cu(l) =Ci={l&a| =2, |6 — €| <2, |6 < 2%, i =2,d}

one can define

u(t, ) = vol(C)™* / et ettlel gg

c
and check that |u(t,z)| ~ 1 for |t| ST, |zg +t| < 27K, |ay| S 27F-7.
Plugging this example into gives Tz < Chr ovol(C )=z, which provides the opti-
mal choice of Cj, 4 ¢ in the definition of Sy, Sk.
Similar arguments apply to the norms PW and NE which are used for d = 4. For
instance, plugging the same u(t, x) in the inequality

||Pck,(g/)€it|D|uO||L3Lz°i 5 é’k/,@/HUoHLg, for w=¢e;

gives (27%)z < C’kgg/vol(C)’%, thus Chrp = 22(F+0) is the optimal choice for PW .
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2.2 The embeddings

Lorentz spaces and [0~! embeddings

For functions f in the Lorentz space LPY by decomposing
f = Z fm, where fm(x) = f($)1{‘f(z)|e[2m72m+1”
we have the following equivalent norm (see [19])

[ fllzea = ([l fon |l Lo eyl 3, (2) - (2.2.1)

The Lorentz spaces also enjoy a Holder-type inequality which is due to O’Neil [44]. We
will need the following case

O P e T e (2.2.2)
For M € Z and [ <0 let
w w Mt 1
1" = Z B Qk'+2zpk’ﬁ (2.2.3)
k<M

Remark 2.2.1. We will use the T} operators on R*™! to estimate parts of the potential A in
L'L*, using the embedding together with Lorentz space Strichartz estimates L?L*?
for ¢ and (2.2.2). We have been motivated by [50], where A ~ £ (du)?, and where essentially
a Sobolev-type emdedding ﬁ L — L°(RY) is used.

When [ = 0 the symbol of the operator T} makes it resemble A

The main point here will be that it is crucial to keep the &’ summation inside the norm
in order to overcome logarithmic divergences in (6.2.6)).

Proposition 2.2.2. On R**! the following embeddings hold uniformly in 1 <0 and M:
23T [2L% — LPLA, (2.2.4)
227w . [V 5 L'L, (2.2.5)

Proof. Step 1.Proof of ([2.2.4). Apply an angular projection such that P*P¥ = P¥. Now
(2.2.4) follows by composing the following embeddings

: _ D,
2P |D, | LPLS — L2, 221% > QpuPri L, — L7, (2.2.6)
k<M

271 p D, |7t L2, — 2L (2.2.7)
When [ = 0, the first and third mappings follow from Sobolev embedding. For smaller [ we

make a change of variable that maps an angular cap of angle ~ 2! into one of angle ~ 2°,
which reduces the bound to the case [ = 0.
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The second mapping holds because the operator has a bounded multiplier.

Step 2. Proof of (2.2.5). Let k(t, ) be the kernel of 22T Tt suffices to show
BT (0) @1 12— DL e | [ SR - ) bl S 1Tl (229)
Indeed, assuming , denoting ¢4(-) = ¢(s, -), we have
28001 < [ 1] [ 6lssnbt = 5.0~ )yl ds S [ oulan ds

using the time translation-invariance in ([2.2.8]).

To prove , since ¢ = 1, by we may assume that f = f,,, i.e. |f(z)| = 2™
for x € E and f(x) = 0 for x ¢ E. We normalize | f|[z21 ~ |/ f|lz2 = 1, which implies
|E| ~ 272™. We have

I [ =)kt ) dyloz < 2 o JACCIRY (2.2.9)
~2 m
For z, = & -w, x,; = x - w;", we will show
1 23[
|k(t, 2)] < 27 : (2.2.10)

T (22 |+ 2N )P

Assuming this, we integrate it on F' and since the fraction is decreasing in |z,|, |/

Wl
23l
RS @29) 52728 |

-RRx @ -RA) 2 [+ |2o] + 2 ])

/
5 dz, du,

R4
(22 [t])? + R?

1 1
< 2ma! / da,, daf, < 2m23!
-r (22 [t + (2, 0,)))°

for R* ~ 23272™ Integrating this bound in ¢ we obtain (2.2.8)).
Step 3. Proof of (2.2.10). Let ko(t, z) be the kernel of POQiP”l. Then
k(t,x) =221y 2% kg (2V (¢, 2)). (2.2.11)
k<M
Let (t,,zL,2’)) be the coordinates in the frame (1.5.5)), (1.5.6) for A = 1. Then
Qf?)lko(tw7 9~ 2[ 1 2 )
is a Schwartz function, being the Fourier transform of a bump function. Thus,
231 231
[Fo(t, 2)] S NS N
(ol + 22 |l + 2l [)™ 7 (22|t + Jao| + 2|2 )
Using this and ([2.2.11]), denoting S = 2% |t| + |z, | + 2 |2/,|, we have
k(t,z) < 2%1231( Z 93k 4 Z 2—(N—3)k’S—N) < 93l931G—3
2K <51 S—1<2k

obtaining ([2.2.10]). [
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Further properties

For iterating Maxwell’s equation we will use the following proposition.

Proposition 2.2.3. For any A such that A[0] =0 one has

JAll s < I104] (2.2.12)

(L(No-1nL2 7~ %)

For any free solution A/ i.e. OJAI™¢=0, one has || A77||se = || A[0]|| o gro—1- Thus, for
any A,

[Allse S AL o pro— + IBAN o 2 o3 (2.2.13)
In addition, for any Ay one has
HAOHYU S HAAOHZl(LooHo'f2mL2HU*%) + HAatAO‘|£1(L00H0'73OL2H‘7*%) (2214)

Proof. The Ay bound follows easily from the definition of Y?. The A bounds are reduced to

IVieAr s, S NAO g1y ze + [[EAR] N,

1
The X& part follows easily from Lemma [2.2.4] Using the argument of Lemma 4.10.2| (with
1 = 0), we reduce to showing

e:l:it|D|Pkl . L?: N SStr,W’ eiz‘t\D\Pnglw . L?: N S,‘:,(l) (2‘2_15)

The first mapping represents well-known Strichartz estimates. By orthogonality, the second

one follows from
_d—1ps_d=3,
2 2

2 eI py PP L2 — LPL™,
d—2 1 d—3
— Gk gk =2

2 6iit|D|Pk/PCk,,(l/) : Li — L2LOO

By a TT™* argument, these are reduced to the dispersive estimate (4.6.9)), like in Cor.
(with ¢ = 0 and |D| instead of (D), which does not affect the proof). O

The following Sobolev-type embedding holds.
Lemma 2.2.4. Let p > q. For any sign + we have
1QFullorre < 257 |QF ullzare S 257 |lullgase.
The same statements holds for Q;-t.

Proof. We conjugate by the operator U defined by

F(Uu)(7,§) = Fulr £ (£),£),
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which acts at each t as the unitary multiplier e¥*P). Thus we have

D,

Qu=U"'x(5;

\Uu.

This clearly implies the second inequality. For the first one we write

D, 11 1_1
1Q5ull o2 S HX( )UUHLW <26 p)]||X( )Uf||Lqu <206 p)]||Qiu||LQL2

The same argument works for Qj[, conjugating by e¥*Pl instead. m

_ 1 _
Next we prove the embedding X{ C Sk.

Proposition 2.2.5. For k > 0, k' € Z and ¢, with Fourier support in {(£) ~ 2F}, resp.
{1€] ~ 2¥'}, we have

Iolls, S Ul gyo Mlls, S 1905

Proof. We consider the first inequality, since the proof of the second one is analogous. We
may assume that ¢ has Fourier support in {|7 — (£)| ~ 27, 7 > 0}. The bound clearly holds
1

for the X component of Si. For the other norms we claim [|e"ul|s < |lullz2. Assuming
this, we write 7 = p + (£) in the inversion formula

Qb(t) _ /eit7+ix§f¢(7_’ g) dg dr = / eitpeit(D>¢p dp

lp|~=27

for 915,,(5 ) =Fo(p+(€),€). Then by Minkowski and Cauchy-Schwarz inequalities

16lls, < /| 0l ap < / 6,22 dp < 24 0lsz, = ] 3
pl~27

lp|~27
By an orthogonality argument, for any [ < 0 it remains to establish
PPy LY — S5, MPIRPY L2 — SE()

The first mapping follows by taking 1, + = 0 in (4.10.5). The second one follows similarly,
by orthogonality and ([4.10.8) for L2L>, (4.10.9) for PT/VCi and Corollary 4.6.10| for NE;.
For k = 0, the Spo,(r) component follows similarly. O

Similarly, we have
Lemma 2.2.6. Suppose f is localized at frequency {|¢| ~ 2F} and s € {+, —}.

1. If f is localized at Q*-modulation < 2% then

k
1fllz22 < 221 ]

N (2.2.16)
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2. If f is localized at Q*-modulation > 2% and u is defined by

Fu(r,§) = - —13 Hq Ff(r¢) (2.2.17)

then
ullsg S 1112 (2.2.18)
Jull ooz S I f 1w (2.2.19)

Proof. In view of the low modulation, (2.2.16)) follows by duality from the embedding in
Prop. Similarly, (2.2.18]) follows from the inequalities

sp < lull X S A o3 S Ml

sl

[u

Now we prove ([2.2.19)). Since N} is an atomic space we consider two cases. First, if f is an
0,—1/2 .
Xeh /_atom then we write

u(t) _ /eitpeiStD|¢p dp

where ¢, satisfies

5€) = Fulp-+516.. [ Noullirdo S Il go e

If fis an L'L2-atom we write u as a superposition of truncated homogenous waves

u(t) = / e SIDIF (1)1, AP
In both cases (2.2.19)) follows from the basic inequality for free waves

1P| oo 2 < 1612 H
The following lemma concerns the Z spaces.

Lemma 2.2.7. For F with frequency support in {|¢| ~ 2}, we have

1| a2 <£qu1 2%k~ %(Z”PK QueaPeF 31 ) (2.2.20)

IFl a2 SIQkre PuFIl, aca, (2.2.21)

IFIl o2 S sup 27 2”32"4(2”& QueaePiFllp ) (2.2.22)
ell <t 5C1

||FHAZEHQ SNQakran PF|l 4y a50 (2.2.23)

1] < sup 2| Qry2e P F || (2.2.24)

a2 1
AZell £< C1 L H
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Proof. To prove , note that the symbol of the operator (22’”2@/[])}5@“: Qrr20Ps obeys
the same bump function estimates as the symbol of P’ QQi42¢FP% on the rectangular region of
size (2FF6)4=1 x 2826 5 9k wwhere it is supported. Thus, this operator is disposable. Similarly,
the operator (22/A)P, is disposable, which implies (2.2.22). The bound [resp.
(2.2.23)), (2.2.24)] follows from [resp. ([2.2.22))] by applying Bernstein’s inequality
and using the orthogonality property of the sectors associated to (P} ),. We note that the
proof of (2.2.21)), (2.2.23) are sharp only in d = 4. O

Remark 2.2.8. Notice the following simple inequalities:

|| P F|

ve S IIPeF |, (2.2.25)

If the functions fj, have Fourier support in the regions {|¢| ~ 2¥'} and f = > fwr then

1P flIno S Z [ il e, (2.2.26)
k' =k+0(1)
1Pfllse 527 D0 (Ifellsy + 160, + 51D firll i) - (2.2.27)

k' =k+0(1)

Finally, we have

Proposition 2.2.9. Let k > 0 and Ci/(I') be a finitely overlapping collection of boxes. We
have

> WP, FliR, SIFIF,
Crr (1)

Proof. Since N, is an atomic space the property reduces to the corresponding inequalities

for L'L* and L7, which are standard inequalities. O
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Chapter 3

Proofs of the main well-posedness
theorems

Assuming the estimates in sections and we prove Theorems and [1.1.2] The
MD-CG system takes the form

oDy =0
OA; =Pj(4, azy)) (MD-CG)
A140 = - <¢7 ¢>
while, for J, = =J3(¢D,¢), the MKG system is written as
026 =0
AAQ - J()

We begin with a more detailed formulation of the main parts of Theorems|1.1.1|and [1.1.2]
After proving these we proceed to the proofs of statements (2) and (3) of the main theorems.

Theorem 3.0.1. There exists a universal constant € > 0 such that

1. For any initial data $[0] € H? x H°™', A,[0] € H? x H°™' for MKG satisfying the
smallness condition (1.1.8)) and (1.1.5]), there exists a unique global solution (¢, A,, Ag) €
57 x 87 x Y to MKG with this data.

2. For any admissible frequency envelope (cy)rso such that || Py[0]]| zrox o1 < cx, we have

_ ; K'>0
_ _ Afree Crts =
IPeollse S 1PelAx— A ]||SG+||Pk'Ao||Y°§{2§'Cg’ NSRRI N
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8. (Weak Lipschitz dependence) Let (¢', A’) € 87 x S% x Y° be another solution to MKG
with small initial data. Then, for[[]§ € (0,61) we have

1§ = @'ll5e-5 + | A = Al so-sxyo-s S [[(@ = &) 0]l s pro—s-1 + || (Az — A7) [0] IIHMX{IMS
3.0.2

4. (Persistence of regularity) If ¢[0] € HY x HN™' A,[0] € HN x HN-' (N > o),
then (¢,0:0) € Cy(R; HN x HNY), V,,A, € Cy(R; HN=1). In particular, if the data
(9[0], A.[0]) are smooth, then so is the solution (¢, A).

Now let (1(0), A.[0]) be an initial data set for MD-CG. We say that ¢ = (cx)rez is a
frequency envelope for (1(0), A,[0]) if

”Pkw(oﬂ‘}'[l/? + HPkAm[O]Hglez < Cg.

Theorem 3.0.2. There exists a universal constant €, > 0 such that the following statements
hold.

1. For any initial data (0) € H'Y?, A,[0] € H' x L? for MD-CG satisfying the smallness
condition , there exists a unique global solution (A, ) to MD-CG with these data
i the space Il € 5’51/2, Ay e Y, A; € St Given any admissible frequency envelope ¢
for (1(0), A.[0]), we have

sup ||st|| 5172 —|—||A — Al sy, —|—HA0||Y1 <L (3.0.3)

se{+,—

2. Let (A',¢') be another solution to MD-CG such that Il;))" € Sa?, Ay e Y A e st
and the data ¢'(0), AL[0] satisfies (L1.9). Assume also that (¢ — ¢/ )( ) € HY?>7% and
(A, — AL)[0] € H'% x H=% for some 0y € (0,6,). Then we have

sup |ILs (¢ — ) g1/2-5, + | Az — Alls1-52 + || Ao — Agllyr-s2
sel+,-) (3.0.4)

S =) O grre-s, + 1(Ae = A0 152 155 -

) then @D c Ct(R H1/2+N) amAx €

3. If p(0) € HY2N A,0] € H'*N x HY (N >
0), A;[0]) are smooth, then so is the solution

Cy(R; HN). In particular, if the data (¢(
(A, ).

Theorems and are proved by a Picard-type iteration argument as in [31].
The presence of a non-perturbative interaction with A/ precludes both the usual iteration
procedure based on inverting [J or the free Dirac operator and the possibility of proving
Lipschitz dependence in the full space S? x 57 xY?. Instead, we will rely on Theorem m
which provides linear estimates for Df;lAfm and on the solvability result for the covariant
Dirac equation given by Prop. [1.8.11}

1§, is the admissible frequency envelope constant.
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Remark 3.0.3. The Maxwell-Dirac statements and proofs are presented for d = 4. In a general
dimension d > 4, all arguments in this chapter apply with substitutions as in Remark [1.8.5]

3.1 Existence and frequency envelope bound for MD.
Uniqueness.

We first prove Statement (1) of Theorem except uniqueness, which is proved in the next
step. We proceed by a Picard-type iteration, where the iterates are constructed recursively
as follows. For the zeroth iterate, we take the trivial pair (A% ¢°) = 0. Then for any n > 0,
we first define

APt = Ag(pm,yn), AT = AT A (wn, ),

where Ay, A; are given by (1.7.19)), (1.7.22) and A; "“ denotes the free wave development of
A;[0] = (4;,0,4,)(0). Next, we define /"™ by solving the covariant Dirac equation

oDy =0, Y (0) = 1(0).

In order to construct ¢"*1, we wish to apply Proposition [L.8.11f with A = A"™! or equiv-
alently, ¢’ = ¢" and Afree[O] = A;[0]. When n = 0 we have ¢ = 0, so the hypothesis of

Proposition [1.8.11]is verified simply by recalling (1.1.9)) and taking €, < €,,. For n > 1, we
make the induction hypothesis

sup [T (™ — ™ )| g2 < (Cren)™  forall 1 <m < n. (3.1.1)
se{+,—} °

for some universal constant C, > 0. Recalling , summing up for1<m<n
and taking e, sufficiently small compared to €, (independent of n), we may ensure that the
hypothesis of Proposition holds. Moreover, since " obeys a covariant Dirac
equation, the condition 8, (¥, a#9™) = 0 is satisfied by Remark [1.7.6]

With an appropriate choice of C, and ¢, we claim that the (n+1)-th iterate (A", )" *1)
has the following properties:

. I g, + IAE — AL 4y ST (312
s€1+,—

sup I 0y + AT = Al + A5~ Al < (Ce™ (1
sE{+,—

Assuming these, the proof of existence and (3.0.3) may be concluded as follows. Note that
(3.1.3]) ensures that the induction hypothesis (3.1.1)) remains valid up to m = n+1. Moreover,
these estimates immediately imply convergence of (A" ¢™) in the topology II,¥" € & 2,
Aj € St and Ap € Y to a solution (A, ) to MD-CG; furthermore, the solution obeys the

frequency envelope bound (3.0.3)).



CHAPTER 3. PROOFS OF THE MAIN WELL-POSEDNESS THEOREMS 50

It only remains to establish (3.1.2) and (3.1.3); we start with (3.1.2). Decomposing

AAGH, A@tAg“ and DAQ“ as in Section E and applying Proposition . the proof of
(3.1.2)) is reduced to establishing
sup ||stm||(531/2)c <1 form=1,...,n+1 (3.1.4)
se{+,—} i

Choosing e, sufficiently small and summing up the induction hypothesis (3.1.1)), we obtain

sup [[It)™ ||g1r2 + | Az[O0)]| grrp2 < Cbe < €u form=0,... 0. (3.1.5)
Se{‘h*} °

This bound allows us to apply Proposition [1.8.11] which implies (3.1.4]) as desired.
Next, we turn to (3.1.3). For any p € {0,1,...,4}, we may write

AP — AT = AL (Y0 + AL (" Sy,

where we have used the shorthand J¢™ = 9™ — ¢"~!. Decomposing AAy = Mg, A0, Ay =
My and A, = M, as in Section [L.7]and applying?] Proposition [L.8.6, we obtain

JAS* = Al agiors + 10AT = DAl oo + A = Al
S s (Il ge + TG0 e ) T 0067 g

s,s'e{+,—}

By (3.1.1)) and (3.1.2) for ™ and ¢!, it follows that
||Ag+1 - Ag”Yl + ”A;H_l - AZHSl S €*<C*€*)n

which is acceptable by choosing C, larger than the implicit (universal) constant.
We now estimate the S+’ norm of Syt = ot —9h" We begin by computing

auD;Wéwn-H - _ ,L'au(AZ-i-l _ Az)wn-i-l
— — o (AU, 0") + Au(v" um) )y,

By symmetry, it suffices to consider only the contribution of A,(6¢" ! ¢"). Using the
shorthand ¢"*™ = [T,4" " we expand

IL, (0 A, (50", 96 )
=11, (7P (Ao (00", Ut — (AL (00", v )
+ILAZ (Ag(00", "), L) — SN (AL (30", 47), 47+

+ INE(AG (04", ™), TT_p"TY) + SILNE(AL (8", ™), ™)
+ TLNE (AL (007", 40™), 00 ) + TLNE (AL (097, 4, ")

2Proposition is stated in terms of admissible frequency envelopes. Constructing frequency envelopes
as in (1.5.13)), Proposition easily implies the non-frequency envelope version, which we use here. The
same remark applies to the application of estimates in Propositions and below.
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We wish to estimate the No/?> N L2L2 N GY/2 norm of the RHS using Proposition and
1.8.8] More precisely, For the No/? norm, we apply (1.8.28) for (3.1.6): (T.8.15)—(1.8.16) for

BL7): (L8.15)([.3.16), (L8138 ([[8.19) for (B.L8) and (L.8.17), [L.8.20) for (B.LJ). For
the L2L?N G2 norm, we simply use (1.8.21)(1.8.23)) and (1.8.24)(1.8.26). Then we obtain

I, (0% A (00", )0 Yy agangre S 0 86 s 100, oo

51,52,53

Hence by Proposition [1.8.11], (3.1.1)) and (3.1.2)) for ¢y"*! and 9", we arrive at

sup [[TL09" 12 S €(Cue), (3.1.10)

se{+,—}

which is acceptable.

Uniqueness

To finish the proof of Statement (1) of Theorem [3.0.2, we need to show that the solution
(A, ) is unique in the iteration space. Let (A’,9") be another solution to MD-CG with the

same data, which obeys 1,0’ € Se / 2, Al € St and A € Y'. To prove the desired uniqueness,
by a simple continuity argument, it is enough show that (A,) = (A’,¢’) on [0, T] for some
T = T(¥(0),A;[0]) > 0. Moreover, it is clear from MD-CG that Aj = Ay(¢’,¢’) and
Al = Alree + A (¢, 1"); hence it suffices to establish

P(t) ='(t) fort €0,T]. (3.1.11)
Define 0y =1’ — 1. By Proposition we have

sup HHS(S'I/}”S,;/2[O7T]§ sup HHSOz“Dﬁ&pHN;/ammLszl/Q[QT] (3.1.12)
se{+,—} se{+,—}

Moreover, writing out the equations for Oé“Dﬁ(S?ﬂ and o*9,01 in terms of v, 61 and analyzing
it as in the proof of (3.1.3)), we arrive at

2

RHS of B.1.12) < (e* + osup IOV 5;/2[0,T1) sup (|69 51720,
se{+,—} se{+,—}

In particular, the RHS of (3.1.12) is finite; hence the LHS of (3.1.12)) can be made as small

as we want by choosing T sufficiently small (we use (2.1.18)) for Nsl/Q). Combining (3.1.12))
with the preceding estimate, and taking e, smaller if necessary, we may conclude that dy = 0

on [0,77] as desired.
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3.2 Existence and uniqueness for MKG. Frequency
envelopes bounds.

We now prove Statement (1) of Theorem [3.0.1]

Step 1. We set up a Picard iteration. For the zeroth iterate, we take (¢°, A9, Af) =
(0, Af"ee, 0) and for any n > 0 define J” = —J(¢"DA»¢™) and, recursively,

D" =0 (3.2.1)
QAT =P (3.2.2)
AAT = g (3.2.3)

with initial data (¢[0], A,[0]). Differentiating and using Remark [L.7.1], we get
AJ AP = 0" T (3.2.4)
Note that Aj = 0. We claim that
|4l se = 1AL lso < CollAal0ll o s < Coz, 60lso < Cor (3.25)

where A; " denotes the free wave development of A;[0] = (4;,9:A4;)(0).
For n > 1, denoting A™ = (A", AJ') we make the induction hypothesis

9™ — @™ Hlgo + |A™ — A Hpigoys < (Cug)™ m=2,n. (3.2.6)
for a universal constant C, > 0. By summing this up and adding (3.2.5)) we get
9™ (15 + |47 — AL"[lase + | AT |57 + [ AT ly= < 2Cos m = 1,n. (3.2.7)

These estimates imply convergence of (¢, A, A7) in the topology of S7 x S% X Y7 to a
solution of MKG.
Step 2. Notice that we can decompose
A= Ag(e7 67 + AR AR = AT (7P )
A;H—l :A£T66+Aj(¢n,¢n) _i_A;%,n—&-l’ A;%,n—i-l — —D_le(|¢”|2 AZ)
for A = (A, A;) defined in (I.7.4), and set A" = (A" AIP™). To estimate A" — A" we
write
A AT = A 66 + A6 — ) (AT AT
QAR — 0,A7 = ATIVLI(¢" VL7 — "V +i ¢! AT — i |gn|* AT (328)

The difference A" — A" is estimated in ('S x Y using Proposition and (1.8.1])-

(1.8.3), together with (3.2.6)), (3.2.7). With an appropriate choice of C, and ¢, this insures
the induction hypothesis 13.2.61 for A remains valid with m =n + 1.
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Moreover, using (2.1.16)) and ([1.8.3) with (3.2.6)), (3.2.7]) we obtain

IA® | (zonersoyxzgmvey S &, A" = AR Y| (zonpgoyzg,nvey S (Che)™™ (3.2.9)

Step 3. In order to solve , we rewrite it as
Dp7AfTee¢n+1 — M(An, (bn-i-l)
where
(2i) T M(A", §) = (A" - %6 — [A"]g) + w[AF"]g
+r[A(¢" ")) — (20) 7 (9 AG o + AN AL )

We prove that the map ¢ +— ¢ defined by D%Ame@b = M(A" ¢) is a contraction on S°.
This follows from Theorem together with

IMA™ O g o3 S EllDllse- (3.2.10)

which holds due to (1.8.4)-(1.8.9), (1.8.10)) since we have (3.2.7) and ([3.2.9)).
Moreover, this argument also establishes (3.2.5)) for ¢! since we are assuming A% =

A(p~h¢7h) =0.

Step 4. To estimate ¢"*! — ¢" using Theorem in addition to applying (3.2.10) with
¢ = "t — ¢" we also need

IM(A™, ¢") = M(A™, 6]

S (Cie)"[|0" |5

N"*IQLQHU*%

This follows by applying (1.8.4)), (1.8.8)), (1.8.9) with A = A"—A""! then (1.8.5)), (1.8.6]) with
A= AR" — AR and finally (1.8.10) with A(¢m 1, ¢" 1 —¢"2) and A(¢" 1 — ¢ 2, ¢"2).
We use these together with (3.2.6) and (3.2.9). We conclude that, with appropriate C, and
g, the induction hypothesis (3.2.6) remains valid with m = n + 1 for ¢ as well.

Step 5. To prove uniqueness, assume that (¢, A) and (¢, A’) are two solutions with the
same initial data. Then the same A/ is used in Df’,;Afm for both ¢, ¢ and using the same
estimates as above one obtains

IA = Allasesye + 16 = ¢'llse S (A = A'llasowye + 116 — ¢'llse )

Choosing ¢ small enough the uniqueness statement follows.

The frequency envelope bounds (3.0.1))

The main observation here is that all estimates used in the proof of existence have a frequency
envelope version. Using Remark and D%Ame¢ = M(A, ¢) we have

[6llse < 16100 oo, + IMA D goms oot (3:2.11)
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By (6.1.26), (6.1.27), (6.1.31), (6.1.32), (6.1.34), (6.2.2) , (6.2.13), (6.2.15), Lemma[6.1.1] and

the proof of (|1.8.7)-(1.8.9) we have

|M(A, )]l < (MAllsexye + 1A%l (zonesoy ze,nve) + 118112 16]l5. (3.2.12)

ell

(No=1nL2H"~3),
The term in the bracket is < ¢, thus from (3.2.11)) we obtain ||¢
implies || Pyo||50 S ck.

Now we turn to A. We define ¢y = ¢, for k' > 0 and ¢ = 2%0(2) for k' < 0. One has

¢ < 0[0]l (7o x mro-1), which

||Aa: o Agree

sz + [[Aollyy < [10A]] 3 +1AAllavy S l0ll5 S 1

—1 . T
NI nL2H]

using (6.1.18)) and the proofs of ([1.8.2)), (1.8.3). This concludes the proof of (3.0.1)).

Remark 3.2.1. A consequence of (3.0.1)) is that if we additionally assume (¢[0], A.[0]) €
H® x H*™' x H* x H*"! for s € (0,0 + §;) then we can deduce

10l oo (s xcars=1) + 1Al oo (o xis—1y S OO0 mroscrra=1 + 1A (O]l o gy (3.2.13)
Indeed, choosing the frequency envelope
e =Y 27 R B 80| oo, ekl = [|0[0]] o x o (3.2.14)

k1>0
from (3.0.1)) we obtain
1]l 0w s sy S DY ™7 Bllse S 12 ez, S N10[0]]

and similarly with (A4, — A/, Ap); meanwhile ||A£’“ee||Loo(HsXHsfl) < |1A.[0]]

HsxHs—1

HsxFHs—1-

3.3 Weak Lipschitz dependence

The MD case

Here we outline the proof of Statement (2) of Theorem Let 61 = ¢ — )’ and 0A =
A— A’ Tt is clear from MD-CG that A) = Ag(x', 1) and A, = (A")/mee + A, (¢, '), where
(A”)/7ee is the free wave development of A’ [0]. Applying Proposition with appropriate
frequency envelopes, we see that establishing reduces to showing

s{up , ||H55¢||5,51/2—52 g ||5¢(0)||H1/2—62 + ||5A90[0]||H1—52><H_52 . (331)
s€1+,—

For simplicity of exposition, we will assume that 1I,0v € S22 and prove (13.3.1f). This
assumption can be bypassed by establishing (3.3.1)) for the difference d¢p = " — (¢')" of
Picard iterates in Step 1; we omit the details.
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The difference 91 obeys the covariant equation
W"DA5y = —ia” (A“(&/}, 0) + AL &p))q// — oS AT = 8T, + 01,

We claim that

sup [[TLyS 1|l Y2621 /202 <e sup |, 0| g1r2-s2, (3.3.2)
s'e{+,—} se{+,—}

S{up }HHSI(S[QHN1/2762QL2H7621'701/2752 56*"51493[ ]HHp(sQXHfaQ. (3.3.3)
s'e{+,— s/

Assuming that (3.3.2)—(3.3.3]) hold, we may finish the proof as follows. Applying Proposi-
tion [L.8.11) with an appropriate frequency envelope, we obtain

sup |00 gr/2-a, [0 (0) gra/2-52
se{+,—}

+ sup || (o/‘DA(W)

H Nsl/2762 mL2H752 NG1/2—62
se{+,—}

The last terms can be estimated using (3.3.2] - Taking e, sufficiently small to absorb
the contribution of |[II;0%]; §1/2-62 (Whlch is ﬁnlte by assumption) into the LHS, the desired

inequality (3.3.1] - follows in a straightforward manner.

It only remains to establish (3.3.2)-(3.3.3). The proof of (3.3.2) is very similar to that
of (3.1.3]) in Step 1; we omit the details. To prove (3.3.3), we start by writing

81, = —ZZH (a0 AT Sws—zz<sﬂ NEOAL, 1)) — /\@S(Mi’”“,ws))

where ¢, = II,¢0. The L2H % N GY/27% norm of both terms can be handled by applying
(1.8.21)—(1.8.23)) and (1.8.24)—(1.8.26) with appropriate frequency envelopes. Henceforth,

we focus on the N2?7° norm. The term NS (5AIree 1)) can be treated using ((1.8.17))

and (1.8.20). For the term NE(5ASre¢ 4,), application of (1.8.16) and 11.8.19) leaves us
only with the term §'IIy(7®[0A/7¢|¢py). For this term, we apply (1.8.29) with frequency

envelopes a and b for [|0A;[0]]| ;1,2 and [[¢)]| g1/, Tespectively. Observe that )., ap <

220 AL 0]l 152 52, 80

17 (AL bl 25 S N6AR[O] 100 22 [0 [ g2

which is exactly what we need (it is this point where d; > 0 is used).

The MKG case (3.0.2)
Let ¢ = ¢ — ¢’ and JA = A — A’. Similarly to the equations in (3.2.8) we write

5A = A(66,0) + A(d,50) + (A% — A7)
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and similarly for 00, Ag. Applying (6.1.18)) and the estimates in the proofs of (|1.8.2)), (1.8.3))

we get
10AlLs-scye—s S IFALON s sgo-s-1 + 16505 + 16 A g5 cyos.
By Remark we have
16611505 < USGLO] | sr0-sscrae—5-1 + 1T 86 xos-1.
The equation for d¢ is

A7 00 = M(A,60) + (M(A, ¢) = M(A' @) +2i Y 6AL" - V.,

k>0
By applying (3.2.12)) with an appropriate frequency envelope ¢ we get
[M(A, 69)] < €ll6gl5-s

No'féflmLQHf’_%_‘s

Similarly we obtain
HM<A7 Qﬁ/) - M<A/7 ¢/)||NU*5*10L2H”_%_5 5 €(||5AHS°*5><YU*5 + Hé(bHS'”—(S)
Using (6.1.32) (note that the H* term is 0 for A/7°¢) we get

1D AL o Vil go s s 5s S IGAT Nsos ]850 S N6ALO fro-sx o1

k>0

At this point is where § > 0 was used, to do the k' < k& ¢?-summation of A/, Putting
the above together we obtain

1661505 + 16 AN se-sscyos S 1101l sre-scrzo—s-1 + 64RO - s
T 21561505 + 154l o5 xyo-s).

For £ small enough we obtain ((3.0.2)).

3.4 Subcritical local well-posedness

Here we review some local wellposedness facts that will be used in the proofs below. We
assume 0°A¢(0) = 99,A,(0) = 0. Given s, N € R, we introduce shorthands H> = H*nHN
and H5N = (H* x H>)n (HY x HY1). Note that for s > 4 +1, H*"! becomes a Banach
Algebra of functions on R¢.

Proposition 3.4.1. For any initial data 1(0) € HY?5/2 and A,[0] € H3, there exists a
unique local solution (A1) to MD-CG with these data in the space ¢ € Cy([0,T]; H/?°/?)
and 0, A, € C([0,T); H*?), where T > 0 depends only on ||¢(0)|| g1/25/2 and || Az[0]]|32.5-
The data-to-solution map in these spaces is Lipschitz continuous. Moreover, if ¥(0) €
HYHN A 0] € HHN X HN for N > 2, then € Cy([0,T); HY/**N), 8, ,A, € C,([0,T]; HY).
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For MKG we have:

Proposition 3.4.2. Let s > % 4+ 1. For any initial data ¢[0] € H® x H*™' and A,[0] € H**
there ezists a unique local solution (¢, A) to MKG with these data in the space (¢, 0yp; A, 0, A) €
Ci([0,T], HSx H*=Y H7*) where T > 0 depends continuously on ||¢[0]|| s x gs—1 and || Az [0]||zgo.s -
The data-to-solution map in these spaces 1s Lipschitz continuous. Moreover, additional
Sobolev regularity of the initial data is preserved by the solution.

We omit the proofs, which proceeds by usual Picard iteration (based on the d’Alembertian
[J and the free Dirac operator o/*0,) and the algebra and multiplication properties of the
spaces above. Here, the massive term ¢ can be treated perturbatively.

We remark that a stronger subcritical result - almost optimal local well-posedness (i.e.
initial data in H'™¢(R*)) was proved in [48].

3.5 Persistence of regularity

Now we sketch the proof of Statement (3) of Theorem and Statement (4) of Theorem
3.0.1L In view of Propositions |3.4.1| and [3.4.2] it suffices to show that

. L] graen + [ Azllsien S (O] grareenw + 1A [0l s sy (3.5.1)
se{t+,—

and
VNGl 50 + VY (A = ALV ersowye S NOLO) roen s prasen— + | Aa[O]]] frosn s frosn1- (3.5.2)

for N = 1,2, whenever the RHS is finite. Henceforth, we only consider the case N = 1; the
case N = 2 can be handled similarly. Moreover, for simplicity, we will already assume that
I,y € SN and Vo e S, VAe S xY? . As before, this assumption may be bypassed

by repeating the proof of (3.5.1)), (3.5.2) for each iterate.

The case of MD

By Proposition m (for OV A, ), it suffices to bound only the contribution of ¢ in (3.5.1)).
Observe that Vi) obeys

QDEVY = i (AL (V,0)6 + Au(, V) v — i VAT Y = Iy + I,

We claim that

sup HHS’IIHN1/20L2L2001/2 SJ Ei sup "Hs¢|’g3/27 (353)
s'e{+,—} se{+,—} °

sup |[Io Lol y1/2 0 p2p2ngrre S € sup ([Tl ga2 + [[Az[O] || g2 o), (3.5.4)
s'e{+,—} s/ se{+,—} °
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Then by Proposition |1.8.11and (3.5.3)—(3.5.4)), we would have
sup [[tllgare S 1900l a2 + €l A0l g2 + €« sup [[TLst)| ga/e.

se{+,—} se{+,—}

Taking e, smaller if necessary, we may absorb the last term into the LHS, which would prove
(13.5.1)).

It remains to justify (3.5.3)—(3.5.4)); below we only discuss (3.5.4]), as the other bounds
can be proved in a similar fashion to Step 1 (in parallel with Step 3). By (1.8.16)—(1.8.17)),

(1.8.19)—(1.8.20)), (1.8.22)—(1.8.23)) and (|1.8.25)—(1.8.26)), it is straightforward to show that

||H5’<IQ + iS/WR[VA;]p%ee]lpS')||N1/2mL2L2m(;1/2 5 6*“1438[0]HH2><H1

Moreover, the L2L? N G2 norm of s/ (7#[VAf)3py) can be bounded by the same RHS
using (|1.8.22) and (1.8.25)). To handle its Nsl,/2 norm, we apply (1.8.29) with frequency

envelopes a and b for [V AL[0]|| g1, 2, [[¥0]l51/2, respectively. For any 0 < ¢ < 4, we have
||PkHS’(7TR[VA£m€]¢S’>HN1/2 < (Z ak’)bk < 26kHVAx[O]||H176XH76bk
’ k' <k
Square summing over k, we see that the IV, sl/ ? norm of Il (rB[VAI|epy) is bounded by
IV A0l s1-5  r-s |95 | g1/2+5. By a simple interpolation, the desired bound (B3.5.4)) follows.

The case of MKG

We write
V(A, — A7) = A, (Vo,0) + Au(6, Vo) + VAR AR = 7P, (6" A,)

Using the product rule we distribute the derivative on the terms inside AZ. We also write
the similar formula for VAy. From Prop. [1.8.1] we get

IV(A = Al lnsoxye S e([[Vollse + |V Allsoxye) (3.5.5)
The equation for V¢ is

A"V = VM(A,¢) + 2y VAT - V.o,

k>0

Using the product rule on VM(A, ¢) and Prop. |1.8.1] [1.8.2] [1.8.3] we obtain

IVM(A, o)l 3 Se(lVollse + [[VAllsrxve)

Ne—-InL2H"~2 ~

Using (6.1.32) (note that the H* term is 0 for A/™*¢) we get

1Y VAL Vg 3 S ElIVALO| o o

Ne—-1nL2H "2 ~
k>0
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We bound V¢ using Theorem so that together with (3.5.5) we have

IVellse + IV(A = Al lasexye SIVOONl e srm—1 + e VA 0]l o g1
+e([Vollse + [[VA[ls7xye)

Choosing € small enough gives (3.5.2)).
Remark 3.5.1. An alternative approach would be to use (3.2.13) for s € (0,0 + 61) to-

gether with the almost optimal local well-posedness result in [48] and its higher dimensional
analogue.

3.6 Proof of continuous dependence on data

Here we prove Statement (2) of Theorem [I.1.2] The same argument proves statement (2) of
Theorem [1.1.1} we omit the repetitive details.

Along the way, we also show that every solution obtained by Theorem [3.0.2| arises as an
approximation by smooth solutions.

Let 1(0) € HY?, A,[0] € H' x L? be an initial data set for MD-CG. Given m € Z,
let 1™ (0), AS™[0] be the regularization ¥™(0) = P,16(0), AL™[0] = P<,,A,[0]. Denote
by (A, ) [resp. (A™) 4(™)] the solution with the data v(0), A,[0] [resp. w(m)(O),Aém) 0] ]
given by Theorem [3.0.2]

Lemma 3.6.1 (Approximation by smooth solutions). Let ¢ be an admissible frequency en-
velope for (0), A.[0]. In the above setting, we have

" 1/2
sup (0 = 6™ gps + 14z = A s+ A0 = AT S (32 )
seit,— k>m

Proof. Let ¢ be an admissible frequency envelope for (¢(0), A.[0]); observe that it is also
a frequency envelope for (¢(™)(0), Al [0]). Applying the frequency envelope bound
to (A,1) and (A (M) separately, the above estimate follows for P, (1) — ¢(™)) and
P (A — AU™). On the other hand, for P, (¢ — (™) and P<,,(A — A™) we use weak
Lipschitz continuity . Observe that

HPSmHS(w - ¢(m))H§;/2 5252mHP§mHS(w - w(m))H gl/2=%2
S22 (|Pomt(0) | gras-an + [ PomAclOlll 1 2),
where the last line is bounded by (},.,. ¢?)'/?. Combined with similar observations for
A, — Aé’”) in S' and Ay — A(()m) in Y!, the lemma follows. O

We are now ready to prove Statement (2) of Theorem [1.1.20 Let ¢"(0), A7[0] be a
sequence of initial data sets for MD-CG such that ¢™(0) — ¢(0) in H'/2 and A"[0] — A,[0
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in H' x L2. Denote by (A™ 9™) the corresponding solution to MD-CG, which exists for large
n by Theorem [3.0.2] For any € > 0, we claim that

sup L (4" = V)| g2 + |47 — Azllsr <e (3.6.1)
s€1+,—

for sufficiently large n. The desired continuity statement is equivalent to this claim.
Let ¢ be an admissible frequency envelope for (1(0), A,[0]). Applying Lemma [3.6.1], we
may find m € Z such that for sufficiently large n,

m " 1
sup (e = ) g2 + | As = AL |lst <7

e ) (3.6.2)
sup [T (4" = ") g/ + A7 — ALl <3,
s€{+’_} s

where (A™™) ™M) is defined in the obvious manner. By persistence of regularity and
Proposition [3.4.1, we have (as n — o)

1™ = ) )l ey oy, m172572) + 1A = AT [l ey oy903) = 0.
Reiterating the preceding bound in MD-CG, we also obtain (as n — o0)
a0, (" — ") le, o zyeam 2502y + 1B(AF™ — AL) ey o,r1,m02) — 0.

In a straightforward manner, the preceding two statements imply

1
sup ||Hs(¢"(m) _ @D(m))ngsl/?[o,T] + ||Az(m) — A;m)HSl[&ﬂ < 56

se{+,—}

for sufficiently large n. Combined with (3.6.2)), the desired conclusion (3.6.1]) follows.

3.7 Proof of modified scattering

Here we conclude the proof of Theorems [1.1.1] and [I.1.2| by sketching the proof of State-
ment (3). Without loss of generality, we fix + = +.

The MD case

Let (A, ) be a solution to MD-CG with data (¢(0), A;[0]) given by Theorem and let
AJree denote the free wave development of A,[0]. To prove modified scattering for ¢, we first
decompose the covariant Dirac equation into

W = —ia AL (1, V).

free
oz“DZ‘
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For any ¢t < t/, Proposition [1.8.11| implies that

free
Jo(e) = S 0Ol S e L0 w00 torapn ey
sei+,—

where §A7 (¢, t) denotes the propagator from time ¢ to ¢’ for the covariant Dirac equation

oz“Dﬁfmcp = 0. An analysis as in Section using Propositions [1.8.6 and [1.8.7| shows that
the RHS is finite for (say) ¢t = 0; by (2.1.18)), it follows that the RHS vanishes as t — oo.
Using the uniform boundedness of $4" (0,#') on H'/? (again by Proposition , as well
as the formula SA7 (¢ ¢) = SAT™ (¢ ¢)SA7* (', 1), it follows that (as t — 00)

IS0, 0 (H) — S (0,000 [ nsa S I0AE) — S (#0000 v — 0.

Hence limy_,o0 S (0, ¢)1)(t) tends to some limit ¢°°(0) in H'/2, which is precisely the data
for ¢*>° in Theorem [1.1.2]

The proof of scattering for A, is more standard and straightforward. In fact, since
M (4, )1 (verzir-1/2)0,00) < 00 by Proposition , limy_,o, S[0,t]A,[t] tends to a limit
A®[0] in £*(H' x L?); here S[t',t] denotes the propagator for the free wave equation. In
particular, we have A,[0] — A®[0] € ¢'(H" x L?); this fact allows us to replace A/ by A>
as claimed in Theorem [LT.2l We leave the details to the reader.

The MKG case

Let (¢, A) be the solutions with initial data (¢[0], A;[0]) given by Theorem and let
Afree be the free wave development of A,[0]. We denote by S47“(#,#) the propagator from
time ¢ to ¢ for the covariant equation (A" ¢ = 0, given by Prop. [1.8.4] which implies, for
any t < t’

ree

free
6161 — S (¢, O8flamcres S IDE™ Bl o srame

the last one being the time interval localized norm. Using the estimates from Prop. like
in the proof of existence shows that the RHS is finite for, say ¢t = 0, and the RHS vanishes
as t — oo. By the uniform boundedness of S4”(0,¢) on H® x H"~! (Prop. and the
formula SA7 (7, ) = SA™ (¢, /) SAT (¢, 1) it follows that, as t — 0o

IS0, )61 = S (0,001 o S N0l = 54 (¢, )0l oo+ — 0

Therefore the limit limy_o, S (0,8)$[t] =: $°°[0] exists in H” x H°~' and ¢>[0] is taken
as the initial data for ¢*° in Theorem [1.1.1
The proof of scattering for A, is similar, we omit the details.
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Chapter 4

The parametrices for Klein-Gordon
and Dirac equations

This chapter is dedicated to the proofs of Theorems [I.6.1] and Prop. [[.8.11] We will
present the motivation and the construction of the parametrices for covariant Klein-Gordon
and Dirac equations. We then discuss the main properties of the phases, decomposable
estimates, oscillatory integrals estimates, the conjugation and the mapping properties.

4.1 Motivation

We begin by recalling some heuristic considerations motivating the construction in [47],
which also extends to the massive case and to the half-wave case (which will lead to the
solvability of the covariant Dirac equation).

Suppose that one is interested in solving the equation

02p=0, O} :=DD,+1 (4.1.1)

where Do¢ = (04+1iAs)¢ and OA = 0. After solving (4.1.1)), one can also obtain solutions to
the inhomogeneous equation (04 ¢ = F' by Duhamel’s formula. The equation (4.1.1]) enjoys
the following gauge invariance. For any real function v, replacing

¢ ewgzﬁ, Ao Ay — 00, Dy — e D, e

we obtain another solution. To make use of this, one expects that by choosing ¢ appropriately
(Vi &= A) one could reduce closer to the free wave equation (¢ = 0.

However, this is not in general possible since A is not a conservative vector field. Instead,
one makes the construction microlocally and for each dyadic frequency separately. Taking
€€ as initial data, considering ¢ = e~ "¥+(t:2)eFtE+irE we compute

Od=2(£(€) Ope — & Vihu + A- ) ¢+ (— iDys + (Oha)? — [Vepu|* — A- Vi)
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The second bracket is expected to be an error term, while for the first, one wants to
define 14 so as to get as much cancelation as possible, while also avoiding to make 4 too
singular. Defining

£

Ly =40+ -V, one has

(&)
P T
e | <l
We would like to have Ly, = A - &/ (§) thus applying Ly and neglecting [ in (4.1.2)
(since A = 0) one obtains, for fixed :

—1

§
Ay + #(w - V,)? Ly (A(t>$) ' @) : (4.1.3)

Taking general initial data [ e*hy(€)d¢, using linearity, one obtains the approximate
solutions

(4.1.2)

Yyt x) =

¢u(t,x) = / e et Fitl)givty  (£)dE.

Thus, the renormalization is done through the pseudodifferential operators e=™=(t, z, D).
In what follows, & will be restricted to dyadic frequencies |¢| ~ 2% or |¢] < 1, while
A(t,x) (and thus 1 too) will be localized to strictly lower frequencies < 2¥. When [¢| < 1,
the denominator in is essentially A,. If ¢ is a high frequency then the dominant
term is A;i and the construction needs to be refined to remove the singularity; see the next
subsection for precise definitions.
For more details motivating the construction see [47, sec. 7,8].

The construction in [31] slightly differs from the one in [47] in that they further localize
the exponentials in the (¢, z)-frequencies (e="* (t,x,g))< ..~ By Taylor expansion one can see
that these constructions are essentially equivalent. Indeed, since

eWer—elbrf) = 1 iy (t,2,€) + O (Y2, _(t,2,8))

we see that they differ only by higher order terms, which are negligible due to the smallness
assumption on A. Here, following [31], it will be technically convenient to do this localization.
We denote by

. k . k
e55 (. D), er (D, s,y)

ik .
the left and right quantizations of the symbol eifpi (t,z,&) where the < h subscript denotes
(t, x)-frequency localization to frequencies < h — C', pointwise in . Thus

ik ;
eihwi(t,%f) = /d+1 €iZT(S’”)wi(t’z’§)mh(57y) dsdy (4.1.4)
R

where T, ¥ (t, 7, &) = Y(t+s,2+y,&) and my, = 218D (2R.) for a bump function m(s,y).

By averaging arguments such as Lemmas [4.5.11} [4.10.1, estimates for e ®*(¢,x, D) will
automatically transfer to e_j'* (¢, z, D).
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4.2 The parametrix for covariant Klein-Gordon
operators

We consider the paradifferential covariant Klein-Gordon operator

ot =0+1-2i) AL, .0;b (4.2.1)
k>0
where A = Afmee = (A;,..., Ay, 0) is a real-valued 1-form defined on R4 assumed to solve

the free wave equation and to obey the Coulomb gauge condition
OA =0, dA; =0. (4.2.2)
By the argument in Prop. one may show

1@lls < N1@0]]] oo + [|Ehmpl| o1

Following [31], the goal is to generalize this inequality, showing that [J,, can be replaced by
OpA,
We consider the problem
{ OpAg = F
ol0] = (f.9)
which is the object of Theorem [1.6.1l The proof of this theorem will reduce to its
frequency localized approximate version:

(4.2.3)

Theorem 4.2.1. Let A be a real 1-form obeying on R4 ford > 4 and let k > 0. If
| A[O]|| o o1 48 sufficiently small, then for any (fi, gr) with Fourier support in {{€) ~ 2*}
and any Fy with Fourier support in {(€) ~ 2% ||7] — (£)| < 2F} there exists a function ¢y,
with Fourier support in {(&) ~ 2k, ||7] — (£)| < 2¥} such that

1({D2) , 80 dxlls, < 1 frs gi)ll sz + || Fellw, =2 My, (4.2.4)
(O — 26A%,0))br — Fillx, S €7 M (4.2.5)
1(64(0) = fr, Or6k(0) — g1 w22 S 22 M. (4.2.6)

The approximate solution will be defined by 2¢;, = T + T~ + ST + S~ where

N _ipk eTit(D) ik '
== €<k (t,ZE, D)me<k (D7y7 O)(Z <D> fk + gk)

! (4.2.7)

—iphk K= gk
St = +e d}i(t,x, D) v

<k Z<D>€<k (Daya'S)Fk‘a
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The phase ¥ (¢, z,&) is defined in Section and K*F are the Duhamel terms
t
KEP(t) = u(t) = / D (e ds, (9,7 (D)u=F, u(0)=D0.
0

ok
To implement this one needs estimates for the operators e <Zpi (t,z, D) and their adjoints,

adapted to the function spaces used in the iteration.

Theorem 4.2.2. For any k > 0, the frequency localized renormalization operators have the
following properties for any X € {Ny, L2, N}

(e, D) X = X (4.2.8)
2748, ,e5 (e, D) X > X (4.2.9)
e;?i(t,x, D)ef}(D,y, s)—1:X — er X (4.2.10)
as well as

2k||€;:pi (t,z, D)uklls, S lwkllpomxrzy + [[Onuklw, (4.2.11)
ez (t 2 D) — O (4 D), a2

llurll oo i + 2°(|(0; = (D)) v,

Moreover, by and one obtains

et D)&ﬁeiﬁ(ﬂy, s) — ﬁ X > er27hX (4.2.13)

The proof of Theorem is given later in this chapter. Now we show how these
mappings imply Theorems

Proof of Theorem |[1.6.1] Step 1. We first look to define an approximate solution ¢* =
¢*[f, g, F] satisfying, for some ¢ € (0,1):

||D£;A¢a _FHN”—lﬂLQHU*% + ||¢a[0] - (f? g)”H"XH"*l < 6[||F||N“—1QL2H07% + ||<f7 g)”HEXHJl})
4.2.14

and
16|50 S NEW gosppoge-z + 10 Do xao—r. (4.2.15)

We define ¢* from its frequency-localized versions

¢ =) o k=t b

k>0
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which remain to be defined. We decompose PF = Qi_¢PeF + Q=p_s P F and first define

o7 by
1

—r2 4¢P + 1
so that 0,02 = Q=i P F. We have
1((D2) s ) dills, S N1kl (i) + | Qor-6PeFll 5, S |1 PeFll g,

Then we apply Theorem to Qp_¢PpF and Py(f, g)—¢3[0] which defines the function
¢r.. We are left with estimating

]:gbi(’r, 5) = I(Q>k—6PkF)(Ta g)

4% 8 oot S 1Al IVERlL, ooy Sl BF s,
and similarly, using also Lemma [2.2.4]

_1 = — — _ .
272N Ondilliz, SN0 0k — Qer—cPeF | n, + | Q<r—sPiFlln, + IAL_c 050kl
SNPF | n, + I1Pe(f, 9l

The following error term, for &', k” = k 4+ O(1), follows from (6.1.27)), (1.8.7)

"A]/ajpk//(bi“NkQLQH*% r's SH(szS%

Step 2. Now we iterate the approximate solutions from Step 1 to construct an exact solution.
We define ¢ := lim ¢=" where
¢STL ::¢1+...+¢n

and the ¢" are defined inductively by ¢! := ¢*[f, g, F] and
0" = 0"[(f.9) — =" 7M0], F — O =" "]

Normalizing || F|| ., -3 + [[(f,9)|#oxme— = 1 it follows by induction using (4.2.14),
(4.2.15)) that

ITBA6= = Pl oy 16500 = (f, )l oo < 87 (4.2.16)

and
l6"llge S 6, (4.2.17)
Thus ¢=" is a Cauchy sequence in S° and ¢ is well-defined, satisfying . Passing to the
limit in (4.2.16]) we see that ¢ solves . O]

Remark 4.2.3. The argument above also implies a frequency envelope version of ([1.6.5)),
which will be useful in proving continuous dependence on the initial data :

I

Sg N ”(f? Q)HngHg—l + HFH(NgflmLzHU*%)C (4'2'18>
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Proof of Theorem[{.2.1. We define ¢, by

O =

where T*, S* are defined by (4.2.7)).

The bound (4.2.4) follows from (4.2.11)) and (4.2.8]), where for 9;¢; we use the low mod-
ulation support of ¢. We turn to (4.2.6) and write

0ul0) = f = 5 DI 0.0, D) e (D00 = 1 D) ek

%(T*JrT‘ +57+57)

0u0n(0) = g0 = 5 3|l 0.0, D) (D, 0) = 1) D) f+ )

[0y (0, 2, D) == (D, y, 0)(i (D) fio + g

1
i(D) =
£ [0 (0,0, D) e (D,,0) = — I F0)
o O Dhpyea (D00 =
These are estimated using (4.2.13), (4.2.10), (4.2.8)), respectively (4.2.13), together with
1Fe(0)llze S I Filloere S 251 il v,

which follows from Lemma [2.2.4] considering the modulation assumption on Fy.
Now we prove (4.2.5)). We write

Caton — Fi =Y [[Oete (o, D) = €5 (6,2, D)l (4.2.19)

+
1 —igpk @:I:Z( > ik

+ Ht,x,D)———Le jED Fi| — Fi.. 4.2.20
2e<k (,J}, ) Z(D) ( Y, S ) k} k ( )

where .
i 7,’1,[1 w
O+ ::m[eit< e i(D y,O)( < >fkigk>:|:Ki i(D Y, )Fk}

Using (4.2.12)) we estimate
ik
IE2.19]5, SZ e (D.y. 0)(i (D) fi  gillse + lle (D, v, ) Fell s,

and then we use (£.2.8). Now we turn to (£.2.20) and write

= 35 et e n Dt 00 - 1 (12.21)
] 1 Sk 1

+i e, (t,x,D)@ v (D,y,s) — W]atFk (4.2.22)

ie;ﬁi(t,x,z})—[ate 21(D,y, 5)F |- (4.2.23)

D)
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For (4.2.21) we use (4.2.10), for (4.2.22) we use (4.2.13), and for (4.2.23) we use (4.2.8),
(4.2.9), all with X = Nj. O

4.3 The parametrix for half-wave operators

The goal of this section is to prove Theorem [1.6.2

Suppose A/ = 0 with [|A/¢|| ;1,2 < € together with the Coulomb condition

8514{7"86 = 0. Without loss of generality we assume the sign s = +. Define the paradif-
ferential half-wave operators by

0

(i0, + |D|)y = i, + |D| = i Y Pej_c AT =L Py (4.3.1)
D]
where P
(i0y + |D|)y_, = i0 + | D| — iPjp_c AT ﬁpk (4.3.2)

and the paradifferential covariant (massless) wave [J operator by

0., = 0 —2iP_c AT B0;, (4.3.3)
Consider the problem
(10, + | D)y = F
4.3.4
{ v(0) = J (434)

Remark 4.3.1. In this section we set d = 4. The construction in [31, Sections 6-11] (for
m = 0) may be generalized to R!™¢ with d > 5 without much difficulty, in essentially the
same way as we do below in this chapter for m? > 0. Then, for d > 5, the argument in this
section goes through with the substitutions as in Remark [1.8.5

The proof of Theorem reduces to the following proposition (whose proof is later in
this section) by the same way argument as Theorem reduces to Theorem [£.2.1]

Proposition 4.3.2. For any F € NJlr/QﬁLZL2 and any f € HY? there exists ¢ € S}r/z such
that for any admissible frequency envelope ¢, we have

19°(0) = Fll oz + G0 + DD = Fll 172 12,2), 435
<6 (Il + 1Pl sy, )
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Construction of the parametrix

The parametrix constructed in [31] for the (massless) equation

{ DZ@Q& =F
o[0] = (g, h)
takes the form .
Gapp = 5 (T*+T-+ 8" +57)

wherd]] ]
T* = ey *(t,x, D)ﬁeﬂtmeg}i(l)?y, 0)(|D|g£i~"h)
i 1 i ,_
S* = Fe 5 (t, D)WKiefgi (D,y,s)i 'F
where K*F denotes the solution u of the equation

(G Fi|D)u=F,  uw0)=0

given by the Duhamel formula
t
KEFP(t) = / e =IIPI P () ds.
0

More precisely, the result in [31] states

69

(4.3.7)

(4.3.8)

(4.3.9)

(4.3.10)

(4.3.11)

Theorem 4.3.3. Assume that F, g, h are localized at frequency 1, and also that F' is localized
at modulation S 1. Then gy, is an approximate solution for (4.3.7), in the sense that

[ bapnlls, < Nlgllz> + l[Rllzz + 1 F ]l n

and

1@app (0] = (9, Wllz2 + T4y app — Fllng < 0(llgllzz + ([Pl 22 + 1] vo)

The spaces 5’0 and Ny are defined in chapter .

(4.3.12)

(4.3.13)

INote that if the eigyi terms are removed one obtains the solution of the ordinary wave equation

O = F, ¢[0] = (g, h).
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Renormalization for (0, + |D|),

Now our goal is to similarly obtain a parametrix (or approximate solution) for in
order to prove Proposition {4.3.2

Suppose F,g,h are localized at frequency 1, and consider S*,T* defined by (4.3.9),
(4.3.10). If F has small Q" -modulation, then so do S* and T". This also applies to
S, except for a part with Fourier support in the lower characteristic cone. Therefore we
decompose

_ o _ i - 1
ST =QI_,S+5;, Sy i=ey (t, 2, D)QZ_, (Wu) : (4.3.14)
according to the following definitions

1 B _ ,
w=-KF, F = e (D,y,s)F, (4.3.15)
i

so that (i9, — |D|)u = F', u(0) = 0. Let us define the function v such that

-1

WF(F)(T, €), so (i0, — |D|)v =F. (4.3.16)

Fo(r, &) =

The term S, can be controlled by || F||yo as follows.

Lemma 4.3.4. Suppose F is localized at frequency 1 and at QT -modulation < 1. Then for

Sy and v defined by (4.3.14) and (4.3.16) we have:

[v(0)[lz2 < ([l o (4.3.17)
Sy = _e;g‘l’(t,x,D)%lei”D'(v(O)) (4.3.18)
120 = [D1)Sg (0)llz2 < €l F - (4.3.19)

Proof. The proof is divided into three steps.

Step 1: Proof of (#.3.17)). Since F and F are localized at Q~-modulation > 1 from (2.2.19)
and (4.2.8) we have

[0 lz2 S Iollerz S NF gy S 1FIve S 1F 1o (4.3.20)
Step 2: Proof of (4.3.1§)). Subtracting v from u we get
(10 — |D])(u —v) = 0, (u—2)(0) = —v(0). (4.3.21)

Thus Q2 _ju = QZ_,(u—v) = ¢ “Pl(—v(0)) from which (4.3.18) follows.
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Step 3: Proof of (4.3.19)). Using (4.3.17)), it suffices to show ||(i0;—|D|)Sy (0)]|2 < €]|v(0)]| 2.
— 0 v 0
0~ DS 0 = ez 10.0,0) (150 ) + [erol] (T51) - (s
The first term is estimated by (4.2.9)). For the second, we use the dual of Lemma 4.5.10
and (4.2.9) to obtain
I1Dlecy’(0,2,D) = ey (0,2, D) [D| |22 S [0necy (0,2, D)|[p2pz S &
[

The following proposition is essentially a restatement of Theorem [4.3.3|in a convenient
form for our application.

Proposition 4.3.5. Suppose F' and f are localized at frequency {|¢] € [272,2%]} and F is
also localized at QT -modulation {|7 —|&|| < 271}, Then there exists ¢ localized at {|€| €
[273,2%3]) |7 — |€]] <273} such that

1(i0 = [D)¢(0) = fllrz + 15, ¢ — Fllnvg < 6 (1 fllz2 + [1Fln,) (4.3.23)
10ll5, < /1122 + 1 Fllvo- (4.3.24)

Proof. Let us choose g and h such that
ih+|D|g=0, ih—|D|g=f (4.3.25)

and apply Theorem to (F,g,h). Then T~ = 0 in the definition of ¢,,, from (4.3.8)—
(4.3.10). From Theorem we have

1 Papp[0] = (g, )| 2 + |B4_, Papp = Fllwy < B, | Papplls, < B- (4.3.26)

where B = ||g||z2 + ||hllz2 + || F|| v, Observe that it suffices to bound the LHS of (4.3.23) by
0B. We define

b= % (T+ + 5% + Q% ,5) (4.3.27)

and observe that ¢ has the stated Q"-modulation. Furthermore,

1
¢app =0+ 550_

where S; is given by (4.3.14)), (4.3.18). We write

—W_ — U _ e
0~ F = @y~ ) + (Frye 2 (0 0) = (1.0, D)D) S5 0(0)
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The first term is estimated by (4.3.26[), while for the second use (4.2.12)) and (4.3.17)). More-

over,

(10, — |D)6(0) ~ f = (i3, ~ |Dl)6uy, — (60— D] g)]
+1(6h— Dl g) ~ f] ~ 50, ~ 1D)S; (0

The first term is estimated by (4.3.26]), the second term is zero, and the third term follows
from (4.3.19)). This proves (4.3.23]).

The bound (%.3.24) follows from (4.3.26), ([#.3.18), ([#.3.17) and the bound e_{"* (¢, z, D) :
S¥ — S, from [31]. O

(4.3.28)

We are now ready to construct the key part of our parametrix for (4.3.4)).

Proposition 4.3.6. Suppose F' and f are localized at frequency {|£] € [272,2%2]} and
F is also localized at QT -modulation {|t — |£]| < 2874}, Then there exists ¥} localized at
{1€] € [2873,2613] |7 — [¢]] < 273} such that

124(0) = fllzz + 160 + 1Dk = Fllg <6 (112 + 1Py ) (4.3.20)

lellsy S 1SNz + 1Ly (4.3.30)

Proof. By scaling invariance, we may assume k = 0. Define

o = (i0; — |D|)¢

where ¢ is obtained by applying Proposition to F, f and —A/™¢. At this low Q*-
modulation, the norms of Ny and N coincide. Observe that on that space-time frequency
region, the symbol of (i0; — |D|) is ~ 1 and behaves as a bump function. Moreover,

edllss S Idls, S lels,
which implies (4.3.30). We write

ree, 8
(10, + |D|)A<01/}0 Oo — Af Zmpo(wt +|D| - 2|Dl)¢
o (4.3.31)
=0, 0 AQ’““C@‘D' (i, 4+ | D|) Pyo.

Since ||Afr€%||LzLoo < &, we estimate

ree a
1425 57 @0+ DD Piglze S €D 2NQ Posluese S el o
<0 (4.3.32)

Sellells, S elllfllzz + 11 )

where the last inequality comes from Proposition [4.3.5] which completes the proof. O
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Proof of Proposition 4.3.2

We are now ready to prove Proposition [4.3.2]

The approximate solution °.

We define ¢* := )", 1} from its frequency-localized versions

U=+

which remain to be defined.
We decompose F = >, P.F and P.F = QF, (P.F + Q% (P F. We first define ¢} by

1

FYp(r,6) = —7—4—\§|f

(QLy—PuF)(7,8) (4.3.33)

so that (i0; + |D|)¢7 = QL _¢PuF.
Then we apply Proposition to QF,_PuF and Py f —12(0) which defines the function
D

Reduction to the frequency-localized case.

By redefining ¢ (taking € smaller), it suffices to show

126 (0) = flll e + 1B [(00: + [ DW= Fll 1220

4.3.34
$6 3 (IBefllae +1PoFllyiogags) (4.3.34)

k'=k+0(1)
1Pt llge S Y NPefllse + 1PeFllyirz oy (4.3.35)

k'=k+0O(1)

Notice that
P [(id, + D)y = Fl= > Pi[(i0, + | D)%t — PuF], (4.3.36)
K'=k+0(1)

and the analogous summation for Py¢® and Pg[1)%(0) — f]. By disposing of Py it suffices to
show the following estimates:

160, + [DI)4_,, ¥ — P Fllns + 195(0) — P fllz2

(4.3.37)
<6 (1P fllee + 1P F g 1v2)

2K (60, + DIV 0 — PeF e S8 (IPef e+ |1 PoFllsoogn)  (4338)
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1 llsy, S NP fllz + 1P Fll vt oo 12
k k
Lk a
2720 + [P llzre S 1P fllzz + 1P Fll s pz -2
and the following error term, where k", k" = k' £ O(1):

HAfTeeJ aj

b Porvllgrmnive S <l

Proof of claims (4.3.37)—(4.3.41))

It only remains to prove (4.3.37)—(4.3.41]).
Step 1: Proof of ({.3.39). For ¢? we have, by Lemmal[2.2.6]

||¢k||5+ S ||Q>k 6PkF||NIjnL2H71/2-

For the function v}, by Proposition [4.3.6, we have

el s S I1Pef = R (O)lze + QL6 PrFllnz S NPif 2 + 1PF ||yt pz1/2-

We have used (4.3.42) to bound [[17(0)]| .
Step 2: Proof of (4.3.37). By Proposition [4.3.6, we have

[6(0) = [P = VRO 122 + 16, + DIV, 0k = Qb oPiF
<0 (IPf = R(0) 2 + 1Q%,_6PiF vy )
SO0 P 2 + NPl gzri-v)

It remains to estimate

. ree, a
(@0, + |D|>Zl<k¢1§ - >k 6PkF||N+ < ||A£k é|D|Pk¢k||N+

SHAZE llpero 1l ore S (227 21QL, 6 PuF | i pes1re

SellBeFll vz -2
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(4.3.39)

(4.3.40)

(4.3.41)

(4.3.42)

(4.3.43)

(4.3.44)

The first inequality follows from the definition (4.3.2). The third inequality follows from

(4.3.42]).
Step 3: Proof of (4.3.38)). We estimate

_ky .
272(|(0; + IDI)h_ vk — QL6 PiFllzare S 0(1Puf e + 1PF |yt a2sg-1s2)

(4.3.45)

using (2.2.16) and ([@.3.44). For (i0; + [D|)},_ ¢ — QL FiF, using (4.3.42) we estimate

0;
lALEed e PR € IADS oll s Rz S 2e|QEe o PeF lgnpai -1

<k C|D|
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Step 4: Proof of (4.3.40). We write
(10, + |D|)¢Z = >k ¢Du " + Q<k 6PkF+

. ree, a

We use (4.3.45)) and it remains to estimate

2—k/2||Af'ree] a

<k-C |D| Pkwk”L2L2 <2 k/2||Af'r“eeC||L2Loo Hl/}k||LooL2 (4346)

§E<||Pkf||L2 + HPkFHN,jﬂLQH*l/?)- (4347)

Step 5: Proof of ([#.3.41). The N,, bound follows from (6.3.20), while the L>*H~'/2 bound
follows from the estimate (4.3.46|) with k replaced by &', k", k" .

4.4 Solvability of the covariant Dirac equation

We now prove Proposition [1.8.11] by using the construction of the previous section and
employing the estimates stated in section [1.8|

Recall the equation (|1.8.30):

"D =F on I

n? (4.4.1)
¢(0) :%,

where the potential A = A,dz* is given by

=Ao(y, ), Aj=Al"+ A(¢) onl

where (Ao, A;) are defined by (1.7.22)), (1.7.19)

Proof of Proposition [1.8.11

To solve ([L.8.30), we introduce an auxiliary equation (see below), which on one hand
reduces to ((1.8.30)) after suitable manipulation, and on the other hand possess appropriate
structure so that it could be solved via an iteration argument. More precisely, we look for a
pair (¢4, p_) of spinor fields which obeys

(10, + 5ID])ps =N (Ao, Typ0) + NP(Ap, T ) + T, (P Agl,)
_NR(AI>S0+) _'_NR(A:E?SO*) (442)
+ HSN-E(AI’ ©4) + Hst(Ax> p-) +illF.

with ,(0) = I (0) for s € {+, —}.
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Taking II; of both sides, a computation similar to Lemma shows that ¢ = 1, o, +
IT_¢p_ solves the desired covariant Dirac equation; a key observation here is that the last
term on the first line vanishes. Therefore, in order to establish the existence statement in
Proposition [1.8.11], it suffices to show that, under the hypotheses of Proposition [I.8.11], there

exists a solution (¢, ¢_) to (4.4.2)) obeying

||‘PSH(§1/2[I])C 5 ||HS¢0||H(}/2 + ”HSFH(N;/20L2Lzmcl/2[1])c‘ (4-4-3)
Our goal in the remainder of this subsection is to prove the preceding statement. The
remaining uniqueness statement in Proposition [1.8.11] follows by a similar argument applied
to I15(4.4.2)); we omit the repetitive details.

Before analyzing , we begin with some simple remarks. First, extending II;F' by
zero outside of I results in an equivalent Na/> N L2L2 N G/2 norm (see Lemma @ and
the preceding discussion); therefore, it suffices to focus on the case I = R. Next, by Propo-
sition m (note that 9,4y = 9, MF(¢/,¢)’) thanks to the hypothesis 9, (¢, a*)’) = 0), A
obeys the following bound: Given an admissible frequency envelope b with sup e, _y [[TLy|| 62, <

1, we have
1Aollyy, + [[ A — AT |s1, S 1. (4.4.4)

Constructing b appropriately, we have [|b?([, < [|b]|7, < €2, by hypothesis.

~Y k%

We are now ready to begin the analysis of (4.4.2)). Using the decomposition in Section
and the identity

7rE[AO]HSSOS + HfsWE[AO]QDS = WE[AO]“ — 1L )ps + HfsﬂE[AO]SOSa

the system (4.4.2)) can be rewritten as (i0; + s|D|)" .. s = Esp + Il F, where

Eup = EJAT Yo =n[Ao(¥/, )] ps — s AL (W, 1)l (44.5)
+ NE(Ag, Tep,) — sNE(A,, 05) (4.4.6)
+ NP (A, T sp_o) + sN T (Ay, ) (4.4.7)
+ NS (A, 04) + LN (AL, ) (4.4.8)
+ [y, 7% [Ag]]s. (4.4.9)

For any admissible frequency envelope ¢ and ¢’ = (¢',,¢" ) € (S}r/ 2 x §Y%)., we claim that

’|58<P,||(N}/QQL2L2mgl/2)C 5 e S{up ) HQO/s“(Sf/Q)C' (4'4'10)
’ se{+,— ’

For the moment, we assume the claim and complete the proof. Let ¢’ = (¢/,,¢") € (S’i/ % x
S 2)07 and consider a solution ¢ to

(Zat + S’D‘)Zf'reegos - SSO/ _'_ ZHSF
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given by Theorem [1.6.2] By the same theorem and (4.4.10]), we have
ol S e s Iellgy, + 10O v+ Iy,

Combined with the inequality
lell g2y, = 1G@0: + s|DN)gll iz < (@00 + 8| DIV gree@ll gz + I (AT o] 12

and ((1.8.25)) (which only involves the 52 norm on the RHS), we have

sl S eee s Nllisin, + NoOlinse + IeFl scsapanurs,
se y—

Taking €,. > 0 sufficiently small, we may ensure that the map ¢’ — ¢ is a contraction in
(S}r/ 2x SY ?).. By iteration (or Banach fixed point theorem), we may then obtain the desired
solution ¢ to (4.4.2).

Now it only remains to prove (4.4.10). For (4.4.5), we use Proposition with ap-

propriate frequency envelopes. For (4.4.6)-([4.4.8), we apply Proposition and (4.4.4).
Finally, (4.4.9) is handled using (4.4.4]) and the following lemma.

Lemma 4.4.1. Let a, b be any admissible frequency envelopes, and s € {+,—}. Then we
have

s, 75 (AWl 172012 p2n oy, < NAollva 0l g1z, (4.4.11)

Proof. By (1.8.21)) and (1.8.24), (#.4.11)) holds for the L?>L?> N G*/? norm on the LHS even
without the commutator structure; hence it remains to show

||[H—S,WE[Ao]]¢||(N;/z)ab S lAollyzllll girey, (4.4.12)
Write Ay = PyAg, ¢ = Putp and Py, = II_,, P, so that
M, T[4l = > [P, At

K k1, k:ky<k—5

Observe that the summand vanishes unless k' = k4 O(1). Moreover, we have the well-known
commutator identity

[Pk/, Akl]f - 2_k/£(VAkl, f)
where £ is a translation-invariant bilinear operator with bounded mass kernel (see [52]

Lemma 2]). Applying Lemma |5.6.1} we have
P Ay S2 MLV Agy )

1 1/2
S2HIVAG e (D 1P @veliese)
C, (0)

1 —
522(161 k) ||Ak1 ||y1 ”Q’Dk”SSléQ

Thanks to the gain 2%(’“”“), the frequency envelope bound (4.4.12]) follows. n
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4.5 The definition and properties of the phase

Now we return to the massive MKG equation and prepare the preliminaries to proving

Theorem [4.2.2]

The construction of the phase

We recall that A is real-valued, it solves the free wave equation [JA = 0 and satisfies the
Coulomb gauge condition V, - A = 0.
For k = 0 we define

Pt 2, ) Z@/} (t,z,¢), where

= (4.5.1)
I ¢ 5.
0 t; ) = = <PA t7 : _)
J,:I:( xr 5) AWL + #(W . VI)Q J ( I‘) <£>
For k > 1 we define
it @, ) = - 5Ly Z (st k) P A - : ) (4.5.2)
) : 1 >8(kq — 1 .0.
AL+ W(u} . V ki <k—c <€>
It will be convenient to rescale the angular pieces that define ¥% to |£] ~ 1:
—L L AEl
kot x,2FE) = =l I15 P, A - 45.3
w],@,j:( , 1, 27€) AL+ 27%#@ - V,)?2 <§>k ( )
k

for 2007k < § < ¢ and j < k — ¢, where

L = +0, + <|§>| Vo, W = é_‘v <€>k =V 272 + ’£|2
k

Note that Iy, IT;“ defined in (1.5.3)), (1.5.4) behave like Littlewood-Paley projections in

the space w™.

Remark 4.5.1. Tt will be important to keep in mind that ¥ is real-valued, since it is defined
by applying real and even Fourier multipliers to the real function A.

Remark 4.5.2. Due to the Coulomb condition V, - A = 0 the expression in (4.5.2)) acts like
a null form, leading to an angular gain. Indeed, a simple computation shows

‘H“A ] < G‘HWA( )‘

which implies [|II§A - w2 < 0|15 Al 2.
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We denote by

e(n) = nlee +272(6)," (w - )
the Fourier multiplier of the operator A, + Q_Qk#(w -V.)?. We have the following bounds
k
on e(n):
Lemma 4.5.3. Let k > 1. For any n and & = |¢|w such that Z(&,n) ~ 0 and |n| ~ 27 we
have
1 C
ovV.,,)" < 4.5.4
v 5l < s 454
1 Ca 272k
“ < - —— . > 1. 4.5.
a|€|<0v“)) 905(77)‘ - (2]9)2 +22172k 62 + 22k’ l — ( 5 5)

Remark 4.5.4. Suppose we want to estimate d (00,,)*95, L (to, -, 2°¢) in L. By lemma
and the Coulomb condition (remark [4.5.2)), the following multiplier applied to A(ty)

o _Lj:,k wp. ﬂ
8|§| ((98 ) AwL T 2_2]{:@(&) . Vx)z (HOPJ( ) w<€>k)

may be replaced by

—j ~ —2ko—j
270 pap (if 1 = 0), 2720

w,a,l 13
02 4 92k 0 T I b

@romete B (=),

for the purpose of obtaining an upper bound for the L2 norm, where H‘(j’a’l and ISJ obey the
same type of localization properties and symbol estimates as I and P;.

Proof. For a =0, [ = 0 the bound is clear since
we(n) =~ (270)* + 22772k, (4.5.6)

For N > 1 we prove the lemma by induction on N = [ + |a|. We focus on the case [ > 1
since the proof of (4.5.4) is entirely similar. Suppose the claim holds for all I’ o’ such that
0<!U+|d] <N —1. Applying the product rule to 1 = 905(77)@ (7 We obtain

o b
eelm) - g (0. we(n)

where we sum over I’ +1" =, o/+a” = «a, I"+|a"| < N —1. Given the induction hypothesis
and (4.5.6)), for the terms in the sum it suffices to show

1

coPB oL (V) N AV L—
Z o B |§|< ) 906(77) |§|( ) @5(77)

’% (OV.) pe(n ‘ 2% for ' > 1, (4.5.7)

’% (OV.,) ve(n ‘ (290 for I'=0, || >1 (" =1>1) (4.5.8)
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We write
e(n) = Cy = (w-m)*(1 =27 (6),).
We have |w - n| < 27 and thus for I’ > 1 we obtain (4.5.7).
Now suppose I’ = 0 and thus |o/| > 1. Observe that d,(w - n)? =~ 2%/ and thus for all
la’] > 1 we have (0V,)* (w - n)? < 2262, which implies (4.5.8). O

The following proposition will be used in stationary phase arguments.
Proposition 4.5.5. For k>0, || ~ 1, denoting T = |t — s| + |z — y| we have:
[ (1, 2, 2°€) — v (5,5, 2°€) | S elog(1 + 2°T) (45.9)
05 (W (1,2, 25) — 0l (s,9,2°0) | S e+ 2°T)(*73°, 1 <ol <670 (45.10)
|00 00 (Vi(t,2,27¢) — ¢l (s,4,2%¢))| S e272(1 + 2b )0l +2)0 1> 1 (|a| + )5 <1
(4.5.11)

Proof. Using || |V|” Al ~r> < e, Bernstein’s inequality PjII$L2 — (299%1)2 [ and the
null form (Remark [4.5.2)), for k£ > 1 we obtain
|k, s (8,2, 256)| < e(296771) 29 227 < cf2
7,0, Ly ~ € (239)2 + 92j—2k ~ €

Thus, for both £ =0 and k£ > 1, one has
[k (¢ 2,25)] Se, |Vaathh o (t,2,28)| < 2e

We sum the last bound for j < j, and the previous one for jo < j < k —¢:

[E(t 2,2"€) — vi(s,y.2°¢)| S e (2°T + (k — jo))

Choosing k — jo = log,(2*T) — O(1) we obtain ([4.5.9).

For the proof of and we use Remark . Since their proofs are similar
we only write the details for . First suppose k& > 1.

From Bernstein’s inequality and Remark we obtain

1 2—2k
(2]9) 4 92j-2k @2
|V ta\&laa¢§0,i(t,$75)| < 2727 3= lol

|0l 08ty 4 (8, 2,6)| S (2%g+=1)2¢ glol < 9=2%kg—3-lof

We sum after 2°0=%) < @ < ¢. Summing one bound for j < j, and the other one for
Jo < j < k — c we obtain

|01 05 (VA(t, 7, 2%¢) — ¢ (s,9,2%¢)) | S e27 (23'07’2*%*'&‘)500*’“) + 2*<%+la‘>6<ﬂ‘0*k>)

Choosing 277 ~ T | we obtain (4.5.11)). When k = 0 the same numerology, but without the
0 factors, implies (4.5.11)). [
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Decomposable estimates

The decomposable calculus was introduced in [47]. The formulation that we use here is

similar to [31], which we have modified to allow for non-homogeneous symbols.
For k = 0 we define

IF\Ipy(razry = ) Sup O£ (-, ) Larr-
a<1od 61=C
For k£ > 1 we define

I gnsy = D Do sup XSO0 @OV F o Olarr (45.12)

¢ a1,|al<10d |€]~2"

where Xg(g) denote cutoff functions to sectors centered at ¢ of angle < 6 and ¢ is summed
over a finitely overlapping collection of such sectors.

The symbol F(t,x,€) is in Dy(LIL") if we can decompose F' = > F? such that
Z ||F9||DZ(L‘1LT) <00
0

and we define ||F'||p,(erry to be the infimum of such sums.

Lemma 4.5.6. Suppose that fori =1, N the symbols a(t, x,§), F;(t, z,§) satisfy || Fi|| py(rainr) S
1 and

sup [|A(t, z, D)||lrz 2 < 1.
teER

The symbol of T is defined to be

alt,z, &) [ it 2, ).

Then, whenever q,q,r,r; € [1,00], ¢; > 2 are such that

we have B ~
T(t,z,D)P : Li[? — LALT,

By duality, when r = 2, r; = oo, the same mapping holds for T(D, s, y).
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Proof for k = 0. For each i = 1, N we decompose into Fourier series
Fi(t,z,§) = Z d; ;(t,z)e; (€ e;(&) = et
jEZ

on a box [—C/2,C/2]¢. From the Fourier inversion formula and integration by parts we
obtain

M
()" N dijllLacrs S | Fillpocrascrsy S1

for some large M. Then

Tutz)= ) [[di(t.o) / eIt Sa(t, 2, )a(t, §) A€

iy jn€Zd i=1

From Holder’s inequality we obtain

N
ITullpor- < > [ ldis,

J1,-n €L =1

N
S > G Y e S llullgae,

J1,e--JNEZL =1

L% L™ ||A(t7 Z, D)ei(jl+m+jN)DuHLqL2 5

which proves the claim. O

Proof for k > 1. We present the proof for the case N = 2. It is straightforward to observe
that the following works for any N. From the decompositions F; =}, F? and definition
of Dy(LIL") we see that it suffices to restrict attention to the operator T with symbol

a(t,x,g)F1(t,$,§)F2(t,$,£)
in the case F; = Ffi, 1 = 1,2 and to prove

IT(t, 2, D)Pill iz sporr

<||F (4.5.13)

g oy 2l g 12

For ¢ = 1,2 we decompose

Fo=) F'  F(ta,8) =g (OF(t,¢)

where %T: (&) are cutoff functions to sectors T; of angle 6;, where the T; is summed over a
finitely overlapping collection of such sectors. We also consider the bump functions xr, (§)
which equal 1 on the supports of gpérj (€) and are adapted to some enlargements of the sectors
T;. We expand each component as a Fourier series

Tt &) = dli(ta)ey (&), ef () = exp(i27™j - (|¢],@6;1)/C)

jezZ
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on the tube T; = {|¢| ~ 2%, Z(€, ¢;) < 6;} where € = |€]w in polar coordinates so that w is
parametrized by @ € Rt such that |@| < ;. Integrating by parts in the Fourier inversion
formula for d' (t, x) we obtain

OO S sup [[(250g)™ (250, VL) F (8, -, )|
ar,al<10d 1€1~2*
and since ¢; > 2 we have

i -M
gy e S ) N e o (15.11)
Since for € € T} we have " = F''xp,(€), we can write

= ) dil (ta)d, (¢, x) / eta(t,x, E)egt . et Xr XX (E/28)i(t, §) dE.

T1,T% j1,j2

Thus
ITu@)ly S Y > Ml @)l o ldsz, 0 gz e xa ()| 2

71,52€72 Th, T

< D I ®le, «~12||d§2]2 Mz Xz a )] 2

jl7j2€Zd
< D 1 @l nlldy, (g, 2 la®)]lze
j17j2€Zd

Applying Holder’s inequality and (4.5.14) we obtain

M o —-M
|Tullporr S llullpare Y G0~ (Ga) I s (gan gy 121 o a1

J1,j2€2%

which sums up to (4.5.13)). m

Decomposable estimates for the phase

Now we apply the decomposable calculus to the phases ¥% (¢, x, ).
Lemma 4.5.7. Let ¢ > 2, 2

d;l < %. For k > 1 we have

d+1 (2+E)

(14072 YaTr
(2,2 vtx¢30ﬂ:)”D9 (Larry S €2 Wr"”w‘ (4.5.15)
| By Ay (t,2) - wll poane) S 0227, (4.5.16)

For k =0 we have .
|’<¢Oia2 Vtx%i)HDo(Lqu <e2 Gt (4.5.17)
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Proof. Suppose k > 1. Without loss of generality, we will focus on wﬁa ., since exactly the
same estimates hold for 279V, x¢k9 4. In light of the definition , for any £ = |{|w and

(03]

any o, |a| < 10d, the derivatives (’3|£| (00.,)* Y%, . are locahzed to a sector of angle O(6) in
the (t, z)-frequencies and they solve the free wave equation

Ot 0 (000) 45,4 (t, 2,2°€) = 0

Let ry be defined by 2 + ﬂ = &1 The Bernstein and Strichartz inequalities imply

2

10 (00)° 0 (-, 25l arr S 0G0 270 0 (00L,) kg 1 (- 2°€) o
< 90=5=Pigld=Gg- >||ag|1(ea) 0.+ (2" 0] o o (4.5.18)

By Remark [4.5.4] (which uses the null form) we deduce

d+1 (2, d—1
S -G

(1 dy; w,
[T5.18) <2 (atr)i IITL5* P A[O) | o o

62 4 272

By putting together this estimate, definition [£.5.12] the finite overlap of the sectors and the
orthogonality property, we obtain

9%*(%#1 4=l
_(lydy;
||1/)f,e,i||Dg(Lqu) S 2 (q+’")]w||}j A0 ]HHUXH”*l’

which proves the claim, since || P;A[0]]| o, o1 S €.

~Y

The same argument applies to (4.5.16)). The only difference is that one uses the angular-
localized Strichartz inequality ||PyA;|l2r~ < 0z 32”;||A | fro s fro—1, Which holds for free
waves, in addition to the null form Wthh gives an extra 6.

When £ = 0 the same argument goes through without angular projections and with no

factors of 6 in (4.5.18]). m

Remark 4.5.8. As a consequence of the above we also obtain

k1
Ve (T 504, -y A (852) - )| pprozeey S 2710027 e, (4.5.19)
Corollary 4.5.9. For k > 0 we have
(084, 279V ¥ D pe(rar=y 275, ¢>4 (4.5.20)
k
IVeetkll Do) S 22¢ (4.5.21)
”Vt,xwzkl;:HDk(LooL“) S 2k5' (4522)

Proof. The bound (4.5.22]) follows by summing over (4.5.20)). For k = 0, (4.5.20]) and (4.5.21]
follow from (4.5.17)).

Now assume k > 1. The condition g > 4 makes the power of 6 positive in (4.5.15) for

any d > 4. Thus (4.5.20) follows by summing in 6. For (4.5.21)), summing in 6 gives the
factor Zg(k_j), which is overcome by the extra factor of 2/ when summing in j < k. [
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Further properties
Lemma 4.5.10. Let a(z,£) and b(x, &) be smooth symbols. Then one has

HCLTbT — (ab)THLT‘(Lz)—)Lq(Lz) ,_S H(Vma>r‘|Lr(L2)—>LP1(LQ)“VEbHD}CLW(Lm) (4523)

H(Ilbl — (ab)l’|Lr(L2)_>Lq(L2) S vaaHDi’LPQ(LOO)H(Vzb)lHLT(LQ)_)Lpl(LQ) (4524)

where ¢~ = 3" p;t. Furthermore, if b = b(€) is a smooth multiplier supported on {(£) ~ 2F},
then for any two translation invariant spaces X,Y one has:

la"d" — (ab)"[lx-y < 27" [(Vaa) llxy - (4.5.25)
Proof. See [31, Lemma 7.2]. O

Lemma 4.5.11. Let X,Y be translation-invariant spaces of functions on R"™! and consider
the symbol a(t,x,&) such that
a(t,z,D) : X =Y.

Then the (t, z)-frequency localized symbol ay(t,x,&) also satisfies
acp(t,z,D): X =Y.

Proof. We write
a<h(tv L, D)u = /m(s, y)T(s,y)a(ta xz, D)Tf(s,y)u ds dy

where m(s,y) is a bump function and Ti,,) denotes translation by (s,y). Now the claim
follows from Minkowski’s inequality and the 7% (; ,)-invariance of X, Y. n

4.6 Oscillatory integrals estimates

In this section we prove estimates for oscillatory integrals that arise as kernels of T7T™
operators used in proofs of the mapping (4.2.11)) and (4.2.8)), (4.2.9)), (4.2.10)). These bounds
are based on stationay and non-stationary phase arguments (see Prop. [1.5.2 and [1.5.3)).

Rapid decay away from the cone

We consider

Kt x,s,y) = /eiwi(tmé)a(%)eii(t8)(£>+i(xy)£e+i¢i(s,y,£) d¢ (4.6.1)

where a(€) is a bump function supported on {|{| ~ 1} for k > 1 and on {|¢| < 1} for £ = 0.
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Proposition 4.6.1. For k > 0 and any N > 0, we have

1
K3 (t,@,5,9)] S 2% (4.6.2)

N
(2F(lt = 5| = |z —wl)
whenever 28 ||t — s| — |z —y|| > 27F |t — 5.
Moreover, the implicit constant is bounded when a(€) is bounded in CN(|¢] < 1).

Proof. We first assume k£ > 1. Suppose without loss of generality that t —s > 0, and + = +.
Denoting A = ||t — s| — |z — y|| it suffices to consider 2*\ > 1. By a change of variables we
write

K;: — 2dk /|j£ €i2k(¢k+¢k)(t7x787y7£)a(5) dg
~1

where
Gi(t,2,8,y,8) = (t =) (&) + (x—y)- ¢
r(t 5,y €) = —(WE(t,2,2%) — i (s, y,2"¢)) /2",
By Prop [4.5.5/ and noting that T' = [t — s| + |z — y| < 2%\ we have
[Vor| S e(2T)% /28 S e
Furthermore,

ngk = (t - S)é—>k

If [x—y| > 2|t—s| or |t—s| > 2|z —y|, by non-stationary phase, we easily estimate
|Kp| < 2% (k)

Now we assume |t — s| =~ |z —y| > 27%. On the region Z(—¢&,x —y) > 1073 we have
|Vor| 2 |t — s|, thus by a smooth cutoff and non-stationary phase, that component of the

+ (7 —y)

integral is < 24% <2kT>7N. Now we can assume a(§) is supported on the region Z(—&, z—y) <
1072
If [Vr| > 1/4) on that region, we get the bound 2% <2k)\>_N. We claim this is always

the case. Suppose the contrary, that there exists £ such that [Vey| < 1/4A. Then (t—s) <|§>‘ <

1/4)X writing in coordinates £ = (&;,&’) where & is in the direction z —y while ¢’ is orthogonal
to it.
&1

+ |z —y| = :I:)\+(t—s)(1+@)

T =y &1
Vo - = (t =)=

|z —yl ()
Thus & < 0 and using that A > 272%(¢ — s) we have

&1 ) = t—s27% 4 |¢)?
() (O ) + 18]

which implies Vx| > 1/2A, a contradiction. This concludes the case k > 1.
When k = 0 we have |x —y| > |t — s|. For the corresponding phase we have |V¢q| >
% |z — y| and thus we get the factor (z —y)~ N O

(t—s)(1+

1 1
< 272kt — A< A
(t=s)+ A =3
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Dispersive estimates

Dispersive estimates for the Klein-Gordon equation are treated in places like [38| Section
2.5], [4]. The situation here is slightly complicated by the presence of the e*® transforma-
tions. To account for this we use Prop. [4.5.5 Let

Kh— / oA (1/252/ 25 28 E) i (572 0/ 25 24E) £i1=9) O o006 o (£)

where a(&) is a bump function supported on {|¢| ~ 1} for £ > 1 and on {(£) ~ 1} for k = 0.

Proposition 4.6.2. For any k > 0 one has the inequalities
1

S — (4.6.3)
|K*(t,55,9)] S g _2?
T (4.6.4)

Proof. Step 1. We first prove (4.6.3)) for £ > 1. We assume |t — s| ~ |z — y| > 1 and that
a(€) is supported on the region Z(F&, x —y) < 1072 since in the other cases the phase is
non-stationary and we obtain the bound (¢ — s>_N from the proof of Prop. [4.6.1 We denote

p(t,,5,y,6) = —vL(t/2", 2/2%,25€) + ¢ (/2% y /2", 2%€)

and write

(z —y) - &£ [z —yl[¢] = £2]z — y[¢] sin*(6/2)
where 0 = Z(F&,x — y). We write & = (£1,£') in polar coordinates, where & = [|£] is the
radial component. Then

ok / 3= @ F—vIE () (£ dg, (4.6.5)
&Sl

where Q(£1>:/ +ilz—y|2€1 sin?(0/2) (5 5) leds(gl)

For each & we bound

_d-1

Q&)I S !w—y! 2 (4.6.6)
as a statlonary phase estimate (see Prop. [1.5.3). When derivatives fall on ¥ we get factors
of e|z — y|° by m however, these are compensated by the extra factors |z —y|™" from

the expansion ). Integrating in & we obtain
Furthermore, using (1.5.12)) we obtain

Q)| Sle—yl 7 @z —y®) =12 (4.6.7)
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The term (272% |2 — y|*) occurs by ([@.5.11) when d, derivatives fall on e
Step 2. Now we prove (4.6.4]).

First we consider £k = 0 and [t —s| > 1. When |t —s| < c|z — y| the phase is non-
stationary and we obtain (t — s)~". Otherwise, we consider the phase (&) + g - § and get

the bound (t — 5>_d/2 as a stationary-phase estimate using Prop. 4.5.5|

Now we take k > 1 under the assumptions from Step 1. We may also assume [t — s| > 22
(otherwise follows from (4.6.3))).

In (4.6.5) we have the phase 272% |t — s| f(£;) where

§ T —y
f&) = 22’“(<£1>k L), rie) = (e SO e =
|t — s )y It—s|
and ‘ fim ’ < 1 for m > 3. Using stationary phase in &; (Prop. -/- one has
1
K< ———su su 8]
K s 12~ 2k|_8||l P&+ 22k|t— |]<I2)

which, together with (4.6.6)), (4.6.7]), implies (4.6.4)). O

Now we consider more localized estimates.
Let C be a box of size ~ 2% x (28+)4=1 Jocated in an annulus {(¢) ~ 2¥} for k > 0.
Suppose ac is a bump function adapted to C and define

KU (t s, y) = /e—iwi(t,m,£)+iwi(s,yﬁ)eiit(t—s)(@ei(r—y)sac(g) de. (4.6.8)

Proposition 4.6.3. Let k>0, k' <k and —k <1’ <0. Then, we have

1

’Kk’,l’ (t,2; 5, y)‘ < odk/+(d—1)I
(22K +1) k(¢ — g)) T

(4.6.9)

Proof. We assume 22F'+)=F|t — 5| > 1 (otherwise we bound the integrand by absolute
values on C) and assume |t —s| ~ |z —y| (otherwise the phase is non-stationary). Let
k > 1. By a change of variable we rescale to [¢| ~ 1 and write K*"'" as 2% x (4.6.5))- applied
to 2%(t, z; s, ), with a(-) supported on a box 21@'71@ (2K +V'=k)d=1 T ike before, for each &, we
bound the inner integral (&) by (2% |t —s|)~ = " by statlonary phase Integrating in &; on a
radius of size 2 7% we get 2702 ~F(2F |t — s|)~ dEl which gives (4.6.9). When k=0, I’ = O(1)

the estimate is straightforward. O]

Corollary 4.6.4. Let k>0, k' <k and —k <1’ <0. Then

et D) Py - I AN 2L (16.10)
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Proof. By a T'T* argument this follows from

2—k—(d—2)k/_(d—3)l/€—i1/;ft (t, z, D)eiit(t—s)<D>P5k/(l/)eiwi(D’ s,y) CL2LY s [2L™®

We use (£.6.9) to bound the kernel of this operator, and the mapping follows since 22+ 2"~k (22'+2"=k | >_(d
has LIL%® norm < 1. O

The PW decay bound, d =4

Let C be a box of size ~ 2 x (2¥'~%)3 with center &, located in an annulus {|¢| ~ 2¢} ¢ R*.

We consider the decay of the integral K* " defined in (4.6.8), in the frame (1.5.5), (1.5.6),
where w is the direction of £ and A\ = %
This type of bound is similar to the one used by Bejenaru and Herr [4, Prop. 2.3] to

establish null-frame wa L3 - Strichartz estimates, an idea we will also follow in this paper.

Proposition 4.6.5. When |t, — s,| > 2738 |t — 5|, we have
1
(2% (t, — 50))”
Proof. Denoting T' = |t — s| + |x — y|, we clearly have |t, — s,| < T. In the cases when
[t —s| > 2|z —y| or |t —y| > 2|t — s| from integrating by parts radially we obtain the
decay <2k'T>7N 24’3k Now suppose |t — s| ~ |z — y|, & = + and let
§

¢(§) = (t =) () + (x—y)- &, Wﬁ:(t—S)@Hf—y-

KKt s,)| < 2%

(4.6.11)

For ¢ € C we have l%' = A+ O(2"%) and

~

é_\ —w+ Y0 P+ 02K W) et

Therefore
w- Vo = (t, — 5,)V1+ X2+ 0283 |t — s]).
Due to the assumption, the phase is non-stationary |w-Ve¢| 2 |t, — s,| and we obtain
by integrating by parts with 9, = w - V.
When derivatives fall on e~ &5 +0L 58 we get extra factors of 28 ~*(2FT)? from Prop
4.5.5. However, we compensate this factors by writing the integral in polar coordinates
similarly to @ and using stationary-phase for the inner integral like in the proof of

[@6.9), (6.3), giving an extra (22K ~3T)=3/2 swhich suffices. O
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Corollary 4.6.6. For k > 1 let & be the center of the box Cp/(—k), A = |§—g|> and w = é_gl
Then

—

23 W=k (¢t o DY) PPy gy L2 — L2 LY

o, AT Tw A

Proof. By a TT* argument this follows from the mapping

273 R =W (¢ 3 D)D) P20 (D) (D, s, y) s L2 L} — L2 L

tw,k HaRIDN tw,k HaRIDN

—3/2

which holds since the kernel of this operator is bounded by 2%’ <2k/ (t, — sw)> € L%w_ s, L7

When [t,, — s,,| > 2¥~3% |t — 5| this follows from (4.6.11]), while for |t,, — s,,| < 23 |t — s
it follows from (4.6.9) with I’ = —k. O

The null frame decay bound, d =4

Let @ € S? and let x; be a spherical cap of angle 2! such that /(x;, £&) ~ 2. Let

A= ﬁ, which together with @ defines the frame ({1.5.5) and the coordinates in this
frame
to = (t,x)- @, xL=(tz) &, T, =1 w;-
Suppose a;(€) is a smooth function adapted to {|¢| ~ 2, é—‘ € r;} and consider

KM (t,x;5,y) = /ewi(t,a:,é)erJi(s,y,é)eiit(t8)<§>ei(fvy)£al(§) de.

Proposition 4.6.7. Suppose max(27P,27%) <« 2! ~ /(k;, £©). Then, we have
1 1

N N
(B2t = s[) ™ (254 |2 — yal)

>2N

K (t, 258, y)] S 2 (2" |tg — s (4.6.12)

Moreover, the implicit constant depends on only 2N + 1 derivatives of a;.

Proof. We prove that the phase is non-stationary due to the angular separation. Suppose
+ =+ and let

BE) = (1 — ) (€) + (1 —y) - &, w:(t—s)%m—y.

Choosing the right @i we obtain

V¢ o 2t — s) + |2, — yil-
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When 2'[t — s| < |2}, — y}| we obtain |K}"| < 2%+ (2kH |5 — yg|>72N, which implies
(4.6.12). Similarly when |2}, — y/,| < 2|t — 5| we get | K| < 24430 (2k+20 ¢ — s\>_2N which
also suffices.

We use Prop to control the contribution of ¥% (¢, x, &) — ¥k (s,y, &).

Now assume 2' [t — s| >~ |zl — yL|. When (2% |t — s| =) 2! |zl — 9| < |te — S| estimat-
ing the integrand by absolute values we get |K["| < 2%+3! which suffices in this case.

Now we assume |ty — s5| < 2% [t — s =~ 2! |2, — ¢ |.

Since (z —y) - w = —A(t — s) + (ts — so)V'1 + A%, we have

Vo-w=(t—s) (%%—A) +(ts — s5)V1I+ A2
We estimate €l ¢

2l =27 122 N1~ 27

(€ e

From the hypothesis on 2! we conclude that this term dominates so

Vo -] 2 2% |t s,

which implies (4.6.12)) as a non-stationary phase estimate. O]
Now we consider frequency localized symbols and look at the TT™ operator
_ ik . I k
e E(t, z, D)D) gy (D) E(D, 5, y) (4.6.13)

from L*(¥) — L*(X), where ¥ = (0*)* with kernel
—3 k T . ) ; k s
Kl<k<t7 s, y) = /€<k¢i(t’ 76)eilt(t_sxﬂel(u’c—y)g&l<£)e<¢ki( Y,) dé.

for (t,x;s,y) € ¥ x 3, ie. t; =55 =0.

Proposition 4.6.8. Suppose max(27P,27%) <« 2! ~ /(k;, £©). Then,

1 1
Kb (t,x;s,y)] < 23 4.6.14
et a2 e i ey
holds when A(t — s) + (x —y) -w = 0.
Corollary 4.6.9. Suppose max(277,27%) <« 2! ~ /(k;, +@). Then
et (t 0, D) PR P, L2 — L L% . (4.6.15)

Corollary 4.6.10. Let C = Cp/(I"). Then

*Wli

e t,x, D)t PP P, . L} — NEZF. 4.6.16
<k T C
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Proof of Prop. [{.6.8 We average using (4.1.4]) to write K., (¢, z;s,y) as

/ / TR (08) Tt (0. g () H 09O @08 dem (2)mp(w) dz dw =

= /TZTlea(z’w)(t,x; s, y)my(2)my(w) dz dw (4.6.17)

where a(z,w)(§) = et EE8q(€). Since t; = s; = 0 using (£.6.12) we obtain

LT K (1 w55, )| S (28(2] + o)) 28490
X (2t — s b =) (2l — 2 ) (26w
We obtain (4.6.14)) from the integral (4.6.17)) using the rapid decay
2N+1 2N —N. —N.
25zl + )™ (28 2 = wl) ™ mp(2)ma(w) S (25 [2) 7 (28 lwl)

for any N, and by repeatedly applying

1 2k 1
/ N o s A7 S N
R (afa—r])™ 24]r]) {or]al)

for a < 2% and N, large enough. Note that here [t — s| ~ |zl — L. O

w

Proof of Corollary[.6.9. By translation invariance, it suffices to prove that the operator
is bounded from L2 — L%*(¥). By a TT* argument this follows if we prove 22 x (4.6.13))
: L*(X) — L*(X2), for which we use Schur’s test. Indeed, the kernel of this operator is
22 KL (t,z;s,y) on ¥ x ¥, which is integrable on X by (4.6.14). O

Proof of Corollary[{.6.10. Recall definition (2.1.7). For any w, A = A(p) such that Z(w, £C) >
max (277, 27", 2" ¥ ~k) we may define 2! ~ /(@,4C) and x; D C so that Corollary ap-
plies. O

4.7 Proof of the fixed time L> estimates (4.2.8), [¢.2.9),
4.2.10

The remainder of this chapter is devoted to the proof of Theorem [4.2.2]

The following proposition establishes the L2 part of (4.2.8)), ([#.2.9).
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Proposition 4.7.1. For any k > 0, the mappings

e (tg, 2, D)Py, : L? — L2 (4.7.1)

i k _
s * (ty,x, D)By : L2 — L? (4.7.2)

i k _
Viweoy *(to, 1, D) Py : L2 — c2F 12 (4.7.3)

hold for any fized ty, uniformly in h,ty € R. By duality, the same mappings hold for
right quantizations.

Proof. Step 1. First we prove (4.7.1]) by considering the T'T* operator
eiiiﬁi (t07 x, D)Pk?e:‘:zwi (D7 Y, tO)

with kernel K}(to,z,to,y) defined by (4.6.1).
Due to the (z,y) symmetry and Schur’s test it suffices to show

sup / K2 (to, 2, to, )] dy < 1.

This follows from Prop. [4.6.1]
Step 2. Now we prove (4.7.2)) using (4.1.4) and (4.7.1). For u € L2 we write

ei;'zwi (to, X, D)pku - / mh(87 y)eiiwi (tO + S, T + Y, D)[Pkuy] ds dy

]Rd+1

where 4, (£) = e"%y(€). By Minkowski’s inequality, ([4.7.1]) for to+ s, translation invariance
of L2, and the bound [Juy||z2 < [lu|z2 we obtain

x?

% (10, 2, D) Pou 12 < +iy) ., D)[P dsd
||e<h (t0>x7 ) ku”L?D ~ . lmh(say)He <t0+37 ) )[ kuy]HL% sdy
R+

< / (5, 9)|| Pty 122 ds dy < Jlulle.
Rd+1

Step 3. Since we have
vV, efvitad) +iV, 0k (¢, 2, f)eiiwi(t,x{)

using (4.5.22), (4.7.1) and Lemma we obtain

HVtxeiiwi (t, xZ, D)PkHL1L2—>L1L2 S €2k

Applying this to ¢(t,z) = 0, (t) ® u(x) (or rather with an approximate to the identity 7.
converging to d;, in t) we obtain

Vioe " (tg, 2, D)Py : L2 — e2F L2

for any t3. By averaging this estimate as in Step 2 we obtain (4.7.3)). [
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Remark 4.7.2. The same argument also shows

eVt (tg, 2, D)Py : L2 — L2 (4.7.4)

Now we turn to the proof of (4.2.10)).

Proposition 4.7.3. Let k > 0. For any ty we have
e_% (o, 0, D)e E (D, to,y) — I+ PoLE — 312
Proof. Step 1. First, let us note that

(to,x D)[ (D to,y) P — Pke (D to,y)] : L2 — L2

This follows from (4.7.2)) and from (|4 5.25), (4.7.3)).
The kernel of e_ wi (to, x, D)Pke S (D, to,y) is

—iyk i(e— +ipk
K<k(l‘7 y) = /e<k i(t(]? x, g)a(g/Qk)e ( y)£€<k i(toﬂ Y, 5) dg
while the kernel of Py is 2%a(2*(z — y)). Thus, by Schur’s test it remains to prove

sup [ |Kop(a,y) — 2%a(25(x —y))| dy S 2. (4.7.5)
v/

Step 2. For large |z — y| we will use

Qdk
dk | = ok
2% a2z — )|, [Kar(z,y)| S AT (4.7.6)
The bound for a is obvious. Recalling (4 we write K i(x,y) as
// e—iTzwi(to,:v,ﬁ)€+iTw¢i(to,yé)a(g/Qk)ei(z—y)& d&my,(2)my(w) dz dw =
= /TZTwKZ(Z’w) (to, x, to, y)mp(2)my(w) dz dw (4.7.7)

where z = (t,2), w = (s,w'), a(z,w)(€) = 2" Ew)EErq(¢) and

Ki(t,z,5,y) = / e VE(t,x,€)a(€/28)eF IO HE AL (5 4 ) dg
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From Prop. on the region ||t — s| — |z —y + 2/ — w'|| > 272 |t — 5| we have

2dk

T T, K (tg, 2, to, y ’ < {2k (12| + [w))Y

Over this region, the integral (4.7.7)) obeys the upper bound in (4.7.6). This can be seen by
repeatedly applying

1 2k 1
dr<——u— N, >2N
/R L+ 25[r—a)¥ (L+2r)8 &~ (14 2kg)¥-17 1=

and for any N
N —Np —Np
(25 (l2l + D)™ mu(2)mi(w) < (28 [=]) 7 (28 lwl) .
On the region ||t — s| — [z —y + 2’ — w'|| £ 27 |t — 5|, we use the term (2¥(t — s)>_N from
the rapid decay of my(z), my(w) and bound

1 < 1

(26t =) T2t = s — o —y + 2 =)

TZTwKI(cl(ZM)} ,S Qdk

?

which imply the upper bound in (4.7.6) as before.
Step 3. The kernel of e;:@ (to, z, D)Pkengt (D, ty,y) — Py obeys the bound
[Kanly) = 2%0(2(w = )] S 22%(3 + 2 o — ). (4.75)

Indeed, we write K (z,y) — 2%a(28(x —y)) as
odk //(e—iTzzpi(to,x,Q’“&)ﬂTwwi(to,y,2k£) _ 1)a<£>ei2k(x—y)§ d5mk(z)mk(w) dz dw

and by (4.5.9), we bound
e T 0B OHTN 0020 1] < clog(1 + 24 (|2 — yl + |2 + fu)
Sell + 2%z =yl + [2] + |w])].

Bounding by absolute values and integrating in z and w we obtain (4.7.§]).

Step 4. Now we prove (4.7.5)). We integrate (4.7.8) on {y | |z —y| < R} and integrate
(A.7.6) on the complement of this set, for (2¢R)4 ~ 2. We obtain

1
LHS (@73) Se(2"R) + @Ry S ez.

NI
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4.8 Proof of the N;, N; estimates (4.2.8), (4.2.9), (4.2.10

In the proof we will need the following lemma.
Lemma 4.8.1. For k>0, k > k' > j— O(1) and for both quantizations, we have:

+igpk

212||Q,e,, FRGe, S £200=K1)| (4.8.1)
and thus, by duality
24| P Qi Pl S 29| Fillsz, (4.82)
Corollary 4.8.2. For k>0, [ <0 we have
Qursaez™ = e 5)(ta, D) P Ny — X1/°
Proof. This follows by summing over (4.8.1)). O]

The proof of this lemma is a bit long and is defered to the end of this section. The
following proposition completes the proofs of (4.2.8)), (4.2.9), (4.2.10]).

Proposition 4.8.3. For any k > 0, denoting v = ¢%, one has:

e2 (t, 2, D), s (D, s,y) : Nj — Ny (4.8.3)
8txe<k (t,z, D), (‘3“6 (D s,y) : Ny — 2" Ny, (4.8.4)
e (t,x, D)™ (D, s,y) — I : Ny — 2 N, (4.8.5)

By duality, the same mappings hold for Ny in place of Ny.

Proof. Step 1. Since N}, is defined as an atomic space, it suffices to prove ap-

plied to F when F is an L' L2-atom (||F||ziz2 < 1) orto Q;F an X, 2—a‘com ( 273 HQ]FHLZ
1). The first case follows from integrating the pointwise in ¢ bounds -

+i —1o— +i
(e e 27" VeV Ful®)lle S I1E(8)]] 12

for both the left and right quantizations.
Now consider the second case. We split

+iy  tig

+iy +ip
€2k = €ominGk) T (ezx — 6<min(j,k))'
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Note that e )QJF Q] et Q,F and thus the bound

<min(j,k <min(j,k)

Heiw QiF|l5. < —%“ei“ﬁ. . Q]-FHLg,z S 2_%||QjF||L§E

<min(j,k) <min(j,k)

follows from integrating (4.7.2). The same argument applies to Ve’ <mm( i using (4.7.3). The
remaining estimate, for 7 < k

(5 = e5)@iFils, S <2 H1Qs Pz, (486)

Cck ~

follows by summing in k’. Note that remains true with e*¥ replaced by
27kVetW  because (4.8.2]) remains true, which concludes . To see this, one writes
2_"’/Ve$w = Leki,w where L is disposable and use translation invariance and ( m

Step 2. To prove , since that operator is self-adjoint, we prove that it is bounded from

N; — 52Nk, where N ~ L®L*N X2 The L*L? mapping follows from Prop. |4.7.3), so it
remains to prove

28|1QPlei (t,w, D)ei(D, 5,y) — 1Pkl iz, S &2 |1k

_ 1
L>*L2nX2

For Q-;_.F; we can discard Q; Py, and since HQ>]’—0FkHL§’w < 2‘j/2\]Fk|]X% , the bound follows

for this component from Prop. by integration .
For Q<;_.F} the claim follows by adding the following

2%@]. Pile=y — eVt z, D)e (D, 5,9)Q<j—c : Ni — eLi,

2:Q; Pre V (t,z, D)[e), — eX (D, s,y)Q<jc : Nj — eLi,
since
QiPiIQ<j—c=0, QP e Qcjc=0.
These mappings follow from ([4.8.1)), for N; and Prop. |4.7.3[and writing Qj]-:’ke;;w =
QjPre; Qli-s,j+s. -

Proof of Lemma [4.8.1]

We follow the method from [31] based on Moser-type estimates. The more difficult case
is d = 4 and the argument can be simplified for d > 5. In the proof we will need the following
lemmas.
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Lemma 4.8.4. Let 1 < ¢<p<oo and k > 0. Then for all j — O(1) < k' < k we have

ik _ 1 1\ o0
leg <% (¢, 2, D) Pillpogaypars S €217 372207H) (4.8.7)
Hek’ (7':67 ) k||L2L2_>L¥L2 Ng ( e )

By duality, the same bounds holds for the right quantization.

Remark 4.8.5. To motivate the proof, we note that applying the &'(> j) localization in the
power series

eiz/)<j(t,x,§) =1 + iw<j (t7 T, 5) + O(¢i]<t7 xz, 5))

makes the linear term 1 + ¢ vanish. For the higher order terms Holder inequality applies
(in the form of decomposable lemma [4.5.6)).

Proof. To prove (4.8.7)), let Ly be a disposable multiplier in the (¢, x)-frequencies such that

ik 4 —ok/ ik —ok ko2 k "
ey T =2 Ly A et i = 27 L (— |00t | F ALY L) e i

We may dispose of Ly by translation invariance. Then (4.8.7)) follows from (4.5.20)).
To prove (4.8.8) we write

+ :I:m/; , .
ek,ﬂﬁi =e, T+ / (wileiw’il,i) dl
[k'—C,k—C] K
For the first term we use . For the second term, we have

||wi,leiw’iz¢<t,x,p>|| 0, $e27s

L2L2—L7T L2 ™~

by Lemma (4.5.20) and (4.7.4), from which (4.8.8)) follows. O

Lemma 4.8.6. For k > 0, k > kK > j—0(), j—C <1I' <1< k—C and for both
quantizations, we have:

i’l’ = J (st
1Q;[(Wec; = wQ<Gilllzz, 2% S 22507 M)|| G| poo 2 (4.8.9)
:i:u/; ~ J L (=)ol (-1
HQJ[WZ ve <Ji)k'Q<ij]HL§x2% 5€2212(] H2801) HGHLOOL2 (4.8.10)

Proof. Step 1. By translation invariance we may discard the outer £’ localization. By Lemma,
5.5.2l we deduce that in (4.8.9)) the contribution of w’,z;,j; (which define wllz’,ﬂ: in (4.5.3)) is zero

unless 0 2 22—+ and j > k' — 2k — C'. For these terms, from (4.5.15) we get

3 1 ’
2> Z ||¢k’0||D9 (L2L>) 5 24( —K)

9>23 G~k




CHAPTER 4. THE PARAMETRICES 99

from which (4.8.9) follows by Lemma[4.5.6, When k = 0 no angular localization are needed.

Step 2. Now we prove (4.8.10). First we consider the case I' + ¢ < | = k' + O(1) and
define 6y := 230D, By appropriately applying Lemma we deduce that the terms that
contribute to are wlkwl";‘ﬁ, for 0 = 60y and ¢lk,9¢ll3,9/ for 0/ < 0y, 0 = 60y. We use
with ¢ = 3 for the large angle terms and with ¢ = 6 for the other term, obtaining

. _7 L . l - g
Z ||¢z @bz/ 9'6 |L00L2—>L2 + Z ||¢ll€,9¢l]$,9’€w”L°°L2—>Lf,m Se2 22120715 () (4.8.11)

0'>6 99'§<990
~Y0

In the high-high case [ =1’ + O(1) > K’ the same argument applies with 6, := 22 (i=K)gk 1
and (4.8.11)) also follows in this case. ]

Proof of Lemma[{.8.1 For brevity, we supress the k superscript and write 1 to denote % .
Step 1. [The contribution of Q~;_.Gj]

We use Lemma and (4.8.8)
||Qjek’ Q>J ch||L2 < 25||6$Z¢Q>J chH mLz 56

and the last norm is < 277/2||q|

— GkHng

N;-
Step 2. [The contribution of Q ;G| Motivated by remark [4.8.5| by iterating the fundamental
theorem of calculus, we decompose the symbol

EV(t &) =To+iT, — T FiTs

where 7y = e™<i and

T :/ ¢lei¢<i di, T = // ¢l¢l’€i¢<j dl dl’
[i—C.k—C] j—C<U<I<k—C

Ts = / / / Yipppe™< dldl’ dl”
j—C<I" <V <I<k—C

The term 7 is estimated by (4.8.7)):
(7o) (t, 2, D)Q<k Gz, S 27 2207 Q< Gi | oo 2

Next, we split 71 = T8 + 72 where

me [ wra TE- el
[i—C\k—C] [j—C\k—C]
By appying the & localization, the integral defining 77! vanishes unless | = k' + O(1) for

which we may apply (£.8.9). To estimate 7;?> we use Lemma [4.5.6 with (£.5.20) for ¢ = 6
and ( - with L®L? — L3L2.
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We turn to 75 and separate e’¥<i = e w<] + efj <fc /o 88 before. For the first component

we use (4.8.10). For the second, we use 1) with ¢ = 6 for ¢y, ¢y and (4.8.7) with
L>*L? — LSL? obtaining:

Q%j||¢lwl’6i>¢j<jc/2||L°°L2—>L2L2 S 25025~ for I >k —c
Q%jnﬁbﬂﬁl'ezjd||LooL2—>L2L2 S £260 105 (I—1)92(i—K) for Il <k —c.

For T3 we use (4.5.20) for ¢ = 6. When | < ¥ — C we use (4.8.7) with p = ¢ = oo and it

remains to integrate
1, Wy Lio—glo—lg—41" 20" —K")
22 ||¢l¢l’¢l”ek/ ||LLX>L2_)L2L2 SJ €227276°2 2 2
On [ > k' — C it suffices to integrate

1 14

23] ||1/’l¢l’¢l”@w<w |zoor2 522 S £229927512750'2 7%

4.9 Proof of the conjugation bound (4.2.12

In general, for pseudodifferential operators one has the composition property a(z, D)b(z, D) =
c(x, D) where, in an asymptotic sense

0,6) ~ 3~ 0ale, ) DI, 6).

In the present case this formula will be exact, as seen by differentiating under the integral

i (5.
By definition (L.5.7)), the symbol of e_ (t x, D)0, is
RO (92 4 e 4 ), (4.9.1)

<k

By differentiating ([1.5.7)), we see that the symbol of Dme (t x, D) is

—iyk —i —ipk . —iyk

e<,§”i(a2+ € +1) + Oe* + 2 <8te<k¢i8t —i(Ve_,¥) -g> (4.9.2)
while the symbol of the operator 2i(A.y - V)e_ (t z, D) is

— 0O At ) - € 1 2iVe T LAt ) (4.9.3)

<k

Now, the inequality (4.2.12]) follows from the following proposition.
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Proposition 4.9.1. Denoting 1 = %, we can decompose
eV (t 2, D) — Okere % (1,2, D) = S Fi(t,x, D)

where

=2 [((246) & — £ V)(t,2,€) + Aci(t, z) - e 9]

=2i "D (10, + (€))

)

)

) :=2iVe_ "0 LA (t, z)

)

) =2 [(A<k(t>x)€7w(t’x£) — Ai(t,x)e W(t“)] 3

and for all 1 = 0,4 we have
1Fs(t, 2, D)urlln, S ellurllromm + e2*[[(i0, £ (D))ur 5, (4.9.4)

Proof. The decomposition follows from (4.9.1))-(4.9.3) and basic manipulations. We proceed
to the proof of (4.9.4). We will make use of the bound

lukllwy S llukllpoer2 + 110 £ (D))ur 5,

for which we refer to the proof of Lemma [4.10.2, Recall that we identify N} ~ L®°L*N XZ.

Step 1.[The main term Fp] Recall the identity (4.1.2)) and the definitions (4.5.1)), (4.5.2)). For
k =0 the term Fy(t,z,£) vanishes. Now assume k£ > 1 and write

o(t, @, &) = 2(( Z ITE 50k, — k) A - g)e_iw(t’m’g)kk = 2F"(t,7,8) <k

ki1<k—c
where
F'(t,2,6) = a(t,z,)e /™, at,2,8) = Y Ty pAu(t,2)
ki<k—c
By we have

|F'(t.2, D)=a(t, . D)= (t.2, D) 1w rmsprsr S [Veallppuaquoo | Va2l (62 D)l oo
By lemma (4.5.21) and lemma [4.5.11| we have

— E
[(Vatbe ™) ci(t, 2, D) poor2)—r2(22) S | VatbS I pprzr=) S 272



CHAPTER 4. THE PARAMETRICES 102

k

Summing over (4.5.19), we get [|Veal|pip2(r~) S 22¢. Thus
F'(t,x,D) — a(t,z, D)e Y (t,z, D) : Nj — 2FcNy,
and it remains to prove
a(t,z,D)e il (t,x, D) : Nj — 2"eN,,

By Proposition , e;ﬁ’(t, x, D) is bounded on N}.
Assume —k < §(k; — k) (the case §(k; — k) < —k is analogous). We decompose

t € f Z Z azl(t,iﬂ,ﬁ),

k1<k—cge[2—k 26(k1—FK))

a3, (t,2,6) == T1%, Ay, (t,7) - €, af (t,x,6) =5 A, (L)€ (8>275),

and it remains to prove

laf, (¢, @, Dyvi |5, S 622

for all = 2!, | > —k. First, using (4.5.16) we have

lay, (t, 2, D)Qsrysar-cvill ez S llaf, | perzroe | Qsnrvar—cvill iz, S

Then, denoting f(t,z) = af (t, 2, D)Q<k,+2—cv we have

= 31k
1£1lzz, S laf llperero|Qeryrai-cvxllpere < 22'27 e2*

For each &, the term Q;[I15 Ay, (t, 2)£e™Q <k, +21—cUk(t, €)] is non-zero only for j = ky + 21 +

O(1) (by Remark of Lemma [5.5.2)). Thus,
Flse <Ufllgre S S QN 2% < 32|

j=k1421+0(1)

Step 2. [The terms F; and F5] Since O .9 (¢, x, &) = 0 we have

Fi(t,z,€) = [(|0a(t, 2,8 — |V(t, 2, ) )e™™ mg)]«w
Foft,2,€) =2iAL, (1) (00(t, 7, ) 9)

By lemma and (4.5.21)) we have

(0,00 ™) (t, 2, D) : L°L* — 25 [*L?
(|0ath> €™ (t, x, D) : L°L? — 228 112
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By lemma4.5.11| the same mappings hold for the < k localized symbols, which proves (4.9.4))
for F}, while for F, we further apply Hélder’s inequality together with ||Ay||z2r- < 2%/,

Step 3. [The term F3] The bound follows by using (4.8.4) to dispose of

27k e=19,e 10 (t, x, D).

Step 4.[The term F},] Using Lemma we write
Fy(t,z, &) = Q_kij(VmAik(t, ), e WEE)
As in lemma [4.5.11] by translation-invariance it suffices to prove

2_k||vt,:cAj<k6_iw (tv x, D)a]ukHNk S 52kHe_“/} (ta x, D)“k'

~

ve S e2¥|luil 5

which follows from (6.1.32) (observe that the Hj, term is zero when 0A7 = 0 and in this
case the N}, norm of ¢ suffices. One uses the derivative on A’ to do the k¥’ summation). [

4.10 Proof of the S, bound ((£.2.11

We begin by stating a simple lemma that provides bounds for localized symbols.

Lemma 4.10.1. Let X be a translation-invariant space of functions defined on RY*Y. Let
P be a bounded Fourier multiplier. Suppose we have the bounded map

e ™ (t,x, D) P 2 & X, (4.10.1)
Then, uniformly in h, we also have the bounded map for localized symbols:
e_y (t,x, D)eF PP 12— X (4.10.2)

Proof. Recalling (4.1.4), for uy € L? we write

e (t,x, D)eP) Pug = / ma(s,y)e” " (t+ s,x +y, D)e P Py, ds dy

Rd+1

where 1, (¢) = eT&e0,(¢). By Minkowski’s inequality, translation invariance of X,

([4.10.1) and the bound ||usy|lr2 < [Juol/z2 we obtain (4.10.2)). O

We will apply this lemma for X taking the various norms that define Sj,.
The next lemma will be used to reduce estimates to the case of free waves.
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Lemma 4.10.2. Let k > 0 and X be a space of functions on R™ with Fourier support in
{(&) ~ 2%} (or a subset of it, such as a 2% x (2¥+1)3 box) such that

le" fllx S I fllx, Vo €R

essfllx S| fllx, VseR
leZ3l (t, @, D)eX ™ Py x < Cy|luol| 2 (4.10.3)
hold for all f,uy and both signs +. Then, we have

2"|ey! (t. 2, D)ullx S Crllul0]|mxrz + Bl 5,) (4.10.4)

If we only assume that (4.10.3)) holds for one of the signs +, then (4.10.4)) still holds for
functions u with Fourier support in {£1 > 0}.

Proof. We decompose O,,u = F' 4+ F? such that [|Opully, =~ [[F'| 2 + ||F2|| _1. By

(4.10.3) we can subtract free solutions from w and so we may assume that u[0] = (0 0).
We may also assume that F? is modulation-localized to |7 — (£)| ~ 2/, 7 > 0. We define
v = z-F? and write u = u' + u® where u' is the Duhamel term

1 sin((t — s) (D 1 D 0 ;isDFlS
u<t>:/R (( <D>>< >)1t>sF (s)dS—Zi:j:e ( >/_Oo€ { >W(D)>d8

and u2 — v — ezt(D>w1 . e—zt(D>w2

so that O,,u? = 0 and w' w2 are chosen such that u?[0] = (0,0).
For the second part of u! we use m 4.10.3)) together with

0 ] Fl(S) 0 Fl()
Fis(D) d 2</ ) 2ds < 27K F!
| e S dslas < [ e s ds S 2

For the first part of u! we again write sin((t — s) (D)) in terms of e

+i(t—s) 1
—irx [ € _W’ki o Eilt—s)(D) (s)
Jea™ | = P ) s < [ e ) v as
i <D> - - D)

+i(t—s)(D) ’ and

S 27]601 / H€$is<D>F1(S)HL2 ds S 2ikclHFl(S)HL1L2.
Now we turn to u?. For w!, w? we use (4.10.3) and, using Lemma ([2.2.4)

0 i, 1 i0,— (D
e < 110, 2 ee < 28] (=, 2 D)

F2 2 <2_7j27lC F2 5
(0] o oy E P i, S 272 P,
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Next, we write 7 = p + (£) in the Fourier inversion formula

v(t) = /ei”“xg}"v(r, §)dédr = / e Py dp

|p|=~27

for ¢,(&) = Fu(p+ (€) ,€). Then

—i itp  —ik, i
lezy**ollx S / Nlee ™ (tw, D) P, x dp S O / Nl dp
| p|~27 | p|~27
By Cauchy-Schwarz we bound this by 2%C1HUHL§$ < 2_7j2_k01“F2\|L§x.
If we only assume that (4.10.3)) holds for one of the signs 4, then we have the following
variant A
lez (¢, 2, DYullx S Cr(l[u(0)]| 2 + [1(i8: £ (D))ul|5,)
Now the Duhamel term is expressed in terms of one of the e**P). For functions with Fourier
support in {#7 > 0} we have [|(i0; £ (D))u||n, =~ 27%|0,u| - O

Now we are ready to begin the proof of (4.2.11]). We will implicitly use Prop. m
For brevity, we drop the k and + subscripts and denote 1) = ¥¥.

The Strichartz norms
By Lemma |4.10.2} the bound for S{* reduces to
Lemma 4.10.3. For all k > 0 we have

leZi (¢, 2, D) Phoy|ser < [lvell oz
Proof. Using Lemma this bound follows from
e_w(t,x, D)ej”‘“D> : PkLi — 5;3”. (4.10.5)

We use the result of Keel-Tao on Strichartz estimates from [23]. As noticed in that paper
(see sec. 6 and the end of sec. 5; see also [50, sec. 5], the L2L" estimate also holds with L"
replaced by the Lorentz space L™2. We need this only when d = 4 for the L?L*? norm in
(2.1.4).

By change of variable, we rescale at frequency 2°:
U(t) = e_iw('/2k7'/2k’2k') (t7 .T, D)ei2t<D>k

The L2 — L2 bound follows from Prop. §.7.1 The L' — L* bound for U(t)U(s)*
follows from ([@.6.3) for So" and from (&.6.4) for the other S5 norms in (2.1.4) when
d=4. O
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_1
The X% norms.

For any j € Z we show

22| Qse 2 (tw, D)owllca, S N1kl ari ey + 10mdell 5, (4.10.6)

We separate

*W E —iy
€<k <m1n (4,k) + Crr
k'+Celj,k]

For the first term we write
S A it S
j€<min(j,k)¢k - je<min(j,k)Q[j*1:j+1]¢k

Then we discard Qje;ffin(j k) and the estimate becomes trivial. The second term follows by
summing over (4.8.1]).

The Sy,,y) norms in (2.1.5), k =0

For k' < 0 we prove

— ok’ = up
2 M (Y Q% Poyeo (8w, D)l F2p)" S (0, 08)(0)l 2 + 1Dl

Ch
We may assume ¢ is Fourier supported in 7 > 0. We split

—ipq —ipq —ipq —id
eco = (e — Ccpr )+ € g

The estimate for the first term follows from Prop. and Cor. [£.8.2] For the second term

we write " "
—1 —1 ~
PCk’ <K' Pck/ <k’ PCk’

Then we can discard Q= Pg,, and prove

<k’

PV ~ ~ ~
2N le_* (t, 2, D) Po, ¢l r2ree S 1 Poy (¢, 0:0)(0)| 22 + || Poy, Ol 5,

By Lemma [4.10.2| this reduces to

A . ~ —
27N e (8,2, D) P By By s L2 — LPL™

<K

which follows from Corollary using Lemma [4.10.1
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The square summed Sy*(I) norms, k > 1, first part
For any fixed [ < 0 we split

—l¢ —i1) —i1) —itp
ecp = (ecp —€pyo) T o

Here we treat the first term, while the second one is considered below. The bound

Z Hle <k+2l <Z/) B <k+21>¢”3wi )5 N ”Vt,x¢(0)”L§ + HDm(bHNk

follows from Prop. and Cor. [1.8.2

The square-summed L?L> and S,f” norms, k > 1

Let [ < 0. It remains to consider e <kﬁzl We fix w and the estimate we need boils down
to square-summing the following over w, after taking supremum over &' < k, ' < 0, for
E4+20<kE+1U<k+1

_k_d2p desyp " i 1 = =
2 RN IR P Qe iere)? S NPV ead () + | Bt 5,
c=Cp (')
Fix C = Cp (). Since k + 2] < k' +I’, one can write
Pce<k+2l(t z,D)p = Pce<k+2l(t z, D) Pe¢. (4.10.7)

Then one can can discard PCPZWQ<k+2l and prove

kd2/d3l/

27 T e gt 2, D) Pegll2ree S 1PV iad(0)lliz + 1 PeOmd |,
By Lemma |4.10.2 this reduces to

<k+2l(t T D) izt<D>ﬁc . Li - 2%+%k’+%l’L2Loo (4108)

which follows by Lemma [4.10.1] from Corollary 4.6.4}
The same argument applies to Sy except that one uses (4.10.5) and Lemma |4.10.1

instead of (4.10.8)).

The PW norms (d =4,k > 1)
We fix I, —k < I',)k',w,C = Cp(l') as before and use (4.10.7). We discard PCPl“’QiHQZ and

prove

9= 3(k'+1) +k|| <k:+2l(t z, D) <k+21PC¢||PW3[ < ||J5¢vt,x¢(0)||Lg + |\15cDm¢||Nk
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Let’s assume + = 4. By Lemma [4.10.2 we reduce to

. ~ ENINENT ~
H€<k+21(t7 x, D)QZt<D)PCUk”PWgE 5 22K+ )”PCUkHL% (4-10~9)

From Corollary and Lemma we deduce that
273 WP (¢, 2, D)elt IR Poi s L = L7, L3S

zwi,A

holds for C},(—k) C C where w; is the direction of the center of CY,(—k).
We can cover C = Cy(I') by roughly 25"+%) boxes of size 28 x (28 ~)3:

0(23(1’+k)

c=u2" 0l (—k).

Notice that A can be chosen the same for all i. By the definition of PW;" (2.1.8)

LHS ({10.9) Znezﬁimtx,D>e“<D>PC,i,<,k)uk||Lg. e S

[BEION Wiy A

< 234 | Py | 2

N|—=

S 20 Z“PCZ( purllz S 220220 ZIIPm wurliz)

where we have used Cauchy-Schwarz and orthogonality. This proves (4.10.9)).

The NE norms (d =4,k > 1)
We fix [, =k <", k',C = Cp/(I') as before and use (4.10.7)). We prove

2kHPC <k+2[e;;€¢+21Q<k+21PC¢”NEé: 5 ||pcvt,x¢(0>||L§ + ||PCDm¢||Nk

Now we split again e;ﬁz[ = (e ;Zﬁzz e_i) + ey The first term

A+ —itp —i\ AL D
PCleQ<k+2l(€<k+2l — € )Q<k+2zPC¢

is estimated by appropriately applying Prop. and Cor. [4.8.2

For the second term we may discard PcPl‘”Qﬁk 4o and prove
22 Qo Pedlnps S 1BeViad(0)llrz + || FOmdllx,
This is reduced by Lemma to
e;?(t,x, D)eimmﬁc L2 — NE?,

which follows from Corollary 4.6.10]
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Chapter 5

The core null and bilinear forms

The rest of the thesis is concerned with the proofs of the estimates from Section This
chapter is devoted to preparing some preliminaries regarding translation-invariant bilinear
forms that play a role in those proofs. We discuss the classical Ny, AV;; and spinorial null
forms, how to adapt Ny to the Klein-Gordon equation, the geometry of frequency interactions
as well as some refinements of Holder’s inequality.

Let L be a bilinear operator on R? or R4 with symbol m(&;, &), respectively m(Z!, Z2)
(which is possibly a distribution), i.e.,

L(fl,fQ)(x) :/ iz-(€14€2) (51 52)f1(f1)f2(§2) C(lfl ‘)162

The translation-invariant operator

L(f,9)( /K z =y, & = y2) f(y1)9(y2) dyrdys
can be written in this form by defining

m(&1,&) = K(&, &).

Conversely, L can be written in the form (1.5, if we ensure that K € L' or that it has
bounded mass. Some important examples will be provided below.
To understand L( f1, f2), we may consider the ‘dualized’ expression

—1 1—
— —
~ ~ A d

= =

/ f()L(fl, fg) dtdx = A:0+—1+:2 0 m(El, EQ)fo(EO)fl (El)fg(:2> W (501)
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5.1 The M and M, forms
The M form

During the proof of the trilinear estimate, we will need to consider terms like

PoQiM(Q<;oy,. Q<idr,)

where

M(¢',6°) := 0a(" - 0°9%)

110

(5.1.1)

is a null-form adapted to the wave equation, while (b,lgl, ¢22 are assumed to be high-frequency

Klein-Gordon waves of low Q-modulation, with low frequency output.
To obtain effective bounds, we need to split

M =R+ Mo — Ny
where, denoting = = (73, ;), the symbols of M, RE, Mo, Ny are
m(EHE%) = (1 + 1)1 — (&1 + &) - &,

and, respectively,

ro (21, 2%) i= mi(m £ (&) + (&) F 1) (&) + (15 — (&)%),
mo(Z',2%) == 1+ 14| [&] — (&) (&),
no(Z',2%) = |&]]&] + & - &

The M, form

Let My(¢', ¢?) be the bilinear form with symbol

mo(§1,&2) = 1+ |6 [E2] — (61) (§2) -

Notice that this multiplier is a radial function in & and &.

(5.1.2)

(5.1.3)

(5.1.4)
(5.1.5)
(5.1.6)

The following two statements are aimed at obtaining an exponential gain for M, in the

high x high — low frequency interactions.

Lemma 5.1.1. The following bounds hold:

m |51+§2|2
ol &)l STy
&1+ &7 1 1 o
|0, mo (61, &2)| < & <<€1> + <£2>>, i=1,2

(&1) (§2)
(i

‘agm()(él,ég)‘ 5 ’Oé| > 2, 1= 1,2
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We return to the proof of this lemma after the following proposition which provides an

exponential gain needed for estimate (6.2.15]).

Proposition 5.1.2. Let k >0, k' <k —C and 1 < p,qi,q2 < 0o with p~t = ¢; " +q;"'. Let
C1,Co be bozes of size ~ (2¥)¢ located to C; C {(&) ~ 2*} so that

Ci+Cy C {l¢] <272}
Then, for all functions ¢1, ¢o with Fourier support in Ci,Cy we have

IMo(6", 6*)llze S 2D l61]l o |02l oo (5.1.7)

Proof. We expand mg(&1,&2) as a rapidly decreasing sum of tensor products

mo (&1, &2) = Z Cixaj(€1)ag (&) for (€1,82) € Ci x Co (5.1.8)
jkezd
where, denoting p = 22* = for any n > 0, ¢;) obeys

[Ciacl S (1 31+ (KD, (5.1.9)

and for some universal constant ny > 0, the aj-' satisfy

la§(D) | pamsze S A +iD™,  i=12. (5.1.10)

Assumlng m the desired estimate ) follows immediately. Indeed,

8]) implies that
Mo(dr,82) = Y a0 (D) - ap(D) s,
jkezd

so (5.1.7)) follows by applying Hélder’s inequality and ((5.1.10)), then using (5.1.9)) to sum up
in j, k € Z4. o

Let the boxes C;,Cs be enlargements of Cy,Cy of size =~ (2k')d and let 1, x2 be bump
functions adapted to these sets which are equal to 1 on Cy, respectively Cs.

Then for (&,&2) € C1 x Cp, we have mg(&1,82) = mo(&1, §2)x1(61)x2(82). Performing a
Fourier series expansion of mg(&1, &2)x1(&1)x2(&2) by viewing C; x Cs as a torus, we may write

mo(fl, 52) = Z Cj,k 627”5.5/1/2}C +C€2mk.£é/2k e for (51, 52) < Cl X C2. (5111)

jkezd

for & = & — &2 where £ is the center of C;. Defining
aj(€) = Xi(fi)e%ijf/l/2k/+c, i=1,2,

we obtain the desired decomposition (5.1.8]) from ([5.1.11)).
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To prove ([5.1.9)), we use the Fourier inversion formula

1 —2mi(j-&]+k-&, "+e
Gk = >/~ mo(€) + €1, €3 + ) x1 xoe MUK/ qer e,
C1><C2

Vol (G x Cp)
By Lemma for (£1,&) € Cy x Co, since |& + &| < 2% for any |a] > 0 we have
|20 ) mo(en, )| Su i=1,2
Thus, integrating by parts in & [resp. in &}, we obtain
Gl S (LD leiad S p(X+ k)" 020,
These bounds imply . Next, we have

(2" 0e)ai(e)| S A+ Jal =0, i=1,2

This implies that the convolution kernel of a{(D;) satisfies [|aj[| . < (14-13])™ for ng = d+1,

which gives (5.1.10) m

Proof of Lemma [5.1.1. The bounds follow from elementary computations. Indeed,

(&l —le)?  _la+&f
L+ (& €] + (&) (€2) — (&) (&)

Next, wlog assume ¢ = 1. Since my is radial in & it suffices to compute

1 el —laf
(€1) (€1) 1&a] + (&2) |61

—mo(fhfz) =

1
(&)

which gives the desires bound.
Finally, the estimate for higher derivatives follows from |9" (r)| < (r)™""' for n > 2,

~Y

which is straightforward to prove by induction. [

Oeymo(&1,&2) = (<§1> Ea] = (&2) |§1|) -

5.2 The N, and N, forms
We consider the bilinear forms No(¢!, ¢?) on R with symbol

—1 =2y 1 1

UE =) = T ) T &)
and Np(¢t, ¢?) on R? with symbol

no(§1,82) = & [&2] + &1 - o (5.2.2)

(172 — & - &) (5.2.1)
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Proposition 5.2.1. Let ki,ky € Z, I" < 0, and signs +1,+5. Let k1, ke be spherical caps
of angle ~ 2V centered at wy,wy such that Z(Fiw, £owy) < 2. Let Xy, Xy be translation-
wmwvariant spaces and L be a translation-invariant bilinear operator. Suppose that

IL(6", 6*) [ x S Csy,5ll0" 1 16° x:
holds for all ¢, ps which are Fourier-supported, respectively, in some subsets

&
&l

SiCE={lGl ~ 2%, InFlall S28, =~ e}, i=12

Then one also has
IL(0ad",0%0%)||x S 2% Cs,.8, | Vit 1, 1 Vet x (5.2.3)

for all such ¢1, po .
Corollary 5.2.2. Under the conditions from Proposition for 3 < min(k, ko) +2l' = C

one has
10° PeQZ by, - 0o Por Q2 Sorallrz, S 2l,||PcQj<E§V¢k||NE§1 ||Pc'Qj<E§V90k2||PWCi/2

Remark 5.2.3. One may of course formulate analogues of Prop. also for multilinear
forms, such as the trilinear expressions L(¢', 9,¢% 0%¢?) that occur in the proofs of (6.2.5),
, . Checking that the same argument applies for them is straightforward and is
left to the reader.

Proof of Prop. [5.2.1. Step 1. Let £(Z',Z?) be the multiplier symbol of L. In (5.2.3]) we have
the operator with symbol ¢(Z!, Z2)n (=, Z?) applied to | Dy .| @', | Dy .| ¢*.
The idea is to perform a separation of variables in the form

A(ELE) = ) gug(EY)(E®)  for (B,2%) € By x B, (5.2.4)
j.kezd

where for each n > 0 the coefficients obey
el S 22 (1 [j] + [k, (5.2.5)
and for some universal constant ng > 0, the operators a; and by satisfy
la;(Dea)llxi-x0 S A H1D™, [1be(Dra) | x5x S (14 [K[)™, (5.2.6)

From these, (5.2.3]) follows immediately.
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We do a change of variables such that 7 is the (essentially null vector) radial coordinate,
7‘9’

" is orthogonal to it, and & are angular type coordinates in the § hyperplane, so that |§’ | ~
2%19; where 6; are the angles between & and the center of x;. We denote Z; = (7%, 7%, £1).

Denote by F; an enlargement of Fj;, chosen be a rectangular region of size ~ 2k x
ka2l 5 (ki H)d=1 (consistently with the coordinates (74, 7%, €/)). Let x; be a bump function
adapted to Ej, which is equal to 1 on Ej.

Step 2. We claim the following bounds for (2, =?) € F; x Ey:

A=, 2%)] <2 (5.2.7)
0gn(="E%)| S 2702 i=12 (5.2.8)
enELE) S 1=, =12 (5.2.9)

Recall . We write
T2 — & -G = (1 Fu &) £1 & (72 Fo |&2]) £1 £2]&1] €] (1 — cos Z(F161, £263))
which clearly implies . It is easy to see that
|07(E1, )| S 27" sin £(&1, &)

which implies (5.2.8), while (5.2.9) follows from the fact that n is homogeneous in both

r—lr—

— g = .

Step 3. Performing a Fourier series expansion of n(E~ E~2) XI(ENI) XQ(ENQ) by viewing E} x Es
as a torus, we may write

’Fl(él,ég) = Z Cjk 627rij'D15~1627rik.D2E~2 for (E~1,E~2) c E1 X E27 (5210)
j.kezd

where Dq, Dy are diagonal matrices of the form
D; = diag (0(27%),0(27%=2 o(27%~1), ..., 027 1)). (5.2.11)

Defining )
0(Z1) = (a(E)™PE) (1), b(E) = (xa(E2)e =) (Z,),

we obtain the desired decomposition ([5.2.4) from (/5.2.10)).

To prove ((5.2.5)), by the Fourier inversion formula

1 / = = = —2mij-D1Ey [ —2mik-DoE
Gk = = =7 n(_,l, ‘—'Q)Xl(‘:‘ )X2< ) mij: 1H1€ T 22 d\_ d\_42
Y Vol(By x Ey) i xi

Integrating by parts w.r.t. to 7¥ by the homogeneity of 7 and (5.2.7) we obtain

il S 22 (L[5 ) 7" resp. Jejad Sn 27 (14 ki)™,
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for any n > 0. On the other hand, for any 5 = 2,...,d+ 1, integration by parts in T;’JL or in

& and using (5.2.7)-(5.2.9) yields
il S 225,17 [resp. Jejal Sn 27 [y 77

The preceding bounds imply as desired.
Finally, we need to establish . We will describe the case of a;(D). Consider the
differential operators
Doy = (2510,0,28%209_, 2kH g,

For any multi-index «, observe that
D2, 0t (B PEN <o (14 15D

From this bound, it is straightforward to check that the convolution kernel of a;(D) obeys
lasllr < (14 [j])™ for some universal constant mng, which implies the bound (5.2.6) for

Proof of Corollary[5.2.3. The corollary follows from Prop. and Prop. 2.1.1] Indeed,
with k = ki, ky = ky we take Cs, 5, = 27" with

Si={(m,&) | & €C, |al =2 |nF1 (&) S 27}
and S, defined analogously. We check that S; C E;. The condition (2.1.9) insures that we

can define k1, ko appropriately. It remains to verify
i Fa 1l < I Fa (€] + (&) — 16| S 27 4278 S 2kt

by the condition on j and (2.1.9)). O

If we replace 7; by + |&;] in we remove the time dependence in Prop. m and may
formulate a spatial analogue for the bilinear form defined by [£;] [&2] £ & - &. We consider
the + case for No(¢1, ¢2) in (5.2.2), which will be useful for high x high — low frequency
interactions.

Proposition 5.2.4. Let k € Z, | <0 and 1 < p,q1,q2 < 0o withp™ = q; ' +¢;*. Let k1, ks
be spherical caps of angle ~ 2! such that Z(ky, —ry) < 2L

Then, for all functions ¢1, o with Fourier support, respectively, in {|&] ~ 2%, &/1&]| €
Ki}, i = 1,2, we have

INo(6", ¢%)lle < 2 161 [l o 12l oo

Proof. The proof is very similar to the proof of Prop. [5.2.1 and is omitted. The basic
difference is that here one performs the Fourier series expansion on a (2% X (2k+l)d_1)2—sized
region in R x R¢ instead of ]Rfjgl X szl. O
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5.3 Abstract null forms

To unify the treatment of various null forms that arise in MKG and MD, we consider the
following proposition.

Proposition 5.3.1. Let N be a bilinear form with symbol m(&,n) assumed to be homogeneous
of degree 0 in &, m and to obey

Im(&,m)| < AL n)|.

Let wy,wy C S be angular caps of radius |r;] <270 i = 1,2 and define 0 := max{/(Jwy,ws)|, 71,72}
Let 1 < p,q,qa < 00 be such that p~' = q' 4+ ¢ '. Let the functions fi, fo be defined on R?
with Fourier support in

{1€] ~ 2k, EE%} i=1,2.

Then we have

IN(frs f2)lle S Ol frll o [[ f2]l e - (5.3.1)
Remark 5.3.2. Under the assumptions of Prop. we have the following bounds:

|1SES2m(E,m)| < Ay | £(6,7)] (5.3.2)
1081022m(&,m)| < Aqya|€] 71 || 710 (5.3.3)

where S¢ = £ - ¢ and S, = 1 - 0,. Under these conditions, we shall call N an abstract null
form.

Proof. The idea of the proof is to perform a separation of variables to write the symbol
m(&,n) of N in the form

m= Y cra;(Eb(n) for (&n) € Ey x Ey (5.3.4)

jkezd
where for each integer n > 0 the coefficient ¢;x obeys
il Sn 01+ j] + [K[)7", (5.3.5)
and for some universal constant ng > 0, the quantizations of the symbols a; and by satisfy
las (D)o S L+ 13D, [1be(D)l|zasre S (14 [K[)™, (5.3.6)

for every 1 < ¢ < o0.

Assuming ([5.3.4)—(5.3.6), the desired estimate ([5.3.1)) follows immediately. Indeed, ([5.3.4)
implies that
N(f1, f2) = D cix- a;(D)fr - bu(D)fa,

jkezd
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SO follows by applying Holder’s inequality and , then using to sum up
in j,k € Z4.

Without loss of generality, we may assume that k; > ko and that wy,w, are angular caps
of an equal diameter, denoted by r. Moreover, in view of the scaling invariance of the bounds
and (5.3.3), we may set ky = 0. Let E be an enlargement of E; (j = 1,2) with a
fived angular dimension and let a(€), b(n) be bump function adapted to these sets, which are
equal to 1 on Ej, respectively Ejy, so that f1 = af1 and f2 = bfg Then

N(f1, f2) = N™(f1, f2),

where N™ is the bilinear operator with symbol m/(£,n) = a(§)b(n)m(&,n). .
The first step is to make an invertible change of variables £ — £ = £(§), so that S = 51851

and the Jacobian and its derivatives obey appropriate bounds of all order for ¢ € E,. We
also need to perform a similar change of variables 7 — 7j(n) for n € E,. Essentially, what we
need is a polar coordinate system with the radial variable as the first component.
One concrete way to proceed is as follows. Denote the center of the angular cap w; by
€ St Let ((a,...,¢;) € R¥! be a smooth positively oriented coordinate system on
the hemisphere S¥* N {¢ : p, - € > 0}, such that ((s,...,¢s) = (0,...,0) corresponds to p;.
Define

&) = (KHQ@(M) |ﬂ@Qﬂ)) for £ € {€:p, - € > 0},
We define 7j(n) for n € {1 : py-n > 0} similarly, with the point p; replaced by the center p2
of the cap wy. Observe that (5 n) are well-defined and invertible on E\ x Es, in which m/ is
supported. Abusing the notation a bit, we write m(€,7) = m(£(€),n(7)) and simply E; for
the region {€ : £(€) € E;} etc.

With such definitions, it is clear that 51851 = S¢ and 7,05, = S,. Hence ([5.3.2)) translates
to

072052 m(E, M) S e O1a| ™ |7 (5.3.7)

Moreover, since each component of £ € R? [resp. 7] is homogeneous of degree 1 in £ [resp.
in 1], we immediately have the bounds

|8§‘€(£)\ <o €M1 [resp. 10,71 (1)] Sa In|*~1e] for any multi-index a. (5.3.8)

Observe that we have |£(£)| ~ [¢] for € € Ey [resp. |fi(n)] ~ |n| on n € E,]. Further
straightforward computations using ([5.3.8) show that

|8€9‘§(§)\ <o JE[FI [resp. 10:0(7)] Sa 7)1 for any multi-index a, (5.3.9)
for (£(€),n(7)) € Ey x Ey. Combined with (5.3.3) and the support property of m, we have

02105 m(E, )] Saaras 1€17 177172 (5.3.10)
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We now introduce rectangular boxes Ry and Ry, which are defined as

Ry={&:&~1, supd|éj!§r}, Ry = {ij : iy ~ 2%2, supd\ﬁj|s2’“2r},
=2 =2

J=25 71=2,...,

where the implicit constants are chosen so that £y C R; and Ey C Ry. Let d(é) and l;(ﬁ)
be the bump functions adapted to the boxes R; and R, respectively such that @ and b are
equal to 1 on F; and Fs, respectively.

Thus we have the following bounds for j = 2,...d:

()" m(&, Ma(€)b(i)| Sam b, 1(2%r0s,) m(E, Na(€)b(i)] San b (5.3.11)

Performing a Fourier series expansion of m/(&, 7)a(€)b(7) in the variables (£,7) by viewing
Ry X Ry as a torus, we may write

m(€,7) = Z Cik 2rii Dig 2mike Dol (€,7) € By x B, (5.3.12)
jkezd
where Dq, Dy are diagonal matrices of the form
Dy =diag (0(1),0(™"), ..., 0("),
Dy =diag (O(27%2),0(27%2r~1), ..., 027" 1)).
Defining )
a;(€) = (a(€)e*™ P )(€),  bi(n) = (b()e* ™ P2 (1),

we obtain the desired decomposition (5.3.4)) from ([5.3.12)).
To prove (5.3.5)), we begin with the following formula for the Fourier coefficient ¢; y:

1 . - o
R ~\ ~ b(p —2mij-D1& —2mk~D217d dn.
= G T L, M £di
Integrating by parts in & [resp. in 7] and using (5.3.7), we obtain
[Cixl S 0L+ 137" [resp. [cju| Sn 01+ [ka]) ™),

for each integer n > 0. On the other hand, for any j = 2,...,d, integration by parts in éj

[resp. in 7;] and using (5.3.11)) yields
lcix| Sn Oli;

The preceding bounds imply ([5.3.5)) as desired.
Finally, we need to establish (5.3.6). We will describe the case of a;(D) in detail, and
leave the similar proof for b (n) to the reader. For any multi-index «, observe that

|—n

[resp. |ciu| Sn 0ks[ "],

02 (@()e?™ D) o (14 |j) el (-t (5.3.13)
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By rotation, we may assume that the center of w; is aligned with the &;-axis, ie., p; =
(1,0,...,0). Then we claim that

02 a5(6)] Sa (14 [j])/lr(eatraa) (5.3.14)

From such a bound, it is straightforward to check that the convolution kernel (i.e., inverse
Fourier transform) a;(x) of a;(D) obeys ||G;||z1 < (1 +|j|)™ for some universal constant ng
(in fact, np = d would work), which implies the desired L? bounds for a;(D).

In order to verify , the key is to ensure that each 0, derivative does not lose a
factor of r~'. Recall that §; = [£|¢;(&/[¢]) for j = 2,...,d. Observe that ¢ ¢;(£/[¢]) e=p,= O
for every n > 0 (in fact, ¢; can be chosen to be independent of the first coordinate &

everywhere on S9N {& > 0} C RY). Therefore, we have

85%? S ; 5§1§j<|§—|)’ Sn dist(%’l)l) S forevery n >0, £ € suppg;.

Let ¢(&) be any smooth function. By an iteration of the chain rule J;, = (85151)851 +
Zjﬂ(a&{j)%, it follows that

081 e(©)] San Y 7’62+"'+5d!(8§0)(5)| for every ay >0, & € supp a;.
|B]<an

Substituting c(§) = g -+ - 0g.'a;(§) and using (5.3.8), (5.3.13), the desired bound ({.3.14)
follows after a straightforward computation.

O

5.4 Null structures of MD and MKG in the Coulomb
gauge

We begin with the null forms

Nij (¢, ) = 0,00, — 0;00;p. (5.4.1)
which arise in the MKG equation by writing

Pi(¢'V,u9?) = ATIVN; (0", 67). (5.4.2)

and, whenever A, is divergence free, since A; = P, A we can write

A0 => Ny (Via™' A5, 9). (5.4.3)

To exploit these identities, we have the following corollary of Prop. |5.3.1}
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Corollary 5.4.1. Under the conditions on the support of fi, fo from Prop. we have

NG (o S)lle S 01V afillon Ve foll oo (5:44)
Proof. This follows by writing Nj;(f1, f2) = N(|D| f1,|D| f2) for N with symbol n(§,n) =
S — & and applying (5.3.1). -

We now recast the null structure of MD-CG in terms of abstract null forms. It is at this
point that we may fully explain an important point discussed in the introduction, namely,

how the spinorial nonlinearities M* and A/® exhibit more favorable null structure compared
to the Riesz transform parts M and N'%. (see Remark [5.4.5).

We begin with some schematic definitions.

Definition 5.4.2 (Symbols N and N.). We denote by N an abstract null form (Remark
and Prop. [5.3.1)), and by N_ a bilinear operator such that (f,g) — N_(f,g) is an
abstract null form. We call N, an abstract null form of type s € {+,—}. Denoting the
symbol of N, by my, note that it satisfies

|SE Sy mg(€,1)] < Agpy k] £(€5 1)

We write N for a bilinear operator which is an abstract null form of both types; in short,

N = N+ and ./\/;.

Definition 5.4.3 (Symbols N* and N). For s € {+, —}, we denote by N (called a dual
abstract null form of type s) a bilinear operator such that

/ WA (f. g) da = / FN (. g) da (5.4.5)

for some abstract null form N_; of type —s. We denote by N* a bilinear operator which is
a dual abstract null form of both types, i.e., N* = N} and N*. (Note that the second input
g plays a special role in N* and N.)

We are now ready to describe the (bilinear) null structure of MD-CG in terms of abstract
null forms.

Proposition 5.4.4. The Mazwell nonlinearities M2, M have the null structure
Mfg (HS”/)’ 90) :Pj <H8177/}7 H—S2O“/I90> = -/\/;182 (¢7 90)7 (546)
MR(% 90) :Pj <77Z)) Rm(p> =N~ (¢7 90)'
The Dirac nonlinearities N2, N'® have the null structure

HSOA/;S; (Al”? f) =11, (ajH—S2 (O‘]f)> = 'A/;*QSQ (Aw f)? (548)
N (A, ¥) =P AR Y = N (A, ).
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Proof. Statements (5.4.6) and (5.4.8)) follow from Lemma |[1.7.5l To prove the remaining
statements, we use (|1.1.7)) to compute

P;ARIY =(6F67" — 9 §F YRy Ry AR 4
=" 5 (RyRAR W — RiReAiRab)
=0"0 N (R A, )

where Ny is a bilinear operator with symbol €]~ n| ™ (&mn; —n;&k)- It is clear that each N,

is an abstract null form of the form N, which proves (5.4.7) and (5.4.9) (the former follows
by duality). O

Remark 5.4.5. A crucial observation here is that the spinorial nonlinearities have a more
favorable null structure compared to the Riesz transform counterparts. To see this, consider
the Dirac nonlinearities N¥ and N in the low-high interaction case, which is the worst
frequency balance scenario:

WR[Am]w = Z Z NR(Pk’Am Pk¢)a Wf[Ar]w = Z Z -A/'sS(Pk’Axv Pkl/’)

k k'<k-10 k k'<k—-10

Proposition shows that N'® gains in the angle § between (the Fourier variables of)
A, and 9, whereas N¥ gains in the angle 6* between 1 and the output. In this frequency
balance scenario, observe that 6* is smaller than 6. Indeed, for each fixed k, £, the law of sines
implies that #* ~ 2¥~%0. This extra exponential high-low gain leads to the improved estimate
for 9[A,], which fails for 7f{[A4,]. Similarly, M% exhibits an extra exponential off-
diagonal gain compared to M in the worst frequency balance scenario (high-high, in this
case), which leads to the improved Z' norm bound below.

Heuristically, the preceding observation leaves us with only the contribution of the scalar
part MEZ ME NF NFE to be handled; this is the main point of Proposition and The-
orem [1.6.2] The redeeming feature of this scalar remainder is that it closely resembles the
massless MKG; see Remark [I.7.9] In particular, exploiting this similarity, we are able to
borrow a trilinear null form estimate (Proposition and parametrix construction (The-
orem from the massless MKG case [31] at key steps in the proof below.

5.5 The geometry of frequency interactions

An orthogonality property

In view of performing summation arguments later on, we present below various ‘orthogo-
nality’ statements concerning the vanishing property of the expression based on the
Fourier supports of f; (i =0,1,2).

Given a triple kg, k1, ks € R, we denote by kuin, kmea and knyayx the minimum, median
and maximum of ko, k1, ko. Similarly we consider jumin, Jmed, Jmax fOT Jo,J1, 72 If fi = Py, fi.
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then ([5.0.1]) vanishes unless the maximum and the median of ko, k1, ko (i.e., the two largest
numbers) are apart by at most (say) 5; this is the standard Littlewood-Paley trichotomy. We
furthermore have the following refinement, which is useful when k,,;, is very small compared
t0 Kpax:

Lemma 5.5.1. Let ko, k1, ks € Z be such that |kmeq — kmax| < 5. Fori=0,1,2, let C* be a
cube of the form Cy_. (0) (i.e., of dimension 2Fmin x ... x 2kmin ) sityated in {|€| =~ 2%}.

1. Then the expression
// PCOhk;O L(Pclfkl, PC2gk2) dtdx (551)

vanishes unless C° + C* +C? 3 0.

2. IfC°4+CY+C? 3 0, then the cubes situated in the non-minimal frequency annuli are almost
diametrically opposite. More precisely, we have

|4<Cz’ _C'L,)| 5 kain_kmax7
where k;, ki (i #1') are the median and mazimal frequencies.

3. Without loss of generality, assume that ko is non-minimal, i.e., kg = kmed 07 kmax. For
any fized cube C° of the form Cy_. (0) situated in {|£] ~ 2%}, there are only (uniformly)
bounded number of cubes C*,C? of the form Cy,. (0) in {|&] = 2k} {|€| ~ 2*2} such that
C'4+C'+C*30.

Proof. Statement (1) is obvious from the Fourier space representation of (5.5.1). For the
proof of Statements (2) and (3), we assume without loss of generality that ko = k. Since
C’+ C' +C* 20, there exists £ € C* (i = 0,1,2) forming a triangle, i.e., >, & = 0. By the
law of cosines,

€77 + [€7]* — 20”I¢ ] cos £(€°, —¢€7) = €.

Rearranging terms, we see that
20€°1€M (1 — cos £(€%, =€) = €27 = (1€°] = [¢'])*.

The LHS is comparable to 2%Fmax| /(€9 —€1)|, whereas the RHS is bounded from above by
< 2%kmin - Statement (2) now follows.

It remains to establish Statement (3). Since there are only bounded number of cubes
Cr,... (0) in {|¢| == 2kmin} | the desired statement for C? follows. Observing that C° + C? is
contained in a cube of dimension < 2Fmin we see that there are only bounded number of

cubes C' = Cy,, (0) such that C° 4+ C* N (—C') # 0, or equivalently, C° +C' +C? 3 0. O
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The geometry of frequency interactions

Before we state the core bilinear estimates that will be used to estimate the nonlinearities,
we analyze the geometry of the frequencies of two hyperboloids interacting with a cone at
low modulations. The method of doing this is well-known, see [52} sec. 13|, [4, Lemma 6.5].

Note that the analogue of the Littlewood-Paley trichotomy does not hold for modulations;
However, modulation localization forces certain angular conditions among the spatial Fourier
supports of the functions.

Lemma 5.5.2. Let (ko,ki,ks) € Z x Zy X Zy, j; € Z fori=0,1,2 and let w; C S be
angular caps of radius r; < 1. Let ¢*, ¢* have Fourier support, respectively, in

§

S={@ =2 Sew lr-n@=2) =12
and let A have Fourier support in
S0 = {Ie] = 2%, & €. |7 = sl 2 2°),

for some signs sy, s1,S2. Let L be translation-invariant and consider

/A - L(¢', ¢*) da dt. (5.5.2)

1. Suppose jmax < kmin + Co. Then (5.5.2)) vanishes unless

jmax > kmin - Qmin(kl, k2) - C.

2. Suppose Jmax < kmin + Co and define { := %(jmax — kmin)— -
Then (5.5.2) vanishes unless 2¢ > 27 mintkik2) gp
4<3iwi7 si/wi/) S 2Z2kmin—min(ki7ki/) + max(ri, Ti’) (553)
for every pairi,i' € {0,1,2}.

3. If in addition we assume jmed < Jjmax — D, then in (5.5.3) we have ~ instead of <.

4. 1If Jmed < Jmax — D then (5.5.2) vanishes unless either juax = kmax + O(1) 0T Jmax <
kmin + %CO

Proof. If (5.5.2) does not vanish, there exist (7,£") € S;, (i = 0,1,2) such that > (7%, &) =
0. Consider
H = 50 |&| + s1(&1) + 52 (&a) -
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Using ). 7° = 0, note that
[H| = [(so |€] = 7%) + (s1 (&1) — 7") + (52 (&) — 77)| S 27mex, (5.5.4)

When the signs s; of the two highest frequencies are the same, we have |H| ~ 2fm=x, This
implies Jmax = kmax — C and with the assumption jyax < kmin+Co we deduce |kpax — kmin| <
C and ¢ = O(1), in which case the statements are obvious.

Now suppose the high frequencies have opposite signs. By conjugation symmetry we
may assume sy = +. By swapping ¢! with ¢? if needed, we may assume s, = — and that

kQ 7é kmin‘ We write

H = o] + 1 (61) — (&) = L1 Ifol<€+>> <—§<>1 ++<|§§0> +a) _

251 0| (1) — 260 & 281 (&0l [&a] — 260 - &1 N 251 |&ol 1

bl s (&) F (&) Gl T s )+ (&) (&) + 1G] 1%+ s ) + (&)

where we have used (&) — |&1| = (&) + &)~
If kg = kmin we are in the case (so, s1,52) = (+,+, —). If kg = kmax + O(1), we are in the
case k1 = knin. Either way, we deduce

|H’ ~ kainl(é‘(]? 8151)2 4 2k07k’17k2'

This and (5.5.4)) proves Statement (1) and (2) for (i,7') = (0,1). The other pairs (7,7') are
reduced to this case. Indeed, denote by ¢ and &" the low and high frequencies among &, &;.
By the law of sines we have

l
sin Z(E", —&) = E—| sin Z(¢!,¢") < 2f2kmin—he
2
which implies in the high-high case. The remaining low-high case now follows from
the previous two cases and the triangle inequality.
Statement (3) follows by noting that in the case jmed < Jjmax — D We have |H| o 2Jmax,
Similarly, for statement (4), since either |H| ~ 2Fm=x or |H| < 2kmin the statement follows
by choosing Cy large enough. O

Remark 5.5.3. In the case kni, € {ki, kv }, Statement (3) can be rephrased as follows. De-
noting 2% = /(s,w;, sywy) and choosing r;, ry < 2%, then (5.5.2)) vanishes unless

jmax = kmin + 2£O + 0(1)
In the case when all three functions are localized by the wave equation modulations,

which correspond to the Qj[ operators, we have the following version. The proof is very
similar to the above and is omitted.
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Lemma 5.5.4 (Geometry of the cone). Let ko, ki, k2, jo,J1,J2 € Z be such that |kmeqa —
Emax] < 5. Fori=0,1,2, let w; C S¥1 be an angular cap of radius 0 < r; < 27° and let f;
13

have Fourier support in the region {|&| ~ 2, 7 € Wi, |7 — si|€]| =~ 291}, Then there exists a

constant Cy > 0 such that the following statements hold:

1. Suppose that Jpax < kmin + Co. Define £ := %(]max — kmin)—. Then the expression

[[ foL(f1, f2) dtdx vanishes unless
|4(5iwi, Si’wi’)l 5 Qkmin—min{ki,k; } ol 4 max{ri, Tz"} (555)

for every pairi, i’ € {0,1,2} (i #7').

2. Suppose that jmea < Jjmax — 5. Then the expression [[ foL(f1, fo) dtda vanishes unless
either jmax = kmax + 0(1) or jmax S kmin + %CO

From Lemma [5.5.4] we immediately obtain the following refinement of Lemma [5.5.1]

Define ¢ .= %(jmax — kmin)—. Fori=0,1,2, let C" be a rectangular box of the form Cy_. (¢)
(i.e., of dimension 2Fmin x 2kmintt s .. 5 Qkmintl “yyith the longest side aligned in the radial
direction) situated in {|€] ~ 2%},

Lemma 5.5.5. Let k?(), k?l, kz,jo,jl,jg € Z be such that |kmed_kma.x’ <5 andjmax < kmin+00~

1. Then the expression

// Pcijghko L(PC1Q3711 frrs Pcszjng) dtdz (5.5.6)
vanishes unless
CO4+C +C?30 and |4(s,C',5,C")| < 20QFmm—min{hiky} (5.5.7)

for every i,7" € {0,1,2} (i #17').

2. Let k; = kyeq 0T kmax, without loss of generality, assume that v = 0. Then for any fixed
rectangular box C° of the form C._. (¢) situated in {|€| ~ 2%}, there are only (uniformly)
bounded number of bozes C*,C? in {|€] ~ 2"} {|€| = 2%} such that (5.5.7)) holds.

Proof. Statement (1) follows immediately from Lemma[5.5.4] Statement (2) can be proved in
a similar fashion as Lemma [5.5.1 We first assume without loss of generality that ky = K.
It is clear that there are only bounded number of C? = C;_. (£) in {|¢] =~ 2F=in} such that
|£(50CY, 85C?)| < 2¢. Moreover, observe that C° + C? is contained in a cube of sidelength
< 2kmin - Combined with the angular restriction |£(soC%, s,C1)| < 2kmin—kmax2f it follows that
there are only bounded number of C! such that holds. m
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5.6 Core bilinear estimates
We begin with a Holder-type estimate which will be useful for dealing with the high modu-

lation contribution, as well as the elliptic equations.

Lemma 5.6.1. Let ko, ki, ks € Z be such that |kmeqa — kmax| < 5. Let L be a translation
invariant bilinear operator on R? with bounded mass kernel. Then we have

) 1/2
1Pl s giodllzze Shfiallzors (D0 1Poy,, geallBes ) (5.6.1)
ckmin
) 1/2
1Pl s gradllaze Shfiallzzns (3 1Pey,, ghallfers ) (5.6.2)
Ck

The same estimates hold in the cases (ko, k1, k2) € ZXZy X Ly, (ko, k1, ka) € Zy X ZX L, or
(Ko, k1, ka) € Zy x Zy X Z when we replace the LHS by Py, L( Py, f, Pr,9), ProL(Pry f; Pro9),
respectively Py, L( Py, f, Pr,9).

We now state the main bilinear estimates for £, Ny, N and N;; when the inputs and
the output have low modulation (i.e. less than the minimum frequency).

Proposition 5.6.2. Let ko, ki, ks, j € Z be such that |knax — kmea| < 5 and j < kpin + Co.
Define € .= %(] — kmin)— and let L be translation invariant with bounded mass. Then for any
signs so, s1, S2 € {+, —}, the following estimates hold:

S S S S 1/2
| P@ Q2 s Q% e S Wil (D2 1Po, Q% amsllie)  (56.3)
Crppyy (0)
s S1 S92 S1 S92 2 1/2
|PRQL(Q5 fiw Q201 oz S NQ) fiullzzez (Y 1P, 0Q% ol ) (5.6.4)
C’kmin(z)
The same statement holc_is when we consider (ko,ki,ke) € Zy X Zy X Z and we replace
(@7, Q%;,Q%) by (QF,QZ;,Q%;) and all the similar variations.
Proposition 5.6.3 (Core estimates for Ny). Let ko, k1, ko, j € Z be such that |kmax — kmea| <
5 and j < kwin + Co. Define £ := %(j — kmin)— and let Ny be an abstract null form as in
Definition . Then, for any signs so, s1, s2 € {+, —}, the following estimates hold:

Hpkij'O-/V:slsz (Q?jfkl? Q8<2jgk2) HLQL2

in—min s 1/2
<9 ghumin {kl,kz}kal”LOOL2< Z ”PCkmm(li)ijgsz%?Lw) (5.6.5)
Ckmin(é)
||Pk‘0QS<Oj'/\/51$2(Q;1fk17Q?jgk2)||L1L2
in —min s s 1/2
S Q0 fliara (DD I1Pa,, 0@l ) (565)

Ckmin (K)
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Proposition 5.6.4 (Core estimates for N¥). Let ko, k1, ko, j € Z be such that |kmax — kmed| <
5 and j < kypin + Co. Define £ .= %(y — kmin)— and let N¥ be an abstract null form as in
Definition m Then, for any signs sg, s1, S2 € {+, —}, the following estimates hold:

1200 Q3 Ny (QZ5 s Q25915 ) 222

in—min s 1/2
SR a3 WP 0Q% 00 s ) 67
ckmin(e)
‘|PkoQ?jA/;*osg (lefkl ) Q8<2jgk2) ”L1L2
in—min s P 1/2
§2£2kmm {kO,kz}HQj1fk1 HL2L2< Z HPCkmm(f)nggkz H%ZLOO) (5.6.8)
)
[ Peg @25N 35, (QZ frr s Q5 o) L1 22
in—min s 1/2 s
S22t {km}( > ||P0kmin<z)Q<1jfk1H%2L°°> Q5 grs || 2212 (56.9)
Ckmin(a

Remark 5.6.5. It is clear from the proof that each of the inequalities holds (with an adjusted
constant) when we replace any of the multipliers Q%; by QZ; or QZ;  for any fixed C' > 0.

Proposition 5.6.6. Let kg € Z, ki, ke > 0, j € Z be such that |kmax — kmed| < 5 and
j < kmin + Cy. Define { := %(j — kmin)— and let N be any of the null forms N;;. Then, the
following estimates hold:

HPkOQjN(Q<jfk17 Q<j9k2)HL2L2

. _ 1/2
2t f i (sup D0 (1P, 0@ 90l ) (56.10)
Cr . (0)

min (

| Py Q<N (Q; frr Q<iGrs) || 2112

SszkmerkmaxHijklHLng(sup Z | P,
SN0

> 1z 5.6.11
(e)Qijgszimo) ( )

min

The same statement holds in the case (_ko, ki, ks) € Ly X I X Ly when we replace the LHS
Of ') " by PkOQJN(Q<]fk17 Q<]gk2) and Pk0Q<jN(QJf/€17 Q<jgk2) Tespectively; or
in the case (ko,ki,ks) € Zy X Zy x Z when we replace the LHS of (5.6.5)), (5.6.6) by
Py QiN (Q<jfrys Q<jgr,) and Py,Q 3N (Q; fr,, Q<jgr,) respectively.

Although there are numerous cases, all the estimates may be proved in an identical
fashion, which combines Lemma with either ([1.5.9)) or the following estimate:
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Lemma 5.6.7. Let kg, ki, ko, j,¢ be as in Propositions and [5.6.4 Fori=0,1,2, let
s; € {+,—1} and C? be a rectangular box of the form Cy,_. () situated in {|€| ~ 2%} such that
(5.5.7) holds. Then for any 1 < qo, q1,q2 < 0o such that qz* +q; ' 4+ ¢ * = 1, we have
| /PCOhkoA/;181 (Pleku PCQ.gkz) dxl
2 2 min =L} Poo B (| o | P fiy | o | Pe2 gy || o2

Proof. Upon verifying that the inputs obey the hypothesis of Proposition [5.3.1] the lemma
follows immediately. 0

Proof of Propositions [5.6.1],15.6.2,15.6.5,[5.6.4] and|5.6.6. We present the details in the case
of Propositions [5.6.3] and [5.6.4} Proposition follows from the same proof since in this
case we have Corollary [5.4.1] and Lemma Proposition follows from the same proof
with Lemma [5.6.7|replaced by (L.5.9), which removes 2¢2Fmin—min{kik2} in ([5.6.13)). The proof
of Lemma [5.6.1] is similar and simpler, since it uses Lemma instead of Lemma [5.5.5]
For t € R and rectangular boxes C°, C!, C? of the form Cy, . (6), we introduce the expression

[CO,CI,C2 (t) = /PCOQ;7<jhko /\/:9182 (Ple;}<jfk17 PCQQ;§<jgk2)<t) da

where Qj/ -; stands for either Q;' or QZ;. Note that
// Qj/<]hko SlSQ(Q?}<jfk‘1?Q;§<jgk2 dtd$ - Z /ICO ct C2 (5612)
co.c1c2

By Lemma [5.5.5 the summand on the RHS vanishes unless C°,C',C? satisfy (.5.7).
Using the shorthand h = Q]/<]hk0, f QJ/<Jfkl and g = Q]/q hi,, Lemma|5.6.7| implies

Lo e, (8)] S 22508k} | Poofo(8)]| ol | Per (1) | o | P (1) ]| oo (5.6.13)

for any 1 < qo, q1,¢2 < oo such that ¢; ' +¢; ' +¢;* = 1. We now sum up the RHS of (5.6.13)

in (C° C!,C?) for which ((5.5.7)) holds. As in the proof of Lemma we first sum up the
boxes in {|¢| ~ 2kmin} (for which there are only bounded many summands) and then apply
Lemma to the remaining (essentially diagonal) summation. We then obtain

. - 1/2
S Heverca(t)] S22t mnb (S Poh(t)]F )
Co

coctc?:(5.5.7)
1/2 ~ 1/2
(ZHPCI )3 ) (ancgg(t)niw)
C2

We are ready to complete the proof in a few strokes. To prove estimates ) and (| -
take (qo, g1, q2) = (2,2, 00). By orthogonality in L2, factors involving i and f can be bounded
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by ||A(t)||r2 and ||f(t)||12, respectively. Integrating and applying Holder’s inequality in t,
estimates and @ follow by duality as in the proof of Lemma . Next, by
the definition of N in (5.4.5)), and follow from the same method as well (we
note that, since we use the pairing [ fg, the transpose of Qj(/) < s Qj_/sgj). Finally, (5.6.9)) is
proved by taking (qo, ¢1,g2) = (00,2,2) and proceeding analogously. O
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Chapter 6

Bilinear and trilinear estimates

The proofs in this chapter are based on the Littlewood-Paley trichotomy which states that
Py (P, f1 Py, f2) vanishes unless |kpeq — kmax| < 5, where kyed, kmax are the the median and
the maximum of {ko, k1, k2 }.

6.1 Bilinear estimates for MKG

Most of the arguments in this section originate in [31]. However, we have tried to give
a thorough exposition in order to justify that the arguments carry over when two of the
inputs/output correspond to Klein-Gordon waves.

Additional bilinear estimates

Before we begin the proofs we state some additional bilinear estimates that will be used in
the proof of the trilinear estimate in the next section.
We separate the high-high and low-high parts of A from (1.7.4)

Ao(¢',¢%) = A5 (', 0%) + AT (0", %)
where Al (@6 = > PiyA(Pyo', Pro®). (6.1.1)

ko,k1,k2
ko<ko—Co—5

Lemma 6.1.1. With the decomposition above, one has:
[7[(0, Ao)]@|| yo—1 S [[Aollerprroe | Bl 5o (6.1.2)
IAG" (Y, ") lerrire S 11650 16750 (6.1.3)
1(As, AT (@1, %)l sowye S N0t lse 9% 50 (6.1.4)
I(I = H)(Az, AT (", %) 20wz, S N 150107 |50 (6.1.5)
For d > 5 one also has:
1(Auy AT, 62| 20wz S 1161150 1621150 (6.1.6)
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Proof. By doing dyadic decompositions, (6.1.2)) follows trivially from Hélder’s inequality
L'L*>® x L*°L? — L'L?. The bound (6.1.3) follows from

1P (65, 0ei, ) | crroe S NGk, panee |06k, | 2.

The bound ((6.1.4)) follows from Prop. and from the proof of ((1.8.2)).
The proofs of estimates (6.1.5)), (6.1.6)) are longer and are deferred to the end of this

section. O

Dyadic norms

For easy referencing in the arguments below, here we collect the norms that we control.
Recall that we denote

sp = 27NV Alls,s llonllsy = 257MI((D.) S 05,

For k' € Z and k > 0 we have:

[ Az

IV Pi Azloor2 S (|1 PrAslls, 1((Dz) , 01kl o2 S Nl 5 (6.1.7)
_ 1. = _ 1,

1QjPrrAallrz, <272 || P Azlls,, 1Qdrllz, <277 [|¢xll5, (6.1.8)
14 1

1Per Aell 2 S 22° | PoAsllsg, 1okl 2ne < 22% |0kl 50 (6.1.9)

For any k' < k and l' € [-k,C], j = k' 4+ 2I' and any =+:

P.O* 2 1/2 <93l
Z [ PeQ ;0n |72 o S22

C=Cy(I")

1/2 /_ 1
(3 1Pl ) <2 P28 ol

C=C,/(0)

270238 6y 5p
(6.1.10)

The former follows by choosing k + 21 = k' + 2{" in (2.1.6). When k = 0 it suffices to
consider I = 0. The latter inequality holds for Q< ¢k, while for Qsp ¢y it follows from
(6.1.8)), orthogonality and Bernstein’s inequality (with I’ = 0)

P, qn L2 C 28F+ 5 e (6.1.11)
Using (6.1.11f) we also obtain, when d =4, o =1,

. = 1 370 of! L1
() P (@ F i (D)QEll7200)* S 2212%22]”@:”5{
Cpr (1) (6.1.12)

< 25722237127 gy | g1

B

For any &' < k" and I’ <0, j = k' + 2l and any £+ we have
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1/2 1 o(k'—=k" 1.
(3 170k Aulare) <2822 | Py AL s,
c=C,/(I")

s (6.1.13)
/ " 1 1"
> MPeAwlae) S22 P,
C=C,/(0)
For Ay we have the following bounds
Hvt,ZPk’AOHLOOLQ 5 ||Pk/A0HY1' (6114)
Since we control 0;Ag, for j > k' we have both
(ot Ly o (o— 1)K
[ PerAollzz, < 2 M) Py Aoy, 1Qj PeAollz, S 2772 @2 Py Aoy~ (6.1.15)

and for j = k' 4+ 20', using (6.1.11])) and orthogonality, we have
1/2 d.r d 17 / !
S IRQE)AY B ) S 2B A, S 2 Pl (6116)
C=Cp (')
In particular, 1Pw Aol 2 S 22%(| Py Aoy (6.1.17)
Now we turn to the proofs of Prop. [1.8.1] [1.8.2

Proof of ([1.8.1))

This follows from proving, for k' € Z, ki, ky > 0:
PPy (0 Vot r 230 L o 1162, 5 (6.1.13)

Note that the factor 2z *min—Fmax) provides the ¢! summation in (1.8.1)). Here kmin, Fmax are
taken from the set {&', k1, ka}.

We first treat the high modulation contribution. Since P;(¢*V,¢?) is skew adjoint (see
Remark [1.7.2) - in the low-high case (28 ~ 2’“”‘”) we may assume ko = kp;, (i.e. the
derivative falls on the lower frequency). By Lemma we have

| P P (Q ki P, Vabiy ) 1112 S

102t @iz (S 1P, Vel 3o, (6.1.19)
Ckm‘m
1P P (Q <tinin Dy V@ kowin P M 2122 S
(3 1P, Qe Bope) 1 Qo Vo iz, (6.1.20)
Ckmin
1P @ ki Pi (Q b O, Vo Qi Py 22, S
(S 1P et @ Brr) 21 Qs Vo dh oo (6.1.21)

Ck

min
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Using (6.1.8)), (6.1.10) for (6.1.19), using (6.1.10}), (6.1.8)) for (6.1.20), and using (6.1.10)),
(6.1.7) and the X; "/* norm for (6.1.21)), we see that these terms are acceptable.
We continue with the low modulation term

PrQ <t Pi(Q<tonin O, VaQ <hpnin D)

which, summing according to the highest modulation, using ((1.7.5]), we decompose into sums
of

Iy= ) PuQ;A ' V'Nim(Qeyoi,, Q<idh, ). (6.1.22)
j<kmin

L= PuQeA 'V NW(Qi0h,. Qeidd,). (6.1.23)
j<kmin

L= PuQg AV Nin(Qssoi,, Qs6i,)- (6.1.24)
j<kmin

for which we have
o—1 L in— ax — _
HDF ™ Toll v + Wl pagzos + ol paggos S 280001 15, (162,15 (6.1.25)

These are estimated by Proposition and (6.1.7), (6.1.8), (6.1.10), which concludes the
proof of (|6.1.18]).

Proof of (1.8.4).

We separate Ag0;¢ and A70;¢. Since we subtract w[A]¢, this effectively eliminates low-high
interactions in the Littlewood-Paley trichotomy. Thus for k, kg > 0, k' > k — C' it suffices to
prove

Hpko (A2/8t¢k) HLlH"—l 5 9Fmin—kmax HAO/ HL2H‘T+% H8t¢kH§Z—1, (6.1.26)
= ; A
1Py (A 0j08) g+ S 22 Fn o[ Ay 5, [ 65 - (6.1.27)
The bound ((6.1.26)) follows immediately from ([5.6.2). Now we turn to (6.1.27)).

We first treat the high modulation contribution. By Lemma we have

1Peo @i (A% 03 00) |22, S 1| A oo 2 ( > NPe, VotrllFop)?,

Ck

min

||‘p]"30672<k:m1n(ngk:mm‘{4“.]7@’/8](?]‘3)||LIL2 5
1
1Qs ki A llzz (D I1Pey,, VatrlTar)®,

Ck

min

1Py @ < (Q < At 05 Q5 i B | 122 S
1 _
( Z ”Pckmln Q<km1nAle%2L°°) 2 HQkalnvIQSk’HLix

Ck

min
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Using (6.1.7)), (6.1.10) and the )_(fl/z norm for the first term, (6.1.8)), (6.1.9)) for the second,

and (6.1.13), (6.1.8) for the third, we see that these terms are acceptable.
We continue with the low modulation term

Py Q <ty (Q <t ALO Qe 1)

which, summing according to the highest modulation, using ((1.7.6]), we decompose into sums
of

Io = Z PryQiNim(A'V'Q AT, Qi) (6.1.28)
j<kmin

Il - Z pkoQSij(A_llejAZ}>Q<j¢k)a (6129)
j<kmin

L= PuQeiNim(A'V'Qu AL, Qsn). (6.1.30)
j<kmin

These are estimated using Prop081t10n “ We use ) with ( and (|

estimate [y in X 2 For 11 we use ) with (| and -, Whlle for 12 we use
(5.6.11)) with (6.1.13)) and . ThlS concludes the proof of -

Proof of (1.8.5).

We separate Ag0;¢ and A70;¢. This case corresponds to low-high interactions in the Littlewood-
Paley trichotomy. Thus for k, ky > 0, &' < k — C (and |k — ko| < 5) it suffices to prove

| P (AR 0s01) — Py i (A00it) |5,y S I1Pw Aollye |0k 51 (6.1.31)

1Pey (A7, 050k) — ProHi (A 000) |1, S 1P Aullse, 169852 (6.1.32)

Notice that the lack of an exponential gain of type 22*min—kmax) (as in (6.1.26), (6.1.27))
is responsible for the need of /! summation in the norm on the RHS of .

We first treat the high modulation contribution, where we denote A for either A° or A7.
For any j > k' 4 C5, by Hoélder’s inequality

| Py Q-5 (Q; A 0y, qum S 2_%j|’Ak’|’L2L°°Hv¢kHL°°L2
| Pry Q< j5(Qj Ap Q>—500%) | 1112 S ||Ak’||L2L°°||Q2j—5v¢k”Lf,z

Using (6.1.17), (6.1.9), (6.1.7), (6.1.8) and summing over j > k' + Cy, it follows that
Py, (szurCQAk:@gbk) is acceptable except

(6.1.33)

> PuQes(QiArQ<;50¢k)

Ik +C
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By applying Lemma (here we choose Cy > %C’O) we see that the summand vanishes
unless j = kyax + O(1). Then, by Lemma we have

N[

ITle S )0 1QAwlz, (D 1P, Vouliar)

j=k+0(1) Cyr

which is acceptable by (6.1.15)), (6.1.8), (6.1.10). The terms

Py Q1405 (Qawr0y A Oy Py Qcirr0y (Qarrr o A Q31+, 00k )

are treated in the same way as ((6.1.33). We omit the details.
We continue with the low modulation terms. Since we are subtracting H* we consider

Z PkOQj(Q<jA2/ : at@<j¢k)

J<k'+Cq

Y PuQ<i(QAY - 9:Q;61)

J<k'+Cq

and prove
||1||X—1/2 al DA FAVERS ||Pk'A0||Y0||¢k||§,g-

by using ) with (| and m for I; we use with and for

J.
It remains to show that for Iy, I from (6.1.28) and (6.1.30)) (with summation over j <
k' + C3) we have
Holl g1z + [ 2]l e S 1AW [lsg, Nl %l 57

These follow from ([5.6.10) with (6.1.13]), (6.1.7) and from (5.6.11)) with (6.1.13)), (6.1.8)),

respectively.

Proof of ((1.8.6).

This estimate follows from the next bound, for &' < k —5
| H (Aaaafﬁk)HLlp S HAk’HZ" xZ°

To prove m let ¢ = % j—k)- > —k — C and separate Agd;¢ from A79;¢. We use
and denote by N (A, ¢) one of A°0;¢ or Nj,,,(ATIVIA™, ¢). We expand

[klls1- (6.1.34)

ell,k’

HiN (A, dr) = Z ZQ@ (P Qi Aw, P Qo)

]<k"+c* w1 ,w2

Splitting Q<; = Q% + QZ;, Q; = Qf + Q;, and applying Lemma we see that the
summand vanishes unless |/ (wy, £w-)| < 2°.
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For N' = N (A71VIA™, ¢) and sy,s € {+, —}, by Corollary we have

QN (P Q3 A, P2 Q% s00) a2 S 29| P Q5 A || 1o | P2 Q% YV e oo 1.2

For N' = A%),¢ we have the same inequality but without the 2¢ factor. This is compen-
sated by the fact that the ZJ, norm is larger. Indeed, we have

25 =0:A7227 and 2| PP QY AL |l pipe =~ |02 A2 P QT AY || .

Note that for fixed w; there are only (uniformly) bounded number of wy such that the
product is non-vanishing. Therefore, by Cauchy-Schwarz,

* «a 1 w2 /) 1
I3 (A0 12 S 3 22| Al gz, (500 DI PP QL V el Fer)
w2

£<0

which implies ((6.1.34)).

Proof of (1.8.2), (1.8.7) and the L2H° 2 part of (1.8.8)

One proceeds by dyadic decompositions. The Lf’z—type estimates follow easily by Hoélder’s
inequality L>*L? x L2L> — L?,m in the low-high/high-low cases and by Lemma lm (eq.
5.6.1))) in the high-high to low case. One uses the norms (6.1.7)), (6.1.14)), (6.1.9), (6.1.17),
6.1.10), (6.1.13), (6.1.16).

The L*L? estimate follows by Holder’s ( L°L> x L*®L? — L*°L? or L®L* x L*°L? —
L>®L') and Bernstein’s inequalities ( P,L2 — 23 L% or P,LL — 25%L2), depending on which
frequency (input or output) is the lowest.

Proof of (1.8.8) for N.
d—1 1

Suppose k, ks > 0, k; € Z. Let ro be the endpoint Strichartz exponent (i.e. o =0-— 3)-

By Hélder’s inequality and using Bernstein’s inequality for the lowest frequency (input or
output) we obtain

= 2 (k—max k;) o — -+ |k1—ko
1P (Pay A - i)l rprer S 270 o P ALy B llewree (6.1.35)

With A = 0;A¢ and ||k, || r2wroe S ||k, |57 , upon summation we obtain (1.8.8).
2

Proof of (1.8.9) and (1.8.3)

We first prove the L'L? part. For (1.8.9) we consider k, ko > 0, ki, ks, ks € Z. We apply
(6.1.35) with A = Al A2 together with

1 R
||Pk1 (Pk3At1:ka4Ai) ||L2HU—% S 22(kmm Kumax) ||Amax{k3,k4} ||L°°H" ||Amin{kz3,k4} ||L2Woo,—% .
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By summing we obtain (1.8.9)). The same argument is used for L'L? of (1.8.3).
To prove the L2H°~2 and L2H°~3 estimates we write

1P (Pi, (f9) Py )| < 22 mackdg sl B ()| poo o | Peo Pl 2o 0

L2 %

and use LOOH‘T x L®H? — L>*°H°~! by Holder and Sobolev embedding.
The (' L>® H°~2 part of ([1.8.3)) is similarly a consequence of Holder and Bernstein inequal-
ities.

Proof of (6.1.5)

Recall that H subtracts terms only for high-high interactions. For k' < ky — Cy — 10 we
claim

(P — Hi)Ah, s 00, )l zg xzg, S 225 72104, llsg 116, sz (6.1.36)

ell, k! ™

while the low-high interactions: for k' > ko — Cy — 10
1Pe A (0, %)l 2, S 27276, N5 1167, 5z, (6.1.37)
Clearly, and imply . First we recall that
(DAL, AAo)(¢', 6°) = =3(Pa(9'Vad?), 6'0167)

and the embedding from (2.1.16)
(O x APyt LML x L'L? — 2079 20 % 29,

Step 1. Proof of ((6.1.36). The terms
P A(Q b O P A(Q b @ ;
1 A(Q>r 0Pk, Py ) w A(Q<i 0P, Q>k'+cDiy)

are estimated using (6.1.19)), (6.1.20) and (2.1.16)). For Ay we note that (6.1.19)), (6.1.20)
still hold with P; replaced by L |'|and V, replaced by ;. Recall that the Z norms restrict
modulation to Q< +c. Thus it remains to consider

(P Q<pr+c — Hk/)A(ngurC(?zlﬁ ) ng/+0¢i2)

For A,, using (1.7.5)), we need to treat O7'I;, O07'I, as defined in ([6.1.22)-(6.1.24)) (the
O0~'1y term is subtracted by Hy). These are estimated using ((6.1.25)) and (2.1.16)).

We turn to Ay. By switching the roles of ¢!, ¢? if needed, it remains to consider

Ji = PuQ<;jAo(Qjdp,, Q<1 ), J<k+C.

L £ denotes any translation invariant bilinear form with bounded mass kernel.
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Using ([2.1.17]) we obtain

N Y, _ _
1 illzz, ,, S > 2207 PuQi(Q;0h, - 0:Q<ibn,) | 1o

+55'<J

(s g Lopr_
< 230Kk k2)||¢,1€1||§gl||¢i2||§,32

For the last inequality we have used Prop. [5.6.2| together with (6.1.8) and (6.1.10)).
Summing in j < k' 4+ C' completes the proof of ([6.1.36)).

Step 2. Proof of (6.1.37)). Due to skew-adjointness (see Remark [1.7.2)), we may assume that
ky = kmin + O(1). The terms

Py Ay (Qsky—ctp,, 91,), Py Ay (Qzkybp, s Qo ks—cPiry)

are estimated using (6.1.19)), (6.1.20)) and (2.1.16]).

Note that the Z norm restricts modulations to ()<x/4+c. Thus it remains to consider

PrQiAs(Q<k 0ty > Q<kaPhy) (6.1.38)

for j < k' + C. When j > ko + C, by Lemma the term vanishes unless j = k&' + O(1).
In this case

1P Qi Aw(Qry bty Qs iy ) 22, S 27 |Q ks Ok, Ve Q< Oy [l 11 Lo

S 287N Qe 0 | pe oo | Q< 87, 2o + 27| Qe O, | 22171 || Q< D, | 2100

which is estimated using (6.1.9)) and (6.1.8).

It remains to consider (6.1.38) for 7 < ks + C'. Using we decompose into sums
of O, (i = 0,2) as defined in (6.1.22)-(6.1.24) (for ky — C' < j < ko + C with Q indices
slightly adjusted). Then O~'7; and O07'], are estimated using and (2.1.16)).

Now we consider [07'1y. Define ¢ := $(j — ko)- > ' := 3(j — k')_ and for s = &+ we
decompose

PuQiNim(Q<idh,, Qejtr,) = > PiPoQiNim (P Q% 61, P2 Q% 7,)

§2,Ws
By Lemma|5.5.2] the summand on the RHS vanishes unless

|Z(wo,wn)| S 202k 28 <o
|/ (swo, saws)| < 2° + max(27,2°) < 2°.

Note that P;° Py @3 and 2% ¥ 071 P;° P, Q% are disposable. Corollary implies

N (P Q%1 P2 Q200 )i S 2155 QL V by, e 152 Q2 VS5, [l 21 (6.1.39)
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For a fixed wy [resp. wj], there are only (uniformly) bounded number of wy,ws [resp.
wp, wo] such that the summand is nonzero. Summing first in ws (finitely many terms), then
the (essentially diagonal) summation in wp,w;, we obtain

1 _
ZLHSm )2 <2 ZHP““ 2 VL [222)? sup || P2 Q2 VR, || o
w2

Keeping track of derivatives and dyadic factors, recalling the definition of Z; and using

(6.1.10) for ¢', ¢, we obtain

_ 10 _
IO~ ollze, S 224(7 k) gk k/||¢11g1||3,gl||¢i2”5,32

J<ko

This completes the proof of (6.1.37)).

Proof of (6.1.6))

The low-high part of the estimate for A, (¢!, ¢*) follows from (6.1.37). For the high-high
parts of both A, (¢!, $*) and Ag(¢', ¢*) we fix the frequency and use (2.1.16), Holder L2L* x
L2L* — L'L? together with L2L* Strichartz inequalities. We gain the factor 23 (kmin—hmax)
which suffices to do the summation in the present case d > 5.

6.2 Trilinear estimates for MKG

This section is devoted to the the proof of Proposition |1.8.3

Proof of Proposition [1.8.3

Our goal is to prove

I7[A (8", ¢*)]0ll 5o S 10" |50 l19* [ 50 |9l 5o
First we note that (recalling definition - - 6.1.2)) together with (6.1.3) implies

17[0, AG" (61, 9]¢l 5o S 16|50 6% 15011 50
Secondly, (6.1.4) and ([1.8.5)) imply
I(1 = H)7[(Ar, AT (@Y, %))l o S Ml 150 107150 10l 5o
For d > 5, ([1.8.6) and (6.1.6|) imply

1#7[(As, AG) (@', )6l w1 S (16" 5o 16715+ 11l s
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which concludes the proof in the case d > 5. In the remaining of this section we assume
d=4,0=1.
Next we use ((1.8.6]) together with (6.1.5) and obtain

[H 7 (1 = H)(As, AgT) (@', D)ol S N6 151197 |5 16l
Since HA, = HAL? it remains to consider H*n[HA]¢ which we write using (1.7.8), (1.7.9)

as
H*W[HA(¢1,¢2>]¢ — Ql 4 Q2 + Q3
where
Q' :=H (" HI(¢'0ad?) - 0°9),
Q2 =—H" (HA_ID_Iataaj(¢laaq§2) ’ atgb)a
Q% = — H (HAT'O10,0'3(¢'0,02) - 0%¢).

and it remains to prove

196", 6%, ) Ix S 19" Isll@*[lsilldllsr,  i=1,3; (d=4). (6.2.1)

Proof of (6.2.1) for Q'

Fix k, k1, ks > 0 and let Ky, = min(k, k1, ko) > 0. The estimate follows from

Y D Qwldh b0l S ok llsy 198,115, Ioels; (6.2.2)

k' <kmin—C j<k'+C
by summing in k; = ks + O(1), where
i ( Py Oy 1) = Q[P Q07 (Qj0), 0aQ<j0,) - 07 Qjbul.

Define | € [—kuin, C] by j = k' + 20 which implies Z(¢y, Py A), Z(¢7,, PvA) S 21 When
kEmin = 0 we may set [ = 0 and similarly for [, below.
In proving (6.2.2), we make the normalization

Ion sy =1 ldillsy, =1 lellsy =1 (6.2.3)

Since we have a null form between ¢? and ¢ we use a bilinear partition of unity based on
their angular separation:

1 1 1 2 1 1 2
=D Y Qb PR B+ Y Qu(dk, Pk, B on)
lo+C<l'<l wy ,WQeF(l’) wl,wzer(lo)
Z(wr,we)~2! Z(w1,w2)$2'0
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where [y := max(—kmin, [ + ¥ — Emin, %(] — kmin)) and the angle /(wq,ws) is taken mod .
Notice that the sums in wq,ws are essentially diagonal. In each summand, we may insert
P in front of P,yQ,07", where P*" is uniquely (up to O(1)) defined by w; (or w).

For the first sum, for ky;, > 0, for any I’ € [l + C, ] we will prove

1/ 1/
D 1195 (Bhys P iy it )11 S 2300230 R) (6.2.4)
w1,w2

by employing the null-frame estimate in Corollary[5.2.2] which takes advantage of the angular
separation. Summing in ', j, k" we obtain part of (6.2.2)).

At small angles however, one does not control the null-frame norms for Klein-Gordon
waves and the null-form gives only a limited gain. We consider two cases.

For j > —kpin we sum the following in j, &’

Z 19} 4 (Dhy» DL G0y, P 1) | 12 S 212F Fimie (6.2.5)
w1 ,w2

When j < —kpin (thus & < —kpin — 20 and lp = —kyyn) the operator Py Q;007! becomes
more singular and we encounter a logarithmic divergence if we try to sum &', j outside the
norm in . We proceed as follows. We write

LDk, P20R,, PE 1) = Q[P Pu@Qi07H (Qujbh, 0aQai P2 0,) - 0°Qui P ]
We define
S = PPLQ,07 (0],00Q<n o P 67,) - 0 Qeirann P
and we shall prove, using the embeddings in Prop. 2.2.2] that for any | € [k, C]
SO>S Gl S 2730, (6.2.6)
wiws k< —hgpin —2

which sums up (in /) towards the rest of (6.2.2)) except for the remainders

wi wo 12 w1 _ pluw; 2,w; 3,w; 4,w;
Gk T =, k’(¢k1’ f)lo ¢k2a Plo ¢k) - Rj,k’ + Rj L + Rj L + Rj L/

for which we have

STIR Iy, S 2222 R =14 (6.2.7)
w1,w2
where
Ry = Quy [P P07 (Qejoh, 0aQ< P2 ¢2,) - 9° Qi P i,
R = P PQiO 7 (Qejdh, 0aQ< i P22, - 0°Qt—2tensn B b1

R?lj'l P Pk’QJ (Q>J¢k18 Q<3Pw2¢k2) 'aaQ<k—2kmin lo YOk,
R‘?:’:‘){Z = P wl PkJQ] (¢k1 aaQ[jak2_2kmm PWQ(ka) aa©<k72kminpl£:1 ¢k

Summing in j, k' we obtain the rest of (6.2.2)).
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Proof of (6.2.4) and (6.2.5)

We are in the case ky = ko + O(1), k = k+ O), k¥ + C < kypin = min(k, k1, k2) > 0,
j =K +2I. We prove ]

(PP Q07 (Qujbh, 0aQ< i P, 01, P Qi(0° Qe P, ok - Qestiy)|
S./ MwhwszchL‘x’LQ

where M,, ., Will be defined below.

The two products above are summed over diametrically opposed boxes +C [resp. +C' |
of size ~ 2% x (2¥*+)3 included in the angular caps i3y, [resp. C7)y | where Py - [resp. B, |
are supported (Lemma [5.5.2)).

Note that 2j+"7/Pl[wl]Pk/QjD_1 acts by convolution with an integrable kernel. By a simple
argument based on translation-invariance we may dispose of this operator (after first making
the the C,C’ summation).

Step 1: Proof of (6.2.4 -

In this case the null form gains 2%, It suffices to show, having normalized (6.2.3))

Q_j_k,|<(Q<j¢kla Qiilpm(bkg)a (0 _j<EjPlL7)1¢k ) Q<j¢lé>| S Moy s [Vl o< 12 (6.2.8)

Z o S 2800230 ) (6.2.9)
where Z(wy, £'wy) ~ 2", We write 27 LHS(6.2.8) <

/ Y I1P-cQeidi, e l|0nPeQE; 67,0 P Q% joul 2 | P Qujtigllia (1) dt S

ccey?
c'ccl“jl
/ > P-cQeiti72)2( D 10aPeQES 67,0 PerQE 64l172) 2 |Qjtbill 2 (t) dt
ccey? ccey?
c'cc“’1
S (D I1P-cQueibhy 32100)? Ty o (| Qus Willzovre
cce,?
where, using Corollary [5.2.2]
T Z Z 104 PCQii’¢k2 . 9% P, _fjgbk”iiz

ccey? c'cc“’1

S22 IPeQ Viadiyllfyy ) ( D I1PeQZ;Viadnlly gz ).

0cc“2 c'ccl“,1

2Notice that this case does not occur when kpin = 0.
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Thus in (6.2.8]) we may take

Main = 277F (3 1PcQuyh 220m)? Ty (1))
Cccﬁ2

and by Summing in wy (the wy sum is redundant) using C-S we have

7 My, S 27791 23lgN g sk g3 (D)

wi,w2

which implies (/6.2.9)).

Step 2: Proof of (6.2.5) Here j > —kpi,. In this case the null form gains 29~ *min and
2l0 — max(2 mm 2 2k kmm 22( 1n1n)> S 2l
By Prop. and Remark it suffices to prove, under ([6.2.3))

29 ~kmin | (P PL Q0N (Q ik, Viw Qe B2 02, ), PuQi(VinQei P 61 - Qi)
5 Mwl,w2"¢l~c|‘L°°L27 Z Mw1,w2 S 212k/_kmin. (6210)

w1,w2
We have
LHS (6:2.10) <2 =28 3" || PeQjp, lr2r || P-cQ<idh, l ror
CCC“""
X sup D IPQei Vo) 2 1P-cr Qeitbi ()2 S Musy o |05l oo 2
C/chl

where for each ¢t we have used Cauchy-Schwarz and orthogonality, where

ko k! ~ 1
My, = 2750022 (S 7 | PeQeyh, 72p=)2 (D 1P-cQeihllapes)? Vil o2

CCCZ“(J)Q CCC“(’)2

Summing in wy (the w; sum is redundant) using C-S and (6.1.10]), (6.1.7) we get (6.2.10)).

Proof of (6.2.6))

Recall that | € [—kpin, C], kmin = min(k, ki, ks) > 0 and ky = ko + O(1) are fixed. We are
in the case k' + 21 = j < —kuin, thus lo = —kupin, i.e. Z(wr,ws) S 27 Fmin,
By Prop. and Remark the null form gains 27>, We can apply that propo-

sition because Q <k, 2k, = @ <ki—2kmin+C Q@ <ki—2kmin -
We will apply Prop. 2.2.2] For M = —k,;, — 21, we write

> Qo ZT[“” (0%, 0aQ<rort B2 02,) - 0°Qiamy P (6.2.11)

k'<M
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We consider two cases.
Case 1: kyin = ko + O(1). The null form gains 272%2. We have

1210 |1 S 27 2k2||TWI]<¢k1Q<k2+210 2V i, ) 11 Lo | P2 Q <zt Vi || oo 12
Using ([2.2.5)) and - we have
— —l —
HTzM(¢11€1Q<k2+2lopz°(f2v¢iz)||L1L°° S 27227 (g N2 pae | P22 Q <oyt B, Nl 202

Summing (diagonally) in wy, ws we obtain ({ since [|¢, || z2042 S 27 1k1||gbk1 ||51 ,

_ 1 1
(D15 Qerazta i lI72102)* S 27161, 15y,
w

N|—=

(D 1P Qekraty Viatillzor2)* S s (6.2.12)

272k so we can put ¢y in L2L*.

Case 2: kpi, = k. Now the null form gains
@20 122 S 2717 (), Qoo PV 1, )| 21| P Qo Vil 2
Using ([2.2.4) and Hélder’s inequality we have
w ' w! -1 W
1T (03, Qoo P2V O 12ms S 2722264 1|y 5 P2 Qb2 03, |y 8

Summing (diagonally) in wy,ws we obtain (6.2.6) since [|¢y [|,,,5 S 2_”“1H¢k1||5 :

00\0

1
R AT

( Z ||Pl‘gQ<k2+2lo¢k2 ||2

N

= 3
(S IP2Qaksat Vewtrellz22e)* S 275 |l
w

Proof of (6.2.7)

By Prop. and Remark the null form gains 27 2Fmin,
Step 1: R! and R?. Denoting

B = B PeQ07 (Qey 01, 0aQ<, P27, ),
we estimate using Bernstein and Prop. [5.6.2

|h e S 245 |0

i 3 o 3 A
L?, <27/ k'22k’+2l(z HPCQ<]'¢1161H%2L°°) ’ HPI‘ZQQ<J‘V¢z2HL°°L2
c

t,
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where C = Cy/(1). Using the )_(1_% norm, we have

IR v S 272272 | B | 2o || B2 Q< V i oo 2

IR e S 27 min||pe 12100 | P Qi te—2tein) V Okl 2.,

Summing in wi, ws, We obtain (6.2.7)) for Ri, R? by using (6.1.10]) for ¢! and (6.2.12) for ¢*
(first introducing ¢ <y,+2;, and discarding ()«;), and (6.2.12)), respectively (6.1.8]) for ¢. We

also use 27 Fmin < 20,
Step 2: R? and R*. We denote

h = P PLQ 07 Qs 0k, 0aQ P20,
Hi = P P Q0 (04, 0aQuiks ok Pt 01,

For ¢ = 3,4 we have

IR g2 S 27 %Fmin

R pree | Pt Q<2 V Ok || oo 12

We estimate using Prop. [5.6.2

3 —j— 30 A = 1
1h5"* | prpee S 22K 2|5 | e S 277 k/QQk/+zl||Q>j¢/1ﬂ||ng(Z 1PeQ<; Vi, 1 72p0)
c

where C = C(0). Reversing the roles of ¢!, ¢?, ||hy"?|| 11~ is also estimated.

Summing in wy,ws, we obtain (6.2.7) for R3, R* by using (6.2.12) for ¢ and (6.1.8)
(6.1.10)), for ¢!, ¢*. We also use 2 Fmin < 21,

Proof of (6.2.1) for Q2

Estimating in L'L? we use Holder’s inequality with [|0,éy||z~r2 S [|éx]ls and

e = oA 1—
IA™'O710,Q; P 0a(Quji, - 0°Qejh,) i £ 225" Wlop |5y 167, 1y, (6.2.13)
The Q2 part of (6.2.1]) follows by summing this in &', j, where

1
k1 :k?Q‘I'O(].), k,+0<k’1,k’, ]<k,+07 l:= 5(]-]{}/)_ > —ki, k (6214)
To prove (6.2.13)), first note that the product is summed over diametrically opposed boxes
C1,Cy of size ~ 2F x (2¥*)3 (Lemma 5.5.2)). Each term in the sum forces a localization P
in front of Q; P and note that 2/7¥ P*Q; P,0~" is disposable.

Now recall for (5.1.1)) the decomposition (5.1.2)-(5.1.6). By Prop. [5.2.4] and the fact

that here Z(Cy, —Co) < 2!+ =#1 we have

AT O 0,Q; PuNo(Qejdh, » Qi iz S 27772 x (2224 x
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[

_ 1
X(Z ||PC1Q<]¢/£)1||%2L°° 2 Z ||PC2Q<]¢]€2||L2L°°)
C1

The same holds true for M, , since now, by Prop. 5.1.2| we gain 22K~k < 92'+2 [Uging

(6.1.10)) we obtain (6.2.13]) for Ny, My. We turn to Roi and write
2| AID10Q; Py (0 F (D)% 04, - QZi68%, s S 24 277 x

X(Z | Pe, (0 Fi(D)) 72@;”%%%)5 ( Z ||PC2QJ<Fj¢i2H2L2L°°)
C1 CQ

N

Then we use (6.1.12), (6.1.10)) to obtain RZ-part of (6.2.13). The other parts of R follow
by reversing the roles of ¢!, ¢%.

Proof of (6.2.1) for Q3

Let ky, ko, k, K, j, 1 as in (6.2.14) and k = k+ O(1), kmin := min(ky, ko, k), ¥ =K' +0(1) <
kmin — C, j =74+ O(1) < kK + C. We prove

00 1 Prs
(T2

(Q<J ¢k1 6Q<J ¢k2) QJPk”a (aaQ<J¢k Q<ﬂ/’k>>|
< 23193 (Wi Nlgw sy Ik, s, l6el sl

which, by duality, implies (6.2.1) for Q3. Like for Q% we sum over diametrically opposed
boxes +C of size =~ 2¥ x (2+)3 and introduce P to bound !
First, using Prop. [5.6.2/ and (6.1.7), (6.1.10), we estimate

_ _ = = i 9k sl fy— L
1A D700, Pu(Qeydl, - 0@yl < 27X (2527273 6k, sy 167, sy

For the second product, we recall the decomposition ((5.1.1))-(5.1.6). By Prop. |5.2.4] and
orthogonality, using the fact that Z(¢, ) < 2% ~F we have

_ — ’ — 1
1Q; P No(Qejon, Qeytii)lliz, S 272 (D I1PeQeydrllzopoe) * 10i ]l poore
C

(6.2.15)

Ny,

The same holds true for M, , since now, by Prop. m we gain 22+ =2k < 92K+
For R we prove

1Q; P ((0: F i (D) Q500 - QZ %) 2, ZHPC (0, F (D)) Zdﬁk!\%w)%l\w@llmm

2M|Q; P (Q%; 01 - (0, i (D)) QT 00112, S 2k||Q<j¢k||LooL2 x
< (DN Pe(@ £ i (D)QF 5120 ) * S 25223125 | o g [0
C

1.
X%

where we have used Bernstein’s inequality and orthogonality.
Putting all of the above together, using (6.1.10)), (6.1.12)) and (6.1.7), we obtain (6.2.15)).
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6.3 Bilinear estimates for MD

Here we prove Propositions [1.8.6 concerning bilinear estimates.
Unless otherwise stated, we restrict to the case d = 4; the general case of d > 4 is
discussed in Remark [6.3.8 below.

Preliminaries: Conventions and frequency envelope bounds

Henceforth, we use the shorthand A to denote any A; (j = 1,...,4). Unless otherwise
stated, we normalize the frequency envelope norms of the inputs as follows:

IBllvy = I14llsy = 901, = lellgyey, = 1 (6.3.1)

Having control of the S* and Si/ ? norms through the frequency envelopes a, b results in the
following estimates, which we will use repeatedly in the proofs of the bilinear and trilinear
estimated’}
_ 1
| A ooz S27 7y, ]| poorz S 272 by, (6.3.2)
Qs Akl pore S273 ™™kl = 2023k (| Q5| p2pe S 272 MUK 230y, (6.3.3)

For k' < k, we have

1/2 , 1
(3 1P ulas)” 522 P,
€ (0)

) 2
(3 1Peotliers) <2
€ (0)

For k' such that ¥’ < k and j < k' + C, define £ = 1(j — k¥')_. Then we have

(6.3.4)

1/2 /
< E HPCM(@)QQ'AkH%sz) <ok 2%42_%]6%,
Crr (0)

1/2 .
(3 IR@vulier) <2424
Cpr (0)

(6.3.5)

These bounds follow immediately from the definition of the norms S} and S; 2
The Z/? component leads to the bound

l i
Q5 piree S 2272°¢ Dty (6.3.6)

30f course, the same estimates as 1 hold for ¢ with (s, bs,) replaced by (s', cx).
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Indeed, by (1.5.1]) we have
Qx| prpee S27724FD4|(i0, + s| D)ty || 11 oo
52%k2k7j24(k7j)+HwkHZlm’

from which (6.3.6)) follows.
Finally, the normalization || B|ly: = 1 implies

1Bl zeze < 272 ay, 1Q, Byl p2r2 S 27 ™kl o 3kg, (6.3.7)

Proof of Proposition [1.8.6

Here we prove ((1.8.12))—(|1.8.14)).

Step 0: Reduction to dyadic estimates
Under the normalization (6.3.1)), we claim:

_1 1 ko
2 QkOHPkoE(l/}km ka2>||L2L2 SQQ(kmax kmm)bklck27 (638)
||PkoN* (¢k17 (ka)HN <2§O(kmax—kmin)bklck27 (6.3.9)
”P]fo ss’ (wkmka)HN 250 max~Knin bklckQ (6310)

Proposition follows from the above dyadic estimates. We begin with the proof of
1.8.12)). Observe that ME (P, -, P,-) = L and P, 0, M¥ (P, -, Py,") = |D| Py, L. Therefore,

6.3.8]) implies
1 Peg ME (s 1) | 2172 + | ProOeME (g, @ra) | pogsse S 23R —hmindpy ¢

The LHS is non-vanishing only if |kpax — kmea| < 5 (Littlewood-Paley trichotomy). We now
divide into cases kyin = ko, k1 and ks, which roughly correspond to (high-high), (low-high)
and (high-low), respectively. In each case, summing up in kq, ks using the exponential gain

1 R . .
23 (kmin—kmax) and the slow variance of b, ¢, we arrive at

||P/€0ME(¢> 90)||L2H*1/2 + “PkoatME(w7 90)‘|L21'1V1”/2 5 bk’ocko’

which is precisely the desired estimate (1.8.12)) under the normalization (6.3.1]).
The proof of (1.8.13)) and (1.8.14)) proceeds similarly By Proposition 5.4.4] we have

= N* and M3 (I, ) = Neo (-, -). Therefore, and ( 1mp1y
1P M (W, o) | + [Py M (T, S%)HN < 20 lmin—bnndy gy,
On the other hand, application of (6.3.8)) shows that

1 L
HPkOMR<wk17 @kz)HLQH*l/Q + HPICOMSS’(HkaU ¢k,‘2)”L2H71/2 S 22(kmm kmaX)bklckT

Proceeding as before using Littlewood-Paley trichotomy, the exponential gain in ki, — kmax
and the slow variance of b, ¢, the desired estimates ((1.8.13)) and ((1.8.14)) follow.
The rest of this subsection is devoted to establishing (6.3.8])—(6.3.10]).
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Step 1: Proof of (6.3.8)
Without loss of generality, assume that ks < ky. Then 6.3 8 follows from application of

(5.6.1) in Lemma and the frequency envelope bounds ) and (6.3.4)).

Step 2: Proof of (6.3.9)
We first treat the high modulation contribution.

Lemma 6.3.1. Assume the normalization (6.3.1). For any ko, ki, ko, j € Z, we have

1, 1 ; -
275-7 ||Pk0Qj (wkl’ QOkQ)HL?L? <2§( n11n7])2 (kmm kmax)blekQ7

1
2
1
2

Hpk0£< Slwklp(pk2)”L1L2 <2§( mlnfj)2 (l”u‘min*kmax)bklCk27
| Pro £(¥0y, Q7015 )| 122 <23k mlrj)?é(kmi“*km“)bklck2.

=

Proof. The lemma is a corollary of Lenlrna 5.6.1] Indeed, the first estimate follows from

and the frequency envelope bounds and (/6.3.4] Similarly, the second estimate
follows from (5.6.2) and the frequency envelope bounds 3) and (6.3.4)). The final estimate

follows from the Second one by symmetry. O

By Lemma [6.3.1{ and (1.5.2)), it follows that

[T
||Pk0Q>kmin_10N*(¢kl7 onz)HXDv—l/Q S22 (i kmax)bmckw
L
| Pro @<t —10N " (Q% . 10Wk1» Pho )| 122 S22 FminHmady

Lk _
[ Pro @<t —10N* (Q%p . _10%ny» Qe —100ks) |12 S22 Fminhmadpy oy

which are all acceptable. Using the identity P, ()<
can be written as

ZSO P, Q%) .y, the remainder

min —

s * !
ZPkOQé)kmm—loN( ikminflowklv S<kmin710%0k2)

Summing according to the highest modulation, we decompose the remainder into Iy +
I, + I, where

- Z Z PkOQjON*( ijwkm Qijgpkz)v (6311)
50 j<kmin—10
Il - Z Z PkOQ?jN* (ijkm Qij¢k2)> (6312)
50 j<kKkmin—10
L=Y" > PQLN (QLvn, Qew). (6:3.13)

S0 j<kmin*10
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These sums can be estimated using Proposition [5.6.4, We split into three cases according to
Littlewood-Paley trichotomy:

Step 2.1: (high-high) interaction, ko = kyin. Let £ = £(j — kmin). By Proposition we

have

1 s 1/2
Moll o S 30 2782 bk llaerz (3 1P 0@ 0ralBar) -

j<ko—10 Cy (0)
, 1/2
Il S > 20Qn i (D 1Py 0@ ol )
j<ko—10 Cko(f)

1/2 ,
1Bl S >0 2D 1P 0@ vulinx) 105wl

j<ko—10 Cieo (0)

Then by the frequency envelope bounds (6.3.2)), (6.3.3]) and (6.3.5]), we obtain

1p1 _
||.[0||X10,—1/2 + ||]1||L1L2 + ||]2||L1L2 5 Z 244220@0 kl)bklck27
j<ko—10

which is bounded by 2%(k0_k1)bklck2 and thus acceptable.
Step 2.2: (high-low) interaction, ko = kuyi,. As before, let ¢ = %(] — kmin). By Proposi-

tion [5.6.4] we have

1. s 1/2
ol xo-1/2 S > 2232Z||¢k1”L°°L2< > \|Pck2(ﬁ)Q<j90k2||2L2Loo> )

j<ka—10 Cry (£)

, 1/2

10l S D 20wkl (D 1P, 0@ rliar)
Jj<ko—10 Ckz(e)

which are both bounded by < 2z(*2=k)p, ¢, by the frequency envelope bounds (6.3.2),
(6.3.3) and (6.3.5)). However, a naive application of the same strategy to I only yields

1/2
by <) 2é< > |’Pck2(e)Q§j¢k1||%2Loo> 1Qjws [ r212 S bk, Cy.-

J<ka=10  Cy,(f)

which lacks the necessary exponential gain in £k — ka.
Here the idea is to use the Z Sl/ * bound (6.3.6). We introduce a small number &; > 0 to
be determined later. We split the j-summation in I> to Iy = >, 1 1015, kst ( -+) and

Il = Z]E[k‘g 10461 (ka—k1) ka—10) (- ). For the first sum I3, we use Proposition 3 (6-3-3)
and ( as before to estimate

/2
150z S > 2£( > HPCkQ(Z)QSnglH%?Loo) 1Q5 ¢l 212
j<k2710+51(k27k ) CkQ(f)

5 Z 22 bklck <2 4( 2—k1) bklck2,
j<k2—10+(51(k‘2—k‘1)
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For the second sum I, we use (1.5.2)), Holder’s inequality and the frequency envelope bounds

(6:32) and (636) to bound

Bloes Y WaleelQule
J€[k2—10+61 (k2—k1),k2—10)
S Z 9-sk1gzhegdhedp, o < oG-k, ()

jE[k2710+51 (k27k1),k2710)

In conclusion, we have
. 61 1
min{ -, —51 }(ka—k
[ pre S 2minte 20 te—hp, ¢

which is acceptable once we choose 0 < d; < 1—10.

Step 2.3: (low-high) interaction, k1 = kuyin. This case is strictly easier than Step 2.2, thanks
to the additional gain 2Fmin—minthokz} ~ 9k1=k2 in Proposition [5.6.4} in particular, the use of
the Z+/* bound (6.3.6)) is not necessary. We omit the details.

Step 3: Proof of ([6.3.10))

We proceed similarly to Step 2, replacing the null form AN* by N,y and thus Proposition
by Proposition [5.6.3. The proof applies verbatim until reduction to the low modulation case
(i.e., before Steps 2.1-2.3). A minor difference now is that the factor 2Fmin—min{kLkz} does
noffl] gain 2517%2 in the (low-high) interaction case (i.e., analogue of Step 2.3); however, the
same proof as in the (high-low) case applies (Step 2.2).

Proof of Proposition [1.8.7, part I: Ni/Q-bounds for N

In this subsection, we prove (T.8.15)(1.8.17) concerning the remainders N2, A% and NS

Step 0: Reduction to dyadic estimates

Recall that NZ(Py, -, Pr,-) = £, N® = N and IIu N5 = N, which vanish when applied to
inputs Ag,, Vx, unless (say) ky > ky—20. The condition k; > ky —20 effectively eliminates the
(low-high) interaction (i.e., kmin = k1). More precisely, if k; = ki, and ky > kg — 20, then all
three frequencies must be comparable (i.e., |kmax — kmin| < C') thanks to the Littlewood-Paley

trichotomy |kmax — kmea| < 5.
Under the normalization (6.3.1]) and the condition k1 > ko — 20, we claim:

1Py £(Bry, )| 12 S22 0minFmes) by, (6.3.14)
”PkoN(Akla @Z)/@)HNV? 5260(kmm_kmax)ak1bk2, (6315)
Pl (At )y 2005 Fos) gy (63.16)

4Now this factor gains another 2¥0=*1 in the (high-high) interaction case (i.e., analogue of Step 2.1),
which was already fine.
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From these estimates, ((1.8.15)(1.8.17) follow as in the proof of (1.8.12))(1.8.14) from the
dyadic bounds (6.3.8)(6.3.10) in Section [6.3} we omit the details.

Step 1: Proof of (6.3.14]
By (5.6.2) in Lemma and the frequency envelope bounds (6.3.7)) and (6.3.4)), we have

. 1 _3
”Plso‘C(Bk;nr‘bkz)HLlHl/2 S 2kmm22k02 leaklbkza

Y

which implies (6.3.14])) under the condition k; > ky — 20.

Step 2: Proof of (6.3.15))

As before, we begin with the high modulation contribution.

Lemma 6.3.2. Assume the normalization (6.3.1)). For any ko, k1, ko, j € Z such that ki >
ko — 20, we have

’ 1 A A | -
||Pk0Q§ £<Ak17 7vblf2>||]\71//2 522(kmm ])22(kmm kmax)akl bkg)
1 A DI § -
|‘Pk,‘0£<Q]Ak17 ka)HNl/Q §2§(kmm ])22(k?m1n kmax)aklka,

1 VAR § A
||Pk0‘c<Ak17 ijkg)HNl/z 522(kmm ])22(kmm kmax)aklka.

Proof. Like Lemma [6.3.1] this lemma is a corollary of Lemma [5.6.1 Applying (5.6.1) with
(f,9) = (Ak,, ¥x,) and the frequency envelope bounds (6.3.2) and (6.3.4)), we have

22809759 || Py Q5 L( Ak, i) | 212 S 2823002701270y, by,

which proves the first estimate under the condition k1 > ks —20. On the other hand, applying
(5.6.1)) in two different ways, then using the frequency envelope bounds (6.3.3)) and (6.3.4)),

we have

1 AL _ _1,
QEkOHPkO‘C(QjAklv 1/Jk2)||L1L2 Skam22k02 k12 2]ak1bk2>
2%k0||Pko£(Ak17 ijka)HLlLQ 52kmin2%k02_%kl2_%k22_%jak1bk27

which imply the other two estimates under the condition k; > ko — 20. ]

Proceeding as in Step 2 of Section [6.3], where we use Lemma|6.3.2|instead of Lemmal6.3.1],

the proof of (|6.3.15)) is reduced to handling the contribution of

Z Pko ikmitl—loN(Q?kmirloAk1a Qikmitl—10¢kz) =Io+15+ I2a
S1
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where
$1 j<kmin—10
s1 j<kmin—10

51 j<Kkmin—10
We now split into two (slightly overlapping) cases, which roughly correspond to (high-high)
and (high-low) interaction:

Step 2.1: (high-high) interaction, ko = kmin + O(1). Let £ = 3(j — Kin). Using Proposi-
tion neglecting the gain 2Fmin—min{kik2} ~ okmin—kmax e have

_1:1 1/2
HIOH)(l,/i”lmS Z 2 2]22k025|‘Ak1HLwL2< Z HPCkmin(f)QijkaH%?Lw) )

. §<kmin—10 Cr. . (0)

min (

1 s < 1/2
IEllpie S 3 2820Q0 Aullens (Y IPa, 0@ tnlier=)

S1 j<k§min—10 Ckmin (é)

1 s 1/2 s
Il S Y 22]“’26( > ”Pckmin(f)lejA/ﬂlH%QL‘x’) 1Q5x, Il L2 L2

S1 j<k5min_10 Ckmin (Z)

Then by the frequency envelope bounds (6.3.2)), (6.3.3]) and (6.3.5]), we obtain

||IOHN1,/2 + H]1||N1,/2 + H]2||N1,/2 5 Z 2%£2kmin—kmaxak1bk2 S/ 2kmin—kmaxaklbk27
° ° ° j<kmin_10

which is acceptable.

Step 2.2: (high-low) interaction, ko = kuyi,. As in Step 2.2 of Section , we need to use
the Zi/* bound (6.3.6) in addition to Proposition [5.6.3, As before, let £ = 1(j — kin) and
91 € (0,1/10) be the small constant in Step 2.2 of Section By Proposition we have

1i1 s 1/2
||IOHX1/2,—1/2 § Z 22322k024|‘AkIHLooL2< Z ||Pck2(€)Q<j¢k2||%2Loo> )

1

j<ka—10 Cry (£)
1 1/2
Il $D0 D0 25929Q5 Aullieee (D 1P 0Qsbiallion=)
S1 j<k2*10 Ck2(e)

which are bounded by < 2z(k2=k)g, b, thanks to the frequency envelope bounds (6.3.2),
(6.3.3) and (6.3.5). For I, we split the j-summation and write Iy = I} + I, where
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I, = Z‘<k2—10+51(k2—k1)(' -)and I = Zje[k2_10+51(k2_k1)7k2_10)(- -+). For I}, we use Propo-
sition to obtain

1 s 1/2 s
Bl S35 > 298 ( 3 1R, 0@ Akl ) 1@k ez,

s1 j<ko—10+401(k2—Fk1) Cry (£)

which, in turn, can be bounded by < 2%(’“2_"’1)%1% using (6.3.3)) and (6.3.5). For 7, we
use (|1.5.2)), Holder’s inequality, (6.3.2)) and (6.3.6|) to bound

1
115 pagrare S > 22%0| Ay, || poo 2 | Q50k, || 1 200
J€[k2—10+01 (k2 —k1),k2—10)
< > 93k0g—Rigzhagithe=dlg, by

j€[k2710+51 (kg*kl),kgflo)

which is bounded by 2(z=5)(k2=k1)q, §, and thus acceptable (since 8, < 1/10).

Step 3: Proof of (6.3.16)

The argument in Step 2 applies exactly, with N and Proposition replaced by N7, and
Proposition [5.6.4], respectively; note that this is possible since we have not used the extra
gain 2kmin—min{kik2} from Proposition in Step 2.1 above. We omit the details.

Remark 6.3.3. In the course of Step 2, we have proved the bound
||Pk0N(A/€1 ) wkz) ||N1,/2 S ||Ak’1 ||S1 ||,¢}k’2 ||S;/2 (6320)

when ky = kpin + O(1) and k; > ko — 20. In fact, the number 20 does not play any role,
and the same bound holds (with an adjusted constant) when all three ko, k1ko are within an
O(1)-interval of each other.

Proof of Proposition [1.8.7, part II: N/*-bounds for m[A]

Here we prove (1.8.18), (1.8.19) and (1.8.20)) concerning the paradifferential terms 7%[Ag],
mf[A,] and wF[A,].

Step 0: Reduction to dyadic estimates

As before, note that N (Py, -, Pr,-) = £, N = N and [Ty NS = N, and 77 Ag], nf[A,], Ty w5 [A,]
vanish when applied to Ag,, ¥, unless (say) k; < ks — 5. By Littlewood-Paley trichotomy
(|kmax — Fmed| < 5), we only need to consider the (low-high) interaction, i.e., ki, = k1 and
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Under the normalization (6.3.1)) and the condition ky < ky — 5, we claim:

1 k‘minfkmax
0 ) ~ 4 1Yko> .O.
1Prg £(Bry s oy )| 1/ 230 Jag, b (6.3.21)
1 kminfkmax
0 ’ ~et 1Yk2) 0.
Hpk E(Alﬂ w’%)HNi/? <2il )ak br (6 3 22)
|’PkON+(Ak17wk2)"N;/2 524(km1n kmaX)aklbk‘Q‘ (6323)

We remind the reader that v is assumed to be normalized in (Ssl/ 2),,; hence (6.3.21)) and

(6.3.22)) concern the case when the output is estimated in the opposite-signed Ni/sz space,

whereas (6.3.23) is the same sign case.
The estimates ([1.8.18]) and (/1.8.19)) follow from (|6.3.21]) and (6.3.22]), respectively, whereas

(1.8.20) may be proved by combining (6.3.22]) (opposite sign case) and (6.3.23|) (same sign
case). As the proof is similar to Step 0 of Section 7 we omit the details.

Step 1: Case of opposite waves

Here we prove (6.3.21) and (6.3.22)). Henceforth we write f for either B or A. We begin
with the case when the output or ¢) has high modulation.

Lemma 6.3.4. Assume the normalization (6.3.1)). For any ko, ki, ke,j € Z such that k; <
ks — 5, we have
Lpon_li / Ly i)y L
23402 2| Poo Q5 L(frys Yyl 222 S22 D72k || || pa by,
1 1 . 1
225 Py L fry, Q3oky) | prr2 225792728 £ [l 200 by,

Proof. The first estimate follows from the Holder inequality L2L> x L>*L? — L?L? and the
frequency envelope bound ([6.3.2). Similarly, the second estimate follows from the Holder
inequality L2L>® x L?L? — L'L? and the frequency envelope bound (6.3.3)). O

By the frequency envelope bounds (6.3.4)) and (6.3.7)), note that f = B and A yield the
common bound

1 1
||Bk1||L2L°° 5 22]€1||Bk1||L2L2 f§ 22k1ak17 ||Ak1HL2L°° 5 22kla/ﬂ' (6324)

Since ki < ky — 5, we have ky, = k1 and ko, ks = kpax + O(1). Then from Lemma and
(T5.2), it follows that

— 1 kmin*kmax
”Pko 220+%(k1,k0)70££<fk1 ) T/sz)”Ni/j 50124( )aklbk27
- 1 kmin_kmax
”Pko <Zo+%(k1—ko)—01£(fk1’ szngr%(klfkg)fCiwk?)||Ni/52 50{24( )aklbk27
which are acceptable for any (] > 0. It remains to treat the contribution of
. —s s
= Pk0Q<%(ko+k1)fC{£(fk1’ Q<%(k1+k2)—0{¢k2)

for some C] > 0 to be determined. We now use the ‘geometry of the cone’ to force modulation
localization of f.
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Lemma 6.3.5. Let ko, k’l, k‘g,jo,jl,jg € Z be such that |k0—]{?2| <b5andk < min{ko, k’g}—’{')
Assume furthermore that jo < ko — C1 and ja < ko — C] for a sufficiently large C] > 0. For
any sign s € {+, —}, the expression

Pkij_OS['(Plehf? PICQ jgg)
vanishes unless j; = kmax + O(1).

Proof. By duality, it suffices to consider the expression

/ / PoQEhL(PoQ;, f Py QLg) dtda.

We proceed as the proof of Lemma m If the expression does not vanish, there exists =
(i =0,1,2) such that >, =" = 0 and =% € {|¢{| = 2% |7 —s;|¢[|| ~ 27}, where sy = 52 = s and
s1 is the sign of 7. Consider the quantity H = s0|°| + s1[¢'| 4 s2]€2|. Subtracting >, 7/ =0
and using the hypothesis on kg, ks, jo, j2, we have

|H| S 2]1 + kaax_c
On the other hand, since sy = so = s and k; < min{ky, ko} — 5, we have
|H| = [s]€°] + s1]€"| + 5]€2|| o 2Fme,

Taking C] sufficiently large, it follows that jpmax > kmax — C for some constant C' independent
of C}. Taking C} even larger so that j; > max{jo, j2} + 5, we have |H| ~ 27 and the claim
follows. O

Choosing C] > 0 to be sufficiently large, Lemma is applicable to I. Hence
I = Z PkoQ 1 I<:0+k —c (Q]fkp@s k1+k2) Clka)

j:kmax+0( )

By (1.5.2)), (5.6.2)) and the frequency envelope bound (/6.3.4]), we may estimate

1 1 1/2
291 S 22k°||ijk1||L2L2< > ||Pckmin(0)¢k2||%2mo>

j=hkmax+O(1) Chimin (0) (6.3.25)
A §
5 Z 2kmm22k0HQJfleLQLQka
j:klllax+o(1)

By the frequency envelope bounds ) and - we have the following common bound
for f = B or A when j > ky:

a1 a1
1Q; B llr2re S 27727 2May,  (|Q;A, |22 S 2772720 ay,,. (6.3.26)

['herefore,
1 1 -
2280 I|| 1z S 22 min ey by,

which completes the proof of (6.3.21)) and (6.3.22]).
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Step 2: Proof of ([6.3.23))

This is one of the key estimates showing that spinorial nonlinearities have better structure
than the Riesz-transform parts. The idea is that the null form N gains an extra factor
2Fmin—kmax i the low-high case.

We begin with the high modulation bounds:

Lemma 6.3.6. For any ko, k1, ke € Z such that |knax — kmea| < 5 and k1 < ko — 5, we have

| PeoNE(frrs 9ia) | 222 S257%2 | fi L2200 | g | 2o 22, (6.3.27)
1 PeoNE (s ga) iz S257%2 | f L z2 oo || Gk [l 2222, (6.3.28)
1/2
| PN (frrs i) | 2122 §2k17k2\|fk1”L2L2< > HPCkl(O)gsz%%oo) : (6.3.29)
Ck, (0)

Proof. The idea is to proceed as in the proof of Lemma m (where L is replaced by N7)
with the following modification, to use:

[eo e1.c2(0)| S Ol Feo g (8) | oo || Fer fr () || o || P2 iy (£) ] o2, (6.3.30)

where § = max{|Z(C° —C?)|,2k1~ko 2k1=k2} = This bound follows from Proposition [5.3.1}
note that 2¥ =% is the angular dimension of C? for i = 0,2. By Statement (2) of Lemma
and the hypothesis on kg, k1, ko, it follows that § ~ 2¥1=*2 Then proceeding as in the proof

of Lemma [5.6.1, we directly obtain (6.3.29)). The other two estimates ((6.3.27)) and (6.3.28])

also follow from the same proof by switching the roles of f, g and using the obvious bound

1/2
(X 1Py fuliene) = I llies. =

Cry (0)

By Lemma and the frequency envelop bounds , and , we have
1Py QSN (Agy, o, 172 S22 0 D2M Ry by,
1PN (A, Qi )| yare 25017902817 Rqy by,
| PN Q5 ARy o) | 2 2201723017 Rg

Thanks to the exponential gain in ko — ky (as well as j — k;), we may proceed as before (cf.
Step 1 of Section or to reduce the proof of (6.3.23]) to estimating the contribution of

I = Z PkoQikl—mNi(Q?quoAku Qs<k1—10¢k2)'
s1

The norm [|7]| 1> can be bounded by the sum > >, , of the terms
| Pro@SN Q2 Ars, Q2w e <280 722 0 00 by,
1/ 1
”Pko ;jNi(leAk1v S<j'¢)k2)”NS1/2 SQZU_kI)Qi(kl_I@)aklbkza
* s s L— -
| Peo QLN (QZ; Ak, , Q50ms )| y12 S2al-kgh kg, by,
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where we used Proposition and the frequency envelope bounds (6.3.2)), (6.3.3) and
(6.3.5) to derive the estimates. Observe the crucial exponential gain in ky — k;, which

arises from the factor 2kmin—mintkok2} in Proposition [5.6.4L Summing up in s; € {+, —} and
J < ky — 10, we obtain
11| < 93(ki=k2) . p,
]\751/2 ~ akl ko

which completes the proof of ([6.3.23)).

Remark 6.3.7. Repeating Step 2 with N* replaced by A (hence Proposition is replaced
by Proposition [5.6.3)), Lemma [1.8.10| can be proved. The key differences are the lack of the
extra factor 2Fmin=Fmax in Proposition [5.6.3, and that Q; A/ = 0 for any j € Z. We omit
the details.

Proof of Proposition [1.8.7, part II1I: Completion of proof

We finish the proof of Proposition by establishing the bounds ([1.8.21)—(|1.8.26)). Here
we do not need to utilize the null structure. Moreover, instead of the normalizing the (S; / 2)b

norm as in (/6.3.1)), we normalize the slightly weaker (Ssl/ 2)b norm, i.e., we assume
1Bl = ALy = Wl = el gy, = 1
Note that the bounds (6.3.2)—(6.3.5) and (6.3.7)) still hold.

Step 0: Reduction to dyadic estimates

Let f denote either B or A. Under the normalization (6.3.1)), it clearly suffices to prove the
following dyadic bounds:

2 (kmin*kmaX)aklbkz’ (6331)

1
2
1
2

2 (kmin*kmatx)ak1 bk2. (6332)

||Pk0£(fk17 7pkg)”lﬂlﬁ
275K || Py £ frn s ) || £ 2

Step 1: Proof of (6.3.31]

We first use Lemma [5.6.1{ and (6.3.2) to estimate

AR ZAN

_1 1/2
| Pro £(frrs Yol 2222 S 2 2k2< Z |’P0kmm(0)fk1|’%2L°°> Dy -
Ckmin(o)

By Bernstein’s inequality, (6.3.4)) and (6.3.7)), we have
1/2
Z HPCkmin (O) Bkl ||%2Loo> §22kmin 2_%]‘:1 ak1’

Ch i, (0)

1/2 1
Z ||Pckmin (O)Alﬁ ||%2L°°> 52kmm2 2k Ay -
Ckmin (0)

(6.3.33)
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In each case, it can be checked (using Littlewood-Paley trichotomy and dividing into cases

kmin = k?(), kﬁl, k’g) that 6331 hOldS.
Step 2: Proof of (6.3.32)

We split into three cases.

Step 2.1: (high-high) interaction, kg = kmi,. Here the factor 2-3%0 on the LHS is detrimental,
and we need to perform an orthogonality argument using Lemma We claim that

1/2 1/2
1Pl gl S (3 WPey@fillizne) (D I1Pa,@0mlions) "~ (63.34)

Ciy (0) Cry (0)

Once (|6.3.34)) is proved, (6.3.32)) would follow from (|6.3.4) and (6.3.33)).

To prove the claim, we follow the proof of Lemma5.6.1, Let C°,C*,C?, I(t) and Icoc1 c2(2)
be as in the proof of Lemma [5.6.1] with g replaced by ¢. Since there are only finitely many
boxes C° = Cy, (0) in {|¢] =~ 2%}, we have

101 S WOl (3170 (=) (S P
ct c2

Then integrating and applying Holder in ¢ appropriately, the desired claim (6.3.34)) follows
by duality.

Steps 2.2 & 2.3: (low-high) or (high-low) interaction, k1 = kpi, or ko = kpin. These cases
are easier thanks to the factor 2725 on the LHS, as kg = kmax + O(1) by Littlewood-Paley

trichotomy. Indeed, by Hoélder’s inequality and the frequency envelope bounds (6.3.4) and
(6.3.24]) we have

_3 _3 _3 1
2725 Pro £ frr, Vo)l pipoe S 2727 fro | n2nee [k, | p2poe S 27 2Fmax22M12820, by,

which is acceptable.

Remark 6.3.8. In a general dimension d > 4, essentially every proof in this section is valid
with substitutions as in Remark The constant dy > 0 would change, since (6.3.6|) must
be replaced by

5;[1 s
Q5] 1y S 272 FRUHDE ”*H%HZH-

2
s,k

6.4 'Trilinear estimates for MD

In this section, we establish Proposition [1.8.8] We will first decompose the nonlinearity
further and treat the part for which the bilinear null structure suffices. We will then be left
with a part of the trilinear form

—AHII, 0", Rolly, 0*YRotp + O Pilly, 0!, R, o) R
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with certain restriction on the modulation and frequencies of the inputs and the output; for
the precise expression, see . This nonlinearity exhibits a similar multilinear null struc-
ture as , in the case of MKG. We thus complete the proof of Proposition m
by reducing the present case to the multilinear null form estimate in [31].

As before, we restrict to the case d = 4 for most part of this section. The argument is
simpler in the higher dimensional case d > 5; see Remark below.

Preliminaries: Conventions and definitions

Fix signs sy, 52,5 € {4+, —} and let a,a,b, c,d be admissible frequency envelopes. In this
section, we normalize the frequency envelope norms of the inputs as follows:

lAlls = 1472 = 1Blly; = 1Bl
16l gormy, = e g, = 162 gagey, = 1

From (6.4.1), it follows that A, B, obey the frequency envelope bounds (6.3.2))—(6.3.7)).
Note that also ¥ obeys the bound

=1

ll)a ?

(6.4.1)

(6.4.2)

Bl

1/2 i
sup (D2 1P Qarsortler) <2744

Moreover, o', ©? obey the same estimates with (s, ;) replaced by (si,c) and (s, dy), re-
spectively. The normalizations [|Al|z1 =1 and || B[z, = 1 imply

sup (E \IP“QJAkl\Llef <2710 Mgy, (6.4.3)
ji<k+C

3 L k)~
Sup_ (E ||PE“QJBk||L1Loo)2 <2107g. (6.4.4)
J<k+

To identify the part that we cannot handle with only bilinear estimates, we borrow some
definitions from [31]. Given k € Z and a translation-invariant bilinear operator L, define

HiL(f,9) = Y PQiL(Q<if,Q<s9), (6.4.5)
J<k4+Cso

HiL(f.9)= Y QuL(PQ;f Q<jg). (6.4.6)
J<k+C3

Here Cy, C5 > 0 are universal constants such that
1
500 < C; <(Ci <Oy < C[), (647)

where Cj is the constant in Lemma and (1 is the constant in the definitions (2.1.14})—
(2.1.15) of Zy and Z, ;..
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Given signs s, s2,s € {+, —}, we also define

51 S92 (f g) Z Hk()L(Tslfk1aPk2Tszg)7
ko,k1,ka: ko<ko—C2—10
My L(f,9) = > Py ToHj, L(f, Tsgr,)-

k‘o,kl,k‘gz k1 <k2705710

Further decomposition of A, and 7%
Consider the trilinear operator

7;?32 5(9017 @27 "p) = 852%:,8 (H81,82D71Pi<nsl 9017 R$H32¢2>Ri¢), (648)

where 07! denotes the Fourier multiplief®| with symbol (72—[¢[?)~. Our goal is to show that
all of T[A(TL,, !, I1,,0%)|Y except T.E, . can be handled by applying bilinear estimates in

§1,82,8
tandem. We use the auxiliary Z! norm as an intermediary

More precisely, under the normalization and f as in m we claim that

I = sm ™AL, 0! o)W = T, (07, 0%, ) a2y, S 1. (6.4.9)

Step 0: Reduction to bilinear estimates

Let a, b, ¢, d be admissible frequency envelopes. Define e, = (3., ax)bi and &, = (3, @i )by
We claim that

6.4.10

| (Lia — M2 )T AR o), Sl Al 1] g7, )
6.4.11)
)
)

1 om [AWH(N;/Q)E,SI!AHz;IWH(g;/z)b,
1T = Har ) AR, Pz, S s, 167 g5,
S
A5, (11

(

(

(6.4.12
319015 902)HZ01(1 5”901H(§;1/2)c H<102H(§512/2)d (6413
Assuming these estimates, we first conclude the proof of (6.4.9). Assume the normalization
(6.4.1). Note that Pl is disposable for any k € Z and s € {4, —}. Hence, from the bilinear
estimates (1.8.13)—(1.8.14)) and (6.4.12))—(6.4.13)), we obtain

A (T 0" @) lsn, + [[(1 = Hay o) A (T 00, T 0% [ 22, S 1,
|AS, (I, 0", 0% | (s1 210 S 10
Applying (6.4.10) and (6.4.11)) with e =a =cd, e = € = (3, cidi )b and
A= A(Hslgo ,1_[82(,0 ) = —szAR(Hslgpl, H52<p2) + AfQ(Hsl<p1, H82g02),

°In general, this ‘multiplier’ is problematic near {72 — |£|? = 0}; however, thanks to the modulation
projection Q; in the definition of Hs, s,, the expression Hs, 5,07 is well-defined and coincides with Hs, s, K,
where K f denotes the solution ¢ to O¢ = f with ¢[0] =
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we arrive at

||37TR[A(HS1Q017H82902)]¢ - SH:,SWR[%SLSQ(_SZARXH&‘P sy )W)” N2y,

Recalling the definitions of A and 7%, observe that

SQSH:,SWR[HSLSQAR(HMQO ’ 8290 )W 81 S2, 5(9017 sza ’QD)

162

Moreover, by Cauchy-Schwarz, the frequency envelope e is dominated by f as in ((1.8.27)).

The desired estimate (6.4.9)) follows.

Step 1: Proof of (6.4.10)

Under the normalization (6.4.1)) and the condition k; < ky — C5 — 5, we claim that:

HPkON<Ak1>¢k2) - PkoTstlN(Av Tswkz)”Nl/z S a’klbkz

(6.4.14)

Since TR[A]y) = 32, N(P<i_104, 1) by Proposition [5.4.4] (6.4.10) clearly follows from sum-

ming up ((6.4.14)) for k1 < ks — C5 — 10 and (6.3.20) in Remark [6.3.3| for k; €

10, ks — 10).
The proof of (6.4.14]) is identical to the proof of ([1.8.5) and is omitted.

Step 2: Proof of (6.4.11)
Assuming (6.4.1) and ky < ky — C5 — 5, we claim:
HPkoTstlN<A7 Tswb)”LlHl/? S dklbkr

As before, (6.4.11) clearly follows from (6.4.15).

The proof of (6.4.17) is the same as the proof of (1.8.6) and is omitted.

Step 3: Proof of (6.4.12)
For kg > ko — Cy — 20, we claim that

1 Peo N (ks 91,z S 200 Emenbmin) ey, .
Moreover, for kg < ky — Cy — 5, we claim that

| PeoN* (91,5 02,) — HioN* (Tos0h,, Toaioiy )|z S 2000 ey dy,.

[ky — C5 —

(6.4.15)

(6.4.16)

(6.4.17)

Since A" = M% = N* by Proposition (6.4.12) clearly follows from (6.4.16)) and

6.4.17).

The proofs of (6.4.16|) and (6.4.17) is very similar to the proof of (6.1.5)) and is omitted.
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Step 4: Proof of (6.4.13))

In this case, recall that OAY (Il -,-) = MZ (Il,,-,-) = N, (+,+) by Proposition [5.4.4]
Repeating the argument in Step 3, the following analogues of (6.4.16|) and (6.4.17)) can be
proved: For ky > ko — Cy — 20, we have

1PeoNorss (03, Mz S 2000 =msdey dy,, (6.4.18)

~Y

and for kg < ky — Cy — 5, we have

||Pk0-/\/’8182 (9011@'1’ 9022) - Hko-/\/’swz (TS1 @llcl’Tsz 9022)||DZ1 5 260(k0_k2)ck1 dk2' (6419)

We omit the straightforward details.
Under the condition ky < ko — C5 — 5, we claim furthermore that

||7‘[k0./\/'5132<30]1€1, QpiQ)HDZl 5 2k0_k20k1dk2- (6420)

Clearly, (6.4.13)) would follow from (6.4.18])—(6.4.20)).
To prove (6.4.20]), we need to estimate

I = PkoQ] S152 (Q<‘790k17 Q<]S0k’2)

in 7. We proceed similarly to the proof of Proposition and perform an orthogonality
argument using Lemma [5.5.5]

Let j < kg+ Cs and ¢ = %(] — ko)_. Fori=0,1,2, let C* be a rectangular box of the
form Cy,(¢). We split

Z Pko —COQ] 5182(PC1Q<3901<:17PCQQ<QSOI~:2)
coctlc?

Splitting Q; = QT 4+ Q; T and applying Lemma [5.5.5, we see that the summand on the
RHS vanishes unless (5.5.7)) is satisfied for s = + or —. In particular, by disposability of
PyFe, (9@; = PiPyQ; and Proposition it follows that

| Peg P-coQ N, s (Por Q201 P2 Q%207 )| 1 1
S2°2M7R2 | P Q20 | 2o || P2 Q0% L2 10w

Moreover, by Lemma [5.5.5, note that for a fixed C! [resp C?], there are only (uniformly)
bounded number of C% C? [resp. C° C!]| such that is satisfied with sy = + or —.
Summing up first in Cy (for which there are only ﬁnltely many terms) and then applying
Lemma to the summation in C',C? (which is essentially diagonal), we obtain

Z ||Pk0 COQJ 8182(Q<]<10k17 Q<g90k2)||L1L°°

_ s 1/2 s 1/2
S22 (S| PaQeh, e ) (Y I1PeQet )
Cct c2

(6.4.21)



CHAPTER 6. BILINEAR AND TRILINEAR ESTIMATES 164

Recall the convention P Fe, ) = P, Py. By (2.2.20) and (| - we have

1Phy QN s (PrQ50k, s PerQ 2507, oz S 280 F0)2k0 ko
Summing up in j < kg + Cy, (6.4.20]) follows.

Further decomposition of A, and 7*

We now deal with the term involving Ay = Ag(p!, ¢?) in 7€[Ag]e. Consider the trilinear
operator

Torsns (91,97, 0) = 525" (o 5n AL, 01, RolL, ") R).
We will show that all of 7#[Aq(IL,,¢", II,,0?)]¢ except T2,
estimates. The Z!;, norm will be used as an intermediary.

Under the normalization (6.4.1]), we claim that
“T‘-E[AU(H&@ ) 5290 )]w 51 52, s(@ 90 ¢)|| 1/2 < L. (6422)

can be handled by bilinear

Step 0: Reduction to bilinear estimates

Let a, b, ¢, d be admissible frequency envelopes. Define e, = (3, aw )i and &, = (3, Qi )Cr-
We claim that

1(Taxca = He )7 (Aol 12, Sl Aollyz 1€l 5102, (6.4.23)
742 [ Ao) (L + sn‘wuw)e <ol 46 g1 (6.4.24)
1722, P TARO Yl oy, SAollanypalll (6.4.25)
H(l - %81 52)A0(‘;0 ¥ )” (ZL)ed <HS01||(§;1/2)1)|’902H(§§2/2)67 (6'4'26)
Har.o (Ao + 52A8) (2", )l 22,0 S 5172), 107 5272, (6.4.27)
where
A", ¢%) = A7Hp" Rop®) = —A7Hp", RO?).
Assuming these estimates, we now prove (6.4.22)). Assume the normalization (6.4.1). By
(1.8.12)), (6.4.26) and (6.4.27)), as well as disposability of P;ll;, we have
||A0(H81S017H82<)02)“Y01d + ||(A0 - H81,82(_S2A0R))<H5190 ) 8290 )H 6” ed SJ L.
Applying (6.4.23)—(6.4.25) witha =a =cd, e =& = (3, cwdr )by and Ay = Ag(IL, ', I, 9?),
we obtain
||7TE[A0(HS1<10 ) 5290 )]1/J+ SH [%81,82(_82A0R)<HS190 ) 8290 )]R ¢H 1/2
By definition, observe that

S28H:,S7TE[H51,S2AOR(H51 901: s, )]RO@Z) 51 2, s(‘Pla 9027 V).

As before, the frequency envelope e is dominated by f as in ([1.8.27)) by Cauchy-Schwarz;
this completes the proof of (6.4.22]).
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Step 1: Proof of
Assuming and k; < ky — C5 — 5, it suffices to have:

| Py L( By, ) = Pro Ty, LB, Tty )| y1r2 S o iy - (6.4.28)
For this, we refer to the proof of .

Step 2: Proof of ((6.4.24))
Assuming (6.4.1) and k; < ko — C5 — 5, we claim:
||PkOTSH;:1£(B, TS(I4X4 -+ SRO)¢k2))||N;/2 < 2k1_k2aklbk2. (6429)

Y

Note that (6.4.29) is more than enough to prove ([6.4.24)) (i.e., the gain 2¥~*2 is unnecessary).
Fix j < ki + C3 and introduce the shorthand ¢ = (Ijx4 + sR%)¢. By (1.5.2)), Holder’s

inequality L2L> x L?L? — L'L?, Bernstein’s inequality and (6.3.7)), we have
- Lo -
1 Pey Q2 £(Q3Bry s Qs | e S 22572 ag, | Q2 0, || 1212

By (1.7.13)) and (6.3.3]), we have

~ 10y + s|D
1Qsiallioes =1Qss 5 vl
, | (6.4.30)
S YR Qut e S 25273,
J'<j
It follows that
1Pk @25 £(Q5 Bry, Q25 (Tasea + RO s S 2207020 R2ay, by,
Summing up in j < k; + C5, we obtain (6.4.29)) as desired.
Step 3: Proof of (6.4.25))
Assuming (6.4.1) and ky < ko — C5 — 5, it suffices to have:
||P/€0TSH21£(B7 Tswkz)HLlHl/? 5 ak‘1bk2‘ (6431)

See the proof of (1.8.6).

Step 4: Proof of ((6.4.20))

Under the normalization (6.4.1]), it suffices to prove the following dyadic bounds: For ky >
ko — Cy — 20, we claim that

1PN (24> i) azy, S 2000 ey dy,, (6.4.32)
and for kg < ky — 5, we claim that
1PeoN* (k> 1) — HioN* (T 0k, T az, S 2000 ey, dy,. (6.4.33)

We refer to the proof of (6.1.5)).
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Step 5: Proof of (6.4.27)
Assuming (6.4.1)) and ko < ko — Cy — 5, it suffices to prove

1Mo £(Tey 0k, Ty (Lasa + 53R G2, | azn, S 2200 %)y dy,. (6.4.34)

In order to ensure that the projections ()-; in Hy, are disposable, we perform an orthog-
onality argument as before. Fix j < kg + C5 and introduce the shorthands ¢ = %( Jj—ko)—
and @ = (I4x4 + 59R°)p?. For i =0, 1,2, let C* be a rectangular box of the form Cy, (¢). We
expand

PeyQiL(Q% 0k Q%00,) = > PoyP-coQiL(Por Q%04 , P2 Q%1 )
coclc?

By (L.5.9), we have
| Poy P-c0 Qi L(Por Q2 01, P2 Q201 )12 S N1 Por Q208 20 Q2@ 1212

Moreover, splitting Q); = Q;FTJr + @, T- and applying Lemma we see that the LHS
vanishes unless holds with sy = + or —. Thus for a fixed CT [resp. C?], there are only
(uniformly) bounded number of C°, C? [resp. C°, C'] such that LHS does not vanish. Summing
up first in Cy and then applying Lemma m to the (essentially diagonal) summation in
C!,C?, we obtain

. 1/2 .
1P QiL(Qeh, Q28 s S (S0 1P @2k s ) 1Q% B0 121
Cl

By ([2.2.24)), (6.3.5)) and (6.4.30)), we have
- 5 (j—ko)e 3 (ko—
1 Pro Qi L(QZ 01, Q208 | azn, S 2:U—R)gako=k2)ey dy,

Summing up in j < kg + C, the desired estimate (6.4.34}) follows.

Genuinely multilinear null form estimate

To complete the proof of Proposition [1.8.8] it remains to estimate
7;1,82#(9017 902? w) :7;?,82,5(901? 9027 w) + 7;]1%,5278(9017 9027 w)
:325< - H:,s (H81,52A_1 <H81 Qola R0H52 902>’R’077Z)) (6435)
+ H:,s (H51782D_1Pi<1_[81 @1’ RwHSQSOz),R’Zw)) .

This part has a multilinear null structure akin to ([1.7.8), (1.7.9) for MKG. In fact, thanks
to the way we have set things up, it is possible to directly borrow the relevant estimates in
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[31]. We introduce the trilinear operator

TN o ) = — M3 (Mo A LS 0120052,
1 (MO PLL 00200 f,).

where £ on both lines represent a single bilinear operator. Note that 77%,[( @ vanishes unless

|k — k'| < 3. Moreover, in [31, Eq. (136), (137) and (138); Appendix], the following estimate
was proved [ which is the massless analogue of (6.21)) :

Proposition 6.4.1. For k < min{ko, ki, ke, ks} — C and |k’ — k| < 3, we have

3
1P TEC (L, 12, ), S 200hFgkoghgkagks TT |1 |,

=1

Remark 6.4.2. The proof of ([6.4.36)) exploits the trilinear null structure (1.7.8), (1.7.9) orig-

inally uncovered in [34], which is sometimes referred to as the secondary null structure of
Maxwell-Klein—Gordon.

(6.4.36)

Plugging in

1

1
|D| Q<k3—3Ts¢)k37

HS1Q<k2 3T82§0}g27 f]§3 - m

sz = H51Q<k’1—3T5190]1€17 ka - =
observe that

Pk07;1782,5(90]1€17§0i27¢k3) = —828 Z PkO k]\g’[{G(fkj?ka’fk}g)
k<k3—Cj3—10
k' <ko—Co—10
By Proposition and the facts that k1 = ko + O(1), ks = ko + O(1), we have

HP’C07;1,82,8(9011§17 Spiga wks)HNg/Q S 2(SO(mm{kI7163}7161)Ckldkzbl%' (6437>

Keeping kq fixed and summing up in ky, ks, k3, we obtain

HPk07;1752,8(901> 9027 w)HNSl/2 Sz ( Z Ci’)l/Q( Z d%’)l/Qbko

k' <ko k' <ko

which completes the proof.

6We remark that in [31], this estimate is stated with the exponential factor 20(F=Fmin) instead of 20(F=F1),

A closer inspection of the proofs of [31, Eq. (136), (137) and (138)], however, reveals that (6.4.36) holds.
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Remark 6.4.3. In the higher dimensional case d > 5, all proofs in this section are valid with

_ d—2

the substitutions as in Remark [6.3.8] as well as Z! — Z“2° and Z4, — Z,7 . Moreover,
the multilinear null form estimate in Proposition [6.4.1] is unnecessary. We claim that the
following additional estimates hold:

R, 1 2 <AL 2

Horse Az (07,7 ja52)  Slle ||(Si53)b|!so ”(55253)0’ (6.4.38)
M s, Ao(ph, 02 o S| e 2 as 6.4.39
[ Hs, 50 A0(07, @ )ll( iz o ||(S§f3)b||90 ”(55273)6 ( )

L d=3
where the space Ss? does not involve the null frame spaces PWT(l) and NE; Combined

with (the higher dimensional analogues of) and ([6.4.25), we obtain an analogue of
Proposition [6.4.1] without relying on the null structure of 7y, 4, , discussed in Remark [6.4.2]

One can prove ([6.4.38)) and (6.4.39)) by following the argument of (6.4.20)). Alternatively,
one could use L?L* Strichartz estimates like in the proof of ([6.1.6)).
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