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Abstract

Global well-posedness and parametrices for critical Maxwell-Dirac and massive
Maxwell-Klein-Gordon equations with small Sobolev data

by

Cristian Dan Gavrus

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Daniel Tataru, Chair

In this thesis we prove global well-posedness and modified scattering for the massive
Maxwell-Klein-Gordon (MKG) and for the massless Maxwell-Dirac (MD) equations, in the
Coulomb gauge on R1+d (d ≥ 4), for data with small critical Sobolev norm.

For MKG, this work extends to the general case m2 > 0 the results of Krieger-Sterbenz-
Tataru (d = 4, 5) and Rodnianski-Tao (d ≥ 6), who considered the case m = 0. We proceed
by generalizing the global parametrix construction for the covariant wave operator and the
functional framework from the massless case to the Klein-Gordon setting. The equation
exhibits a trilinear cancelation structure identified by Machedon-Sterbenz. To treat it one
needs sharp L2 null form bounds, which we prove by estimating renormalized solutions in
null frames spaces similar to the ones considered by Bejenaru-Herr. To overcome logarithmic
divergences we rely on an embedding property of �−1 in conjunction with endpoint Strichartz
estimates in Lorentz spaces.

For MD, the main components of the proof consist of A) uncovering of the null structure of
Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant
Dirac equation. A key step for achieving both is to exploit and justify a deep analogy
between MD and MKG, which says that the most difficult part of MD takes essentially the
same form as parts of the Maxwell-Klein-Gordon structure. As a result, the aforementioned
functional framework and parametrix construction become applicable.
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Chapter 1

Introduction

1.1 Introduction and main results

In this thesis we consider the massive Maxwell-Klein-Gordon (MKG) equation and the mass-
less Maxwell-Dirac (MD) equation on Rd+1 for d ≥ 4.

The Minkowski space Rd+1 can be endowed with the metric g = diag(1,−1, . . . ,−1) or
η = diag(−1,+1, . . . ,+1) in the rectilinear coordinates (x0, x1, . . . , xd). Associated to the
Minkowski metric η are the gamma matrices, which are N ×N complex-valued matrices γµ

(µ = 0, 1, . . . , d) satisfying the anti-commutation relations

1

2
(γµγν + γνγµ) = −ηµν I4×4, (1.1.1)

where I4×4 is the N ×N identity matrix, and also the conjugation relations

(γµ)† = γ0γµγ0. (1.1.2)

On R1+d, the rank of the gamma matrices γµ in the standard representation is N = 2b
d+1

2
c

[56, Appendix E]. A spinor field ψ is a function on R1+d that takes values in CN , on which
γµ acts as multiplication.

Let φ : Rd+1 → C be a complex field, while Aα : Rd+1 → R is a real 1-form with curvature

Fαβ := ∂αAβ − ∂βAα.

One defines the covariant derivatives and the covariant Klein-Gordon operator by

Dαφ := (∂α + iAα)φ, �Am := DαDα +m2

Given a real-valued 1-form Aµ we similarly introduce the covariant derivative on spinors
Dµψ := ∂µψ + iAµψ which acts componentwisely on ψ.

The Maxwell-Klein-Gordon equation arises as the Euler-Lagrange equations for the La-
grangian

SMKG[Aµ, φ] =

∫∫
Rd+1

1

2
DαφDαφ+

1

4
FαβF

αβ − 1

2
m2 |φ|2 dx dt
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while Maxwell-Dirac arises from the Lagrangian

SMD[Aµ, ψ] =

∫∫
R1+d

i〈γµDµψ, γ
0ψ〉 − 1

4
FµνF

µν −m〈ψ, ψ〉 dxdt.

Here 〈ψ1, ψ2〉 := (ψ2)†ψ1 is the usual inner product on CN , where ψ† denotes the hermitian
transpose. Furthermore, we use the standard convention of raising and lowering indices using
the Minkowski metric, and the Einstein summation convention of summing repeated upper
and lower indices.

A brief computation shows that the Euler-Lagrange equations for SMKG[Aµ, φ] take the
form {

∂βFαβ = I(φDαφ),

(DαDα +m2)φ = 0,
(1.1.3)

while the Euler–Lagrange equations for SMD[Aµ, ψ] take the form{
∂νFµν =− 〈ψ, αµψ〉,

iαµDµψ =mβψ.
(MD)

where αµ = γ0γµ and β = γ0.
The MKG system (1.1.3) is considered to be the simplest classical field theory enjoying

a nontrivial gauge invariance. Indeed, for any real valued potential function χ, replacing

φ 7→ eiχφ, Aα 7→ Aα − ∂αχ, Dα 7→ eiχDαe
−iχ (1.1.4)

one obtains another solution to (1.1.3). The same hold with the transformation (Ã, ψ̃) =
(A − dχ, eiχψ) of (A,ψ) in the case of MD. To remove this gauge ambiguity we will work
with the Coulomb gauge

divxA = ∂jAj = 0 (1.1.5)

where Roman indices are used in sums over the spatial components. Both systems are
Lorentz invariant and admit a conserved energy, which we will not use here.

When m = 0 the equations are invariant under the scaling

φ 7→ λφ(λt, λx); Aα 7→ λAα(λt, λx)

respectively
ψ 7→ λ

3
2ψ(λt, λx); Aα 7→ λAα(λt, λx)

which implies that σ = d
2
− 1 is the critical regularity for MKG. We shall refer to Hσ ×

Hσ−1 × Ḣσ × Ḣσ−1 as the critical space for (φ,A)[0] also when m 6= 0. In the (m = 0) MD

case, the critical space for (ψ(0), A[0]) is Ḣσ− 1
2 × Ḣσ × Ḣσ−1.

At this regularity, globally in time, the mass term m2φ is not perturbative and must be
considered as part of the operator �Am.
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In this thesis, we will prove global well-posedness and scattering for the massive MKG
and for the massless (MD) (i.e. m = 0) on the Minkowski space R1+d with d ≥ 4 under the
Coulomb gauge condition (1.1.5), for initial data which are small in the scale-critical Sobolev
space.

Under the Coulomb gauge condition (1.1.5), denoting Jα = −I(φDαφ), the MKG system
(1.1.3) becomes 

�Amφ = 0

�Ai = PiJx
∆A0 = J0, ∆∂tA0 = ∂iJi

(1.1.6)

where P denotes the Leray projection onto divergence-free vector fields

PjA := ∆−1∂k(∂kAj − ∂jAk). (1.1.7)

The first result of this thesis consists in extending the results in [31], [47] to the case
m 6= 0. For a more detailed statement, see Theorem 3.0.1.

Theorem 1.1.1 ([16] Critical small data global well-posedness and scattering). Let d ≥ 4
and σ = d

2
− 1. The MKG equation (1.1.6) is globally well-posed for small initial data on

(R1+d, g) with m2 > 0, in the following sense: there exists a universal constant ε > 0 such
that:

1. Let (φ[0], Ax[0]) be a smooth initial data set satisfying the Coulomb condition (1.1.5) and
the smallness condition

‖φ[0]‖Hσ×Hσ−1 + ‖Ax[0]‖Ḣσ×Ḣσ−1 < ε. (1.1.8)

Then there exists a unique global smooth solution (φ,A) to the system (1.1.6) under the
Coulomb gauge condition (1.1.5) on R1+d with these data.

2. For any T > 0, the data-to-solution map (φ[0], Ax[0]) 7→ (φ, ∂tφ,Ax, ∂tAx) extends con-
tinuously to

Hσ ×Hσ−1 × Ḣσ × Ḣσ−1(Rd) ∩ {(1.1.8)} → C([−T, T ];Hσ ×Hσ−1 × Ḣσ × Ḣσ−1(Rd)).

3. The solution (φ,A) exhibits modified scattering as t → ±∞: there exist a solution
(φ±∞, A±∞j ) to the linear system

�A±∞j = 0, �A
free

m φ = 0, such that

‖(φ− φ±∞)[t]‖Hσ×Hσ−1 + ‖(Aj − A±∞j )[t]‖Ḣσ×Ḣσ−1 → 0 as t→ ±∞,

where Afree is the free solution of �Afree = 0 with Afreex [0] = Ax[0] and Afree0 = 0.
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For Maxwell-Dirac we have the following result, which was obtained in collaboration with
Sung-Jin Oh [17]:

Theorem 1.1.2 ([17] Critical small data global well-posedness and scattering). Consider
(MD) on (R1+d, η) with m = 0 for d ≥ 4 and let σ = d

2
−1. There exists a universal constant

ε∗ > 0 such that the following statements hold.

1. Let (ψ(0), Aj(0), ∂tAj(0)) be a smooth initial data set satisfying the Coulomb condition
(1.1.5) and the smallness condition

‖ψ(0)‖Ḣσ−1/2(Rd) + sup
j=1,...,4

‖(Aj, ∂tAj)(0)‖Ḣσ×Ḣσ−1(Rd) < ε∗. (1.1.9)

Then there exists a unique global smooth solution (ψ,A) to the system (MD) under the
Coulomb gauge condition (1.1.5) on R1+d with these data.

2. For any T > 0, the data-to-solution map (ψ,Aj, ∂tAj)(0) 7→ (ψ,Aj, ∂tAj) extends contin-
uously to

Ḣσ−1/2 × Ḣσ × Ḣσ−1(Rd) ∩ {(1.1.9) holds} → C([0, T ]; Ḣσ−1/2 × Ḣσ × Ḣσ−1(Rd)).

The same statement holds on the interval [−T, 0].

3. For each sign ±, the solution (ψ,A) exhibits modified scattering as t→ ±∞, in the sense
that there exist a solution (ψ±∞, A±∞j ) to the linear system{

�A±∞j =0,

αµDB
µψ
±∞ =0,

such that

‖(ψ − ψ±∞j )(t)‖Ḣσ−1/2(Rd) + ‖(Aj − A±∞j )[t]‖Ḣσ×Ḣσ−1(Rd) → 0 as t→ ±∞.

Here, B0 = 0 and Bj can be taken to be either the solution Afree to �Afree = 0 with data

Afreej [0] = Aj[0], or Bj = A±∞j .

For both results the case d = 4 is the most difficult. When d ≥ 5 the argument simplifies,
in particular the spaces NE±C , PW

±
C , L

2L4,2 are not needed. To fix notation, the reader is
advised to set d = 4, σ = 1. In fact, for the sake of concreteness, for the MD equation we
focus on the case d = 4, where we present the proof of Theorem 1.1.2 in detail and then
refer to Remarks 1.8.5, 3.0.3, 6.3.8, 6.4.3 and 4.3.1 for the necessary modifications of the
argument for d ≥ 5.
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Remark 1.1.3. The theorems are stated for Coulomb initial data. However, they can be
applied to arbitrary initial data satisfying the smallness conditions by performing a gauge
transformation. Given a real 1-form Aj(0) on Rd, one solves the Poisson equation

∆χ = divxAj(0), χ ∈ Ḣ
d
2 ∩ Ẇ 1,d(Rd).

Then Ã(0) = A(0) − dχ obeys the Coulomb condition (1.1.5). For small ε, the small data
condition is preserved up to multiplication by a constant.

In what follows, in the context of MKG we set m = 1, noting that by rescaling, the
statements for any m 6= 0 can be obtained. Notation-wise, we will write �m rather than �1.
In the case of MD we set m = 0, although by examining the proofs of the MKG estimates it
becomes clear that one could also obtain the similar result for the massive MD.

In the rest of this chapter we describe the physical motivation and the main ideas ideas
of this thesis (null structures, the non-perturbative nonlinearities, the parametrix, adapted
function spaces and the the parallelism between MD and MKG). We also review the previous
work and set up the notation and definitions. Finally, we present the decompositions of the
nonlinearities and state the main estimates as well as the solvability theorems.

In chapter 2 we define the function spaces and present their embeddings properties and
the motivation for the choice of norms. With various localizations, we need Xs,b, Strichartz
and L1L∞ spaces, Lorentz spaces and adapted L∞tω,λL

2
xω,λ

, L2
tω,λ

L∞xω,λ spaces.
In chapter 3 we give the proofs of the main theorems using the nonlinear estimates and

the parametrix theorems stated in this chapter. We discuss existence and uniqueness, fre-
quency envelopes bounds, weak Lipschitz dependence, subcritical well-posedness, persistence
of regularity, continuous dependence on the initial data and modified scattering.

In chapter 4 we present the motivation and the construction of the parametrices for
covariant Klein-Gordon and Dirac equations. We give the proofs of Theorems 1.6.1, 1.6.2
and Prop. 1.8.11. We discuss the main properties of the phases, decomposable estimates,
oscillatory integrals estimates and the conjugation.

Chapter 5 is devoted to a detailed analysis of the core translation-invariant bilinear forms
that play a role in our equations. We discuss the classical N0, Nij and spinorial null forms,
how to adapt N0 to the Klein-Gordon equation, the geometry of frequency interactions as
well as some refinements of Hölder’s inequality.

Chapter 6 contains the proofs of the bilinear and trilinear estimates from section 1.8.
Using the spaces introduced in chapter 2 these proofs rely on the analysis from chapter 5.

1.2 Physical motivation

We begin with a short review of relativistic mechanics and then discuss the historical mo-
tivation of our equations following [14]. The units are chosen such that c = 1. Con-
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sider a free particle on R3+1 with Lagrangian L = −m
√

1− |v|2. The conjugate mo-

mentum is p = ∇vL = mv√
1−|v|2

while the energy equals E = p · v − L = m√
1−|v|2

. The

energy E and the momentum p = (px, py, pz) combine into the four-momentum vector
pµ = (E,p). The Minkowski norm of this vector equals the square of the particle’s mass:
pµpµ = E2 − |p|2 = m2.

Now consider a given electromagnetic field with potential Aµ = (φ,A). The action
functional of a charged particle with mass m and charge e moving in this field is

S =

∫ (t1,x1)

(t0,x0)

−mds− eAµdxµ.

Writing the Lagrangian in coordinates (t,x) we obtain L = −m
√

1− |v|2 + eA · v − eφ

where v = dx/dt. We compute the canonical momentum

p = ∇vL =
mv√

1− |v|2
+ eA = pk + eA.

The corresponding Hamiltonian

H = p · v − L =
m√

1− |v|2
+ eφ, and note H =

√
m2 + |p− eA|2 + eφ.

In analogy with the free particle we denote by pµ the 4-vector consisting of the total energy
H and the canonical momentum p. The last equation states that the Lorentz product equals

(p− eA)2 = (pµ − eAµ)(pµ − eAµ) = (E − eφ)2 − |p− eA|2 = m2. (1.2.1)

Klein-Gordon and Dirac

The Klein-Gordon and Dirac equations arose out of the desire to obtain relativistic alterna-
tives to the Schrödinger equation

i∂tψ = −(1/2m)∆ψ + V ψ.

In this context the potential V is meant to be replaced by an electromagnetic field, while
the energy and momentum are quantized by

pµ → i∂µ. (1.2.2)

Applying this quantization to the energy-momentum relation p2 = m2 we obtain the Klein-
Gordon equation1:

(∂2
t −∆)φ+m2φ = 0. (1.2.3)

1Introduced in 1926 by physicists Oskar Klein and Walter Gordon
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Because this equation is second order in the time derivative, we must specify initial values
for both φ and ∂tφ. Thus φ itself cannot maintain the role of determining the probability
density of the position of the particle. To obtain an equation that is of first order in t, one
could replace (1.2.3) by i∂tψ = Aψ where A = (−∆ + m2)1/2. This would resemble the
Schrödinger equation, but then the resulting equality is no longer a differential equation.

Dirac’s idea was that it is possible to obtain a Lorentz-invariant differential equation of
type

i∂tψ = Hψ (1.2.4)

provided that one allows vector-valued wave functions ψ. If we impose H2 = −∆ +m2 and
consider

H =
1

i
(α1∂1 + α2∂2 + α3∂3) +mβ,

by squaring this operator and collecting the terms, we must have

αjαk + αkαj = 2δjkI, αjβ + βαj = 0, β2 = I.

Then (1.2.4) can be put in the form of the covariant Dirac equation 2

iγµ∂µψ = mψ.

One benefit of this model is that it satisfies a conservation of probability law, unlike the
Klein-Gordon equation: if jµ = ψ̄γµψ, we have ∂µj

µ = 0. Then j0 = ψ†ψ is the probability
density of the position of the particle.

Varying with respect to ψ̄ in the action functional∫
iψ̄γµ∂µψ −mψ̄ψ dxdt

one obtains the Dirac equation (while varying ψ results in the adjoint Dirac equation).
Previously we obtained the energy-momentum vector for a particle in an electromagnetic

field from the 4-vector of a free particle by replacing pµ by pµ−eAµ. This suggests to replace
(1.2.2) by

i∂µ → i∂µ − eAµ. (1.2.5)

in the action functional, which results in the equation

γµ(i∂µ − eAµ)ψ −mψ = 0.

Most treatments of the Dirac equation consider the electromagnetic field as given and
ignore the Dirac current as a source for the Maxwell equations. To couple the Dirac equation
with the Maxwell equation we add the term −1/4FµνF

µν to the Lagrangian, where Fµν =
∂µAν−∂νAµ. The resulting system is the Maxwell-Dirac equation. Similarly one couples the
Klein-Gordon equation (1.2.3) with Maxwell’s equations.

2Formulated in 1928 by the British physicist Paul Dirac.
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1.3 Main ideas

We now provide an outline of the main ideas of this thesis.

Null structures in the Coulomb gauge.

Null structures arise in equations from mathematical physics which exhibit covariance prop-
erties. They manifest through the vanishing of resonant components of the nonlinearities
of such equations, and their presence is fundamental in obtaining well-posedness at low
regularity.

An important component of the proof is uncovering the null structure of (MD) in the
Coulomb gauge, which involves both classical (i.e., scalar) and spinorial null forms.

A classical null form for scalar inputs refers to a linear combination of

Nij(φ, ψ) = ∂iφ∂jψ − ∂jφ∂iψ, N0(φ, ψ) = ∂αφ · ∂αψ. (1.3.1)

These null forms initially arose in the study of global-in-time behavior of nonlinear wave
equations with small, smooth and localized data [24]. Remarkably, in the work [26] of
Klainerman and Machedon, it was realized that the same structure is essential for establishing
low regularity well-posedness as well.

Among the first applications of this idea was the proof of global well-posedness at en-
ergy regularity of the Maxwell–Klein–Gordon equations on R1+3 [25]. A key observation
in [25] was that quadratic nonlinearities of Maxwell–Klein–Gordon in the Coulomb gauge
consist of null forms of the type Nij. Furthermore, in the proof of essentially optimal local
well-posedness of MKG in R1+3 by Machedon and Sterbenz [34], a secondary trilinear null
structure involving N0 was identified in the system after one iteration.

Both of these structures played an important role in [31], and they also do so here.
However, special care must be taken since the null form N0 is adapted to the wave equation
while we will also work with Klein-Gordon waves.

Another type of null structures that arise in this work are spinorial null forms. These are
bilinear forms with the symbol

Π±(ξ)Π∓(η), where Π±(ξ) :=
1

2

(
I4×4 ∓

αjξj
|ξ|

)
,

which were first uncovered by D’Ancona, Foschi, Selberg for the Dirac–Klein–Gordon system
in [9]. These authors further investigated the spinorial null forms in the study of the Maxwell–
Dirac equation on R1+3 in the Lorenz gauge (in [10]; see also [11]). In the work of Bejenaru–
Herr [4, 3] and Bournaveas–Candy [6], these null forms were used in the proof of global
well-posedness of the cubic Dirac equation for small critical data.

A more detailed exposition of the null structure of MD-CG is given in Section 5.4. At
this point we simply note that the null structure alone is insufficient to close the proofs due
to the presence of non-perturbative nonlinearity.
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Presence of non-perturbative nonlinearity

As in many previous works on low regularity well-posedness, we take a paradifferential ap-
proach in treating the nonlinear terms, exploiting the fact that the high-high to low inter-
actions are weaker and that terms where the derivative falls on low frequencies are weaker
as well.

From this point of view, the worst interaction occurs in the frequency-localized compo-
nents of the scalar part of MKG ∑

k

Aα<k−C∂αP̄kφ

and of the Dirac part of MD ∑
k

αµP<k−CAµPkψ.

At critical Sobolev regularity these terms are non-perturbative, in the sense that even
after utilizing all available null structure, they cannot be treated with multilinear estimates
for the usual wave, Klein-Gordon and Dirac equations. Instead, following the model set
in the work of Rodnianski–Tao [47] and Krieger–Sterbenz–Tataru [31] on MKG-CG, these
terms must be viewed as a part of the underlying linear operators, and we must prove their
solvability in appropriate function spaces. In fact, in the case of MD we establish solvability
of the covariant Dirac operator αµDµ; see Proposition 1.8.11 below. We note that this is
the reason why we have modified scattering, as opposed to scattering to a free field.

The presence of a non-perturbative term is characteristic of geometric wave equations
with derivative nonlinearity, whose examples include Wave maps, Maxwell–Klein–Gordon,
Yang–Mills.

Parametrix construction for paradifferential covariant wave
equation

The key to addressing the non-perturbative nonlinearity is through a suitable renormaliza-
tion.

A key breakthrough of Rodnianski and Tao [47] was proving Strichartz estimates for the
covariant wave equation by introducing a microlocal parametrix construction, motivated by
the gauge covariance of �A = DαDα under (1.1.4), i.e., e−iΨ�A′(eiΨφ) = �Aφ. The idea was
to approximately conjugate (or renormalize) the modified d’Alembertian �+2iA<k−c ·∇xPk
to � by means of a carefully constructed pseudodifferential gauge transformation

�pA ≈ eiΨ±(t, x,D)�e−iΨ±(D, s, y).

These Strichartz estimates were sufficient to prove global regularity of the Maxwell-Klein-
Gordon equation at small critical Sobolev data in dimensions d ≥ 6. We discuss this con-
struction in chapter 4, which also extends to massive case and to the half-wave case.
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As explained below, this construction will also provide the basis for the proof of solvability
of the covariant Dirac equation. Moreover, a renormalization procedure has been also applied
to the Yang-Mills equation at critical regularity [30], [32].

Function spaces

In [31], Krieger, Sterbenz and Tataru further advanced the parametrix idea in d = 4, showing
that it interacts well with the function spaces previously introduced for critical wave maps
in [54], [52]. In particular, the resulting solution obeys similar bounds as ordinary waves,
yielding control of an Xs,b norm, null-frame norms and square summed angular-localized
Strichartz norms.

Here we will follow their strategy, showing that both the spaces and the renormalization
bounds generalize to the Klein-Gordon (m2 > 0) context.

Critical Xs,± 1
2 spaces, ’null’ energy L∞tω,λL

2
xω,λ

and Strichartz L2
tω,λ

L∞xω,λ spaces in adapted

frames, were already developed for the Klein-Gordon operators by Bejenaru and Herr [4]
and we will use some of their ideas. The difficulty here consists in proving the bounds for
renormalized solutions

‖e−iψ(t, x,D)φ‖S̄1
k
. ‖φ[0]‖H1×L2 + ‖�mφ‖N̄k .

We shall rely on TT ∗ and stationary phase arguments for both L∞tω,λL
2
xω,λ

and L2
tω,λ

L∞xω,λ
bounds, as well for PCL

2L∞, see Corollaries 4.6.9, 4.6.6 and 4.6.4.
However, at low frequency or at high frequencies with very small angle interactions, the

adapted frame spaces do not work and we are confronted with logarithmic divergences. To
overcome this we rely on Strichartz estimates in Lorentz spaces L2L4,2 and an embedding
property of �−1 into L1L∞.

Here we have been inspired by the paper [50] of Shatah and Struwe. The difference is
that instead of inverting ∆ by a type of Sobolev embedding |Dx|−1 : Ld,1x → L∞x , we have to
invert � by

2
1
2
l
∑
k′

P ω
l Qk′+2lPk′

1

�
: L1L2,1 → L1L∞

See Proposition 2.2.2 for more details.

Parallelism between Maxwell–Dirac and Maxwell–Klein–Gordon

In proving solvability of the covariant Dirac operator, as well as uncovering the null structure
of MD-CG, we exploit a deep parallelism between the Maxwell–Dirac and the Maxwell–
Klein–Gordon equations. On one hand, it provides a clear guiding principle that we hope
would be useful in the future study of other Dirac equations. On the other hand, it allows
us to borrow some key bounds directly from the massless Maxwell–Klein–Gordon case [31],
which simplifies the proof.
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Historically, the Dirac equation emerged in an attempt to take the ‘square root’ of the
Klein–Gordon equation in order to obtain an equation that is first order in time. Thus
‘squaring’ the Dirac component of the system leads to an equation that looks like the Klein–
Gordon part of MKG. Unfortunately, as noted in [10], this idea seems to be of limited use,
since squaring the Dirac equation destroys most of the spinorial null structure.

An alternative, more fruitful approach was put forth in [10], which we follow in this
thesis. The idea is to first take the spatial Fourier transform and diagonalize the Dirac
operator αµ∂µ, decomposing the spinor as ψ = ψ+ + ψ− where ψ± obey appropriate half-
wave equations. Splitting ψ in the nonlinearity αµAµψ into ψ+ + ψ− as well, we can divide
the equation into two parts: the scalar part, which consists of contribution of ψ± without
multiplication by αµ, and the remaining spinorial part. A similar decomposition can be
performed for the nonlinearity of the Maxwell equations.

One of the key observations is that the spinorial part enjoys a more favorable null struc-
ture compared to the scalar part. In particular, it is entirely perturbative, and furthermore
the secondary null structure à la Machedon–Sterbenz [34] is unnecessary. We refer to Re-
mark 5.4.5 for a more detailed explanation.

For the remaining scalar part, we observe that its structure closely parallels that of MKG;
see Remark 1.7.9 for the detailed statement. As a consequence of this parallelism, we show
that MD-CG exhibits a nearly identical secondary null structure as the one from MKG
(uncovered in [34]); see Section 6.4. Furthermore, the microlocal parametrix construction in
[31] can be borrowed as a black box to establish key estimates in the proof of solvability of
the covariant Dirac equation, which handles the non-perturbative nonlinearity.

1.4 Previous work

The connection between the Maxwell-Klein-Gordon and Maxwell-Dirac equations is that the
MKG equation can be considered a scalar counterpart to MD. The paper [31] of Krieger–
Sterbenz–Tataru was the main motivation and inspiration for both Theorem 1.1.1 and 1.1.2.

Progress on the Maxwell-Klein-Gordon equation has occurred in conjunction with the
Yang–Mills(-Higgs) equations. An early result was obtained by Eardley and Moncrief [12].

On R2+1 and R3+1 the MKG system is energy subcritical. Klainerman-Machedon [25] and
Selberg-Tesfahun [49] (in the Lorenz gauge) have proved global regularity as a consequence
of local well-posedness at the energy regularity. Further results were obtained by Cuccagna
[8]. Machedon-Sterbenz [34] proved an essentially optimal local well-posedness result. In
[22] in R3+1, global well-posedness below the energy norm was considered.

On R4+1, an almost optimal local well-posedness result was proved by Klainerman-Tataru
[28] for a model problem closely related to MKG and Yang-Mills. This was refined by Selberg
[48] for MKG and Sterbenz [51].

At critical regularity all the existing results are for the massless case m = 0. Rodnianski-
Tao [47] proved global regularity for smooth and small critical Sobolev data in dimensions
6 + 1 and higher. This result was extended by Krieger-Sterbenz-Tataru [31] to R4+1.
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The small data R4+1 energy critical massless result in [31] has been extended to large data
global well-posedness by Oh-Tataru ([41],[42],[43]) and independently by Krieger-Lührmann
[29]. Proving a similar large data result for the massive case remains an open problem. In
contrast, although (MD) is also energy critical on R1+4, the energy for (MD) is not coercive;
therefore it remains unclear whether Theorem 1.1.2 may be extended to large data.

Now we provide a brief survey of previous results on Maxwell-Dirac. After early work on
local well-posedness of (MD) on R1+3 by Gross [20] and Bournaveas [5], D’Ancona–Foschi–
Selberg [10] established local well-posedness of (MD) on R1+3 in the Lorenz gauge ∂µAµ = 0
for data ψ(0) ∈ Hε, Aµ[0] ∈ H1/2+ε×H−1/2+ε, which is almost optimal. In the course of their
proof, a deep system null structure of (MD) in the Lorenz gauge was uncovered. Although we
work in a different gauge, our work develop upon many ideas from [10]. D’Ancona–Selberg
[11] extended this approach to (MD) on R1+2 and proved global well-posedness in the charge
class.

Regarding (MD) on R1+3, we also mention [7, 18, 13, 46] on global well-posedness for
small, smooth and localized data, [1, 35] on the non-relativistic limit and [36] on uncondi-
tional uniqueness at regularity ψ ∈ CtH1/2, Ax[·] ∈ Ct(H1 × L2) in the Coulomb gauge.

Finally, we note that optimal small data global well-posedness was proved recently for the
cubic Dirac equation in R1+2 and R1+3 by Bejenaru–Herr [4, 3] (massive) and Bournaveas–
Candy [6] (massless). This equation features a spinorial null structure similar to what is
considered in this work. Recent works on Yang-Mills include: [30], [32], [40], [39].

1.5 Preliminaries

Notation

We denote
〈ξ〉k = (2−2k + |ξ|2)

1
2 , 〈ξ〉 = (1 + |ξ|2)

1
2 .

We define A ≺ B by A ≤ B − C, A . B by A ≤ CB and A = B + O(1) by |A−B| ≤ C,
for some absolute constant C. We say A� B when A ≤ ηB for a small constant 0 < η < 1
and A ' B when he have both A . B and B . A.

Given C, C ′ ⊆ Rd, we use the notation −C = {−ξ : ξ ∈ C} and C + C ′ = {ξ + η : ξ ∈
C, η ∈ C ′}. Moreover, we define the angular distance between C and C ′ as

|∠(C, C ′)| := inf{|∠(ξ, η)| : ξ ∈ C, η ∈ C ′}.

Frequency projections

Let χ be a smooth non-negative bump function supported on [2−2, 22] which satisfies the
partition of unity property ∑

k′∈Z

χ
(
|ξ| /2k′

)
= 1
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for ξ 6= 0. For k′ ∈ Z, k ≥ 0 we define the Littlewood-Paley operators Pk′ , P̄k by

P̂k′f(ξ) = χ
(
|ξ| /2k′

)
f̂(ξ), P̄0 =

∑
k′≤0

Pk′ , P̄k = Pk, for k ≥ 1.

The modulation operators Qj, Q
±
j , Q̄j, Q̄

±
j are defined by

F(Q̄±j f)(τ, ξ) = χ
( |±τ − 〈ξ〉|

2j

)
Ff(τ, ξ), F(Q±j f)(τ, ξ) = χ

( |±τ − |ξ||
2j

)
Ff(τ, ξ).

and Qj = Q+
j + Q−j , Q̄j = Q̄+

j + Q̄−j for j ∈ Z, where F denotes the space-time Fourier
transform.

Given ` ≤ 0 we consider a collection of directions ω on the unit sphere which is maximally
2`-separated. To each ω we associate a smooth cutoff function mω supported on a cap
κ ⊂ Sd−1 of radius ' 2` around ω, with the property that

∑
ωmω = 1. We define P ω

` (or Pκ
)to be the spatial Fourier multiplier with symbol mω(ξ/ |ξ|). In a similar vein, we consider
rectangular boxes Ck′(`′) of dimensions 2k

′ × (2k
′+`′)d−1, where the 2k

′
side lies in the radial

direction, which cover Rd and have finite overlap with each other. We then define PCk′ (`′)
to be the associated smooth spatial frequency localization to Ck′(`′). For convenience, we
choose the blocks so that PkP

ω
` = PCk(`).

We will often abbreviate Ak′ = Pk′f or φk = P̄kφ. We will sometimes use the operators
P̃k, Q̃j/<j, P̃

ω
` with symbols given by bump functions which equal 1 on the support of the

multipliers Pk, Qj/<j and P ω
` respectively and which are adapted to an enlargement of these

supports.
Given a sign s ∈ {+,−}, define Ts as

T̃+f(τ, ξ) = 1{τ>0}f̃(τ, ξ), T̃−f(τ, ξ) = 1{τ≤0}f̃(τ, ξ).

For all j, we have Qj/<jTs = Qs
j/<jTs. Moreover, for j ≤ k − 3, we have

PkQj/<jTs = PkQ
s
j/<j, PkQj/<j =

∑
s∈{+,−}

PkQ
s
j/<j.

We call a multiplier disposable when its convolution kernel is a function (or measure)
with bounded mass. Minkowski’s inequality insures that disposable operators are bounded
on translation-invariant normed spaces. Examples include Pk, P

ω
` , PC.

For any Q�j/<j ∈ {Qs
j , Q

s
<j, Qj, Q<j} with j ∈ Z, the operator PkQ

�
j/<j is disposable if

j ≥ k − C [52, Lemma 3]. In general, one has

‖PkQ�j/<jf‖LqLr . 2d(k−j)+‖f‖LqLr (1 ≤ q, r ≤ ∞) (1.5.1)

In the case r = 2, we have an unconditional estimate [52, Lemma 4]:

‖PkQ�j/<jf‖LqL2 . ‖f‖LqL2 (1 ≤ q ≤ ∞). (1.5.2)

When j ≥ k + 2` − C the operator PkP
ω
` Qj/<j is disposable [52, Lemma 6]. Similar

considerations apply to Q±j Q̄j, P̄k etc.
We also record the following identity.
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Lemma 1.5.1 (Commutator identity). We can write

P<k(fg) = fP<kg + L(∇xf, 2
−kg)

where L is a translation-invariant bilinear operator with integrable kernel.

Proof. See [52, lemma 2].

Sector projections

For ω ∈ Sd−1 and 0 < θ . 1 we define the sector projections Πω
>θ by

Π̂ω
>θu(ξ) =

(
1− η(∠(ξ, ω)θ−1)

)(
1− η(∠(ξ,−ω)θ−1)

)
û(ξ) (1.5.3)

where η is a bump function on the unit scale. We define

Πω
<θ = 1− Πω

>θ, Πω
θ = Πω

>θ/2 − Πω
>θ. (1.5.4)

Adapted frames

Following [4], for λ > 0 and ω ∈ Sd−1 we define the frame

ωλ =
1√

1 + λ2
(±λ, ω), ω̄λ =

1√
1 + λ2

(±1,−λω), ω⊥i ∈ (0, ω⊥) (1.5.5)

and the coordinates in this frame

tω = (t, x) · ωλ, x1
ω = (t, x) · ω̄λ, x′ω,i = x · ω⊥i (1.5.6)

When λ = 1 one obtains the null coordinates as in [54], [52].
For these frames we define the spaces L∞tωL

2
x1
ω ,x
′
ω
, L2

tωL
∞
x1
ω ,x
′
ω

in the usual way, which we

denote L∞tω,λL
2
xω ,λ

, L2
tω,λ

L∞xω,λ to emphasize the dependence on λ.

Pseudodifferential operators

To implement the renormalization we will use pseudodifferential operators. For symbols
a(x, ξ) : Rd × Rd → C one defines the left quantization a(x,D) by

a(x,D)u =

∫
Rd
eix·ξa(x, ξ)û(ξ) dξ (1.5.7)

while the right quantization a(D, y) is defined by

a(D, y)u =

∫∫
Rd×Rd

ei(x−y)·ξa(y, ξ)u(y) dy dξ. (1.5.8)

Observe that a(x,D)∗ = ā(D, y). We will only work with symbols which are compactly
supported in ξ.



CHAPTER 1. INTRODUCTION 15

Bilinear forms

We denote by L a translation-invariant bilinear operator on Rd whose kernel has bounded
mass, i.e.,

L(f, g)(x) =

∫
K(x− y1, x− y2)f(y1)g(y2) dy1dy2

where K is a measure on Rd × Rd with bounded mass. As a consequence, L(f, g) obeys a
Hölder-type inequality

‖L(f, g)‖Lp . ‖f‖Lq1‖g‖Lq2 (1.5.9)

for any exponents 1 ≤ p, q1, q2 ≤ ∞ such that p−1 = q−1
1 + q−2

2 .
We say that the translation-invariant bilinear form M(φ1, φ2) has symbol m(ξ1, ξ2) if

M(φ1, φ2)(x) =

∫
Rd×Rd

eix·(ξ1+ξ2)m(ξ1, ξ2)φ̂1(ξ1)φ̂2(ξ2) dξ1 dξ2.

We make the analogous definition for functions defined on R1+d and symbols m(Ξ1,Ξ2) where
Ξi = (τi, ξi).

Stationary/non-stationary phase

We will bound oscillatory integrals using the stationary and non-stationary phase methods.
For proofs of these two propositions as stated here see [21].

Proposition 1.5.2. Suppose K ⊂ Rn is a compact set, X is an open neighborhood of K
and N ≥ 0. If u ∈ CN

0 (K), f ∈ CN+1(X) and f is real valued, then∣∣∣∣∫ eiλf(x)u(x) dx

∣∣∣∣ ≤ C
1

λN
sup
|α|≤N

|Dαu| |f ′||α|−2N
, λ > 0 (1.5.10)

where C is bounded when f stays in a bounded set in CN+1(X).

Proposition 1.5.3 (Stationary phase). Suppose K ⊂ Rn is a compact set, X is an open
neighborhood of K and k ≥ 1. If u ∈ C2k

0 (K), f ∈ C3k+1(X) and f is real valued, f ′(x0) =
0, detf ′′(x0) 6= 0, f 6= 0 in K \ {x0}, then for λ > 0 we have∣∣∣∣∣
∫
eiλf(x)u(x) dx− eiλf(x0)

(
det(λf ′′(x0))

2πi

)− 1
2 ∑
j<k

1

λj
Lju

∣∣∣∣∣ ≤ C
1

λk

∑
|α|≤2k

sup |Dαu| (1.5.11)

where C is bounded when f stays in a bounded set in C3k+1(X) and |x− x0| / |f ′(x)| has a
uniform bound. Lj are differential operators of order 2j acting on u at x0.

Moreover, one controls derivatives in λ (see [38, Lemma 2.35]):∣∣∣∣∂jλ ∫ eiλ[f(x)−f(x0)]u(x) dx

∣∣∣∣ ≤ C
1

λ
n
2

+j
, j ≥ 1. (1.5.12)
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Lp estimates

We will frequently use Bernstein’s inequality, which states that

‖u‖Lqx . |V |
1
p
− 1
q ‖u‖Lpx

when û is supported in a box of volume V and 1 ≤ p ≤ q ≤ ∞. In particular,

‖Pku‖Lqx . 2dk( 1
p
− 1
q

)‖Pku‖Lpx , ‖PCk′ (`′)u‖Lqx . 2(dk′+(d−1)`′)( 1
p
− 1
q

)‖PCk′ (`′)u‖Lpx

For L2 estimates we will rely on

Lemma 1.5.4 (Schur’s test). Let K : Rn × Rn → C and the operator T defined by

Tf(x) =

∫
Rn
K(x, y)f(y) dy

which satisfies

sup
x

∫
|K(x, y)| dy ≤M, sup

y

∫
|K(x, y)| dx ≤M.

Then
‖T‖L2(Rn)→L2(Rn) ≤M

We also state a simple abstract summation lemma. Roughly speaking, it is the Cauchy-
Schwarz inequality for an ‘essentially diagonal’ sum.

Lemma 1.5.5. Let {aα}α∈A and {bβ}β∈B be (countably) indexed sequences of real numbers.
Let J ⊆ A × B be such that for each fixed α ∈ A, |#{β : (α, β) ∈ J }| ≤ M , and for each
fixed β ∈ B, |#{α : (α, β) ∈ J }| ≤M . Then we have

|
∑
α,β∈J

aαbβ| ≤M
(∑
α∈A

a2
α

)1/2(∑
β∈B

b2
β

)1/2

.

We omit the straightforward proof.

Dyadic function spaces

Many function spaces we use will be defined dyadically, i.e., the norm of f will be some
summation of dyadic norms of Pkf = fk. Formally, given a sequence of norms (Xk)k∈Z or
(Xk)k∈≥0, 1 ≤ p ≤ ∞ and σ ∈ R, we denote by `pXσ the norm

‖f‖`pXσ =
(∑

k

(2σk‖Pkf‖Xk)p
)1/p

,

with the usual modification when p =∞.
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Frequency envelopes

We borrow from [52] the notion of frequency envelopes, which is a convenient means to keep
track of dyadic frequency profiles. Given δ > 0, we say that a sequence c = (ck)k∈Z of
positive numbers is a δ-admissible frequency envelope if there exists Cc > 0 such that for
every k, k′ ∈ Z, we have

|ck/ck′ | ≤ Cc 2δ|k−k
′|.

Given a sequence (Xk)k∈Z of dyadic norms, we define the Xc-norm as

‖f‖Xc = sup
k∈Z

c−1
k ‖Pkf‖Xk .

Dyadically defined norms are controlled in terms of c and ‖f‖Xc in the obvious manner:

‖f‖`pXσ ≤
(∑

k

(2σkck)
p
)1/p

‖f‖Xc .

In the converse direction, we say that c is a frequency envelope for ‖f‖`pX0 if

‖f‖`pX0 '
(∑

k

cpk

)1/p

, ‖Pkf‖Xk ≤ ck.

Given any f ∈ `pX0, we can construct a δ-admissible frequency envelope c for ‖f‖`pX0 by
defining

ck =
∑
k′

2−δ|k−k
′|‖Pk′f‖Xk′ . (1.5.13)

By Young’s inequality, this frequency envelope inherits any additional `p
′
Xσ regularity of f

for 1 ≤ p′ ≤ ∞ and σ ∈ (−δ, δ), i.e.,

‖2σkck‖`p′ . ‖f‖`p′Xσ .

For the Klein-Gordon equation we will use the analogous notion of frequency envelopes,
but indexed by non-negative integer instead. Thus, in this context, given 0 < δ1 < 1, an
admissible frequency envelope (ck)k≥0 is defined to be a sequence such that cp/ck ≤ C2δ1|p−k|

for any k, p ≥ 0.
We conclude this subsection with a discussion on simple operations on frequency en-

velopes. Given a δ-admissible frequency envelope c ∈ `p (1 ≤ p ≤ ∞), we may construct a
new frequency envelope c̃ by taking c̃k = (

∑
k′<k c

p
k′)

1/p. For any ` ≥ 0, we see (by shifting
indices) that

|c̃k+`/c̃k| ≤ Cc2
δ`, |c̃k−`/c̃k| ≤ Cc2

δ`.

In other words, c̃ is also δ-admissible.
For δ′- and δ-admissible frequency envelopes b and c, we denote by bc = (bkck)k∈Z the

product frequency envelope, which is clearly (δ + δ′)-admissible.
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By Cauchy-Schwarz inequality, note that the frequency envelopes (
∑

k′<k bk′ck′)k∈Z is
dominated by ((

∑
k′<k b

2
k′)

1/2(
∑

k′<k c
2
k′)

1/2)k∈Z, i.e.,∑
k′<k

bk′ck′ ≤
(∑
k′<k

b2
k′

)1/2(∑
k′<k

c2
k′

)1/2

.

In particular, if b, c ∈ `2, then bc ∈ `1.

1.6 Parametrices

We now state the renormalization theorems, which are the massive, respectively half-wave,
versions of the constructions in [47], [31].

As we mentioned earlier, as parts of the structure of the equations we have the following
non-perturbative terms: ∑

k

Aα<k−C∂αP̄kφ

and ∑
k

αµP<k−CAµPkψ.

For the purpose of handling these terms, we define the paradifferential covariant Klein-
Gordon operator

�p,Am = �+ I − 2i
∑
k≥0

Aj<k−C∂jP̄k (1.6.1)

and the paradifferential half-wave operators by

(i∂t ± |D|)pA = i∂t ± |D| ∓ i
∑
k∈Z

P<k−CA
j ∂j
|D|

Pk (1.6.2)

where A = Afree = (A1, . . . , Ad, 0) is a real-valued 1-form defined on R1+d, assumed to solve
the free wave equation and to obey the Coulomb gauge condition

�A = 0, ∂jAj = 0. (1.6.3)

Consider the problem {
�p,Am φ = F
φ[0] = (f, g)

(1.6.4)

We have the following two solvability results, which we prove in chapter 4. The spaces are
defined in chapter 2. We just mention here that S̄σ and S

1/2
± are the iteration spaces, while

N̄σ−1 and N
1/2
± are the spaces for the nonlinearity.



CHAPTER 1. INTRODUCTION 19

Theorem 1.6.1. Let A be a real 1-form obeying (1.6.3) on Rd+1 for d ≥ 4. If ‖A[0]‖Ḣσ×Ḣσ−1

is sufficiently small, then for any F ∈ N̄σ−1 ∩L2Hσ− 3
2 and (f, g) ∈ Hσ ×Hσ−1, the solution

φ of (1.6.4) exists globally in time and it satisfies

‖φ‖S̄σ . ‖(f, g)‖Hσ×Hσ−1 + ‖F‖
N̄σ−1∩L2Hσ− 3

2
(1.6.5)

For the paradifferential half-wave operators operators, we have the following global solv-
ability theorem which we state for d = 4. In the general case d ≥ 4, the theorem holds with
substitutions as in Remark 1.8.5.

Theorem 1.6.2. Let Afree = (0, Afree1 , . . . , Afree4 ) be a real-valued 1-form obeying �Afree = 0
and ∂`Afree` = 0. Consider the initial value problem{

(i∂t + s|D|)p
Afree

ψ =F,

ψ(0) =ψ0.

If ‖Afree[0]‖Ḣ1×L2 is sufficiently small, then for any F ∈ N1/2
s ∩ L2L2 and any ψ0 ∈ Ḣ1/2

there exists a global (in time) solution ψ ∈ S
1/2
s . Moreover, for any admissible frequency

envelope c, we have
‖ψ‖

(S
1/2
s )c
. ‖ψ0‖Ḣ1/2

c
+ ‖F‖

(N
1/2
s ∩L2L2)c

. (1.6.6)

In particular,
‖ψ‖

S
1/2
s
. ‖ψ0‖Ḣ1/2 + ‖F‖

N
1/2
s ∩L2L2 . (1.6.7)

Theorem 1.6.2 will be established in Chapter 4 by adapting the parametrix construction
for the paradifferential covariant wave equation from [31], which is the massless analogue of
Theorem 1.6.1.

1.7 Decomposition of the equations

In this section we describe the structure of the nonlinearities of the Maxwell-Klein-Gordon
and Maxwell-Dirac equations in the Coulomb gauge.

Maxwell equations in the Coulomb gauge

We begin by describing the Maxwell equations under the Coulomb condition ∂`A` = 0.
Let Jµ be a 1-form (called the charge-current 1-form) on R1+d such that ∂µJµ = 0.

Consider the Maxwell equations
∂µFνµ = −Jν . (1.7.1)

Under the Coulomb condition ∂`A` = 0, the Maxwell equations (1.7.1) reduce to

∆A0 = J0, �Aj = PjJx (1.7.2)
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where ∆ := ∂`∂` is the Laplacian, � := ∂µ∂µ is the d’Alembertian and P denotes the Leray
projection (1.1.7). Moreover, thanks to ∂µJµ = 0, we also obtain the following elliptic
equation for ∂tA0:

∆(∂tA0) = ∂`J`. (1.7.3)

The Maxwell nonlinearity of MKG

Let (φ,A) be a solution of MKG. The charge-current 1-form J reads

Jα = −I(φDαφ).

Remark 1.7.1. When φ solves a covariant equation �Amφ = 0 for some real 1-form A, denoting
the currents Jα = −I(φDαφ), a simple computation shows ∂αJα = 0.

By (1.7.2), Aµ solves the following equations:

∆A0 =− I(φDtφ),

�Aj =− PjI(φDxφ).

Moreover, thanks to ∂αJα = 0, which holds by Remark 1.7.1, we have

∆(∂tA0) = −∂iI(φDiφ).

Momentarily ignoring the cubic terms φφ̄Aα from the products φDαφ, we define the main
terms

Ax(φ
1, φ2) :=−�−1PjI(φ1∇xφ̄2),

A0(φ1, φ2) :=−∆−1I(φ1∂tφ̄2).
(1.7.4)

where here �−1f denotes the solution φ to the inhomogeneous wave equation �φ = f with
φ[0] = 0. Using the formula (1.1.7) for Pj one identifies the null structure (see (1.3.1))

Pj(φ1∇xφ
2) = ∆−1∇iNij(φ1, φ2). (1.7.5)

Remark 1.7.2. Note that (1.7.5) shows that Pj(φ1∇xφ
2) is a skew-symmetric bilinear form.

The main estimates for these nonlinear terms will be given by Proposition 1.8.1.
Moreover, to isolate the more delicate parts of (1.7.4), we define the operators

Hk′L(φ, ψ) =
∑

j<k′+C2

Pk′QjL(Q̄<jφ, Q̄<jψ),

HL(φ, ψ) =
∑

k′<k2−C2−10
k′∈Z, k1,k2≥0

Hk′L(P̄k1φ, P̄k2ψ),
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The Klein-Gordon nonlinearity

Moving on to the φ nonlinearity, we expand

�Amφ = (�+ 1)φ+ 2iAα∂
αφ+ i(∂αAα)φ− AαAαφ.

When Ax is divergence free, we can write Aj = PjA, which implies

Ai∂iφ =
∑
Nij
(
∇i∆

−1Aj, φ
)
. (1.7.6)

As discussed in the introduction, the most difficult interaction occurs when A0 and Ax
have frequencies lower than φ. To isolate this part, we introduce the low-high paradifferential
operators

π[A]φ :=
∑
k≥0

P<k−CAα ∂
αP̄kφ, (1.7.7)

Moreover, we define

H∗k′L(A, φ) =
∑

j<k′+C2

Q̄<jL(Pk′QjA, Q̄<jφ),

H∗L(A, φ) =
∑

k′<k−C2−10
k′∈Z, k,k̃≥0

P̄k̃H
∗
k′L(A, φk).

The necessary estimates are stated in Prop. 1.8.2 and 1.8.3.
It turns out that the worst part of (1.7.7) occurs for a subpart of π[A(φ, φ)]φ, namely

H∗π[HA(φ, φ)]φ. To estimate it, we will need to use the trilinear null structure identified
by Machedon-Sterbenz [34] which we present now, following [31].

One can write
Aα(φ1, φ2)∂αφ = (Q1 +Q2 +Q3)(φ1, φ2, φ) (1.7.8)

where
Q1(φ1, φ2, φ) :=−�−1I(φ1∂αφ̄2) · ∂αφ,
Q2(φ1, φ2, φ) :=∆−1�−1∂t∂αI(φ1∂αφ̄2) · ∂tφ,
Q3(φ1, φ2, φ) :=∆−1�−1∂α∂

iI(φ1∂iφ̄2) · ∂αφ.
(1.7.9)

Indeed, plugging in the Hodge projection P = I −∇∆−1∇ one writes

Aα(φ1, φ2)∂αφ = ∆−1I(φ1∂tφ̄2) · ∂tφ−�−1I(φ1∂iφ̄2) · ∂iφ+
∂i∂j

∆�
I(φ1∂iφ̄2) · ∂jφ.

Now add and subtract �−1I(φ1∂tφ̄2) · ∂tφ and write

Aα(φ1, φ2)∂αφ = Q1(φ1, φ2, φ) +N .
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Using ∆−1 −�−1 = −∂2
t ∆
−1�−1, N takes the form

N = −∆−1�−1∂2
t I(φ1∂tφ̄2) · ∂tφ+ ∆−1�−1∂i∂jI(φ1∂iφ̄2) · ∂jφ.

Adding and subtracting ∆−1�−1∂i∂tI(φ1∂iφ̄2) · ∂tφ we get

N = Q2(φ1, φ2, φ) +Q3(φ1, φ2, φ),

thus obtaining (1.7.8).

Diagonalization of the Dirac equation

Our next goal is to rewrite the Dirac operator αµ∂µ in a diagonal form. We follow the
approach of D’Ancona, Foschi and Selberg [9, 10].

For µ = 0, . . . , d, recall the definition αµ = γ0γµ. Hence α0 = I4×4, whereas αj are
hermitian matrices satisfying

1

2
(αjαk + αkαj) = δjkI4×4, (1.7.10)

thanks to (1.1.1) and (1.1.2). Note that the Dirac operator αµ∂µ then takes the form

αµ∂µ = −i(i∂t − αjDj).

where we use the notation Dµ = 1
i
∂µ. To diagonalize the operator αjDj, whose symbol is

αjξj, we introduce the multiplier Π(D) with symbol

Π(ξ) :=
1

2

(
I4×4 −

αjξj
|ξ|

)
.

Note that Π(ξ) obeys the identities

Π(ξ)† = Π(ξ), Π(ξ)2 = Π(ξ), Π(ξ)Π(−ξ) = 0.

For each sign s ∈ {+,−}, we define the multipliers Πs with symbols Πs(ξ) := Π(sξ). By the
preceding identities, Π+ and Π− form orthogonal projections (i.e., Π†s = Πs, Π2

s = Πs and
Π+Π− = 0). Moreover, we have

I4×4 = Π+(ξ) + Π−(ξ), −α
jξj
|ξ|

= Π+(ξ)− Π−(ξ)

Thus the Dirac operator can now be written in the form

αµ∂µ = −i
(

(i∂t + |D|)Π+(D) + (i∂t − |D|)Π−(D)
)
. (1.7.11)

We now present the key identities for revealing the null structure of (MD), which are
essentially due to D’Ancona, Foschi and Selberg [9, 10]. We define the self-adjoint operators
Rµ as

Rµ :=
Dµ

|D|
for µ = 0, . . . , d.

For µ = j ∈ {1, . . . , d}, the operators Rj are precisely the (self-adjoint) Riesz transforms.
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Lemma 1.7.3. For each µ = j ∈ {1, . . . , d} and sign s ∈ {+,−}, we have

αjΠs = −sRj + Π−sα
j. (1.7.12)

Proof. We compute

αjΠs(ξ)− Π−s(ξ)α
j = −s1

2

ξk
|ξ|

(αjαk + αkαj) = −s ξ
j

|ξ|
.

Remark 1.7.4. For µ = 0, the analogue of (1.7.12) is

α0 = −sR0 + s
i∂t + s|D|
|D|

, (1.7.13)

which can be easily justified.

The Riesz transform term Rµ is scalar in the sense that it does not involve multiplication
by αj. Its contribution in (MD) resembles the Maxwell-Klein-Gordon system; Remarkably,
the other terms in (1.7.12) and (1.7.13) turn out to contribute parts with more favorable
structure. Indeed, in the case of (1.7.13), the presence of the half-wave operator i∂t + s|D|
(with an appropriate sign s) makes this term effectively higher order. In the case of (1.7.12),
the following lemma can be used to uncover a null structure.

Lemma 1.7.5. For z ∈ CN , ξ, η ∈ Rd and θ := |∠(ξ, η)|, we have

|Π(ξ)Π(−η)| ≤ Cθ. (1.7.14)

Proof. Using (1.7.10) and the definition of Π(ξ), we compute

Π(ξ)Π(−η) =
1

4

(
I4×4 −

αjξj
|ξ|

)(
I4×4 +

αkηk
|η|

)
=

1

4

(
I4×4 −

αjξj
|ξ|

+
αkηk
|η|
− αjαkξjηk
|ξ||η|

)
=− αj

4

( ξj
|ξ|
− ηj
|η|

)
− αjαk

8

(ξjηk − ξkηj
|ξ||η|

)
+

I4×4

4

( |ξ||η| − ξ · η
|ξ||η|

)
.

Then the lemma follows.

We remark that the identity (1.7.13) must be applied judiciously, sinceR0 is well-behaved
on ψ± only when the modulation does not exceed the spatial frequency.

Maxwell-Dirac

We are now ready to describe in detail the nonlinearity of the Maxwell-Dirac equation in
the Coulomb gauge (MD-CG).

As explained in the introduction, our overall philosophy is that MD-CG can be split into
two parts: The scalar part, which does not involve multiplication by the matrix αj, and the
spinorial part arising from the spinorial nature of the Dirac equation. The latter part turns
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out to possess a more favorable null structure; in particular, there is no need to perform a
paradifferential renormalization, nor to use a secondary null structure. On the other hand,
the former part is deeply related to the massless Maxwell-Klein-Gordon equation in the
Coulomb gauge, whose small Sobolev critical global well-posedness was proved in [31]. We
refer to Remarks 1.7.9 and 5.4.5 for a further discussion after the nonlinearity of MD-CG is
completely described.

The Maxwell nonlinearity of MD

Let (A,ψ) be a solution to MD-CG. The charge-current 1-form J reads

Jµ = 〈γµψ, γ0ψ〉 = 〈ψ, αµψ〉.

where we used (1.1.1), (1.1.2) and the definition of αµ in the second identity. By (1.7.2), Aµ
solves the following equations:

∆A0 =〈ψ, α0ψ〉 = −〈ψ, α0ψ〉 = −〈ψ, ψ〉, (1.7.15)

�Aj =Pj〈ψ, αxψ〉. (1.7.16)

Moreover, thanks to ∂µJµ = 0 (which holds since ψ solves a covariant Dirac equation, see
remark 1.7.6), we have

∆(∂tA0) = ∂`〈ψ, α`ψ〉. (1.7.17)

We now introduce bilinear version of the nonlinearities in (1.7.15), (1.7.16) and (1.7.17),
in order to set up an iteration scheme for solving MD-CG. Let ϕ1, ϕ2 be any spinor fields.
For (1.7.15), we introduce

ME(ϕ1, ϕ2) := −〈ϕ1, ϕ2〉. (1.7.18)

We also define
A0(ϕ1, ϕ2) := ∆−1ME(ϕ1, ϕ2), (1.7.19)

so that A0 = A0(ψ, ψ) for a solution (Aµ, ψ) to MD-CG.
For (1.7.16), we use (1.7.12) to decompose the nonlinearity as

Pj〈ψ, αxψ〉 =
∑
s

Pj〈ψ, αxΠsψ〉 =
∑
s

(
− sMR

j (ψ, ψ) +MS
j,s(ψ, ψ)

)
,

where

MR
j (ϕ1, ϕ2) :=Pj〈ϕ1,Rxϕ

2〉, (1.7.20)

MS
j,s(ϕ

1, ϕ2) :=Pj〈ϕ1,Π−sαxϕ
2〉. (1.7.21)

We refer to MR
j and MS

j,s as the scalar and spinorial parts, respectively, of the Maxwell
nonlinearity; observe that the scalar part does not involve the matrix αj. We also introduce

Aj(ϕ
1, ϕ2) :=�−1Pj〈ϕ1, αxϕ

2〉, (1.7.22)

AR
j (ϕ1, ϕ2) :=�−1MR

j (ϕ1, ϕ2), (1.7.23)

AS
j,s(ϕ

1, ϕ2) :=�−1MS
j,s(ϕ

1, ϕ2) (1.7.24)
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For a solution (Aµ, ψ) to MD-CG, we have

Aj = Afreej + Aj(ψ, ψ) = Afreej +
∑
s

(
− sAR

j (ψ,Πsψ) + AS
j,s(ψ,Πsψ)

)
where Afreej is the free wave with data Afreej [0] = Aj[0].

Finally, corresponding to (1.7.17) we define

∂tME(ϕ1, ϕ2) := ∂`〈ϕ1, α`ϕ
2〉, (1.7.25)

so that ∆(∂tA0) = ∂tME(ψ, ψ) for a solution (Aµ, ψ) to MD-CG.

Remark 1.7.6. The notation ∂t in ∂tM is merely formal; the actual ∂t derivative ofME(ϕ1, ϕ2)
agrees with ∂tME(ϕ1, ϕ2) only if

∂µ〈ϕ1, αµϕ2〉 = 0.

Such an identity holds if, for instance, ϕ1 and ϕ2 obey a (single) covariant Dirac equation
αµ(∂µ + iÃµ)ϕ = 0 for some connection 1-form Ã, which is not necessarily equal to A. We
will be careful to ensure that this is the case in our iteration scheme.

The Dirac nonlinearity

We now turn to the covariant Dirac equation

αµDµψ = 0. (1.7.26)

Expanding Dµ = ∂µ + iAµ and using (1.7.11), we may rewrite the above equation as

(i∂t + s|D|)ψs = Πs(α
µAµψ). (1.7.27)

where s ∈ {+,−} and ψs is the abbreviation ψs := Πsψ. In view of the half-wave decomposi-
tion, it is natural to expand ψ = ψ+ +ψ− on the RHS of (1.7.27). Using Lemma 1.7.3, as well
as the formulae Aj = PjAx and ψs = Πsψs, we further decompose each of the nonlinearity
αµAµψs as

αµAµψs =A0Πsψs + Ajα
jΠsψs

=NE(A0,Πsψs)− sNR(Ax, ψs) +N S
s (Ax, ψs),

where NE, NR and N S
s are bilinear forms defined as follows:

NE(A0, ϕ) :=A0ϕ, (1.7.28)

NR(Ax, ϕ) :=(PjAx)(Rjϕ), (1.7.29)

N S
s (Ax, ϕ) :=AjΠ−s(α

jϕ). (1.7.30)

We refer to NE,NR as the scalar part of the Dirac nonlinearity, as it does not involve
multiplication by αµ. The remainder N S

s is called the spinorial part.
We summarize the result of our decomposition so far as follows.
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Lemma 1.7.7. Let ψ be a spinor field on R1+d and Aµ be a real-valued 1-form obeying
Aj = PjAx. If ψ is a solution to (1.7.26), then each of ψs = Πsψ (s ∈ {+,−}) solves

Πs(i∂t + s|D|)ψs
=Πs

∑
s′

(
NE(A0,Πs′ψs′)− s′NR(Ax, ψs′) +N S

s′ (Ax, ψs′)
)
. (1.7.31)

Conversely, if (ψ+, ψ−) is a pair of spinor fields solving (1.7.31), then ψ := Π+ψ+ + Π−ψ−
is a solution to (1.7.26).

Remark 1.7.8. In the converse statement, ψs need not belong to the image of Πs, i.e., Πsψs
need not equal ψs for s ∈ {+,−}.

Proof. The direct statement has already been proved. To prove the converse statement, we
begin by noticing that

−s′NR(Ax, ψs′) +N S
s′ (Ax, ψs′) = Ajα

jΠs′ψs′

by Lemma 1.7.3 and Aj = PjAx. Therefore, (1.7.31) implies

(i∂t + s|D|)Πsψs = Πs

(
A0α

0(Π+ψ+ + Π−ψ−) + Ajα
j(Π+ψ+ + Π−ψ−)

)
.

Defining ψ := Π+ψ+ + Π−ψ−, adding up the preceding equation for s ∈ {+,−} and using
(1.7.11), the desired statement follows.

As discussed earlier, the most difficult interaction is when A0 and Ax have frequencies
lower than ψs. To isolate this part, we introduce the low-high paradifferential operators

πE[A0]ϕ :=
∑
k

NE(P<k−10A0, Pkϕ) =
∑
k

P<k−10A0 Pkϕ,

πR[Ax]ϕ :=
∑
k

NR(P<k−10Ax, Pkϕ) =
∑
k

PjP<k−10AxRjPkϕ,

πSs [Ax]ϕ :=
∑
k

N S
s (P<k−10Ax, Pkϕ) =

∑
k

P<k−10Aj Π∓(αjPkϕ).

and the remainders ÑE, ÑR and Ñ S
s consisting of

ÑE(A0, ϕ) :=
∑
k

NE(P≥k−10A0, Pkϕ) =
∑
k

P≥k−10A0 Pkϕ,

ÑR(Ax, ϕ) :=
∑
k

NR(P≥k−10Ax, Pkϕ) =
∑
k

PjP≥k−10AxRjPkϕ,

Ñ S
s (Ax, ϕ) :=

∑
k

N S
s (P≥k−10Ax, Pkϕ) =

∑
k

P≥k−10Aj Π∓(αjPkϕ).
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We also recall the paradifferential covariant half-wave operator

(i∂t + s|D|)p
Afree

= (i∂t + s|D|) + s
∑
k

PjP<k−5A
free
x RjPk. (1.7.32)

so that we have
(i∂t + s|D|)p

Afree
= (i∂t + s|D|) + sπR[Afreex ].

Parallelism between MD and MKG

Remark 1.7.9. We are now ready to exhibit more concretely the parallelism between MKG
in the Coulomb gauge and the scalar part of MD-CG.

We start with MD-CG. Applying (1.7.12), (1.7.13) to the equations for A0 and keeping
only the Riesz transform terms, we get

∆A0 = −
∑
s,s′

s′〈ψs,R0ψs′〉+ · · · (1.7.33)

Furthermore, consider the equations for Ax and ψ with the spinorial parts AS and N S
±

removed. Using also (1.7.13) to the term A0α
0ψ in the Dirac equation and throwing away

the second term in (1.7.13), we arrive at the equations

�Aj =−
∑
s,s′

s′Pj〈ψs,Rxψs′〉+ · · ·

(i∂t + s|D|)ψs =− Πs

∑
s′

s′AµRµψs′ + · · ·
(1.7.34)

On the other hand, observe that MKG takes the form
∆A0 =− Im(φD0φ)

�Aj =− PjIm(φDxφ)

�φ =− 2iAµ∂
µφ+ i∂0A0φ+ AµA

µφ

(MKG-CG)

Using the half-wave decomposition φs = 1
2
(φ + s ∂t

i|D|φ) (s ∈ {+,−}) and keeping only the

quadratic nonlinearities (except ∂0A0φ, which is harmless), we arrive at

∆A0 =−
∑
s,s′

Im(φs∂0φs′) + · · ·

�Aj =−
∑
s,s′

PjIm(φs∂xφs′) + · · ·

(i∂t + s|D|)φs =
s

|D|
∑
s′

iAµ∂
µφs′ + · · ·

(1.7.35)

Modulo constant factors and balance of derivatives, observe the similarity between (1.7.33)–
(1.7.34) and (1.7.35). This similarity will be exploited below to prove a crucial trilinear
null form estimate (Proposition 1.8.8) and solvability of covariant Dirac equation (Proposi-
tion 1.8.11).
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1.8 Main estimates

In this section we collect the bilinear and trilinear estimates needed to prove Theorems 1.1.1
and 1.1.2. The spaces are defined in chapter 2. We just mention here that S̄σ and S

1/2
± are

the iteration spaces, while N̄σ−1 and N
1/2
± are the spaces for the nonlinearity.

For the nonlinearities of the Maxwell parts of MKG we have the following proposition
which, in particular, gives control of the terms (A0,Ax)(φ

1, φ2) from (1.7.4).

Proposition 1.8.1. One has the following estimates:

‖Pj(φ1∇xφ
2)‖`1Nσ−1 . ‖φ1‖S̄σ‖φ2‖S̄σ (1.8.1)

‖φ1∇t,xφ
2‖
`1(L2Ḣσ− 3

2 ∩L∞Ḣσ−2)
. ‖φ1‖S̄σ‖φ2‖S̄σ (1.8.2)

‖φ1φ2A‖
`1(L1Ḣσ−1∩L2Ḣσ− 3

2 ∩L∞Ḣσ−2)
. ‖φ1‖S̄σ‖φ2‖S̄σ‖A‖Sσ×Y σ (1.8.3)

Moving on to the Klein-Gordon nonlinearity, we recall definition of H∗ and π[A]φ from
(1.7.7). Then we have:

Proposition 1.8.2.

1. For all φ and A = (Ax, A0) such that ∂jAj = 0 one has the null form estimates:

‖Aα∂αφ− π[A]φ‖N̄σ−1 . ‖A‖Sσ×Y σ‖φ‖S̄σ (1.8.4)

‖(I −H∗)π[A]φ‖N̄σ−1 . ‖A‖`1Sσ×Y σ‖φ‖S̄σ (1.8.5)

‖H∗π[A]φ‖N̄σ−1 . ‖A‖Zσ×Zσell‖φ‖S̄σ (1.8.6)

2. For all φ and A = (Ax, A0) one has

‖Aα∂αφ‖L2Hσ− 3
2
. ‖A‖Sσ×Y σ‖φ‖S̄σ (1.8.7)

‖∂tA0φ‖N̄σ−1∩L2Hσ− 3
2
. ‖A0‖Y σ‖φ‖S̄σ (1.8.8)

‖A1
αA

2
αφ‖N̄σ−1∩L2Hσ− 3

2
. ‖A1‖Sσ×Y σ‖A2‖Sσ×Y σ‖φ‖S̄σ . (1.8.9)

The following trilinear bound contains the more delicate estimates occurring in our sys-
tem. It relies crucially on the cancelation structure given by (1.7.8) and to handle it we
will need the norms L∞tω,λL

2
xω,λ

, L2
tω,λ

L∞xω,λ , the Lorentz norms L1L2,1, L2L4,2 as well as the
bilinear forms from chapter 5.

Proposition 1.8.3. For A and π defined by (1.7.4) and (1.7.7) one has:

‖π[A(φ1, φ2)]φ‖N̄σ−1 . ‖φ1‖S̄σ‖φ2‖S̄σ‖φ‖S̄σ (1.8.10)
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The remaining term π[Afree]φ contains the non-perturbative part and to handle it we
will use Theorem 1.6.1.

We pause here to give an example of using the estimates above together with Theorem
1.6.1 to solve the Cauchy problem for �Amφ = F , in the particular case A = Afree, which will
be useful below.

Proposition 1.8.4. Let A = Afree be a real 1-form obeying �A = 0, ∂jAj = 0, A0 = 0. If
‖A[0]‖Ḣσ×Ḣσ−1 is sufficiently small, then for any φ[t0] ∈ Hσ × Hσ−1 and any F ∈ N̄σ−1 ∩
L2Hσ− 3

2 , the solution of �Amφ = F with data φ[t0] satisfies:

‖φ‖S̄σ . ‖φ[t0]‖Hσ×Hσ−1 + ‖F‖
N̄σ−1∩L2Hσ− 3

2
(1.8.11)

Proof. We show that the mapping ψ 7→ φ given by �p,Am φ = F +M̄(A,ψ) with data φ[t0] at
t = t0 is a contraction on S̄σ, where

M̄(A,ψ) = 2i(Aα∂
αψ − π[A]ψ)− AαAαψ

is chosen so that M̄(A,ψ) = �p,Am ψ − �Amψ. Using (1.8.4), (1.8.7), (1.8.9), noting that
‖A‖Sσ×Y σ . ‖A[0]‖Ḣσ×Ḣσ−1 ≤ ε� 1 (since A0 = 0) we obtain

‖M̄(A,ψ)‖
N̄σ−1∩L2Hσ− 3

2
. ε‖ψ‖S̄σ

which together with Theorem 1.6.1 proves the existence of φ for ε small enough. The same
estimates imply (1.8.11).

Now we collect the ingredients needed to prove Theorem 1.1.2. For the sake of concrete-
ness, we restrict to the case d = 4 unless otherwise stated. We use the language of frequency
envelopes, which is a convenient way of expressing the weak interaction among different
dyadic frequency pieces.

Remark 1.8.5. In the case of a general dimension d ≥ 4, all the estimates below hold with
the following substitutions:

L2Ḣ−3/2 → L2Ḣ
d−7

2 , L2Ḣ−1/2 → L2Ḣ
d−5

2 , L2L2 → L2Ḣ
d−4

2 ,

N → N
d−4

2 , N1/2
s → N

d−3
2 , G1/2 → G

d−3
2 ,

S1 → S
d−2

2 , Y 1 → Y
d−2

2 , S̃1/2
s → S̃

d−3
2

s .

See Remarks 6.3.8, 6.4.3 and 4.3.1.

For the nonlinearity in the A0 and Ax equations, we have the following bilinear estimates.
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Proposition 1.8.6. For any admissible frequency envelopes b, c and signs s, s′ ∈ {+,−}, we
have

‖ME(ψ, ϕ)‖(L2Ḣ−1/2)bc
+ ‖∂tME(ψ, ϕ)‖(L2Ḣ−3/2)bc

.‖ψ‖
(S̃

1/2
s )b
‖ϕ‖

(S̃
1/2

s′ )c
. (1.8.12)

‖MR
j (ψ, ϕ)‖(N∩L2Ḣ−1/2)bc

.‖ψ‖
(S̃

1/2
s )b
‖ϕ‖

(S̃
1/2

s′ )c
, (1.8.13)

‖MS
j,s′(Πsψ, ϕ)‖(N∩L2Ḣ−1/2)bc

.‖ψ‖
(S̃

1/2
s )b
‖ϕ‖

(S̃
1/2

s′ )c
. (1.8.14)

For the nonlinearity in the covariant Dirac equation, we first have the following set of
bilinear estimates.

Proposition 1.8.7. Let a and b be any admissible frequency envelopes. Then the following
statements holds.

1. (Remainders ÑE, ÑR and Ñ S) For any signs s, s′, we have

‖ÑE(B,ψ)‖
(N

1/2

s′ )ab
.‖B‖Y 1

a
‖ψ‖

(S̃
1/2
s )b

, (1.8.15)

‖ÑR(Ax, ψ)‖
(N

1/2

s′ )ab
.‖Ax‖S1

a
‖ψ‖

(S̃
1/2
s )b

, (1.8.16)

‖Πs′Ñ S
s (Ax, ψ)‖

(N
1/2

s′ )ab
.‖Ax‖S1

a
‖ψ‖

(S̃
1/2
s )b

. (1.8.17)

2. (Paradifferential operators πE and πR) For opposite signs s′ = −s, we have

‖πE[B]ψ‖
(N

1/2
−s )ab

.‖B‖Y 1
a
‖ψ‖

(S̃
1/2
s )b

, (1.8.18)

‖πR[Ax]ψ‖(N
1/2
−s )ab

.‖Ax‖S1
a
‖ψ‖

(S̃
1/2
s )b

. (1.8.19)

3. (Paradifferential operator πS) For any signs s, s′, we have

‖Πs′π
S
s [Ax]ψ‖(N

1/2

s′ )ab
.‖Ax‖S1

a
‖ψ‖

(S̃
1/2
s )b

. (1.8.20)

4. (High modulation L2L2 bounds) For any sign s, we have

‖NE(B,ψ)‖(L2L2)ab . ‖B‖Y 1
a
‖ψ‖

(S
1/2
s )b

, (1.8.21)

‖NR(Ax, ψ)‖(L2L2)ab . ‖Ax‖S1
a
‖ψ‖

(S
1/2
s )b

, (1.8.22)

‖N S
s (Ax, ψ)‖(L2L2)ab . ‖Ax‖S1

a
‖ψ‖

(S
1/2
s )b

. (1.8.23)

5. (Z̃
1/2
s bounds) For any sign s, we have

‖NE(B,ψ)‖
G

1/2
ab
.‖B‖Y 1

a
‖ψ‖

(S
1/2
s )b

, (1.8.24)

‖ÑR(Ax, ψ)‖
G

1/2
ab

+ ‖πR[Ax]ψ‖G1/2
ab
.‖Ax‖S1

a
‖ψ‖

(S
1/2
s )b

, (1.8.25)

‖N S
s (Ax, ψ)‖

G
1/2
ab
.‖Ax‖S1

a
‖ψ‖

(S
1/2
s )b

. (1.8.26)
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By (1.8.17), (1.8.20), (1.8.23) and (1.8.26), the spinorial nonlinearity N S
s′ can be han-

dled just with bilinear estimates. On the other hand, Proposition 1.8.7 leaves open the
treatment of certain parts of NE and NR, namely πE[A0]ψ and πR[Ax]ψ. For a solution
to MD-CG, recall the decomposition A0 = A0(ψ, ψ) and Ax = Afreex + Ax(ψ, ψ). For the
terms πE[A0(ψ, ψ)]ψ and πR[Ax(ψ, ψ)]ψ, which resemble the MKG-CG nonlinearity (see
Remark 1.7.9), we use the following trilinear estimate.

Proposition 1.8.8. For any admissible frequency envelopes b, c and d, let

fk =
(∑
k′<k

c2
k′

)1/2(∑
k′<k

d2
k′

)1/2

bk. (1.8.27)

Then for any signs s, s1, s2 ∈ {+,−}, we have

‖
(
πE[A0(Πs1ϕ

1,Πs2ϕ
2)]− sπR[Ax(Πs1ϕ

1,Πs2ϕ
2)]
)
ψ‖

(N
1/2
s )f

.‖ϕ1‖
(S̃

1/2
s1

)c
‖ϕ2‖

(S̃
1/2
s2

)d
‖ψ‖

(S̃
1/2
s )b

.
(1.8.28)

Remark 1.8.9. In the proof of theorem 1.1.2, the frequency envelopes a, b, c inherit `2-
summability from the initial data; hence the products ab and bc are `1-summable. The
bilinear estimates in Propositions 1.8.6 and 1.8.7 therefore imply that certain parts of the
solution (in particular, A0 and Ax) enjoy `1-summability of the dyadic norms. As in the
case of the massless MKG [31], this fact allows us to cleanly separate A into A handled by
multilinear estimates (Proposition 1.8.8) and Afree handled by a parametrix construction
(Theorem 1.6.2).

The remaining term πR[Afreex ]ψ cannot be treated perturbatively. The optimal estimate,
stated in terms of frequency envelopes, is as follows.

Lemma 1.8.10. Let Afree = (0, Afree1 , . . . , Afree4 ) be a real-valued 1-form obeying �Afree = 0
and ∂`Afree` = 0. For any admissible frequency envelope a and b, let ek = (

∑
k′<k ak′)bk. Then

for any sign s ∈ {+,−}, we have

‖πR[Afreex ]ψ‖
(N

1/2
s )e
. ‖Afree[0]‖(Ḣ1×L2)a

‖ψ‖
(S̃

1/2
s )b

(1.8.29)

A sketch of proof of Lemma 1.8.10 will be given in Remark 6.3.7. Instead, πR[Afreex ]
should be treated as a part of the underlying linear operator (i∂t + s|D|)p

Afree
for which we

have Theorem 1.6.2.

Theorem 1.6.2 and the estimates above lead to the following result on solvability of
covariant Dirac equations which, in particular, contains the contribution of Afree. The proof
is in Chapter 4.

Proposition 1.8.11. There exists a universal constant ε∗∗ > 0 such that the following holds.
Let I ⊆ R be a time interval containing 0. Given spinor fields ψ0 ∈ Ḣ1/2 on R4 and F on
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I × R4 such that ΠsF ∈ N1/2
s ∩ L2L2 ∩ G1/2[I] (s ∈ {+,−}), consider the covariant Dirac

equation {
αµDA

µψ =F on I

ψ(0) =ψ0,
(1.8.30)

where the potential A = Aµdxµ is given by

A0 = A0(ψ′, ψ′), Aj = Afreej + Aj(ψ
′, ψ′) on I

for some free wave Afreej ∈ CtḢ
1 ∩ Ċ1

t L
2 (j = 1, . . . , 4) and a spinor field ψ′ satisfying

Πsψ
′ ∈ S̃1/2

s [I] and ∂µ〈ψ′, αµψ′〉 = 0. If

sup
s∈{+,−}

‖Πsψ
′‖
S̃

1/2
s [I]

+ sup
j∈{1,...,4}

‖Afreej [0]‖Ḣ1×L2 ≤ ε∗∗, (1.8.31)

then there exists a unique solution ψ to (1.8.30) on I × R4 such that Πsψ ∈ S̃
1/2
s [I] for

s ∈ {+,−}. For any admissible frequency envelope c, we have

‖Πsψ‖(S̃
1/2
s [I])c

. ‖Πsψ0‖Ḣ1/2
c

+ ‖ΠsF‖(N
1/2
s ∩L2L2∩G1/2[I])c

. (1.8.32)

The implicit constants are independent of I.
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Chapter 2

Function spaces and their embeddings

In this chapter we introduce the main function spaces and their embedding properties that
we will use to prove the main Theorems 1.1.1 and 1.1.2. We build on the spaces defined in
[31], which in turn build on the prior work [54, 52] on wave maps.

2.1 The function spaces

Strichartz and Xs,b-type spaces.

We first define the admissible Strichartz norms for the d+ 1 dimensional wave equation. For
any d ≥ 4 and any k we set

SStr,Wk =
⋂

2
q

+ d−1
r
≤ d−1

2

2( d
2
− 1
q
− d
r

)kLqLr

with norm
‖f‖SStr,Wk

= sup
2
q

+ d−1
r
≤ d−1

2

2−( d
2
− 1
q
− d
r

)k‖f‖LqLr (2.1.1)

Next we define the X
1
2∞, X

− 1
2

1 , the X
1
2
±,∞, X

− 1
2

±,1 and the X̄
1
2∞, X̄

− 1
2

1 spaces, which are logarithmic
of refinements of the usual Xs,b space. Their dyadic norms are

‖F‖
X
− 1

2
1

=
∑
j∈Z

2−
1
2
j‖QjF‖L2

t,x
, ‖A‖

X
1
2∞

= sup
j∈Z

2
1
2
j‖QjA‖L2

t,x

‖F‖
X̄
± 1

2
1

=
∑
j∈Z

2±
1
2
j‖Q̄jF‖L2

t,x
, ‖φ‖

X̄
1
2∞

= sup
j∈Z

2
1
2
j‖Q̄jφ‖L2

t,x

‖F‖
X
− 1

2
±,1

=
∑
j∈Z

2−
1
2
j‖Q±j F‖L2

t,x
, ‖ψ‖

X
1
2
±,∞

= sup
j∈Z

2
1
2
j‖Q±j ψ‖L2

t,x
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The spaces for the nonlinearity

For the nonlinearity, we define for k ≥ 0 and k′ ∈ Z

N̄k = L1L2 + X̄
− 1

2
1 , Nk′ = L1L2 +X

− 1
2

1 , N±k′ = L1L2 +X
− 1

2
±,1 (2.1.2)

with norms

‖F‖N̄k = inf
F=F1+F2

‖F1‖L1L2 + ‖F2‖
X̄
− 1

2
1

, ‖F‖Nk′ = inf
F=F1+F2

‖F1‖L1L2 + ‖F2‖
X
− 1

2
1

‖F‖N±
k′

= inf
F=F1+F2

‖F1‖L1L2 + ‖F2‖
X
− 1

2
±,1

By duality we can identify N̄∗k with L∞L2 ∩ X̄
1
2∞. For the scalar and spinorial equation,

respectively the Ai equation nonlinearities, for s ∈ R we define

‖F‖2
N̄s =

∑
k≥0

22sk‖P̄kF‖2
N̄k
, ‖F‖2

Ns
±

=
∑
k′∈Z

22sk′‖Pk′F‖2
N±
k′

‖F‖`1Ns =
∑
k′∈Z

2sk
′‖Pk′F‖N ′k , ‖F‖2

Ns =
∑
k′∈Z

22sk′‖Pk′F‖2
N ′k
.

The iteration space for A

For any d ≥ 4 and k′ ∈ Z we define

‖A‖2
Sk′

= ‖A‖2
SStr,W
k′

+ ‖A‖2

X
1
2∞

+ sup
±

sup
l<0

∑
ω

‖P ω
l Q

±
<k′+2lA‖

2
Sω
k′ (l)

where

‖A‖2
Sω
k′ (l)

= 2−(d−1)k′−(d−3)l‖A‖2
L2L∞ + sup

k′′∈[0,k′],l′≤0
k′′+l′≤k′+l

∑
Ck′′ (l

′)

2−(d−2)k′′−(d−3)l′−k′‖PCk′′ (l′)A‖
2
L2L∞ .

Now we define ‖A‖`1Sσ =
∑

k′∈Z 2(σ−1)k′
(
‖∇t,xPk′A‖Sk′ + 2−

1
2
k′‖�Pk′A‖L2

t,x

)
,

‖A‖2
Sσ =

∑
k′∈Z

22(σ−1)k′‖∇t,xPk′A‖2
Sk′

+ ‖�A‖2

L2Ḣσ− 3
2

For the elliptic variable of MKG we set

‖A0‖Y σ =
∑
k′∈Z

‖∇x,tPk′A0‖L∞Ḣσ−1∩L2Ḣσ− 1
2

(2.1.3)

while for the elliptic variable of MD we define ‖A0‖Y σ = ‖∇x,tA0‖L2Ḣσ− 1
2
.
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The iteration space for the MKG scalar equation

The solution of the scalar equation will be placed in the space S̄σ for σ = d−2
2

where, for any
s we define

‖φ‖2
S̄s = ‖P̄0(φ, ∂tφ)‖2

S̄0
+
∑
k≥1

22(s−1)k‖∇x,tP̄kφ‖2
S̄k

+ ‖�mφ‖2

L2Hs− 3
2

where S̄k are defined below.
When d = 4, in addition to (2.1.1), we will also use the Klein-Gordon Strichartz norms

below. In general, using these K-G Strichartz norms at high frequencies does not lead to
optimal estimates. Therefore, we will only rely on them for low frequencies or when there is
enough additional dyadic gain coming from null structures. We set

For d = 4 : S̄Strk = SStr,Wk ∩ 2
3
8
kL4L

8
3 ∩ 2

3
4
kL2L4 ∩ 2

3
4
kL2L4,2

For d ≥ 5 : S̄Strk = SStr,Wk

(2.1.4)

Notice that we incorporate the Lorentz norms L4,2. See section 2.2 for more information.
For low frequencies {|ξ| . 1} we define

‖φ‖S̄0
= ‖φ‖S̄Str0

+ ‖φ‖
X̄

1
2∞

+ sup
±,k′<0

‖Q̄±<k′φ‖Sbox(k′)
(d ≥ 4) (2.1.5)

where
‖φ‖2

Sbox(k′)
= 2−2σk′

∑
C=Ck′

‖PCφ‖2
L2L∞

where (Ck′)k′ is a finitely overlapping collection of cubes of sides ' 2k
′
.

For higher frequencies we define as follows. Let d ≥ 4, k ≥ 1 and

‖φ‖2
S̄k

= ‖φ‖2
S̄Strk

+ ‖φ‖2

X̄
1
2∞

+ sup
±

sup
l<0

∑
ω

‖P ω
l Q̄

±
<k+2lφ‖

2
S̄ω±k (l)

(2.1.6)

where, for d ≥ 5 we define

‖φ‖2
S̄ω±k (l)

= ‖φ‖2
SStrk

+ sup
k′≤k;−k≤l′≤0
k+2l≤k′+l′≤k+l

∑
C=Ck′ (l′)

2−(d−2)k′−(d−3)l′−k‖PCφ‖2
L2L∞

while for d = 4 we set

‖φ‖2
S̄ω±k (l)

= ‖φ‖2
SStrk

+ sup
k′≤k;−k≤l′≤0
k+2l≤k′+l′≤k+l

∑
C=Ck′ (l′)

(
2−2k′−k−l′‖PCφ‖2

L2L∞+

+ 2−3(k′+l′)‖PCφ‖2
PW±C

+ ‖PCφ‖2
NE±C

)
.
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where, for any C = Ck′(l′)

‖φ‖NE±C = sup
ω̄,λ=λ(p)

∠(ω̄,±C)�2−p,2−k,2l
′+k′−k

∠(ω̄,±C) ‖φ‖L∞tω̄,λL2
xω̄,λ

, λ(p) :=
1√

1 + 2−2p
(2.1.7)

‖φ‖PW±C = inf
φ=

∑
i φ
i

∑
i

‖φi‖L2
tωi,λ

L∞xωi,λ
, ±ωi ∈ C, λ =

|ξ0|
〈ξ0〉

, ξ0 = center(C) (2.1.8)

The norms L∞tω̄,λL
2
xω̄,λ

and L2
tωi,λ

L∞xωi,λ
are taken in the frames (1.5.5), (1.5.6).

In other words, PW±
C is an atomic space whose atoms are functions φ with ‖φ‖L2

tω,λ
L∞xω,λ

≤
1 for some ω ∈ ±C, where λ depends on the location of C = Ck′(l′).

The purpose of controlling the NE±C and PW±
C norms lies in using the following type

of bilinear L2
t,x estimate, which was introduced in [54] for the wave equation (see also [52]).

A Klein-Gordon analogue was first developed in [4], which served as inspiration for our
implementation.

Proposition 2.1.1. Let k, k2 ≥ 1, k′ + C ≤ k, k2; l ∈ [−min(k, k2), C], and let ±1,±2

be two signs. Let C, C ′ be boxes of size 2k
′ × (2k

′+l)3 located in {|ξ| ' 2k} ⊂ R4 , resp.
{|ξ| ' 2k2} ⊂ R4 such that

∠(±1C,±2C ′) ' 2l
′ � max(2−min(k,k2), 2l+k

′−min(k,k2)) (2.1.9)

Then we have
‖φk · ϕk2‖L2

t,x(R4+1) . 2−l
′‖φk‖NE±1

C
‖ϕk2‖PW±2

C′
(2.1.10)

Proof. The condition (2.1.9) insures that ±1C and ±2C ′ are angularly separated and the
angle between them is well-defined. Since PW is an atomic space, we may assume the
second factor is an atom with ‖ϕk2‖L2

tω,λ
L∞xω,λ

≤ 1 for some ω ∈ ±2C ′ and λ given by (2.1.8).

We choose 2p = |ξ0| ' 2k2 , so that λ = λ(p) from (2.1.7) so that together with (2.1.9) we
have

‖φk‖L∞tω,λL2
xω,λ
. 2−l

′‖PCQ̄±<jφk‖NE±1
C
.

Now (2.1.10) follows from Hölder’s inequality L∞tω,λL
2
xω,λ
× L2

tω,λ
L∞xω,λ → L2

t,x.

Remark 2.1.2. When �mφk = �mϕk2 = 0 and φk, ϕk2 have Fourier support in C, respectively
C ′ then one has

‖φk · ϕk2‖L2
t,x(R4+1) . 2−l

′
2

3
2

(k′+l′)‖φk[0]‖L2×H−1‖ϕk2 [0]‖L2×H−1 (2.1.11)

by convolution estimates (see eg. [15], [53]). Thus (2.1.10) is meant as a more general
substitute for (2.1.11).
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The iteration space for the MD spinorial equation

Let d ≥ 4 and r ∈ R. For the Dirac equation, we need to define analogous spaces adapted
to each characteristic cone {τ = ±|ξ|}. Let

S±k = SStr,W
k ∩X0, 1

2
±,∞ ∩Q±<k−3S̃k.

Remark 2.1.3. The space S̃k is borrowed from [31] (where it is denoted by Sk) and is defined
below. We have changed the notation because we use Sk for the A equation. We also note
that S̃k = S+

k + S−k , Nk = N+
k ∩N

−
k and Qs

<k−1N
s
k ⊆ Nk, Q

s
<k+O(1)S̃k ⊆ Ssk.

We define

‖ψ‖2
Sr±

=
∑
k∈R

(
22rk‖Pkψ‖2

S±k
+ 2(2r−2)k‖(i∂t ± |D|)Pkψ‖2

L2L2

)
.

Let
S̃k = SStr,W

k ∩X0, 1
2∞ ∩ Sang

k .

where Sang
k is as in [31, Eqs. (6)–(8)]:

‖f‖2
Sangk

= sup
l<0

∑
ω

‖P ω
l Qk+2lf‖2

Sωk (l),

where, for d = 4:

‖f‖2
Sωk (l) =‖f‖2

Sstrk
+ 2−2k‖f‖2

NE + 2−3k
∑
±

‖T±f‖2
PW∓ω (l)

+

+ sup
k′≤k, `′≤0

k+2`≤k′+`′≤k+`

∑
Ck′ (`′)

(
‖PCk′ (`′)f‖

2
Sstrk

+ 2−2k‖PCk′ (`′)f‖
2
NE

+ 2−2k′−k‖PCk′ (`′)f‖
2
L2L∞ + 2−3(k′+l′)

∑
±

‖T±PCk′ (`′)f‖
2
PW∓ω (l)

)
while for d ≥ 5:

‖f‖2
Sωk (l) = ‖f‖2

Sstr
k

+ sup
k′≤k, `′≤0

k+2`≤k′+`′≤k+`

∑
Ck′ (`′)

2−(d−2)k′2−(d−3)`′2−k‖PCk′ (`′)f‖
2
L2L∞ .

Here, the NE and PW∓
ω (`) are the null frame spaces [54, 52] given by

‖f‖PW∓ω (`) = inf
f=

∫
fω′

∫
|ω−ω′|≤2`

‖fω′‖L2
±ω′L

∞
(±ω′)⊥

dω′,

‖f‖NE = sup
ω
‖ 6∇ωφ‖L∞ω L2

ω⊥
,

where the Lqω norm is with respect to the variable `± = t±ω · x, the Lr
ω⊥ norm is defined on

each {`±ω = const}, and 6∇ω denotes derivatives tangent to {`±ω = const}.
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Remark 2.1.4. We note here that the full exponent of 2`
′

in the L2L∞ norm of Sangk was not
used in [31], but the extra factor of 2−`

′/2 was actually obtained there in Subsection 11.3 for
the main parametrix estimate (Theorem 4.3.3). As opposed to the Maxwell-Klein-Gordon
case, it turns out that this angular gain is essential here in order to estimate the nonlinear
terms of the Maxwell-Dirac system.

The Sr± norm must be augmented with an L1L∞ control for high modulations. To this
end, consider the dyadic norm

‖ψ‖Z̃±k = 2−2k‖(i∂t ± |D|)ψ‖L1L∞ (2.1.12)

and the corresponding `2-summed norm, given by

‖ψ‖2
Z̃r±

=
∑
k∈R

22rk‖ψk‖2
Z̃±,k

.

Define also
‖F‖Gk = 2−2k‖F‖L1L∞ , ‖F‖2

Gr =
∑
k

22rk‖PkF‖Gk .

For ψ localized at frequency {|ξ| ' 2k} and s ∈ {+,−}, we have

‖ψ‖Z̃±k . ‖(i∂t ± |D|)ψ‖Gk .

The main iteration space S̃σs for the s-components of ψ (s ∈ {+,−}) is defined as

‖ψ‖2
S̃rs

= ‖ψ‖2
Srs

+ ‖ψ‖2
Z̃rs
. (2.1.13)

The L1L∞-type norms

We now introduce some auxiliary norms for the Maxwell components A0, Ax which will be
used in the proofs of the trilinear estimates. Let C1 > 0 be a constant and let

‖A‖2
Zk

:= sup
±

sup
`< 1

2
C1

2−(d−2)k2`
∑
ω

‖P ω
` Q

±
k+2`A‖

2
L1L∞ , (2.1.14)

‖B‖2
Zell,k

:= sup
±

sup
`< 1

2
C1

2−(d−2)k2−`
∑
ω

‖P ω
` Q

±
k+2`B‖

2
L1L∞ . (2.1.15)

For r ∈ R we set ‖A‖Zrk = 2kr‖A‖Zk , ‖B‖Zrell,k = 2kr‖B‖Zell,k and the `1-summed norms

‖A‖Zr =
∑
k∈R

‖PkA‖Zrk , ‖B‖Zrell =
∑
k∈R

‖PkB‖Zrell,k .

Note that Zr
ell = �

1
2 ∆−

1
2Zr. Moreover, we define the norms �Zr and ∆Zr

ell so that ‖A‖Zr =
‖�A‖�Zr and ‖B‖Zrell = ‖∆B‖∆Zrell

.
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By Lemma 2.2.7 we will have(
�−1 ×∆−1

)
Pk′ : L1L2 × L1L2 → 2(σ−1)k′Zσ

k′ × Zσ
ell,k′ (2.1.16)

and
‖∆−1Pk′A0‖Zσ

ell,k′
. sup
±,`<C

2`2(σ−1)k′‖Q±k′+2`Pk′A0‖L1L2 (2.1.17)

Time interval localized norms

In a few places we need to consider time interval localization of the function spaces. Given
an interval I ⊆ R and a distribution f on I × Rd, we define1

‖f‖X[I] = inf{‖f̃‖X : f̃ ∈ X, f̃ = f on I},

where X may denote any norm, e.g., Sr, N r, S̃rs or N r
s .

Let f ∈ N r[I]. Up to equivalent norms, we may take f̃ above in N r to be simply the
extension by zero outside I. Moreover, for f ∈ N r, we have

lim
T→0
‖f‖Nr[0,T ] = 0, lim

T→∞
‖f‖Nr[T,∞) = 0. (2.1.18)

Similar properties holds for N r
s . These statements are justified by the following lemma,

whose proof can be read off from [41, Proposition 3.3].

Lemma 2.1.5. Let f ∈ N r (r ∈ R). For any interval I ⊆ R, denote by 1I(t) its characteris-
tic function. Then we have ‖1I(t)f‖Nr . ‖f‖Nr . Moreover, we have limT→0+ ‖1[0,T ](t)f‖Nr =
0 and limT→∞ ‖1[T,∞](t)f‖Nr = 0.

The same statements hold with N r replaced by N r
s (s ∈ {+,−}, r ∈ R).

Extra derivatives

For X = S,N, Y, Ḣ and X̄ = S̄, N̄ ,H, for any s, ρ ∈ R we have

‖A‖Xs+ρ ' ‖∇ρ
xA‖Xs , ‖f‖X̄s+ρ ' ‖ 〈∇x〉ρ f‖X̄s

Similar definitions are made for their dyadic pieces, for instance

‖φk‖S̄sk ' 2(s−1)k‖(〈Dx〉 , ∂t)φk‖S̄k .
1We use the convention inf ∅ =∞.
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Motivation of the norms

We end this section with a discussion about the choice of norms in the definition of the
Sk, S̄k, S

±
k , S̃k spaces. For solutions A of the free wave equation �A = 0 we have ‖A‖Sk '

‖A[0]‖L2×Ḣ−1 . The X
0,1/2
∞ space provides control of L2L2 norms that are useful with compo-

nents of high modulation.
Additionally, one looks for norms that are both useful in proving bilinear estimates and

which are controlled for free wave solutions. In fact, by expressing arbitrary functions A
as superpositions of free waves, one can obtain boundedness of ‖A‖Sk in terms of ‖�A‖Nk .
An example of this argument appears in Lemma 2.2.6. The Sstrk component corresponds to
well-known Strichartz estimates.

Regarding Sangk , the `2 summation in P ω
l and PCk′ (`′) is inherited from the initial data.

The square summed L2L∞ norms play a particularly important role in the estimates. To
motivate the choice of dyadic exponents, let us check that these exponents are sharp. We
claim that an inequality

‖PCk′ (`′)Pke
it|D|u0‖L2L∞ . Ck,k′,`′‖u0‖L2

x
(2.1.19)

can be true (uniformly in k, k′, `′) only for C2
k,k′,`′ ≥ 2(d−2)k′2(d−3)`′2k, and is optimal when

the latter is an equality.
We consider the following version of the Knapp example: let u(t, x) be a solution to

�u = 0 with Fourier support in S = {τ = |ξ| ' 2k, ξ ∈ Ck′(`′)} such that for any |t| ≤ T :=
1
C

2k2−2(k′+`′) one has |u(t, x)| ' 1 for x in a rectangle of sides ' 2−k
′ × (2−k

′−`′)d−1, dual
to Ck′(`′). The uncertainty principle suggests that u(t, ·) becomes dispersed after |t| � T
because the smallest rectangular box encompassing S has sides ' T−1 × 2k

′ × (2k
′+`′)d−1

(where T−1 and 2k
′

are measured in the null directions). In fact, for

Ck′(`′) = C := {|ξ1| ' 2k,
∣∣ξ1 − ξ0

1

∣∣� 2k
′
, |ξi| � 2k

′+`′ , i = 2, d}

one can define

u(t, x) = vol(C)−1

∫
C
eix·ξeit|ξ| dξ

and check that |u(t, x)| ' 1 for |t| . T , |x1 + t| . 2−k
′
, |xi| . 2−k

′−`′ .

Plugging this example into (2.1.19) gives T
1
2 . Ck,k′,`′vol(C)− 1

2 , which provides the opti-
mal choice of Ck,k′,`′ in the definition of Sk, S̄k.

Similar arguments apply to the norms PW and NE which are used for d = 4. For
instance, plugging the same u(t, x) in the inequality

‖PCk′ (`′)e
it|D|u0‖L2

ωL
∞
ω⊥
. C̃k′,`′‖u0‖L2

x
, for ω = e1

gives (2−k
′
)

1
2 . C̃k′,`′vol(C)− 1

2 , thus C̃k′,`′ = 2
3
2

(k′+`′) is the optimal choice for PW .
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2.2 The embeddings

Lorentz spaces and �−1 embeddings

For functions f in the Lorentz space Lp,q, by decomposing

f =
∑

fm, where fm(x) := f(x)1{|f(x)|∈[2m,2m+1]}

we have the following equivalent norm (see [19])

‖f‖Lp,q ' ‖‖fm‖Lp(Rd)‖`qm(Z). (2.2.1)

The Lorentz spaces also enjoy a Hölder-type inequality which is due to O’Neil [44]. We
will need the following case

‖φψ‖L2,1 . ‖φ‖L4,2‖ψ‖L4,2 (2.2.2)

For M ∈ Z and l ≤ 0 let

T ωl =
∑
k′≤M

P ω
l Q

±
k′+2lPk′

1

�
(2.2.3)

Remark 2.2.1. We will use the T ωl operators on R4+1 to estimate parts of the potential A in
L1L∞, using the embedding (2.2.5) together with Lorentz space Strichartz estimates L2L4,2

for φ and (2.2.2). We have been motivated by [50], where A ≈ ∂
∆

(du)2, and where essentially
a Sobolev-type emdedding 1

|Dx| : Ld,1x → L∞x (Rd) is used.

When l = 0 the symbol of the operator T ωl makes it resemble ∆−1
x .

The main point here will be that it is crucial to keep the k′ summation inside the norm
in order to overcome logarithmic divergences in (6.2.6).

Proposition 2.2.2. On R4+1 the following embeddings hold uniformly in l ≤ 0 and M :

2
1
2
lT ωl : L2L

4
3 → L2L4, (2.2.4)

2
1
2
lT ωl : L1L2,1 → L1L∞. (2.2.5)

Proof. Step 1.Proof of (2.2.4). Apply an angular projection such that P̃ ω
l P

ω
l = P ω

l . Now
(2.2.4) follows by composing the following embeddings

2−
3
4
lP ω
l |Dx|−1 : L2L

4
3 → L2

t,x, 22l |Dx|2

�

∑
k′≤M

Q±k′+2lPk′ : L2
t,x → L2

t,x (2.2.6)

2−
3
4
lP̃ ω
l |Dx|−1 : L2

t,x → L2L4. (2.2.7)

When l = 0, the first and third mappings follow from Sobolev embedding. For smaller l we
make a change of variable that maps an angular cap of angle ' 2l into one of angle ' 20,
which reduces the bound to the case l = 0.
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The second mapping holds because the operator has a bounded multiplier.

Step 2. Proof of (2.2.5). Let k(t, x) be the kernel of 2
1
2
lT ωl . It suffices to show

2
1
2
lT ωl [δ0(t)⊗ · ] : L2,1

x → L1L∞, i.e. ‖
∫
f(y)k(t, x− y) dy‖L1

tL
∞
x
. ‖f‖L2,1

x
(2.2.8)

Indeed, assuming (2.2.8), denoting φs(·) = φ(s, ·), we have

‖2
1
2
lT ωl φ‖L1L∞ ≤

∫
‖
∫
φ(s, y)k(t− s, x− y) dy‖L1

tL
∞
x

ds .
∫
‖φs‖L2,1 ds

using the time translation-invariance in (2.2.8).
To prove (2.2.8), since q = 1, by (2.2.1) we may assume that f = fm, i.e. |f(x)| ' 2m

for x ∈ E and f(x) = 0 for x /∈ E. We normalize ‖f‖L2,1 ' ‖f‖L2
x

= 1, which implies
|E| ' 2−2m. We have

‖
∫
f(x− y)k(t, y) dy‖L∞x . 2m sup

|F |'2−2m

∫
F

|k(t, y)| dy (2.2.9)

For xω = x · ω, x′ω,i = x · ω⊥i , we will show

|k(t, x)| . 2
1
2
l 23l

(22l |t|+ |xω|+ 2l |x′ω|)3
. (2.2.10)

Assuming this, we integrate it on F and since the fraction is decreasing in |xω| , |x′ω|,

RHS (2.2.9) . 2m2
1
2
l

∫
[−R,R]×(2−l[−R,R])3

23l

(22l |t|+ |xω|+ 2l |x′ω|)3
dxω dx′ω

. 2m2
1
2
l

∫
[−R,R]4

1

(22l |t|+ |(xω, x′ω)|)3
dxω dx′ω . 2m2

1
2
l R4

(22l |t|)3 +R3

for R4 ' 23l2−2m. Integrating this bound in t we obtain (2.2.8).

Step 3. Proof of (2.2.10). Let k0(t, x) be the kernel of P0Q
±
2lP

ω
l

1
� . Then

k(t, x) = 2
1
2
l
∑
k′≤M

23k′k0

(
2k
′
(t, x)

)
. (2.2.11)

Let (tω, x
1
ω, x

′
ω) be the coordinates in the frame (1.5.5), (1.5.6) for λ = 1. Then

2−3lk0(tω, 2
−2lx1

ω, 2
−lx′ω)

is a Schwartz function, being the Fourier transform of a bump function. Thus,

|k0(t, x)| . 23l

〈|tω|+ 22l |x1
ω|+ 2l |x′ω|〉

N
.

23l

〈22l |t|+ |xω|+ 2l |x′ω|〉
N
.

Using this and (2.2.11), denoting S = 22l |t|+ |xω|+ 2l |x′ω|, we have

|k(t, x)| . 2
1
2
l23l
( ∑

2k
′≤S−1

23k′ +
∑

S−1<2k′

2−(N−3)k′S−N
)
. 2

1
2
l23lS−3

obtaining (2.2.10).
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Further properties

For iterating Maxwell’s equation we will use the following proposition.

Proposition 2.2.3. For any A such that A[0] = 0 one has

‖A‖`1Sσ . ‖�A‖`1(Nσ−1∩L2Ḣσ− 3
2 )

(2.2.12)

For any free solution Afree, i.e. �Afree=0, one has ‖Afree‖Sσ ' ‖A[0]‖Ḣσ×Ḣσ−1. Thus, for
any A,

‖A‖Sσ . ‖A[0]‖Ḣσ×Ḣσ−1 + ‖�A‖
Nσ−1∩L2Ḣσ− 3

2
(2.2.13)

In addition, for any A0 one has

‖A0‖Y σ . ‖∆A0‖`1(L∞Ḣσ−2∩L2Ḣσ− 3
2 )

+ ‖∆∂tA0‖`1(L∞Ḣσ−3∩L2Ḣσ− 5
2 )

(2.2.14)

Proof. The A0 bound follows easily from the definition of Y σ. The A bounds are reduced to

‖∇t,xAk′‖Sk′ . ‖Ak′ [0]‖Ḣ1×L2 + ‖�Ak′‖Nk′

The X
1
2∞ part follows easily from Lemma 2.2.4. Using the argument of Lemma 4.10.2 (with

ψ = 0), we reduce to showing

e±it|D|Pk′ : L2
x → SStr,W , e±it|D|Pk′P

ω
l : L2

x → Sωk′(l) (2.2.15)

The first mapping represents well-known Strichartz estimates. By orthogonality, the second
one follows from

2−
d−1

2
k′− d−3

2
le±it|D|Pk′P

ω
l : L2

x → L2L∞,

2−
d−2

2
k′′− 1

2
k′− d−3

2
l′e±it|D|Pk′PCk′′ (l′) : L2

x → L2L∞

By a TT ∗ argument, these are reduced to the dispersive estimate (4.6.9), like in Cor. 4.6.4
(with ψ = 0 and |D| instead of 〈D〉, which does not affect the proof).

The following Sobolev-type embedding holds.

Lemma 2.2.4. Let p ≥ q. For any sign ± we have

‖Q̄±j u‖LpL2 . 2( 1
q
− 1
p

)j‖Q̄±j u‖LqL2 . 2( 1
q
− 1
p

)j‖u‖LqL2 .

The same statements holds for Q±j .

Proof. We conjugate by the operator U defined by

F(Uu)(τ, ξ) = Fu(τ ± 〈ξ〉 , ξ),
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which acts at each t as the unitary multiplier e∓it〈D〉. Thus we have

Q±j u = U−1χ(
Dt

2j
)Uu.

This clearly implies the second inequality. For the first one we write

‖Q±j u‖LpL2 . ‖χ(
Dt

2j
)Uu‖LpL2 . 2( 1

q
− 1
p

)j‖χ(
Dt

2j
)Uf‖LqL2 . 2( 1

q
− 1
p

)j‖Q̄±j u‖LqL2 .

The same argument works for Q±j , conjugating by e∓it|D| instead.

Next we prove the embedding X̄
1
2
1 ⊂ S̄k.

Proposition 2.2.5. For k ≥ 0, k′ ∈ Z and φ, ψ with Fourier support in {〈ξ〉 ' 2k}, resp.
{|ξ| ' 2k

′}, we have
‖φ‖S̄k . ‖φ‖X̄ 1

2
1

, ‖ψ‖S̃k′ . ‖ψ‖X 1
2
1

.

Proof. We consider the first inequality, since the proof of the second one is analogous. We
may assume that φ has Fourier support in {|τ − 〈ξ〉| ' 2j, τ ≥ 0}. The bound clearly holds

for the X̄
1
2∞ component of S̄k. For the other norms we claim ‖eit〈D〉u‖S̄k . ‖u‖L2

x
. Assuming

this, we write τ = ρ+ 〈ξ〉 in the inversion formula

φ(t) =

∫
eitτ+ixξFφ(τ, ξ) dξ dτ =

∫
|ρ|'2j

eitρeit〈D〉φρ dρ

for φ̂ρ(ξ) = Fφ(ρ+ 〈ξ〉 , ξ). Then by Minkowski and Cauchy-Schwarz inequalities

‖φ‖S̄k .
∫
|ρ|'2j

‖eit〈D〉φρ‖S̄k dρ .
∫
|ρ|'2j

‖φρ‖L2
x

dρ . 2
j
2‖φ‖L2

t,x
' ‖φ‖

X̄
1
2
1

.

By an orthogonality argument, for any l < 0 it remains to establish

eit〈D〉P̄k : L2
x → S̄Strk , eit〈D〉P̄kP

ω
l : L2

x → S̄ω±k (l)

The first mapping follows by taking ψk,± = 0 in (4.10.5). The second one follows similarly,
by orthogonality and (4.10.8) for L2L∞, (4.10.9) for PW±

C and Corollary 4.6.10 for NE±C .
For k = 0, the Sbox(k′) component follows similarly.

Similarly, we have

Lemma 2.2.6. Suppose f is localized at frequency {|ξ| ' 2k} and s ∈ {+,−}.

1. If f is localized at Qs-modulation . 2k then

‖f‖L2L2 . 2
k
2 ‖f‖Ns

k
. (2.2.16)
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2. If f is localized at Qs-modulation & 2k and u is defined by

Fu(τ, ξ) =
1

τ − s |ξ|
Ff(τ, ξ) (2.2.17)

then

‖u‖Ssk . ‖f‖Ḣ−1/2 (2.2.18)

‖u‖L∞L2 . ‖f‖Ns
k

(2.2.19)

Proof. In view of the low modulation, (2.2.16) follows by duality from the embedding in
Prop. 2.2.5. Similarly, (2.2.18) follows from the inequalities

‖u‖Ssk . ‖u‖X0, 12
s,1

. ‖f‖
X

0,− 1
2

s,1

. ‖f‖Ḣ−1/2 .

Now we prove (2.2.19). Since N s
k is an atomic space we consider two cases. First, if f is an

X
0,−1/2
s,1 -atom then we write

u(t) =

∫
eitρeist|D|φρ dρ

where φρ satisfies

φ̂ρ(ξ) = Fu(ρ+ s |ξ| , ξ),
∫
‖φρ‖L2 dρ . ‖f‖

X
0,−1/2
s,1

.

If f is an L1L2-atom we write u as a superposition of truncated homogenous waves

u(t) =

∫
ei(t−t

′)s|D|f(t)1t>t′ dt
′.

In both cases (2.2.19) follows from the basic inequality for free waves

‖eist|D|φ‖L∞L2 . ‖φ‖L2 .

The following lemma concerns the Z spaces.

Lemma 2.2.7. For F with frequency support in {|ξ| ' 2k}, we have

‖F‖
�Z

d−2
2
. sup

`< 1
2
C1

2−2k2−
3
2
`
(∑

ω

‖P ω
`−Qk+2`PkF‖2

L1L∞

) 1
2
, (2.2.20)

‖F‖
�Z

d−2
2
.‖Q<k+C1PkF‖L1Ḣ

d−4
2
, (2.2.21)

‖F‖
∆Z

d−2
2

ell

. sup
`< 1

2
C1

2−2k2−
1
2
`
(∑

ω

‖P ω
`−Qk+2`PkF‖2

L1L∞

) 1
2
, (2.2.22)

‖F‖
∆Z

d−2
2

ell

.‖Q<k+C1PkF‖L1Ḣ
d−4

2
, (2.2.23)

‖F‖
∆Z

d−2
2

ell

. sup
`< 1

2
C1

2`‖Qk+2`PkF‖
L1Ḣ

d−4
2
. (2.2.24)
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Proof. To prove (2.2.20), note that the symbol of the operator (22k+2`/�)P̃ ω
`−
Q̃k+2`P̃k obeys

the same bump function estimates as the symbol of P ω
`−
Qk+2`Pk on the rectangular region of

size (2k+`)d−1×2k+2`×2k where it is supported. Thus, this operator is disposable. Similarly,
the operator (22k/∆)P̃k is disposable, which implies (2.2.22). The bound (2.2.21) [resp.
(2.2.23), (2.2.24)] follows from (2.2.20) [resp. (2.2.22)] by applying Bernstein’s inequality
and using the orthogonality property of the sectors associated to (P ω

`−
)ω. We note that the

proof of (2.2.21), (2.2.23) are sharp only in d = 4.

Remark 2.2.8. Notice the following simple inequalities:

‖PkF‖Ns
k
. ‖PkF‖Ns . (2.2.25)

If the functions fk′ have Fourier support in the regions {|ξ| ' 2k
′} and f =

∑
k′ fk′ then

‖Pkf‖N0
s
.

∑
k′=k+O(1)

‖fk′‖Ns
k′

(2.2.26)

‖Pkf‖Sσs . 2σk
∑

k′=k+O(1)

(
‖fk′‖Ss

k′
+ ‖(i∂t + s |D|)fk′‖L2Ḣ−1/2

)
. (2.2.27)

Finally, we have

Proposition 2.2.9. Let k ≥ 0 and Ck′(l′) be a finitely overlapping collection of boxes. We
have ∑

Ck′ (l′)

‖PCk′ (l′)F‖
2
N̄k
. ‖F‖2

N̄k

Proof. Since N̄k is an atomic space the property reduces to the corresponding inequalities
for L1L2 and L2

t,x, which are standard inequalities.
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Chapter 3

Proofs of the main well-posedness
theorems

Assuming the estimates in sections 1.6 and 1.8 we prove Theorems 1.1.1 and 1.1.2. The
MD-CG system takes the form 

αµDµψ =0

�Aj =Pj〈ψ, αxψ〉
∆A0 =− 〈ψ, ψ〉

(MD-CG)

while, for Jα = −I(φDαφ), the MKG system is written as
�Amφ = 0

�Ai = PiJx
∆A0 = J0

(MKG)

We begin with a more detailed formulation of the main parts of Theorems 1.1.1 and 1.1.2.
After proving these we proceed to the proofs of statements (2) and (3) of the main theorems.

Theorem 3.0.1. There exists a universal constant ε > 0 such that

1. For any initial data φ[0] ∈ Hσ × Hσ−1, Ax[0] ∈ Ḣσ × Ḣσ−1 for MKG satisfying the
smallness condition (1.1.8) and (1.1.5), there exists a unique global solution (φ,Ax, A0) ∈
S̄σ × Sσ × Y σ to MKG with this data.

2. For any admissible frequency envelope (ck)k≥0 such that ‖P̄kφ[0]‖Hσ×Hσ−1 ≤ ck, we have

‖P̄kφ‖S̄σ . ck, ‖Pk′ [Ax − Afreex ]‖Sσ + ‖Pk′A0‖Y σ .

{
c2
k′ , k′ ≥ 0

2
k′
2 c2

0, k′ ≤ 0
. (3.0.1)
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3. (Weak Lipschitz dependence) Let (φ′, A′) ∈ S̄σ × Sσ × Y σ be another solution to MKG
with small initial data. Then, for 1 δ ∈ (0, δ1) we have

‖φ−φ′‖S̄σ−δ +‖A−A′‖Sσ−δ×Y σ−δ . ‖(φ−φ′)[0]‖Hσ−δ×Hσ−δ−1 +‖(Ax−A′x)[0]‖Ḣσ−δ×Ḣσ−δ−1

(3.0.2)

4. (Persistence of regularity) If φ[0] ∈ HN × HN−1, Ax[0] ∈ ḢN × ḢN−1 (N ≥ σ),
then (φ, ∂tφ) ∈ Ct(R;HN × HN−1), ∇t,xAx ∈ Ct(R; ḢN−1). In particular, if the data
(φ[0], Ax[0]) are smooth, then so is the solution (φ,A).

Now let (ψ(0), Ax[0]) be an initial data set for MD-CG. We say that c = (ck)k∈Z is a
frequency envelope for (ψ(0), Ax[0]) if

‖Pkψ(0)‖Ḣ1/2 + ‖PkAx[0]‖Ḣ1×L2 ≤ ck.

Theorem 3.0.2. There exists a universal constant ε∗ > 0 such that the following statements
hold.

1. For any initial data ψ(0) ∈ Ḣ1/2, Ax[0] ∈ Ḣ1 × L2 for MD-CG satisfying the smallness
condition (1.1.9), there exists a unique global solution (A,ψ) to MD-CG with these data

in the space Πsψ ∈ S̃1/2
s , A0 ∈ Y 1, Aj ∈ S1. Given any admissible frequency envelope c

for (ψ(0), Ax[0]), we have

sup
s∈{+,−}

‖Πsψ‖(S̃
1/2
s )c

+ ‖Ax − Afreex ‖(S1)c2
+ ‖A0‖Y 1

c2
. 1. (3.0.3)

2. Let (A′, ψ′) be another solution to MD-CG such that Πsψ
′ ∈ S̃

1/2
s , A′0 ∈ Y 1, Aj ∈ S1

and the data ψ′(0), A′x[0] satisfies (1.1.9). Assume also that (ψ − ψ′)(0) ∈ Ḣ1/2−δ2 and
(Ax − A′x)[0] ∈ Ḣ1−δ2 × Ḣ−δ2 for some δ2 ∈ (0, δ1). Then we have

sup
s∈{+,−}

‖Πs(ψ − ψ′)‖S̃1/2−δ2 + ‖Ax − A′x‖S1−δ2 + ‖A0 − A′0‖Y 1−δ2

.‖(ψ − ψ′)(0)‖Ḣ1/2−δ2 + ‖(Ax − A′x)[0]‖Ḣ1−δ2×Ḣ−δ2 .
(3.0.4)

3. If ψ(0) ∈ Ḣ1/2+N , Ax[0] ∈ Ḣ1+N × ḢN (N ≥ 0), then ψ ∈ Ct(R; Ḣ1/2+N), ∂t,xAx ∈
Ct(R; ḢN). In particular, if the data (ψ(0), Ax[0]) are smooth, then so is the solution
(A,ψ).

Theorems 3.0.1 and 3.0.2 are proved by a Picard-type iteration argument as in [31].
The presence of a non-perturbative interaction with Afree precludes both the usual iteration
procedure based on inverting � or the free Dirac operator and the possibility of proving
Lipschitz dependence in the full space S̄σ×Sσ×Y σ. Instead, we will rely on Theorem 1.6.1
which provides linear estimates for �p,A

free

m and on the solvability result for the covariant
Dirac equation given by Prop. 1.8.11.

1 δ1 is the admissible frequency envelope constant.
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Remark 3.0.3. The Maxwell-Dirac statements and proofs are presented for d = 4. In a general
dimension d ≥ 4, all arguments in this chapter apply with substitutions as in Remark 1.8.5.

3.1 Existence and frequency envelope bound for MD.

Uniqueness.

We first prove Statement (1) of Theorem 3.0.2 except uniqueness, which is proved in the next
step. We proceed by a Picard-type iteration, where the iterates are constructed recursively
as follows. For the zeroth iterate, we take the trivial pair (A0, ψ0) = 0. Then for any n ≥ 0,
we first define

An+1
0 = A0(ψn, ψn), An+1

j = Afreej + Aj(ψ
n, ψn),

where A0,Aj are given by (1.7.19), (1.7.22) and Afreej denotes the free wave development of
Aj[0] = (Aj, ∂tAj)(0). Next, we define ψn+1 by solving the covariant Dirac equation

αµDAn+1

µ ψn+1 = 0, ψn+1(0) = ψ(0).

In order to construct ψn+1, we wish to apply Proposition 1.8.11 with A = An+1, or equiv-
alently, ψ′ = ψn and Afreej [0] = Aj[0]. When n = 0 we have ψ0 = 0, so the hypothesis of
Proposition 1.8.11 is verified simply by recalling (1.1.9) and taking ε∗ ≤ ε∗∗. For n ≥ 1, we
make the induction hypothesis

sup
s∈{+,−}

‖Πs(ψ
m − ψm−1)‖

S̃
1/2
s
≤ (C∗ε∗)

m for all 1 ≤ m ≤ n. (3.1.1)

for some universal constant C∗ > 0. Recalling (1.1.9), summing up (3.1.1) for 1 ≤ m ≤ n
and taking ε∗ sufficiently small compared to ε∗∗ (independent of n), we may ensure that the
hypothesis (1.8.31) of Proposition 1.8.11 holds. Moreover, since ψn obeys a covariant Dirac
equation, the condition ∂µ〈ψn, αµψn〉 = 0 is satisfied by Remark 1.7.6.

With an appropriate choice of C∗ and ε∗, we claim that the (n+1)-th iterate (An+1, ψn+1)
has the following properties:

sup
s∈{+,−}

‖Πsψ
n+1‖

(S̃
1/2
s )c

+ ‖An+1
x − Afreex ‖(S1)c2

+ ‖An+1
0 ‖Y 1

c2
. 1, (3.1.2)

sup
s∈{+,−}

‖Πs(ψ
n+1 − ψn)‖

S̃
1/2
s

+ ‖An+1
x − Anx‖S1 + ‖An+1

0 − An0‖Y 1 ≤ (C∗ε∗)
n+1. (3.1.3)

Assuming these, the proof of existence and (3.0.3) may be concluded as follows. Note that
(3.1.3) ensures that the induction hypothesis (3.1.1) remains valid up to m = n+1. Moreover,

these estimates immediately imply convergence of (An, ψn) in the topology Πsψ
n ∈ S̃

1/2
s ,

Aj ∈ S1 and A0 ∈ Y 1 to a solution (A,ψ) to MD-CG; furthermore, the solution obeys the
frequency envelope bound (3.0.3).
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It only remains to establish (3.1.2) and (3.1.3); we start with (3.1.2). Decomposing
∆An+1

0 , ∆∂tA
n+1
0 and �An+1

x as in Section 1.7 and applying Proposition 1.8.6, the proof of
(3.1.2) is reduced to establishing

sup
s∈{+,−}

‖Πsψ
m‖

(S̃
1/2
s )c
. 1 for m = 1, . . . , n+ 1. (3.1.4)

Choosing ε∗ sufficiently small and summing up the induction hypothesis (3.1.1), we obtain

sup
s∈{+,−}

‖Πsψ
m‖

S̃
1/2
s

+ ‖Ax[0]‖Ḣ1×L2 ≤ Cε∗ ≤ ε∗∗ for m = 0, . . . , n. (3.1.5)

This bound allows us to apply Proposition 1.8.11, which implies (3.1.4) as desired.
Next, we turn to (3.1.3). For any µ ∈ {0, 1, . . . , 4}, we may write

An+1
µ − Anµ = Aµ(δψn, ψn) + Aµ(ψn−1, δψn),

where we have used the shorthand δψn = ψn − ψn−1. Decomposing ∆A0 = M0, ∆∂tA0 =
∂tM0 and �Ax =Mx as in Section 1.7 and applying2 Proposition 1.8.6, we obtain

‖An+1
0 − An0‖L2Ḣ3/2 + ‖∂tAn+1

0 − ∂tAn0‖L2Ḣ1/2 + ‖An+1
x − Anx‖S1

. sup
s,s′∈{+,−}

(
‖Πsψ

n‖
S̃

1/2
s

+ ‖Πsψ
n−1‖

S̃
1/2
s

)
‖Πs′δψ

n‖
S̃

1/2
s

By (3.1.1) and (3.1.2) for ψn and ψn−1, it follows that

‖An+1
0 − An0‖Y 1 + ‖An+1

x − Anx‖S1 . ε∗(C∗ε∗)
n

which is acceptable by choosing C∗ larger than the implicit (universal) constant.

We now estimate the S̃
1/2
s norm of δψn+1 = ψn+1 − ψn. We begin by computing

αµDAn

µ δψn+1 =− iαµ(An+1
µ − Anµ)ψn+1

=− iαµ
(
Aµ(δψn, ψn) + Aµ(ψn−1, δψn)

)
ψn+1.

By symmetry, it suffices to consider only the contribution of Aµ(δψn−1, ψn). Using the
shorthand ψn+1

s = Πsψ
n+1, we expand

Πs

(
αµAµ(δψn, ψn)ψn+1

)
=Πs

(
πE[A0(δψn, ψn)]ψn+1

s − sπR[Ax(δψ
n, ψn)]ψn+1

s

)
(3.1.6)

+ ΠsÑE(A0(δψn, ψn),Πsψ
n+1
s )− sΠsÑR(Ax(δψ

n, ψn), ψn+1
s ) (3.1.7)

+ ΠsNE(A0(δψn, ψn),Π−sψ
n+1
−s ) + sΠsNR(Ax(δψ

n, ψn), ψn+1
−s ) (3.1.8)

+ ΠsN S
s (Ax(δψ

n, ψn), ψn+1
s ) + ΠsN S

−s(Ax(δψ
n, ψn), ψn+1

−s ) (3.1.9)

2Proposition 1.8.6 is stated in terms of admissible frequency envelopes. Constructing frequency envelopes
as in (1.5.13), Proposition 1.8.6 easily implies the non-frequency envelope version, which we use here. The
same remark applies to the application of estimates in Propositions 1.8.7 and 1.8.8 below.
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We wish to estimate the N
1/2
s ∩ L2L2 ∩ G1/2 norm of the RHS using Proposition 1.8.7 and

1.8.8. More precisely, For the N
1/2
s norm, we apply (1.8.28) for (3.1.6); (1.8.15)–(1.8.16) for

(3.1.7); (1.8.15)–(1.8.16), (1.8.18)–(1.8.19) for (3.1.8) and (1.8.17), (1.8.20) for (3.1.9). For
the L2L2∩G1/2 norm, we simply use (1.8.21)–(1.8.23) and (1.8.24)–(1.8.26). Then we obtain

‖Πs

(
αµAµ(δψn, ψn)ψn+1

)
‖
N

1/2
s ∩L2L2∩G1/2 . sup

s1,s2,s3

‖δψns1‖S̃1/2
s1

‖ψns2‖S̃1/2
s2

‖ψn+1
s3
‖
S̃

1/2
s3

Hence by Proposition 1.8.11, (3.1.1) and (3.1.2) for ψn+1 and ψn, we arrive at

sup
s∈{+,−}

‖Πsδψ
n+1‖

S̃
1/2
s
. ε2∗(C∗ε∗)

n, (3.1.10)

which is acceptable.

Uniqueness

To finish the proof of Statement (1) of Theorem 3.0.2, we need to show that the solution
(A,ψ) is unique in the iteration space. Let (A′, ψ′) be another solution to MD-CG with the

same data, which obeys Πsψ
′ ∈ S̃1/2

s , A′x ∈ S1 and A′0 ∈ Y 1. To prove the desired uniqueness,
by a simple continuity argument, it is enough show that (A,ψ) = (A′, ψ′) on [0, T ] for some
T = T (ψ(0), Ax[0]) > 0. Moreover, it is clear from MD-CG that A′0 = A0(ψ′, ψ′) and
A′x = Afreex + Ax(ψ

′, ψ′); hence it suffices to establish

ψ(t) = ψ′(t) for t ∈ [0, T ]. (3.1.11)

Define δψ = ψ′ − ψ. By Proposition 1.8.11, we have

sup
s∈{+,−}

‖Πsδψ‖S̃1/2
s [0,T ]

. sup
s∈{+,−}

‖Πsα
µDA

µ δψ‖N1/2
s ∩L2L2∩G1/2[0,T ]

(3.1.12)

Moreover, writing out the equations for αµDA
µ δψ and αµ∂µδψ in terms of ψ, δψ and analyzing

it as in the proof of (3.1.3), we arrive at

RHS of (3.1.12) .
(
ε∗ + sup

s∈{+,−}
‖Πsδψ‖S̃1/2

s [0,T ]

)2

sup
s∈{+,−}

‖Πsδψ‖S̃1/2
s [0,T ]

In particular, the RHS of (3.1.12) is finite; hence the LHS of (3.1.12) can be made as small

as we want by choosing T sufficiently small (we use (2.1.18) for N
1/2
s ). Combining (3.1.12)

with the preceding estimate, and taking ε∗ smaller if necessary, we may conclude that δψ = 0
on [0, T ] as desired.
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3.2 Existence and uniqueness for MKG. Frequency

envelopes bounds.

We now prove Statement (1) of Theorem 3.0.1.

Step 1. We set up a Picard iteration. For the zeroth iterate, we take (φ0, A0
j , A

0
0) =

(0, Afreej , 0) and for any n ≥ 0 define Jnα = −I(φnDAn
α φn) and, recursively,

�A
n

m φn+1 = 0 (3.2.1)

�An+1
j = PjJnx (3.2.2)

∆An+1
0 = Jn0 (3.2.3)

with initial data (φ[0], Ax[0]). Differentiating (3.2.3) and using Remark 1.7.1, we get

∆∂tA
n+1
0 = ∂iJni . (3.2.4)

Note that A1
0 = 0. We claim that

‖A1
x‖Sσ = ‖Afreex ‖Sσ ≤ C0‖Ax[0]‖Ḣσ×Ḣσ−1 ≤ C0ε, ‖φ1‖S̄σ ≤ C0ε (3.2.5)

where Afreej denotes the free wave development of Aj[0] = (Aj, ∂tAj)(0).
For n ≥ 1, denoting Am = (Amx , A

m
0 ) we make the induction hypothesis

‖φm − φm−1‖S̄σ + ‖Am − Am−1‖`1Sσ×Y σ ≤ (C∗ε)
m m = 2, n. (3.2.6)

for a universal constant C∗ > 0. By summing this up and adding (3.2.5) we get

‖φm‖S̄σ + ‖Amx − Afreex ‖`1Sσ + ‖Amx ‖Sσ + ‖Am0 ‖Y σ ≤ 2C0ε m = 1, n. (3.2.7)

These estimates imply convergence of (φn, Anx, A
n
0 ) in the topology of S̄σ × Sσ × Y σ to a

solution of MKG.

Step 2. Notice that we can decompose

An+1
0 = A0(φn, φn) + AR,n+1

0 , AR,n+1
0 := −∆−1(|φn|2An0 )

An+1
j = Afreej + Aj(φ

n, φn) + AR,n+1
j , AR,n+1

j := −�−1Pj(|φn|2Anx)

for A = (A0,Aj) defined in (1.7.4), and set AR,n = (AR,nx , AR,n0 ). To estimate An+1 −An we
write

An+1 − An = A(φn − φn−1, φn) + A(φn−1, φn − φn−1) +
(
AR,n+1 − AR,n

)
∂tA

n+1
0 − ∂tAn0 = ∆−1∇xI

(
φn−1∇xφn−1 − φn∇xφ̄n + i

∣∣φn−1
∣∣2An−1

x − i |φn|2Anx
) (3.2.8)

The difference An+1 − An is estimated in `1Sσ × Y σ using Proposition 2.2.3 and (1.8.1)-
(1.8.3), together with (3.2.6), (3.2.7). With an appropriate choice of C∗ and ε, this insures
the induction hypothesis (3.2.6) for A remains valid with m = n+ 1.
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Moreover, using (2.1.16) and (1.8.3) with (3.2.6), (3.2.7) we obtain

‖AR,n‖(Zσ∩`1Sσ)×(Zσell∩Y σ) . ε, ‖AR,n − AR,n−1‖(Zσ∩`1Sσ)×(Zσell∩Y σ) . (C∗ε)
n+1 (3.2.9)

Step 3. In order to solve (3.2.1), we rewrite it as

�p,A
free

m φn+1 =M(An, φn+1)

where

(2i)−1M(An, φ) =
(
Anα · ∂αφ− π[An]φ

)
+ π[AR,n]φ

+π[A(φn−1, φn−1)]φ− (2i)−1
(
∂tA

n
0φ+ An,αAnαφ

)
We prove that the map φ 7→ ψ defined by �p,A

free

m ψ = M(An, φ) is a contraction on S̄σ.
This follows from Theorem 1.6.1 together with

‖M(An, φ)‖
N̄σ−1∩L2Hσ− 3

2
. ε‖φ‖S̄σ . (3.2.10)

which holds due to (1.8.4)-(1.8.9), (1.8.10) since we have (3.2.7) and (3.2.9).
Moreover, this argument also establishes (3.2.5) for φ1 since we are assuming AR,0 =

A(φ−1, φ−1) = 0.

Step 4. To estimate φn+1 − φn using Theorem 1.6.1 in addition to applying (3.2.10) with
φ = φn+1 − φn we also need

‖M(An, φn)−M(An−1, φn)‖
N̄σ−1∩L2Hσ− 3

2
. (C∗ε)

n‖φn‖S̄σ

This follows by applying (1.8.4), (1.8.8), (1.8.9) with A = An−An−1, then (1.8.5), (1.8.6) with
A = AR,n−AR,n−1, and finally (1.8.10) with A(φn−1, φn−1−φn−2) and A(φn−1−φn−2, φn−2).
We use these together with (3.2.6) and (3.2.9). We conclude that, with appropriate C∗ and
ε, the induction hypothesis (3.2.6) remains valid with m = n+ 1 for φ as well.

Step 5. To prove uniqueness, assume that (φ,A) and (φ′, A′) are two solutions with the
same initial data. Then the same Afree is used in �p,A

free

m for both φ, φ′ and using the same
estimates as above one obtains

‖A− A′‖`1Sσ×Y σ + ‖φ− φ′‖S̄σ . ε
(
‖A− A′‖`1Sσ×Y σ + ‖φ− φ′‖S̄σ

)
.

Choosing ε small enough the uniqueness statement follows.

The frequency envelope bounds (3.0.1)

The main observation here is that all estimates used in the proof of existence have a frequency
envelope version. Using Remark 4.2.3 and �p,A

free

m φ =M(A, φ) we have

‖φ‖S̄σc . ‖φ[0]‖(Hσ×Hσ−1)c + ‖M(A, φ)‖
(N̄σ−1∩L2Hσ− 3

2 )c
(3.2.11)
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By (6.1.26), (6.1.27), (6.1.31), (6.1.32), (6.1.34), (6.2.2) , (6.2.13), (6.2.15), Lemma 6.1.1 and
the proof of (1.8.7)-(1.8.9) we have

‖M(A, φ)‖
(N̄σ−1∩L2Hσ− 3

2 )c
.
(
‖A‖Sσ×Y σ + ‖AR‖(Zσ∩`1Sσ)×(Zσell∩Y σ) + ‖φ‖2

S̄σ

)
‖φ‖S̄σc (3.2.12)

The term in the bracket is . ε, thus from (3.2.11) we obtain ‖φ‖S̄σc . ‖φ[0]‖(Hσ×Hσ−1)c which
implies ‖P̄kφ‖S̄σ . ck.

Now we turn to A. We define c̃k′ = c2
k′ for k′ ≥ 0 and c̃k′ = 2

k′
2 c2

0 for k′ ≤ 0. One has

‖Ax − Afreex ‖Sσc̃ + ‖A0‖Y σc̃ . ‖�Ax‖Nσ−1
c̃ ∩L2Ḣ

σ− 3
2

c̃

+ ‖∆A0‖∆Y σc̃
. ‖φ‖2

S̄σc
. 1

using (6.1.18) and the proofs of (1.8.2), (1.8.3). This concludes the proof of (3.0.1).

Remark 3.2.1. A consequence of (3.0.1) is that if we additionally assume (φ[0], Ax[0]) ∈
Hs ×Hs−1 × Ḣs × Ḣs−1 for s ∈ (σ, σ + δ1) then we can deduce

‖φ‖L∞(Hs×Hs−1) + ‖A‖L∞(Ḣs×Ḣs−1) . ‖φ[0]‖Hs×Hs−1 + ‖Ax[0]‖Ḣs×Ḣs−1 (3.2.13)

Indeed, choosing the frequency envelope

ck =
∑
k1≥0

2−δ1|k−k1|‖P̄k1φ[0]‖Hσ×Hσ−1 , ‖ck‖`2(Z+) ' ‖φ[0]‖Hσ×Hσ−1 (3.2.14)

from (3.0.1) we obtain

‖φ‖L∞(Hs×Hs−1) . ‖ 〈D〉s−σ φ‖S̄σ . ‖2k(s−σ)ck‖`2(Z+) . ‖φ[0]‖Hs×Hs−1

and similarly with (Ax − Afreex , A0); meanwhile ‖Afreex ‖L∞(Ḣs×Ḣs−1) . ‖Ax[0]‖Ḣs×Ḣs−1 .

3.3 Weak Lipschitz dependence

The MD case

Here we outline the proof of Statement (2) of Theorem 3.0.2. Let δψ = ψ − ψ′ and δA =
A−A′. It is clear from MD-CG that A′0 = A0(ψ′, ψ′) and A′x = (A′x)

free + Ax(ψ
′, ψ′), where

(A′x)
free is the free wave development of A′x[0]. Applying Proposition 1.8.6 with appropriate

frequency envelopes, we see that establishing (3.0.4) reduces to showing

sup
s∈{+,−}

‖Πsδψ‖S̃1/2−δ2
s

. ‖δψ(0)‖Ḣ1/2−δ2 + ‖δAx[0]‖Ḣ1−δ2×Ḣ−δ2 . (3.3.1)

For simplicity of exposition, we will assume that Πsδψ ∈ S̃1/2−δ2
s and prove (3.3.1). This

assumption can be bypassed by establishing (3.3.1) for the difference δψ = ψn − (ψ′)n of
Picard iterates in Step 1; we omit the details.
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The difference δψ obeys the covariant equation

αµDA
µ δψ = −iαµ

(
Aµ(δψ, ψ) + Aµ(ψ′, δψ)

)
ψ′ − iα`δAfree` ψ′ =: δI1 + δI2.

We claim that

sup
s′∈{+,−}

‖Πs′δI1‖N1/2−δ2
s′ ∩L2Ḣ−δ2∩G1/2−δ2 .ε

2
∗ sup
s∈{+,−}

‖Πsδψ‖S̃1/2−δ2
s

, (3.3.2)

sup
s′∈{+,−}

‖Πs′δI2‖N1/2−δ2
s′ ∩L2Ḣ−δ2∩G1/2−δ2 .ε∗‖δAx[0]‖Ḣ1−δ2×Ḣ−δ2 . (3.3.3)

Assuming that (3.3.2)–(3.3.3) hold, we may finish the proof as follows. Applying Proposi-
tion 1.8.11 with an appropriate frequency envelope, we obtain

sup
s∈{+,−}

‖Πsδψ‖S1/2−δ2
s

.‖δψ(0)‖Ḣ1/2−δ2

+ sup
s∈{+,−}

‖Πs(α
µDA

µ δψ)‖
N

1/2−δ2
s ∩L2Ḣ−δ2∩G1/2−δ2

The last terms can be estimated using (3.3.2)–(3.3.3). Taking ε∗ sufficiently small to absorb
the contribution of ‖Πsδψ‖S̃1/2−δ2

s
(which is finite by assumption) into the LHS, the desired

inequality (3.3.1) follows in a straightforward manner.
It only remains to establish (3.3.2)–(3.3.3). The proof of (3.3.2) is very similar to that

of (3.1.3) in Step 1; we omit the details. To prove (3.3.3), we start by writing

Πs′δI2 = −i
∑
s

Πs′(α
`δAfree` )Πsψs = i

∑
s

(
sΠs′NR(δAfreex , ψs)−N S

s (δAfreex , ψs)
)

where ψs = Πsψ. The L2Ḣ−δ2 ∩ G1/2−δ2 norm of both terms can be handled by applying
(1.8.21)–(1.8.23) and (1.8.24)–(1.8.26) with appropriate frequency envelopes. Henceforth,

we focus on the N
1/2−δ2
s norm. The term N S

s (δAfreex , ψs) can be treated using (1.8.17)
and (1.8.20). For the term NR(δAfreex , ψs), application of (1.8.16) and (1.8.19) leaves us
only with the term s′Πs′(π

R[δAfreex ]ψs′). For this term, we apply (1.8.29) with frequency
envelopes a and b for ‖δAx[0]‖Ḣ1×L2 and ‖ψ‖

S̃
1/2

s′
, respectively. Observe that

∑
k′<k ak′ .

2δ2‖δAx[0]‖Ḣ1−δ2×Ḣ−δ2 , so

‖πR[Afreex ]ψs′‖N1/2−δ2
s′

. ‖δAx[0]‖Ḣ1−δ2×Ḣ−δ2‖ψs′‖S̃1/2

s′

which is exactly what we need (it is this point where δ2 > 0 is used).

The MKG case (3.0.2)

Let δφ = φ− φ′ and δA = A− A′. Similarly to the equations in (3.2.8) we write

δA = A(δφ, φ) + A(φ′, δφ) +
(
AR − A′R

)
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and similarly for δ∂tA0. Applying (6.1.18) and the estimates in the proofs of (1.8.2), (1.8.3)
we get

‖δA‖Sσ−δ×Y σ−δ . ‖δAx[0]‖Ḣσ−δ×Ḣσ−δ−1 + ε‖δφ‖S̄σ−δ + ε‖δA‖Sσ−δ×Y σ−δ .

By Remark 4.2.3 we have

‖δφ‖S̄σ−δ . ‖δφ[0]‖Hσ−δ×Hσ−δ−1 + ‖�p,Afreem δφ‖N̄σ−δ−1 .

The equation for δφ is

�p,A
free

m δφ =M(A, δφ) +
(
M(A, φ′)−M(A′, φ′)

)
+ 2i

∑
k≥0

δAfree<k−C · ∇xφ
′
k

By applying (3.2.12) with an appropriate frequency envelope c we get

‖M(A, δφ)‖
N̄σ−δ−1∩L2Hσ− 3

2−δ
. ε‖δφ‖S̄σ−δ

Similarly we obtain

‖M(A, φ′)−M(A′, φ′)‖
N̄σ−δ−1∩L2Hσ− 3

2−δ
. ε
(
‖δA‖Sσ−δ×Y σ−δ + ‖δφ‖S̄σ−δ

)
Using (6.1.32) (note that the H∗ term is 0 for Afree) we get

‖
∑
k≥0

δAfree<k−C · ∇xφ
′
k‖N̄σ−δ−1∩L2Hσ− 3

2−δ
. ‖δAfree‖Sσ−δ‖φ′‖S̄σ . ε‖δAx[0]‖Ḣσ−δ×Ḣσ−δ−1

At this point is where δ > 0 was used, to do the k′ < k `2-summation of δAfree. Putting
the above together we obtain

‖δφ‖S̄σ−δ + ‖δA‖Sσ−δ×Y σ−δ . ‖δφ[0]‖Hσ−δ×Hσ−δ−1 + ‖δAx[0]‖Ḣσ−δ×Ḣσ−δ−1

+ ε
(
‖δφ‖S̄σ−δ + ‖δA‖Sσ−δ×Y σ−δ

)
.

For ε small enough we obtain (3.0.2).

3.4 Subcritical local well-posedness

Here we review some local wellposedness facts that will be used in the proofs below. We
assume ∂`A`(0) = ∂`∂tA`(0) = 0. Given s,N ∈ R, we introduce shorthands Hs,N = Ḣs∩ḢN

and Hs,N = (Ḣs × Ḣs−1)∩ (ḢN × ḢN−1). Note that for s > d
2

+ 1, Hs−1 becomes a Banach
Algebra of functions on Rd.

Proposition 3.4.1. For any initial data ψ(0) ∈ H1/2,5/2 and Ax[0] ∈ H1,3, there exists a
unique local solution (A,ψ) to MD-CG with these data in the space ψ ∈ Ct([0, T ];H1/2,5/2)
and ∂t,xAx ∈ Ct([0, T ];H0,2), where T > 0 depends only on ‖ψ(0)‖H1/2,5/2 and ‖Ax[0]‖H1,3.
The data-to-solution map in these spaces is Lipschitz continuous. Moreover, if ψ(0) ∈
Ḣ1/2+N , Ax[0] ∈ Ḣ1+N×ḢN for N ≥ 2, then ψ ∈ Ct([0, T ]; Ḣ1/2+N), ∂t,xAx ∈ Ct([0, T ]; ḢN).
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For MKG we have:

Proposition 3.4.2. Let s > d
2

+ 1. For any initial data φ[0] ∈ Hs ×Hs−1 and Ax[0] ∈ Hσ,s

there exists a unique local solution (φ,A) to MKG with these data in the space (φ, ∂tφ;A, ∂tA) ∈
Ct([0, T ], Hs×Hs−1;Hσ,s) where T > 0 depends continuously on ‖φ[0]‖Hs×Hs−1 and ‖Ax[0]‖Hσ,s.
The data-to-solution map in these spaces is Lipschitz continuous. Moreover, additional
Sobolev regularity of the initial data is preserved by the solution.

We omit the proofs, which proceeds by usual Picard iteration (based on the d’Alembertian
� and the free Dirac operator αµ∂µ) and the algebra and multiplication properties of the
spaces above. Here, the massive term φ can be treated perturbatively.

We remark that a stronger subcritical result - almost optimal local well-posedness (i.e.
initial data in H1+ε(R4)) was proved in [48].

3.5 Persistence of regularity

Now we sketch the proof of Statement (3) of Theorem 3.0.2 and Statement (4) of Theorem
3.0.1. In view of Propositions 3.4.1 and 3.4.2, it suffices to show that

sup
s∈{+,−}

‖Πsψ‖S̃1/2+N
s

+ ‖Ax‖S1+N . ‖ψ(0)‖Ḣ1/2+N + ‖Ax[0]‖Ḣ1+N×ḢN (3.5.1)

and

‖∇Nφ‖S̄σ + ‖∇N(A− Afreex )‖`1Sσ×Y σ . ‖φ[0]‖Hσ+N×Hσ+N−1 + ‖Ax[0]‖Ḣσ+N×Ḣσ+N−1 . (3.5.2)

for N = 1, 2, whenever the RHS is finite. Henceforth, we only consider the case N = 1; the
case N = 2 can be handled similarly. Moreover, for simplicity, we will already assume that
Πsψ ∈ S̃1/2+N

s and ∇φ ∈ S̄σ, ∇A ∈ Sσ × Y σ . As before, this assumption may be bypassed
by repeating the proof of (3.5.1), (3.5.2) for each iterate.

The case of MD

By Proposition 1.8.6 (for �∇Ax), it suffices to bound only the contribution of ψ in (3.5.1).
Observe that ∇ψ obeys

αµDA
µ∇ψ = −iαµ

(
Aµ(∇ψ, ψ)ψ + Aµ(ψ,∇ψ)

)
ψ − iα`∇Afree` ψ =: I1 + I2.

We claim that

sup
s′∈{+,−}

‖Πs′I1‖N1/2

s′ ∩L
2L2∩G1/2 . ε2∗ sup

s∈{+,−}
‖Πsψ‖S̃3/2

s
, (3.5.3)

sup
s′∈{+,−}

‖Πs′I2‖N1/2

s′ ∩L
2L2∩G1/2 . ε∗( sup

s∈{+,−}
‖Πsψ‖S̃3/2

s
+ ‖Ax[0]‖Ḣ2×Ḣ1), (3.5.4)
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Then by Proposition 1.8.11 and (3.5.3)–(3.5.4), we would have

sup
s∈{+,−}

‖Πsψ‖S̃3/2
s
. ‖ψ(0)‖Ḣ3/2 + ε∗‖Ax[0]‖Ḣ2×Ḣ1 + ε∗ sup

s∈{+,−}
‖Πsψ‖S̃3/2

s
.

Taking ε∗ smaller if necessary, we may absorb the last term into the LHS, which would prove
(3.5.1).

It remains to justify (3.5.3)–(3.5.4); below we only discuss (3.5.4), as the other bounds
can be proved in a similar fashion to Step 1 (in parallel with Step 3). By (1.8.16)–(1.8.17),
(1.8.19)–(1.8.20), (1.8.22)–(1.8.23) and (1.8.25)–(1.8.26), it is straightforward to show that

‖Πs′(I2 + is′πR[∇Afreex ]ψs′)‖N1/2

s′ ∩L
2L2∩G1/2 . ε∗‖Ax[0]‖Ḣ2×Ḣ1 .

Moreover, the L2L2 ∩G1/2 norm of s′Πs′(π
R[∇Afreex ]ψs′) can be bounded by the same RHS

using (1.8.22) and (1.8.25). To handle its N
1/2
s′ norm, we apply (1.8.29) with frequency

envelopes a and b for ‖∇Ax[0]‖Ḣ1×L2 , ‖ψ‖
S̃

1/2

s′
, respectively. For any 0 < δ < δ1, we have

‖PkΠs′(π
R[∇Afreex ]ψs′)‖N1/2

s′
≤ (
∑
k′<k

ak′)bk ≤ 2δk‖∇Ax[0]‖Ḣ1−δ×Ḣ−δbk

Square summing over k, we see that the N
1/2
s′ norm of Πs′(π

R[∇Afreex ]ψs′) is bounded by
‖∇Ax[0]‖Ḣ1−δ×Ḣ−δ‖ψs′‖S̃1/2+δ

s′
. By a simple interpolation, the desired bound (3.5.4) follows.

The case of MKG

We write

∇(Ax − Afreex ) = Ax(∇φ, φ) + Ax(φ,∇φ) +∇ARx , ARx = −�−1Px(|φ|2Ax)

Using the product rule we distribute the derivative on the terms inside ARx . We also write
the similar formula for ∇A0. From Prop. 1.8.1 we get

‖∇(A− Afreex )‖`1Sσ×Y σ . ε(‖∇φ‖S̄σ + ‖∇A‖Sσ×Y σ) (3.5.5)

The equation for ∇φ is

�p,A
free

m ∇φ = ∇M(A, φ) + 2i
∑
k≥0

∇Afree<k−C · ∇xφk

Using the product rule on ∇M(A, φ) and Prop. 1.8.1, 1.8.2, 1.8.3 we obtain

‖∇M(A, φ)‖
N̄σ−1∩L2Hσ− 3

2
. ε(‖∇φ‖S̄σ + ‖∇A‖Sσ×Y σ)

Using (6.1.32) (note that the H∗ term is 0 for Afree) we get

‖
∑
k≥0

∇Afree<k−C · ∇xφk‖N̄σ−1∩L2Hσ− 3
2
. ε‖∇Ax[0]‖Ḣσ×Ḣσ−1
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We bound ∇φ using Theorem 1.6.1 so that together with (3.5.5) we have

‖∇φ‖S̄σ + ‖∇(A− Afreex )‖`1Sσ×Y σ .‖∇φ[0]‖Hσ×Hσ−1 + ε‖∇Ax[0]‖Ḣσ×Ḣσ−1

+ε(‖∇φ‖S̄σ + ‖∇A‖Sσ×Y σ)

Choosing ε small enough gives (3.5.2).

Remark 3.5.1. An alternative approach would be to use (3.2.13) for s ∈ (σ, σ + δ1) to-
gether with the almost optimal local well-posedness result in [48] and its higher dimensional
analogue.

3.6 Proof of continuous dependence on data

Here we prove Statement (2) of Theorem 1.1.2. The same argument proves statement (2) of
Theorem 1.1.1, we omit the repetitive details.

Along the way, we also show that every solution obtained by Theorem 3.0.2 arises as an
approximation by smooth solutions.

Let ψ(0) ∈ Ḣ1/2, Ax[0] ∈ Ḣ1 × L2 be an initial data set for MD-CG. Given m ∈ Z,

let ψ(m)(0), A
(m)
x [0] be the regularization ψ(m)(0) = P≤mψ(0), A

(m)
x [0] = P≤mAx[0]. Denote

by (A,ψ) [resp. (A(m), ψ(m))] the solution with the data ψ(0), Ax[0] [resp. ψ(m)(0), A
(m)
x [0] ]

given by Theorem 3.0.2.

Lemma 3.6.1 (Approximation by smooth solutions). Let c be an admissible frequency en-
velope for ψ(0), Ax[0]. In the above setting, we have

sup
s∈{+,−}

‖Πs(ψ − ψ(m))‖
S̃

1/2
s

+ ‖Ax − A(m)
x ‖S1 + ‖A0 − A(m)

0 ‖Y 1 .
(∑
k>m

c2
k

)1/2

.

Proof. Let c be an admissible frequency envelope for (ψ(0), Ax[0]); observe that it is also

a frequency envelope for (ψ(m)(0), A
(m)
x [0]). Applying the frequency envelope bound (3.1.2)

to (A,ψ) and (A(m), ψ(m)) separately, the above estimate follows for P>m(ψ − ψ(m)) and
P>m(A − A(m)). On the other hand, for P≤m(ψ − ψ(m)) and P≤m(A − A(m)) we use weak
Lipschitz continuity (3.0.4). Observe that

‖P≤mΠs(ψ − ψ(m))‖
S̃

1/2
s
.2δ2m‖P≤mΠs(ψ − ψ(m))‖

S̃
1/2−δ2
s

.2δ2m(‖P>mψ(0)‖Ḣ1/2−δ2 + ‖P>mAx[0]‖Ḣ1×L2),

where the last line is bounded by (
∑

k>m c
2
k)

1/2. Combined with similar observations for

Ax − A(m)
x in S1 and A0 − A(m)

0 in Y 1, the lemma follows.

We are now ready to prove Statement (2) of Theorem 1.1.2. Let ψn(0), Anx[0] be a
sequence of initial data sets for MD-CG such that ψn(0)→ ψ(0) in Ḣ1/2 and Anx[0]→ Ax[0]
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in Ḣ1×L2. Denote by (An, ψn) the corresponding solution to MD-CG, which exists for large
n by Theorem 3.0.2. For any ε > 0, we claim that

sup
s∈{+,−}

‖Πs(ψ
n − ψ)‖

S̃
1/2
s

+ ‖Anx − Ax‖S1 < ε (3.6.1)

for sufficiently large n. The desired continuity statement is equivalent to this claim.
Let c be an admissible frequency envelope for (ψ(0), Ax[0]). Applying Lemma 3.6.1, we

may find m ∈ Z such that for sufficiently large n,

sup
s∈{+,−}

‖Πs(ψ − ψ(m))‖
S̃

1/2
s

+ ‖Ax − A(m)
x ‖S1 <

1

4
ε,

sup
s∈{+,−}

‖Πs(ψ
n − ψn(m))‖

S̃
1/2
s

+ ‖Anx − An(m)
x ‖S1 <

1

4
ε,

(3.6.2)

where (An(m), ψn(m)) is defined in the obvious manner. By persistence of regularity and
Proposition 3.4.1, we have (as n→∞)

‖(ψn(m) − ψ(m))(t)‖Ct([0,T ];H1/2,5/2) + ‖(An(m)
x − A(m)

x )[t]‖Ct([0,T ];H1,3) → 0.

Reiterating the preceding bound in MD-CG, we also obtain (as n→∞)

‖αµ∂µ(ψn(m) − ψ(m))‖Ct([0,T ];H1/2,5/2) + ‖�(An(m)
x − A(m)

x )‖Ct([0,T ];H0,2) → 0.

In a straightforward manner, the preceding two statements imply

sup
s∈{+,−}

‖Πs(ψ
n(m) − ψ(m))‖

S̃
1/2
s [0,T ]

+ ‖An(m)
x − A(m)

x ‖S1[0,T ] <
1

2
ε

for sufficiently large n. Combined with (3.6.2), the desired conclusion (3.6.1) follows.

3.7 Proof of modified scattering

Here we conclude the proof of Theorems 1.1.1 and 1.1.2 by sketching the proof of State-
ment (3). Without loss of generality, we fix ± = +.

The MD case

Let (A,ψ) be a solution to MD-CG with data (ψ(0), Ax[0]) given by Theorem 3.0.2, and let
Afreex denote the free wave development of Ax[0]. To prove modified scattering for ψ, we first
decompose the covariant Dirac equation into

αµDAfree

µ ψ = −iαµAµ(ψ, ψ)ψ.
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For any t < t′, Proposition 1.8.11 implies that

‖ψ(t′)− SAfree(t′, t)ψ(t)‖Ḣ1/2 . sup
s∈{+,−}

‖Πs(α
µAµ(ψ, ψ)ψ)‖

(N
1/2
s ∩L2L2∩G1/2)[t,∞)

,

where SA
free

(t′, t) denotes the propagator from time t to t′ for the covariant Dirac equation

αµDAfree

µ ϕ = 0. An analysis as in Section 4.4 using Propositions 1.8.6 and 1.8.7 shows that
the RHS is finite for (say) t = 0; by (2.1.18), it follows that the RHS vanishes as t → ∞.
Using the uniform boundedness of SA

free
(0, t′) on Ḣ1/2 (again by Proposition 1.8.11), as well

as the formula SA
free

(t′′, t) = SA
free

(t′′, t′)SA
free

(t′, t), it follows that (as t→∞)

‖SAfree(0, t′)ψ(t′)− SAfree(0, t)ψ(t)‖Ḣ1/2 . ‖ψ(t′)− SAfree(t′, t)ψ(t)‖Ḣ1/2 → 0.

Hence limt→∞ S
Afree(0, t)ψ(t) tends to some limit ψ∞(0) in Ḣ1/2, which is precisely the data

for ψ∞ in Theorem 1.1.2.
The proof of scattering for Ax is more standard and straightforward. In fact, since

‖Mx(ψ, ψ)‖`1(N∩L2Ḣ−1/2)[0,∞) < ∞ by Proposition 1.8.6, limt→∞ S[0, t]Ax[t] tends to a limit

A∞x [0] in `1(Ḣ1 × L2); here S[t′, t] denotes the propagator for the free wave equation. In
particular, we have Ax[0]−A∞x [0] ∈ `1(Ḣ1 × L2); this fact allows us to replace Afree by A∞

as claimed in Theorem 1.1.2. We leave the details to the reader.

The MKG case

Let (φ,A) be the solutions with initial data (φ[0], Ax[0]) given by Theorem 3.0.1 and let
Afree be the free wave development of Ax[0]. We denote by SA

free
(t′, t) the propagator from

time t to t′ for the covariant equation �A
free

m φ = 0, given by Prop. 1.8.4, which implies, for
any t < t′

‖φ[t′]− SAfree(t′, t)φ[t]‖Hσ×Hσ−1 . ‖�Afreem φ‖
(N̄σ−1∩L2Hσ− 3

2 )[t,∞)

the last one being the time interval localized norm. Using the estimates from Prop. 1.8.2 like
in the proof of existence shows that the RHS is finite for, say t = 0, and the RHS vanishes
as t→∞. By the uniform boundedness of SA

free
(0, t) on Hσ ×Hσ−1 (Prop. 1.8.4) and the

formula SA
free

(t′′, t) = SA
free

(t′′, t′)SA
free

(t′, t) it follows that, as t→∞

‖SAfree(0, t′)φ[t′]− SAfree(0, t)φ[t]‖Hσ×Hσ−1 . ‖φ[t′]− SAfree(t′, t)φ[t]‖Hσ×Hσ−1 → 0

Therefore the limit limt→∞ S
Afree(0, t)φ[t] =: φ∞[0] exists in Hσ ×Hσ−1 and φ∞[0] is taken

as the initial data for φ∞ in Theorem 1.1.1.
The proof of scattering for Ax is similar, we omit the details.
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Chapter 4

The parametrices for Klein-Gordon
and Dirac equations

This chapter is dedicated to the proofs of Theorems 1.6.1, 1.6.2 and Prop. 1.8.11. We will
present the motivation and the construction of the parametrices for covariant Klein-Gordon
and Dirac equations. We then discuss the main properties of the phases, decomposable
estimates, oscillatory integrals estimates, the conjugation and the mapping properties.

4.1 Motivation

We begin by recalling some heuristic considerations motivating the construction in [47],
which also extends to the massive case and to the half-wave case (which will lead to the
solvability of the covariant Dirac equation).

Suppose that one is interested in solving the equation

�Amφ = 0, �Am := DαDα + I (4.1.1)

where Dαφ = (∂α+iAα)φ and �A = 0. After solving (4.1.1), one can also obtain solutions to
the inhomogeneous equation �Amφ = F by Duhamel’s formula. The equation (4.1.1) enjoys
the following gauge invariance. For any real function ψ, replacing

φ 7→ eiψφ, Aα 7→ Aα − ∂αψ, Dα 7→ eiψDαe
−iψ

we obtain another solution. To make use of this, one expects that by choosing ψ appropriately
(∇ψ ≈ A) one could reduce closer to the free wave equation �φ ≈ 0.

However, this is not in general possible since A is not a conservative vector field. Instead,
one makes the construction microlocally and for each dyadic frequency separately. Taking
eix·ξ as initial data, considering φ = e−iψ±(t,x)e±it〈ξ〉+ix·ξ we compute

�Amφ = 2 (±〈ξ〉 ∂tψ± − ξ · ∇ψ± + A · ξ)φ+
(
− i�ψ± + (∂tψ±)2 − |∇ψ±|2 − A · ∇ψ±

)
φ
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The second bracket is expected to be an error term, while for the first, one wants to
define ψ± so as to get as much cancelation as possible, while also avoiding to make ψ± too
singular. Defining

L± = ±∂t +
ξ

〈ξ〉
· ∇x, one has

− L+L− = �+ ∆ω⊥ +
1

〈ξ〉2
(ω · ∇x)

2, ω =
ξ

|ξ|
. (4.1.2)

We would like to have L∓ψ± = A · ξ/ 〈ξ〉 thus applying L± and neglecting � in (4.1.2)
(since �A = 0) one obtains, for fixed ξ:

ψ±(t, x) =
−1

∆ω⊥ + 1
〈ξ〉2 (ω · ∇x)2

L±

(
A(t, x) · ξ

〈ξ〉

)
. (4.1.3)

Taking general initial data
∫
eix·ξh±(ξ) dξ, using linearity, one obtains the approximate

solutions

φ±(t, x) =

∫
e−iψ±(t,x,ξ)e±it〈ξ〉eix·ξh±(ξ) dξ.

Thus, the renormalization is done through the pseudodifferential operators e−iψ±(t, x,D).
In what follows, ξ will be restricted to dyadic frequencies |ξ| ' 2k or |ξ| . 1, while

A(t, x) (and thus ψ too) will be localized to strictly lower frequencies � 2k. When |ξ| . 1,
the denominator in (4.1.3) is essentially ∆x. If ξ is a high frequency then the dominant
term is ∆−1

ω⊥
and the construction needs to be refined to remove the singularity; see the next

subsection for precise definitions.
For more details motivating the construction see [47, sec. 7,8].

The construction in [31] slightly differs from the one in [47] in that they further localize
the exponentials in the (t, x)-frequencies

(
e−iψ±(t,x,ξ)

)
<k−c. By Taylor expansion one can see

that these constructions are essentially equivalent. Indeed, since

eiψ<k−c(t,x,ξ) = 1 + iψ<k−c(t, x, ξ) +O
(
ψ2
<k−c(t, x, ξ)

)
we see that they differ only by higher order terms, which are negligible due to the smallness
assumption on A. Here, following [31], it will be technically convenient to do this localization.
We denote by

e
±iψk±
<h (t, x,D), e

±iψk±
<h (D, s, y)

the left and right quantizations of the symbol e
±iψk±
<h (t, x, ξ) where the < h subscript denotes

(t, x)-frequency localization to frequencies ≤ h− C, pointwise in ξ. Thus

e
±iψk±
<h (t, x, ξ) =

∫
Rd+1

e±iT(s,y)ψ
k
±(t,x,ξ)mh(s, y) ds dy (4.1.4)

where T(s,y)ψ(t, x, ξ) = ψ(t+s, x+y, ξ) and mh = 2(d+1)hm(2h·) for a bump function m(s, y).
By averaging arguments such as Lemmas 4.5.11, 4.10.1, estimates for e−iψ±(t, x,D) will

automatically transfer to e
−iψ±
<k (t, x,D).
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4.2 The parametrix for covariant Klein-Gordon

operators

We consider the paradifferential covariant Klein-Gordon operator

�p,Am = �+ I − 2i
∑
k≥0

Aj<k−C∂jP̄k (4.2.1)

where A = Afree = (A1, . . . , Ad, 0) is a real-valued 1-form defined on R1+d, assumed to solve
the free wave equation and to obey the Coulomb gauge condition

�A = 0, ∂jAj = 0. (4.2.2)

By the argument in Prop. 2.2.3 one may show

‖φ‖S̄σ . ‖φ[0]‖Hσ×Hσ−1 + ‖�mφ‖N̄σ−1

Following [31], the goal is to generalize this inequality, showing that �m can be replaced by
�p,Am .

We consider the problem {
�p,Am φ = F
φ[0] = (f, g)

(4.2.3)

which is the object of Theorem 1.6.1. The proof of this theorem will reduce to its
frequency localized approximate version:

Theorem 4.2.1. Let A be a real 1-form obeying (1.6.3) on Rd+1 for d ≥ 4 and let k ≥ 0. If
‖A[0]‖Ḣσ×Ḣσ−1 is sufficiently small, then for any (fk, gk) with Fourier support in {〈ξ〉 ' 2k}
and any Fk with Fourier support in {〈ξ〉 ' 2k, ||τ | − 〈ξ〉| � 2k} there exists a function φk
with Fourier support in {〈ξ〉 ' 2k, ||τ | − 〈ξ〉| � 2k} such that

‖(〈Dx〉 , ∂t)φk‖S̄k . ‖(fk, gk)‖H1×L2 + ‖Fk‖N̄k =: Mk (4.2.4)

‖(�m − 2iAj<k−c∂j)φk − Fk‖N̄k . ε
1
2Mk (4.2.5)

‖(φk(0)− fk, ∂tφk(0)− gk)‖H1×L2 . ε
1
2Mk. (4.2.6)

The approximate solution will be defined by 2φk = T+ + T− + S+ + S− where

T± := e
−iψk±
<k (t, x,D)

e±it〈D〉

i 〈D〉
e
iψk±
<k (D, y, 0)(i 〈D〉 fk ± gk)

S± := ±e−iψ
k
±

<k (t, x,D)
K±

i 〈D〉
e
iψk±
<k (D, y, s)Fk,

(4.2.7)
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The phase ψk±(t, x, ξ) is defined in Section 4.5 and K±F are the Duhamel terms

K±F (t) = u(t) =

∫ t

0

e±i(t−s)〈D〉F (s) ds, (∂t ∓ i 〈D〉)u = F, u(0) = 0.

To implement this one needs estimates for the operators e
−iψk±
<k (t, x,D) and their adjoints,

adapted to the function spaces used in the iteration.

Theorem 4.2.2. For any k ≥ 0, the frequency localized renormalization operators have the
following properties for any X ∈ {N̄k, L

2
x, N̄

∗
k}:

e
±′iψk±
<k (t, x,D) : X → X (4.2.8)

2−k∂t,xe
±′iψk±
<k (t, x,D) : X → εX (4.2.9)

e
−iψk±
<k (t, x,D)e

iψk±
<k (D, y, s)− I : X → ε

1
2X (4.2.10)

as well as
2k‖e−iψ

k
±

<k (t, x,D)uk‖S̄k . ‖uk‖L∞(H1×L2) + ‖�muk‖N̄k (4.2.11)

‖e−iψ
k
±

<k (t, x,D)�muk −�A<km e
−iψk±
<k (t, x,D)uk‖N̄k .

ε‖uk‖L∞H1 + ε2k‖(i∂t ± 〈D〉)uk‖N̄k
(4.2.12)

Moreover, by (4.2.10) and (4.5.25) one obtains

e
−iψk±
<k (t, x,D)

1

〈D〉
e
iψk±
<k (D, y, s)− 1

〈D〉
: X → ε

1
2 2−kX (4.2.13)

The proof of Theorem 4.2.2 is given later in this chapter. Now we show how these
mappings imply Theorems 1.6.1, 4.2.1.

Proof of Theorem 1.6.1. Step 1. We first look to define an approximate solution φa =
φa[f, g, F ] satisfying, for some δ ∈ (0, 1):

‖�p,Am φa−F‖
N̄σ−1∩L2Hσ− 3

2
+‖φa[0]− (f, g)‖Hσ×Hσ−1 ≤ δ

[
‖F‖

N̄σ−1∩L2Hσ− 3
2

+‖(f, g)‖Hσ×Hσ−1

]
(4.2.14)

and
‖φa‖S̄σ . ‖F‖N̄σ−1∩L2Hσ− 3

2
+ ‖(f, g)‖Hσ×Hσ−1 . (4.2.15)

We define φa from its frequency-localized versions

φa :=
∑
k≥0

φak, φak = φ1
k + φ2

k
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which remain to be defined. We decompose P̄kF = Q̄<k−6P̄kF + Q̄>k−6P̄kF and first define
φ2
k by

Fφ2
k(τ, ξ) :=

1

−τ 2 + |ξ|2 + 1
F(Q̄>k−6P̄kF )(τ, ξ)

so that �mφ2
k = Q̄>k−6P̄kF . We have

‖(〈Dx〉 , ∂t)φ2
k‖S̄k . ‖φ

2
k‖L∞(H1×L2) + ‖Q̄>k−6P̄kF‖N̄k . ‖P̄kF‖N̄k .

Then we apply Theorem 4.2.1 to Q̄<k−6P̄kF and P̄k(f, g)−φ2
k[0] which defines the function

φ1
k. We are left with estimating

‖Aj<k−C∂jφ
2
k‖L1L2∩L2H−

1
2
. ‖Aj<k−C‖L2L∞‖∇φ2

k‖L2
t,x∩L∞H

− 1
2
. ε‖P̄kF‖N̄k

and similarly, using also Lemma 2.2.4,

2−
1
2
k‖�mφ1

k‖L2
t,x
. ‖�A<km φ1

k − Q̄<k−6P̄kF‖N̄k + ‖Q̄<k−6P̄kF‖N̄k + ‖Aj<k−C∂jφ
1
k‖L2H−

1
2

. ‖P̄kF‖N̄k + ‖P̄k(f, g)‖H1×L2

The following error term, for k′, k′′ = k ±O(1), follows from (6.1.27), (1.8.7)

‖Ajk′∂jP̄k′′φ
a
k‖N̄k∩L2H−

1
2
. ε‖φak‖S̄1

k

Step 2. Now we iterate the approximate solutions from Step 1 to construct an exact solution.
We define φ := limφ≤n where

φ≤n := φ1 + · · ·+ φn

and the φn are defined inductively by φ1 := φa[f, g, F ] and

φn := φa[(f, g)− φ≤n−1[0], F −�p,Am φ≤n−1]

Normalizing ‖F‖
N̄σ−1∩L2Hσ− 3

2
+ ‖(f, g)‖Hσ×Hσ−1 = 1 it follows by induction using (4.2.14),

(4.2.15) that

‖�p,Am φ≤n − F‖
N̄σ−1∩L2Hσ− 3

2
+ ‖φ≤n[0]− (f, g)‖Hσ×Hσ−1 ≤ δn (4.2.16)

and
‖φn‖S̄σ . δn−1. (4.2.17)

Thus φ≤n is a Cauchy sequence in S̄σ and φ is well-defined, satisfying (1.6.5). Passing to the
limit in (4.2.16) we see that φ solves (1.6.4).

Remark 4.2.3. The argument above also implies a frequency envelope version of (1.6.5),
which will be useful in proving continuous dependence on the initial data :

‖φ‖S̄σc . ‖(f, g)‖Hσ
c ×H

σ−1
c

+ ‖F‖
(N̄σ−1∩L2Hσ− 3

2 )c
(4.2.18)



CHAPTER 4. THE PARAMETRICES 67

Proof of Theorem 4.2.1. We define φk by

φk =
1

2

(
T+ + T− + S+ + S−

)
where T±, S± are defined by (4.2.7).

The bound (4.2.4) follows from (4.2.11) and (4.2.8), where for ∂tφk we use the low mod-
ulation support of φk. We turn to (4.2.6) and write

φk(0)− fk =
1

2i

∑
±

[e
−iψk±
<k (0, x,D)

1

〈D〉
e
iψk±
<k (D, y, 0)− 1

〈D〉
](i 〈D〉 fk ± gk)

∂tφk(0)− gk =
1

2

∑
±

[
[e
−iψk±
<k (0, x,D)e

iψk±
<k (D, y, 0)− I](±i 〈D〉 fk + gk)

+ [∂te
−iψk±
<k ](0, x,D)

1

i 〈D〉
e
iψk±
<k (D, y, 0)(i 〈D〉 fk ± gk)

± [e
−iψk±
<k (0, x,D)

1

i 〈D〉
e
iψk±
<k (D, y, 0)− 1

i 〈D〉
]Fk(0)

]
These are estimated using (4.2.13), (4.2.10), (4.2.8), respectively (4.2.13), together with

‖Fk(0)‖L2
x
. ‖Fk‖L∞L2 . 2k‖Fk‖N̄k

which follows from Lemma 2.2.4 considering the modulation assumption on Fk.
Now we prove (4.2.5). We write

�A<km φk − Fk =
∑
±

[
[�A<km e

−iψk±
<k (t, x,D)− e−iψ

k
±

<k (t, x,D)�m]φ± (4.2.19)

± 1

2
e
−iψk±
<k (t, x,D)

∂t ± i 〈D〉
i 〈D〉

e
iψk±
<k (D, y, s)Fk

]
− Fk. (4.2.20)

where

φ± :=
1

2i 〈D〉
[
e±it〈D〉e

iψk±
<k (D, y, 0)(i 〈D〉 fk ± gk)±K±e

iψk±
<k (D, y, s)Fk

]
Using (4.2.12) we estimate

‖(4.2.19)‖N̄k .
∑
±

ε[‖eiψ
k
±

<k (D, y, 0)(i 〈D〉 fk ± gk)‖L2 + ‖eiψ
k
±

<k (D, y, s)Fk‖N̄k ]

and then we use (4.2.8). Now we turn to (4.2.20) and write

(4.2.20) =
∑
±

1

2

[
[e
−iψk±
<k (t, x,D)e

iψk±
<k (D, y, s)− I]Fk (4.2.21)

± i−1[e
−iψk±
<k (t, x,D)

1

〈D〉
e
iψk±
<k (D, y, s)− 1

〈D〉
]∂tFk (4.2.22)

± e−iψ
k
±

<k (t, x,D)
1

i 〈D〉
[∂te

iψk±
<k ](D, y, s)Fk

]
. (4.2.23)
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For (4.2.21) we use (4.2.10), for (4.2.22) we use (4.2.13), and for (4.2.23) we use (4.2.8),
(4.2.9), all with X = N̄k.

4.3 The parametrix for half-wave operators

The goal of this section is to prove Theorem 1.6.2.

Suppose �Afree = 0 with ‖Afree‖Ḣ1×L2 ≤ ε together with the Coulomb condition

∂`Afree` = 0. Without loss of generality we assume the sign s = +. Define the paradif-
ferential half-wave operators by

(i∂t + |D|)pA = i∂t + |D| − i
∑
k∈Z

P<k−CA
free,j ∂j

|D|
Pk (4.3.1)

where

(i∂t + |D|)pA<k = i∂t + |D| − iP<k−CAfree,j
∂j
|D|

Pk (4.3.2)

and the paradifferential covariant (massless) wave � operator by

�pA<k = �− 2iP<k−CA
free,jPk∂j, (4.3.3)

Consider the problem {
(i∂t + |D|)pAψ = F
ψ(0) = f.

(4.3.4)

Remark 4.3.1. In this section we set d = 4. The construction in [31, Sections 6–11] (for
m = 0) may be generalized to R1+d with d ≥ 5 without much difficulty, in essentially the
same way as we do below in this chapter for m2 > 0. Then, for d ≥ 5, the argument in this
section goes through with the substitutions as in Remark 1.8.5.

The proof of Theorem 1.6.2 reduces to the following proposition (whose proof is later in
this section) by the same way argument as Theorem 1.6.1 reduces to Theorem 4.2.1.

Proposition 4.3.2. For any F ∈ N1/2
+ ∩L2L2 and any f ∈ Ḣ1/2 there exists ψa ∈ S1/2

+ such
that for any admissible frequency envelope c, we have

‖ψa(0)− f‖
Ḣ

1/2
c

+ ‖(i∂t + |D|)pAψ
a − F‖

(N
1/2
+ ∩L2L2)c

≤ δ
(
‖f‖

Ḣ
1/2
c

+ ‖F‖
(N

1/2
+ ∩L2L2)c

)
,

(4.3.5)

‖ψa‖
(S

1/2
+ )c
. ‖f‖

Ḣ
1/2
c

+ ‖F‖
(N

1/2
+ ∩L2L2)c

. (4.3.6)
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Construction of the parametrix

The parametrix constructed in [31] for the (massless) equation{
�pA<0

φ = F

φ[0] = (g, h)
(4.3.7)

takes the form

φapp =
1

2

(
T+ + T− + S+ + S−

)
(4.3.8)

where1

T± = e
−iΨ±
<0 (t, x,D)

1

|D|
e±it|D|e

iΨ±
<0 (D, y, 0)(|D| g ± i−1h) (4.3.9)

S± = ∓e−iΨ±<0 (t, x,D)
1

|D|
K±e

iΨ±
<0 (D, y, s)i−1F (4.3.10)

where K±F denotes the solution u of the equation

(∂t ∓ i |D|)u = F, u(0) = 0 (4.3.11)

given by the Duhamel formula

K±F (t) =

∫ t

0

e±i(t−s)|D|F (s) ds.

More precisely, the result in [31] states

Theorem 4.3.3. Assume that F, g, h are localized at frequency 1, and also that F is localized
at modulation . 1. Then φapp is an approximate solution for (4.3.7), in the sense that

‖φapp‖S̃0
. ‖g‖L2 + ‖h‖L2 + ‖F‖N0 (4.3.12)

and

‖φapp[0]− (g, h)‖L2 + ‖�pA<0
φapp − F‖N0 ≤ δ(‖g‖L2 + ‖h‖L2 + ‖F‖N0) (4.3.13)

The spaces S̃0 and N0 are defined in chapter 2.

1Note that if the e
±iΨ±
<0 terms are removed one obtains the solution of the ordinary wave equation

�φ = F, φ[0] = (g, h).
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Renormalization for (i∂t + |D|)pA
Now our goal is to similarly obtain a parametrix (or approximate solution) for (4.3.4) in
order to prove Proposition 4.3.2.

Suppose F, g, h are localized at frequency 1, and consider S±, T± defined by (4.3.9),
(4.3.10). If F has small Q+ -modulation, then so do S+ and T+. This also applies to
S−, except for a part with Fourier support in the lower characteristic cone. Therefore we
decompose

S− = Q+
≤−2S

− + S−0 , S−0 := e
−iΨ−
<0 (t, x,D)Q−≤−1

(
1

|D|
u

)
, (4.3.14)

according to the following definitions

u :=
1

i
K−F̃ , F̃ := e

iΨ±
<0 (D, y, s)F, (4.3.15)

so that (i∂t − |D|)u = F̃ , u(0) = 0. Let us define the function v such that

Fv(τ, ξ) :=
−1

τ + |ξ|
F(F̃ )(τ, ξ), so (i∂t − |D|)v = F̃ . (4.3.16)

The term S−0 can be controlled by ‖F‖N0 as follows.

Lemma 4.3.4. Suppose F is localized at frequency 1 and at Q+-modulation ≤ 1. Then for
S−0 and v defined by (4.3.14) and (4.3.16) we have:

‖v(0)‖L2 . ‖F‖N0 (4.3.17)

S−0 = −e−iΨ−<0 (t, x,D)
1

|D|
e−it|D|(v(0)) (4.3.18)

‖(i∂t − |D|)S−0 (0)‖L2 . ε‖F‖N0 . (4.3.19)

Proof. The proof is divided into three steps.

Step 1: Proof of (4.3.17). Since F and F̃ are localized at Q−-modulation & 1 from (2.2.19)
and (4.2.8) we have

‖v(0)‖L2 . ‖v‖L∞L2 . ‖F̃‖N−0 . ‖F̃‖N0 . ‖F‖N0 . (4.3.20)

Step 2: Proof of (4.3.18). Subtracting v from u we get

(i∂t − |D|)(u− v) = 0, (u− v)(0) = −v(0). (4.3.21)

Thus Q−≤−1u = Q−≤−1(u− v) = e−it|D|(−v(0)) from which (4.3.18) follows.
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Step 3: Proof of (4.3.19). Using (4.3.17), it suffices to show ‖(i∂t−|D|)S−0 (0)‖L2 . ε‖v(0)‖L2 .

(i∂t − |D|)S−0 (0) = i[∂te
−iΨ−
<0 ](0, x,D)

(
v(0)

|D|

)
+
[
e
−iΨ−
<0 , |D|

](v(0)

|D|

)
. (4.3.22)

The first term is estimated by (4.2.9). For the second, we use the dual of Lemma 4.5.10
and (4.2.9) to obtain

‖ |D| e−iΨ−<0 (0, x,D)− e−iΨ−<0 (0, x,D) |D| ‖L2→L2 . ‖∂xe−iΨ−<0 (0, x,D)‖L2→L2 . ε

The following proposition is essentially a restatement of Theorem 4.3.3 in a convenient
form for our application.

Proposition 4.3.5. Suppose F and f are localized at frequency {|ξ| ∈ [2−2, 22]} and F is
also localized at Q+-modulation {|τ − |ξ|| ≤ 2−4}. Then there exists φ localized at {|ξ| ∈
[2−3, 2+3], |τ − |ξ|| ≤ 2−3} such that

‖(i∂t − |D|)φ(0)− f‖L2 + ‖�pA<0
φ− F‖N0 ≤ δ (‖f‖L2 + ‖F‖N0) (4.3.23)

‖φ‖S̃0
. ‖f‖L2 + ‖F‖N0 . (4.3.24)

Proof. Let us choose g and h such that

ih+ |D| g = 0, ih− |D| g = f (4.3.25)

and apply Theorem 4.3.3 to (F, g, h). Then T− = 0 in the definition of φapp from (4.3.8)–
(4.3.10). From Theorem 4.3.3 we have

‖φapp[0]− (g, h)‖L2 + ‖�pA<0
φapp − F‖N0 � B, ‖φapp‖S̃0

. B. (4.3.26)

where B = ‖g‖L2 + ‖h‖L2 + ‖F‖N0 . Observe that it suffices to bound the LHS of (4.3.23) by
δB. We define

φ :=
1

2

(
T+ + S+ +Q+

≤−2S
−) (4.3.27)

and observe that φ has the stated Q+-modulation. Furthermore,

φapp = φ+
1

2
S−0

where S−0 is given by (4.3.14), (4.3.18). We write

�pA<0
φ− F =

(
�pA<0

φapp − F
)

+
(
�pA<0

e
−iΨ−
<0 (t, x,D)− e−iΨ−<0 (t, x,D)�

) e±it|D|
|D|

(v(0))
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The first term is estimated by (4.3.26), while for the second use (4.2.12) and (4.3.17). More-
over,

(i∂t − |D|)φ(0)− f = [(i∂t − |D|)φapp − (ih− |D| g)]

+ [(ih− |D| g)− f ]− 1

2
(i∂t − |D|)S−0 (0)

(4.3.28)

The first term is estimated by (4.3.26), the second term is zero, and the third term follows
from (4.3.19). This proves (4.3.23).

The bound (4.3.24) follows from (4.3.26), (4.3.18), (4.3.17) and the bound e
−iΨ±
<0 (t, x,D) :

S#
0 → S̃0 from [31].

We are now ready to construct the key part of our parametrix for (4.3.4).

Proposition 4.3.6. Suppose F and f are localized at frequency {|ξ| ∈ [2k−2, 2k+2]} and
F is also localized at Q+ -modulation {|τ − |ξ|| ≤ 2k−4}. Then there exists ψ1

k localized at
{|ξ| ∈ [2k−3, 2k+3], |τ − |ξ|| ≤ 2k−3} such that

‖ψ1
k(0)− f‖L2 + ‖(i∂t + |D|)pA<kψ

1
k − F‖N+

k
≤ δ

(
‖f‖L2 + ‖F‖N+

k

)
(4.3.29)

‖ψ1
k‖S+

k
. ‖f‖L2 + ‖F‖N+

k
. (4.3.30)

Proof. By scaling invariance, we may assume k = 0. Define

ψ1
0 := (i∂t − |D|)φ

where φ is obtained by applying Proposition 4.3.5 to F, f and −Afree. At this low Q+-
modulation, the norms of N0 and N+

0 coincide. Observe that on that space-time frequency
region, the symbol of (i∂t − |D|) is ∼ 1 and behaves as a bump function. Moreover,

‖ψ1
0‖S+

0
. ‖ψ1

0‖S̃0
. ‖φ‖S̃0

which implies (4.3.30). We write

(i∂t + |D|)pA<0
ψ1

0 = �φ− iAfree,`<−C
∂`
|D|

P0(i∂t + |D| − 2 |D|)φ

= �p−A<0
φ− iAfree,`<−C

∂`
|D|

(i∂t + |D|)P0φ.

(4.3.31)

Since ‖Afree<−C‖L2L∞ . ε, we estimate

‖Afree,`<−C
∂`
|D|

(i∂t + |D|)P0φ‖L1L2 . ε
∑
j≤0

2j‖Q+
j P0φ‖L2L2 . ε‖φ‖

X
0, 12∞

. ε‖φ‖S̃0
. ε(‖f‖L2 + ‖F‖N0)

(4.3.32)

where the last inequality comes from Proposition 4.3.5, which completes the proof.
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Proof of Proposition 4.3.2

We are now ready to prove Proposition 4.3.2.

The approximate solution ψa.

We define ψa :=
∑

k ψ
a
k from its frequency-localized versions

ψak := ψ1
k + ψ2

k

which remain to be defined.
We decompose F =

∑
k PkF and PkF = Q+

<k−6PkF +Q+
>k−6PkF . We first define ψ2

k by

Fψ2
k(τ, ξ) :=

1

−τ + |ξ|
F(Q+

>k−6PkF )(τ, ξ) (4.3.33)

so that (i∂t + |D|)ψ2
k = Q+

>k−6PkF .
Then we apply Proposition 4.3.6 to Q+

<k−6PkF and Pkf−ψ2
k(0) which defines the function

ψ1
k.

Reduction to the frequency-localized case.

By redefining δ (taking ε smaller), it suffices to show

‖Pk[ψa(0)− f ]‖Ḣ1/2 + ‖Pk[(i∂t + |D|)pAψ
a − F ]‖

N
1/2
+ ∩L2L2

. δ
∑

k′=k+O(1)

(
‖Pk′f‖Ḣ1/2 + ‖Pk′F‖N1/2

+ ∩L2L2

)
,

(4.3.34)

‖Pkψa‖S1/2
+
.

∑
k′=k+O(1)

‖Pk′f‖Ḣ1/2 + ‖Pk′F‖N1/2
+ ∩L2L2 . (4.3.35)

Notice that

Pk[(i∂t + |D|)pAψ
a − F ] =

∑
k′=k+O(1)

Pk[(i∂t + |D|)pAψ
a
k′ − Pk′F ], (4.3.36)

and the analogous summation for Pkψ
a and Pk[ψ

a(0)− f ]. By disposing of Pk it suffices to
show the following estimates:

‖(i∂t + |D|)pA<k′ψ
a
k′ − Pk′F‖N+

k′
+ ‖ψak′(0)− Pk′f‖L2

. δ
(
‖Pk′f‖L2 + ‖Pk′F‖N+

k′∩L
2Ḣ−1/2

) (4.3.37)

2−k
′/2‖(i∂t + |D|)pA<k′ψ

a
k′ − Pk′F‖L2L2 . δ

(
‖Pk′f‖L2 + ‖Pk′F‖N+

k′∩L
2Ḣ−1/2

)
(4.3.38)
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‖ψak′‖S+
k′
. ‖Pk′f‖L2 + ‖Pk′F‖N+

k′∩L
2Ḣ−1/2 (4.3.39)

2−
k
2 ‖(i∂t + |D|)ψak′‖L2L2 . ‖Pk′f‖L2 + ‖Pk′F‖N+

k′∩L
2Ḣ−1/2 (4.3.40)

and the following error term, where k′′, k′′′ = k′ ±O(1):

‖Afree,jk′′−c
∂j
|D|

Pk′′′ψ
a
k′‖N+

k′∩L
2Ḣ−1/2 . ε‖ψak′‖S+

k′
(4.3.41)

Proof of claims (4.3.37)–(4.3.41)

It only remains to prove (4.3.37)–(4.3.41).

Step 1: Proof of (4.3.39). For ψ2
k we have, by Lemma 2.2.6

‖ψ2
k‖S+

k
. ‖Q+

>k−6PkF‖N+
k ∩L2Ḣ−1/2 . (4.3.42)

For the function ψ1
k, by Proposition 4.3.6, we have

‖ψ1
k‖S+

k
. ‖Pkf − ψ2

k(0)‖L2 + ‖Q+
<k−6PkF‖N+

k
. ‖Pkf‖L2 + ‖PkF‖N+

k ∩L2Ḣ−1/2 . (4.3.43)

We have used (4.3.42) to bound ‖ψ2
k(0)‖L2 .

Step 2: Proof of (4.3.37). By Proposition 4.3.6, we have

‖ψ1
k(0)− [Pkf − ψ2

k(0)]‖L2 + ‖(i∂t + |D|)pA<kψ
1
k −Q+

<k−6PkF‖N+
k

≤δ
(
‖Pkf − ψ2

k(0)‖L2 + ‖Q+
<k−6PkF‖N+

k

)
.δ(‖Pkf‖L2 + ‖PkF‖N+

k ∩L2Ḣ−1/2)

(4.3.44)

It remains to estimate

‖(i∂t + |D|)pA<kψ
2
k −Q+

>k−6PkF‖N+
k
≤ ‖Afree,j<k−C

∂j
|D|

Pkψ
2
k‖N+

k

.‖Afree<k−C‖L2L∞‖ψ2
k‖L2L2 . (ε2k/2)2−k/2‖Q+

>k−6PkF‖N+
k ∩L2Ḣ−1/2

.ε‖PkF‖N+
k ∩L2Ḣ−1/2

The first inequality follows from the definition (4.3.2). The third inequality follows from
(4.3.42).

Step 3: Proof of (4.3.38). We estimate

2−
k
2 ‖(i∂t + |D|)pA<kψ

1
k −Q+

<k−6PkF‖L2L2 . δ(‖Pkf‖L2 + ‖PkF‖N+
k ∩L2Ḣ−1/2) (4.3.45)

using (2.2.16) and (4.3.44). For (i∂t + |D|)pA<kψ
2
k −Q+

>k−6PkF , using (4.3.42) we estimate

‖Afree,j<k−C
∂j
|D|

Pkψ
2
k‖L2L2 . ‖Afree<k−C‖L2L∞‖ψ2

k‖L∞L2 . 2k/2ε‖Q+
>k−6PkF‖N+

k ∩L2Ḣ−1/2 .
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Step 4: Proof of (4.3.40). We write

(i∂t + |D|)ψak =Q+
>k−6PkF +Q+

<k−6PkF+

+ ((i∂t + |D|)pA<kψ
1
k −Q+

<k−6PkF ) + Afree,j<k−C
∂j
|D|

Pkψ
1
k.

We use (4.3.45) and it remains to estimate

2−k/2‖Afree,j<k−C
∂j
|D|

Pkψ
1
k‖L2L2 .2−k/2‖Afree<k−C‖L2L∞‖ψ1

k‖L∞L2 (4.3.46)

.ε(‖Pkf‖L2 + ‖PkF‖N+
k ∩L2Ḣ−1/2). (4.3.47)

Step 5: Proof of (4.3.41). The N+
k′ bound follows from (6.3.20), while the L2Ḣ−1/2 bound

follows from the estimate (4.3.46) with k replaced by k′, k′′, k′′′.

4.4 Solvability of the covariant Dirac equation

We now prove Proposition 1.8.11 by using the construction of the previous section and
employing the estimates stated in section 1.8.

Recall the equation (1.8.30): {
αµDA

µψ =F on I

ψ(0) =ψ0,
(4.4.1)

where the potential A = Aµdxµ is given by

A0 = A0(ψ′, ψ′), Aj = Afreej + Aj(ψ
′, ψ′) on I

where (A0, Aj) are defined by (1.7.22), (1.7.19)

Proof of Proposition 1.8.11

To solve (1.8.30), we introduce an auxiliary equation (see (4.4.2) below), which on one hand
reduces to (1.8.30) after suitable manipulation, and on the other hand possess appropriate
structure so that it could be solved via an iteration argument. More precisely, we look for a
pair (ϕ+, ϕ−) of spinor fields which obeys

(i∂t + s|D|)ϕs =NE(A0,Π+ϕ+) +NE(A0,Π−ϕ−) + Π−s(π
E[A0]ϕs)

−NR(Ax, ϕ+) +NR(Ax, ϕ−)

+ ΠsN S
+(Ax, ϕ+) + ΠsN S

−(Ax, ϕ−) + iΠsF.

(4.4.2)

with ϕs(0) = Πsψ(0) for s ∈ {+,−}.
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Taking Πs of both sides, a computation similar to Lemma 1.7.7 shows that ψ = Π+ϕ+ +
Π−ϕ− solves the desired covariant Dirac equation; a key observation here is that the last
term on the first line vanishes. Therefore, in order to establish the existence statement in
Proposition 1.8.11, it suffices to show that, under the hypotheses of Proposition 1.8.11, there
exists a solution (ϕ+, ϕ−) to (4.4.2) obeying

‖ϕs‖(S̃1/2[I])c
. ‖Πsψ0‖Ḣ1/2

c
+ ‖ΠsF‖(N

1/2
s ∩L2L2∩G1/2[I])c

. (4.4.3)

Our goal in the remainder of this subsection is to prove the preceding statement. The
remaining uniqueness statement in Proposition 1.8.11 follows by a similar argument applied
to Πs(4.4.2); we omit the repetitive details.

Before analyzing (4.4.2), we begin with some simple remarks. First, extending ΠsF by

zero outside of I results in an equivalent N
1/2
s ∩ L2L2 ∩ G1/2 norm (see Lemma 2.1.5 and

the preceding discussion); therefore, it suffices to focus on the case I = R. Next, by Propo-
sition 1.8.6 (note that ∂tA0 = ∂tME(ψ′, ψ′) thanks to the hypothesis ∂µ〈ψ′, αµψ′〉 = 0), A
obeys the following bound: Given an admissible frequency envelope b with sups∈{+,−} ‖Πsψ

′‖
(S̃

1/2
s )b
≤

1, we have
‖A0‖Y 1

b2
+ ‖Ax − Afreex ‖S1

b2
. 1. (4.4.4)

Constructing b appropriately, we have ‖b2‖`1 ≤ ‖b‖2
`2 . ε2∗∗ by hypothesis.

We are now ready to begin the analysis of (4.4.2). Using the decomposition in Section 1.7
and the identity

πE[A0]Πsϕs + Π−sπ
E[A0]ϕs = πE[A0](1− Π−s)ϕs + Π−sπ

E[A0]ϕs,

the system (4.4.2) can be rewritten as (i∂t + s|D|)p
Afree

ϕs = Esϕ+ iΠsF , where

Esϕ = Es[Afree, ψ′]ϕ =πE[A0(ψ′, ψ′)]ϕs − sπR[Ax(ψ
′, ψ′)]ϕs (4.4.5)

+ ÑE(A0,Πsϕs)− sÑR(Ax, ϕs) (4.4.6)

+NE(A0,Π−sϕ−s) + sNR(Ax, ϕ−s) (4.4.7)

+ ΠsN S
+(Ax, ϕ+) + ΠsN S

−(Ax, ϕ−) (4.4.8)

+ [Π−s, π
E[A0]]ϕs. (4.4.9)

For any admissible frequency envelope c and ϕ′ = (ϕ′+, ϕ
′
−) ∈ (S̃

1/2
+ × S̃1/2

− )c, we claim that

‖Esϕ′‖(N
1/2
s ∩L2L2∩G1/2)c

. ε∗∗ sup
s∈{+,−}

‖ϕ′s‖(S̃
1/2
s )c

. (4.4.10)

For the moment, we assume the claim and complete the proof. Let ϕ′ = (ϕ′+, ϕ
′
−) ∈ (S̃

1/2
+ ×

S̃
1/2
− )c, and consider a solution ϕ to

(i∂t + s|D|)p
Afree

ϕs = Esϕ′ + iΠsF
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given by Theorem 1.6.2. By the same theorem and (4.4.10), we have

‖ϕs‖S1/2
c
. ε∗∗ sup

s∈{+,−}
‖ϕ′s‖(S̃

1/2
s )c

+ ‖ϕ(0)‖Ḣ1/2 + ‖ΠsF‖(N
1/2
s ∩L2L2)c

.

Combined with the inequality

‖ϕ‖
(Z̃

1/2
s )c

= ‖(i∂t + s|D|)ϕ‖
G

1/2
c
≤ ‖(i∂t + s|D|)p

Afree
ϕ‖

G
1/2
c

+ ‖πR[Afreex ]ϕ‖
G

1/2
c

and (1.8.25) (which only involves the S
1/2
s norm on the RHS), we have

‖ϕs‖S̃1/2
c
. ε∗∗ sup

s∈{+,−}
‖ϕ′s‖(S̃

1/2
s )c

+ ‖ϕ(0)‖Ḣ1/2 + ‖ΠsF‖(N
1/2
s ∩L2L2∩G1/2)c

.

Taking ε∗∗ > 0 sufficiently small, we may ensure that the map ϕ′ 7→ ϕ is a contraction in
(S̃

1/2
+ × S̃

1/2
− )c. By iteration (or Banach fixed point theorem), we may then obtain the desired

solution ϕ to (4.4.2).
Now it only remains to prove (4.4.10). For (4.4.5), we use Proposition 1.8.8 with ap-

propriate frequency envelopes. For (4.4.6)–(4.4.8), we apply Proposition 1.8.7 and (4.4.4).
Finally, (4.4.9) is handled using (4.4.4) and the following lemma.

Lemma 4.4.1. Let a, b be any admissible frequency envelopes, and s ∈ {+,−}. Then we
have

‖[Π−s, πE[A0]]ψ‖
(N

1/2
s ∩L2L2∩G1/2)ab

. ‖A0‖Y 1
a
‖ψ‖

(S̃
1/2
s )b

(4.4.11)

Proof. By (1.8.21) and (1.8.24), (4.4.11) holds for the L2L2 ∩ G1/2 norm on the LHS even
without the commutator structure; hence it remains to show

‖[Π−s, πE[A0]]ψ‖
(N

1/2
s )ab

. ‖A0‖Y 1
a
‖ψ‖

(S̃
1/2
s )b

(4.4.12)

Write Ak = PkA0, ψk = Pkψ and P̃k := Π−s0Pk, so that

[Π−s0 , π
E[A0]]ψ =

∑
k′,k1,k:k1<k−5

[P̃k′ , Ak1 ]ψk.

Observe that the summand vanishes unless k′ = k+O(1). Moreover, we have the well-known
commutator identity

[P̃k′ , Ak1 ]f = 2−k
′L(∇Ak1 , f)

where L is a translation-invariant bilinear operator with bounded mass kernel (see [52,
Lemma 2]). Applying Lemma 5.6.1, we have

‖[P̃k′ , Ak1 ]ψk‖N1/2
s0

.2−k‖L(∇Ak1 , ψk)‖N1/2
s0

.2−
1
2
k‖∇Ak1‖L2L2

( ∑
Ck1

(0)

‖PCk1
(0)ψk‖2

L2L∞

)1/2

.2
1
2

(k1−k)‖Ak1‖Y 1‖ψk‖S1/2
s0

.

Thanks to the gain 2
1
2

(k1−k), the frequency envelope bound (4.4.12) follows.
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4.5 The definition and properties of the phase

Now we return to the massive MKG equation and prepare the preliminaries to proving
Theorem 4.2.2.

The construction of the phase

We recall that A is real-valued, it solves the free wave equation �A = 0 and satisfies the
Coulomb gauge condition ∇x · A = 0.

For k = 0 we define

ψ0
±(t, x, ξ) :=

∑
j<−C

ψ0
j,±(t, x, ξ), where

ψ0
j,±(t, x, ξ) :=

−L±
∆ω⊥ + 1

〈ξ〉2 (ω · ∇x)2

(
PjA(t, x) · ξ

〈ξ〉

) (4.5.1)

For k ≥ 1 we define

ψk±(t, x, ξ) :=
−1

∆ω⊥ + 1
〈ξ〉2 (ω · ∇x)2

L±
∑

k1<k−c

(
Πω
>δ(k1−k)Pk1A ·

ξ

〈ξ〉

)
(4.5.2)

It will be convenient to rescale the angular pieces that define ψk± to |ξ| ' 1:

ψkj,θ,±(t, x, 2kξ) :=
−L±,k

∆ω⊥ + 2−2k 1
〈ξ〉2k

(ω · ∇x)2

(
Πω
θPjA · ω

|ξ|
〈ξ〉k

)
(4.5.3)

for 2δ(j−k) < θ < c and j < k − c, where

L±,k = ±∂t +
|ξ|
〈ξ〉k

ω · ∇x, ω =
ξ

|ξ|
, 〈ξ〉k =

√
2−2k + |ξ|2.

Note that Πω
θ ,Π

>ω
θ defined in (1.5.3), (1.5.4) behave like Littlewood-Paley projections in

the space ω⊥.

Remark 4.5.1. It will be important to keep in mind that ψk± is real-valued, since it is defined
by applying real and even Fourier multipliers to the real function A.

Remark 4.5.2. Due to the Coulomb condition ∇x · A = 0 the expression in (4.5.2) acts like
a null form, leading to an angular gain. Indeed, a simple computation shows∣∣∣Π̂ω

θA(η) · ω
∣∣∣ . θ

∣∣∣Π̂ω
θA(η)

∣∣∣ ,
which implies ‖Πω

θA · ω‖L2
x
. θ‖Πω

θA‖L2
x
.
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We denote by
ϕξ(η) = |η|2ω⊥ + 2−2k 〈ξ〉−2

k (ω · η)2

the Fourier multiplier of the operator ∆ω⊥+2−2k 1
〈ξ〉2k

(ω ·∇x)
2. We have the following bounds

on ϕξ(η):

Lemma 4.5.3. Let k ≥ 1. For any η and ξ = |ξ|ω such that ∠(ξ, η) ' θ and |η| ' 2j we
have ∣∣∣∣(θ∇ω)α

1

ϕξ(η)

∣∣∣∣ ≤ Cα
(2jθ)2 + 22j−2k

(4.5.4)∣∣∣∣∂l|ξ|(θ∇ω)α
1

ϕξ(η)

∣∣∣∣ ≤ Cα,l
(2jθ)2 + 22j−2k

· 2−2k

θ2 + 2−2k
, l ≥ 1. (4.5.5)

Remark 4.5.4. Suppose we want to estimate ∂l|ξ|(θ∂ω)αψkj,θ,±(t0, ·, 2kξ) in L2
x. By lemma 4.5.3

and the Coulomb condition (remark 4.5.2), the following multiplier applied to A(t0)

∂α1

|ξ| (θ∂ω)α
−L±,k

∆ω⊥ + 2−2k 1
〈ξ〉2k

(ω · ∇x)2

(
Πω
θPj( ) · ω |ξ|

〈ξ〉k

)
may be replaced by

2−jθ

θ2 + 2−2k
Πω,α
θ P̃j (if l = 0),

2−2k2−jθ

(θ2 + 2−2k)2
Πω,α,l
θ P̃j (if l ≥ 1),

for the purpose of obtaining an upper bound for the L2
x norm, where Πω,α,l

θ and P̃j obey the
same type of localization properties and symbol estimates as Πω

θ and Pj.

Proof. For α = 0, l = 0 the bound is clear since

ϕξ(η) ' (2jθ)2 + 22j−2k. (4.5.6)

For N ≥ 1 we prove the lemma by induction on N = l + |α|. We focus on the case l ≥ 1
since the proof of (4.5.4) is entirely similar. Suppose the claim holds for all l′, α′ such that
0 ≤ l′ + |α′| ≤ N − 1. Applying the product rule to 1 = ϕξ(η) 1

ϕξ(η)
we obtain

ϕξ(η) · ∂l|ξ|(θ∇ω)α
1

ϕξ(η)
=
∑

Cα′,β′

α′′,β′′ · ∂
l′

|ξ|(θ∇ω)α
′
ϕξ(η) · ∂l′′|ξ|(θ∇ω)α

′′ 1

ϕξ(η)

where we sum over l′+ l′′ = l, α′+α′′ = α, l′′+ |α′′| ≤ N−1. Given the induction hypothesis
and (4.5.6), for the terms in the sum it suffices to show∣∣∣∂l′|ξ|(θ∇ω)α

′
ϕξ(η)

∣∣∣ . 22j−2k for l′ ≥ 1, (4.5.7)∣∣∣∂l′|ξ|(θ∇ω)α
′
ϕξ(η)

∣∣∣ . (2jθ)2 for l′ = 0, |α′| ≥ 1 (l′′ = l ≥ 1) (4.5.8)
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We write
ϕξ(η) = Cη − (ω · η)2(1− 2−2k 〈ξ〉−2

k ).

We have |ω · η| . 2j and thus for l′ ≥ 1 we obtain (4.5.7).
Now suppose l′ = 0 and thus |α′| ≥ 1. Observe that ∂ω(ω · η)2 ' 22jθ and thus for all

|α′| ≥ 1 we have (θ∇ω)α
′
(ω · η)2 . 22jθ2, which implies (4.5.8).

The following proposition will be used in stationary phase arguments.

Proposition 4.5.5. For k ≥ 0, |ξ| ' 1, denoting T = |t− s|+ |x− y| we have:∣∣ψk±(t, x, 2kξ)− ψk±(s, y, 2kξ)
∣∣ . ε log(1 + 2kT ) (4.5.9)∣∣∂αω (ψk±(t, x, 2kξ)− ψk±(s, y, 2kξ)
)∣∣ . ε(1 + 2kT )(|α|− 1

2
)δ, 1 ≤ |α| ≤ δ−1 (4.5.10)∣∣∂l|ξ|∂αω (ψk±(t, x, 2kξ)− ψk±(s, y, 2kξ)

)∣∣ . ε2−2k(1 + 2kT )(|α|+ 3
2

)δ, l ≥ 1, (|α|+ 3

2
)δ < 1

(4.5.11)

Proof. Using ‖ |∇|σ A‖L∞L2 . ε, Bernstein’s inequality PjΠ
ω
θL

2
x → (2djθd−1)

1
2L∞x and the

null form (Remark 4.5.2), for k ≥ 1 we obtain∣∣ψkj,θ,±(t, x, 2kξ)
∣∣ . ε(2djθd−1)

1
2 θ

2j2−σj

(2jθ)2 + 22j−2k
. εθ

1
2

Thus, for both k = 0 and k ≥ 1, one has∣∣ψkj,±(t, x, 2kξ)
∣∣ . ε,

∣∣∇x,tψ
k
j,±(t, x, 2kξ)

∣∣ . 2jε

We sum the last bound for j ≤ j0 and the previous one for j0 < j ≤ k − c:∣∣ψk±(t, x, 2kξ)− ψk±(s, y, 2kξ)
∣∣ . ε

(
2j0T + (k − j0)

)
Choosing k − j0 = log2(2kT )−O(1) we obtain (4.5.9).

For the proof of (4.5.10) and (4.5.11) we use Remark 4.5.4. Since their proofs are similar
we only write the details for (4.5.11). First suppose k ≥ 1.

From Bernstein’s inequality and Remark 4.5.4 we obtain∣∣∂l|ξ|∂αωψkj,θ,±(t, x, ξ)
∣∣ . (2djθd−1)

1
2 θ

1

(2jθ)2 + 22j−2k

2−2k

θ2
θ−|α| . 2−2kεθ−

3
2
−|α|∣∣∇x,t∂

l
|ξ|∂

α
ωψ

k
j,θ,±(t, x, ξ)

∣∣ . 2j2−2kεθ−
3
2
−|α|.

We sum after 2δ(j−k) < θ < c. Summing one bound for j ≤ j0 and the other one for
j0 < j ≤ k − c we obtain∣∣∂l|ξ|∂αω (ψk±(t, x, 2kξ)− ψk±(s, y, 2kξ)

)∣∣ . ε2−2k
(

2j0T2−( 3
2

+|α|)δ(j0−k) + 2−( 3
2

+|α|)δ(j0−k)
)

Choosing 2−j0 ∼ T , we obtain (4.5.11). When k = 0 the same numerology, but without the
θ factors, implies (4.5.11).
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Decomposable estimates

The decomposable calculus was introduced in [47]. The formulation that we use here is
similar to [31], which we have modified to allow for non-homogeneous symbols.

For k = 0 we define

‖F‖D0(LqLr) =
∑
α≤10d

sup
|ξ|≤C

‖∂αξ F (·, ·, ξ)‖LqLr .

For k ≥ 1 we define

‖F θ‖2
Dθk(LqLr) =

∑
φ

∑
α1,|α|≤10d

sup
|ξ|∼2k

‖χθφ(ξ)(2k∂|ξ|)
α1(2kθ∇ω)αF θ(·, ·, ξ)‖2

LqLr . (4.5.12)

where χθφ(ξ) denote cutoff functions to sectors centered at φ of angle . θ and φ is summed
over a finitely overlapping collection of such sectors.

The symbol F (t, x, ξ) is in Dk(L
qLr) if we can decompose F =

∑
F θ such that∑

θ

‖F θ‖Dθk(LqLr) <∞

and we define ‖F‖Dk(LqLr) to be the infimum of such sums.

Lemma 4.5.6. Suppose that for i = 1, N the symbols a(t, x, ξ), Fi(t, x, ξ) satisfy ‖Fi‖Dk(LqiLri ) .
1 and

sup
t∈R
‖A(t, x,D)‖L2

x→L2
x
. 1.

The symbol of T is defined to be

a(t, x, ξ)
N∏
i=1

Fi(t, x, ξ).

Then, whenever q, q̃, r, ri ∈ [1,∞], qi ≥ 2 are such that

1

q
=

1

q̃
+

N∑
i=1

1

qi
,

1

r
=

1

2
+

N∑
i=1

1

ri
,

we have
T (t, x,D)P̄k : Lq̃L2 → LqLr,

By duality, when r = 2, ri =∞, the same mapping holds for T (D, s, y).
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Proof for k = 0. For each i = 1, N we decompose into Fourier series

Fi(t, x, ξ) =
∑
j∈Zd

di,j(t, x)ej(ξ), ej(ξ) = eij·ξ

on a box [−C/2, C/2]d. From the Fourier inversion formula and integration by parts we
obtain

〈j〉M ‖di,j‖LqiLri . ‖Fi‖D0(LqiLri ) . 1

for some large M . Then

Tu(t, x) =
∑

j1,...jN∈Zd

N∏
i=1

di,ji(t, x)

∫
eix·ξei(j1+···+jN )·ξa(t, x, ξ)û(t, ξ) dξ

From Hölder’s inequality we obtain

‖Tu‖LqLr ≤
∑

j1,...jN∈Zd

N∏
i=1

‖di,ji‖LqiLri‖A(t, x,D)ei(j1+···+jN )Du‖Lq̃L2 .

.
∑

j1,...jN∈Zd

N∏
i=1

〈ji〉−M ‖u‖Lq̃L2 . ‖u‖Lq̃L2 ,

which proves the claim.

Proof for k ≥ 1. We present the proof for the case N = 2. It is straightforward to observe
that the following works for any N . From the decompositions Fi =

∑
θi
F θi
i and definition

of Dk(L
qLr) we see that it suffices to restrict attention to the operator T with symbol

a(t, x, ξ)F1(t, x, ξ)F2(t, x, ξ)

in the case Fi = F θi
i , i = 1, 2 and to prove

‖T (t, x,D)P̃k‖Lq̃L2→LqLr . ‖F1‖Dθ1k (Lq1Lr1 )
‖F2‖Dθ2k (Lq2Lr2 )

. (4.5.13)

For i = 1, 2 we decompose

Fi =
∑
Ti

F Ti
i , F Ti

i (t, x, ξ) := ϕTiθi (ξ)Fi(t, x, ξ)

where ϕTiθi (ξ) are cutoff functions to sectors Ti of angle θi, where the Ti is summed over a
finitely overlapping collection of such sectors. We also consider the bump functions χTi(ξ)
which equal 1 on the supports of ϕTiθi (ξ) and are adapted to some enlargements of the sectors
Ti. We expand each component as a Fourier series

F Ti
i (t, x, ξ) =

∑
j∈Zd

dTii,j(t, x)eTiθi,j(ξ), eTiθi,j(ξ) = exp(i2−kj · (|ξ| , ω̃θ−1
i )/C)
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on the tube Ti = {|ξ| ∼ 2k,∠(ξ, φi) . θi} where ξ = |ξ|ω in polar coordinates so that ω is
parametrized by ω̃ ∈ Rd−1 such that |ω̃| . θi. Integrating by parts in the Fourier inversion
formula for dTii,j(t, x) we obtain

〈j〉M ‖dTii,j(t)‖Lri .
∑

α1,|α|≤10d

sup
|ξ|∼2k

‖(2k∂|ξ|)α1(2kθi∇ω)αF Ti
i (t, ·, ξ)‖Lri

and since qi ≥ 2 we have

‖dTii,j‖Lqit l2TiLri . 〈j〉
−M ‖Fi‖Dθik (LqiLri )

(4.5.14)

Since for ξ ∈ Ti we have F Ti
i = F Ti

i χTi(ξ), we can write

Tu(t, x) =
∑
T1,T2

∑
j1,j2

dT1
1,j1

(t, x)dT2
2,j2

(t, x)

∫
eixξa(t, x, ξ)eT1

θ1,j1
eTiθ2,j2χT1χT2χ̃(ξ/2k)û(t, ξ) dξ.

Thus

‖Tu(t)‖Lrx .
∑

j1,j2∈Zd

∑
T1,T2

‖dT1
1,j1

(t)‖Lr1x ‖d
T2
2,j2

(t)‖Lr2x ‖χT1χT2û(t)‖L2

.
∑

j1,j2∈Zd
‖dT1

1,j1
(t)‖l2T1

L
r1
x

∑
T2

‖dT2
2,j2

(t)‖Lr2x ‖χT2û(t)‖L2

.
∑

j1,j2∈Zd
‖dT1

1,j1
(t)‖l2T1

L
r1
x
‖dT2

2,j2
(t)‖l2T2

L
r2
x
‖û(t)‖L2

Applying Hölder’s inequality and (4.5.14) we obtain

‖Tu‖LqLr . ‖u‖Lq̃L2

∑
j1,j2∈Zd

〈j1〉−M 〈j2〉−M ‖F1‖Dθ1k (Lq1Lr1 )
‖F2‖Dθ2k (Lq2Lr2 )

which sums up to (4.5.13).

Decomposable estimates for the phase

Now we apply the decomposable calculus to the phases ψk±(t, x, ξ).

Lemma 4.5.7. Let q ≥ 2, 2
q

+ d−1
r
≤ d−1

2
. For k ≥ 1 we have

‖(ψkj,θ,±, 2−j∇t,xψ
k
j,θ,±)‖Dθk(LqLr) . ε2−( 1

q
+ d
r

)j θ
d+1

2
−( 2

q
+ d−1

r
)

θ2 + 2−2k
. (4.5.15)

‖P ω
θ Ak1(t, x) · ω‖Dθk(L2L∞) . θ

3
2 2

k1
2 ε. (4.5.16)

For k = 0 we have
‖(ψ0

j,±, 2
−j∇t,xψ

0
j,±)‖D0(LqLr) . ε2−( 1

q
+ d
r

)j. (4.5.17)
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Proof. Suppose k ≥ 1. Without loss of generality, we will focus on ψkj,θ,±, since exactly the

same estimates hold for 2−j∇t,xψ
k
j,θ,±. In light of the definition (4.5.3), for any ξ = |ξ|ω and

any α1, |α| ≤ 10d, the derivatives ∂α1

|ξ| (θ∂ω)αψkj,θ,± are localized to a sector of angle O(θ) in

the (t, x)-frequencies and they solve the free wave equation

�t,x∂
α1

|ξ| (θ∂ω)αψkj,θ,±(t, x, 2kξ) = 0

Let r0 be defined by 2
q

+ d−1
r0

= d−1
2

. The Bernstein and Strichartz inequalities imply

‖∂α1

|ξ| (θ∂ω)αψkj,θ,±(·, 2kξ)‖LqLr . θ
(d−1)( 1

r0
− 1
r

)
2
d( 1
r0
− 1
r

)j‖∂α1

|ξ| (θ∂ω)αψkj,θ,±(·, 2kξ)‖LqLr0

. 2(1− 1
q
− d
r

)jθ
(d−1)( 1

r0
− 1
r

)‖∂α1

|ξ| (θ∂ω)αψkj,θ,±(2kξ)[0]‖Ḣσ×Ḣσ−1 (4.5.18)

By Remark 4.5.4 (which uses the null form) we deduce

(4.5.18) . 2−( 1
q

+ d
r

)j θ
d+1

2
−( 2

q
+ d−1

r
)

θ2 + 2−2k
‖Πω,α

θ P̃jA[0]‖Ḣσ×Ḣσ−1 .

By putting together this estimate, definition 4.5.12, the finite overlap of the sectors and the
orthogonality property, we obtain

‖ψkj,θ,±‖Dθk(LqLr) . 2−( 1
q

+ d
r

)j θ
d+1

2
−( 2

q
+ d−1

r
)

θ2 + 2−2k
‖P̃jA[0]‖Ḣσ×Ḣσ−1 ,

which proves the claim, since ‖P̃jA[0]‖Ḣσ×Ḣσ−1 . ε.
The same argument applies to (4.5.16). The only difference is that one uses the angular-

localized Strichartz inequality ‖P ω
θ Aj‖L2L∞ . θ

d−3
2 2

j
2‖Aj‖Ḣσ×Ḣσ−1 , which holds for free

waves, in addition to the null form which gives an extra θ.
When k = 0 the same argument goes through without angular projections and with no

factors of θ in (4.5.18).

Remark 4.5.8. As a consequence of the above we also obtain

‖∇ξ(Π
ω
≤δ(k1−k)Ak1(t, x) · ξ)‖D1

k(L2L∞) . 2−10dδ(k1−k)2
k1
2 ε. (4.5.19)

Corollary 4.5.9. For k ≥ 0 we have

‖(ψkj,±, 2−j∇t,xψ
k
j,±)‖Dk(LqL∞) . 2−

j
q ε, q > 4 (4.5.20)

‖∇t,xψ
k
±‖Dk(L2L∞) . 2

k
2 ε (4.5.21)

‖∇t,xψ
k
±‖Dk(L∞L∞) . 2kε. (4.5.22)

Proof. The bound (4.5.22) follows by summing over (4.5.20). For k = 0, (4.5.20) and (4.5.21)
follow from (4.5.17).

Now assume k ≥ 1. The condition q > 4 makes the power of θ positive in (4.5.15) for
any d ≥ 4. Thus (4.5.20) follows by summing in θ. For (4.5.21), summing in θ gives the

factor 2
δ
2

(k−j), which is overcome by the extra factor of 2j when summing in j < k.
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Further properties

Lemma 4.5.10. Let a(x, ξ) and b(x, ξ) be smooth symbols. Then one has

‖arbr − (ab)r‖Lr(L2)→Lq(L2) . ‖(∇xa)r‖Lr(L2)→Lp1 (L2)‖∇ξb‖D1
kL

p2 (L∞) (4.5.23)

‖albl − (ab)l‖Lr(L2)→Lq(L2) . ‖∇ξa‖D1
kL

p2 (L∞)‖(∇xb)
l‖Lr(L2)→Lp1 (L2) (4.5.24)

where q−1 =
∑
p−1
i . Furthermore, if b = b(ξ) is a smooth multiplier supported on {〈ξ〉 ' 2k},

then for any two translation invariant spaces X, Y one has:

‖arbr − (ab)r‖X→Y . 2−k‖(∇xa)r‖X→Y . (4.5.25)

Proof. See [31, Lemma 7.2].

Lemma 4.5.11. Let X, Y be translation-invariant spaces of functions on Rn+1 and consider
the symbol a(t, x, ξ) such that

a(t, x,D) : X → Y.

Then the (t, x)-frequency localized symbol a<h(t, x, ξ) also satisfies

a<h(t, x,D) : X → Y.

Proof. We write

a<h(t, x,D)u =

∫
m(s, y)T(s,y)a(t, x,D)T−(s,y)u ds dy

where m(s, y) is a bump function and T(s,y) denotes translation by (s, y). Now the claim
follows from Minkowski’s inequality and the T±(s,y)-invariance of X, Y .

4.6 Oscillatory integrals estimates

In this section we prove estimates for oscillatory integrals that arise as kernels of TT ∗

operators used in proofs of the mapping (4.2.11) and (4.2.8), (4.2.9), (4.2.10). These bounds
are based on stationay and non-stationary phase arguments (see Prop. 1.5.2 and 1.5.3).

Rapid decay away from the cone

We consider

Ka
k (t, x, s, y) =

∫
e−iψ

k
±(t,x,ξ)a

( ξ
2k
)
e±i(t−s)〈ξ〉+i(x−y)ξe+iψk±(s,y,ξ) dξ (4.6.1)

where a(ξ) is a bump function supported on {|ξ| ' 1} for k ≥ 1 and on {|ξ| . 1} for k = 0.
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Proposition 4.6.1. For k ≥ 0 and any N ≥ 0, we have

|Ka
k (t, x, s, y)| . 2dk

1

〈2k(|t− s| − |x− y|)〉N
(4.6.2)

whenever 2k ||t− s| − |x− y|| � 2−k |t− s|.
Moreover, the implicit constant is bounded when a(ξ) is bounded in CN(|ξ| . 1).

Proof. We first assume k ≥ 1. Suppose without loss of generality that t−s ≥ 0, and ± = +.
Denoting λ = ||t− s| − |x− y|| it suffices to consider 2kλ� 1. By a change of variables we
write

Ka
k = 2dk

∫
|ξ|'1

ei2
k(φk+ϕk)(t,x,s,y,ξ)a(ξ) dξ

where
φk(t, x, s, y, ξ) = (t− s) 〈ξ〉k + (x− y) · ξ

ϕk(t, x, s, y, ξ) = −(ψk±(t, x, 2kξ)− ψk±(s, y, 2kξ))/2k.

By Prop 4.5.5 and noting that T = |t− s|+ |x− y| . 22kλ we have

|∇ϕk| . ε(2kT )3δ/2k . ελ

Furthermore,

∇φk = (t− s) ξ

〈ξ〉k
+ (x− y)

If |x− y| ≥ 2 |t− s| or |t− s| ≥ 2 |x− y|, by non-stationary phase, we easily estimate

|Ka
k | . 2dk

〈
2kT

〉−N
.

Now we assume |t− s| ' |x− y| � 2−k. On the region ∠(−ξ, x − y) > 10−3 we have
|∇φk| & |t− s|, thus by a smooth cutoff and non-stationary phase, that component of the

integral is . 2dk
〈
2kT

〉−N
. Now we can assume a(ξ) is supported on the region ∠(−ξ, x−y) ≤

10−2.
If |∇φk| ≥ 1/4λ on that region, we get the bound 2dk

〈
2kλ
〉−N

. We claim this is always

the case. Suppose the contrary, that there exists ξ such that |∇φk| ≤ 1/4λ. Then (t−s) |ξ
′|
〈ξ〉k
≤

1/4λ writing in coordinates ξ = (ξ1, ξ
′) where ξ1 is in the direction x−y while ξ′ is orthogonal

to it.

∇φk ·
x− y
|x− y|

= (t− s) ξ1

〈ξ〉k
+ |x− y| = ±λ+ (t− s)(1 +

ξ1

〈ξ〉k
)

Thus ξ1 ≤ 0 and using that λ� 2−2k(t− s) we have

(t− s)(1 +
ξ1

〈ξ〉k
) =

t− s
〈ξ〉k

2−2k + |ξ′|2

〈ξ〉k + |ξ1|
< 2−2k(t− s) +

1

4
λ ≤ 1

2
λ

which implies |∇φk| ≥ 1/2λ, a contradiction. This concludes the case k ≥ 1.
When k = 0 we have |x− y| � |t− s|. For the corresponding phase we have |∇φ0| ≥

1
2
|x− y| and thus we get the factor 〈x− y〉−N .
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Dispersive estimates

Dispersive estimates for the Klein-Gordon equation are treated in places like [38, Section
2.5], [4]. The situation here is slightly complicated by the presence of the e±iψ transforma-
tions. To account for this we use Prop. 4.5.5. Let

Kk :=

∫
e−iψ

k
±(t/2k,x/2k,2kξ)+iψk±(s/2k,y/2k,2kξ)e±it(t−s)〈ξ〉kei(x−y)ξa(ξ) dξ

where a(ξ) is a bump function supported on {|ξ| ' 1} for k ≥ 1 and on {〈ξ〉 ' 1} for k = 0.

Proposition 4.6.2. For any k ≥ 0 one has the inequalities

∣∣Kk(t, x; s, y)
∣∣ .


1

〈t− s〉
d−1

2

(4.6.3)

2k

〈t− s〉d/2
(4.6.4)

Proof. Step 1. We first prove (4.6.3) for k ≥ 1. We assume |t− s| ' |x− y| � 1 and that
a(ξ) is supported on the region ∠(∓ξ, x − y) ≤ 10−2, since in the other cases the phase is
non-stationary and we obtain the bound 〈t− s〉−N from the proof of Prop. 4.6.1. We denote

ϕ(t, x, s, y, ξ) = −ψk±(t/2k, x/2k, 2kξ) + ψk±(s/2k, y/2k, 2kξ)

and write
(x− y) · ξ ± |x− y| |ξ| = ±2 |x− y| |ξ| sin2(θ/2)

where θ = ∠(∓ξ, x − y). We write ξ = (ξ1, ξ
′) in polar coordinates, where ξ1 = |ξ| is the

radial component. Then

Kk =

∫
ξ1'1

ξ3
1e
±i(t−s)〈ξ1〉k∓i|x−y|ξ1Ω(ξ1) dξ1 (4.6.5)

where Ω(ξ1) =

∫
e±i|x−y|2ξ1 sin2(θ/2)a(ξ1, ξ

′)eiϕ dS(ξ′)

For each ξ1 we bound

|Ω(ξ1)| . |x− y|−
d−1

2 (4.6.6)

as a stationary-phase estimate (see Prop. 1.5.3). When derivatives fall on eiϕ we get factors
of ε |x− y|δ by (4.5.10); however, these are compensated by the extra factors |x− y|−1 from
the expansion (1.5.11). Integrating in ξ1 we obtain (4.6.3).

Furthermore, using (1.5.12) we obtain∣∣∂jξ1Ω(ξ1)
∣∣ . |x− y|− d−1

2 〈2−2k |x− y|4δ〉 j = 1, 2. (4.6.7)
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The term 〈2−2k |x− y|4δ〉 occurs by (4.5.11) when ∂ξ1 derivatives fall on eiϕ.

Step 2. Now we prove (4.6.4).
First we consider k = 0 and |t− s| � 1. When |t− s| ≤ c |x− y| the phase is non-

stationary and we obtain 〈t− s〉−N . Otherwise, we consider the phase 〈ξ〉+ x−y
|t−s| · ξ and get

the bound 〈t− s〉−d/2 as a stationary-phase estimate using Prop. 4.5.5.
Now we take k ≥ 1 under the assumptions from Step 1. We may also assume |t− s| � 22k

(otherwise (4.6.4) follows from (4.6.3)).
In (4.6.5) we have the phase 2−2k |t− s| f(ξ1) where

f(ξ1) = 22k
(
〈ξ1〉k −

|x− y|
|t− s|

ξ1

)
, f ′(ξ1) = 22k

( ξ1

〈ξ1〉k
− |x− y|
|t− s|

)
, |f ′′(ξ1)| ' 1,

and
∣∣f (m)(ξ1)

∣∣ . 1 for m ≥ 3. Using stationary phase in ξ1 (Prop. 1.5.3/1.5.2) one has

∣∣Kk
∣∣ . 1

|2−2k |t− s||
1
2

sup |Ω|+ 1

2−2k |t− s|
sup
j≤2

∣∣∣∂jξ1Ω
∣∣∣ ,

which, together with (4.6.6), (4.6.7), implies (4.6.4).

Now we consider more localized estimates.
Let C be a box of size ' 2k

′ × (2k
′+l′)d−1 located in an annulus {〈ξ〉 ' 2k} for k ≥ 0.

Suppose aC is a bump function adapted to C and define

Kk′,l′(t, x; s, y) :=

∫
e−iψ

k
±(t,x,ξ)+iψk±(s,y,ξ)e±it(t−s)〈ξ〉ei(x−y)ξaC(ξ) dξ. (4.6.8)

Proposition 4.6.3. Let k ≥ 0, k′ ≤ k and −k ≤ l′ ≤ 0. Then, we have∣∣∣Kk′,l′(t, x; s, y)
∣∣∣ . 2dk

′+(d−1)l′ 1

〈22(k′+l′)−k(t− s)〉
d−1

2

(4.6.9)

Proof. We assume 22(k′+l′)−k |t− s| � 1 (otherwise we bound the integrand by absolute
values on C) and assume |t− s| ' |x− y| (otherwise the phase is non-stationary). Let
k ≥ 1. By a change of variable we rescale to |ξ| ' 1 and write Kk′,l′ as 2dk× (4.6.5)- applied
to 2k(t, x; s, y), with a(·) supported on a box 2k

′−k× (2k
′+l′−k)d−1. Like before, for each ξ1 we

bound the inner integral Ω(ξ1) by (2k |t− s|)− d−1
2 by stationary-phase. Integrating in ξ1 on a

radius of size 2k
′−k we get 2dk2k

′−k(2k |t− s|)− d−1
2 which gives (4.6.9). When k = 0, l′ = O(1)

the estimate is straightforward.

Corollary 4.6.4. Let k ≥ 0, k′ ≤ k and −k ≤ l′ ≤ 0. Then

e−iψ
k
±(t, x,D)e±it〈D〉PCk′ (l′) : L2

x → 2
k
2

+ d−2
2
k′+ d−3

2
l′L2L∞ (4.6.10)
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Proof. By a TT ∗ argument this follows from

2−k−(d−2)k′−(d−3)l′e−iψ
k
±(t, x,D)e±it(t−s)〈D〉P 2

Ck′ (l
′)e

iψk±(D, s, y) : L2L1 → L2L∞

We use (4.6.9) to bound the kernel of this operator, and the mapping follows since 22k′+2l′−k 〈22k′+2l′−k |r|
〉−(d−1)/2

has L1
rL
∞
x norm . 1.

The PW decay bound, d = 4

Let C be a box of size' 2k
′×(2k

′−k)3 with center ξ0 located in an annulus {|ξ| ∼ 2k} ⊂ R4.
We consider the decay of the integral Kk′,−k defined in (4.6.8), in the frame (1.5.5), (1.5.6),

where ω is the direction of ξ0 and λ = |ξ0|
〈ξ0〉 .

This type of bound is similar to the one used by Bejenaru and Herr [4, Prop. 2.3] to
establish null-frame L2

tω,λ
L∞xω,λ- Strichartz estimates, an idea we will also follow in this paper.

Proposition 4.6.5. When |tω − sω| � 2k
′−3k |t− s|, we have∣∣∣Kk′,−k(t, x; s, y)
∣∣∣ . 24k′−3k 1

〈2k′(tω − sω)〉2
(4.6.11)

Proof. Denoting T = |t− s| + |x− y|, we clearly have |tω − sω| ≤ T . In the cases when
|t− s| ≥ 2 |x− y| or |x− y| ≥ 2 |t− s| from integrating by parts radially we obtain the

decay
〈
2k
′
T
〉−N

24k′−3k. Now suppose |t− s| ' |x− y|, ± = + and let

φ(ξ) = (t− s) 〈ξ〉+ (x− y) · ξ, ∇φ = (t− s) ξ

〈ξ〉
+ x− y.

For ξ ∈ C we have |ξ|〈ξ〉 = λ+O(2k
′−3k) and

ξ

|ξ|
= ω +

∑
i

O(2k
′−2k)ωi +O(22(k′−2k)), ωi ∈ ω⊥.

Therefore
ω · ∇φ = (tω − sω)

√
1 + λ2 +O(2k

′−3k |t− s|).
Due to the assumption, the phase is non-stationary |ω · ∇φ| & |tω − sω| and we obtain
(4.6.11) by integrating by parts with ∂ω = ω · ∇.

When derivatives fall on e−iψ
k
±(t,x,ξ)+ψk±(s,y,ξ) we get extra factors of 2k

′−k(2kT )δ from Prop
4.5.5. However, we compensate this factors by writing the integral in polar coordinates
similarly to (4.6.5) and using stationary-phase for the inner integral like in the proof of
(4.6.9), (4.6.3), giving an extra (22k′−3kT )−3/2, which suffices.
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Corollary 4.6.6. For k ≥ 1 let ξ0 be the center of the box Ck′(−k), λ = |ξ0|
〈ξ0〉 and ω = ξ0

|ξ0| .
Then

2−
3
2

(k′−k)e−iψ
k
±(t, x,D)eit〈D〉PkPCk′ (−k) : L2

x → L2
tω,λ

L∞xω,λ

Proof. By a TT ∗ argument this follows from the mapping

2−3(k′−k)e−iψ
k
±(t, x,D)eit(t−s)〈D〉P 2

k aC(D)eiψ
k
±(D, s, y) : L2

tω,λ
L1
xω,λ
→ L2

tω,λ
L∞xω,λ

which holds since the kernel of this operator is bounded by 2k
′ 〈

2k
′
(tω − sω)

〉−3/2 ∈ L1
tω−sωL

∞.

When |tω − sω| � 2k
′−3k |t− s| this follows from (4.6.11), while for |tω − sω| . 2k

′−3k |t− s|
it follows from (4.6.9) with l′ = −k.

The null frame decay bound, d = 4

Let ω̄ ∈ S3 and let κl be a spherical cap of angle 2l such that ∠(κl,±ω̄) ' 2l. Let
λ = 1√

1+2−2p , which together with ω̄ defines the frame (1.5.5) and the coordinates in this
frame

tω̄ = (t, x) · ω̄λ, x1
ω̄ = (t, x) · ¯̄ωλ, x′ω̄,i = x · ω̄⊥i

Suppose al(ξ) is a smooth function adapted to {|ξ| ' 2k, ξ
|ξ| ∈ κl} and consider

Kal
l (t, x; s, y) :=

∫
e−iψ

k
±(t,x,ξ)+ψk±(s,y,ξ)e±it(t−s)〈ξ〉ei(x−y)ξal(ξ) dξ.

Proposition 4.6.7. Suppose max(2−p, 2−k)� 2l ' ∠(κl,±ω̄). Then, we have

|Kal
l (t, x; s, y)| . 24k+3l 1

〈2k+2l |t− s|〉N
1

〈2k+l |x′ω̄ − y′ω̄|〉
N

〈
2k |tω̄ − sω̄|

〉2N
(4.6.12)

Moreover, the implicit constant depends on only 2N + 1 derivatives of al.

Proof. We prove that the phase is non-stationary due to the angular separation. Suppose
± = + and let

φ(ξ) = (t− s) 〈ξ〉+ (x− y) · ξ, ∇φ = (t− s) ξ

〈ξ〉
+ x− y.

Choosing the right ω̄⊥i we obtain

∇φ · ω̄⊥i ' 2l(t− s) + |x′ω̄ − y′ω̄| .
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When 2l |t− s| � |x′ω̄ − y′ω̄| we obtain |Kal
l | . 24k+3l

〈
2k+l |x′ω̄ − y′ω̄|

〉−2N
, which implies

(4.6.12). Similarly when |x′ω̄ − y′ω̄| � 2l |t− s| we get |Kal
l | . 24k+3l

〈
2k+l2l |t− s|

〉−2N
which

also suffices.
We use Prop 4.5.5 to control the contribution of ψk±(t, x, ξ)− ψk±(s, y, ξ).
Now assume 2l |t− s| ' |x′ω̄ − y′ω̄|. When (22l |t− s| ') 2l |x′ω̄ − y′ω̄| . |tω̄ − sω̄| estimat-

ing the integrand by absolute values we get |Kal
l | . 24k+3l, which suffices in this case.

Now we assume |tω̄ − sω̄| � 22l |t− s| ' 2l |x′ω̄ − y′ω̄|.
Since (x− y) · ω̄ = −λ(t− s) + (tω̄ − sω̄)

√
1 + λ2, we have

∇φ · ω̄ = (t− s)
(
|ξ|
〈ξ〉

ξ

|ξ|
· ω̄ − λ

)
+ (tω̄ − sω̄)

√
1 + λ2

We estimate
|ξ|
〈ξ〉
− 1 ' −2−2k,

ξ

|ξ|
· ω̄ − 1 ' −22l, λ− 1 ' −2−2p

From the hypothesis on 2l we conclude that this term dominates so

|∇φ · ω̄| & 22l |t− s| ,

which implies (4.6.12) as a non-stationary phase estimate.

Now we consider frequency localized symbols and look at the TT ∗ operator

e
−iψk±
<k (t, x,D)e±it(t−s)〈D〉al(D)e

iψk±
<k (D, s, y) (4.6.13)

from L2(Σ)→ L2(Σ), where Σ = (ω̄λ)⊥ with kernel

K l
<k(t, x; s, y) :=

∫
e
−iψk±(t,x,ξ)

<k e±it(t−s)〈ξ〉ei(x−y)ξal(ξ)e
iψk±(s,y,ξ)

<k dξ.

for (t, x; s, y) ∈ Σ× Σ, i.e. tω̄ = sω̄ = 0.

Proposition 4.6.8. Suppose max(2−p, 2−k)� 2l ' ∠(κl,±ω̄). Then,∣∣K l
<k(t, x; s, y)

∣∣ . 24k+3l 1

〈2k+2l |x1
ω̄ − y1

ω̄|〉
N

1

〈2k+l |x′ω̄ − y′ω̄|〉
N

(4.6.14)

holds when λ(t− s) + (x− y) · ω̄ = 0.

Corollary 4.6.9. Suppose max(2−p, 2−k)� 2l ' ∠(κl,±ω̄). Then

2le
−iψk±
<k (t, x,D)e±it〈D〉PkPκl : L2

x → L∞tω̄,λL
2
xω̄,λ

. (4.6.15)

Corollary 4.6.10. Let C = Ck′(l′). Then

e
−iψk±
<k (t, x,D)e±it〈D〉PkPC : L2

x → NE±C . (4.6.16)
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Proof of Prop. 4.6.8. We average using (4.1.4) to write K l
<k(t, x; s, y) as∫∫

e−iTzψ
k
±(t,x,ξ)e+iTwψk±(s,y,ξ)al(ξ)e

±i(t−s)〈ξ〉ei(x−y)ξ dξmk(z)mk(w) dz dw =

=

∫
TzTwK

a(z,w)
l (t, x; s, y)mk(z)mk(w) dz dw (4.6.17)

where a(z, w)(ξ) = e−i(z−w)·(±〈ξ〉,ξ)al(ξ). Since tω̄ = sω̄ = 0 using (4.6.12) we obtain∣∣∣TzTwKa(z,w)
l (t, x; s, y)

∣∣∣ . 〈2k(|z|+ |w|)〉2N+1
24k+3l×

×
〈
2k+2l |t− s+ z1 − w1|

〉−N 〈
2k+l |x′ω̄ − y′ω̄ + z′ω̄ − w′ω̄|

〉−N 〈
2k |z − w|

〉2N

We obtain (4.6.14) from the integral (4.6.17) using the rapid decay〈
2k(|z|+ |w|)

〉2N+1 〈
2k |z − w|

〉2N
mk(z)mk(w) .

〈
2k |z|

〉−N2
〈
2k |w|

〉−N2
.

for any N2, and by repeatedly applying∫
R

1

〈α |a− r|〉N
2k

〈2k |r|〉N2
dr .

1

〈α |a|〉N

for α ≤ 2k and N2 large enough. Note that here |t− s| ' |x1
ω̄ − y1

ω̄|.

Proof of Corollary 4.6.9. By translation invariance, it suffices to prove that the operator
is bounded from L2

x → L2(Σ). By a TT ∗ argument this follows if we prove 22l× (4.6.13)
: L2(Σ) → L2(Σ), for which we use Schur’s test. Indeed, the kernel of this operator is
22lK l

<k(t, x; s, y) on Σ× Σ, which is integrable on Σ by (4.6.14).

Proof of Corollary 4.6.10. Recall definition (2.1.7). For any ω̄, λ = λ(p) such that ∠(ω̄,±C)�
max(2−p, 2−k, 2l

′+k′−k) we may define 2l ' ∠(ω̄,±C) and κl ⊃ C so that Corollary 4.6.9 ap-
plies.

4.7 Proof of the fixed time L2
x estimates (4.2.8), (4.2.9),

(4.2.10)

The remainder of this chapter is devoted to the proof of Theorem 4.2.2.

The following proposition establishes the L2
x part of (4.2.8), (4.2.9).
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Proposition 4.7.1. For any k ≥ 0, the mappings

e±iψ
k
±(t0, x,D)P̄k : L2

x → L2
x (4.7.1)

e
±iψk±
<h (t0, x,D)P̄k : L2

x → L2
x (4.7.2)

∇t,xe
±iψk±
<h (t0, x,D)P̄k : L2

x → ε2kL2
x (4.7.3)

hold for any fixed t0, uniformly in h, t0 ∈ R. By duality, the same mappings hold for
right quantizations.

Proof. Step 1. First we prove (4.7.1) by considering the TT ∗ operator

e±iψ
k
±(t0, x,D)P̄ 2

k e
∓iψk±(D, y, t0)

with kernel Ka
k (t0, x, t0, y) defined by (4.6.1).

Due to the (x, y) symmetry and Schur’s test it suffices to show

sup
x

∫
|Ka

k (t0, x, t0, y)| dy . 1.

This follows from Prop. 4.6.1.

Step 2. Now we prove (4.7.2) using (4.1.4) and (4.7.1). For u ∈ L2
x we write

e
±iψk±
<h (t0, x,D)P̄ku =

∫
Rd+1

mh(s, y)e±iψ
k
±(t0 + s, x+ y,D)[P̄kuy] ds dy

where ûy(ξ) = e−iyξû0(ξ). By Minkowski’s inequality, (4.7.1) for t0 +s, translation invariance
of L2

x, and the bound ‖uy‖L2
x
≤ ‖u‖L2

x
we obtain

‖e±iψ
k
±

<h (t0, x,D)P̄ku‖L2
x
.
∫
Rd+1

mh(s, y)‖e±iψk±(t0 + s, ·, D)[P̄kuy]‖L2
x

ds dy

.
∫
Rd+1

mh(s, y)‖P̄kuy‖L2
x

ds dy . ‖u‖L2
x
.

Step 3. Since we have

∇t,xe
±iψk±(t,x,ξ) = ±i∇t,xψ

k
±(t, x, ξ)e±iψ

k
±(t,x,ξ)

using (4.5.22), (4.7.1) and Lemma 4.5.6 we obtain

‖∇t,xe
±iψk±(t, x,D)Pk‖L1L2→L1L2 . ε2k

Applying this to φ(t, x) = δt0(t) ⊗ u(x) (or rather with an approximate to the identity ηε
converging to δt0 in t) we obtain

∇t,xe
±iψk±(t0, x,D)Pk : L2

x → ε2kL2
x

for any t0. By averaging this estimate as in Step 2 we obtain (4.7.3).
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Remark 4.7.2. The same argument also shows

e
±iψk

<k′′,±(t0, x,D)Pk : L2
x → L2

x (4.7.4)

Now we turn to the proof of (4.2.10).

Proposition 4.7.3. Let k ≥ 0. For any t0 we have

e
−iψk±
<k (t0, x,D)e

iψk±
<k (D, t0, y)− I : P̄kL

2
x → ε

1
2L2

x

Proof. Step 1. First, let us note that

e
−iψk±
<k (t0, x,D)[e

iψk±
<k (D, t0, y)P̄k − P̄ke

iψk±
<k (D, t0, y)] : L2

x → εL2
x

This follows from (4.7.2) and from (4.5.25), (4.7.3).

The kernel of e
−iψk±
<k (t0, x,D)P̄ke

iψk±
<k (D, t0, y) is

K<k(x, y) =

∫
e
−iψk±
<k (t0, x, ξ)a(ξ/2k)ei(x−y)ξe

+iψk±
<k (t0, y, ξ) dξ

while the kernel of P̄k is 2dkǎ(2k(x− y)). Thus, by Schur’s test it remains to prove

sup
x

∫ ∣∣K<k(x, y)− 2dkǎ(2k(x− y))
∣∣ dy . ε

1
2 . (4.7.5)

Step 2. For large |x− y| we will use

2dk
∣∣ǎ(2k(x− y))

∣∣ , |K<k(x, y)| . 2dk

(1 + 2k |x− y|)2d+1
. (4.7.6)

The bound for ǎ is obvious. Recalling (4.1.4) we write K<k(x, y) as∫∫
e−iTzψ

k
±(t0,x,ξ)e+iTwψk±(t0,y,ξ)a(ξ/2k)ei(x−y)ξ dξmk(z)mk(w) dz dw =

=

∫
TzTwK

a(z,w)
k (t0, x, t0, y)mk(z)mk(w) dz dw (4.7.7)

where z = (t, z′), w = (s, w′), a(z, w)(ξ) = e−i2
k(z−w)·(±〈ξ〉k,ξ)a(ξ) and

Ka
k (t, x, s, y) =

∫
e−iψ

k
±(t, x, ξ)a(ξ/2k)e±i(t−s)〈ξ〉+i(x−y)ξe+iψk±(s, y, ξ) dξ
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From Prop. 4.6.1, on the region ||t− s| − |x− y + z′ − w′|| � 2−2k |t− s| we have∣∣∣TzTwKa(z,w)
k (t0, x, t0, y)

∣∣∣ . 〈2k(|z|+ |w|)〉N 2dk

〈2k(|t− s| − |x− y + z′ − w′|)〉N

Over this region, the integral (4.7.7) obeys the upper bound in (4.7.6). This can be seen by
repeatedly applying∫

R

1

(1 + 2k |r − a|)N
2k

(1 + 2kr)N1
dr .

1

(1 + 2ka)N−1
, N1 ≥ 2N

and for any N2 〈
2k(|z|+ |w|)

〉N
mk(z)mk(w) .

〈
2k |z|

〉−N2
〈
2k |w|

〉−N2
.

On the region ||t− s| − |x− y + z′ − w′|| . 2−2k |t− s|, we use the term
〈
2k(t− s)

〉−N
from

the rapid decay of mk(z),mk(w) and bound

1

〈2k(t− s)〉N
.

1

〈2k(|t− s| − |x− y + z′ − w′|)〉N
,
∣∣∣TzTwKa(z,w)

k

∣∣∣ . 2dk

which imply the upper bound in (4.7.6) as before.

Step 3. The kernel of e
−iψk±
<k (t0, x,D)P̄ke

iψk±
<k (D, t0, y)− P̄k obeys the bound∣∣K<k(x, y)− 2dkǎ(2k(x− y))

∣∣ . ε2dk(3 + 2k |x− y|). (4.7.8)

Indeed, we write K<k(x, y)− 2dkǎ(2k(x− y)) as

2dk
∫∫

(e−iTzψ
k
±(t0,x,2kξ)+iTwψk±(t0,y,2kξ) − 1)a(ξ)ei2

k(x−y)ξ dξmk(z)mk(w) dz dw

and by (4.5.9), we bound∣∣∣e−iTzψk±(t0,x,2kξ)+iTwψk±(t0,y,2kξ) − 1
∣∣∣ . ε log(1 + 2k(|x− y|+ |z|+ |w|))

. ε[1 + 2k(|x− y|+ |z|+ |w|)].

Bounding by absolute values and integrating in z and w we obtain (4.7.8).

Step 4. Now we prove (4.7.5). We integrate (4.7.8) on {y | |x− y| ≤ R} and integrate

(4.7.6) on the complement of this set, for (2kR)d+1 ' ε−
1
2 . We obtain

LHS (4.7.5) . ε(2kR)d+1 +
1

(2kR)d+1
. ε

1
2 .
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4.8 Proof of the N̄k, N̄
∗
k estimates (4.2.8), (4.2.9), (4.2.10)

In the proof we will need the following lemma.

Lemma 4.8.1. For k ≥ 0, k ≥ k′ ≥ j −O(1) and for both quantizations, we have:

2j/2‖Q̄je
±iψk±
k′ P̄kG‖L2

t,x
. ε2δ(j−k

′)‖G‖N̄∗k , (4.8.1)

and thus, by duality

2
j
2‖P̄ke

±iψk±
k′ Q̄jFk‖N̄k . ε2δ(j−k

′)‖Fk‖L2
t,x

(4.8.2)

Corollary 4.8.2. For k ≥ 0, l ≤ 0 we have

Q̄<k+2l(e
−iψk±
<k − e−iψ

k
±

<k+2l)(t, x,D)P̄k : N̄∗k → X̄
1/2
1

Proof. This follows by summing over (4.8.1).

The proof of this lemma is a bit long and is defered to the end of this section. The
following proposition completes the proofs of (4.2.8), (4.2.9), (4.2.10).

Proposition 4.8.3. For any k ≥ 0, denoting ψ = ψk±, one has:

e±iψ<k (t, x,D), e±iψ<k (D, s, y) : N̄k → N̄k (4.8.3)

∂t,xe
±iψ
<k (t, x,D), ∂t,xe

±iψ
<k (D, s, y) : N̄k → ε2kN̄k (4.8.4)

e−iψ<k (t, x,D)eiψ<k(D, s, y)− I : N̄k → ε
1
2 N̄k (4.8.5)

By duality, the same mappings hold for N̄∗k in place of N̄k.

Proof. Step 1. Since N̄k is defined as an atomic space, it suffices to prove (4.8.3), (4.8.4) ap-

plied to F when F is an L1L2-atom (‖F‖L1L2 ≤ 1) or to Q̄jF an X̄
− 1

2
1 -atom ( 2−

j
2‖Q̄jF‖L2

t,x
≤

1). The first case follows from integrating the pointwise in t bounds (4.7.2), (4.7.3)

‖(e±iψ<k , ε
−12−k∇e±iψ<k )Fk(t)‖L2

x
. ‖Fk(t)‖L2

x

for both the left and right quantizations.
Now consider the second case. We split

e±iψ<k = e±iψ<min(j,k) + (e±iψ<k − e
±iψ
<min(j,k)).
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Note that e±iψ<min(j,k)Q̄jF = ˜̄Qje
±iψ
<min(j,k)Q̄jF and thus the bound

‖e±iψ<min(j,k)Q̄jF‖N̄k . 2−
j
2‖e±iψ<min(j,k)Q̄jF‖L2

t,x
. 2−

j
2‖Q̄jF‖L2

t,x

follows from integrating (4.7.2). The same argument applies to ∇e±iψ<min(j,k) using (4.7.3). The
remaining estimate, for j ≤ k

‖(e±iψ<k − e
±iψ
<j )Q̄jFk‖N̄k . ε2−

j
2‖Q̄jFk‖L2

t,x
(4.8.6)

follows by summing (4.8.2) in k′. Note that (4.8.6) remains true with e±iψ replaced by
2−k∇e±iψ, because (4.8.2) remains true, which concludes (4.8.4). To see this, one writes
2−k

′∇e±iψk′ = Le±iψk′ where L is disposable and use translation invariance and (4.8.2).

Step 2. To prove (4.8.5), since that operator is self-adjoint, we prove that it is bounded from

N̄∗k → ε
1
2 N̄∗k , where N̄∗k ' L∞L2 ∩ X̄

1
2∞. The L∞L2 mapping follows from Prop. 4.7.3, so it

remains to prove

2
j
2‖Q̄jP̃k[e

−iψ
<k (t, x,D)eiψ<k(D, s, y)− I]Fk‖L2

t,x
. ε

1
2‖Fk‖

L∞L2∩X̄
1
2∞

For Q̄>j−cFk we can discard Q̄jP̃k and since ‖Q̄>j−cFk‖L2
t,x
. 2−j/2‖Fk‖

X̄
1
2∞
, the bound follows

for this component from Prop. 4.7.3 by integration .
For Q̄≤j−cFk the claim follows by adding the following

2
j
2 Q̄jP̃k[e

−iψ
<k − e

−iψ
<j ](t, x,D)eiψ<k(D, s, y)Q̄≤j−c : N̄∗k → εL2

t,x

2
j
2 Q̄jP̃ke

−iψ
<j (t, x,D)[eiψ<k − e

iψ
<j](D, s, y)Q̄≤j−c : N̄∗k → εL2

t,x

since
Q̄jP̃kIQ̄≤j−c = 0, Q̄jP̃ke

−iψ
<j e

iψ
<jQ̄≤j−c = 0.

These mappings follow from (4.8.1), (4.8.3) for N̄∗k and Prop. 4.7.3 and writing Q̄jP̃ke
−iψ
<j =

Q̄jP̃ke
−iψ
<j Q̄[j−5,j+5].

Proof of Lemma 4.8.1

We follow the method from [31] based on Moser-type estimates. The more difficult case
is d = 4 and the argument can be simplified for d ≥ 5. In the proof we will need the following
lemmas.
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Lemma 4.8.4. Let 1 ≤ q ≤ p ≤ ∞ and k ≥ 0. Then for all j −O(1) ≤ k′ ≤ k we have

‖e±iψ
k
<j,±

k′ (t, x,D)P̄k‖LpL2→LqL2 . ε2( 1
p
− 1
q

)j22(j−k′) (4.8.7)

‖e±iψ
k
±

k′ (t, x,D)P̄k‖L2L2→L
10
7 L2
. ε2−

1
5
k′ (4.8.8)

By duality, the same bounds holds for the right quantization.

Remark 4.8.5. To motivate the proof, we note that applying the k′(> j) localization in the
power series

eiψ<j(t,x,ξ) = 1 + iψ<j(t, x, ξ) +O
(
ψ2
<j(t, x, ξ)

)
makes the linear term 1 + iψ vanish. For the higher order terms Hölder inequality applies
(in the form of decomposable lemma 4.5.6).

Proof. To prove (4.8.7), let Lk′ be a disposable multiplier in the (t, x)-frequencies such that

e
±iψk<j,±
k′ = 2−2k′Lk′∆t,xe

±iψk<j,± = 2−2k′Lk′(−
∣∣∂t,xψk<j,±∣∣2 ± i∆t,xψ

k
<j,±)e±iψ

k
<j,± .

We may dispose of Lk′ by translation invariance. Then (4.8.7) follows from (4.5.20).
To prove (4.8.8) we write

e
±iψk±
k′ = e

±iψk
<k′−C,±

k′ ± i
∫

[k′−C,k−C]

(
ψk±,le

±iψk<l,±
)
k′

dl

For the first term we use (4.8.7). For the second term, we have

‖ψk±,le
±iψk<l,±(t, x,D)‖

L2L2→L
10
7 L2
. ε2−

l
5

by Lemma 4.5.6, (4.5.20) and (4.7.4), from which (4.8.8) follows.

Lemma 4.8.6. For k ≥ 0, k ≥ k′ ≥ j − O(1), j − C ≤ l′ ≤ l ≤ k − C and for both
quantizations, we have:

‖Q̄j[(ψ
k
k′e
±iψk<j,±
<j )k′Q̄≺jGk]‖L2

t,x
2
j
2 . ε2

1
4

(j−k′)‖G‖L∞L2 (4.8.9)

‖Q̄j[(ψ
k
l ψ

k
l′e
±iψk<j,±
<j )k′Q̄≺jGk]‖L2

t,x
2
j
2 . ε22

1
12

(j−l)2
1
6

(j−l′)‖G‖L∞L2 . (4.8.10)

Proof. Step 1. By translation invariance we may discard the outer k′ localization. By Lemma
5.5.2 we deduce that in (4.8.9) the contribution of ψk,±k′,θ (which define ψkk′,± in (4.5.3)) is zero

unless θ & 2
1
2

(j−k′) and j ≥ k′ − 2k − C. For these terms, from (4.5.15) we get

2
j
2

∑
θ&2

1
2 (j−k′)

‖ψk,±k′,θ‖Dθk(L2L∞) . ε2
1
4

(j−k′)
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from which (4.8.9) follows by Lemma 4.5.6. When k = 0 no angular localization are needed.

Step 2. Now we prove (4.8.10). First we consider the case l′ + c ≤ l = k′ + O(1) and

define θ0 := 2
1
2

(j−l). By appropriately applying Lemma 5.5.2 we deduce that the terms that
contribute to (4.8.10) are ψkl ψ

k
l′,θ′ for θ′ & θ0 and ψkl,θψ

k
l′,θ′ for θ′ � θ0, θ & θ0. We use

(4.5.15) with q = 3 for the large angle terms and with q = 6 for the other term, obtaining∑
θ′&θ0

‖ψkl ψkl′,θ′eiψ‖L∞L2→L2
t,x

+
∑
θ′�θ0
θ&θ0

‖ψkl,θψkl′,θ′eiψ‖L∞L2→L2
t,x
. ε22−

j
2 2

1
12

(j−l)2
1
6

(j−l′) (4.8.11)

In the high-high case l = l′ + O(1) ≥ k′ the same argument applies with θ0 := 2
1
2

(j−k′)2k
′−l

and (4.8.11) also follows in this case.

Proof of Lemma 4.8.1. For brevity, we supress the k superscript and write ψ to denote ψk±.

Step 1. [The contribution of Q̄>j−cGk]
We use Lemma 2.2.4 and (4.8.8)

‖Q̄je
±iψ
k′ Q̄>j−cGk‖L2

t,x
. 2

j
5‖e±iψk′ Q̄>j−cGk‖L 10

7 L2
. ε2

j−k′
5 ‖Q̄>j−cGk‖L2

t,x
.

and the last norm is . 2−j/2‖G‖N̄∗k .

Step 2. [The contribution of Q̄≺jGk] Motivated by remark 4.8.5, by iterating the fundamental
theorem of calculus, we decompose the symbol

e±iψ(t, x, ξ) = T0 ± iT1 − T2 ∓ iT3

where T0 = eiψ<j and

T1 =

∫
[j−C,k−C]

ψle
iψ<j dl, T2 =

∫∫
j−C≤l′≤l≤k−C

ψlψl′e
iψ<j dl dl′

T3 =

∫∫∫
j−C≤l′′≤l′≤l≤k−C

ψlψl′ψl′′e
iψ<l′′ dl dl′ dl′′

The term T0 is estimated by (4.8.7):

‖(T0)k′(t, x,D)Q̄≤kGk‖L2
t,x
. ε2

−j
2 22(j−k′)‖Q̄≤kGk‖L∞L2

Next, we split T1 = T 1
1 + T 2

1 where

T 1
1 =

∫
[j−C,k−C]

ψle
iψ<j
<j dl, T 2

1 =

∫
[j−C,k−C]

ψle
iψ<j
>j−c/2 dl

By appying the k′ localization, the integral defining T 1
1 vanishes unless l = k′ + O(1) for

which we may apply (4.8.9). To estimate T 2
1 we use Lemma 4.5.6 with (4.5.20) for q = 6

and (4.8.7) with L∞L2 → L3L2.
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We turn to T2 and separate eiψ<j = e
iψ<j
<j + e

iψ<j
>j−c/2 as before. For the first component

we use (4.8.10). For the second, we use (4.5.20) with q = 6 for ψl, ψl′ and (4.8.7) with
L∞L2 → L6L2 obtaining:

2
1
2
j‖ψlψl′e

iψ<j
>j−c/2‖L∞L2→L2L2 . ε2

1
6

(j−l)2
1
6

(j−l′) for l > k′ − c

2
1
2
j‖ψlψl′e

iψ<j
k′ ‖L∞L2→L2L2 . ε2

1
6

(j−l)2
1
6

(j−l′)22(j−k′) for l < k′ − c.

For T3 we use (4.5.20) for q = 6. When l < k′ − C we use (4.8.7) with p = q = ∞ and it
remains to integrate

2
1
2
j‖ψlψl′ψl′′e

iψ<l′′
k′ ‖L∞L2→L2L2 . ε2

1
2
j2−

1
6
l2−

1
6
l′2−

1
6
l′′22(l′′−k′).

On l ≥ k′ − C it suffices to integrate

2
1
2
j‖ψlψl′ψl′′eiψ<l′′‖L∞L2→L2L2 . ε2

1
2
j2−

1
6
l2−

1
6
l′2−

1
6
l′′ .

4.9 Proof of the conjugation bound (4.2.12)

In general, for pseudodifferential operators one has the composition property a(x,D)b(x,D) =
c(x,D) where, in an asymptotic sense

c(x, ξ) ∼
∑
α

1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ).

In the present case this formula will be exact, as seen by differentiating under the integral
in (1.5.7).

By definition (1.5.7), the symbol of e
−iψk±
<k (t, x,D)�m is

e
−iψk±(t,x,ξ)

<k (∂2
t + |ξ|2 + 1). (4.9.1)

By differentiating (1.5.7), we see that the symbol of �me
−iψk±
<k (t, x,D) is

e
−iψk±
<k (∂2

t + |ξ|2 + 1) +�e
−iψk±
<k + 2

(
∂te
−iψk±
<k ∂t − i(∇e

−iψk±
<k ) · ξ

)
(4.9.2)

while the symbol of the operator 2i(A<k · ∇)e
−iψk±
<k (t, x,D) is

− 2e
−iψk±(t,x,ξ)

<k A<k(t, x) · ξ + 2i∇e−iψ
k
±(t,x,ξ)

<k · A<k(t, x) (4.9.3)

Now, the inequality (4.2.12) follows from the following proposition.
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Proposition 4.9.1. Denoting ψ = ψk±, we can decompose

e
−iψk±
<k (t, x,D)�m −�A<km e

−iψk±
<k (t, x,D) =

5∑
i=0

Fi(t, x,D)

where

F0(t, x, ξ) :=2
[
((±〈ξ〉 ∂t − ξ · ∇)ψ(t, x, ξ) + A<k(t, x) · ξ)e−iψ(t,x,ξ)

]
<k

F1(t, x, ξ) :=−�e−iψ(t,x,ξ)
<k

F2(t, x, ξ) :=2i∇e−iψ(t,x,ξ)
<k · A<k(t, x)

F3(t, x, ξ) :=2i−1∂te
−iψ(t,x,ξ)
<k (i∂t ± 〈ξ〉)

F4(t, x, ξ) :=2
[(
A<k(t, x)e−iψ(t,x,ξ)

)
<k
− A<k(t, x)e

−iψ(t,x,ξ)
<k

]
· ξ

and for all i = 0, 4 we have

‖Fi(t, x,D)uk‖N̄k . ε‖uk‖L∞H1 + ε2k‖(i∂t ± 〈D〉)uk‖N̄k (4.9.4)

Proof. The decomposition follows from (4.9.1)-(4.9.3) and basic manipulations. We proceed
to the proof of (4.9.4). We will make use of the bound

‖uk‖N̄∗k . ‖uk‖L∞L2 + ‖(i∂t ± 〈D〉)uk‖N̄k ,

for which we refer to the proof of Lemma 4.10.2. Recall that we identify N̄∗k ' L∞L2 ∩ X̄
1
2∞.

Step 1.[The main term F0] Recall the identity (4.1.2) and the definitions (4.5.1), (4.5.2). For
k = 0 the term F0(t, x, ξ) vanishes. Now assume k ≥ 1 and write

F0(t, x, ξ) = 2((
∑

k1<k−c

Πω
≤δ(k1−k)Ak1 · ξ)e−iψ(t,x,ξ))<k = 2F ′(t, x, ξ)<k

where

F ′(t, x, ξ) = a(t, x, ξ)e
−iψ(t,x,ξ)
<k , a(t, x, ξ) :=

∑
k1<k−c

Πω
≤δ(k1−k)Ak1(t, x) · ξ

By (4.5.24) we have

‖F ′(t, x,D)−a(t, x,D)e−iψ<k (t, x,D)‖L∞L2→L1L2 . ‖∇ξa‖D1
kL

2(L∞)‖∇xe
−iψ
<k (t, x,D)‖L∞(L2)→L2(L2)

By lemma 4.5.6, (4.5.21) and lemma 4.5.11 we have

‖(∇xψe
−iψ)<k(t, x,D)‖L∞(L2)→L2(L2) . ‖∇xψ

<k
± ‖Dk(L2L∞) . 2

k
2 ε
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Summing over (4.5.19), we get ‖∇ξa‖D1
kL

2(L∞) . 2
k
2 ε. Thus

F ′(t, x,D)− a(t, x,D)e−iψ<k (t, x,D) : N̄∗k → 2kεN̄k

and it remains to prove

a(t, x,D)e−iψ<k (t, x,D) : N̄∗k → 2kεN̄k

By Proposition 4.8.3, e−iψ<k (t, x,D) is bounded on N̄∗k .
Assume −k ≤ δ(k1 − k) (the case δ(k1 − k) ≤ −k is analogous). We decompose

a(t, x, ξ) =
∑

k1<k−c

∑
θ∈[2−k,2δ(k1−k)]

aθk1
(t, x, ξ),

a2−k

k1
(t, x, ξ) := Πω

≤2−kAk1(t, x) · ξ, aθk1
(t, x, ξ) := Πω

θAk1(t, x) · ξ (θ > 2−k),

and it remains to prove
‖aθk1

(t, x,D)vk‖N̄k . θ
1
2 ε2k‖vk‖N̄∗k .

for all θ = 2l, l ≥ −k. First, using (4.5.16) we have

‖aθk1
(t, x,D)Q̄>k1+2l−cvk‖L1L2 . ‖aθk1

‖DkL2L∞‖Q̄>k1+2l−cvk‖L2
t,x
. θ

1
2 ε2k‖vk‖N̄∗k

Then, denoting f(t, x) = aθk1
(t, x,D)Q̄<k1+2l−cvk we have

‖f‖L2
t,x
. ‖aθk1

‖DkL2L∞‖Q̄<k1+2l−cvk‖L∞L2 . 2
3
2
l2

k1
2 ε2k‖vk‖N̄∗k

For each ξ, the term Q̄j[Π
ω
θAk1(t, x)ξeixξQ̄<k1+2l−cv̂k(t, ξ)] is non-zero only for j = k1 + 2l +

O(1) (by Remark 5.5.3 of Lemma 5.5.2). Thus,

‖f‖N̄k ≤ ‖f‖X̄−1/2
1
.

∑
j=k1+2l+O(1)

‖Q̄jf‖L2
t,x

2−
j
2 . θ

1
2 ε2k‖vk‖N̄∗k

Step 2. [The terms F1 and F2] Since �t,xψ(t, x, ξ) = 0 we have

F1(t, x, ξ) =
[
(|∂tψ(t, x, ξ)|2 − |∇ψ(t, x, ξ)|2)e−iψ(t,x,ξ)

]
<k
,

F2(t, x, ξ) =2iAj<k(t, x)
(
∂jψ(t, x, ξ)e−iψ(t,x,ξ)

)
<k

By lemma 4.5.6 and (4.5.21) we have

(∂jψe
−iψ)(t, x,D) : L∞L2 → ε2

k
2L2L2

(|∂αψ|2 e−iψ)(t, x,D) : L∞L2 → ε22kL1L2
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By lemma 4.5.11 the same mappings hold for the < k localized symbols, which proves (4.9.4)
for F1, while for F2 we further apply Hölder’s inequality together with ‖A<k‖L2L∞ . 2k/2ε.

Step 3. [The term F3] The bound follows by using (4.8.4) to dispose of

2−kε−1∂te
−iψ
<k (t, x,D).

Step 4.[The term F4] Using Lemma 1.5.1 we write

F4(t, x, ξ) = 2−kξjL(∇t,xA
j
<k(t, x), e−iψ(t,x,ξ))

As in lemma 4.5.11, by translation-invariance it suffices to prove

2−k‖∇t,xA
j
<ke

−iψ(t, x,D)∂juk‖N̄k . ε2k‖e−iψ(t, x,D)uk‖N̄∗k . ε2k‖uk‖N̄∗k

which follows from (6.1.32) (observe that the H∗k′ term is zero when �Aj = 0 and in this
case the N̄∗k′ norm of φ suffices. One uses the derivative on Aj to do the k′ summation).

4.10 Proof of the S̄k bound (4.2.11)

We begin by stating a simple lemma that provides bounds for localized symbols.

Lemma 4.10.1. Let X be a translation-invariant space of functions defined on Rd+1. Let
P be a bounded Fourier multiplier. Suppose we have the bounded map

e−iψ(t, x,D)e±it〈D〉P : L2
x → X. (4.10.1)

Then, uniformly in h, we also have the bounded map for localized symbols:

e−iψ<h (t, x,D)e±it〈D〉P : L2
x → X. (4.10.2)

Proof. Recalling (4.1.4), for u0 ∈ L2
x we write

e−iψ<h (t, x,D)e±it〈D〉Pu0 =

∫
Rd+1

mh(s, y)e−iψ(t+ s, x+ y,D)e±i(t+s)〈D〉Pus,y ds dy

where ûs,y(ξ) = e∓is〈ξ〉e−iyξû0(ξ). By Minkowski’s inequality, translation invariance of X,
(4.10.1) and the bound ‖us,y‖L2

x
≤ ‖u0‖L2

x
we obtain (4.10.2).

We will apply this lemma for X taking the various norms that define S̄k.
The next lemma will be used to reduce estimates to the case of free waves.
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Lemma 4.10.2. Let k ≥ 0 and X be a space of functions on R1+n with Fourier support in
{〈ξ〉 ' 2k} (or a subset of it, such as a 2k

′ × (2k
′+l′)3 box) such that

‖eitσf‖X . ‖f‖X , ∀σ ∈ R

‖1t>sf‖X . ‖f‖X , ∀s ∈ R

‖e−iψ<h (t, x,D)e±it〈D〉u0‖X . C1‖u0‖L2 . (4.10.3)

hold for all f, u0 and both signs ±. Then, we have

2k‖e−iψ<h (t, x,D)u‖X . C1(‖u[0]‖H1×L2 + ‖�mu‖N̄k) (4.10.4)

If we only assume that (4.10.3) holds for one of the signs ±, then (4.10.4) still holds for
functions u with Fourier support in {±τ ≥ 0}.

Proof. We decompose �mu = F 1 + F 2 such that ‖�mu‖N̄k ' ‖F
1‖L1L2 + ‖F 2‖

X̄
− 1

2
1

. By

(4.10.3) we can subtract free solutions from u and so we may assume that u[0] = (0, 0).
We may also assume that F 2 is modulation-localized to |τ − 〈ξ〉| ' 2j, τ ≥ 0. We define
v = 1

�m
F 2 and write u = u1 + u2 where u1 is the Duhamel term

u1(t) =

∫
R

sin((t− s) 〈D〉)
〈D〉

1t>sF
1(s) ds−

∑
±

±e±it〈D〉
∫ 0

−∞
e∓is〈D〉

F 1(s)

2i 〈D〉
ds

and u2 = v − eit〈D〉w1 − e−it〈D〉w2

so that �mu2 = 0 and w1, w2 are chosen such that u2[0] = (0, 0).
For the second part of u1 we use (4.10.3) together with

‖
∫ 0

−∞
e∓is〈D〉

F 1(s)

2i 〈D〉
ds‖L2 ≤

∫ 0

−∞
‖e∓is〈D〉 F

1(s)

2i 〈D〉
‖L2 ds . 2−k‖F 1(s)‖L1L2 .

For the first part of u1 we again write sin((t− s) 〈D〉) in terms of e±i(t−s)〈D〉, and

‖e−iψk,±<h

∫
R

e±i(t−s)〈D〉

〈D〉
1t>sF

1(s) ds‖X ≤
∫
R
‖1t>se

−iψk,±
<h e±i(t−s)〈D〉

F 1(s)

〈D〉
‖X ds

. 2−kC1

∫
R
‖e∓is〈D〉F 1(s)‖L2 ds ≤ 2−kC1‖F 1(s)‖L1L2 .

Now we turn to u2. For w1, w2 we use (4.10.3) and, using Lemma (2.2.4)

‖wi‖L2 . ‖(v, ∂t
〈D〉

v)‖L∞L2 . 2
j
2‖( 1

�m
,
i∂t − 〈D〉
〈D〉�m

)F 2‖L2
t,x
. 2

−j
2 2−k‖F 2‖L2

t,x
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Next, we write τ = ρ+ 〈ξ〉 in the Fourier inversion formula

v(t) =

∫
eitτ+ixξFv(τ, ξ) dξ dτ =

∫
|ρ|'2j

eitρeit〈D〉φρ dρ

for φ̂ρ(ξ) = Fv(ρ+ 〈ξ〉 , ξ). Then

‖e−iψk,±<h v‖X .
∫
|ρ|'2j

‖eitρe−iψk,±<h (t, x,D)eit〈D〉φρ‖X dρ . C1

∫
|ρ|'2j

‖φρ‖L2
x

dρ

By Cauchy-Schwarz we bound this by 2
j
2C1‖v‖L2

t,x
. 2

−j
2 2−kC1‖F 2‖L2

t,x
.

If we only assume that (4.10.3) holds for one of the signs ±, then we have the following
variant

‖e−iψ<h (t, x,D)u‖X . C1(‖u(0)‖L2 + ‖(i∂t ± 〈D〉)u‖N̄k)

Now the Duhamel term is expressed in terms of one of the e±it〈D〉. For functions with Fourier
support in {±τ ≥ 0} we have ‖(i∂t ± 〈D〉)u‖Nk ' 2−k‖�mu‖Nk .

Now we are ready to begin the proof of (4.2.11). We will implicitly use Prop. 2.2.9.
For brevity, we drop the k and ± subscripts and denote ψ = ψk±.

The Strichartz norms

By Lemma 4.10.2, the bound for S̄Strk reduces to

Lemma 4.10.3. For all k ≥ 0 we have

‖e−iψ<k (t, x,D)e±it〈D〉vk‖S̄Strk
. ‖vk‖L2

x

Proof. Using Lemma 4.10.1 this bound follows from

e−iψ(t, x,D)e±it〈D〉 : P̄kL
2
x → S̄Strk . (4.10.5)

We use the result of Keel-Tao on Strichartz estimates from [23]. As noticed in that paper
(see sec. 6 and the end of sec. 5; see also [50, sec. 5], the L2Lr estimate also holds with Lr

replaced by the Lorentz space Lr,2. We need this only when d = 4 for the L2L4,2 norm in
(2.1.4).

By change of variable, we rescale at frequency 20:

U(t) := e−iψ(·/2k,·/2k,2k·)(t, x,D)e±it〈D〉k

The L2
x → L2

x bound follows from Prop. 4.7.1. The L1 → L∞ bound for U(t)U(s)∗

follows from (4.6.3) for SStr,Wk and from (4.6.4) for the other S̄Strk norms in (2.1.4) when
d = 4.
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The X̄
1
2∞ norms.

For any j ∈ Z we show

2
1
2
j‖Q̄je

−iψ
<k (t, x,D)φk‖L2

t,x
. ‖φk‖L∞(H1×L2) + ‖�mφk‖N̄k . (4.10.6)

We separate

e−iψ<k = e−iψ<min(j,k) +
∑

k′+C∈[j,k]

e−iψk′

For the first term we write

Q̄je
−iψ
<min(j,k)φk = Q̄je

−iψ
<min(j,k)Q̄[j−1,j+1]φk

Then we discard Q̄je
−iψ
<min(j,k) and the estimate becomes trivial. The second term follows by

summing over (4.8.1).

The Sbox(k′) norms in (2.1.5), k = 0

For k′ < 0 we prove

2−σk
′
(
∑
Ck′

‖Q̄±<k′PCk′e
−iψ0

±
<0 (t, x,D)φ‖2

L2L∞)1/2 . ‖(φ, ∂tφ)(0)‖L2
x

+ ‖�mφ‖N̄0

We may assume φ is Fourier supported in ±τ ≥ 0. We split

e
−iψ0

±
<0 = (e

−iψ0
±

<0 − e−iψ
0
±

<k′ ) + e
−iψ0

±
<k′

The estimate for the first term follows from Prop. 2.2.5 and Cor. 4.8.2. For the second term
we write

PCk′e
−iψ0

±
<k′ = PCk′e

−iψ0
±

<k′ P̃Ck′ .

Then we can discard Q̄±<k′PCk′ and prove

2−σk
′‖e−iψ

0
±

<k′ (t, x,D)P̃Ck′φ‖L2L∞ . ‖P̃Ck′ (φ, ∂tφ)(0)‖L2
x

+ ‖P̃Ck′�mφ‖N̄0

By Lemma 4.10.2, this reduces to

2−σk
′
e
−iψ0

±
<k′ (t, x,D)e±it〈D〉P̃Ck′ P̄0 : L2

x → L2L∞

which follows from Corollary 4.6.4 using Lemma 4.10.1.
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The square summed S̄ω±k (l) norms, k ≥ 1, first part

For any fixed l < 0 we split

e−iψ<k = (e−iψ<k − e
−iψ
<k+2l) + e−iψ<k+2l.

Here we treat the first term, while the second one is considered below. The bound

2k(
∑
ω

‖P ω
l Q̄

±
<k+2l(e

−iψ
<k − e

−iψ
<k+2l)φ‖

2
S̄ω,±k (l)

)
1
2 . ‖∇t,xφ(0)‖L2

x
+ ‖�mφ‖N̄k

follows from Prop. 2.2.5 and Cor. 4.8.2.

The square-summed L2L∞ and S̄Strk norms, k ≥ 1

Let l < 0. It remains to consider e−iψ<k+2l. We fix ω and the estimate we need boils down
to square-summing the following over ω, after taking supremum over k′ ≤ k, l′ < 0, for
k + 2l ≤ k′ + l′ ≤ k + l

2−
k
2
− d−2

2
k′− d−3

2
l′(

∑
C=Ck′ (l′)

‖PCP ω
l Q̄

±
<k+2le

−iψ
<k+2lφ‖

2
L2L∞)

1
2 . ‖P̃ ω

l ∇t,xφ(0)‖L2
x

+ ‖P̃ ω
l �mφ‖N̄k

Fix C = Ck′(l′). Since k + 2l ≤ k′ + l′, one can write

PCe
−iψ
<k+2l(t, x,D)φ = PCe

−iψ
<k+2l(t, x,D)P̃Cφ. (4.10.7)

Then one can can discard PCP
ω
l Q̄<k+2l and prove

2−
k
2
− d−2

2
k′− d−3

2
l′‖e−iψ<k+2l(t, x,D)P̃Cφ‖L2L∞ . ‖P̃C∇t,xφ(0)‖L2

x
+ ‖P̃C�mφ‖N̄k

By Lemma 4.10.2, this reduces to

e−iψ<k+2l(t, x,D)e±it〈D〉P̃C : L2
x → 2

k
2

+ d−2
2
k′+ d−3

2
l′L2L∞ (4.10.8)

which follows by Lemma 4.10.1 from Corollary 4.6.4.
The same argument applies to S̄Strk except that one uses (4.10.5) and Lemma 4.10.1

instead of (4.10.8).

The PW norms (d = 4, k ≥ 1)

We fix l,−k ≤ l′, k′, ω, C = Ck′(l′) as before and use (4.10.7). We discard PCP
ω
l Q̄

±
<k+2l and

prove

2−
3
2

(k′+l′)+k‖e−iψ<k+2l(t, x,D)Q̄±<k+2lP̃Cφ‖PW±C . ‖P̃C∇t,xφ(0)‖L2
x

+ ‖P̃C�mφ‖N̄k
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Let’s assume ± = +. By Lemma 4.10.2, we reduce to

‖e−iψ<k+2l(t, x,D)eit〈D〉P̃Cuk‖PW±C . 2
3
2

(k′+l′)‖P̃Cuk‖L2
x

(4.10.9)

From Corollary 4.6.6 and Lemma 4.10.1 we deduce that

2−
3
2

(k′−k)e−iψ<k+2l(t, x,D)eit〈D〉PkPCi
k′ (−k) : L2

x → L2
tωi,λ

L∞xωi,λ

holds for Ci
k′(−k) ⊂ C where ωi is the direction of the center of Ci

k′(−k).
We can cover C = Ck′(l′) by roughly 23(l′+k) boxes of size 2k

′ × (2k
′−k)3:

C = ∪O(23(l′+k))
i=1 Ci

k′(−k).

Notice that λ can be chosen the same for all i. By the definition of PW±
C (2.1.8)

LHS (4.10.9) ≤
∑
i

‖e−iψ<k+2l(t, x,D)eit〈D〉PCi
k′ (−k)uk‖L2

tωi,λ
L∞xωi,λ

.

. 2
3
2

(k′−k)
∑
i

‖P̃Ci
k′ (−k)uk‖L2

x
. 2

3
2

(k′−k)2
3
2

(l′+k)(
∑
i

‖P̃Ci
k′ (−k)uk‖2

L2
x
)

1
2 . 2

3
2

(k′+l′)‖P̃Cuk‖L2
x

where we have used Cauchy-Schwarz and orthogonality. This proves (4.10.9).

The NE norms (d = 4, k ≥ 1)

We fix l,−k ≤ l′, k′, C = Ck′(l′) as before and use (4.10.7). We prove

2k‖PCP ω
l Q̄

±
<k+2le

−iψ
<k+2lQ̄

±
<k+2lP̃Cφ‖NE±C . ‖P̃C∇t,xφ(0)‖L2

x
+ ‖P̃C�mφ‖N̄k

Now we split again e−iψ<k+2l = (e−iψ<k+2l − e
−iψ
<k ) + e−iψ<k . The first term

PCP
ω
l Q̄

±
<k+2l(e

−iψ
<k+2l − e

−iψ
<k )Q̄±<k+2lP̃Cφ

is estimated by appropriately applying Prop. 2.2.5 and Cor. 4.8.2.
For the second term we may discard PCP

ω
l Q̄

±
<k+2l and prove

2k‖e−iψ<k Q̄
±
<k+2lP̃Cφ‖NE±C . ‖P̃C∇t,xφ(0)‖L2

x
+ ‖P̃C�mφ‖N̄k .

This is reduced by Lemma 4.10.2 to

e−iψ<k (t, x,D)e±it〈D〉P̃C : L2
x → NE±C ,

which follows from Corollary 4.6.10.
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Chapter 5

The core null and bilinear forms

The rest of the thesis is concerned with the proofs of the estimates from Section 1.8. This
chapter is devoted to preparing some preliminaries regarding translation-invariant bilinear
forms that play a role in those proofs. We discuss the classical N0, Nij and spinorial null
forms, how to adaptN0 to the Klein-Gordon equation, the geometry of frequency interactions
as well as some refinements of Hölder’s inequality.

Let L be a bilinear operator on Rd or R1+d with symbol m(ξ1, ξ2), respectively m(Ξ1,Ξ2)
(which is possibly a distribution), i.e.,

L(f1, f2)(x) =

∫
eix·(ξ1+ξ2)m(ξ1, ξ2)f̂1(ξ1)f̂2(ξ2)

dξ1 dξ2

(2π)2d
.

The translation-invariant operator

L(f, g)(x) =

∫
K(x− y1, x− y2)f(y1)g(y2) dy1dy2

can be written in this form by defining

m(ξ1, ξ2) = K̂(ξ1, ξ2).

Conversely, L can be written in the form (1.5), if we ensure that K ∈ L1 or that it has
bounded mass. Some important examples will be provided below.

To understand L(f1, f2), we may consider the ‘dualized’ expression∫∫
f0L(f1, f2) dtdx =

∫
{Ξ0+Ξ1+Ξ2=0}

m(Ξ1,Ξ2)f̂0(Ξ0)f̂1(Ξ1)f̂2(Ξ2)
dΞ1 dΞ2

(2π)2(d+1)
. (5.0.1)
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5.1 The M and M0 forms

The M form

During the proof of the trilinear estimate, we will need to consider terms like

Pk′QjM(Q̄<jφ
1
k1
, Q̄<jφ

2
k2

)

where
M(φ1, φ2) := ∂α(φ1 · ∂αφ2) (5.1.1)

is a null-form adapted to the wave equation, while φ1
k1
, φ2

k2
are assumed to be high-frequency

Klein-Gordon waves of low Q̄-modulation, with low frequency output.
To obtain effective bounds, we need to split

M = R±0 +M0 −N0 (5.1.2)

where, denoting Ξi = (τi, ξi), the symbols of M,R±0 ,M0,N0 are

m(Ξ1,Ξ2) = (τ1 + τ2)τ2 − (ξ1 + ξ2) · ξ2, (5.1.3)

and, respectively,

r±0 (Ξ1,Ξ2) := τ1(τ2 ± 〈ξ2〉) + (〈ξ1〉 ∓ τ1) 〈ξ2〉+ (τ 2
2 − 〈ξ2〉2), (5.1.4)

m0(Ξ1,Ξ2) := 1 + |ξ1| |ξ2| − 〈ξ1〉 〈ξ2〉 , (5.1.5)

n0(Ξ1,Ξ2) := |ξ1| |ξ2|+ ξ1 · ξ2. (5.1.6)

The M0 form

Let M0(φ1, φ2) be the bilinear form with symbol

m0(ξ1, ξ2) = 1 + |ξ1| |ξ2| − 〈ξ1〉 〈ξ2〉 .

Notice that this multiplier is a radial function in ξ1 and ξ2.
The following two statements are aimed at obtaining an exponential gain for M0 in the

high × high → low frequency interactions.

Lemma 5.1.1. The following bounds hold:

|m0(ξ1, ξ2)| ≤|ξ1 + ξ2|2

〈ξ1〉 〈ξ2〉

|∂ξim0(ξ1, ξ2)| ≤|ξ1 + ξ2|
〈ξi〉

( 1

〈ξ1〉
+

1

〈ξ2〉

)
, i = 1, 2∣∣∂αξim0(ξ1, ξ2)

∣∣ .〈ξ1〉 〈ξ2〉
〈ξi〉|α|+2

, |α| ≥ 2, i = 1, 2.
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We return to the proof of this lemma after the following proposition which provides an
exponential gain needed for estimate (6.2.15).

Proposition 5.1.2. Let k ≥ 0, k′ ≤ k −C and 1 ≤ p, q1, q2 ≤ ∞ with p−1 = q−1
1 + q−1

2 . Let
C1, C2 be boxes of size ' (2k

′
)d located to Ci ⊂ {〈ξi〉 ' 2k} so that

C1 + C2 ⊂ {|ξ| ≤ 2k
′+2}

Then, for all functions φ1, φ2 with Fourier support in C1, C2 we have

‖M0(φ1, φ2)‖Lp . 22(k′−k)‖φ1‖Lq1‖φ2‖Lq2 . (5.1.7)

Proof. We expand m0(ξ1, ξ2) as a rapidly decreasing sum of tensor products

m0(ξ1, ξ2) =
∑

j,k∈Zd
cj,k a

1
j (ξ1)a2

k(ξ2) for (ξ1, ξ2) ∈ C1 × C2 (5.1.8)

where, denoting µ = 22(k′−k), for any n ≥ 0, cj,k obeys

|cj,k| .n µ(1 + |j|+ |k|)−n, (5.1.9)

and for some universal constant n0 > 0, the aij satisfy

‖aij(D)‖Lq→Lq . (1 + |j|)n0 , i = 1, 2. (5.1.10)

Assuming (5.1.8)–(5.1.10), the desired estimate (5.1.7) follows immediately. Indeed,
(5.1.8) implies that

M0(φ1, φ2) =
∑

j,k∈Zd
cj,k · a1

j (D)φ1 · a2
k(D)φ2,

so (5.1.7) follows by applying Hölder’s inequality and (5.1.10), then using (5.1.9) to sum up
in j,k ∈ Zd.

Let the boxes C̃1, C̃2 be enlargements of C1, C2 of size ' (2k
′
)d and let χ1, χ2 be bump

functions adapted to these sets which are equal to 1 on C1, respectively C2.
Then for (ξ1, ξ2) ∈ C1 × C2, we have m0(ξ1, ξ2) = m0(ξ1, ξ2)χ1(ξ1)χ2(ξ2). Performing a

Fourier series expansion of m0(ξ1, ξ2)χ1(ξ1)χ2(ξ2) by viewing C̃1×C̃2 as a torus, we may write

m0(ξ1, ξ2) =
∑

j,k∈Zd
cj,k e

2πij·ξ′1/2k
′+c
e2πik·ξ′2/2k

′+c
for (ξ1, ξ2) ∈ C1 × C2. (5.1.11)

for ξ′i = ξi − ξ0
i where ξ0

i is the center of Ci. Defining

aij(ξ) = χi(ξi)e
2πij·ξ′1/2k

′+c
, i = 1, 2,

we obtain the desired decomposition (5.1.8) from (5.1.11).
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To prove (5.1.9), we use the Fourier inversion formula

cj,k =
1

Vol (C̃1 × C̃2)

∫
C̃1×C̃2

m0(ξ0
1 + ξ′1, ξ

0
2 + ξ′2)χ1χ2e

−2πi(j·ξ′1+k·ξ′2)/2k
′+c

dξ′1 dξ′2.

By Lemma 5.1.1, for (ξ1, ξ2) ∈ C1 × C2, since |ξ1 + ξ2| . 2k
′
, for any |α| ≥ 0 we have∣∣∣(2k′∂ξi)αm0(ξ1, ξ2)

∣∣∣ . µ, i = 1, 2

Thus, integrating by parts in ξ′1 [resp. in ξ′2], we obtain

|cj,k| .n µ(1 + |j|)−n, |cj,k| .n µ(1 + |k|)−n, n ≥ 0.

These bounds imply (5.1.9). Next, we have∣∣∣(2k′∂ξi)αaij(ξi)∣∣∣ . (1 + |j|)|α|, |α| ≥ 0, i = 1, 2

This implies that the convolution kernel of aij(Di) satisfies ‖ǎij‖L1 . (1+ |j|)n0 for n0 = d+1,
which gives (5.1.10)

Proof of Lemma 5.1.1. The bounds follow from elementary computations. Indeed,

−m0(ξ1, ξ2) =
(|ξ1| − |ξ2|)2

1 + |ξ1| |ξ2|+ 〈ξ1〉 〈ξ2〉
≤ |ξ1 + ξ2|2

〈ξ1〉 〈ξ2〉
.

Next, wlog assume i = 1. Since m0 is radial in ξ1 it suffices to compute

∂|ξ1|m0(ξ1, ξ2) =
1

〈ξ1〉
(
〈ξ1〉 |ξ2| − 〈ξ2〉 |ξ1|

)
=

1

〈ξ1〉
|ξ2|2 − |ξ1|2

〈ξ1〉 |ξ2|+ 〈ξ2〉 |ξ1|

which gives the desires bound.
Finally, the estimate for higher derivatives follows from |∂nr 〈r〉| . 〈r〉

−n−1 for n ≥ 2,
which is straightforward to prove by induction.

5.2 The N0 and Ñ0 forms

We consider the bilinear forms Ñ0(φ1, φ2) on Rd+1 with symbol

ñ(Ξ1,Ξ2) =
1

|(τ1, ξ1)|
1

|(τ2, ξ2)|
(τ1τ2 − ξ1 · ξ2) (5.2.1)

and N0(φ1, φ2) on Rd with symbol

n0(ξ1, ξ2) = |ξ1| |ξ2|+ ξ1 · ξ2. (5.2.2)
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Proposition 5.2.1. Let k1, k2 ∈ Z, l′ ≤ 0, and signs ±1,±2. Let κ1, κ2 be spherical caps
of angle ' 2l

′
centered at ω1, ω2 such that ∠(±1ω1,±2ω2) . 2l

′
. Let X1, X2 be translation-

invariant spaces and L be a translation-invariant bilinear operator. Suppose that

‖L(φ1, φ2)‖X . CS1,S2‖φ1‖X1‖φ2‖X2

holds for all φ1, φ2 which are Fourier-supported, respectively, in some subsets

Si ⊂ Ei := {|ξi| ' 2ki , |τi ∓i |ξi|| . 2ki+2l′ ,
ξi
|ξi|
∈ κi}, i = 1, 2.

Then one also has

‖L(∂αφ
1, ∂αφ2)‖X . 22l′CS1,S2‖∇t,xφ

1‖X1‖∇t,xφ
2‖X2 (5.2.3)

for all such φ1, φ2 .

Corollary 5.2.2. Under the conditions from Proposition 2.1.1, for j ≤ min(k, k2) + 2l′−C
one has

‖∂αPCQ̄±1
<jφk · ∂αPC′Q̄

±2
<jϕk2‖L2

t,x
. 2l

′‖PCQ̄±1
<j∇φk‖NE±1

C
‖PC′Q̄±2

<j∇ϕk2‖PW±2
C′

Remark 5.2.3. One may of course formulate analogues of Prop. 5.2.1 also for multilinear
forms, such as the trilinear expressions L(φ1, ∂αφ

2, ∂αφ3) that occur in the proofs of (6.2.5),
(6.2.6), (6.2.7). Checking that the same argument applies for them is straightforward and is
left to the reader.

Proof of Prop. 5.2.1. Step 1. Let `(Ξ1,Ξ2) be the multiplier symbol of L. In (5.2.3) we have
the operator with symbol `(Ξ1,Ξ2)ñ(Ξ1,Ξ2) applied to |Dt,x|φ1, |Dt,x|φ2.

The idea is to perform a separation of variables in the form

ñ(Ξ1,Ξ2) =
∑

j,k∈Zd
cj,k aj(Ξ

1)bk(Ξ2) for (Ξ1,Ξ2) ∈ E1 × E2 (5.2.4)

where for each n ≥ 0 the coefficients obey

|cj,k| .n 22l′(1 + |j|+ |k|)−n, (5.2.5)

and for some universal constant n0 > 0, the operators aj and bk satisfy

‖aj(Dt,x)‖X1→X1 . (1 + |j|)n0 , ‖bk(Dt,x)‖X2→X2 . (1 + |k|)n0 , (5.2.6)

From these, (5.2.3) follows immediately.
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We do a change of variables such that τωi is the (essentially null vector) radial coordinate,
τω
⊥

i is orthogonal to it, and ξ′i are angular type coordinates in the ξ hyperplane, so that |ξ′i| '
2kiθi where θi are the angles between ξi and the center of κi. We denote Ξ̃i = (τωi , τ

ω⊥
i , ξ′i).

Denote by Ẽi an enlargement of Ei, chosen be a rectangular region of size ' 2ki ×
2ki+2l′×(2ki+l

′
)d−1 (consistently with the coordinates (τωi , τ

ω⊥
i , ξ′i)). Let χi be a bump function

adapted to Ẽi, which is equal to 1 on Ei.

Step 2. We claim the following bounds for (Ξ1,Ξ2) ∈ E1 × E2:∣∣ñ(Ξ1,Ξ2)
∣∣ . 22l′ (5.2.7)∣∣∂ξ′iñ(Ξ1,Ξ2)
∣∣ . 2−ki2l

′
, i = 1, 2; (5.2.8)∣∣∂αΞiñ(Ξ1,Ξ2)

∣∣ . ∣∣Ξi
∣∣−|α| , i = 1, 2. (5.2.9)

Recall (5.2.1). We write

τ1τ2 − ξ1 · ξ2 = (τ1 ∓1 |ξ1|)τ2 ±1 |ξ1| (τ2 ∓2 |ξ2|)±1 ±2 |ξ1| |ξ2|
(
1− cos∠(±1ξ1,±2ξ2)

)
which clearly implies (5.2.7). It is easy to see that∣∣∂ξ′iñ(Ξ1,Ξ2)

∣∣ . 2−ki sin∠(ξ1, ξ2)

which implies (5.2.8), while (5.2.9) follows from the fact that ñ is homogeneous in both
Ξ1,Ξ2.

Step 3. Performing a Fourier series expansion of ñ(Ξ̃1, Ξ̃2)χ1(Ξ̃1)χ2(Ξ̃2) by viewing Ẽ1 × Ẽ2

as a torus, we may write

ñ(Ξ̃1, Ξ̃2) =
∑

j,k∈Zd
cj,k e

2πij·D1Ξ̃1e2πik·D2Ξ̃2 for (Ξ̃1, Ξ̃2) ∈ E1 × E2, (5.2.10)

where D1, D2 are diagonal matrices of the form

Di = diag (O(2−ki), O(2−ki−2l′), O(2−ki−l
′
), . . . , O(2−ki−l

′
)). (5.2.11)

Defining

aj(Ξ1) = (χ1(Ξ̃2)e2πij·D1Ξ̃1)(Ξ1), bk(Ξ2) = (χ2(Ξ̃2)e2πik·D2Ξ̃2)(Ξ2),

we obtain the desired decomposition (5.2.4) from (5.2.10).
To prove (5.2.5), by the Fourier inversion formula

cj,k =
1

Vol(Ẽ1 × Ẽ2)

∫
Ẽ1×Ẽ2

n(Ξ̃1, Ξ̃2)χ1(Ξ̃1)χ2(Ξ̃2)e−2πij·D1Ξ̃1e−2πik·D2Ξ̃2 dΞ̃1 dΞ̃2.

Integrating by parts w.r.t. to τωi by the homogeneity of ñ and (5.2.7) we obtain

|cj,k| .n 22l′(1 + |j1|)−n [resp. |cj,k| .n 22l′(1 + |k1|)−n],
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for any n ≥ 0. On the other hand, for any j = 2, . . . , d+ 1, integration by parts in τω
⊥

i or in
ξ′i and using (5.2.7)-(5.2.9) yields

|cj,k| .n 22l′ |jj|−n [resp. |cj,k| .n 22l′ |kj|−n].

The preceding bounds imply (5.2.5) as desired.
Finally, we need to establish (5.2.6). We will describe the case of aj(D). Consider the

differential operators
Dω1 = (2k1∂τωi , 2

k1+2l′∂
τω
⊥

i
, 2k1+l′∂ξ′1)

For any multi-index α, observe that

|Dα
ω1

(χ1(Ξ̃1)e2πij·D1Ξ̃1)| .α (1 + |j|)|α|.

From this bound, it is straightforward to check that the convolution kernel of aj(D) obeys
‖ǎj‖L1 . (1 + |j|)n0 for some universal constant n0, which implies the bound (5.2.6) for
aj(D).

Proof of Corollary 5.2.2. The corollary follows from Prop. 5.2.1 and Prop. 2.1.1. Indeed,
with k = k1, k2 = k2 we take CS1,S2 = 2−l

′
with

S1 = {(τ1, ξ1) | ξ1 ∈ C, |ξ1| ' 2k, |τ1 ∓1 〈ξ1〉| . 2j}

and S2 defined analogously. We check that Si ⊂ Ei. The condition (2.1.9) insures that we
can define κ1, κ2 appropriately. It remains to verify

|τi ∓i |ξi|| ≤ |τi ∓i 〈ξi〉|+ 〈ξi〉 − |ξi| . 2j + 2−ki . 2ki+2l′

by the condition on j and (2.1.9).

If we replace τi by ± |ξi| in (5.2.1) we remove the time dependence in Prop. 5.2.1 and may
formulate a spatial analogue for the bilinear form defined by |ξ1| |ξ2| ± ξ1 · ξ2. We consider
the + case for N0(φ1, φ2) in (5.2.2), which will be useful for high × high → low frequency
interactions.

Proposition 5.2.4. Let k ∈ Z, l ≤ 0 and 1 ≤ p, q1, q2 ≤ ∞ with p−1 = q−1
1 + q−1

2 . Let κ1, κ2

be spherical caps of angle ' 2l such that ∠(κ1,−κ2) . 2l.
Then, for all functions φ1, φ2 with Fourier support, respectively, in {|ξi| ' 2k, ξi/ |ξi| ∈

κi}, i = 1, 2, we have
‖N0(φ1, φ2)‖Lp . 22l+2k‖φ1‖Lq1‖φ2‖Lq2 .

Proof. The proof is very similar to the proof of Prop. 5.2.1 and is omitted. The basic

difference is that here one performs the Fourier series expansion on a
(
2k × (2k+l)d−1

)2
-sized

region in Rd
ξ × Rd

ξ instead of Rd+1
τ,ξ × Rd+1

τ,ξ .



CHAPTER 5. THE CORE NULL AND BILINEAR FORMS 116

5.3 Abstract null forms

To unify the treatment of various null forms that arise in MKG and MD, we consider the
following proposition.

Proposition 5.3.1. Let N be a bilinear form with symbol m(ξ, η) assumed to be homogeneous
of degree 0 in ξ, η and to obey

|m(ξ, η)| ≤ A |∠(ξ, η)| .

Let ω1, ω2 ⊂ Sd−1 be angular caps of radius |ri| ≤ 2−10, i = 1, 2 and define θ := max{∠(|ω1, ω2)| , r1, r2}.
Let 1 ≤ p, q1, q2 ≤ ∞ be such that p−1 = q−1

1 + q−1
2 . Let the functions f1, f2 be defined on Rd

with Fourier support in

{|ξ| ' 2ki ,
ξ

|ξ|
∈ ωi}, i = 1, 2.

Then we have
‖N(f1, f2)‖Lp . θ‖f1‖Lq1‖f2‖Lq2 . (5.3.1)

Remark 5.3.2. Under the assumptions of Prop. 5.3.1 we have the following bounds:

|Sn1
ξ S

n2
η m(ξ, η)| ≤ An1,n2|∠(ξ, η)| (5.3.2)

|∂α1
ξ ∂

α2
η m(ξ, η)| ≤ Aα1,α2|ξ|−|α1||η|−|α2| (5.3.3)

where Sξ = ξ · ∂ξ and Sη = η · ∂η. Under these conditions, we shall call N an abstract null
form.

Proof. The idea of the proof is to perform a separation of variables to write the symbol
m(ξ, η) of N in the form

m(ξ, η) =
∑

j,k∈Zd
cj,k aj(ξ)bk(η) for (ξ, η) ∈ E1 × E2 (5.3.4)

where for each integer n ≥ 0 the coefficient cj,k obeys

|cj,k| .n θ(1 + |j|+ |k|)−n, (5.3.5)

and for some universal constant n0 > 0, the quantizations of the symbols aj and bk satisfy

‖aj(D)‖Lq→Lq . (1 + |j|)n0 , ‖bk(D)‖Lq→Lq . (1 + |k|)n0 , (5.3.6)

for every 1 ≤ q ≤ ∞.
Assuming (5.3.4)–(5.3.6), the desired estimate (5.3.1) follows immediately. Indeed, (5.3.4)

implies that

N(f1, f2) =
∑

j,k∈Zd
cj,k · aj(D)f1 · bk(D)f2,
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so (5.3.1) follows by applying Hölder’s inequality and (5.3.6), then using (5.3.5) to sum up
in j,k ∈ Zd.

Without loss of generality, we may assume that k1 ≥ k2 and that ω1, ω2 are angular caps
of an equal diameter, denoted by r. Moreover, in view of the scaling invariance of the bounds
(5.3.2) and (5.3.3), we may set k1 = 0. Let Êj be an enlargement of Ej (j = 1, 2) with a
fixed angular dimension and let a(ξ), b(η) be bump function adapted to these sets, which are
equal to 1 on E1, respectively E2, so that f̂1 = af̂1 and f̂2 = bf̂2. Then

N(f1, f2) = Nm′(f1, f2),

where Nm′ is the bilinear operator with symbol m′(ξ, η) = a(ξ)b(η)m(ξ, η).
The first step is to make an invertible change of variables ξ 7→ ξ̃ = ξ̃(ξ), so that Sξ = ξ̃1∂ξ̃1

and the Jacobian and its derivatives obey appropriate bounds of all order for ξ ∈ Ê1. We
also need to perform a similar change of variables η 7→ η̃(η) for η ∈ Ê2. Essentially, what we
need is a polar coordinate system with the radial variable as the first component.

One concrete way to proceed is as follows. Denote the center of the angular cap ω1 by
p1 ∈ Sd−1. Let (ζ2, . . . , ζd) ∈ Rd−1 be a smooth positively oriented coordinate system on
the hemisphere Sd−1 ∩ {ξ : p1 · ξ > 0}, such that (ζ2, . . . , ζd) = (0, . . . , 0) corresponds to p1.
Define

ξ̃(ξ) =
(
|ξ|, |ξ|ζ2

( ξ
|ξ|

)
, . . . , |ξ|ζd

( ξ
|ξ|

))
for ξ ∈ {ξ : p1 · ξ > 0}.

We define η̃(η) for η ∈ {η : p2 · η > 0} similarly, with the point p1 replaced by the center p2

of the cap ω2. Observe that (ξ̃, η̃) are well-defined and invertible on Ẽ1 × Ẽ2, in which m′ is
supported. Abusing the notation a bit, we write m(ξ̃, η̃) = m(ξ(ξ̃), η(η̃)) and simply Ej for
the region {ξ̃ : ξ(ξ̃) ∈ Ej} etc.

With such definitions, it is clear that ξ̃1∂ξ̃1 = Sξ and η̃1∂η̃1 = Sη. Hence (5.3.2) translates
to

|∂n1

ξ̃1
∂n2
η̃1
m(ξ̃, η̃)| .A,n1,n2 θ|ξ̃1|−n1 |η̃1|−n2 . (5.3.7)

Moreover, since each component of ξ̃ ∈ Rd [resp. η̃] is homogeneous of degree 1 in ξ [resp.
in η], we immediately have the bounds

|∂αξ ξ̃(ξ)| .α |ξ|1−|α| [resp. |∂αη η̃(η)| .α |η|1−|α|] for any multi-index α. (5.3.8)

Observe that we have |ξ̃(ξ)| ' |ξ| for ξ ∈ Ê1 [resp. |η̃(η)| ' |η| on η ∈ Ê2]. Further
straightforward computations using (5.3.8) show that

|∂α
ξ̃
ξ(ξ̃)| .α |ξ̃|1−|α| [resp. |∂αη̃ η(η̃)| .α |η̃|1−|α|] for any multi-index α, (5.3.9)

for (ξ(ξ̃), η(η̃)) ∈ Ê1 × Ê2. Combined with (5.3.3) and the support property of m, we have

|∂α1

ξ̃
∂α2
η̃ m(ξ̃, η̃)| .A,α1,α2 |ξ̃|−|α1||η̃|−|α2|. (5.3.10)
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We now introduce rectangular boxes R1 and R2, which are defined as

R1 = {ξ̃ : ξ̃1 ' 1, sup
j=2,...,d

|ξ̃j| . r}, R2 = {η̃ : η̃1 ' 2k2 , sup
j=2,...,d

|η̃j| . 2k2r},

where the implicit constants are chosen so that E1 ⊆ R1 and E2 ⊆ R2. Let ã(ξ̃) and b̃(η̃)
be the bump functions adapted to the boxes R1 and R2, respectively such that ã and b̃ are
equal to 1 on E1 and E2, respectively.

Thus we have the following bounds for j = 2, . . . d:

|(r∂ξ̃j)
nm(ξ̃, η̃)ã(ξ̃)b̃(η̃)| .A,n θ, |(2k2r∂η̃j)

nm(ξ̃, η̃)ã(ξ̃)b̃(η̃)| .A,n θ (5.3.11)

Performing a Fourier series expansion of m(ξ̃, η̃)ã(ξ̃)b̃(η̃) in the variables (ξ̃, η̃) by viewing
R1 ×R2 as a torus, we may write

m(ξ̃, η̃) =
∑

j,k∈Zd
cj,k e

2πij·D1ξ̃e2πik·D2η̃ for (ξ̃, η̃) ∈ E1 × E2, (5.3.12)

where D1, D2 are diagonal matrices of the form

D1 =diag (O(1), O(r−1), . . . , O(r−1)),

D2 =diag (O(2−k2), O(2−k2r−1), . . . , O(2−k2r−1)).

Defining

aj(ξ) = (ã(ξ̃)e2πij·D1ξ̃)(ξ), bk(η) = (b̃(η̃)e2πik·D2η̃)(η),

we obtain the desired decomposition (5.3.4) from (5.3.12).
To prove (5.3.5), we begin with the following formula for the Fourier coefficient cj,k:

cj,k =
1

Vol(R1 ×R2)

∫
R1×R2

m(ξ̃, η̃)ã(ξ̃)b̃(η̃)e−2πij·D1ξ̃e−2πik·D2η̃ dξ̃ dη̃.

Integrating by parts in ξ̃1 [resp. in η̃1] and using (5.3.7), we obtain

|cj,k| .n θ(1 + |j1|)−n [resp. |cj,k| .n θ(1 + |k1|)−n],

for each integer n ≥ 0. On the other hand, for any j = 2, . . . , d, integration by parts in ξ̃j
[resp. in η̃j] and using (5.3.11) yields

|cj,k| .n θ|jj|−n [resp. |cj,k| .n θ|kj|−n],

The preceding bounds imply (5.3.5) as desired.
Finally, we need to establish (5.3.6). We will describe the case of aj(D) in detail, and

leave the similar proof for bk(η) to the reader. For any multi-index α, observe that

|∂α
ξ̃

(ã(ξ̃)e2πij·D1ξ̃)| .α (1 + |j|)|α|r−(α2+···+αd). (5.3.13)
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By rotation, we may assume that the center of ω1 is aligned with the ξ1-axis, i.e., p1 =
(1, 0, . . . , 0). Then we claim that

|∂αξ aj(ξ)| .α (1 + |j|)|α|r−(α2+···+αd). (5.3.14)

From such a bound, it is straightforward to check that the convolution kernel (i.e., inverse
Fourier transform) ǎj(x) of aj(D) obeys ‖ǎj‖L1 . (1 + |j|)n0 for some universal constant n0

(in fact, n0 = d would work), which implies the desired Lq bounds (5.3.6) for aj(D).
In order to verify (5.3.14), the key is to ensure that each ∂ξ1 derivative does not lose a

factor of r−1. Recall that ξ̃j = |ξ|ζj(ξ/|ξ|) for j = 2, . . . , d. Observe that ∂nξ1ζj(ξ/|ξ|) �ξ=p1
= 0

for every n ≥ 0 (in fact, ζj can be chosen to be independent of the first coordinate ξ1

everywhere on Sd−1 ∩ {ξ1 > 0} ⊆ Rd). Therefore, we have∣∣∣∂nξ̃j
∂ξn1

∣∣∣ . n∑
i=0

∣∣∣∂iξ1ζj( ξ|ξ|)∣∣∣ .n dist
( ξ
|ξ|
,p1

)
. r for every n ≥ 0, ξ ∈ supp aj.

Let c(ξ) be any smooth function. By an iteration of the chain rule ∂ξ1 = (∂ξ1 ξ̃1)∂ξ̃1 +∑d
j=2(∂ξ1 ξ̃j)∂ξ̃j , it follows that

|∂α1
ξ1
c(ξ)| .α1

∑
|β|≤α1

rβ2+···+βd|(∂β
ξ̃
c)(ξ)| for every α1 ≥ 0, ξ ∈ supp aj.

Substituting c(ξ) = ∂α2
ξ2
· · · ∂αdξd aj(ξ) and using (5.3.8), (5.3.13), the desired bound (5.3.14)

follows after a straightforward computation.

5.4 Null structures of MD and MKG in the Coulomb

gauge

We begin with the null forms

Nij(φ, ϕ) = ∂iφ∂jϕ− ∂jφ∂iϕ. (5.4.1)

which arise in the MKG equation by writing

Pj(φ1∇xφ
2) = ∆−1∇iNij(φ1, φ2). (5.4.2)

and, whenever Ax is divergence free, since Aj = PjA we can write

Ai∂iφ =
∑
Nij
(
∇i∆

−1Aj, φ
)
. (5.4.3)

To exploit these identities, we have the following corollary of Prop. 5.3.1.
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Corollary 5.4.1. Under the conditions on the support of f1, f2 from Prop. 5.3.1 we have

‖Nij(f1, f2)‖Lp . θ‖∇xf1‖Lq1‖∇xf2‖Lq2 . (5.4.4)

Proof. This follows by writing Nij(f1, f2) = N(|D| f1, |D| f2) for N with symbol n(ξ, η) =
ξi
|ξ|

ηj
|η| −

ξj
|ξ|

ηi
|η| and applying (5.3.1).

We now recast the null structure of MD-CG in terms of abstract null forms. It is at this
point that we may fully explain an important point discussed in the introduction, namely,
how the spinorial nonlinearitiesMS and N S exhibit more favorable null structure compared
to the Riesz transform parts MR and NR. (see Remark 5.4.5).

We begin with some schematic definitions.

Definition 5.4.2 (Symbols N and N±). We denote by N+ an abstract null form (Remark
5.3.2 and Prop. 5.3.1), and by N− a bilinear operator such that (f, g) 7→ N−(f, g) is an
abstract null form. We call Ns an abstract null form of type s ∈ {+,−}. Denoting the
symbol of Ns by ms, note that it satisfies

|Sk1
ξ S

k2
η ms(ξ, η)| ≤ As,k1,k2|∠(ξ, sη)|.

We write N for a bilinear operator which is an abstract null form of both types; in short,
N = N+ and N−.

Definition 5.4.3 (Symbols N ∗ and N ∗±). For s ∈ {+,−}, we denote by N ∗s (called a dual
abstract null form of type s) a bilinear operator such that∫

hN ∗s (f, g) dx =

∫
f N−s(h, g) dx (5.4.5)

for some abstract null form N−s of type −s. We denote by N ∗ a bilinear operator which is
a dual abstract null form of both types, i.e., N ∗ = N ∗+ and N ∗−. (Note that the second input
g plays a special role in N ∗ and N ∗s .)

We are now ready to describe the (bilinear) null structure of MD-CG in terms of abstract
null forms.

Proposition 5.4.4. The Maxwell nonlinearities MS
s , MR have the null structure

MS
s2

(Πs1ψ, ϕ) =Pj〈Πs1ψ,Π−s2αxϕ〉 = Ns1s2(ψ, ϕ), (5.4.6)

MR(ψ, ϕ) =Pj〈ψ,Rxϕ〉 = N ∗(ψ, ϕ). (5.4.7)

The Dirac nonlinearities N S
s , NR have the null structure

Πs0N S
s2

(Ax, f) =Πs0(ajΠ−s2(αjf)) = N ∗s0s2(Ax, f), (5.4.8)

NR(Ax, ψ) =PjAxRjψ = N (Ax, ψ). (5.4.9)
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Proof. Statements (5.4.6) and (5.4.8) follow from Lemma 1.7.5. To prove the remaining
statements, we use (1.1.7) to compute

PjAxRjψ =(δk`δji − δj`δik)RkR`AiRjψ

=δk`δij(RkR`AiRjψ −RjR`AiRkψ)

=δk`δijNkj(R`Ai, ψ)

where Nkj is a bilinear operator with symbol |ξ|−1|η|−1(ξkηj−ηjξk). It is clear that each Nkj
is an abstract null form of the form N , which proves (5.4.7) and (5.4.9) (the former follows
by duality).

Remark 5.4.5. A crucial observation here is that the spinorial nonlinearities have a more
favorable null structure compared to the Riesz transform counterparts. To see this, consider
the Dirac nonlinearities NR and N S

s in the low-high interaction case, which is the worst
frequency balance scenario:

πR[Ax]ψ =
∑
k

∑
k′<k−10

NR(Pk′Ax, Pkψ), πSs [Ax]ψ =
∑
k

∑
k′<k−10

N S
s (Pk′Ax, Pkψ).

Proposition 5.4.4 shows that NR gains in the angle θ between (the Fourier variables of)
Ax and ψ, whereas N S

s gains in the angle θ∗ between ψ and the output. In this frequency
balance scenario, observe that θ∗ is smaller than θ. Indeed, for each fixed k, k′, the law of sines
implies that θ∗ ' 2k

′−kθ. This extra exponential high-low gain leads to the improved estimate
(1.8.20) for πSs [Ax], which fails for πR[Ax]. Similarly, MS

s exhibits an extra exponential off-
diagonal gain compared to MR in the worst frequency balance scenario (high-high, in this
case), which leads to the improved Z1 norm bound (6.4.13) below.

Heuristically, the preceding observation leaves us with only the contribution of the scalar
part ME,MR,NE,NR to be handled; this is the main point of Proposition 1.8.8 and The-
orem 1.6.2. The redeeming feature of this scalar remainder is that it closely resembles the
massless MKG; see Remark 1.7.9. In particular, exploiting this similarity, we are able to
borrow a trilinear null form estimate (Proposition 6.4.1) and parametrix construction (The-
orem 4.3.3) from the massless MKG case [31] at key steps in the proof below.

5.5 The geometry of frequency interactions

An orthogonality property

In view of performing summation arguments later on, we present below various ‘orthogo-
nality’ statements concerning the vanishing property of the expression (5.0.1) based on the
Fourier supports of fi (i = 0, 1, 2).

Given a triple k0, k1, k2 ∈ R, we denote by kmin, kmed and kmax the minimum, median
and maximum of k0, k1, k2. Similarly we consider jmin, jmed, jmax for j0, j1, j2 If fi = Pkifi,
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then (5.0.1) vanishes unless the maximum and the median of k0, k1, k2 (i.e., the two largest
numbers) are apart by at most (say) 5; this is the standard Littlewood-Paley trichotomy. We
furthermore have the following refinement, which is useful when kmin is very small compared
to kmax:

Lemma 5.5.1. Let k0, k1, k2 ∈ Z be such that |kmed − kmax| ≤ 5. For i = 0, 1, 2, let Ci be a
cube of the form Ckmin

(0) (i.e., of dimension 2kmin × · · · × 2kmin) situated in {|ξ| ' 2ki}.

1. Then the expression ∫∫
PC0hk0 L(PC1fk1 , PC2gk2) dtdx (5.5.1)

vanishes unless C0 + C1 + C2 3 0.

2. If C0 +C1 +C2 3 0, then the cubes situated in the non-minimal frequency annuli are almost
diametrically opposite. More precisely, we have

|∠(Ci,−Ci′)| . 2kmin−kmax ,

where ki, ki′ (i 6= i′) are the median and maximal frequencies.

3. Without loss of generality, assume that k0 is non-minimal, i.e., k0 = kmed or kmax. For
any fixed cube C0 of the form Ckmin

(0) situated in {|ξ| ' 2k0}, there are only (uniformly)
bounded number of cubes C1, C2 of the form Ckmin

(0) in {|ξ| ' 2k1}, {|ξ| ' 2k2} such that
C0 + C1 + C2 3 0.

Proof. Statement (1) is obvious from the Fourier space representation of (5.5.1). For the
proof of Statements (2) and (3), we assume without loss of generality that k2 = kmin. Since
C0 + C1 + C2 3 0, there exists ξi ∈ Ci (i = 0, 1, 2) forming a triangle, i.e.,

∑
i ξ
i = 0. By the

law of cosines,
|ξ0|2 + |ξ1|2 − 2|ξ0||ξ1| cos∠(ξ0,−ξ1) = |ξ2|2.

Rearranging terms, we see that

2|ξ0||ξ1|(1− cos∠(ξ0,−ξ1)) = |ξ2|2 − (|ξ0| − |ξ1|)2.

The LHS is comparable to 22kmax|∠(ξ0,−ξ1)|, whereas the RHS is bounded from above by
. 22kmin . Statement (2) now follows.

It remains to establish Statement (3). Since there are only bounded number of cubes
Ckmin

(0) in {|ξ| ' 2kmin}, the desired statement for C2 follows. Observing that C0 + C2 is
contained in a cube of dimension . 2kmin , we see that there are only bounded number of
cubes C1 = Ckmin

(0) such that C0 + C2 ∩ (−C1) 6= ∅, or equivalently, C0 + C1 + C2 3 0.
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The geometry of frequency interactions

Before we state the core bilinear estimates that will be used to estimate the nonlinearities,
we analyze the geometry of the frequencies of two hyperboloids interacting with a cone at
low modulations. The method of doing this is well-known, see [52, sec. 13], [4, Lemma 6.5].

Note that the analogue of the Littlewood-Paley trichotomy does not hold for modulations;
However, modulation localization forces certain angular conditions among the spatial Fourier
supports of the functions.

Lemma 5.5.2. Let (k0, k1, k2) ∈ Z × Z+ × Z+, ji ∈ Z for i = 0, 1, 2 and let ωi ⊂ Sd−1 be
angular caps of radius ri � 1. Let φ1, φ2 have Fourier support, respectively, in

Si = {〈ξ〉 ' 2ki ,
ξ

|ξ|
∈ ωi, |τ − si 〈ξ〉| ' 2ji}, i = 1, 2

and let A have Fourier support in

S0 = {|ξ| ' 2k0 ,
ξ

|ξ|
∈ ω0, |τ − s0 |ξ|| ' 2j0},

for some signs s0, s1, s2. Let L be translation-invariant and consider∫
A · L(φ1, φ2) dx dt. (5.5.2)

1. Suppose jmax ≤ kmin + C0. Then (5.5.2) vanishes unless

jmax ≥ kmin − 2 min(k1, k2)− C.

2. Suppose jmax ≤ kmin + C0 and define ` := 1
2
(jmax − kmin)−.

Then (5.5.2) vanishes unless 2` & 2−min(k1,k2) and

∠(siωi, si′ωi′) . 2`2kmin−min(ki,ki′ ) + max(ri, ri′) (5.5.3)

for every pair i, i′ ∈ {0, 1, 2}.

3. If in addition we assume jmed ≤ jmax − 5, then in (5.5.3) we have ' instead of ..

4. If jmed ≤ jmax − 5 then (5.5.2) vanishes unless either jmax = kmax + O(1) or jmax ≤
kmin + 1

2
C0.

Proof. If (5.5.2) does not vanish, there exist (τ i, ξi) ∈ Si, (i = 0, 1, 2) such that
∑

i(τ
i, ξi) =

0. Consider
H := s0 |ξ0|+ s1 〈ξ1〉+ s2 〈ξ2〉 .
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Using
∑

i τ
i = 0, note that

|H| =
∣∣(s0 |ξ0| − τ 0) + (s1 〈ξ1〉 − τ 1) + (s2 〈ξ2〉 − τ 2)

∣∣ . 2jmax . (5.5.4)

When the signs si of the two highest frequencies are the same, we have |H| ' 2kmax . This
implies jmax ≥ kmax−C and with the assumption jmax ≤ kmin +C0 we deduce |kmax − kmin| ≤
C and ` = O(1), in which case the statements are obvious.

Now suppose the high frequencies have opposite signs. By conjugation symmetry we
may assume s0 = +. By swapping φ1 with φ2 if needed, we may assume s2 = − and that
k2 6= kmin. We write

H = |ξ0|+ s1 〈ξ1〉 − 〈ξ2〉 =
(|ξ0|+ s1 〈ξ1〉)2 − (1 + |ξ0 + ξ1|2)

|ξ0|+ s1 〈ξ1〉+ 〈ξ2〉
=

=
2s1 |ξ0| 〈ξ1〉 − 2ξ0 · ξ1

|ξ0|+ s1 〈ξ1〉+ 〈ξ2〉
=

2s1 |ξ0| |ξ1| − 2ξ0 · ξ1

|ξ0|+ s1 〈ξ1〉+ 〈ξ2〉
+

2s1 |ξ0|
〈ξ1〉+ |ξ1|

1

|ξ0|+ s1 〈ξ1〉+ 〈ξ2〉
.

where we have used 〈ξ1〉 − |ξ1| = (〈ξ1〉+ |ξ1|)−1.
If k0 = kmin we are in the case (s0, s1, s2) = (+,+,−). If k0 = kmax +O(1), we are in the

case k1 = kmin. Either way, we deduce

|H| ' 2kmin∠(ξ0, s1ξ
1)2 + 2k0−k1−k2 .

This and (5.5.4) proves Statement (1) and (2) for (i, i′) = (0, 1). The other pairs (i, i′) are
reduced to this case. Indeed, denote by ξl and ξh the low and high frequencies among ξ0, ξ1.
By the law of sines we have

sin∠(ξh,−ξ2) =

∣∣ξl∣∣
|ξ2|

sin∠(ξl, ξh) . 2`2kmin−k2

which implies (5.5.3) in the high-high case. The remaining low-high case now follows from
the previous two cases and the triangle inequality.

Statement (3) follows by noting that in the case jmed ≤ jmax − 5 we have |H| ' 2jmax .
Similarly, for statement (4), since either |H| ' 2kmax or |H| . 2kmin , the statement follows
by choosing C0 large enough.

Remark 5.5.3. In the case kmin ∈ {ki, ki′}, Statement (3) can be rephrased as follows. De-
noting 2`0 = ∠(siωi, si′ωi′) and choosing ri, ri′ � 2`0 , then (5.5.2) vanishes unless

jmax = kmin + 2`0 +O(1).

In the case when all three functions are localized by the wave equation modulations,
which correspond to the Q±j operators, we have the following version. The proof is very
similar to the above and is omitted.
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Lemma 5.5.4 (Geometry of the cone). Let k0, k1, k2, j0, j1, j2 ∈ Z be such that |kmed −
kmax| ≤ 5. For i = 0, 1, 2, let ωi ⊆ Sd−1 be an angular cap of radius 0 < ri < 2−5 and let fi
have Fourier support in the region {|ξ| ' 2ki , ξ

|ξ| ∈ ωi, |τ − si|ξ|| ' 2ji}. Then there exists a
constant C0 > 0 such that the following statements hold:

1. Suppose that jmax ≤ kmin + C0. Define ` := 1
2
(jmax − kmin)−. Then the expression∫∫

f0L(f1, f2) dtdx vanishes unless

|∠(siωi, si′ωi′)| . 2kmin−min{ki,ki′}2` + max{ri, ri′} (5.5.5)

for every pair i, i′ ∈ {0, 1, 2} (i 6= i′).

2. Suppose that jmed ≤ jmax − 5. Then the expression
∫∫

f0L(f1, f2) dtdx vanishes unless
either jmax = kmax +O(1) or jmax ≤ kmin + 1

2
C0.

From Lemma 5.5.4, we immediately obtain the following refinement of Lemma 5.5.1.

Lemma 5.5.5. Let k0, k1, k2, j0, j1, j2 ∈ Z be such that |kmed−kmax| ≤ 5 and jmax ≤ kmin+C0.
Define ` := 1

2
(jmax − kmin)−. For i = 0, 1, 2, let Ci be a rectangular box of the form Ckmin

(`)
(i.e., of dimension 2kmin × 2kmin+` × · · · × 2kmin+`, with the longest side aligned in the radial
direction) situated in {|ξ| ' 2ki}.

1. Then the expression ∫∫
PC0Qs0

j0
hk0 L(PC1Qs1

j1
fk1 , PC2Qs2

j2
gk2) dtdx (5.5.6)

vanishes unless

C0 + C1 + C2 3 0 and |∠(siCi, si′Ci
′
)| . 2`2kmin−min{ki,ki′} (5.5.7)

for every i, i′ ∈ {0, 1, 2} (i 6= i′).

2. Let ki = kmed or kmax; without loss of generality, assume that i = 0. Then for any fixed
rectangular box C0 of the form Ckmin

(`) situated in {|ξ| ' 2k0}, there are only (uniformly)
bounded number of boxes C1, C2 in {|ξ| ' 2k1}, {|ξ| ' 2k2} such that (5.5.7) holds.

Proof. Statement (1) follows immediately from Lemma 5.5.4. Statement (2) can be proved in
a similar fashion as Lemma 5.5.1. We first assume without loss of generality that k2 = kmin.
It is clear that there are only bounded number of C2 = Ckmin

(`) in {|ξ| ' 2kmin} such that
|∠(s0C0, s2C2)| . 2`. Moreover, observe that C0 + C2 is contained in a cube of sidelength
. 2kmin . Combined with the angular restriction |∠(s0C0, s1C1)| . 2kmin−kmax2`, it follows that
there are only bounded number of C1 such that (5.5.7) holds.
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5.6 Core bilinear estimates

We begin with a Hölder-type estimate which will be useful for dealing with the high modu-
lation contribution, as well as the elliptic equations.

Lemma 5.6.1. Let k0, k1, k2 ∈ Z be such that |kmed − kmax| ≤ 5. Let L be a translation
invariant bilinear operator on Rd with bounded mass kernel. Then we have

‖Pk0L(fk1 , gk2)‖L2L2 .‖fk1‖L∞L2

( ∑
Ckmin

‖PCkmin
gk2‖2

L2L∞

)1/2

, (5.6.1)

‖Pk0L(fk1 , gk2)‖L1L2 .‖fk1‖L2L2

( ∑
Ckmin

‖PCkmin
gk2‖2

L2L∞

)1/2

. (5.6.2)

The same estimates hold in the cases (k0, k1, k2) ∈ Z×Z+×Z+, (k0, k1, k2) ∈ Z+×Z×Z+ or
(k0, k1, k2) ∈ Z+ × Z+ × Z when we replace the LHS by Pk0L(P̄k1f, P̄k2g), P̄k0L(Pk1f, P̄k2g),
respectively P̄k0L(P̄k1f, Pk2g).

We now state the main bilinear estimates for L, Ns, N ∗s and Nij when the inputs and
the output have low modulation (i.e. less than the minimum frequency).

Proposition 5.6.2. Let k0, k1, k2, j ∈ Z be such that |kmax − kmed| ≤ 5 and j ≤ kmin + C0.
Define ` := 1

2
(j−kmin)− and let L be translation invariant with bounded mass. Then for any

signs s0, s1, s2 ∈ {+,−}, the following estimates hold:

‖Pk0Q
s0
j L(Qs1

<jfk1 , Q
s2
<jgk2)‖L2L2 . ‖fk1‖L∞L2

( ∑
Ckmin

(`)

‖PCkmin
(`)Q

s2
<jgk2‖2

L2L∞

)1/2

(5.6.3)

‖Pk0Q
s0
<jL(Qs1

j fk1 , Q
s2
<jgk2)‖L1L2 . ‖Qs1

j fk1‖L2L2

( ∑
Ckmin

(`)

‖PCkmin
(`)Q

s2
<jgk2‖2

L2L∞

)1/2

(5.6.4)

The same statement holds when we consider (k0, k1, k2) ∈ Z+ × Z+ × Z and we replace
(Qs0

j , Q
s1
<j, Q

s2
<j) by (Q̄s0

j , Q̄
s1
<j, Q

s2
<j) and all the similar variations.

Proposition 5.6.3 (Core estimates for Ns). Let k0, k1, k2, j ∈ Z be such that |kmax−kmed| ≤
5 and j ≤ kmin + C0. Define ` := 1

2
(j − kmin)− and let Ns be an abstract null form as in

Definition 5.4.2. Then, for any signs s0, s1, s2 ∈ {+,−}, the following estimates hold:

‖Pk0Q
s0
j Ns1s2(Qs1

<jfk1 , Q
s2
<jgk2)‖L2L2

.2`2kmin−min{k1,k2}‖fk1‖L∞L2

( ∑
Ckmin

(`)

‖PCkmin
(`)Q

s2
<jgk2‖2

L2L∞

)1/2 (5.6.5)

‖Pk0Q
s0
<jNs1s2(Qs1

j fk1 , Q
s2
<jgk2)‖L1L2

.2`2kmin−min{k1,k2}‖Qs1
j fk1‖L2L2

( ∑
Ckmin

(`)

‖PCkmin
(`)Q

s2
<jgk2‖2

L2L∞

)1/2 (5.6.6)
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Proposition 5.6.4 (Core estimates for N ∗s ). Let k0, k1, k2, j ∈ Z be such that |kmax−kmed| ≤
5 and j ≤ kmin + C0. Define ` := 1

2
(j − kmin)− and let N ∗s be an abstract null form as in

Definition 5.4.3. Then, for any signs s0, s1, s2 ∈ {+,−}, the following estimates hold:

‖Pk0Q
s0
j N ∗s0s2(Qs1

<jfk1 , Q
s2
<jgk2)‖L2L2

.2`2kmin−min{k0,k2}‖fk1‖L∞L2

( ∑
Ckmin

(`)

‖PCkmin
(`)Q

s2
<jgk2‖2

L2L∞

)1/2 (5.6.7)

‖Pk0Q
s0
<jN ∗s0s2(Qs1

j fk1 , Q
s2
<jgk2)‖L1L2

.2`2kmin−min{k0,k2}‖Qs1
j fk1‖L2L2

( ∑
Ckmin

(`)

‖PCkmin
(`)Q

s2
<jgk2‖2

L2L∞

)1/2 (5.6.8)

‖Pk0Q
s0
<jN ∗s0s2(Qs1

<jfk1 , Q
s2
j gk2)‖L1L2

.2`2kmin−min{k0,k2}
( ∑
Ckmin(`)

‖PCkmin(`)
Qs1
<jfk1‖2

L2L∞

)1/2

‖Qs2
j gk2‖L2L2

(5.6.9)

Remark 5.6.5. It is clear from the proof that each of the inequalities holds (with an adjusted
constant) when we replace any of the multipliers Qsi

<j by Qsi
≤j or Qsi

<j−C for any fixed C ≥ 0.

Proposition 5.6.6. Let k0 ∈ Z, k1, k2 ≥ 0, j ∈ Z be such that |kmax − kmed| ≤ 5 and
j ≤ kmin + C0. Define ` := 1

2
(j − kmin)− and let N be any of the null forms Nij. Then, the

following estimates hold:

‖Pk0QjN (Q̄<jfk1 , Q̄<jgk2)‖L2L2

.2`2kmin+kmax‖fk1‖L∞L2

(
sup
±

∑
Ckmin

(`)

‖PCkmin
(`)Q̄

±
<jgk2‖2

L2L∞

)1/2 (5.6.10)

‖Pk0Q<jN (Q̄jfk1 , Q̄<jgk2)‖L1L2

.2`2kmin+kmax‖Q̄jfk1‖L2L2

(
sup
±

∑
Ckmin

(`)

‖PCkmin
(`)Q̄

±
<jgk2‖2

L2L∞

)1/2 (5.6.11)

The same statement holds in the case (k0, k1, k2) ∈ Z+ × Z × Z+ when we replace the LHS
of (5.6.5), (5.6.6) by P̄k0Q̄jN (Q<jfk1 , Q̄<jgk2) and P̄k0Q̄<jN (Qjfk1 , Q̄<jgk2) respectively; or
in the case (k0, k1, k2) ∈ Z+ × Z+ × Z when we replace the LHS of (5.6.5), (5.6.6) by
P̄k0Q̄jN (Q̄<jfk1 , Q<jgk2) and P̄k0Q̄<jN (Q̄jfk1 , Q<jgk2) respectively.

Although there are numerous cases, all the estimates may be proved in an identical
fashion, which combines Lemma 5.5.5 with either (1.5.9) or the following estimate:
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Lemma 5.6.7. Let k0, k1, k2, j, ` be as in Propositions 5.6.3 and 5.6.4. For i = 0, 1, 2, let
si ∈ {+,−} and Ci be a rectangular box of the form Ckmin

(`) situated in {|ξ| ∼ 2ki} such that
(5.5.7) holds. Then for any 1 ≤ q0, q1, q2 ≤ ∞ such that q−1

0 + q−1
1 + q−1

2 = 1, we have

|
∫
PC0hk0Ns1s1(PC1fk1 , PC2gk2) dx|

.2`2kmin−min{k1,k2}‖PC0hk0‖Lq0‖PC1fk1‖Lq1‖PC2gk2‖Lq2

Proof. Upon verifying that the inputs obey the hypothesis of Proposition 5.3.1, the lemma
follows immediately.

Proof of Propositions 5.6.1, 5.6.2, 5.6.3, 5.6.4 and 5.6.6. We present the details in the case
of Propositions 5.6.3 and 5.6.4; Proposition 5.6.6 follows from the same proof since in this
case we have Corollary 5.4.1 and Lemma 5.5.2; Proposition 5.6.2 follows from the same proof
with Lemma 5.6.7 replaced by (1.5.9), which removes 2`2kmin−min{k1,k2} in (5.6.13). The proof
of Lemma 5.6.1 is similar and simpler, since it uses Lemma 5.5.1 instead of Lemma 5.5.5.

For t ∈ R and rectangular boxes C0, C1, C2 of the form Ckmin
(`), we introduce the expression

IC0,C1,C2(t) =

∫
PC0Qs0

j/<jhk0 Ns1s2(PC1Qs1
j/<jfk1 , PC2Qs2

j/<jgk2)(t) dx

where Qsi
j/<j stands for either Qsi

j or Qsi
<j. Note that∫∫

Qs0
j/<jhk0 Ns1s2(Qs1

j/<jfk1 , Q
s2
j/<jgk2) dtdx =

∑
C0,C1,C2

∫
IC0,C1,C2(t) dt. (5.6.12)

By Lemma 5.5.5, the summand on the RHS vanishes unless C0, C1, C2 satisfy (5.5.7).
Using the shorthand h̃ = Qs0

j/<jhk0 , f̃ = Qs1
j/<jfk1 and g̃ = Qs2

j/<jhk2 , Lemma 5.6.7 implies

|IC0,C1,C2(t)| . 2`2kmin−min{k1,k2}‖PC0h̃(t)‖Lq0‖PC1 f̃(t)‖Lq1‖PC2 g̃(t)‖Lq2 (5.6.13)

for any 1 ≤ q0, q1, q2 ≤ ∞ such that q−1
0 +q−1

1 +q−1
2 = 1. We now sum up the RHS of (5.6.13)

in (C0, C1, C2) for which (5.5.7) holds. As in the proof of Lemma 5.6.1, we first sum up the
boxes in {|ξ| ' 2kmin} (for which there are only bounded many summands) and then apply
Lemma 1.5.5 to the remaining (essentially diagonal) summation. We then obtain∑

C0,C1,C2:(5.5.7)

|IC0,C1,C2(t)| .2`2kmin−min{k1,k2}
(∑
C0

‖PC0h̃(t)‖2
Lq0

)1/2

×
(∑
C1

‖PC1 f̃(t)‖2
Lq1

)1/2(∑
C2

‖PC2 g̃(t)‖2
Lq2

)1/2

.

We are ready to complete the proof in a few strokes. To prove estimates (5.6.5) and (5.6.6),
take (q0, q1, q2) = (2, 2,∞). By orthogonality in L2, factors involving h̃ and f̃ can be bounded
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by ‖h̃(t)‖L2 and ‖f̃(t)‖L2 , respectively. Integrating and applying Hölder’s inequality in t,
estimates (5.6.5) and (5.6.6) follow by duality as in the proof of Lemma 5.6.1. Next, by
the definition of N ∗s in (5.4.5), (5.6.7) and (5.6.8) follow from the same method as well (we
note that, since we use the pairing

∫
fg, the transpose of Qs0

j/<j is Q−s0j/<j). Finally, (5.6.9) is

proved by taking (q0, q1, q2) = (∞, 2, 2) and proceeding analogously.
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Chapter 6

Bilinear and trilinear estimates

The proofs in this chapter are based on the Littlewood-Paley trichotomy which states that
Pk0(Pk1f1Pk2f2) vanishes unless |kmed − kmax| ≤ 5, where kmed, kmax are the the median and
the maximum of {k0, k1, k2}.

6.1 Bilinear estimates for MKG

Most of the arguments in this section originate in [31]. However, we have tried to give
a thorough exposition in order to justify that the arguments carry over when two of the
inputs/output correspond to Klein-Gordon waves.

Additional bilinear estimates

Before we begin the proofs we state some additional bilinear estimates that will be used in
the proof of the trilinear estimate in the next section.

We separate the high-high and low-high parts of A0 from (1.7.4)

A0(φ1, φ2) = ALH
0 (φ1, φ2) + AHH

0 (φ1, φ2)

where AHH
0 (φ1, φ2) =

∑
k0,k1,k2

k0<k2−C2−5

Pk0A0(P̄k1φ
1, P̄k2φ

2). (6.1.1)

Lemma 6.1.1. With the decomposition above, one has:

‖π[(0, A0)]φ‖N̄σ−1 . ‖A0‖`1L1L∞‖φ‖S̄σ . (6.1.2)

‖ALH
0 (φ1, φ2)‖`1L1L∞ . ‖φ1‖S̄σ‖φ2‖S̄σ (6.1.3)

‖(Ax,A
HH
0 )(φ1, φ2)‖`1Sσ×Y σ . ‖φ1‖S̄σ‖φ2‖S̄σ (6.1.4)

‖(I −H)(Ax,A
HH
0 )(φ1, φ2)‖Zσ×Zσell . ‖φ

1‖S̄σ‖φ2‖S̄σ . (6.1.5)

For d ≥ 5 one also has:

‖(Ax,A
HH
0 )(φ1, φ2)‖Zσ×Zσell . ‖φ

1‖S̄σ‖φ2‖S̄σ (6.1.6)
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Proof. By doing dyadic decompositions, (6.1.2) follows trivially from Hölder’s inequality
L1L∞ × L∞L2 → L1L2. The bound (6.1.3) follows from

‖Pk′(φ1
k1
∂tφ

2
k2

)‖L1L∞ . ‖φ1
k1
‖L2L∞‖∂tφ2

k2
‖L2L∞ .

The bound (6.1.4) follows from Prop. 1.8.1 and from the proof of (1.8.2).
The proofs of estimates (6.1.5), (6.1.6) are longer and are deferred to the end of this

section.

Dyadic norms

For easy referencing in the arguments below, here we collect the norms that we control.
Recall that we denote

‖Ax‖Ss
k′

= 2(s−1)k′‖∇t,xA‖Sk′ , ‖φk‖S̄sk = 2(s−1)k‖(〈Dx〉 , ∂t)φk‖S̄k

For k′ ∈ Z and k ≥ 0 we have:

‖∇t,xPk′Ax‖L∞L2 . ‖Pk′Ax‖S1
k′
, ‖(〈Dx〉 , ∂t)φk‖L∞L2 . ‖φk‖S̄1

k
(6.1.7)

‖QjPk′Ax‖L2
t,x
. 2−

1
2
j‖Pk′Ax‖Sk′ , ‖Q̄jφk‖L2

t,x
. 2−

1
2
j‖φk‖S̄k (6.1.8)

‖Pk′Ax‖L2L∞ . 2
1
2
k′‖Pk′Ax‖Sσ

k′
, ‖φk‖L2L∞ . 2

1
2
k‖φk‖S̄σk (6.1.9)

For any k′ ≤ k and l′ ∈ [−k, C], j = k′ + 2l′ and any ±:( ∑
C=Ck′ (l′)

‖PCQ̄±<jφk‖2
L2L∞

)1/2

.2
1
2
l′2σ(k′−k)2

1
2
k‖φk‖S̄σk ,( ∑

C=Ck′ (0)

‖PCφk‖2
L2L∞

)1/2

.2σ(k′−k)2
1
2
k‖φk‖S̄σk .

(6.1.10)

The former follows by choosing k + 2l = k′ + 2l′ in (2.1.6). When k = 0 it suffices to
consider l′ = 0. The latter inequality holds for Q̄<k′φk, while for Q̄≥k′φk it follows from
(6.1.8), orthogonality and Bernstein’s inequality (with l′ = 0)

PCk′ (l′)L
2
x ⊂ 2

d
2
k′+ d−1

2
l′L∞x (6.1.11)

Using (6.1.11) we also obtain, when d = 4, σ = 1,( ∑
Ck′ (l

′)

‖PCk′ (l′)(∂t ∓ i 〈D〉)Q̄
±
<jφk‖2

L2L∞

) 1
2 . 2

3
2
l′22k′2

1
2
j‖φk‖

X̄
1
2∞

. 2
3
2
l′22k′2

1
2
j2−k‖φk‖S̄1

k
.

(6.1.12)

For any k′ ≤ k′′ and l′ ≤ 0, j = k′ + 2l′ and any ± we have
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( ∑
C=Ck′ (l′)

‖PCQ±<jAk′′‖2
L2L∞

)1/2

.2
1
2
l′2σ(k′−k′′)2

1
2
k′′‖Pk′′Ax‖Sσ

k′′
,

( ∑
C=Ck′ (0)

‖PCAk′′‖2
L2L∞

)1/2

.2σ(k′−k′′)2
1
2
k′′‖Pk′′Ax‖Sσ

k′′
.

(6.1.13)

For A0 we have the following bounds

‖∇t,xPk′A0‖L∞L2 . ‖Pk′A0‖Y 1 . (6.1.14)

Since we control ∂tA0, for j ≥ k′ we have both

‖Pk′A0‖L2
t,x
. 2−(σ+ 1

2
)k′‖Pk′A0‖Y σ , ‖QjPk′A0‖L2

t,x
. 2−j2−(σ− 1

2
)k′‖Pk′A0‖Y σ (6.1.15)

and for j = k′ + 2l′, using (6.1.11) and orthogonality, we have( ∑
C=Ck′ (l′)

‖PC(Q±<j)A0
k′‖2

L2L∞

)1/2

. 2
d
2
k′+ d−1

2
l′‖A0

k′‖L2
t,x
. 2

1
2
k′+ 3

2
l′‖Pk′A0‖Y σ (6.1.16)

In particular, ‖Pk′A0‖L2L∞ . 2
1
2
k′‖Pk′A0‖Y σ . (6.1.17)

Now we turn to the proofs of Prop. 1.8.1, 1.8.2.

Proof of (1.8.1)

This follows from proving, for k′ ∈ Z, k1, k2 ≥ 0:

‖Pk′Pj(φ1
k1
∇xφ

2
k2

)‖Nσ−1
k′
. 2

1
2

(kmin−kmax)‖φ1
k1
‖S̄σk1
‖φ2

k2
‖S̄σk2

. (6.1.18)

Note that the factor 2
1
2

(kmin−kmax) provides the `1 summation in (1.8.1). Here kmin, kmax are
taken from the set {k′, k1, k2}.

We first treat the high modulation contribution. Since Pj(φ1∇xφ
2) is skew adjoint (see

Remark 1.7.2), in the low-high case (2k
′ ' 2kmax) we may assume k2 = kmin (i.e. the

derivative falls on the lower frequency). By Lemma 5.6.1 we have

‖Pk′Pj(Q̄≥kmin
φ1
k1
∇xφ

2
k2

)‖L1L2 .

‖Q̄≥kmin
φ1
k1
‖L2

t,x

( ∑
Ckmin

‖PCkmin
∇xφ

2
k2
‖2
L2L∞

) 1
2 , (6.1.19)

‖Pk′Pj(Q̄<kmin
φ1
k1
∇xQ̄≥kmin

φ2
k2

)‖L1L2 .( ∑
Ckmin

‖PCkmin
Q̄<kmin

φ1
k1
‖2
L2L∞

) 1
2‖Q̄≥kmin

∇xφ
2
k2
‖L2

t,x
(6.1.20)

‖Pk′Q≥kmin
Pj(Q̄<kmin

φ1
k1
∇xQ̄<kmin

φ2
k2

)‖L2
t,x
.( ∑

Ckmin

‖PCkmin Q̄<kmin
φ1
k1
‖2
L2L∞

) 1
2‖Q̄<kmin

∇xφ
2
k2
‖L∞L2 . (6.1.21)
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Using (6.1.8), (6.1.10) for (6.1.19), using (6.1.10), (6.1.8) for (6.1.20), and using (6.1.10),

(6.1.7) and the X
−1/2
1 norm for (6.1.21), we see that these terms are acceptable.

We continue with the low modulation term

Pk′Q<kmin
Pj(Q̄<kmin

φ1
k1
∇xQ̄<kmin

φ2
k2

),

which, summing according to the highest modulation, using (1.7.5), we decompose into sums
of

I0 =
∑
j<kmin

Pk′Qj∆
−1∇lNlm(Q̄<jφ

1
k1
, Q̄<jφ

2
k2

), (6.1.22)

I1 =
∑
j<kmin

Pk′Q≤j∆
−1∇lNlm(Q̄jφ

1
k1
, Q̄<jφ

2
k2

), (6.1.23)

I2 =
∑
j<kmin

Pk′Q≤j∆
−1∇lNlm(Q̄≤jφ

1
k1
, Q̄jφ

2
k2

). (6.1.24)

for which we have

‖ |D|σ−1 I0‖X−1/2
1

+ ‖I1‖L1Ḣσ−1 + ‖I2‖L1Ḣσ−1 . 2
1
2

(kmin−kmax)‖φ1
k1
‖S̄σk1
‖φ2

k2
‖S̄σk2

. (6.1.25)

These are estimated by Proposition 5.6.6 and (6.1.7), (6.1.8), (6.1.10), which concludes the
proof of (6.1.18).

Proof of (1.8.4).

We separate A0∂tφ and Aj∂jφ. Since we subtract π[A]φ, this effectively eliminates low-high
interactions in the Littlewood-Paley trichotomy. Thus for k, k0 ≥ 0, k′ ≥ k−C it suffices to
prove

‖P̄k0

(
A0
k′∂tφk

)
‖L1Hσ−1 . 2kmin−kmax‖A0

k′‖L2Ḣσ+ 1
2
‖∂tφk‖S̄σ−1

k
, (6.1.26)

‖P̄k0

(
Ajk′∂jφk

)
‖N̄σ−1

k0

. 2
1
2

(kmin−kmax)‖Ak′‖Sσ
k′
‖φk‖S̄σk . (6.1.27)

The bound (6.1.26) follows immediately from (5.6.2). Now we turn to (6.1.27).
We first treat the high modulation contribution. By Lemma 5.6.1 we have

‖P̄k0Q̄≥kmin

(
Ajk′∂jφk

)
‖L2

t,x
. ‖Ak′‖L∞L2

( ∑
Ckmin

‖PCkmin
∇xφk‖2

L2L∞

) 1
2 ,

‖P̄k0Q̄<kmin
(Q≥kmin

Ajk′∂jφk)‖L1L2 .

‖Q≥kmin
Ak′‖L2

t,x

( ∑
Ckmin

‖PCkmin
∇xφk‖2

L2L∞

) 1
2 ,

‖P̄k0Q̄<kmin
(Q<kmin

Ajk′∂jQ̄≥kmin
φk)‖L1L2 .( ∑

Ckmin

‖PCkmin
Q<kmin

Ak′‖2
L2L∞

) 1
2‖Q̄≥kmin

∇xφk‖L2
t,x
.
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Using (6.1.7), (6.1.10) and the X̄
−1/2
1 norm for the first term, (6.1.8), (6.1.9) for the second,

and (6.1.13), (6.1.8) for the third, we see that these terms are acceptable.
We continue with the low modulation term

P̄k0Q̄<kmin

(
Q<kmin

Ajk′∂jQ̄<kmin
φk
)

which, summing according to the highest modulation, using (1.7.6), we decompose into sums
of

I0 =
∑
j<kmin

P̄k0Q̄jNlm(∆−1∇lQ<jA
m
k′ , Q̄<jφk), (6.1.28)

I1 =
∑
j<kmin

P̄k0Q̄≤jNlm(∆−1∇lQjA
m
k′ , Q̄<jφk), (6.1.29)

I2 =
∑
j<kmin

P̄k0Q̄≤jNlm(∆−1∇lQ≤jA
m
k′ , Q̄jφk). (6.1.30)

These are estimated using Proposition 5.6.6. We use (5.6.10) with (6.1.7) and (6.1.10) to

estimate I0 in X̄
−1/2
1 . For I1 we use (5.6.11) with (6.1.8) and (6.1.10), while for I2 we use

(5.6.11) with (6.1.13) and (6.1.8). This concludes the proof of (1.8.4).

Proof of (1.8.5).

We separateA0∂tφ andAj∂jφ. This case corresponds to low-high interactions in the Littlewood-
Paley trichotomy. Thus for k, k0 ≥ 0, k′ ≤ k − C (and |k − k0| ≤ 5) it suffices to prove

‖P̄k0

(
A0
k′∂tφk

)
− P̄k0H∗k′

(
A0∂tφk

)
‖N̄k0

. ‖Pk′A0‖Y σ‖φk‖S̄1
k

(6.1.31)

‖P̄k0

(
Ajk′∂jφk

)
− P̄k0H∗k′

(
Aj∂jφk

)
‖N̄k0

. ‖Pk′Ax‖Sσ
k′
‖φk‖S̄1

k
. (6.1.32)

Notice that the lack of an exponential gain of type 2
1
2

(kmin−kmax) (as in (6.1.26), (6.1.27))
is responsible for the need of `1 summation in the norm on the RHS of (1.8.5).

We first treat the high modulation contribution, where we denote A for either A0 or Aj.
For any j ≥ k′ + C2, by Hölder’s inequality

‖P̄k0Q̄≥j−5

(
QjAk′∂φk

)
‖
X̄
−1/2
1
. 2−

1
2
j‖Ak′‖L2L∞‖∇φk‖L∞L2

‖P̄k0Q̄<j−5

(
QjAk′Q̄≥j−5∂φk

)
‖L1L2 . ‖Ak′‖L2L∞‖Q̄≥j−5∇φk‖L2

t,x

(6.1.33)

Using (6.1.17), (6.1.9), (6.1.7), (6.1.8) and summing over j ≥ k′ + C2, it follows that
P̄k0

(
Q≥k′+C2Ak′∂φk

)
is acceptable except

T =
∑

j≥k′+C2

P̄k0Q̄<j−5

(
QjAk′Q̄<j−5∂φk

)
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By applying Lemma 5.5.2 (here we choose C2 >
1
2
C0) we see that the summand vanishes

unless j = kmax +O(1). Then, by Lemma 5.6.1 we have

‖T‖L1L2 .
∑

j=k+O(1)

‖QjAk′‖L2
t,x

(∑
Ck′

‖PCk′∇φk‖
2
L2L∞

) 1
2

which is acceptable by (6.1.15), (6.1.8), (6.1.10). The terms

P̄k0Q̄≥k′+C2

(
Q<k′+C2Ak′∂φk

)
, P̄k0Q̄<k′+C2

(
Q<k′+C2Ak′Q̄≥k′+C2∂φk

)
are treated in the same way as (6.1.33). We omit the details.

We continue with the low modulation terms. Since we are subtracting H∗ we consider

I =
∑

j<k′+C2

P̄k0Q̄j(Q<jA
0
k′ · ∂tQ̄<jφk)

J =
∑

j<k′+C2

P̄k0Q̄≤j(Q≤jA
0
k′ · ∂tQ̄jφk)

and prove
‖I‖

X̄
−1/2
1

+ ‖J‖L1L2 . ‖Pk′A0‖Y σ‖φk‖S̄1
k
.

by using (5.6.3) with (6.1.7) and (6.1.16) for I; we use (5.6.4) with (6.1.8) and (6.1.16) for
J .

It remains to show that for I0, I2 from (6.1.28) and (6.1.30) (with summation over j <
k′ + C2) we have

‖I0‖X̄−1/2
1

+ ‖I2‖L1L2 . ‖Ak′‖Sσ
k′
‖φk‖S̄1

k
.

These follow from (5.6.10) with (6.1.13), (6.1.7) and from (5.6.11) with (6.1.13), (6.1.8),
respectively.

Proof of (1.8.6).

This estimate follows from the next bound, for k′ < k − 5

‖H∗k′
(
Aα∂αφk

)
‖L1L2 . ‖Ak′‖Zσ

k′×Z
σ
ell,k′
‖φk‖S̄1

k
. (6.1.34)

To prove (6.1.34), let ` = 1
2
(j − k′)− ≥ −k − C and separate A0∂tφ from Aj∂jφ. We use

(1.7.6) and denote by N (A, φ) one of A0∂tφ or Nlm(∆−1∇lAm, φ). We expand

H∗k′N
(
A, φk

)
=

∑
j<k′+C∗2

∑
ω1,ω2

Q̄<jN
(
P ω1
` QjAk′ , P

ω2
` Q̄<jφk

)
Splitting Q̄<j = Q̄+

<j + Q̄−<j, Qj = Q+
j + Q−j , and applying Lemma 5.5.2 we see that the

summand vanishes unless |∠(ω1,±ω2)| . 2`.
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For N = Nlm(∆−1∇lAm, φ) and s1, s ∈ {+,−}, by Corollary 5.4.1 we have

‖Q̄<jN
(
P ω1
` Qs1

j Ak′ , P
ω2
` Q̄s

<jφk
)
‖L1L2 . 2`‖P ω1

` Qs1
j Ak′‖L1L∞‖P ω2

` Q̄s
<j∇φk‖L∞L2

For N = A0∂tφ we have the same inequality but without the 2` factor. This is compen-
sated by the fact that the Zσ

ell norm is larger. Indeed, we have

Zσ
ell = �

1
2 ∆−

1
2Zσ and 2`‖P ω1

` Qs1
j A

0
k′‖L1L∞ ' ‖�

1
2 ∆−

1
2P ω1

` Qs1
j A

0
k′‖L1L∞ .

Note that for fixed ω1 there are only (uniformly) bounded number of ω2 such that the
product is non-vanishing. Therefore, by Cauchy-Schwarz,

‖H∗k′
(
Aα∂αφk

)
‖L1L2 .

∑
`≤0

2
1
2
`‖Ak′‖Zσ

k′×Z
σ
ell,k′

(
sup
±

∑
ω2

‖P ω2
` Q̄±<j∇φk‖2

L∞L2

) 1
2

which implies (6.1.34).

Proof of (1.8.2), (1.8.7) and the L2Hσ− 3
2 part of (1.8.8)

One proceeds by dyadic decompositions. The L2
t,x-type estimates follow easily by Hölder’s

inequality L∞L2 × L2L∞ → L2
t,x in the low-high/high-low cases and by Lemma 5.6.1 (eq.

(5.6.1)) in the high-high to low case. One uses the norms (6.1.7), (6.1.14), (6.1.9), (6.1.17),
(6.1.10), (6.1.13), (6.1.16).

The L∞L2 estimate follows by Hölder’s ( L∞L∞ × L∞L2 → L∞L2 or L∞L2 × L∞L2 →
L∞L1) and Bernstein’s inequalities ( PkL

2
x → 2

d
2
kL∞x or PkL

1
x → 2

d
2
kL2

x), depending on which
frequency (input or output) is the lowest.

Proof of (1.8.8) for N̄ .

Suppose k, k2 ≥ 0, k1 ∈ Z. Let r0 be the endpoint Strichartz exponent (i.e. d−1
r0

= σ − 1
2
).

By Hölder’s inequality and using Bernstein’s inequality for the lowest frequency (input or
output) we obtain

‖P̄k
(
Pk1A · φk2

)
‖L1Hσ−1 . 2

d
r0

(k−max ki)2
− 1
r0
|k1−k2|‖Pk1A‖L2Ḣσ− 1

2
‖φk2‖L2W r0,ρ (6.1.35)

With A = ∂tA0 and ‖φk2‖L2W r0,ρ . ‖φk2‖S̄σk2
, upon summation we obtain (1.8.8).

Proof of (1.8.9) and (1.8.3)

We first prove the L1L2 part. For (1.8.9) we consider k, k2 ≥ 0, k1, k3, k4 ∈ Z. We apply
(6.1.35) with A = A1

αA
2
α together with

‖Pk1(Pk3A
1
αPk4A

2
α)‖

L2Ḣσ− 1
2
. 2

1
2

(kmin−kmax)‖Amax{k3,k4}‖L∞Ḣσ‖Amin{k3,k4}‖L2Ẇ∞,−
1
2
.
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By summing we obtain (1.8.9). The same argument is used for L1L2 of (1.8.3).

To prove the L2Ḣσ− 3
2 and L2Hσ− 3

2 estimates we write

‖Pk
(
Pk1(fg)Pk2h

)
‖
L2Ḣσ− 3

2
. 2

1
2

(k−max ki)2−
1
2
|k1−k2|‖Pk1(fg)‖L∞Ḣσ−1‖Pk2h‖L2W r0,ρ

and use L∞Ḣσ × L∞Ḣσ → L∞Ḣσ−1 by Hölder and Sobolev embedding.
The `1L∞Ḣσ−2 part of (1.8.3) is similarly a consequence of Hölder and Bernstein inequal-

ities.

Proof of (6.1.5)

Recall that H subtracts terms only for high-high interactions. For k′ ≤ k2 − C2 − 10 we
claim

‖(Pk′ −Hk′)A(φ1
k1
, φ2

k2
)‖Zσ

k′×Z
σ
ell,k′
. 2

1
2

(k′−k2)‖φ1
k1
‖S̄σk1
‖φ2

k2
‖S̄σk2

. (6.1.36)

while the low-high interactions: for k′ ≥ k2 − C2 − 10

‖Pk′Ax(φ
1
k1
, φ2

k2
)‖Zσ

k′
. 2−

1
2
|k1−k2|‖φ1

k1
‖S̄σk1
‖φ2

k2
‖S̄σk2

. (6.1.37)

Clearly, (6.1.36) and (6.1.37) imply (6.1.5). First we recall that

(�Ax,∆A0)(φ1, φ2) = −I(Px(φ1∇xφ̄2), φ1∂tφ̄2)

and the embedding from (2.1.16)(
�−1 ×∆−1

)
Pk′ : L1L2 × L1L2 → 2(σ−1)k′Zσ

k′ × Zσ
ell,k′

Step 1. Proof of (6.1.36). The terms

Pk′A(Q̄≥k′+Cφ
1
k1
, φ2

k2
), Pk′A(Q̄≤k′+Cφ

1
k1
, Q̄≥k′+Cφ

2
k2

)

are estimated using (6.1.19), (6.1.20) and (2.1.16). For A0 we note that (6.1.19), (6.1.20)
still hold with Pj replaced by L 1 and ∇x replaced by ∂t. Recall that the Z norms restrict
modulation to Q≤k′+C . Thus it remains to consider

(Pk′Q≤k′+C −Hk′)A(Q̄≤k′+Cφ
1
k1
, Q̄≤k′+Cφ

2
k2

)

For Ax, using (1.7.5), we need to treat �−1I1, �−1I2 as defined in (6.1.22)-(6.1.24) (the
�−1I0 term is subtracted by Hk′). These are estimated using (6.1.25) and (2.1.16).

We turn to A0. By switching the roles of φ1, φ2 if needed, it remains to consider

Jj = Pk′Q≤jA0(Q̄jφ
1
k1
, Q̄≤jφ

2
k2

), j ≤ k′ + C.

1 L denotes any translation invariant bilinear form with bounded mass kernel.
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Using (2.1.17) we obtain

‖Jj‖Zσ
ell,k′
.
∑
±;j′≤j

2
1
2

(j′−k′)‖Pk′Q±j′(Q̄jφ
1
k1
· ∂tQ̄≤jφ2

k2
)‖L1Ḣσ−1

. 2
1
2

(j−k′)2
1
2

(k′−k2)‖φ1
k1
‖S̄σk1
‖φ2

k2
‖S̄σk2

For the last inequality we have used Prop. 5.6.2 together with (6.1.8) and (6.1.10).
Summing in j ≤ k′ + C completes the proof of (6.1.36).

Step 2. Proof of (6.1.37). Due to skew-adjointness (see Remark 1.7.2), we may assume that
k2 = kmin +O(1). The terms

Pk′Ax(Q̄≥k2−cφ
1
k1
, φ2

k2
), Pk′Ax(Q̄≺k2φ

1
k1
, Q̄≥k2−cφ

2
k2

)

are estimated using (6.1.19), (6.1.20) and (2.1.16).
Note that the Z norm restricts modulations to Q≤k′+C . Thus it remains to consider

Pk′QjAx(Q̄≺k2φ
1
k1
, Q̄≺k2φ

2
k2

) (6.1.38)

for j ≤ k′ + C. When j ≥ k2 + C, by Lemma 5.5.2 the term vanishes unless j = k′ + O(1).
In this case

‖Pk′QjAx(Q̄≺k2φ
1
k1
, Q̄≺k2φ

2
k2

)‖Zσ
k′
. 2−2k′‖Q̄≺k2φ

1
k1
∇xQ̄≺k2φ

2
k2
‖L1L∞

. 2k2−2k′‖Q̄≤k1φ
1
k1
‖L2L∞‖Q̄≺k2φ

2
k2
‖L2L∞ + 2k2‖Q̄[k2−c,k1]φ

1
k1
‖L2Hσ−1‖Q̄≺k2φ

2
k2
‖L2L∞

which is estimated using (6.1.9) and (6.1.8).
It remains to consider (6.1.38) for j < k2 + C. Using (1.7.5) we decompose into sums

of �−1Ii, (i = 0, 2) as defined in (6.1.22)-(6.1.24) (for k2 − C < j < k2 + C with Q̄ indices
slightly adjusted). Then �−1I1 and �−1I2 are estimated using (6.1.25) and (2.1.16).

Now we consider �−1I0. Define ` := 1
2
(j − k2)− ≥ `′ := 1

2
(j − k′)− and for s = ± we

decompose

Pk′Q
s
jNlm(Q̄<jφ

1
k1
, Q̄<jφ

2
k2

) =
∑
s2,ωi

P ω0

`′ Pk′Q
s
jNlm(P ω1

`′ Q̄
s
<jφ

1
k1
, P ω2

` Q̄s2
<jφ

2
k2

)

By Lemma 5.5.2, the summand on the RHS vanishes unless

|∠(ω0, ω1)| . 2`2k2−k′ + 2`
′
. 2`

′

|∠(sω0, s2ω2)| . 2` + max(2`
′
, 2`) . 2`.

Note that P ω0

`′ Pk′Q
s
j and 22`′+2k′�−1P ω0

`′ Pk′Q
s
j are disposable. Corollary 5.4.1 implies

‖Nlm(P ω1

`′ Q̄
s
<jφ

1
k1
, P ω2

` Q̄s2
<jφ

2
k2

)‖L1L∞ . 2`‖P ω1

`′ Q̄
s
<j∇φ1

k1
‖L2L∞‖P ω2

` Q̄s2
<j∇φ2

k2
‖L2L∞ (6.1.39)
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For a fixed ω0 [resp. ω1], there are only (uniformly) bounded number of ω1, ω2 [resp.
ω0, ω2] such that the summand is nonzero. Summing first in ω2 (finitely many terms), then
the (essentially diagonal) summation in ω0, ω1, we obtain(∑

ω0

LHS(6.1.39)2) 1
2 . 2`

(∑
ω1

‖P ω1

`′ Q̄
s
<j∇φ1

k1
‖2
L2L∞

) 1
2 sup

ω2

‖P ω2
` Q̄s2

<j∇φ2
k2
‖L2L∞

Keeping track of derivatives and dyadic factors, recalling the definition of Zk′ and using
(6.1.10) for φ1, φ2, we obtain

‖�−1I0‖Zσ
k′
.
∑
j<k2

2
1
4

(j−k2)2k2−k′‖φ1
k1
‖S̄σk1
‖φ2

k2
‖S̄σk2

This completes the proof of (6.1.37).

Proof of (6.1.6)

The low-high part of the estimate for Ax(φ
1, φ2) follows from (6.1.37). For the high-high

parts of both Ax(φ
1, φ2) and A0(φ1, φ2) we fix the frequency and use (2.1.16), Hölder L2L4×

L2L4 → L1L2 together with L2L4 Strichartz inequalities. We gain the factor 2
d−4

2
(kmin−kmax)

which suffices to do the summation in the present case d ≥ 5.

6.2 Trilinear estimates for MKG

This section is devoted to the the proof of Proposition 1.8.3.

Proof of Proposition 1.8.3

Our goal is to prove

‖π[A(φ1, φ2)]φ‖N̄σ−1 . ‖φ1‖S̄σ‖φ2‖S̄σ‖φ‖S̄σ

First we note that (recalling definition (6.1.1)) (6.1.2) together with (6.1.3) implies

‖π[0,ALH
0 (φ1, φ2)]φ‖N̄σ−1 . ‖φ1‖S̄σ‖φ2‖S̄σ‖φ‖S̄σ

Secondly, (6.1.4) and (1.8.5) imply

‖(I −H∗)π[(Ax,A
HH
0 )(φ1, φ2)]φ‖N̄σ−1 . ‖φ1‖S̄σ‖φ2‖S̄σ‖φ‖S̄σ

For d ≥ 5, (1.8.6) and (6.1.6) imply

‖H∗π[(Ax,A
HH
0 )(φ1, φ2)]φ‖N̄σ−1 . ‖φ1‖S̄σ‖φ2‖S̄σ‖φ‖S̄σ
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which concludes the proof in the case d ≥ 5. In the remaining of this section we assume
d = 4, σ = 1.

Next we use (1.8.6) together with (6.1.5) and obtain

‖H∗π[(I −H)(Ax,A
HH
0 )(φ1, φ2)]φ‖N̄ . ‖φ1‖S̄1‖φ2‖S̄1‖φ‖S̄1

Since HA0 = HAHH
0 it remains to consider H∗π[HA]φ which we write using (1.7.8), (1.7.9)

as
H∗π[HA(φ1, φ2)]φ = Q1 +Q2 +Q3

where

Q1 :=H∗(�−1HI(φ1∂αφ̄2) · ∂αφ),

Q2 :=−H∗(H∆−1�−1∂t∂αI(φ1∂αφ̄2) · ∂tφ),

Q3 :=−H∗(H∆−1�−1∂α∂
iI(φ1∂iφ̄2) · ∂αφ).

and it remains to prove

‖Qi(φ1, φ2, φ)‖N̄ . ‖φ1‖S̄1‖φ2‖S̄1‖φ‖S̄1 , i = 1, 3; (d = 4). (6.2.1)

Proof of (6.2.1) for Q1

Fix k, k1, k2 ≥ 0 and let kmin = min(k, k1, k2) ≥ 0. The estimate follows from

‖
∑

k′<kmin−C

∑
j<k′+C

Q1
j,k′(φ

1
k1
, φ2

k2
, φk)‖Nk . ‖φ1

k1
‖S̄1

k1
‖φ2

k2
‖S̄1

k2
‖φk‖S̄1

k
(6.2.2)

by summing in k1 = k2 +O(1), where

Q1
j,k′(φ

1
k1
, φ2

k2
, φk) = Q̄<j[Pk′Qj�

−1(Q̄<jφ
1
k1
∂αQ̄<jφ

2
k2

) · ∂αQ̄<jφk].

Define l ∈ [−kmin, C] by j = k′ + 2l which implies ∠(φk, Pk′A),∠(φ2
k2
, Pk′A) . 2l. When

kmin = 0 we may set l = 0 and similarly for l0 below.
In proving (6.2.2), we make the normalization

‖φ1
k1
‖S̄1

k1
= 1, ‖φ2

k2
‖S̄1

k2
= 1, ‖φk‖S̄1

k
= 1. (6.2.3)

Since we have a null form between φ2 and φ we use a bilinear partition of unity based on
their angular separation:

Q1
j,k′ =

∑
l0+C<l′<l

∑
ω1,ω2∈Γ(l′)

∠(ω1,ω2)'2l
′

Q1
j,k′(φ

1
k1
, P ω2

l′ φ
2
k2
, P ω1

l′ φk) +
∑

ω1,ω2∈Γ(l0)

∠(ω1,ω2).2l0

Q1
j,k′(φ

1
k1
, P ω2

l0
φ2
k2
, P ω1

l0
φk)
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where l0 := max(−kmin, l + k′ − kmin,
1
2
(j − kmin)) and the angle ∠(ω1, ω2) is taken mod π.

Notice that the sums in ω1, ω2 are essentially diagonal. In each summand, we may insert
P

[ω1]
l in front of Pk′Qj�−1, where P

[ω1]
l is uniquely (up to O(1)) defined by ω1 (or ω2).

For the first sum, for kmin > 0, for any l′ ∈ [l0 + C, l] we will prove∑
ω1,ω2

‖Q1
j,k′(φ

1
k1
, P ω2

l′ φ
2
k2
, P ω1

l′ φk)‖L1L2 . 2
1
4

(l′+l)2
1
2

(k′−k2) (6.2.4)

by employing the null-frame estimate in Corollary 5.2.2, which takes advantage of the angular
separation. Summing in l′, j, k′ we obtain part of (6.2.2).

At small angles however, one does not control the null-frame norms for Klein-Gordon
waves and the null-form gives only a limited gain. We consider two cases.

For j ≥ −kmin we sum the following in j, k′∑
ω1,ω2

‖Q1
j,k′(φ

1
k1
, P ω2

l0
φ2
k2
, P ω1

l0
φk)‖L1L2 . 2l2k

′−kmin (6.2.5)

When j ≤ −kmin (thus k′ ≤ −kmin − 2l and l0 = −kmin) the operator Pk′Qj�−1 becomes
more singular and we encounter a logarithmic divergence if we try to sum k′, j outside the
norm in (6.2.2). We proceed as follows. We write

Q1
j,k′(φ

1
k1
, P ω2

l0
φ2
k2
, P ω1

l0
φk) = Q̄<j[P

[ω1]
l Pk′Qj�

−1(Q̄<jφ
1
k1
∂αQ̄<jP

ω2
l0
φ2
k2

) · ∂αQ̄<jP
ω1
l0
φk]

We define
Q̃ωij,k′ = P

[ω1]
l Pk′Qj�

−1(φ1
k1
∂αQ̄<k2+2l0P

ω2
l0
φ2
k2

) · ∂αQ̄<k+2l0P
ω1
l0
φk

and we shall prove, using the embeddings in Prop. 2.2.2, that for any l ∈ [−kmin, C]∑
ω1,ω2

‖
∑

k′≤−kmin−2l

Q̃ωik′+2l,k′‖L1L2 . 2−
1
2

(l+kmin), (6.2.6)

which sums up (in l) towards the rest of (6.2.2) except for the remainders

Q̃ωij,k′ −Q
1
j,k′(φ

1
k1
, P ω2

l0
φ2
k2
, P ω1

l0
φk) = R1,ωi

j,k′ +R2,ωi
j,k′ +R3,ωi

j,k′ +R4,ωi
j,k′

for which we have ∑
ω1,ω2

‖Ri,ω
j,k′‖Nk . 2

l
2 2

1
2

(k′−k2), i = 1, 4 (6.2.7)

where

R1,ωi
j,k′ := Q̄>j[P

[ω1]
l Pk′Qj�

−1(Q̄<jφ
1
k1
∂αQ̄<jP

ω2
l0
φ2
k2

) · ∂αQ̄<jP
ω1
l0
φk],

R2,ωi
j,k′ := P

[ω1]
l Pk′Qj�

−1(Q̄<jφ
1
k1
∂αQ̄<jP

ω2
l0
φ2
k2

) · ∂αQ̄[j,k−2kmin]P
ω1
l0
φk,

R3,ωi
j,k′ := P

[ω1]
l Pk′Qj�

−1(Q̄>jφ
1
k1
∂αQ̄<jP

ω2
l0
φ2
k2

) · ∂αQ̄<k−2kmin
P ω1
l0
φk,

R4,ωi
j,k′ := P

[ω1]
l Pk′Qj�

−1(φ1
k1
∂αQ̄[j,k2−2kmin]P

ω2
l0
φ2
k2

) · ∂αQ̄<k−2kmin
P ω1
l0
φk.

Summing in j, k′ we obtain the rest of (6.2.2).
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Proof of (6.2.4) and (6.2.5)

We are in the case k1 = k2 + O(1), k = k̃ + O(1), k′ + C < kmin = min(k, k1, k2) > 0,
j = k′ + 2l. We prove 2

|〈P [ω1]
l Pk′Qj�

−1(Q̄<jφ
1
k1
∂αQ̄<jP

ω2

l′/l0
φ2
k2

), P̃k′Q̃j(∂
αQ̄<jP

ω1

l′/l0
φk · Q̄<jψk̃〉|

.Mω1,ω2‖ψk̃‖L∞L2

where Mω1,ω2 will be defined below.
The two products above are summed over diametrically opposed boxes ±C [resp. ±C ′ ]

of size ' 2k
′× (2k

′+l)3 included in the angular caps Cω2

l′/l0
[resp. Cω1

l′/l0
] where P ω2

l′/l0
[resp. P ω1

l′/l0
]

are supported (Lemma 5.5.2).

Note that 2j+k
′
P

[ω1]
l Pk′Qj�−1 acts by convolution with an integrable kernel. By a simple

argument based on translation-invariance we may dispose of this operator (after first making
the the C, C ′ summation).

Step 1: Proof of (6.2.4)
In this case the null form gains 22l′ . It suffices to show, having normalized (6.2.3)

2−j−k
′ |〈(Q̄<jφ

1
k1
∂αQ̄

±±′
<j P

ω2

l′ φ
2
k2

), (∂αQ̄±<jP
ω1

l′ φk · Q̄<jψk̃〉| .Mω1,ω2‖ψk̃‖L∞L2 (6.2.8)∑
ω1,ω2

Mω1,ω2 . 2
1
4

(l′+l)2
1
2

(k′−k2) (6.2.9)

where ∠(ω1,±′ω2) ' 2l
′
. We write 2j+k

′
LHS(6.2.8) .∫ ∑

C⊂Cω2
l′

C′⊂Cω1
l′

‖P−CQ̄<jφ
1
k1
‖L∞x ‖∂αPCQ̄

±±′
<j φ

2
k2
∂αPC′Q̄

±
<jφk‖L2

x
‖P−C′Q̄<jψk̃‖L2

x
(t) dt .

∫
(
∑
C⊂Cω2

l′

‖P−CQ̄<jφ
1
k1
‖2
L∞x

)
1
2 (
∑
C⊂Cω2

l′
C′⊂Cω1

l′

‖∂αPCQ̄±±
′

<j φ
2
k2
∂αPC′Q̄

±
<jφk‖2

L2
x
)

1
2‖Q̄<jψk̃‖L2

x
(t) dt

. (
∑
C⊂Cω2

l′

‖P−CQ̄<jφ
1
k1
‖2
L2L∞)

1
2 Iω1,ω2(l′)‖Q̄<j ψk̃‖L∞L2

where, using Corollary 5.2.2,

Iω1,ω2(l′)2 :=
∑
C⊂Cω2

l′

∑
C′⊂Cω1

l′

‖∂αPCQ̄±±
′

<j φ
2
k2
· ∂αPC′Q̄±<jφk‖2

L2
t,x

. 2l
′
(
∑
C⊂Cω2

l′

‖PCQ̄±±
′

<j ∇t,xφ
2
k2
‖2

PW±±
′

C
)(
∑
C′⊂Cω1

l′

‖PC′Q̄±<j∇t,xφk‖2
NE±C′

).

2Notice that this case does not occur when kmin = 0.
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Thus in (6.2.8) we may take

Mω1,ω2 = 2−j−k
′
(
∑
C⊂Cω2

l′

‖P−CQ̄<jφ
1
k1
‖2
L2L∞)

1
2 Iω1,ω2(l′)

and by Summing in ω2 (the ω1 sum is redundant) using C-S we have∑
ω1,ω2

Mω1,ω2 . 2−2l−2k′ · 2l′ · 2
1
2
l2k
′
2−

1
2
k1 · 2

3
2

(k′+l)

which implies (6.2.9).
Step 2: Proof of (6.2.5) Here j ≥ −kmin. In this case the null form gains 2j−kmin and

2l0 = max(2−kmin , 2l2k
′−kmin , 2

1
2

(j−kmin)) ≤ 2l

By Prop. 5.2.1 and Remark 5.2.3 it suffices to prove, under (6.2.3)

2j−kmin|〈P [ω1]
l Pk′Qj�

−1(Q̄<jφ
1
k1
∇t,xQ̄<jP

ω2
l0
φ2
k2

), P̃k′Q̃j(∇t,xQ̄<jP
ω1
l0
φk · Q̄<jψk̃〉|

.Mω1,ω2‖ψk̃‖L∞L2 ,
∑
ω1,ω2

Mω1,ω2 . 2l2k
′−kmin . (6.2.10)

We have

LHS (6.2.10) .2−kmin−k′2k2

∑
C⊂Cω2

l0

‖PCQ̄<jφ
1
k1
‖L2L∞‖P−CQ̄<jφ

2
k2
‖L2L∞

× sup
t

∑
C′⊂Cω1

l0

‖PC′Q̄<j∇φk(t)‖L2
x
‖P−C′Q̄<jψk̃(t)‖L2

x
.Mω1,ω2‖ψk̃‖L∞L2

where for each t we have used Cauchy-Schwarz and orthogonality, where

Mω1,ω2 = 2−kmin−k′2k2(
∑
C⊂Cω2

l0

‖PCQ̄<jφ
1
k1
‖2
L2L∞)

1
2 (
∑
C⊂Cω2

l0

‖P−CQ̄<jφ
2
k2
‖2
L2L∞)

1
2‖∇φk‖L∞L2

Summing in ω2 (the ω1 sum is redundant) using C-S and (6.1.10), (6.1.7) we get (6.2.10).

Proof of (6.2.6)

Recall that l ∈ [−kmin, C], kmin = min(k, k1, k2) ≥ 0 and k1 = k2 + O(1) are fixed. We are
in the case k′ + 2l = j ≤ −kmin, thus l0 = −kmin, i.e. ∠(ω1, ω2) . 2−kmin .

By Prop. 5.2.1 and Remark 5.2.3 the null form gains 2−2kmin . We can apply that propo-
sition because Q̄<ki−2kmin

= Q<ki−2kmin+CQ̄<ki−2kmin
.

We will apply Prop. 2.2.2. For M = −kmin − 2l, we write∑
k′≤M

Q̃ωik′+2l,k′ =
∑
±

T
[ω1]
l (φ1

k1
∂αQ̄<k2+2l0P

ω2
l0
φ2
k2

) · ∂αQ̄<k+2l0P
ω1
l0
φk (6.2.11)
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We consider two cases.
Case 1: kmin = k2 +O(1). The null form gains 2−2k2 . We have

‖(6.2.11)‖L1L2 . 2−2k2‖T [ω1]
l (φ1

k1
Q̄<k2+2l0P

ω2
l0
∇φ2

k2
)‖L1L∞‖P ω1

l0
Q̄<k+2l0∇φk‖L∞L2 .

Using (2.2.5) and (2.2.2) we have

‖T [ω1]
l (φ1

k1
Q̄<k2+2l0P

ω2
l0
∇φ2

k2
)‖L1L∞ . 2−

1
2
l2k2‖φ1

k1
‖L2L4,2‖P ω2

l0
Q̄<k2+2l0φ

2
k2
‖L2L4,2

Summing (diagonally) in ω1, ω2 we obtain (6.2.6) since ‖φ1
k1
‖L2L4,2 . 2−

1
4
k1‖φ1

k1
‖S̄1

k1
,

(∑
ω

‖P ω
l0
Q̄<k2+2l0φ

2
k2
‖2
L2L4,2

) 1
2 . 2−

1
4
k2‖φ2

k2
‖S̄1

k2

(∑
ω

‖P ω
l0
Q̄<k+2l0∇t,xφk‖L∞L2

) 1
2 . ‖φk‖S̄1

k
. (6.2.12)

Case 2: kmin = k. Now the null form gains 2−2k, so we can put φk in L2L4.

‖(6.2.11)‖L1L2 . 2−2k‖T [ω1]
l (φ1

k1
Q̄<k2+2l0P

ω2
l0
∇φ2

k2
)‖L2L4‖P ω1

l0
Q̄<k+2l0∇φk‖L2L4 .

Using (2.2.4) and Hölder’s inequality we have

‖T [ω1]
l (φ1

k1
Q̄<k2+2l0P

ω2
l0
∇φ2

k2
)‖L2L4 . 2−

1
2
l2k2‖φ1

k1
‖
L4L

8
3
‖P ω2

l0
Q̄<k2+2l0φ

2
k2
‖
L4L

8
3

Summing (diagonally) in ω1, ω2 we obtain (6.2.6) since ‖φ1
k1
‖
L4L

8
3
. 2−

5
8
k1‖φ1

k1
‖S̄1

k1
,

(∑
ω

‖P ω
l0
Q̄<k2+2l0φ

2
k2
‖2

L4L
8
3

) 1
2 . 2−

5
8
k2‖φ2

k2
‖S̄1

k2

(∑
ω

‖P ω
l0
Q̄<k+2l0∇t,xφk‖L2L4

) 1
2 . 2

3
4
k‖φk‖S̄1

k
.

Proof of (6.2.7)

By Prop. 5.2.1 and Remark 5.2.3 the null form gains 2−2kmin .
Step 1: R1 and R2. Denoting

hωi = P
[ω1]
l Pk′Qj�

−1(Q̄<jφ
1
k1
∂αQ̄<jP

ω2
l0
φ2
k2

),

we estimate using Bernstein and Prop. 5.6.2

‖hωi‖L2L∞ . 22k′+ 3
2
l‖hωi‖L2

t,x
. 2−j−k

′
22k′+ 3

2
l
(∑
C

‖PCQ̄<jφ
1
k1
‖2
L2L∞

) 1
2‖P ω2

l0
Q̄<j∇φ2

k2
‖L∞L2
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where C = Ck′(l). Using the X̄
− 1

2
1 norm, we have

‖R1,ωi
j,k′ ‖Nk . 2−

j
2 2−2kmin‖hωi‖L2L∞‖P ω1

l0
Q̄<j∇φk‖L∞L2

‖R2,ωi
j,k′ ‖L1L2 . 2−2kmin‖hωi‖L2L∞‖P ω1

l0
Q̄[j,k−2kmin]∇φk‖L2

t,x

Summing in ω1, ω2, we obtain (6.2.7) for R1, R2 by using (6.1.10) for φ1 and (6.2.12) for φ2

(first introducing Q̄<k2+2l0 and discarding Q̄<j), and (6.2.12), respectively (6.1.8) for φ. We
also use 2−kmin . 2l.

Step 2: R3 and R4. We denote

h
ω1,2

3 = P
[ω1]
l Pk′Qj�

−1(Q̄>jφ
1
k1
∂αQ̄<jP

ω2
l0
φ2
k2

),

h
ω1,2

4 = P
[ω1]
l Pk′Qj�

−1(φ1
k1
∂αQ̄[j,k2−2kmin]P

ω2
l0
φ2
k2

).

For i = 3, 4 we have

‖Ri,ω
j,k′‖L1L2 . 2−2kmin‖hω1,2

i ‖L1L∞‖P ω1
l0
Q̄<k−2kmin

∇φk‖L∞L2

We estimate using Prop. 5.6.2

‖hω1,2

3 ‖L1L∞ . 22k′+ 3
2
l‖hω1,2

3 ‖L1L2 . 2−j−k
′
22k′+ 3

2
l‖Q̄>jφ

1
k1
‖L2

t,x

(∑
C

‖PCQ̄<j∇φ2
k2
‖2
L2L∞

) 1
2

where C = Ck′(0). Reversing the roles of φ1, φ2, ‖hω1,2

4 ‖L1L∞ is also estimated.
Summing in ω1, ω2, we obtain (6.2.7) for R3, R4 by using (6.2.12) for φ and (6.1.8)

(6.1.10), for φ1, φ2. We also use 2−kmin . 2l.

Proof of (6.2.1) for Q2

Estimating in L1L2 we use Hölder’s inequality with ‖∂tφk‖L∞L2 . ‖φk‖S̄1
k

and

‖∆−1�−1∂tQjPk′∂α(Q̄<jφ
1
k1
· ∂αQ̄<jφ

2
k2

)‖L1L∞ . 2l2
1
2

(k′−k1)‖φ1
k1
‖S̄1

k1
‖φ2

k2
‖S̄1

k2
(6.2.13)

The Q2 part of (6.2.1) follows by summing this in k′, j, where

k1 = k2 +O(1), k′ + C < k1, k, j < k′ + C, l :=
1

2
(j − k′)− ≥ −k1, k (6.2.14)

To prove (6.2.13), first note that the product is summed over diametrically opposed boxes
C1, C2 of size ' 2k

′ × (2k
′+l)3 (Lemma 5.5.2). Each term in the sum forces a localization P ω

l

in front of QjPk′ and note that 2j+k
′
P ω
l QjPk′�−1 is disposable.

Now recall for (5.1.1) the decomposition (5.1.2)-(5.1.6). By Prop. 5.2.4, and the fact
that here ∠(C1,−C2) . 2l+k

′−k1 we have

‖∆−1�−1∂tQjPk′N0(Q̄<jφ
1
k1
, Q̄<jφ

2
k2

)‖L1L∞ . 2−j−2k′ × (22l+2k′)×
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×
(∑
C1

‖PC1Q̄<jφ
1
k1
‖2
L2L∞

) 1
2
(∑
C2

‖PC2Q̄<jφ
2
k2
‖2
L2L∞

) 1
2

The same holds true for M0 , since now, by Prop. 5.1.2 we gain 22k′−2k1 . 22k′+2l. Using
(6.1.10) we obtain (6.2.13) for N0,M0. We turn to R±0 and write

2k2‖∆−1�−1∂tQjPk′
(
(∂t ∓ i 〈D〉)Q̄±<jφ1

k1
· Q̄∓<jφ2

k2

)
‖L1L∞ . 2k2 · 2−j−2k′×

×
(∑
C1

‖PC1(∂t ∓ i 〈D〉)Q̄±<jφ1
k1
‖2
L2L∞

) 1
2
(∑
C2

‖PC2Q̄∓<jφ2
k2
‖2
L2L∞

) 1
2

Then we use (6.1.12), (6.1.10) to obtain R±0 -part of (6.2.13). The other parts of R±0 follow
by reversing the roles of φ1, φ2.

Proof of (6.2.1) for Q3

Let k1, k2, k, k
′, j, l as in (6.2.14) and k̃ = k+O(1), kmin := min(k1, k2, k), k′ = k′′ +O(1) <

kmin − C, j = j′ +O(1) < k′ + C. We prove

|〈∂Qj′Pk′

∆�
(Q̄<j′φ

1
k1
· ∂Q̄<j′φ

2
k2

), QjPk′′∂α(∂αQ̄<jφk · Q̄<jψk̃)〉| .

. 2
1
2
l2

1
2

(k′−kmin)‖φ1
k1
‖S̄1

k1
‖φ2

k2
‖S̄1

k2
‖φk‖S̄1

k
‖ψk̃‖N∗k

(6.2.15)

which, by duality, implies (6.2.1) for Q3. Like for Q2, we sum over diametrically opposed
boxes ±C of size ' 2k

′ × (2k
′+l)3 and introduce P ω

l to bound �−1.
First, using Prop. 5.6.2 and (6.1.7), (6.1.10), we estimate

‖∆−1�−1∂Qj′Pk′(Q̄<j′φ
1
k1
· ∂Q̄<j′φ

2
k2

)‖L2
t,x
. 2−j−2k′(2

1
2
l2k
′
2−

1
2
k1)‖φ1

k1
‖S̄1

k1
‖φ2

k2
‖S̄1

k2

For the second product, we recall the decomposition (5.1.1)-(5.1.6). By Prop. 5.2.4 and
orthogonality, using the fact that ∠(φ, ψ) . 2l+k

′−k, we have

‖QjPk′′N0(Q̄<jφk, Q̄<jψk̃)‖L2
t,x
. 22l+2k′

(∑
C

‖PCQ̄<jφk‖2
L2L∞

) 1
2‖ψk̃‖L∞L2

The same holds true for M0 , since now, by Prop. 5.1.2 we gain 22k′−2k . 22k′+2l.
For R±0 we prove

‖QjPk′′
(
(∂t ∓ i 〈D〉)Q̄±<jφk · Q̄∓<jψk̃

)
‖L2

t,x
.
(∑
C

‖PC(∂t ∓ i 〈D〉)Q̄±<jφk‖2
L2L∞

) 1
2‖ψk̃‖L∞L2 ,

2k‖QjPk′′(Q̄
±
<jφk · (∂t ± i 〈D〉)Q̄∓<jψk̃)‖L2

t,x
. 2k‖Q̄±<jφk‖L∞L2×

×
(∑
C

‖PC(∂t ± i 〈D〉)Q̄∓<jψk̃‖
2
L2L∞

) 1
2 . 2k22k′+ 3

2
l2

1
2
j‖φk‖L∞L2‖ψk̃‖

X̄
1
2∞
.

where we have used Bernstein’s inequality and orthogonality.
Putting all of the above together, using (6.1.10), (6.1.12) and (6.1.7), we obtain (6.2.15).
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6.3 Bilinear estimates for MD

Here we prove Propositions 1.8.6–1.8.7 concerning bilinear estimates.
Unless otherwise stated, we restrict to the case d = 4; the general case of d ≥ 4 is

discussed in Remark 6.3.8 below.

Preliminaries: Conventions and frequency envelope bounds

Henceforth, we use the shorthand A to denote any Aj (j = 1, . . . , 4). Unless otherwise
stated, we normalize the frequency envelope norms of the inputs as follows:

‖B‖Y 1
a

= ‖A‖S1
a

= ‖ψ‖
(S̃

1/2
s )b

= ‖ϕ‖
(S̃

1/2

s′ )c
= 1. (6.3.1)

Having control of the S1 and S
1/2
± norms through the frequency envelopes a, b results in the

following estimates, which we will use repeatedly in the proofs of the bilinear and trilinear
estimates3:

‖Ak‖L∞L2 .2−kak, ‖ψk‖L∞L2 . 2−
1
2
kbk, (6.3.2)

‖QjAk‖L2L2 .2−
1
2

max{j,k}2−
1
2
j2−

1
2
kak, ‖Qs

jψk‖L2L2 . 2−
1
2

max{j,k}2−
1
2
jbk. (6.3.3)

For k′ < k, we have ( ∑
Ck′ (0)

‖PCk′ (0)Ak‖2
L2L∞

)1/2

.2k
′
2−

1
2
kak,

( ∑
Ck′ (0)

‖PCk′ (0)ψk‖2
L2L∞

)1/2

.2k
′
bk.

(6.3.4)

For k′ such that k′ ≤ k and j ≤ k′ + C, define ` = 1
2
(j − k′)−. Then we have( ∑

Ck′ (`)

‖PCk′ (`)Q<jAk‖2
L2L∞

)1/2

.2k
′
2

1
2
`2−

1
2
kak,

( ∑
Ck′ (`)

‖PCk′ (`)Q
s
<jψk‖2

L2L∞

)1/2

.2k
′
2

1
2
`bk.

(6.3.5)

These bounds follow immediately from the definition of the norms S1
a and S

1/2
b .

The Z̃
1/2
s component leads to the bound

‖Qs
jψk‖L1L∞ . 2

1
2
k25(k−j)+bk. (6.3.6)

3Of course, the same estimates as ψ hold for ϕ with (s, bk) replaced by (s′, ck).
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Indeed, by (1.5.1) we have

‖Qs
jψk‖L1L∞ .2−j24(k−j)+‖(i∂t + s|D|)ψk‖L1L∞

.2
1
2
k2k−j24(k−j)+‖ψk‖Z̃1/2

s
,

from which (6.3.6) follows.
Finally, the normalization ‖B‖Y 1

a
= 1 implies

‖Bk‖L2L2 . 2−
3
2
kak, ‖QjBk‖L2L2 . 2−max{j,k}2−

1
2
kak. (6.3.7)

Proof of Proposition 1.8.6

Here we prove (1.8.12)–(1.8.14).

Step 0: Reduction to dyadic estimates

Under the normalization (6.3.1), we claim:

2−
1
2
k0‖Pk0L(ψk1 , ϕk2)‖L2L2 .2

1
2

(kmax−kmin)bk1ck2 , (6.3.8)

‖Pk0N ∗(ψk1 , ϕk2)‖N .2δ0(kmax−kmin)bk1ck2 , (6.3.9)

‖Pk0Nss′(ψk1 , ϕk2)‖N .2δ0(kmax−kmin)bk1ck2 . (6.3.10)

Proposition 1.8.6 follows from the above dyadic estimates. We begin with the proof of
(1.8.12). Observe that ME(P̃k1 ·, P̃k2·) = L and Pk0∂tME(P̃k1·, P̃k2·) = |D|Pk0L. Therefore,
(6.3.8) implies

‖Pk0ME(ψk1 , ϕk2)‖L2Ḣ−1/2 + ‖Pk0∂tME(ψk1 , ϕk2)‖L2Ḣ−3/2 . 2
1
2

(kmax−kmin)bk1ck2 .

The LHS is non-vanishing only if |kmax − kmed| ≤ 5 (Littlewood-Paley trichotomy). We now
divide into cases kmin = k0, k1 and k2, which roughly correspond to (high-high), (low-high)
and (high-low), respectively. In each case, summing up in k1, k2 using the exponential gain

2
1
2

(kmin−kmax) and the slow variance of b, c, we arrive at

‖Pk0ME(ψ, ϕ)‖L2Ḣ−1/2 + ‖Pk0∂tME(ψ, ϕ)‖L2Ḣ−3/2 . bk0ck0 ,

which is precisely the desired estimate (1.8.12) under the normalization (6.3.1).
The proof of (1.8.13) and (1.8.14) proceeds similarly. By Proposition 5.4.4, we have

MR
x = N ∗ and MS

x,s′(Πs·, ·) = Nss′(·, ·). Therefore, (6.3.9) and (6.3.10) imply

‖Pk0MR(ψk1 , ϕk2)‖N + ‖Pk0MS
s′(Πsψk1 , ϕk2)‖N . 2δ0(kmin−kmax)bk1ck2 .

On the other hand, application of (6.3.8) shows that

‖Pk0MR(ψk1 , ϕk2)‖L2Ḣ−1/2 + ‖Pk0MS
s′(Πsψk1 , ϕk2)‖L2Ḣ−1/2 . 2

1
2

(kmin−kmax)bk1ck2 .

Proceeding as before using Littlewood-Paley trichotomy, the exponential gain in kmin− kmax

and the slow variance of b, c, the desired estimates (1.8.13) and (1.8.14) follow.
The rest of this subsection is devoted to establishing (6.3.8)–(6.3.10).
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Step 1: Proof of (6.3.8)

Without loss of generality, assume that k2 ≤ k1. Then (6.3.8) follows from application of
(5.6.1) in Lemma 5.6.1 and the frequency envelope bounds (6.3.2) and (6.3.4).

Step 2: Proof of (6.3.9)

We first treat the high modulation contribution.

Lemma 6.3.1. Assume the normalization (6.3.1). For any k0, k1, k2, j ∈ Z, we have

2−
1
2
j‖Pk0QjL(ψk1 , ϕk2)‖L2L2 .2

1
2

(kmin−j)2
1
2

(kmin−kmax)bk1ck2 ,

‖Pk0L(Qs1
j ψk1 , ϕk2)‖L1L2 .2

1
2

(kmin−j)2
1
2

(kmin−kmax)bk1ck2 ,

‖Pk0L(ψk1 , Q
s2
j ϕk2)‖L1L2 .2

1
2

(kmin−j)2
1
2

(kmin−kmax)bk1ck2 .

Proof. The lemma is a corollary of Lemma 5.6.1. Indeed, the first estimate follows from
(5.6.1) and the frequency envelope bounds (6.3.2) and (6.3.4). Similarly, the second estimate
follows from (5.6.2) and the frequency envelope bounds (6.3.3) and (6.3.4). The final estimate
follows from the second one by symmetry.

By Lemma 6.3.1 and (1.5.2), it follows that

‖Pk0Q≥kmin−10N ∗(ψk1 , ϕk2)‖
X

0,−1/2
1

.2
1
2

(kmin−kmax)bk1ck2 ,

‖Pk0Q<kmin−10N ∗(Qs
≥kmin−10ψk1 , ϕk2)‖L1L2 .2

1
2

(kmin−kmax)bk1ck2 ,

‖Pk0Q<kmin−10N ∗(Qs
<kmin−10ψk1 , Q

s′

≥kmin−10ϕk2)‖L1L2 .2
1
2

(kmin−kmax)bk1ck2 ,

which are all acceptable. Using the identity Pk0Q<kmin−10 =
∑

s0
Pk0Q

s0
<kmin−10, the remainder

can be written as ∑
s0

Pk0Q
s0
<kmin−10N

∗(Qs
<kmin−10ψk1 , Q

s′

<kmin−10ϕk2)

Summing according to the highest modulation, we decompose the remainder into I0 +
I1 + I2, where

I0 =
∑
s0

∑
j<kmin−10

Pk0Q
s0
j N ∗(Qs

<jψk1 , Q
s′

<jϕk2), (6.3.11)

I1 =
∑
s0

∑
j<kmin−10

Pk0Q
s0
≤jN ∗(Qs

jψk1 , Q
s′

<jϕk2), (6.3.12)

I2 =
∑
s0

∑
j<kmin−10

Pk0Q
s0
≤jN ∗(Qs

≤jψk1 , Q
s′

j ϕk2). (6.3.13)
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These sums can be estimated using Proposition 5.6.4. We split into three cases according to
Littlewood-Paley trichotomy:

Step 2.1: (high-high) interaction, k0 = kmin. Let ` = 1
2
(j − kmin). By Proposition 5.6.4, we

have

‖I0‖X0,−1/2
1

.
∑

j<k0−10

2−
1
2
j2`‖ψk1‖L∞L2

( ∑
Ck0

(`)

‖PCk0
(`)Q

s′

<jϕk2‖2
L2L∞

)1/2

,

‖I1‖L1L2 .
∑

j<k0−10

2`‖Qs
jψk1‖L2L2

( ∑
Ck0

(`)

‖PCk0
(`)Q

s′

<jϕk2‖2
L2L∞

)1/2

,

‖I2‖L1L2 .
∑

j<k0−10

2`
( ∑
Ck0

(`)

‖PCk0
(`)Q

s
≤jψk1‖2

L2L∞

)1/2

‖Qs′

j ϕk2‖L2L2 .

Then by the frequency envelope bounds (6.3.2), (6.3.3) and (6.3.5), we obtain

‖I0‖X0,−1/2
1

+ ‖I1‖L1L2 + ‖I2‖L1L2 .
∑

j<k0−10

2
1
4
`2

1
2

(k0−k1)bk1ck2 ,

which is bounded by 2
1
2

(k0−k1)bk1ck2 and thus acceptable.

Step 2.2: (high-low) interaction, k2 = kmin. As before, let ` = 1
2
(j − kmin). By Proposi-

tion 5.6.4, we have

‖I0‖X0,−1/2
1

.
∑

j<k2−10

2
1
2
j2`‖ψk1‖L∞L2

( ∑
Ck2

(`)

‖PCk2
(`)Q

s′

<jϕk2‖2
L2L∞

)1/2

,

‖I1‖L1L2 .
∑

j<k2−10

2`‖Qs
jψk1‖L2L2

( ∑
Ck2

(`)

‖PCk2
(`)Q

s′

<jϕk2‖2
L2L∞

)1/2

,

which are both bounded by . 2
1
2

(k2−k1)bk1ck2 by the frequency envelope bounds (6.3.2),
(6.3.3) and (6.3.5). However, a naive application of the same strategy to I2 only yields

‖I2‖N .
∑

j<k2−10

2`
( ∑
Ck2

(`)

‖PCk2
(`)Q

s
≤jψk1‖2

L2L∞

)1/2

‖Qjϕk2‖L2L2 . bk1ck2 .

which lacks the necessary exponential gain in k1 − k2.
Here the idea is to use the Z̃

1/2
s′ bound (6.3.6). We introduce a small number δ1 > 0 to

be determined later. We split the j-summation in I2 to I ′2 =
∑

j<k2−10+δ1(k2−k1)(· · · ) and

I ′′2 =
∑

j∈[k2−10+δ1(k2−k1),k2−10)(· · · ). For the first sum I ′2, we use Proposition 5.6.3, (6.3.3)

and (6.3.5) as before to estimate

‖I ′2‖L1L2 .
∑

j<k2−10+δ1(k2−k1)

2`
( ∑
Ck2

(`)

‖PCk2
(`)Q

s
≤jψk1‖2

L2L∞

)1/2

‖Qs′

j ϕk2‖L2L2

.
∑

j<k2−10+δ1(k2−k1)

2
1
2
`bk1ck2 . 2

δ1
4

(k2−k1)bk1ck2 ,
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For the second sum I ′′2 , we use (1.5.2), Hölder’s inequality and the frequency envelope bounds
(6.3.2) and (6.3.6) to bound

‖I ′′2 ‖L1L2 .
∑

j∈[k2−10+δ1(k2−k1),k2−10)

‖ψk1‖L∞L2‖Qs′

j ϕk2‖L1L∞

.
∑

j∈[k2−10+δ1(k2−k1),k2−10)

2−
1
2
k12

1
2
k225(k2−j)bk1ck2 . 2( 1

2
−5δ1)(k2−k1)bk1ck2 .

In conclusion, we have

‖I2‖L1L2 . 2min{ δ1
4
, 1
2
−5δ1}(k2−k1)bk1ck2 ,

which is acceptable once we choose 0 < δ1 <
1
10

.

Step 2.3: (low-high) interaction, k1 = kmin. This case is strictly easier than Step 2.2, thanks
to the additional gain 2kmin−min{k0,k2} ' 2k1−k2 in Proposition 5.6.4; in particular, the use of
the Z̃

1/2
s bound (6.3.6) is not necessary. We omit the details.

Step 3: Proof of (6.3.10)

We proceed similarly to Step 2, replacing the null form N ∗ by Nss′ and thus Proposition 5.6.4
by Proposition 5.6.3. The proof applies verbatim until reduction to the low modulation case
(i.e., before Steps 2.1–2.3). A minor difference now is that the factor 2kmin−min{k1,k2} does
not4 gain 2k1−k2 in the (low-high) interaction case (i.e., analogue of Step 2.3); however, the
same proof as in the (high-low) case applies (Step 2.2).

Proof of Proposition 1.8.7, part I: N
1/2
± -bounds for Ñ

In this subsection, we prove (1.8.15)–(1.8.17) concerning the remainders ÑE, ÑR and Ñ S
s .

Step 0: Reduction to dyadic estimates

Recall that NE(P̃k1·, P̃k2·) = L, NR = N and Πs′N S
s = N ∗ss′ , which vanish when applied to

inputs Ak1 , ψk2 unless (say) k1 ≥ k2−20. The condition k1 ≥ k2−20 effectively eliminates the
(low-high) interaction (i.e., kmin = k1). More precisely, if k1 = kmin and k1 ≥ k2−20, then all
three frequencies must be comparable (i.e., |kmax−kmin| ≤ C) thanks to the Littlewood-Paley
trichotomy |kmax − kmed| ≤ 5.

Under the normalization (6.3.1) and the condition k1 ≥ k2 − 20, we claim:

‖Pk0L(Bk1 , ψk2)‖
N

1/2

s′
.2

1
2

(kmin−kmax)ak1bk2 , (6.3.14)

‖Pk0N (Ak1 , ψk2)‖
N

1/2

s′
.2δ0(kmin−kmax)ak1bk2 , (6.3.15)

‖Pk0N ∗ss′(Ak1 , ψk2)‖
N

1/2

s′
.2δ0(kmin−kmax)ak1bk2 . (6.3.16)

4Now this factor gains another 2k0−k1 in the (high-high) interaction case (i.e., analogue of Step 2.1),
which was already fine.
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From these estimates, (1.8.15)–(1.8.17) follow as in the proof of (1.8.12)–(1.8.14) from the
dyadic bounds (6.3.8)–(6.3.10) in Section 6.3; we omit the details.

Step 1: Proof of (6.3.14)

By (5.6.2) in Lemma 5.6.1 and the frequency envelope bounds (6.3.7) and (6.3.4), we have

‖Pk0L(Bk1 , ψk2)‖L1Ḣ1/2 . 2kmin2
1
2
k02−

3
2
k1ak1bk2 ,

which implies (6.3.14) under the condition k1 ≥ k2 − 20.

Step 2: Proof of (6.3.15)

As before, we begin with the high modulation contribution.

Lemma 6.3.2. Assume the normalization (6.3.1). For any k0, k1, k2, j ∈ Z such that k1 ≥
k2 − 20, we have

‖Pk0Q
s′

j L(Ak1 , ψk2)‖
N

1/2

s′
.2

1
2

(kmin−j)2
1
2

(kmin−kmax)ak1bk2 ,

‖Pk0L(QjAk1 , ψk2)‖
N

1/2

s′
.2

1
2

(kmin−j)2
1
2

(kmin−kmax)ak1bk2 ,

‖Pk0L(Ak1 , Q
s
jψk2)‖

N
1/2

s′
.2

1
2

(kmin−j)2
1
2

(kmin−kmax)ak1bk2 .

Proof. Like Lemma 6.3.1, this lemma is a corollary of Lemma 5.6.1. Applying (5.6.1) with
(f, g) = (Ak1 , ψk2) and the frequency envelope bounds (6.3.2) and (6.3.4), we have

2
1
2
k02−

1
2
j‖Pk0Q

s′

j L(Ak1 , ψk2)‖L2L2 . 2kmin2
1
2
k02−k12−

1
2
jak1bk2 ,

which proves the first estimate under the condition k1 ≥ k2−20. On the other hand, applying
(5.6.1) in two different ways, then using the frequency envelope bounds (6.3.3) and (6.3.4),
we have

2
1
2
k0‖Pk0L(QjAk1 , ψk2)‖L1L2 .2kmin2

1
2
k02−k12−

1
2
jak1bk2 ,

2
1
2
k0‖Pk0L(Ak1 , Q

s
jψk2)‖L1L2 .2kmin2

1
2
k02−

1
2
k12−

1
2
k22−

1
2
jak1bk2 ,

which imply the other two estimates under the condition k1 ≥ k2 − 20.

Proceeding as in Step 2 of Section 6.3, where we use Lemma 6.3.2 instead of Lemma 6.3.1,
the proof of (6.3.15) is reduced to handling the contribution of∑

s1

Pk0Q
s′

<kmin−10N (Qs1
<kmin−10Ak1 , Q

s
<kmin−10ψk2) = I0 + I1 + I2,
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where

I0 =
∑
s1

∑
j<kmin−10

Pk0Q
s′

j N (Qs1
≤jAk1 , Q

s
≤jϕk2), (6.3.17)

I1 =
∑
s1

∑
j<kmin−10

Pk0Q
s′

<jN (Qs1
j Ak1 , Q

s
<jϕk2), (6.3.18)

I2 =
∑
s1

∑
j<kmin−10

Pk0Q
s′

<jN (Qs1
≤jAk1 , Q

s
jϕk2). (6.3.19)

We now split into two (slightly overlapping) cases, which roughly correspond to (high-high)
and (high-low) interaction:

Step 2.1: (high-high) interaction, k0 = kmin + O(1). Let ` = 1
2
(j − kmin). Using Proposi-

tion 5.6.3 neglecting the gain 2kmin−min{k1,k2} ' 2kmin−kmax , we have

‖I0‖X1/2,−1/2

s′,1
.

∑
j<kmin−10

2−
1
2
j2

1
2
k02`‖Ak1‖L∞L2

( ∑
Ckmin

(`)

‖PCkmin
(`)Q

s
<jψk2‖2

L2L∞

)1/2

,

‖I1‖L1Ḣ1/2 .
∑
s1

∑
j<kmin−10

2
1
2
k02`‖Qs1

j Ak1‖L2L2

( ∑
Ckmin

(`)

‖PCkmin
(`)Q

s
<jψk2‖2

L2L∞

)1/2

,

‖I2‖L1Ḣ1/2 .
∑
s1

∑
j<kmin−10

2
1
2
k02`
( ∑
Ckmin

(`)

‖PCkmin
(`)Q

s1
≤jAk1‖2

L2L∞

)1/2

‖Qs
jψk2‖L2L2 .

Then by the frequency envelope bounds (6.3.2), (6.3.3) and (6.3.5), we obtain

‖I0‖N1/2

s′
+ ‖I1‖N1/2

s′
+ ‖I2‖N1/2

s′
.

∑
j<kmin−10

2
1
4
`2kmin−kmaxak1bk2 . 2kmin−kmaxak1bk2 ,

which is acceptable.

Step 2.2: (high-low) interaction, k2 = kmin. As in Step 2.2 of Section 6.3, we need to use

the Z̃
1/2
s bound (6.3.6) in addition to Proposition 5.6.3. As before, let ` = 1

2
(j − kmin) and

δ1 ∈ (0, 1/10) be the small constant in Step 2.2 of Section 6.3. By Proposition 5.6.3 we have

‖I0‖X1/2,−1/2
1

.
∑

j<k2−10

2
1
2
j2

1
2
k02`‖Ak1‖L∞L2

( ∑
Ck2

(`)

‖PCk2
(`)Q

s
<jψk2‖2

L2L∞

)1/2

,

‖I1‖L1L2 .
∑
s1

∑
j<k2−10

2
1
2
k02`‖Qs1

j Ak1‖L2L2

( ∑
Ck2

(`)

‖PCk2
(`)Q

s
<jψk2‖2

L2L∞

)1/2

,

which are bounded by . 2
1
2

(k2−k1)ak1bk2 thanks to the frequency envelope bounds (6.3.2),
(6.3.3) and (6.3.5). For I2, we split the j-summation and write I2 = I ′2 + I ′′2 , where
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I ′2 =
∑

j<k2−10+δ1(k2−k1)(· · · ) and I ′′2 =
∑

j∈[k2−10+δ1(k2−k1),k2−10)(· · · ). For I ′2, we use Propo-
sition 5.6.3 to obtain

‖I ′2‖L1Ḣ1/2 .
∑
s1

∑
j<k2−10+δ1(k2−k1)

2`2
1
2
k0

( ∑
Ck2

(`)

‖PCk2
(`)Q

s1
<jAk1‖2

L2L∞

)1/2

‖Qs
jψk2‖L2L2 ,

which, in turn, can be bounded by . 2
δ1
4

(k2−k1)ak1bk2 using (6.3.3) and (6.3.5). For I ′′2 , we
use (1.5.2), Hölder’s inequality, (6.3.2) and (6.3.6) to bound

‖I ′′2 ‖L1Ḣ1/2 .
∑

j∈[k2−10+δ1(k2−k1),k2−10)

2
1
2
k0‖Ak1‖L∞L2‖Qs

jψk2‖L1L∞

.
∑

j∈[k2−10+δ1(k2−k1),k2−10)

2
1
2
k02−k12

1
2
k225(k2−j)ak1bk2 ,

which is bounded by 2( 1
2
−5δ1)(k2−k1)ak1bk2 and thus acceptable (since δ1 < 1/10).

Step 3: Proof of (6.3.16)

The argument in Step 2 applies exactly, with N and Proposition 5.6.3 replaced by N ∗ss′ and
Proposition 5.6.4, respectively; note that this is possible since we have not used the extra
gain 2kmin−min{k1,k2} from Proposition 5.6.3 in Step 2.1 above. We omit the details.

Remark 6.3.3. In the course of Step 2, we have proved the bound

‖Pk0N (Ak1 , ψk2)‖
N

1/2

s′
. ‖Ak1‖S1‖ψk2‖S1/2

s
(6.3.20)

when k0 = kmin + O(1) and k1 > k2 − 20. In fact, the number 20 does not play any role,
and the same bound holds (with an adjusted constant) when all three k0, k1k2 are within an
O(1)-interval of each other.

Proof of Proposition 1.8.7, part II: N
1/2
± -bounds for π[A]

Here we prove (1.8.18), (1.8.19) and (1.8.20) concerning the paradifferential terms πE[A0],
πR[Ax] and πSs [Ax].

Step 0: Reduction to dyadic estimates

As before, note thatNE(P̃k1·, P̃k2·) = L,NR = N and Πs′N S
s = N ∗ss′ , and πE[A0], πR[Ax],Πs′π

S
s [Ax]

vanish when applied to Ak1 , ψk2 unless (say) k1 < k2 − 5. By Littlewood-Paley trichotomy
(|kmax − kmed| ≤ 5), we only need to consider the (low-high) interaction, i.e., kmin = k1 and
k0 = k2 +O(1).
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Under the normalization (6.3.1) and the condition k1 < k2 − 5, we claim:

‖Pk0L(Bk1 , ψk2)‖
N

1/2
−s
.2

1
4

(kmin−kmax)ak1bk2 , (6.3.21)

‖Pk0L(Ak1 , ψk2)‖
N

1/2
−s
.2

1
4

(kmin−kmax)ak1bk2 , (6.3.22)

‖Pk0N ∗+(Ak1 , ψk2)‖
N

1/2
s
.2

1
4

(kmin−kmax)ak1bk2 . (6.3.23)

We remind the reader that ψ is assumed to be normalized in (S
1/2
s )b; hence (6.3.21) and

(6.3.22) concern the case when the output is estimated in the opposite-signed N
1/2
−s space,

whereas (6.3.23) is the same sign case.
The estimates (1.8.18) and (1.8.19) follow from (6.3.21) and (6.3.22), respectively, whereas

(1.8.20) may be proved by combining (6.3.22) (opposite sign case) and (6.3.23) (same sign
case). As the proof is similar to Step 0 of Section 6.3, we omit the details.

Step 1: Case of opposite waves

Here we prove (6.3.21) and (6.3.22). Henceforth we write f for either B or A. We begin
with the case when the output or ψ has high modulation.

Lemma 6.3.4. Assume the normalization (6.3.1). For any k0, k1, k2, j ∈ Z such that k1 <
k2 − 5, we have

2
1
2
k02−

1
2
j‖Pk0Q

s′

j L(fk1 , ψk2)‖L2L2 .2
1
2

(k1−j)2−
1
2
k1‖fk1‖L2L∞bk2 ,

2
1
2
k0‖Pk0L(fk1 , Q

s
jψk2)‖L1L2 .2

1
2

(k1−j)2−
1
2
k1‖fk1‖L2L∞bk2 .

Proof. The first estimate follows from the Hölder inequality L2L∞×L∞L2 → L2L2 and the
frequency envelope bound (6.3.2). Similarly, the second estimate follows from the Hölder
inequality L2L∞ × L2L2 → L1L2 and the frequency envelope bound (6.3.3).

By the frequency envelope bounds (6.3.4) and (6.3.7), note that f = B and A yield the
common bound

‖Bk1‖L2L∞ . 22k1‖Bk1‖L2L2 . 2
1
2
k1ak1 , ‖Ak1‖L2L∞ . 2

1
2
k1ak1 . (6.3.24)

Since k1 < k2− 5, we have kmin = k1 and k0, k2 = kmax +O(1). Then from Lemma 6.3.4 and
(1.5.2), it follows that

‖Pk0Q
−s
≥k0+ 1

2
(k1−k0)−C′1

L(fk1 , ψk2)‖
N

1/2
−s
.C′12

1
4

(kmin−kmax)ak1bk2 ,

‖Pk0Q
−s
<k0+ 1

2
(k1−k0)−C′1

L(fk1 , Q
s
≥k2+ 1

2
(k1−k2)−C′1

ψk2)‖
N

1/2
−s
.C′12

1
4

(kmin−kmax)ak1bk2 ,

which are acceptable for any C ′1 ≥ 0. It remains to treat the contribution of

I = Pk0Q
−s
< 1

2
(k0+k1)−C′1

L(fk1 , Q
s
< 1

2
(k1+k2)−C′1

ψk2)

for some C ′1 ≥ 0 to be determined. We now use the ‘geometry of the cone’ to force modulation
localization of f .
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Lemma 6.3.5. Let k0, k1, k2, j0, j1, j2 ∈ Z be such that |k0−k2| ≤ 5 and k1 ≤ min{k0, k2}−5.
Assume furthermore that j0 ≤ k0 − C ′1 and j2 ≤ k2 − C ′1 for a sufficiently large C ′1 > 0. For
any sign s ∈ {+,−}, the expression

Pk0Q
−s
j0
L(Pk1Qj1f, Pk2Q

s
j2
g)

vanishes unless j1 = kmax +O(1).

Proof. By duality, it suffices to consider the expression∫∫
Pk0Q

+
j0
hL(Pk1Qj1f, Pk2Q

+
j2
g) dtdx.

We proceed as the proof of Lemma 5.5.4. If the expression does not vanish, there exists Ξi

(i = 0, 1, 2) such that
∑

i Ξ
i = 0 and Ξi ∈ {|ξ| ' 2ki , |τ−si|ξ|| ' 2ji}, where s0 = s2 = s and

s1 is the sign of τ . Consider the quantity H = s0|ξ0|+ s1|ξ1|+ s2|ξ2|. Subtracting
∑

i τ
i = 0

and using the hypothesis on k0, k2, j0, j2, we have

|H| . 2j1 + 2kmax−C′1 .

On the other hand, since s0 = s2 = s and k1 ≤ min{k0, k2} − 5, we have

|H| = |s|ξ0|+ s1|ξ1|+ s|ξ2|| ' 2kmax .

Taking C ′1 sufficiently large, it follows that jmax ≥ kmax−C for some constant C independent
of C ′1. Taking C ′1 even larger so that j1 ≥ max{j0, j2}+ 5, we have |H| ' 2j1 and the claim
follows.

Choosing C ′1 ≥ 0 to be sufficiently large, Lemma 6.3.5 is applicable to I. Hence

I =
∑

j=kmax+O(1)

Pk0Q
−s
< 1

2
(k0+k1)−C′1

L(Qjfk1 , Q
s
< 1

2
(k1+k2)−C′1

ψk2),

By (1.5.2), (5.6.2) and the frequency envelope bound (6.3.4), we may estimate

2
1
2
k0‖I‖L1L2 .

∑
j=kmax+O(1)

2
1
2
k0‖Qjfk1‖L2L2

( ∑
Ckmin

(0)

‖PCkmin
(0)ψk2‖2

L2L∞

)1/2

.
∑

j=kmax+O(1)

2kmin2
1
2
k0‖Qjfk1‖L2L2bk2 .

(6.3.25)

By the frequency envelope bounds (6.3.3) and (6.3.7), we have the following common bound
for f = B or A when j > k1:

‖QjBk1‖L2L2 . 2−j2−
1
2
k1ak1 , ‖QjAk1‖L2L2 . 2−j2−

1
2
k1ak1 . (6.3.26)

Therefore,
2

1
2
k0‖I‖L1L2 . 2

1
2

(kmin−kmax)ak1bk2 ,

which completes the proof of (6.3.21) and (6.3.22).
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Step 2: Proof of (6.3.23)

This is one of the key estimates showing that spinorial nonlinearities have better structure
than the Riesz-transform parts. The idea is that the null form N ∗+ gains an extra factor
2kmin−kmax in the low-high case.

We begin with the high modulation bounds:

Lemma 6.3.6. For any k0, k1, k2 ∈ Z such that |kmax − kmed| ≤ 5 and k1 < k2 − 5, we have

‖Pk0N ∗+(fk1 , gk2)‖L2L2 .2k1−k2‖fk1‖L2L∞‖gk2‖L∞L2 , (6.3.27)

‖Pk0N ∗+(fk1 , gk2)‖L1L2 .2k1−k2‖fk1‖L2L∞‖gk2‖L2L2 , (6.3.28)

‖Pk0N ∗+(fk1 , gk2)‖L1L2 .2k1−k2‖fk1‖L2L2

( ∑
Ck1

(0)

‖PCk1
(0)gk2‖2

L2L∞

)1/2

. (6.3.29)

Proof. The idea is to proceed as in the proof of Lemma 5.6.1 (where L is replaced by N ∗+)
with the following modification, to use:

|IC0,C1,C2(t)| . θ‖PC0hk0(t)‖Lq0‖PC1fk1(t)‖Lq1‖PC2gk2(t)‖Lq2 , (6.3.30)

where θ = max{|∠(C0,−C2)|, 2k1−k0 , 2k1−k2}. This bound follows from Proposition 5.3.1;
note that 2k1−ki is the angular dimension of Ci for i = 0, 2. By Statement (2) of Lemma 5.5.1
and the hypothesis on k0, k1, k2, it follows that θ ' 2k1−k2 . Then proceeding as in the proof
of Lemma 5.6.1, we directly obtain (6.3.29). The other two estimates (6.3.27) and (6.3.28)
also follow from the same proof by switching the roles of f, g and using the obvious bound( ∑

Ck1
(0)

‖PCk1
(0)fk1‖2

L2L∞

)1/2

' ‖fk1‖L2L∞ .

By Lemma 6.3.6 and the frequency envelop bounds (6.3.2), (6.3.3) and (6.3.4), we have

‖Pk0Q
s
jN ∗+(Ak1 , ψk2)‖

N
1/2
s
.2

1
2

(k1−j)2k1−k2ak1bk2 ,

‖Pk0N ∗+(Ak1 , Q
s
jψk2)‖

N
1/2
s
.2

1
2

(k1−j)2k1−k2ak1bk2 ,

‖Pk0N ∗+(QjAk1 , ψk2)‖
N

1/2
s
.2

1
2

(k1−j)2
1
2

(k1−k2)ak1bk2 .

Thanks to the exponential gain in k2 − k1 (as well as j − k1), we may proceed as before (cf.
Step 1 of Section 6.3 or 6.3) to reduce the proof of (6.3.23) to estimating the contribution of

I =
∑
s1

Pk0Q
s
<k1−10N ∗+(Qs1

<k1−10Ak1 , Q
s
<k1−10ψk2).

The norm ‖I‖
N

1/2
s

can be bounded by the sum
∑

s1

∑
j<k1−10 of the terms

‖Pk0Q
s
jN ∗+(Qs1

<jAk1 , Q
s
<jψk2)‖

N
1/2
s
.2

1
4

(j−k1)2
1
2

(k1−k2)ak1bk2 ,

‖Pk0Q
s
≤jN ∗+(Qs1

j Ak1 , Q
s
<jψk2)‖

N
1/2
s
.2

1
4

(j−k1)2
1
2

(k1−k2)ak1bk2 ,

‖Pk0Q
s
≤jN ∗+(Qs1

≤jAk1 , Q
s
jψk2)‖

N
1/2
s
.2

1
4

(j−k1)2k1−k2ak1bk2 ,
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where we used Proposition 5.6.4 and the frequency envelope bounds (6.3.2), (6.3.3) and
(6.3.5) to derive the estimates. Observe the crucial exponential gain in k2 − k1, which
arises from the factor 2kmin−min{k0,k2} in Proposition 5.6.4. Summing up in s1 ∈ {+,−} and
j < k1 − 10, we obtain

‖I‖
N

1/2
s
. 2

1
2

(k1−k2)ak1bk2 ,

which completes the proof of (6.3.23).

Remark 6.3.7. Repeating Step 2 with N ∗ replaced by N (hence Proposition 5.6.4 is replaced
by Proposition 5.6.3), Lemma 1.8.10 can be proved. The key differences are the lack of the
extra factor 2kmin−kmax in Proposition 5.6.3, and that QjA

free = 0 for any j ∈ Z. We omit
the details.

Proof of Proposition 1.8.7, part III: Completion of proof

We finish the proof of Proposition 1.8.7 by establishing the bounds (1.8.21)–(1.8.26). Here

we do not need to utilize the null structure. Moreover, instead of the normalizing the (S̃
1/2
s )b

norm as in (6.3.1), we normalize the slightly weaker (S
1/2
s )b norm, i.e., we assume

‖B‖Y 1
a

= ‖A‖S1
a

= ‖ψ‖
(S

1/2
s )b

= ‖ϕ‖
(S

1/2

s′ )c
= 1.

Note that the bounds (6.3.2)–(6.3.5) and (6.3.7) still hold.

Step 0: Reduction to dyadic estimates

Let f denote either B or A. Under the normalization (6.3.1), it clearly suffices to prove the
following dyadic bounds:

‖Pk0L(fk1 , ψk2)‖L2L2 .2
1
2

(kmin−kmax)ak1bk2 , (6.3.31)

2−
3
2
k0‖Pk0L(fk1 , ψk2)‖L1L∞ .2

1
2

(kmin−kmax)ak1bk2 . (6.3.32)

Step 1: Proof of (6.3.31)

We first use Lemma 5.6.1 and (6.3.2) to estimate

‖Pk0L(fk1 , ψk2)‖L2L2 . 2−
1
2
k2

( ∑
Ckmin

(0)

‖PCkmin
(0)fk1‖2

L2L∞

)1/2

bk2 .

By Bernstein’s inequality, (6.3.4) and (6.3.7), we have( ∑
Ckmin

(0)

‖PCkmin
(0)Bk1‖2

L2L∞

)1/2

.22kmin2−
3
2
k1ak1 ,

( ∑
Ckmin

(0)

‖PCkmin
(0)Ak1‖2

L2L∞

)1/2

.2kmin2−
1
2
k1ak1 .

(6.3.33)
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In each case, it can be checked (using Littlewood-Paley trichotomy and dividing into cases
kmin = k0, k1, k2) that (6.3.31) holds.

Step 2: Proof of (6.3.32)

We split into three cases.

Step 2.1: (high-high) interaction, k0 = kmin. Here the factor 2−
3
2
k0 on the LHS is detrimental,

and we need to perform an orthogonality argument using Lemma 5.5.1. We claim that

‖Pk0L(fk1 , gk2)‖L1L∞ .
( ∑
Ck0

(0)

‖PCk0
(0)fk1‖L2L∞

)1/2( ∑
Ck0

(0)

‖PCk0
(0)gk2‖L2L∞

)1/2

(6.3.34)

Once (6.3.34) is proved, (6.3.32) would follow from (6.3.4) and (6.3.33).
To prove the claim, we follow the proof of Lemma 5.6.1. Let C0, C1, C2, I(t) and IC0,C1,C2(t)

be as in the proof of Lemma 5.6.1, with g replaced by ψ. Since there are only finitely many
boxes C0 = Ck0(0) in {|ξ| ' 2k0}, we have

|I(t)| . ‖hk0(t)‖L1

(∑
C1

‖PC1fk1(t)‖2
L∞

)1/2(∑
C2

‖PC2ψk2(t)‖2
L∞

)1/2

.

Then integrating and applying Hölder in t appropriately, the desired claim (6.3.34) follows
by duality.

Steps 2.2 & 2.3: (low-high) or (high-low) interaction, k1 = kmin or k2 = kmin. These cases

are easier thanks to the factor 2−
3
2
k0 on the LHS, as k0 = kmax + O(1) by Littlewood-Paley

trichotomy. Indeed, by Hölder’s inequality and the frequency envelope bounds (6.3.4) and
(6.3.24) we have

2−
3
2
k0‖Pk0L(fk1 , ψk2)‖L1L∞ . 2−

3
2
k0‖fk1‖L2L∞‖ψk2‖L2L∞ . 2−

3
2
kmax2

1
2
k12k2ak1bk2 ,

which is acceptable.

Remark 6.3.8. In a general dimension d ≥ 4, essentially every proof in this section is valid
with substitutions as in Remark 1.8.5. The constant δ0 > 0 would change, since (6.3.6) must
be replaced by

‖Qs
jψk‖L1L∞ . 2

5−d
2
k2(d+1)(k−j)+‖ψk‖

Z̃
d−3

2
s,k

.

6.4 Trilinear estimates for MD

In this section, we establish Proposition 1.8.8. We will first decompose the nonlinearity
further and treat the part for which the bilinear null structure suffices. We will then be left
with a part of the trilinear form

−∆−1〈Πs1ϕ
1,R0Πs2ϕ

2〉R0ψ +�−1Pi〈Πs1ϕ
1,RxΠs2ϕ

2〉Riψ
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with certain restriction on the modulation and frequencies of the inputs and the output; for
the precise expression, see (6.4.35). This nonlinearity exhibits a similar multilinear null struc-
ture as (1.7.8), (1.7.9) in the case of MKG. We thus complete the proof of Proposition 1.8.8
by reducing the present case to the multilinear null form estimate in [31].

As before, we restrict to the case d = 4 for most part of this section. The argument is
simpler in the higher dimensional case d ≥ 5; see Remark 6.4.3 below.

Preliminaries: Conventions and definitions

Fix signs s1, s2, s ∈ {+,−} and let a, ã, b, c, d be admissible frequency envelopes. In this
section, we normalize the frequency envelope norms of the inputs as follows:

‖A‖S1
a

= ‖A‖Z1
ã

= ‖B‖Y 1
a

= ‖B‖(Z1
ell)ã

= 1,

‖ψ‖
(S̃

1/2
s )b

= ‖ϕ1‖
(S̃

1/2
s1

)c
= ‖ϕ2‖

(S̃
1/2
s2

)d
= 1.

(6.4.1)

From (6.4.1), it follows that A,B, ψ obey the frequency envelope bounds (6.3.2)–(6.3.7).
Note that also ψ obeys the bound

sup
`≤0

(∑
ω

‖P ω
` Q<k+2`ψ‖2

L∞L2

)1/2

. 2−
1
2
kbk. (6.4.2)

Moreover, ϕ1, ϕ2 obey the same estimates with (s, bk) replaced by (s1, ck) and (s2, dk), re-
spectively. The normalizations ‖A‖Z1

ã
= 1 and ‖B‖(Z1

ell)ã
= 1 imply

sup
j<k+C

(∑
ω

‖P ω
` QjAk‖2

L1L∞

) 1
2 ≤2−

1
4

(j−k)ãk, (6.4.3)

sup
j<k+C

(∑
ω

‖P ω
` QjBk‖2

L1L∞

) 1
2 ≤2

1
4

(j−k)ãk. (6.4.4)

To identify the part that we cannot handle with only bilinear estimates, we borrow some
definitions from [31]. Given k ∈ Z and a translation-invariant bilinear operator L, define

HkL(f, g) =
∑

j<k+C2

PkQjL(Q<jf,Q<jg), (6.4.5)

H∗kL(f, g) =
∑

j<k+C∗2

Q<jL(PkQjf,Q<jg). (6.4.6)

Here C2, C
∗
2 > 0 are universal constants such that

1

2
C0 < C∗2 < C1 < C2 < C0, (6.4.7)

where C0 is the constant in Lemma 5.5.4 and C1 is the constant in the definitions (2.1.14)–
(2.1.15) of Zr

k and Zr
ell,k.
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Given signs s1, s2, s ∈ {+,−}, we also define

Hs1,s2L(f, g) =
∑

k0,k1,k2: k0<k2−C2−10

Hk0L(Ts1fk1 , Pk2Ts2g),

H∗s′,sL(f, g) =
∑

k0,k1,k2: k1<k2−C∗2−10

Pk0Ts′H∗k1
L(f, Tsgk2).

Further decomposition of Ax and πR

Consider the trilinear operator

T Rs1,s2,s(ϕ
1, ϕ2, ψ) = ss2H∗s,s

(
Hs1,s2�

−1Pi〈Πs1ϕ
1,RxΠs2ϕ

2〉Riψ
)
, (6.4.8)

where �−1 denotes the Fourier multiplier5 with symbol (τ 2−|ξ|2)−1. Our goal is to show that
all of πR[A(Πs1ϕ

1,Πs2ϕ
2)]ψ except T Rs1,s2,s can be handled by applying bilinear estimates in

tandem. We use the auxiliary Z1 norm as an intermediary.
More precisely, under the normalization (6.4.1) and f as in (1.8.27), we claim that

‖ − sπR[A(Πs1ϕ
1,Πs2ϕ

2)]ψ − T Rs1,s2,s(ϕ
1, ϕ2, ψ)‖

(N
1/2
s )f

. 1. (6.4.9)

Step 0: Reduction to bilinear estimates

Let a, b, c, d be admissible frequency envelopes. Define ek = (
∑

k′<k ak′)bk and ẽk = (
∑

k′<k ãk′)bk.
We claim that

‖(I4×4 −H∗s,s)πR[A]ψ‖
(N

1/2
s )e
.‖A‖S1

a
‖ψ‖

(S̃
1/2
s )b

, (6.4.10)

‖H∗s,sπR[A]ψ‖
(N

1/2
s )ẽ
.‖A‖Z1

ã
‖ψ‖

(S̃
1/2
s )b

, (6.4.11)

‖(I −Hs1,s2)AR(ϕ1, ϕ2)‖Z1
cd
.‖ϕ1‖

(S̃
1/2
s1

)c
‖ϕ2‖

(S̃
1/2
s2

)d
, (6.4.12)

‖AS
s2

(Πs1ϕ
1, ϕ2)‖Z1

cd
.‖ϕ1‖

(S̃
1/2
s1

)c
‖ϕ2‖

(S̃
1/2
s2

)d
. (6.4.13)

Assuming these estimates, we first conclude the proof of (6.4.9). Assume the normalization
(6.4.1). Note that PkΠs is disposable for any k ∈ Z and s ∈ {+,−}. Hence, from the bilinear
estimates (1.8.13)–(1.8.14) and (6.4.12)–(6.4.13), we obtain

‖AR(Πs1ϕ
1,Πs2ϕ

2)‖S1
cd

+ ‖(1−Hs1,s2)AR(Πs1ϕ
1,Πs2ϕ

2)‖Z1
cd
. 1,

‖AS
s2

(Πs1ϕ
1,Πs2ϕ

2)‖(S1∩Z1)cd . 1.

Applying (6.4.10) and (6.4.11) with a = ã = cd, e = ẽ = (
∑

k′<k ck′dk′)bk and

A = A(Πs1ϕ
1,Πs2ϕ

2) = −s2A
R(Πs1ϕ

1,Πs2ϕ
2) + AS

s2
(Πs1ϕ

1,Πs2ϕ
2),

5In general, this ‘multiplier’ is problematic near {τ2 − |ξ|2 = 0}; however, thanks to the modulation
projection Qj in the definition ofHs1,s2 , the expressionHs1,s2�−1 is well-defined and coincides withHs1,s2K,
where Kf denotes the solution φ to �φ = f with φ[0] = 0.
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we arrive at

‖sπR[A(Πs1ϕ
1,Πs2ϕ

2)]ψ − sH∗s,sπR[Hs1,s2(−s2A
R)(Πs1ϕ

1,Πs2ϕ
2)]ψ‖

(N
1/2
s )e
. 1.

Recalling the definitions of AR and πR, observe that

s2sH∗s,sπR[Hs1,s2A
R(Πs1ϕ

1,Πs2ϕ
2)]ψ = T Rs1,s2,s(ϕ

1, ϕ2, ψ).

Moreover, by Cauchy-Schwarz, the frequency envelope e is dominated by f as in (1.8.27).
The desired estimate (6.4.9) follows.

Step 1: Proof of (6.4.10)

Under the normalization (6.4.1) and the condition k1 < k2 − C∗2 − 5, we claim that:

‖Pk0N (Ak1 , ψk2)− Pk0TsH∗k1
N (A, Tsψk2)‖

N
1/2
s
. ak1bk2 . (6.4.14)

Since πR[A]ψ =
∑

kN (P<k−10A,ψk) by Proposition 5.4.4, (6.4.10) clearly follows from sum-
ming up (6.4.14) for k1 < k2 − C∗2 − 10 and (6.3.20) in Remark 6.3.3 for k1 ∈ [k2 − C∗2 −
10, k2 − 10).

The proof of (6.4.14) is identical to the proof of (1.8.5) and is omitted.

Step 2: Proof of (6.4.11)

Assuming (6.4.1) and k1 < k2 − C∗2 − 5, we claim:

‖Pk0TsH∗k1
N (A, Tsψk2)‖L1Ḣ1/2 . ãk1bk2 . (6.4.15)

As before, (6.4.11) clearly follows from (6.4.15).
The proof of (6.4.15) is the same as the proof of (1.8.6) and is omitted.

Step 3: Proof of (6.4.12)

For k0 ≥ k2 − C2 − 20, we claim that

‖Pk0N ∗(ϕ1
k1
, ϕ2

k2
)‖�Z1 . 2δ0(kmax−kmin)ck1dk2 . (6.4.16)

Moreover, for k0 < k2 − C2 − 5, we claim that

‖Pk0N ∗(ϕ1
k1
, ϕ2

k2
)−Hk0N ∗(Ts1ϕ1

k1
, Ts2ϕ

2
k2

)‖�Z1 . 2δ0(k0−k1)ck1dk2 . (6.4.17)

Since �AR = MR = N ∗ by Proposition 5.4.4, (6.4.12) clearly follows from (6.4.16) and
(6.4.17).

The proofs of (6.4.16) and (6.4.17) is very similar to the proof of (6.1.5) and is omitted.
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Step 4: Proof of (6.4.13)

In this case, recall that �AS
s2

(Πs1 ·, ·) = MS
s2

(Πs1·, ·) = Ns1s2(·, ·) by Proposition 5.4.4.
Repeating the argument in Step 3, the following analogues of (6.4.16) and (6.4.17) can be
proved: For k0 ≥ k2 − C2 − 20, we have

‖Pk0Ns1s2(ϕ1
k1
, ϕ2

k2
)‖�Z1 . 2δ0(kmin−kmax)ck1dk2 , (6.4.18)

and for k0 < k2 − C2 − 5, we have

‖Pk0Ns1s2(ϕ1
k1
, ϕ2

k2
)−Hk0Ns1s2(Ts1ϕ

1
k1
, Ts2ϕ

2
k2

)‖�Z1 . 2δ0(k0−k2)ck1dk2 . (6.4.19)

We omit the straightforward details.
Under the condition k0 < k2 − C2 − 5, we claim furthermore that

‖Hk0Ns1s2(ϕ1
k1
, ϕ2

k2
)‖�Z1 . 2k0−k2ck1dk2 . (6.4.20)

Clearly, (6.4.13) would follow from (6.4.18)–(6.4.20).
To prove (6.4.20), we need to estimate

I = Pk0QjNs1s2(Qs1
<jϕ

1
k1
, Qs2

<jϕ
2
k2

)

in �Z1. We proceed similarly to the proof of Proposition 5.6.3 and perform an orthogonality
argument using Lemma 5.5.5.

Let j ≤ k0 + C2 and ` = 1
2
(j − k0)−. For i = 0, 1, 2, let Ci be a rectangular box of the

form Ck0(`). We split

I =
∑
C0,C1,C2

Pk0P−C0QjNs1s2(PC1Qs1
<jϕ

1
k1
, PC2Qs2

<jϕ
2
k2

).

Splitting Qj = Q+
j T+ +Q−j T− and applying Lemma 5.5.5, we see that the summand on the

RHS vanishes unless (5.5.7) is satisfied for s0 = + or −. In particular, by disposability of
PkPCk0

(`)Qj = PkP
ω
` Qj and Proposition 5.3.1, it follows that

‖Pk0P−C0QjNs1s2(PC1Qs1
<jϕ

1
k1
, PC2Qs2

<jϕ
2
k2

)‖L1L∞

.2`2k0−k2‖PC1Qs1
<jϕ

1‖L2L∞‖PC2Qs2
<jϕ

2‖L2L∞ .
(6.4.21)

Moreover, by Lemma 5.5.5, note that for a fixed C1 [resp. C2], there are only (uniformly)
bounded number of C0, C2 [resp. C0, C1] such that (5.5.7) is satisfied with s0 = + or −.
Summing up first in C0 (for which there are only finitely many terms) and then applying
Lemma 1.5.5 to the summation in C1, C2 (which is essentially diagonal), we obtain∑

C0

‖Pk0P−C0QjNs1s2(Qs1
<jϕ

1
k1
, Qs2

<jϕ
2
k2

)‖L1L∞

.2`2k0−k2

(∑
C1

‖PC1Qs1
<jϕ

1
k1
‖2
L2L∞

)1/2(∑
C2

‖PC2Qs2
<jϕ

2
k2
‖2
L2L∞

)1/2

.
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Recall the convention PkPCk(`) = PkP
ω
` . By (2.2.20) and (6.3.5), we have

‖Pk0QjNs1s2(PC1Qs1
<jϕ

1
k1
, PC2Qs2

<jϕ
2
k2

)‖�Z1 . 2
1
4

(j−k0)2k0−k2ck1dk2 .

Summing up in j < k0 + C2, (6.4.20) follows.

Further decomposition of A0 and πE

We now deal with the term involving A0 = A0(ϕ1, ϕ2) in πE[A0]ψ. Consider the trilinear
operator

T Es1,s2,s(ϕ
1, ϕ2, ψ) = s2sH∗

(
Hs1,s2∆−1〈Πs1ϕ

1,R0Πs2ϕ
2〉R0ψ

)
.

We will show that all of πE[A0(Πs1ϕ
1,Πs2ϕ

2)]ψ except T Es1,s2,s can be handled by bilinear
estimates. The Z1

ell norm will be used as an intermediary.
Under the normalization (6.4.1), we claim that

‖πE[A0(Πs1ϕ
1,Πs2ϕ

2)]ψ − T Es1,s2,s(ϕ
1, ϕ2, ψ)‖

(N
1/2
s )e
. 1. (6.4.22)

Step 0: Reduction to bilinear estimates

Let a, b, c, d be admissible frequency envelopes. Define ek = (
∑

k′<k ak′)ck and ẽk = (
∑

k′<k ãk′)ck.
We claim that

‖(I4×4 −H∗s,s)πE[A0]ψ‖
(N

1/2
s )e
.‖A0‖Y 1

a
‖ψ‖

(S̃
1/2
s )c

, (6.4.23)

‖H∗s,sπE[A0](I4×4 + sR0)ψ‖
(N

1/2
s )e
.‖A0‖Y 1

a
‖ψ‖

(S̃
1/2
s )c

, (6.4.24)

‖H∗s,sπE[A0]R0ψ‖(L1Ḣ1/2)ẽ
.‖A0‖(Z1

ell)ã
‖ψ‖

(S̃
1/2
s )c

, (6.4.25)

‖(1−Hs1,s2)A0(ϕ1, ϕ2)‖(Z1
ell)cd
.‖ϕ1‖

(S̃
1/2
s1

)b
‖ϕ2‖

(S̃
1/2
s2

)c
, (6.4.26)

‖Hs1,s2(A0 + s2A
R
0 )(ϕ1, ϕ2)‖(Z1

ell)cd
.‖ϕ1‖

(S̃
1/2
s1

)b
‖ϕ2‖

(S̃
1/2
s2

)c
. (6.4.27)

where
AR

0 (ϕ1, ϕ2) := ∆−1〈ϕ1,R0ϕ
2〉 = −∆−1〈ϕ1,R0ϕ2〉.

Assuming these estimates, we now prove (6.4.22). Assume the normalization (6.4.1). By
(1.8.12), (6.4.26) and (6.4.27), as well as disposability of PkΠs, we have

‖A0(Πs1ϕ
1,Πs2ϕ

2)‖Y 1
cd

+ ‖(A0 −Hs1,s2(−s2A
R
0 ))(Πs1ϕ

1,Πs2ϕ
2)‖(Z1

ell)cd
. 1.

Applying (6.4.23)–(6.4.25) with a = ã = cd, e = ẽ = (
∑

k′<k ck′dk′)bk andA0 = A0(Πs1ϕ
1,Πs2ϕ

2),
we obtain

‖πE[A0(Πs1ϕ
1,Πs2ϕ

2)]ψ + sH∗s,sπE[Hs1,s2(−s2A
R
0 )(Πs1ϕ

1,Πs2ϕ
2)]R0ψ‖

(N
1/2
s )e
. 1.

By definition, observe that

s2sH∗s,sπE[Hs1,s2A
R
0 (Πs1ϕ

1,Πs2ϕ
2)]R0ψ = T Es1,s2,s(ϕ

1, ϕ2, ψ).

As before, the frequency envelope e is dominated by f as in (1.8.27) by Cauchy-Schwarz;
this completes the proof of (6.4.22).
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Step 1: Proof of (6.4.23)

Assuming (6.4.1) and k1 < k2 − C∗2 − 5, it suffices to have:

‖Pk0L(Bk1 , ψk2)− Pk0TsH∗k1
L(B, Tsψk2)‖

N
1/2
s
. ak1bk2 . (6.4.28)

For this, we refer to the proof of (1.8.5).

Step 2: Proof of (6.4.24)

Assuming (6.4.1) and k1 < k2 − C∗2 − 5, we claim:

‖Pk0TsH∗k1
L(B, Ts(I4×4 + sR0)ψk2))‖

N
1/2
s
. 2k1−k2ak1bk2 . (6.4.29)

Note that (6.4.29) is more than enough to prove (6.4.24) (i.e., the gain 2k1−k2 is unnecessary).
Fix j < k1 + C∗2 and introduce the shorthand ψ̃ = (I4×4 + sR0)ψ. By (1.5.2), Hölder’s

inequality L2L∞ × L2L2 → L1L2, Bernstein’s inequality and (6.3.7), we have

‖Pk0Q
s
<jL(QjBk1 , Q

s
<jψ̃k2))‖L1Ḣ1/2 . 2

1
2
k0+ 1

2
k1ak1‖Qs

<jψ̃k2‖L2L2

By (1.7.13) and (6.3.3), we have

‖Q<jψ̃k2‖L2L2 =‖Q<j
i∂t + s|D|
|D|

ψk2‖L2L2

.
∑
j′<j

2j
′−k2‖Qj′ψk2‖L2L2 . 2

1
2
j2−

3
2
k2bk2 .

(6.4.30)

It follows that

‖Pk0Q
s
<jL(QjBk1 , Q

s
<j(I4×4 + sR0)ψk2))‖L1Ḣ1/2 . 2

1
2

(j−k1)2k1−k2ak1bk2 .

Summing up in j < k1 + C∗2 , we obtain (6.4.29) as desired.

Step 3: Proof of (6.4.25)

Assuming (6.4.1) and k1 < k2 − C∗2 − 5, it suffices to have:

‖Pk0TsH∗k1
L(B, Tsψk2)‖L1Ḣ1/2 . ãk1bk2 . (6.4.31)

See the proof of (1.8.6).

Step 4: Proof of (6.4.26)

Under the normalization (6.4.1), it suffices to prove the following dyadic bounds: For k0 ≥
k2 − C2 − 20, we claim that

‖Pk0N ∗(ϕ1
k1
, ϕ2

k2
)‖∆Z1

ell
. 2δ0(k0−k1)ck1dk2 , (6.4.32)

and for k0 < k2 − 5, we claim that

‖Pk0N ∗(ϕ1
k1
, ϕ2

k2
)−Hk0N ∗(Ts1ϕ1

k1
, Ts2ϕ

2
k2

)‖∆Z1
ell
. 2δ0(k0−k1)ck1dk2 . (6.4.33)

We refer to the proof of (6.1.5).
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Step 5: Proof of (6.4.27)

Assuming (6.4.1) and k0 < k2 − C2 − 5, it suffices to prove

‖Hk0L(Ts1ϕ
1
k1
, Ts2(I4×4 + s2R0)ϕ2

k2
‖∆Z1

ell
. 2

3
2

(k0−k2)ck1dk2 . (6.4.34)

In order to ensure that the projections Q<j in Hk0 are disposable, we perform an orthog-
onality argument as before. Fix j < k0 + C2 and introduce the shorthands ` = 1

2
(j − k0)−

and ϕ̃ := (I4×4 + s2R0)ϕ2. For i = 0, 1, 2, let Ci be a rectangular box of the form Ck0(`). We
expand

Pk0QjL(Qs1
<jϕ

1
k1
, Qs2

<jϕ̃k2) =
∑
C0,C1,C2

Pk0P−C0QjL(PC1Qs1
<jϕ

1
k1
, PC2Qs2

<jϕ̃k2).

By (1.5.9), we have

‖Pk0P−C0QjL(PC1Qs1
<jϕ

1
k1
, PC2Qs2

<jϕ̃k2)‖L1L2 . ‖PC1Qs1
<jϕ

1
k1
‖L2L∞‖Qs2

<jϕ̃‖L2L2

Moreover, splitting Qj = Q+
j T+ + Q−j T− and applying Lemma 5.5.5, we see that the LHS

vanishes unless (5.5.7) holds with s0 = + or −. Thus for a fixed C1 [resp. C2], there are only
(uniformly) bounded number of C0, C2 [resp. C0, C1] such that LHS does not vanish. Summing
up first in C0 and then applying Lemma 1.5.5 to the (essentially diagonal) summation in
C1, C2, we obtain

‖Pk0QjL(Qs1
<jϕ

1
k1
, Qs2

<jϕ̃k2)‖L1L2 .
(∑
C1

‖PC1Qs1
<jϕ

1
k1
‖2
L2L∞

)1/2

‖Qs2
<jϕ̃k2‖L2L2

By (2.2.24), (6.3.5) and (6.4.30), we have

‖Pk0QjL(Qs1
<jϕ

1
k1
, Qs2

<jϕ̃k2)‖∆Z1
ell
. 2

5
2

(j−k0)2
3
2

(k0−k2)ck1dk2

Summing up in j < k0 + C2, the desired estimate (6.4.34) follows.

Genuinely multilinear null form estimate

To complete the proof of Proposition 1.8.8, it remains to estimate

Ts1,s2,s(ϕ1, ϕ2, ψ) =T Es1,s2,s(ϕ
1, ϕ2, ψ) + T Rs1,s2,s(ϕ

1, ϕ2, ψ)

=s2s
(
−H∗s,s

(
Hs1,s2∆−1〈Πs1ϕ

1,R0Πs2ϕ
2〉R0ψ

)
+H∗s,s

(
Hs1,s2�

−1Pi〈Πs1ϕ
1,RxΠs2ϕ

2〉Riψ
))
.

(6.4.35)

This part has a multilinear null structure akin to (1.7.8), (1.7.9) for MKG. In fact, thanks
to the way we have set things up, it is possible to directly borrow the relevant estimates in
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[31]. We introduce the trilinear operator

T MKG
k,k′ (f 1

k1
, f 2
k2
, f 3
k3

) =−H∗k
(
Hk′∆

−1L(f 1
k1
, ∂tf

2
k2

)∂tf
3
k3

)
+H∗k

(
Hk′�

−1PiL(f 1
k1
, ∂xf

2
k2

)∂if 3
k3

)
,

where L on both lines represent a single bilinear operator. Note that T MKG
k,k′ vanishes unless

|k− k′| < 3. Moreover, in [31, Eq. (136), (137) and (138); Appendix], the following estimate
was proved 6, which is the massless analogue of (6.2.1) :

Proposition 6.4.1. For k < min{k0, k1, k2, k3} − C and |k′ − k| < 3, we have

‖Pk0T MKG
k,k′ (f 1, f 2, f 3)‖Nk0

. 2δ0(k−k1)2
1
2
k02k12k22k3

3∏
i=1

‖f iki‖S̃ki . (6.4.36)

Remark 6.4.2. The proof of (6.4.36) exploits the trilinear null structure (1.7.8), (1.7.9) orig-
inally uncovered in [34], which is sometimes referred to as the secondary null structure of
Maxwell–Klein–Gordon.

Plugging in

f 1
k1

= Πs1Q<k1−3Ts1ϕ
1
k1
, f 2

k2
=

1

i|D|
Πs1Q<k2−3Ts2ϕ

2
k2
, f 3

k3
=

1

i|D|
Q<k3−3Tsψk3 ,

observe that

Pk0Ts1,s2,s(ϕ1
k1
, ϕ2

k2
, ψk3) = −s2s

∑
k<k3−C∗2−10
k′<k2−C2−10

Pk0T MKG
k,k′ (f 1

k1
, f 2
k2
, f 3
k3

).

By Proposition 6.4.1 and the facts that k1 = k2 +O(1), k3 = k0 +O(1), we have

‖Pk0Ts1,s2,s(ϕ1
k1
, ϕ2

k2
, ψk3)‖

N
1/2
s
. 2δ0(min{k1,k3}−k1)ck1dk2bk3 . (6.4.37)

Keeping k0 fixed and summing up in k1, k2, k3, we obtain

‖Pk0Ts1,s2,s(ϕ1, ϕ2, ψ)‖
N

1/2
s
. (

∑
k′<k0

c2
k′)

1/2(
∑
k′<k0

d2
k′)

1/2bk0

which completes the proof.

6We remark that in [31], this estimate is stated with the exponential factor 2δ(k−kmin) instead of 2δ(k−k1).
A closer inspection of the proofs of [31, Eq. (136), (137) and (138)], however, reveals that (6.4.36) holds.
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Remark 6.4.3. In the higher dimensional case d ≥ 5, all proofs in this section are valid with

the substitutions as in Remark 6.3.8, as well as Z1 → Z
d−2

2 and Z1
ell → Z

d−2
2

ell . Moreover,
the multilinear null form estimate in Proposition 6.4.1 is unnecessary. We claim that the
following additional estimates hold:

‖Hs1,s2A
R
x (ϕ1, ϕ2)‖

(Z
d−2

2 )bc
.‖ϕ1‖

(S̃
d−3

2
s1

)b
‖ϕ2‖

(S̃
d−3

2
s2

)c
, (6.4.38)

‖Hs1,s2A0(ϕ1, ϕ2)‖
(Z

d−2
2

ell )bc
.‖ϕ1‖

(S̃
d−3

2
s1

)b
‖ϕ2‖

(S̃
d−3

2
s2

)c
, (6.4.39)

where the space S̃
d−3

2
s does not involve the null frame spaces PW∓

ω (l) and NE; Combined
with (the higher dimensional analogues of) (6.4.11) and (6.4.25), we obtain an analogue of
Proposition 6.4.1 without relying on the null structure of Ts1,s2,s discussed in Remark 6.4.2.

One can prove (6.4.38) and (6.4.39) by following the argument of (6.4.20). Alternatively,
one could use L2L4 Strichartz estimates like in the proof of (6.1.6).
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