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Networks are one of the most common ways to represent biological systems as

complex sets of binary interactions or relations between different bioentities. In this

article, we discuss the basic graph theory concepts and the various graph types, as

well as the available data structures for storing and reading graphs. In addition, we

describe several network properties and we highlight some of the widely used network

topological features. We briefly mention the network patterns, motifs and models, and

we further comment on the types of biological and biomedical networks along with their

corresponding computer- and human-readable file formats. Finally, we discuss a variety

of algorithms and metrics for network analyses regarding graph drawing, clustering,

visualization, link prediction, perturbation, and network alignment as well as the current

state-of-the-art tools. We expect this review to reach a very broad spectrum of readers

varying from experts to beginners while encouraging them to enhance the field further.

Keywords: biological networks, topology, graph theory, visualization, clustering

INTRODUCTION

While most recent review articles focus on biomedical and biological networks and their
applications (McGillivray et al., 2018; Sonawane et al., 2019; Yue et al., 2019), in certain case
studies, familiarity with the graph theory concepts behind these networks is often missing. The
aim of this review is to tackle questions raised by today’s increasing demands and aid researchers
in understanding the graph theory behind the biomedical networks as well as concepts such as
visualization, annotation, management, clustering, integration, etc. To do this, we start with an
introduction about graphs (in discrete mathematics) and their different types and we further
describe the various data structures and file formats for storage and representation. In addition,
we discuss several topological features and network properties, as well as concepts such as graph
clustering, clustering comparison, network alignment, motif detection, and edge prediction. We
further comment on the various layout and graph drawing techniques as well as on methods
regarding network alignment and link predictions and we highlight the state-of-the-art tools
for analyzing such networks. Finally, we try to bring graph theory into a biomedical context
by providing a thorough description about the different types of biomedical networks and the
sources used for their construction. We hope this review becomes a useful handbook for readers
regardless of their scientific background and help non-experts in handling and interpreting
networks more easily.

In general, networks or graphs (mathematical way of representing a network) are used to capture
relationships between entities or objects. In a typical representation, a graph is composed of a
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set of vertices/nodes/points, connected with edges/
lines/links/arrows/arcs. Examples of networks which we
interact with in everyday life include the electricity grid, road
maps, the world wide web, the internet, airline connections,
citation and language networks, telecommunication channels,
social networks, economic networks, and many others. Graph
theory has been the established mathematical field for the
study and the analysis of such networks and is applicable
to a wide variety of disciplines, ranging from mathematics,
physics, computer science, engineering, and sociology to
biology and medicine (Junker and Schreiber, 2008; Pavlopoulos
et al., 2011a). In the biomedical field for example, many
biological networks consist of molecules such as DNA, RNA,
proteins and metabolites, and graphs can be used to capture
the interactions between these molecules. Therefore, it is

FIGURE 1 | Network representations and types. (A) Two graphical representations of a graph G = (V,E) with vertex set V = {1, 2, 3, 4, 5} and edge set

E = {{1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}. (B) Representation of subgraph G′ = (V ′,E ′) with vertex set V = {3, 4, 5} and edge set E = {{3, 4}, {3, 5}, {4, 5}}. (C) Graph

G′′ = (V ′′,E ′′) is isomorphic to graph G = (V,E) with vertex set V = {a,b, c,d, e} and edge set E = {{a, c}, {b, c}, {c,d}, {c, e}, {d, e}}. (D) Undirected graph G = (V,E)

with vertex set V = {1, 2, 3, 4, 5} and edge set E = {{1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}. (E) Directed graph G = (V,E) with vertex set V = {1, 2, 3, 4, 5} and edge set

E = {{3, 1}, {3, 2}, {3, 4}, {4, 5}, {3, 5}, {5, 3}}. (F) Semantic graph. (G) Weighted graph G = (V,E) with vertex set V = {1, 2, 3, 4, 5} and edge set

E = {{3, 1, 0.4}, {3, 2, 0.1}, {3, 4, 1.0}, {4, 5, 0.1}, {3, 5, 0.4}}. (H) Mixed graph G = (V,E) with vertex set V = {1, 2, 3, 4, 5} and edge set

E = {{1, 3}, {3, 2}, {3, 4}, {5, 3}, {4, 5}}. (I) Bipartite graph with vertex set V ′ = {1, 2, 3}, V ′′ = {4, 5, 6, 7} and edge set E = {{1, 4}, {1, 7}, {2, 4}, {2, 5}, {3, 6}, {3, 7}}. (J)

Multi-edge graph G = (V,E) with vertex set V = {1, 2, 3} and three different types of edge sets E ′ = {{1, 2}, {2, 3}, {3, 1}}, E ′′ = {{1, 2}, {1, 3}}, E ′′′ = {{1, 3}}. (K)

Hypergraph G = (V,E) with vertex set V = {1, 2, 3, 4, 5} and an edge connecting multiple nodes E = {{1, 2, 3, 4, 5}}. (L) A tree graph G = (V,E) with vertex set

V = {1, 2, 3, 4, 5, 6, 7} and edge set E = {{1, 2}, {2, 4}, {2, 5}, {1, 3}, {3, 6}, {3, 7}}. (M) A graph G = (V,E) with vertex set V = {1, 2, 3, 4, 5, 6, 7, 8, 9} and edge set

E = {{1, 2} , {1, 3} , {1, 5} , {2, 3} , {2, 4} , {2, 5} , {2, 6}, {2, 7}, {3, 4}, {3, 5}, {3, 9}, {4, 5}, {4, 8}}. A cluster consisting of nodes V = {1, 2, 3, 4, 5} and edges

E = {{1, 2} , {1, 3} , {1, 5} , {2, 3} , {2, 4} , {2, 5} , {3, 4} , {3, 5} , {4, 5}}. (N) A five-node clique on the right. Any node is connected with any other node.

essential to know the various network types which can be
used, in order to be able to communicate and visualize
such interactions.

Starting with the basic notions, in mathematics, a set A =

{a1, a2, a3, ...an} is a collection of objects a1, a2, a3, ...an, whereas
a graph G = (V ,E) is composed of a set of vertices V and a set
of edges E. A subgraph G′ = (V ′,E′) of the graph G = (V ,E)
is a graph where V ′ is a subset of V and E′ a subset of E.
While one graph can have multiple representations, two different
graphs may be isomorphic if they contain the same number of
vertices connected in the same way. Examples are shown in
Figures 1A–C.

There are various graph categories. The most known are
undirected, directed, weighted, bipartite, multi-edge, hypergraphs,
and trees.
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A graph is undirected if there is a single connection defined
as E = {(i, j)|, i, j ∈ V} between vertices i and j. In such
case, vertices i and j are called direct neighbors (e.g., gene co-
expression network).

A graph is called directed if an edge between vertices i and j is
represented by an arrow, thus indicating a direction from vertice i
to vertice j or vice versa. A directed graph is defined as an ordered
triple G = (V ,E, f ) where f is a function that maps each element
in set E to an ordered pair of vertices in V (e.g., pathway).

Notably, in biology there are a number of directed
relationships which can be graphically shown as different arrow
types toward a semantic approach (e.g., food web). For example,
“inhibits,” “enhances,” “regulates” etc. Standards for arrow usage
are described in the Systems Biology Graphical Notation (SBGN)
visual language (Le Novère et al., 2009).

Aweighted graph is defined as a graph where E is a set of edges
between the vertices i and j (E = {(i, j) | i, j ∈ V}) associated
with a weight function w : E → R, where R denotes the set of
all real numbers. Most of the times, the weight wij of the edge
between nodes i and j represents the relevance of the connection
(e.g., sequence similarity network).

A bipartite graph is an undirected graph G = (V ,E) in which
vertices in V can be partitioned into two sets V ′ and V ′′ such that
(i, j) ∈ E implies either (i ∈ V ′ and j ∈ V ′′) or (j ∈ V ′

and i ∈ V ′′) (e.g., gene-disease networks). In other words, any
vertex from set V ′ can be connected to any other vertex from set
V ′′ but no edges between vertices within the same set (V ′or V ′′)
are allowed.

A graph is called multi-edge if it contains multiple edges
or otherwise parallel edges that are incident to the same two
vertices (e.g., knowledge/integration networks). A simple graph
for example, has no multiple edges.

A hypergraph consists of a set of vertices V and a set of
hyperedges E where an edge can join any number of vertices (e.g.,
biochemical networks).

A tree is an undirected graph in which any two vertices are
connected by exactly one path, or equivalently a connected
acyclic undirected graph (e.g., ontologies, phylogenies).
Examples of the various graph types are shown in Figures 1D–L.

A graph is connected if there is a path from any point to
any other point in the graph. In a complete graph, every pair of
distinct vertices is connected by a unique edge.

A cluster (Figure 1M) is a graph formed from the disjoint
union of complete graphs and a clique (Figure 1N) in an
undirected graph is a subset of vertices such that every pair of
vertices in the clique is connected.

DATA STRUCTURES AND
REPRESENTATIONS

A network can be stored as (i) adjacency matrix, (ii) adjacency

list, or (iii) sparse matrix. In graph theory, an adjacency matrix
A is a square matrix of size N × N (where N is the number of
vertices) used to represent a graph. In the case of a simple graph,
the adjacencymatrix is a (Sabidussi, 1966; Yue et al., 2019)-matrix
with zeros on its diagonal (A[i,j] = 1 for connection presence,

A[i,j] = 0 for connection absence) or a (0,wij)-matrix for a
weighted graph where wij is the edge weight between two nodes
(A[i,j] = wij). In both undirected simple and weighted graphs,
the adjacency matrix is symmetric (equal to its transpose-rows
and columns are the same). In the case of directed graphs, the
matrix is not symmetric, thus differentiating its upper triangular
part from its lower triangular part (ij is not the same as ji).
An overview of adjacency matrices and their representations are
shown in Figures 2A–C.

Bipartite graphs, as opposed to generic networks, have
their own characteristics (Pavlopoulos et al., 2018). One major
property is that any bipartite graph can be presented as two
biadjacency matrices (or otherwise projections). While in an
original bipartite graph, vertices which belong to a set are
not connected to each other, in its biadjacency form they are
connected through nodes that belong to the other set (indirect
connections). This concept is described in Figures 2D,E, whereas
an extensive review about their biomedical application can be
found elsewhere (Pavlopoulos et al., 2018).

Adjacency matrices are memory inefficient for storing larger
sparse networks as they require O(V2) memory. Notably, the
O notation in graph theory is a theoretical measure to classify
algorithms according to how their running time or space
requirements grow as the input size grows (Knuth, 1997). Let’s
assume that in a gene co-expression network, one wants to store
an all-vs.-all matrix with all pairwise human gene similarities
(V = ∼20,000 genes). This would require 400,000,000 bytes to

be stored in memory (381MB RAM) or 4×20,0002

1,0243
= 1.49 GB

for float/integer numbers (for 4 byte integers and floats). To
partially overcome this barrier, a simple approach would be
to take advantage of the adjacency matrix symmetry by only
storing the upper triangular part in an array B in a linear
form (Figures 2F,G). The mapping between element coordinates
in the two forms is given by the formula A[i, j] = B[Ni +
i(1−i)

2 + (j − i)] where N is the number of vertices (Figure 2G).

The linear representation B requires V(V−1)
2 memory which is

half the size compared to the memory needed for a complete
adjacency matrix A.

For sparse networks, adjacency lists are proposed as an
alternative data structure. An adjacency list is an array A of
separate lists. Each element of the arrayAi is a list, which contains
all the vertices that are adjacent to vertex i. If the graph G is
weighted, then each item in the adjacency list is either a two-item
array or an object, giving the vertex number, and the edge weight
(Figure 2H). Adjacency lists require much less space O(V + E)
compared to the space required by the adjacency matrix O(V2).
Moreover, finding all vertices adjacent to a given vertex in an
adjacency matrix representation, requires O(V) time, whereas
in an adjacency list such operation is as fast as reading the
corresponding list (smaller length).

An alternative to the adjacency list, is the use of a sparse
matrix data structure. In such case only the non-zero elements
are kept along with their coordinates and everything else is
discarded as non-informative. An example of such a data
structure is shown in Figure 2I where the first row keeps the
i coordinate for each element in A[i, j], the second row the
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FIGURE 2 | Adjacency matrices and alternative data structures. (A) Simple undirected graph consisting of five nodes (N = V = 5) and four edges (E = 4). (B) A

directed graph represented by a non-symmetric adjacency matrix. (C) A simple weighted graph. (D) The bipartite graph and its adjacency matrix. (E) The graph’s

projections. In the projected network colored as green, node V1 for example is connected to node V2 through node node V4. (F) The upper triangular part of the

adjacency matrix. (G) The upper triangular part of the adjacency matrix in a linear form. Element A[2,3] = 0.9 in the adjacency matrix is element B[10] = 0.9 in the linear

form. (H) The graph presented as an adjacency list. Each vertex is accompanied by a list containing all other vertices adjacent to it. (I) A data structure for efficiently

storing sparse matrices with many zeros. The first two rows indicate the coordinates in an adjacency matrix, whereas the third column contains the connection weight.

j coordinate in A[i, j] and the third row the weight wij. In
the case of unweighted simple graphs (referring to the default
value which equals to 0, indicating that no link exists), the
third row can be completely skipped, remembering that wij is
always one.

GENERAL NETWORK PROPERTIES

As degree degi, we define the total number of edges adjacent to a
vertex. In the case of a directed graph we distinguish between the
“indegree” (degini ) and “outdegree” (degouti ). The indegree refers
to the number of arcs, incident from the vertex, whereas the
outdegree to the number of arcs incident to the vertex. In a social
network for example, the indegree would represent the followers,
whereas the outdegree the people one follows. The total degree

in a directed graph is the sum of the indegree and outdegree
degi = degini + degouti showing all connections (both followers
and followed people). The average degree of the network is

degavg =
Σdegi
V (Figure 3A). Looking at all nodes in a network,

in order to study the degree distribution p(k), we consider the
probability that a randomly selected vertex has degree equal
to k. The same information can also be found as cumulative
degree distribution pc(k) which shows the a-posterior probability
of a randomly selected vertex to have degree larger than k.
Notably, the degree distribution is one of the most important
topological features and is characteristic to different network
types. In the simplest case, p(k) can be estimated by a histogram
of degrees. An example is shown in Figure 3B. Networks,
whose degree distribution follow a power law, are called
scale-free networks.
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FIGURE 3 | Network properties and topological features. (A) A network G = (V,E) consisting of V = 18 nodes and E = 21 edges. Each node’s size has been

adjusted according to its degree. Vertex V1 for example has 10 neighbors, thus degree d(V1) = 10. The average degree for the whole network is 42
18 = 2.333. Network

has been visualized with Cytoscape. (B) A scatterplot histogram showing the degree distribution. The Y axis holds the values about how many nodes have certain

degree (values in X axis). (C) Clustering coefficient. Node V has 6 neighbors {V1 V2 ,V3 ,V4 ,V5 ,V6 }. The maximum number of edges between these neighbors are
6(6−1)

2 =15 but only two neighbors (V1 and V2) are connected to each other thus making the clustering coefficient for node V equal to 1
15 = 0.066. (D) Similarly, the

neighbors of node V are connected with 11 edges between each other (E = {{V1,V2}, {V1,V5}, {V1,V4}, {V2,V3}, {V2,V6}, {V2,V4}, {V3,V6}, {V3,V5}, {V4,V6}, {V4,V5},

{V5,V6}}), the clustering coefficient for this node will be CV = 11
15 = 0.733. Notably dotted lines represent the direct connections of node V, whereas the solid lines

represent the connections between the first neighbors of node V. (E) The closeness centrality in blue, the betweenness centrality in red and the eccentricity centrality

in orange. The graph consists of 6 nodes and 5 edges. Closeness centrality calculation example: Node V1accesses nodes V2, V4, V5, V6 with step 1 and node V3

with step 2. Therefore, its closeness centrality is calculated as 5
4×1+2×1 = 5

6 = 0.833. Betweenness centrality calculation example: Since all nodes are accessible

through any other node, there are N(N− 1) = 6× 5 = 30 shortest paths but only 12 of them pass through node V2. These are {V3,V2}, {V3,V2,V1},{V3,V2,V1,V4},

{V3,V2,V1,V5}, {V3,V2,V1,V6}, {V2,V1}, {V2,V1,V4}, {V2,V1,V6}, {V2,V1,V5}, {V4, V1,V2,V3}, {V5,V1,V2,V3} and {V6,V1,V2,V3}. Therefore the

Cbet(V2 ) =
12
30 = 0.4. Eccentricity calculation example: Node V1 accesses nodes V2, V4, V5, V6 with one step and node V3 with two steps. Therefore, its eccentricity

will be max (2, 1) = 2.

Density is the ratio between the number of edges in a graph
and the number of possible edges in the same graph. In a fully
connected graph (e.g., protein complex), the number of possible

edges (pairwise connections) are Emax = V(V−1)
2 . Therefore, the

density can be calculated as density = E
Emax

= 2E
V(V−1) . If a graph

has E ≃ Vk, 2 > k > 1, then this graph is considered as dense,
whereas when a graph has E ≃ V or E ≃ Vk, k ≤ 1, it is
considered as sparse.

The Clustering coefficient is a measure which shows whether
a network or a node has the tendency to form clusters or
tightly connected communities (e.g., protein clusters in a protein-
protein interaction network). The clustering coefficient of a node
is defined as the number of edges between its neighbors divided
by the number of possible connections between these neighbors.
The clustering coefficient of a node i is defined as Ci = 2e

k(k−1)
where k is the number of neighbors (degree) and e the number
of edges between these k neighbors. The average clustering of
a network is given by Cavg = 6Ci

V . The clustering coefficient
takes values 0 ≤ Ci ≤ 1, thus the closer to 1, the higher the
tendency for clusters to be formed. An example is shown in
Figures 3C,D.

Thematching indexMij can be used to identify two nodes in a
network which might be functionally similar without necessarily
being connected to each other. The matching index is a measure
to quantify such similarity between any two nodes within a
network and, according to the above, two nodes can be found
to be functionally similar if they share common neighbors. The
matching index between vertices i and j is calculated as Mij =
Σ distinct common neighbors
Σ total number of neighbors

and can be extended beyond the direct

neighbors of a vertex. In addition, it can be applied to multi-
edge networks.

The distance distij between two nodes (e.g., metabolites in a
metabolic network) is defined as the length of the shortest path
between them. As shortest path we define the minimal number
of edges that need to be traversed to reach node j from node
i. In the case where two shortest paths of identical length exist,
any of them could be used. Whenever there is no connection
between two nodes i and j, then their distance is defined as infinite
distij = ∞. In addition, the diameter, diamm = max(distij), is the
maximal distance between any pair of vertices. The average path
length is defined as the average distance between all node pairs
and is defined as distavg =

1
N(N−1)

∑N
i = 1

∑N
j = 1 distij.
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FIGURE 4 | Motifs. (A) Motif examples of three and four nodes. (B) The 13 possible directed motifs using three nodes.

NETWORK CENTRALITIES

Very often, in network analysis, we ask questions such as: which
is the most important node, which node behaves as a hub,
which node is the bridge between two different communities,
which node is important for the network’s robustness (tolerance
to failures and perturbations), etc. In order to address these
questions, various network centralities can be used. The degree
centrality (Bonacich, 1987) is a measure to highlight highly
connected nodes (e.g., central transcription factors). A network
with a star-like topology for example, contains hubs which are
central nodes with many neighbors around them. The degree
centrality of a node i is calculated as Ci = deg(i) where
deg(i) is the node’s degree. Similarly, the closeness centrality

(Sabidussi, 1966) is a measure to detect important nodes which
can communicate quickly with other nodes in a network. For a
graph G = (V ,E) it is defined as Cclo = 1∑

distij
or as Cclo =

N−1∑
distij

in its normalized form. In biochemical networks, it is

often used to find top metabolites [e.g., metabolites in E. coli as
part of the glycolysis and citrate acid cycle pathways (Ma and
Zeng, 2003; Koschützki and Schreiber, 2008)]. The betweenness
centrality (Freeman, 1977) shows the nodes which form such
bridges so that two communities can communicate with each

other. It is calculated as Cbet (i) =
σxy(i)
σxy

where σxy is the total

number of shortest paths from node x to node y and σxy(i)
is the number of those paths that pass through node i. It has
been shown that proteins with high betweenness centrality in
a protein-protein interaction (PPI) network play an important
role to the modularization of the network (Koschützki and
Schreiber, 2008). The eccentricity centrality (Hage and Harary,
1995) shows how easily accessible a vertex is from any other
vertex in the network. The eccentricity is the maximum graph
distance between vertex i and any other vertex j in graph G.
For a disconnected graph, all vertices are defined to have infinite
eccentricity. The eccentricity centrality is calculated as Cecc =

1
max(distij)

. Eccentricity centrality has been used to detect essential

proteins in a PPI (Jalili et al., 2016). Notably, the maximum
eccentricity is called the graph diameter, whereas the minimum
graph eccentricity is called the graph radius. Finally, there are
many other specialized centralities that serve different purposes.
The eigenvector centrality for example, detects vertices that are
connected to important vertices, whereas the subgraph centrality
accounts for the participation of a node in all subgraphs of the
network. Examples are shown in Figure 3E.

MOTIFS

Network motifs are repeated graphlets (small subgraphs of a
larger network that appear at any frequency) in a specific network
capturing particular patterns of interactions between vertices.
They are often associated with particular functions (Stone et al.,
2019) and are used for many applications in biological networks
(Kim et al., 2011). Motifs are structures which occur at higher
frequencies compared to random networks and are found in
both directed and undirected networks. Motif analysis is often
applied on biological networks such as biochemical, ecological,
neurobiology, or gene expression networks to unravel building
blocks associated with certain biological processes.

For example, motifs can be found in ecological food webs
as well as genetic networks or the World Wide Web (Milo,
2002; Shen-Orr et al., 2002). Feed-forward-loop (FFL) and bifan
motifs (Figure 4) are typical patterns found in various types of
biological networks (Mangan and Alon, 2003; Mangan et al.,
2003). Notably, motifs have been used to distinguish different
protein-protein interaction networks (Przulj et al., 2004) and in
contrast to the transcriptional regulatory networks, it has been
shown that they are evolutionary conserved in PPI networks
(Conant and Wagner, 2003).

To measure the statistical significance of a network motif,
a Z-score or a P-value can be used. The Z-score is calculated
as the difference of the frequency f (m) of a motif m in a
network and its mean frequency fr(m) in a large number of
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FIGURE 5 | Network models. (A) An Erdos–Rényi random network. (B) A Watts-Strogatz network. (C) Barabási–Albert (BA) scale-free network. Graphs were

visualized using R. Code example: g1 = sample_smallworld (1, size = 500, nei = 4, p = 0.03). Plot (g1, layout = layout.fruchterman.reingold, vertex.label = NA,

edge.arrow.size = 0.02, vertex.size = 0.5, xlab = “Random Network: G(N,p) model”).

randomized networks σr(m). The formula is Z(m) = f (m)−fr(m)
σr(m) .

Similarly, the P-value shows the probability P(m) of a motif
m to appear in a randomized network equally or more times
than in the network of interest. Motifs are considered to be
statistically significant if they have Z(m) > 2.0. Motif detection
can become computationally expensive and tools like Pajek
(Mrvar and Batagelj, 2016), Mfinder (Kashtan et al., 2004),
MAVisto (Schreiber and Schwöbbermeyer, 2005), NetMatch
(Ferro et al., 2007), SANA (Mamano and Hayes, 2017), and
FANMOD (Wernicke and Rasche, 2006) are offered for this
purpose (Kavurucu, 2015).

MODELS

In order to better understand a network’s topology and come
to the conclusion of whether observed features are network-
specific or not, several models such as the Erdos–Rényi (Bollobás,
2001), Watts-Strogatz (Watts and Strogatz, 1998), and Barabási–
Albert (Barabasi and Albert, 1999) have been introduced
(Figure 5).

The Erdos–Rényimodel: It is one of the most popular models
in graph theory and was mainly introduced to describe the
properties of a random graph. According to this model, V
number of vertices are randomly connected with probability
p = 2E

V(V−1) . In general, in such a graph, each pair of vertices
can be connected with approximately an equal probability p ≤

1, whereas the degree distribution is given by a binomial
distribution. The probability of a vertex to have degree deg

is p(deg) ≃ e−degavg degavg
deg

deg! . Notably, for a network where

V → ∞ the distribution becomes approximately Poissonian.
A typical characteristic of a random network is its homogeneity
as most vertices have a similar number of connections. For
small p, the network seems as disconnected, whereas for p ≈
1
V , the network has a bigger component containing most of

the network’s connections. When p ≥
log(V)
V , then almost

all vertices are connected homogeneously and at random. The

clustering coefficient of this network is C = p =
degavg
V

and shows that the probability of two nodes with a common
neighbor to be connected is the same as the probability of two
randomly paired vertices. In the case of biological networks,
straightforward comparisons show if they have a certain topology
or differ from any other random network. Thus, Erdos–Rényi
is not a good model for biological networks with respect to
degree distribution.

The Watts-Strogatz model: This model was introduced to
describe random networks that follow a small world topology
meaning that most nodes can be reached by any other node in a
small number of steps.While random networks can often capture
this property too, they fail to account for highly connected
regions like in most empirical networks (e.g., social networks).
Therefore, Watts and Strogatz proposed a model for networks
described by local structures (high clustering coefficient) as well
as small average path lengths. Metabolic networks [e.g., fat-
metabolism communication in Yeast (Al-Anzi et al., 2015)], in
which metabolites are linked to each other with small steps, is a
typical example (Jeong et al., 2000). In a Watts-Strogatz network,
if all vertices are placed on a circular ring, each vertex would be
connected to its V

2 neighbors. In the real world, this indicates the
form of small communities where people know other people from
their close environment as well as friends of friends from nearby
areas. Coexistence of high local clustering and short average path
length are two main characteristics of this type of networks.

The Barabási–Albert model: This model describes random
scale-free networks. These are networks whose degree
distribution follows a power law taking into account their
inhomogeneous degree distribution or otherwise networks
with nodes which do not have a typical number of neighbors.
According to this model, networks can evolve overtime and
new edges do not appear randomly, whereas new nodes
follow the existing degree distribution. At time point t = 0
for example, let’s assume a network consisting of V0 vertices
and zero edges. A new vertex will connect with e ≤ V0

edges to the existing vertices, whereas after t time points,
the network is expected to consist of V = V0 + et edges.
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FIGURE 6 | Examples of biological networks. (A) A protein-protein interaction (PPI) network shown in Cytoscape. (B) A sequence similarity network visualized with

Cytoscape. Each edge corresponds to an alignment score. (C) A KEGG metabolic pathway. (D) A Reactome signal transduction network. (E) The tree of life visualized

by iTOL. (F) A gene expression network with up- (red) and down-regulated genes (green). (G) A Savanna food web (credit: Siyavula Education). (H) A tagged PubMed

abstract showing abstract-based co-occurrences. (I) A STRING multi-edge PPI knowledge network.

Notably, for t ≫ 1, the Barabasi-Albert model will exhibit a
scale-free distribution p(k) ∼ k−γ , γ = 3. Like in a social
network, individuals who already have many friends are likely
to acquire more friends overtime compared to individuals
with a limited number of friends. When comparing the
Erdos–Rényi and Watts-Strogatz networks of the same size
and density, the Barabasi-Albert networks were found to
have shorter average path lengths. Characteristic examples
of BA networks are the Protein-Protein interaction networks
(Barabási and Oltvai, 2004; Yook et al., 2004).

Like in many real-life examples, most biological networks
are robust and tolerant against random removal of nodes
as biological functions must remain maintained. However,
compared to random networks with homogeneous degree
distribution, scale-free networks are very vulnerable to targeted

attacks but very robust against random removal of vertices.
In general, nodes with low degree appear more frequently
compared to nodes with high degree and play a minor role
in the overall network topology, whereas aimed removal of
nodes with higher degree distribution can affect a network’s
topology significantly.

BIOLOGICAL AND BIOMEDICAL
NETWORKS

In biomedical research, graphs can capture the associations
between any type of biological entity such as proteins, genes,
small molecules, metabolites, ligands, diseases, drugs, or even
database records (Figure 6).
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Some biological networks model the functions of cell-
and tissue–specific molecular interactions at a cellular
organizational level, varying from cells to a complete organ.
These are:

Protein-Protein Interaction Networks (PPIs)
This type of networks holds information about how different
proteins operate with each other to enable a biological
process within a cell. The interactions in a PPI network
can be physical or predicted. Notably, a whole interactome
can capture all PPIs happening in a cell or an organism.
In vivo and in vitro methods for detecting PPIs include: X-
ray crystallography, NMR, tandem affinity purification (TAP),
affinity chromatography, coimmunoprecipitation, protein arrays,
protein fragment complementation, phage display and yeast
two-hybrid (Y2H) (Rao et al., 2014). Widely used repositories
(Lehne and Schlitt, 2009; Szklarczyk and Jensen, 2015) which
host PPIs for various organisms are the BioGRID (Stark et al.,
2006), MINT (Chatr-aryamontri et al., 2007), BIND (Bader et al.,
2003), DIP (Xenarios et al., 2000), IntAct (Hermjakob et al.,
2004a), and HPRD (Peri et al., 2003) database. Concerning
topology, the PPI networks follow a small-world property and are
scale-free networks. Central hubs often represent evolutionarily
conserved proteins, whereas cliques (fully connected subgraphs)
have been found to have a high functional significance
(Spirin and Mirny, 2003).

Sequence Similarity Networks (SSNs)
These networks consist of nodes representing proteins or genes
and edges capturing the sequence similarity between amino
acid or nucleotide sequences. Widely used tools (Ekre and
Mante, 2016) for obtaining a sequence similarity between
two sequences are the BLAST (Altschul et al., 1990), LAST
(Kiełbasa et al., 2011), and FASTA3 suite (Pearson, 2000), which
contains SSEARCH, GGSEARCH, GLSEARCH executables of
Smith-Waterman (Smith andWaterman, 1981) and Needleman-
Wunsch (Needleman and Wunsch, 1970) implementations
for local and global sequence alignment. These networks are
weighted, have a small-world and scale-free topology and often
contain hubs. Often, clustering algorithms are applied on such
networks for the detection of protein families. Like in PPIs,
proteins that lie together in such networks are more likely
to have similar functions or be involved in similar biological
processes (Sharan et al., 2007). While it is not straightforward
to come to a conclusion about their density, when coping with
fragmented sequences (e.g., alignments of predicted proteins
from metagenomes), the networks are rather sparse.

Gene Regulatory Networks
They are collections of regulatory relationships between
transcription factors (TFs) and TF-binding sites or between
genes and their regulators. Normally, these networks are
directed, dynamic, and can be visualized as bipartite graphs. In
such networks, most nodes have only a few interactions and only
a few hubs come with a higher connectivity degree. In any case,
such networks follow a power law degree distribution (scale-free)
p(k) ∼ k−γ , γ ≈ 2 (Vázquez et al., 2004). Among a variety of

databases hosting information about gene regulation, widely
used repositories are the KEGG (Kanehisa and Goto, 2000),
GTRD (Yevshin et al., 2019), TRANSFAC (Matys et al., 2003),
TRRUST (Han et al., 2018).

Signal Transduction Networks
These networks capture cell signaling or otherwise the
transmission of molecular signals as well as a series of molecular
events within a cell or from the exterior to its interior (Fabregat
et al., 2018). A signal transduction network normally consists
of several thousand nodes and edges representing a series of
reactions. These networks are mostly directed and sparse. They
follow a power law degree distribution as well as small-world
properties. While such data can be found in well-known pathway
databases (KEGG, Reactome), specialized repositories such as
the MiST (signal transduction in microbes) (Ulrich and Zhulin,
2007), NetPath (Kandasamy et al., 2010), or Human-gpDB
(Satagopam et al., 2010) also exist.

Metabolic Networks
They are networks consisting of metabolites (nodes) and their
interactions in an organism. Metabolites can be either smaller
molecules such as amino acids or larger macromolecules like
polysaccharides. These networks are usually directed graphs
and can be represented as Petri nets (Reisig, 1985; Chaouiya,
2007). They are scale-free, they carry small-world properties
(Jeong et al., 2000) and can often be organized using hierarchies
(Gagneur et al., 2003). In order to gain insights into their
decomposition, heuristic modularity optimization over all
possible divisions to find the best one is required (Newman and
Girvan, 2004). KEGG and Reactome databases are two of the
most widely used repositories for this type of network.

Gene Co-expression Networks
They are undirected weighted networks where two nodes (genes)
are connected if there is a significant co-expression between
them. Such networks are usually constructed using data from
high-throughput technologies such as Microarrays, RNA-Seq
or scRNA-seq. For each pairwise connection, a metric like for
example, the Pearson Correlation Coefficient (PCC) (Kirch,
2008) can be used to calculate an edge’s weight. Often, a threshold
or a Z-score are applied on the whole network in order to
accept correlations above a certain cutoff. Otherwise the network
would look like a fully connected clique. After the threshold and
depending on the total clustering coefficient, the network can be
clustered to detect functional modules. One typical example is
the ribosomal genes which tend to group together due to similar
expression patterns. Expression data for such analyses can be
found in widely used repositories such as GEO (Barrett et al.,
2013) or ArrayExpress (Parkinson et al., 2007). Notably, Arena-
Idb (Bonnici et al., 2018) repository can be used for human
non-coding RNAs interactions.

Expression Quantitative Trait Loci (eQTL)
Network
Data obtained from genotyping and/or transcriptomic
experiments are used as locus (eQTLs) in explaining a fraction
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of the genetic variance of a gene expression phenotype (Nica
and Dermitzakis, 2013). For this purpose, eQTL networks
are suitable for summarizing this information (Platig et al.,
2016; Fagny et al., 2017; Sonawane et al., 2019). Genome-wide
association studies (GWASs) are used for association between
common genetic variants and phenotypic traits based on
many variants of relatively small effect size. Those single-
nucleotide polymorphisms (SNPs) are measured by expression
quantitative trait locus (eQTL) analysis and are represented
by eQTL networks with significant associations as edges.
Findings provide unique insight into the genotype–phenotype
relationship [e.g., Enhanced tissue-specific heritability of
type 2 diabetes (T2D) was identified by eQTL networks
(Torres et al., 2014; Fagny et al., 2017)].

lncRNA–Protein Interaction Networks
These networks reveal the functions of lncRNAs coming
from their interactions with proteins (Yue et al., 2019).
Most common experiments for studying these interactions
include the RNP immunoprecipitation-microarray (RIP-
Chip) (RIP-Chip: the isolation and identification of mRNAs,
microRNAs, and protein components of ribonucleoprotein
complexes from cell extracts), high-throughput sequencing
of RNA isolated by crosslinking immunoprecipitation (HITS-
CLIP) (HITS-CLIP yields genome-wide insights into brain
alternative RNA processing.), photoactivatable ribonucleoside-
enhanced crosslinking and immunoprecipitation (PAR-CLIP)
(Transcriptome-wide identification of RNA-binding protein and
microRNA target sites by PAR-CLIP.) and RNAcompete (Rapid
and systematic analysis of the RNA recognition specificities
of RNA-binding proteins). Regarding the computational
methods for predicting these interactions, network-based
methods are the most applicable. Multiple protein–protein
similarity networks (PPSNs) (Fusing multiple protein-protein
similarity networks to effectively predict lncRNA-protein
interactions.), LPIHN (Predicting Long Noncoding RNA and
Protein Interactions Using Heterogeneous Network Model)
and PLPIHS (Prediction of lncRNA-protein interactions using
HeteSim scores based on heterogeneous networks) could be
applied to generate lncRNA–protein interaction networks
(Zhang et al., 2019).

Additionally, some biological networks are distinguished by
comprising information about evolution and interactions of
species. These are:

Phylogenetic networks: They are networks trying to capture
the evolutionary relationships between organisms in time
(Huson et al., 2010; Thomas and Portier, 2013). Reconstructed
phylogenies are mainly represented as trees even if it is
debatable whether a tree is the right scheme as it fails
at capturing events like the union of different lineages.
As an extension to trees, phylogenetic networks might
contain loops. The tree of life is a global effort to
capture the evolution of all organisms in a single snapshot
and describe the relationships between them. Notably,

widely used methods for tree reconstruction are the
Neighbor-Joining (NJ) (Saitou and Nei, 1987), UPGMA, and
maximum likelihood parsimony (Golding and Felsenstein,
1990), whereas widely used applications for such analyses are
the PAUP (Yang, 1996), PHYLIP (Baum, 1989), and MEGA
(Kumar et al., 2016).
Ecological networks: These networks mainly represent food
webs or interactions among species in an ecosystem. These
interactions can be trophic or symbiotic (Ings et al., 2009),
mutualistic (bidirectional) or competitive (host-parasite). A
fundamental aim of ecological network analysis is to uncover
the mechanisms which influence the stability of fragile
ecosystems. In general, binary food webs can be simple
directed or undirected k-partite or simple graphs, whereas
quantitative food chains can be shown as weighted graphs.
Most food webs follow an exponential degree distribution,
whereas it is well-accepted that such webs display an average
low connectance. An in-depth analysis of the topological
features of this type of networks is extensively discussed
elsewhere (Danon et al., 2011).
Epidemiological networks: They are networks used in public
health to study disease transmission (e.g., sexually transmitted
diseases—STDs) (Danon et al., 2011). Path traversal
analysis can reveal transmission routes while the network’s
structure can provide insights into the epidemiological
dynamics. While epidemiological networks often simulate
social networks, they can be shown as bipartite graphs
(Pavlopoulos et al., 2018).
Species interaction networks: There are between-species
interaction networks describing pairwise interactions between
species, trying to understand what factors (e.g., diversity)
lead to stability (Romanuk et al., 2010) and within-
species interaction networks quantifying associations between
individuals, offering information in species, and/or population
level (Croft et al., 2004).
Food webs: All organisms are connected to each other
through feeding interactions and the networks presenting
these interactions are very—well known for the effort to
answer the long-standing question in ecology about the
stability of these interactions (Milner-Gulland, 2012).
Interactions of ecological entities captured in networks
can be obtained from literature articles, observation
in the field, molecular experiments (e.g., analysis of
environmental DNA), or models based on incomplete data
(Delmas et al., 2019).

Moreover, biomedical graphs are of great importance for both
researchers and clinicians (Yue et al., 2019). These are:

Disease networks: They are formed by diseases and their
causative genes, while the connections between them can
be constructed based on repositories such as the Online
Mendelian Inheritance in Man (OMIM) associations. These
networks are generated when diseases share at least one
causative gene, and therefore are considered to be linked.
Disease networks are typically shown as bipartite networks
(Goh et al., 2007).
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Drug-disease associations: These networks hold information
about known and/or predicted drug-disease associations. The
information could be extracted from a database or from
published literature (Gottlieb et al., 2011; Sonawane et al.,
2019; Yue et al., 2019).
Disease—symptom graphs: These graphs connect diseases
with their symptoms and visualize the potential evolution
of the diseases, assisting clinicians to follow the more
efficient medical treatment rapidly (Sonawane et al.,
2019). These graphs are generated based on medical
records using rudimentary concept extraction of cause
and effect.

Finally, data integration approaches can be used to generate
biological networks consisting of nodes which represent text,
database records, or literature articles.

Literature co-occurrence networks: These networks show
connections between bioentities that are found to co-occur
in any text corpus (Pavlopoulos et al., 2014). Name-entity-
recognition (NER) taggers such as the EXTRACT (Pafilis et al.,
2016), can be used to initially identify genes/proteins, chemical
compounds, environments, tissues, diseases, phenotypes, and
Gene Ontology terms in a text and map the identified terms
to their corresponding ontology/taxonomy entries in public
databases. This way, any text corpus like Wikipedia, PubMed
(∼29 million abstracts) or PubMed Central (PMC,∼6 million
full-text articles) can be parsed and analyzed for both abstract-
based or sentence-based co-occurrences.
Knowledge networks: These networks are mostly multi-
edge graphs as they combine heterogeneous information
and metadata from various sources like public repositories
or biological and literature databases. Typical examples
are the STRING (Franceschini et al., 2013), STITCH
(Szklarczyk et al., 2016), and PICKLE (Gioutlakis et al.,
2017) databases. STRING contains known and predicted
protein-protein interactions for various organisms, whereas
STITCH contains known and predicted interactions between
chemical compounds and proteins. In the STRING
database, two proteins can be, for example, connected in
multiple ways. They can be homologous, or co-occur in
an abstract, or have neighboring positions in a genome
or be products of a fusion event or co-express in an
experiment. Similarly, PICKLE integrates publicly available
PPI databases via genetic information ontology. Finally,
bioDBnet (Mudunuri et al., 2009) is a network of the major
biological databases.

Overall, biological networks follow the new era of hybrid

heterogeneous networks, trying to put together different types
of information (Navlakha and Kingsford, 2010; Moreau and
Tranchevent, 2012; Ni et al., 2016). It is worth mentioning, that
a great collection of biological networks that are produced by
researchers and are published in various articles can be found
in https://cytoscape-publications.tumblr.com. This repository
can be used as an excellent teaching material as well as a
great resource for inspiration and case studies when building
software applications.

FUNCTIONAL ANNOTATION AND
OVERREPRESENTATION ANALYSIS

A common task in computational biology field is the annotation
and interpretation of gene lists (e.g., genes or proteins which
are found to be tightly connected in a network). For this
task, functional annotation and/or overrepresentation analysis
can be used (Tipney and Hunter, 2010; Hung et al., 2012).
Enrichment analysis determines over-represented classes of
genes or proteins in a large group of samples in order to
reveal existing associations with disease phenotypes (Huang
et al., 2009a). Similarly, functional enrichment analysis applies
statistical tests to match genes of interest with certain biological
functions (Bindea et al., 2009). PANTHER (Mi et al., 2013),
Gorilla (Eden et al., 2009) and DAVID (Huang et al., 2009b)
applications for example, accept a gene list as an input and report
related hits to molecular functions, biological processes [e.g.,
Gene Ontology (Gene Ontology Consortium, 2004)] and KEGG
(Kanehisa and Goto, 2000) and Reactome (Fabregat et al., 2018)
pathways. Another similar tool is the ClueGO (Bindea et al.,
2009) which is offered as a Cytoscape plugin. For researchers
interested in non-coding RNA annotation and identification,
Transcriptator (Tripathi et al., 2015) can be used. Pathway
enrichment analysis can be also performed by additional tools
such as pathfindR (Ulgen et al., 2019), g:Profiler (Raudvere
et al., 2019), and EnrichmentMap (Merico et al., 2010; Reimand
et al., 2019). Gene Set Enrichment Analysis [GSEA (Mootha
et al., 2003; Subramanian et al., 2005)] and NGSEA (Han et al.,
2019) can be used for overrepresentation analysis, whereas
differential expression analysis for the determination of the up-
and down- regulated genes is offered by DESeq2 (Michael, 2017)
or metaseqR (Moulos and Hatzis, 2015).

FILE FORMATS

A network can be described and stored in multiple human-
and computer-readable ways. Apart from the simple file formats
such as the tab-delimited, CSV, SIF, Excel and adjacency matrix,
several others like the BioPAX (Demir et al., 2010), SBML
(Hucka et al., 2003), PSI-MI (Hermjakob et al., 2004b), CML
(Murray-Rust et al., 2001), and CellML (Lloyd et al., 2004) have
been introduced for biological data and semantics. For example,
SBML, which stands for Systems Biology Markup Language, is an
XML-like format for storing and parsing biochemical networks
as well as for describing biological processes. BioPAX stands for
Biological Pathway Exchange and is made for the representation
of biological pathways at the molecular and cellular level. The
PSI-MI format is used for the data exchange related to molecular
interactions and CellML is used for describing mathematical
models. GraphML (Brandes et al., 2017) is an XML-like file
format and consists of unordered sections related to a network’s
node and edge elements. Each node has a distinct identifier,
whereas each edge is described by a source and a target node.
Additional attributes such, an edge weight or a label can also
be included in the schema. The JavaScript Object Notation
(JSON) format is a generic and widely-used non-biological file

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 January 2020 | Volume 8 | Article 34

https://cytoscape-publications.tumblr.com
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Koutrouli et al. Biological Network Analysis

FIGURE 7 | Examples of file formats. (A) Simple undirected graph consisting of seven nodes (V = 7) and six edges (E = 6). (B) Network in Tab-delimited file format.

(C) Network in GraphML file format. Blue box highlights the interaction between nodes V1 and V7. (D) A cytoscape.js graph encoded in JSON. (E) Network in PSI-MI

file format.

format and is popular for web–based applications or web-server
asynchronous communication and data exchange. However,
it is worth mentioning that Cytoscape.js (Franz et al., 2016)
accepts JSON formats for network visualization. Finally, the
Nexus and the Newick file formats are standard ways for
representing trees. While NDEx (Pillich et al., 2017) is an
open-source framework for the sharing of networks of many
types and formats, file-format-specific parsers are available [e.g.,
Bioconductor (Gentleman et al., 2004) rBiopaxParser (Kramer
et al., 2013), rsbml, RPsiXML and others]. Examples of such file
formats are shown in Figure 7.

GRAPH LAYOUTS AND EDGE BUNDLING

For graph analysis and interpretation, it is important to be
able to depict a graph whose structure, symmetries, and other
main features become clear in a visually and aesthetically

appealing way. This is especially true for graphs of large size,
where many nodes and edges can have multiple clusters and
interconnected areas.

Graph drawing combines methods from mathematics and
computer science to derive two- and three- dimensional
representations of graphs, employing a number of strategies
(Figure 8). Among the most successful layouts are the force-

based layout approaches, where the nodes of the graphs are
metaphorically modeled as point particles with attractive (spring)
forces acting between nodes connected by an edge and repelling
(electrical) forces acting between all pairs of nodes. The optimal
layout is determined by the positions of nodes/particles that
minimize the total energy of the system. Typically, such a state
is found by simulating the forces of the many-particle physical
system and arriving at a minimum energy state iteratively. In
addition, in a spectral layout method, the coordinates are taken
to be the eigenvectors of a matrix such as the Laplacian, derived
from the adjacency matrix of the graph. Orthogonal layout
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FIGURE 8 | Network layouts. (A) Grid layout. (B) Circular layout. (C) Hierarchical layout. (D) Force-directed layout (E) Edge-bundling. All views have been generated

with Cytoscape.

methods allow the edges of the graph to run horizontally or
vertically, parallel to the coordinate axes of the layout, while
tree layout algorithms use tree-like structures and are suitable
for visualizing ontologies or hierarchies. Finally, circular layout
methods place the vertices of the graph on a circle, choosing
carefully the ordering of the vertices around the circle to reduce
crossings and place adjacent vertices close to each other.

While graph drawing is a mature field with many proposed
alternatives, the approaches that produce the most compelling
visualizations (e.g., force directed based algorithms) can often
become CPU and memory greedy and struggle with visualizing
networks of more than a few thousands of nodes and
edges. Empirical performance statistics can be found elsewhere
(Pavlopoulos et al., 2017). Many layout algorithms are embedded
in standard visualization tools: Gephi (Bastian et al., 2009)
visualization tool comes with a great variety of algorithms such as
OpenOrd (Martin et al., 2011) and Yifan-Hu (Yifan, 2005) force-
directed algorithms. OpenOrd can layout networks consisting
of over a million nodes in less than half an hour but aesthetics
depends on the network’s topology. The Yifan-Hu layout
can give aesthetically comparable representations to the ones
produced by the widely used but time-consuming Fruchterman-
Reingold (Fruchterman and Reingold, 1991), with much faster
performance. Other algorithms included in Gephi are the
circular, contraction, dual circle, random, MDS, Geo, Isometric,
GraphViz, and Force atlas layouts. Similarly, Cytoscape (Shannon
et al., 2003) visualization tool comes with a rich variety of
simple (grid, random, and circular) and more sophisticated
(force-directed, hierarchical) layout algorithms. Finally, for more
customized layouts, one can utilize the igraph library (Gabor
and Nepusz, 2006). yWorks provides the professional software
manufacturer with state-of-the-art diagramming components.

For even more aesthetic layouts, edge bundling methods can
be utilized to provide significant clutter reduction and make
visible high-level edge patterns clearer (Zhou et al., 2013).
These methods are gaining ground over the years and are
mostly divided in hierarchical or force directed. An overview of
these methods is extensively described elsewhere (Zhou, 2016).
Edge bundling methods are still computationally expensive
and their main philosophy is to group edges together like a
bundle of cables. Cytoscape and Tulip (Auber et al., 2017) are
two of the most widely used visualization tools which have
such methods incorporated. Basic node layout as well as edge-
bundling examples are shown in Figure 8.

In general, force-directed layouts are very suitable for scale-
free networks like PPIs or highly modular networks with
distinct communities or high clustering coefficient. It would not
make sense for example to apply a force-directed layout in a
fully connected graph. Similarly, hierarchical layouts are more
suitable for trees or tree-like graphs such as the Gene Ontology.
Finally, it is worth mentioning that there is tradeoff against
time, particularly because algorithms (e.g., layouts) grow time
exponentially as the network increases.

NETWORK VISUALIZATION

Several techniques have been introduced for the visualization of
networks varying from very simple (e.g., adjacency matrices) to
more complex (e.g., force directed layouts in 2D or 3D). However,
the selection of the appropriate visualization, highly depends on
the type of network which needs to be visualized. For example,
in a multi-Omics approach, one would like to see different types
of information (e.g., proteomics, transcriptomics, metabolomics,
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FIGURE 9 | Network representations. (A) A network visualized by Cytoscape with the use of a force-directed layout algorithm. (B) A multi-layered graph visualized by

Arena3D. (C) A hive-plot view. (D) A network in 3D visualized by Graphia application (E) A multi-edge network visualized by STRING. (F) A network visualized with the

use of arcs. (G) A network visualized as a colored adjacency matrix. (H) A circular Circos view. (I) Visualization of a bipartite graph.

genomics) in a well-structured view. For this purpose, a multi-
layered visualization would be much more preferable compared
to a generic force directed layout. This way, nodes of different
type are placed onto different layers, while connections are
allowed both within a layer as well as across layers. In the
case of multi-edge graphs, two bioentities can be connected in
multiple ways. Two genes, for example, might be homologous, or
neighbors in a genome or co-express in an experiment. STRING
database is one of the most widely used databases which utilizes
multi-edge graph visualization. In such networks, layouts can be
applied taking into consideration only one connection type or
any combination of them.

While force-directed or hierarchical visualizations are very
common, they often fail in coping the so-called hairball effect
(dense networks where all nodes are almost connected to any
other node—no structure). To partially address this issue, circos
and hive plots have been introduced. Hive plot views use “radially
oriented” linear axes as a coordinate system. Nodes are placed

on these axes and edges are drawn as curved links. While
hive plots are general, they have been used in biology to
successfully visualize cancer, gene-disease, and gene regulatory
networks (Krzywinski et al., 2012). Similarly, Circos application
(Krzywinski et al., 2009) enables a circular composition to show
connections between nodes or positions, which are difficult to
visually organize when the underlying layout is linear. Such plots
are very widely used in biology to represent phenomena like
genomic variations. Arc diagrams in which nodes are displayed
along a single axis and links are represented with arcs, can
be used for a similar purpose. Finally, bipartite graphs which
are widely used in epidemiology and gene-disease networks
need special visualization to show mutual relationships between
the elements of their two collections. While several other
visualization approaches can be applied on hierarchical graphs
(e.g., Gene Ontology) and biochemical networks (e.g., pathways
or petri nets), the most basic concepts are schematically shown
in Figure 9.
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GRAPH-BASED CLUSTERING

Clustering is the process of grouping a set of objects so that
objects belonging in the same group (cluster) have similar
properties. For this, many state-of-the-art algorithms take into
account the network’s topology and try to cluster the network
accordingly. For example, many approaches try to find densely
connected areas in a network, others try to “break” the
bridges (edges with high betweenness centrality) between distinct
communities and others look for easiest flow paths or are based
on node distances.

Despite the great variety of graph-based clustering algorithms
available today (Xu and Wunsch, 2005; Brohée and van Helden,
2006; Moschopoulos et al., 2011), only few can cope with large-
scale networks consisting of millions of nodes and edges. SPICi
(Jiang and Singh, 2010) is one of the fastest algorithms and
accepts as input a list of connections. It supports both dense
and sparse matrices and tries to find local densely connected
neighbors using heuristics. It has running time complexity
O(VlogV+E) time and needs O(E) memory. It is not suitable
for networks with many hubs and low clustering coefficient.
Louvain (Blondel et al., 2008) on the other hand, is an old-
fashioned but rather fast and greedy algorithm with O(VlogV)
time performance. Molecular Complex Detection (MCODE)

(Bader and Hogue, 2003) is a widely-used algorithm in biology
and very suitable for finding protein complexes in PPI networks.
It has O(VEd3) time complexity where d is the vertex size of
the average vertex neighborhood in the input graph. Affinity-
propagation (Frey and Dueck, 2007) detects ways that nodes
in a network can exchange “messages” between each other very
fast. It is a high-quality algorithm and comes with O(V2) time
complexity. This might be a decent performance for medium-
scale biological networks like gene co-expression or PPIs but
not sufficient for larger networks like the literature-based or
the knowledge-based ones. Markov Clustering (MCL) (Enright
et al., 2002) is one of the mostly cited algorithms in the field
and was initially introduced to detect protein families from
sequence similarity networks. It uses random walks to detect
highly-connected subgraphs using a mathematical bootstrapping
procedure and is able to cluster a few million nodes in less than
an hour. However, it is memory greedy, a bottleneck which has
been solved with its parallel version HipMCL (Azad et al., 2018),
a scalable distributed-memory implementation. HipMCL uses
MPI (Forum, 1994), and OpenMP (Dagum and Menon, 1998)
and can cluster a network consisting of 300 million nodes and
∼17 billion edges in only∼6 h using∼136,000 cores.

While it is not in the scope of this review to go into each
algorithm’s detail, we highly encourage readers to either try each

FIGURE 10 | Network clustering. (A) A Yeast PPI network. (B) The PPI network clustered with MCL. (C) The PPI network clustered with MCL with the initial

connections restored. (D) The initial network structure with some MCL clusters highlighted. (E) A cluster in high resolution. (F) Gene Ontology enrichment related for

the zoomed cluster. Visualization is offered through Cytoscape whereas clustering has been performed with the use of ClusterMaker2 plugin.
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of them individually in their command line versions or through
the clusterMaker2 (Morris et al., 2011) Cytoscape plugin. In
Figure 10 for example, a Yeast PPI network (Gavin et al., 2006)
has been clustered with clusterMaker’s MCL algorithm, whereas
a randomly selected cluster has been annotated with Cytoscape’s
BiNGO plugin (Maere et al., 2005).

HIERARCHICAL CLUSTERING

Hierarchical clustering is a non-graph-based way of data
clustering which accepts a distance matrix containing all pairwise
distances between the nodes as input and outputs a dendrogram
showing the hierarchical relationship between the clusters. The
standard hierarchical algorithm hasO(n3) time complexity of and
requires O(n2) memory, thus making this method inappropriate
for large data sets. Hierarchical clustering is divided in three
main categories. These are Single linkage which calculates the
smallest distance between objects in each iteration step, Complete
linkage which calculates the longest distance between objects in
each iteration step and Average linkage which uses the average
distance between all pairs of objects in every iteration step. For
more details, a survey explaining how hierarchical clustering
algorithms work and what are their variations can be found
elsewhere (Langfelder et al., 2008).

Notably, all calculations are based on a distance matrix (fully
connected graph) which can be generated by a correlation

matrix as Dij = 1 − PCCij. D is the distance matrix and
PCC a Pearson Correlation Matrix (e.g., gene co-expression
networks). Figure 11 shows an example of how five genes
can be hierarchically clustered according to their expression
values/patterns measured in three hypothetical conditions or
time points. The final output is a heatmap accompanied
by a dendrogram showing how genes are grouped together.
Notably, in cases where it is not straightforward which cutoff
to apply on the tree in order to define the number of
clusters, statistical methods to automate such task, are available
(Langfelder et al., 2008).

CLUSTERING COMPARISON

Different clustering algorithms or runs of the same algorithm
using different parameters can often lead to dissimilar results.
Therefore, it is essential to be able to compare different clustering
results between each other. This is especially useful when one
wants to compare the results of a clustering algorithm against
an “optimal” or desired clustering for example, to study an
algorithm’s accuracy.

For this purpose, several clustering comparison metrics have
been introduced. Generally speaking, these metrics can be
divided into three categories: (i) counting pairs, (ii) set overlaps,
or (iii) mutual information (Wagner and Wagner, 2007). Some
well-known clustering comparison metrics which are based on

FIGURE 11 | Example of hierarchical clustering. (A) The expression values of five genes in three conditions. (B) The chart showing the genes’ expression values as

patterns. (C) The Pearson correlation coefficient (PCC) matrix showing all pairwise PCC values. (D) The Pearson correlation matrix in the form of a fully connected

graph. (E) The distance matrix as a product of the PCC matrix (Dij = 1− PCCij ). (F) A 2D average linkage hierarchical clustering. Genes G1, G2 as well as genes G3,

G4, G5 are clustered together.
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counting pairs are the Chi Squared Coefficient (Mirkin, 2001),
Rand Index (Rand, 1971), Fowlkes–Mallows Index (Fowlkes
and Mallows, 1983), Mirkin Metric (or Equivalence Mismatch
Distance), Jaccard Index and the Partition Difference (Li et al.,
2004). Metrics based on set overlaps include the F-Measure (Fung
et al., 2003), Meila-Heckerman & Maximum-Match-Measure
(Marina Meil and David, 2001), and the Van Dongen-Measure
(Dongen, 2000). Finally, clustering comparison metrics of the
mutual information category include the Normalized Mutual
Information by Strehl & Ghosh (Alexander and Joydeep, 2003),
Normalized Mutual Information by Fred & Jain (Ana and Jain,
2003) and the Variation of Informationmethods (Meila, 2000).

The metrics of the first category count the number of object
pairs that (a) were clustered together in both clusterings, (b)
were clustered differently in both clusterings and (c) were
clustered together in only one of the two clusterings. Rand
Index is such a metric, ranging from 0 to 1 and is defined

as: RandIndex(C1,C2) =
2(nctb+ncdb)

n(n−1) where C1 and C2 are
two different clusterings of a data set with n objects, nctb is
the total number of object pairs that were clustered together
in both clustering and ncdb the number of pairs that were
clustered differently in both clusterings. Intuitively, the Rand
Index calculates the fraction of same-clustered (together or
separately) pairs against the number of all possible pairs and
equals to 1 when all pairs are clustered in the same manner in
both clusterings and to 0 when there is no pair clustered in the
same manner in any of the two clusterings.

Metrics based on set overlaps try to map clusters between
clusterings in accordance to their maximum overlap. TheMeila-
Heckerman measure compares the results of a clustering against
the optimal clustering. This makes the method asymmetric,
which means it cannot be used while comparing two clusterings

without one being the optimal. TheMaximum-Match-Measure is
the symmetric version of this metric which iteratively looks for
the largest element of the confusion matrix of the intersection
values between all clusters of the two clusterings, meaning the
cluster pair with the largest overlap. The column and row of
the confusion matrix which contain the largest element are
then crossed out and the sum of the results of all iterations
are aggregated and divided by the total number of elements.
The formula for the Maximum-Match-Measure is as follows:
MM(C1,C2) = 1

n

∑min{k,l}
i = 1 max{conf ′} where the algorithm

finishes in min{k, l} steps, k and l are the respective numbers
of clusters for clusterings C1 and C2 and conf ′ is the confusion
matrix described above with i− 1 columns and i− 1 rows being
removed at each iteration. Maximum-Match-Measure ranges
from 0 to 1.

An asymmetric and widely used clustering comparison metric
of the set-overlap category is the F-Measure. The F-Measure
indicates how close a clustering C2 is to an optimal clustering
C1 by making use of the harmonic mean of precision and recall

between each cluster, with precision pC1iC2j =
confij
nC2j

and recall

rC1iC2j =
confij
nC1i

, i ǫ [1, k] and j ǫ [1, l]. The F-Measure between

two clusters is calculated as F(C1i,C2j) =
2 ∗ pC1iC2j ∗ rC1iC2j

pC1iC2j + rC1iC2j
and

the overall F-Measure between two clusterings is defined as the
weighted sum of the maximum F-Measures for the clusters in C2,

F(C1,C2) =
∑k

i = 1
nC1i
n maxlj=1{F(C1i,C2j)} and ranges in [0, 1].

Metrics of the mutual information clustering comparison
category are based on the entropy of information and on the
probability of finding an element in a specific cluster. The entropy

of a clustering is defined as H(C) = −
∑k

i = 1 P(i)log2p(i),

where P(i) = nCi
n is the probability that a random

FIGURE 12 | Clustering comparisons. (A) Rand Index between C1 and C2. C11 and C12 are clusters 1 and 2 of the C1 clustering, respectively. One pair [1, 2] is

clustered together in both clusterings, three pairs [1, 5], [2, 5], and [3, 4] are clustered differently in both clusterings and the rest six pairs [1, 3], [1, 4], [2, 3], [2, 4], [3,

4], and [4, 5] have been placed together in only one of the two clusterings. The Rand Index between the two clusterings is calculated as

RandIndex(C1,C2) =
2(1+3)
5(4) = 0.4. (B) Maximum-Match-Measure between C1 and C2. C1 has four clusters while C2 has three. At the first iteration the

cluster-intersections’ confusion matrix element conf ′11 = 4 is chosen and column 1 and row 1 are crossed out. At the second iteration the maximum element of the

remaining confusion matrix is conf ′22 = 3 and column 2 and row 2 are crossed out. At the third and final iteration conf ′33 = 2 is chosen. The metric is calculated as:

MM(C1,C2) =
1
12

∑3
i = 1 max{conf

′} = 1
12 (4+ 3+ 2) = 0.75. On the same schema if C1 is chosen as the optimal clustering the F-measure for C2 can be calculated.

First, the precision and recall measures are calculated for clusters C11 and C21 as pC11C21 =
conf11
nC21

= 4
4 = 1 and rC11C21 =

conf11
nC11

= 4
5 . Then, the F-Measure can be

calculated between these two clusters as F (C11,C21) =
2 ∗ pC11C21 ∗ rC11C21
pC11C21 + rC11C21

=
2 ∗1 ∗ 4

5

1 + 4
5

= 8
9 . By calculating the respective values for the rest of the cluster pairs, the

matrix (C) is created. The overall F-Measure of C2 against C1 is F (C1,C2) =
∑k

i = 1
nC1i
n
maxlj=1{F (C1i ,C2j )} =

5
12 ∗ 8

9 + 3
12 ∗ 3

4 + 2
12 ∗ 4

5 + 2
12 ∗ 2

5 ≃ 0.76. (D) Variation

of Information matrix of the P(i, j) probabilities of an element being in the intersection of clusters. Based on the two clustering schemas of (A) the entropy of C1 is H(C1)

= −
∑2

i = 1 P(i)log2p(i) = −( 35 log2(
3
5 ) +

2
5 log2(

2
5 )) ≃ 0.97 and following the same procedure H(C2) ≃ 0.97. The mutual information between the two clusterings is

calculated as I(C1,C2) =
∑k

i = 1

∑l
j = 1 P(i, j)log2

P(i,j)
PC1 (i)PC2 (j)

= 2
5 log2(

2
5

3
5 ∗

3
5

) + 1
5 log2(

1
5

3
5 ∗

2
5

) + 1
5 log2(

1
5

2
5 ∗

3
5

) + 1
5 log2 (

1
5

2
5 ∗

2
5

) ≃ 0.02. The final value of the Variation of

Information metric becomes VI(C1,C2) = H(C1)+ H(C2)− 2I(C1,C2) = 0.97 + 0.97 − 2 ∗ 0.02 = 1.9.
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element picked is a member of cluster Ci, and the mutual
information between two clusterings C1 and C2 as I(C1,C2) =
∑k

i = 1

∑l
j = 1 P(i, j)log2

P(i,j)
PC1(i)PC2(j)

, where P(i, j) =
conf ij
n is the

probability that an element belongs in cluster C1i and also in C2j.
The Variation of Information is a mutual information clustering
comparison metric and is calculated as VI(C1,C2) = H(C1) +
H(C2) − 2I(C1,C2). Intuitively, the Variation of Information
metric describes the amount of information we lose from the first
clustering as well as the information we still have to gain from
the second clustering. The Variation of Informationmetric is not
bounded by a constant value but by a log(n)upper bound (in the
case of two trivial clusterings).

Examples of Rand Index, Maximum-Match-Measure, F-
Measure and Variation of Information are shown in Figure 12.

NETWORK ALIGNMENT

In today’s multi-Omics era, integration of heterogeneous
information (e.g., transcriptomics, proteomics, metabolomics,
etc.) in a multi-layered network structure is becoming a trend.
Additionally, methods to directly compare networks and their
topological features are gaining ground. To address these
issues, network alignment, or alternatively graph isomorphism
approaches can be used. Notably, graph alignment is not a trivial
task as it is computationally expensive and has been characterized
as NP-complete (Zampelli et al., 2010). The concept behind
network alignment is to highlight conserved or missing nodes
and edges across two (pairwise) or more (multiple) networks. In
the biomedical field for example, an alignment could potentially

be used for the discovery of conserved traits between different
species (Sharan et al., 2005), the detection of common pathway
interactions between two different disease states or the detection
of deleted gene expression connections upon drug treatment.
Like in a sequence alignment, a network alignment can also be
either local or global.

Established implementations in the field include the
NetworkBLAST aligner (Kalaev et al., 2008) for protein network
alignment between two species or across multiple networks
from different organisms, the MaWISh (Maximum Weight
Induced Subgraph) (Koyutürk et al., 2006) for PPI alignments
in order to underlie evolutionary relationships and the H-
GRAAL (Milenković et al., 2010) for metabolic networks of
different species.

Until now, several graph alignment strategies have been
introduced and various methods have been implemented. Some
of the strategies are: modular graph kernels and divide and
conquer strategies (Towfic et al., 2009), constraint programming
(Zampelli et al., 2010), linear representation of networks (Kalaev
et al., 2008), scoring functions (Flannick et al., 2008), connected-
components (Tian and Samatova, 2008), heuristic searches
(Kuchaiev et al., 2010), and graphlet degree vectors. Notably,
recent developments allow the alignment of networks with
multiple edge types (Gu et al., 2018).

While it is not in the scope of this article to cover all
existing methods, for demonstration purposes, we present an
example based on a simplified version of the GRAAL alignment
method. The GRAAL network aligner takes into consideration
the topology of a network and uses facets from both local
and global alignment methods to produce a global alignment.

FIGURE 13 | A topology-based network alignment example. (A) Possible graphlet compositions for 2 and 3 nodes. Orbits 0–3, which are annotated, represent the

possible position for a node in the various graphlets. (B) G1 and G2 graph representations. (C) Graphlet degree signatures. The row names represent the nodes, while

the column names the different orbits. (D) The final network alignment based on a simplified version of the GRAAL algorithm. Node V1D (in red color)

remains unaligned.
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According to the GRAAL algorithm, each node of the smaller
network is aligned to exactly one node of the larger one. Let’s
assume that there are two graphs G1 = (V1,E1) and G2 =

(V2,E2). GRAAL introduces the concept of graphlets, which give
a node a more detailed representation of its degree based on its
local neighborhood of connections. All possible 2- and 3-node
graphlet compositions are shown in Figure 13A. The aggregation
of the number of 2-node graphlets attached to a node, represents
the node’s degree. A node can only appear in one of the annotated
orbits 0–3 in the respective graphlets in Figure 13A.

Figure 13B, demonstrates a network alignment example.
During GRAAL’s first step, the lowest possible alignment cost for
aligning each node fromG1 to each node ofG2 is calculated. Each
row in Figure 13C represents the graphlet-signature for each
node (for each graph, respectively), based on all possible orbits
depicted in Figure 13A. The cost of aligning two nodes takes
into consideration both their degrees and graphlet-signature
similarity, whereas the lower cost is assigned to high degree
nodes, as well as to graphlet similarities which do not replicate
lower-degree graphlets. The starting seed node-pair with the
lowest cost is chosen and the alignment is expanded outwards
from these two nodes. In this example, nodes V2G and V1A have
the highest degrees and themost similar graphlet-signatures, thus
the pair (V2G, V1A) is chosen as the first aligned seed. The next
highest degree node connected to V2G is node V2I . Node V2I
is then randomly matched to one of the nodes V1B, V1C, V1D,
V1E (same degrees and similarity distances). For demonstration
purposes let it be V1B. Continuing on this graph’s path, node
V2J is matched to V1C. Moving on, node V2H is aligned to node
V1F and finally node V2K is randomly aligned to either V1D or
V1E. Let it be V1E. V1D remains unaligned. The final GRAAL
alignment is shown in Figure 13D.

LINK PREDICTION

Besides network alignment, predicting link changes in a single
network has recently drawn attention in the biomedical field.

Link prediction might concern the creation of future edges or
the identification of missing links (e.g., incomplete data). While
link prediction techniques are widely used by social media,
in biological networks, they have also been used to identify
potential drug side effects, protein-protein interactions, disease
phenotypes based on molecular information and phylogenetic
relations. For example, its application on bipartite graphs has
unraveled new drug-target interactions (Kunegis et al., 2013).
Its application on heterogeneous biological networks, has led
to the identification of key pathway and protein interactions
responsible for disease pathogenesis as well as candidate multiple
sclerosis-associated genes (Himmelstein and Baranzini, 2015).
Its combination with multi-way-based spectral has led to link
prediction of protein–protein interaction networks.

The algorithm chosen for link prediction is often tied to the
data type of the network. Due to the fact that each network
type comes with its own growth pattern, relative assumptions
must be made (Kunegis et al., 2013). Starting from an adjacency
matrix A, through eigenvalue decomposition we can write A as
U3UT . U is an n×n orthogonal matrix and 3 an n×n diagonal
matrix. The values 3ii are the eigenvalues of A, and the columns
of U are its eigenvectors. The spectral evolution model states
that in dynamic networks, eigenvalues change over time while
eigenvectors remain constant. Some of the most common link
prediction algorithm categories are listed below. Triangle closing
or triadic closure (Leskovec et al., 2008) is a method for predicting
edges which will appear between nodes with common neighbors
and widely used in social network analysis. Path counting (Lü
et al., 2009) is the extension of triangle closing, giving two nodes
with further level neighbors an additional, lower link prediction
score. Graph kernels (Smola and Kondor, 2003; Ito et al., 2005)
are functions which describe the similarity between two nodes
and are often used for link prediction.

Here, we demonstrate a link prediction example based on the
triangle closing model. The adjacency matrix A of an unweighted
and undirected network is shown in Figure 14A. The algebraic
representation of the triangle closing model can be expressed

FIGURE 14 | A triangle closing link prediction example. (A) The adjacency matrix of the undirected, unweighted example network. (B) The algebraic representation of

the A2 matrix. Each (i,j) value represents the number of common neighbors of the nodes i and j. (C) The example network plot. The red edge represents the new

predicted link in time point t + 1.
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as a square A2 of the adjacency matrix, where each (i,j) pair
contains the number of common neighbors between i and j at
a given time t. Thus, A2

ij =
∑

k AikAjk. The A
2 matrix is shown in

Figure 14B. Let the algorithm allow only one new edge creation
at each iteration. At the time point t+1, the highest value of A2

is 3 (between nodes V1 and V7). The new edge V1–V7 is created
and the A2 table is updated accordingly for the next iteration. If
this edge already existed, the next highest value of A2 would be
checked. In case of duplicate highest values, the algorithm would
have chosen one of the corresponding edges to create randomly.
The network of this example and the new edge created at time
point t+1 are depicted in Figure 14C.

Here, we present some tools which allow the computational
link prediction on biological networks. HETIONET
(Himmelstein and Baranzini, 2015) is an integrative
biomedical knowledge network assembled from 29 different
databases of genes, compounds, diseases, and more. Through
HETIONET’s website (https://het.io/), researchers can browse
an interactive biological network of 47,031 nodes (11 types)
and 2,250,197 relationships (24 types) and formulate their
own edge predictions. Linkpred (Guns, 2014) calculates the
likelihood of potential edge-creation in a future snapshot
of a network. There are 18 predictor functions (local and
global) to choose from. LPmade is another link prediction
software which specializes in link prediction via commonly used
unsupervised link prediction methods such as Adamic/Adar,
common neighbors, Jaccard’s coefficient, Katz, preferential
attachment, PropFlow, rooted PageRank, SimRank, andweighted
rooted PageRank.

NETWORK PERTURBATION

In biology, direct comparisons between a disease and a healthy
state are very common, thus making the study of molecular
changes essential. Therefore, at a network level, changes between
such states are considered as biological network perturbations.
In network medicine, a network’s topology can be used as
the backbone to further predict side effects in a system even
at a 65–80% success rate (Santolini and Barabási, 2018). In
the same study for example, a topology-based methodology
was applied on a chemotaxis network of bacteria in order to
predict the dynamics of perturbations such as gene knockout
and overexpression with 90% accuracy. Furthermore, gene
editing techniques such as CRISPR/Cas9 also benefit from
network perturbation studies as the combination of single-
cell sequencing methods with CRISPR/Cas9 offers detailed
information of gene-knockout effects at a cellular level (Holding
et al., 2019). Similar to gene knockout, RNA interference
(RNAi) is a protein silencing method, where RNA molecules
inhibit gene expression by targeting their mRNA. Nested effect
models (NEMs) constitute probabilistic graphical models that
describe the directed hierarchical dependencies on a perturbation
network. In a recent study (Siebourg-Polster et al., 2015), it has
been shown that an extended version of NEMs (NEMix), was
proposed and used on signaling pathways’ networks. In a use
case scenario of a human rhinovirus (HRV) infection signaling

network constructed from RNAi screening data, the proposed
method inferred highly accurate signaling networks, fully aligned
to the ones in KEGG database.

TOOLS

Nowadays, a great variety of tools for network storage, analysis,
and interactive visualization is available. Recent review articles
(Pavlopoulos et al., 2008a, 2013, 2015, 2017; Gehlenborg et al.,
2010; O’Donoghue et al., 2010) discuss the main challenges
in the field in terms of storage and scalability and highlight
the advantages and shortcomings of the current state-of-the-
art tools. Briefly, Cytoscape (Shannon et al., 2003), Cytoscape.js
(Franz et al., 2016), Gephi (Bastian et al., 2009), Pajek (Mrvar and
Batagelj, 2016), Ondex (Köhler et al., 2006), Proviz (Iragne et al.,
2005), VisANT (Hu et al., 2009), Medusa (Pavlopoulos et al.,
2011b), Osprey (Breitkreutz et al., 2002), Arena3D (Pavlopoulos
et al., 2008b; Secrier et al., 2012), Graphia (Kajeka), and
BioLayout Express (Theocharidis et al., 2009) are a state-of-
the-art of the tools worth mentioning. While many of them
are designed for general use, most of them can be used to
tackle problems in the network biology field. Ondex for example
can integrate heterogeneous data from various sources, Gephi,
Pajek, and Graphia (https://kajeka.com/graphia/) are interactive
visualizers suitable for large-scale networks, Cytoscape hosts
a great variety (>200) of plugins (Saito et al., 2012) and
focuses on network visualization and annotation, Arena3D
visualizes stacks of 2D networks in 3D space using a multi-
layer concept and BioLayout Express and Graphia (Kajeka)
are designed for 3D visualizations. Most of these tools (e.g.,
Gephi, Cytoscape, and Graphia) are highly interactive and allow
network editing (node/edge coloring, size changing, labeling,
annotations, zooming/rotating, collapse/expand grouping, arrow
types, node/edge filtering, etc). In addition, tools such as
the Network Analyzer (Doncheva et al., 2012), ZoomOut
(Athanasiadis et al., 2015), Network Analysis Toolkit (NEAT)
(Brohée et al., 2008), and NAP (Theodosiou et al., 2017) focus on
the topological analysis, whereas non-interactive libraries such as
the Stanford Network Analysis Project (SNAP) (Leskovec and
Sosič, 2016), the outdated Large Graph Layout (LGL) (Adai
et al., 2004), NetworkX (Hagberg et al., 2008), and GraphViz are
command line applications able to offer back-end calculations as
well as static visualizations. Specialized tools such as the Pathview
(Luo and Brouwer, 2013), BioTapestry (Longabaugh, 2012),
PathVisio (Kutmon et al., 2015), Interactive Pathways Explorer
(iPath) (Darzi et al., 2018), MapMan (Thimm et al., 2004),
and WikiPathways (Slenter et al., 2018), Pathway Commons
(Rodchenkov et al., 2019) are designed for pathway analysis
and visualization and finally, tools such as the Dendroscope
(Huson et al., 2007) and iTOL (Letunic and Bork, 2007)
are widely-used tree visualizers (Pavlopoulos et al., 2010).
GeneMANIA (Franz et al., 2018) is offered for the detection
of genes that are related to a set of input genes, using
a very large set of functional association data (protein and
genetic interactions, pathways, co-expression, co-localization,
and protein domain similarity).
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Concerning libraries, igraph (Gabor and Nepusz, 2006) is an
open source library for network analysis and can be used by
both Python and R languages. It offers a very rich plethora of
functions dedicated to network analysis while it emphasizes on
efficiency, portability, and ease of use. VisNetwork is a JavaScript-
based R package for network visualization and ggplot2 an R
data visualization package suitable for interactive charts and
plots. Graphviz is an open source graph visualization software
for representing structural information such as diagrams of
abstract graphs and networks. NetworkD3 is a D3 JavaScript
library and plotly a library suitable for data analytics. In addition,
Three.js is a cross-browser JavaScript library for animated 3D
computer graphics in a web browser and ndtv-d3 a library
suitable for timelines and animated movies of objects. NetworkX
is a Python package for the creation, manipulation, and study of
the structure, dynamics, and functions of complex networks and
Graph-tool (Peixoto, 2017) a Python module for manipulation
and statistical analysis of graphs. Finally, as biological network
analyses become more and more popular, data exchange is
crucial. For this purpose, the NDEx Project (Pillich et al.,
2017) provides an open-source framework where scientists and
organizations can share, store, manipulate, and publish biological
network knowledge.

DISCUSSION

The adoption of mature high-throughput -Omics approaches
to analyze biological samples (e.g., genomics, transcriptomics,
proteomics, metabolomics etc.) has led to the production of
data at the scale of tera- to peta-byte in size. Subsequently,
due to this trend, biological networks follow an exponential
growth, thus making their exploration, visualization, analysis,
and storage a very difficult task. Therefore, traditional algorithms
and data structures often fail to address scalability issues,
thus making the adoption of modern technologies a necessity.
As current tools are often limited in coping with large-scale
datasets, Big Data approaches as well as parallel processing
could be used for storing, querying, and processing large data

volumes. Ideally, network analysis and visualization software
could support algorithms which can run on distributed memory
or multiple CPU and GPU systems for increased performance. In
addition, global state-of-the-art data structures adjusted to such
systems would be of great benefit.

Another bottleneck in systems biology is the visualization and
representation of large-scale networks. As networks increase in
size and complexity, more efficient algorithms for visualization
are necessary. Notably, an alternative way to overcome 2D/3D
space limitations is the adoption of virtual reality (VR)
technologies. This way, biological networks could be for
example explored or browsed using virtual universes. Typical
examples for visualizing living systems such as a whole cell
using such technology are the Visible Cell (Gagescu, 2001)
or CELLmicrocosmos (Sommer, 2019). However, even after a
decade of its existence, graphical limits, and cost of VR devices
are still restrictive factors to be considered.
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Leskovec, J., and Sosič, R. (2016). SNAP: a general-purpose network analysis
and graph-mining library. ACM Trans. Intell. Syst. Technol. 8, 1–20.
doi: 10.1145/2898361

Letunic, I., and Bork, P. (2007). Interactive tree of life (iTOL): an online tool
for phylogenetic tree display and annotation. Bioinformatics 23, 127–128.
doi: 10.1093/bioinformatics/btl529

Li, T., Ogihara, M., and Ma, S. (2004). “On combining multiple clusterings,” in:
Proceedings of the Thirteenth ACM Conference on Information and Knowledge

Management - CIKM’04. (Washington, DC: ACM Press), 294. Available online
at: http://portal.acm.org/citation.cfm?doid=1031171.1031234 (accessed August
21, 2019).

Lloyd, C. M., Halstead, M. D. B., and Nielsen, P. F. (2004). CellML:
its future, present and past. Prog. Biophys. Mol. Biol. 85, 433–450.
doi: 10.1016/j.pbiomolbio.2004.01.004

Longabaugh, W. J. R. (2012). BioTapestry: a tool to visualize the dynamic
properties of gene regulatory networks. Methods Mol. Biol. 786, 359–394.
doi: 10.1007/978-1-61779-292-2_21

Lü, L., Jin, C. H., and Zhou, T. (2009). Similarity index based on local
paths for link prediction of complex networks. Phys. Rev. E 80:046122.
doi: 10.1103/PhysRevE.80.046122

Luo, W., and Brouwer, C. (2013). Pathview: an R/Bioconductor package
for pathway-based data integration and visualization. Bioinformatics 29,
1830–1831. doi: 10.1093/bioinformatics/btt285

Ma, H.-W., and Zeng, A.-P. (2003). The connectivity structure, giant strong
component and centrality of metabolic networks. Bioinform. Oxf. Engl. 19,
1423–1430. doi: 10.1093/bioinformatics/btg177

Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a cytoscape plugin to
assess overrepresentation of gene ontology categories in biological networks.
Bioinform. Oxf. Engl. 21, 3448–3449. doi: 10.1093/bioinformatics/bti551

Mamano, N., andHayes,W. B. (2017). SANA: simulated annealing far outperforms
many other search algorithms for biological network alignment. Bioinform. Oxf.

Engl. 33, 2156–2164. doi: 10.1093/bioinformatics/btx090
Mangan, S., and Alon, U. (2003). Structure and function of the feed-

forward loop network motif. Proc. Natl. Acad. Sci. U.S.A. 100, 11980–11985.
doi: 10.1073/pnas.2133841100

Mangan, S., Zaslaver, A., and Alon, U. (2003). The coherent feedforward
loop serves as a sign-sensitive delay element in transcription
networks. J. Mol. Biol. 334, 197–204. doi: 10.1016/j.jmb.2003.
09.049
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Milenković, T., Ng, W. L., Hayes, W., and PrŽUlj, N. (2010). Optimal
network alignment with graphlet degree vectors. Cancer Inform. 9:S4744.
doi: 10.4137/CIN.S4744

Milner-Gulland, E. J. (2012). Interactions between human behaviour and
ecological systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 270–278.
doi: 10.1098/rstb.2011.0175

Milo, R. (2002). Network motifs: simple building blocks of complex networks.
Science 298, 824–827. doi: 10.1126/science.298.5594.824

Mirkin, B. (2001). Eleven ways to look at the chi-squared coefficient for
contingency tables. Am. Stat. 55, 111–120. doi: 10.1198/000313001750358428

Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S.,
Lehar, J., et al. (2003). PGC-1alpha-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in human diabetes. Nat.

Genet. 34, 267–273. doi: 10.1038/ng1180
Moreau, Y., and Tranchevent, L.-C. (2012). Computational tools for prioritizing

candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523–536.
doi: 10.1038/nrg3253

Morris, J. H., Apeltsin, L., Newman, A. M., Baumbach, J., Wittkop, T., Su, G., et al.
(2011). Clustermaker: a multi-algorithm clustering plugin for cytoscape. BMC

Bioinform. 12:436. doi: 10.1186/1471-2105-12-436
Moschopoulos, C. N., Pavlopoulos, G. A., Iacucci, E., Aerts, J., Likothanassis, S.,

Schneider, R., et al. (2011). Which clustering algorithm is better for predicting
protein complexes? BMC Res. Notes 4:549. doi: 10.1186/1756-0500-4-549

Moulos, P., and Hatzis, P. (2015). Systematic integration of RNA-Seq statistical
algorithms for accurate detection of differential gene expression patterns.
Nucleic Acids Res. 43:e25. doi: 10.1093/nar/gku1273

Mrvar, A., and Batagelj, V. (2016). Analysis and visualization of large
networks with program package Pajek. Comp. Adapt. Syst. Model 4:6.
doi: 10.1186/s40294-016-0017-8

Mudunuri, U., Che, A., Yi, M., and Stephens, R. M. (2009). bioDBnet:
the biological database network. Bioinform. Oxf. Engl. 25, 555–556.
doi: 10.1093/bioinformatics/btn654

Murray-Rust, P., Rzepa, H. S., and Wright, M. (2001). Development of chemical
markup language (CML) as a system for handling complex chemical content.
N. J. Chem. 25, 618–634. doi: 10.1039/b008780g

Navlakha, S., and Kingsford, C. (2010). The power of protein interaction networks
for associating genes with diseases. Bioinform. Oxf. Engl. 26, 1057–1063.
doi: 10.1093/bioinformatics/btq076

Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.
48, 443–453. doi: 10.1016/0022-2836(70)90057-4

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 24 January 2020 | Volume 8 | Article 34

https://doi.org/10.1093/bib/bbr069
https://doi.org/10.1101/gr.092759.109
https://doi.org/10.1098/rsif.2010.0063
https://doi.org/10.1093/molbev/msw054
https://doi.org/10.1007/s10115-012-0575-9
https://doi.org/10.1371/journal.pcbi.1004085
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1038/nbt0909-864d
https://doi.org/10.1186/1479-7364-3-3-291
http://dl.acm.org/citation.cfm?doid=1401890.1401948
http://dl.acm.org/citation.cfm?doid=1401890.1401948
https://doi.org/10.1145/2898361
https://doi.org/10.1093/bioinformatics/btl529
http://portal.acm.org/citation.cfm?doid=1031171.1031234
https://doi.org/10.1016/j.pbiomolbio.2004.01.004
https://doi.org/10.1007/978-1-61779-292-2_21
https://doi.org/10.1103/PhysRevE.80.046122
https://doi.org/10.1093/bioinformatics/btt285
https://doi.org/10.1093/bioinformatics/btg177
https://doi.org/10.1093/bioinformatics/bti551
https://doi.org/10.1093/bioinformatics/btx090
https://doi.org/10.1073/pnas.2133841100
https://doi.org/10.1016/j.jmb.2003.09.049
https://doi.org/10.1023/A:1007648401407
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.871402
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.871402
https://doi.org/10.1093/nar/gkg108
https://doi.org/10.1146/annurev-biodatasci-080917-013444
https://doi.org/10.1371/journal.pone.0013984
https://doi.org/10.1038/nprot.2013.092
https://bioconductor.org/packages/DESeq2
https://bioconductor.org/packages/DESeq2
https://doi.org/10.4137/CIN.S4744
https://doi.org/10.1098/rstb.2011.0175
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1198/000313001750358428
https://doi.org/10.1038/ng1180
https://doi.org/10.1038/nrg3253
https://doi.org/10.1186/1471-2105-12-436
https://doi.org/10.1186/1756-0500-4-549
https://doi.org/10.1093/nar/gku1273
https://doi.org/10.1186/s40294-016-0017-8
https://doi.org/10.1093/bioinformatics/btn654
https://doi.org/10.1039/b008780g
https://doi.org/10.1093/bioinformatics/btq076
https://doi.org/10.1016/0022-2836(70)90057-4
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Koutrouli et al. Biological Network Analysis

Newman, M. E. J., and Girvan, M. (2004). Finding and evaluating
community structure in networks. Phys. Rev. E 69:026113.
doi: 10.1103/PhysRevE.69.026113

Ni, J., Koyuturk, M., Tong, H., Haines, J., Xu, R., and Zhang, X. (2016).
Disease gene prioritization by integrating tissue-specific molecular
networks using a robust multi-network model. BMC Bioinform. 17:453.
doi: 10.1186/s12859-016-1317-x

Nica, A. C., and Dermitzakis, E. T. (2013). Expression quantitative trait
loci: present and future. Philos. Trans. R. Soc. B Biol. Sci. 368:20120362.
doi: 10.1098/rstb.2012.0362

O’Donoghue, S. I., Gavin, A.-C., Gehlenborg, N., Goodsell, D. S., Hériché J.-K.,
Nielsen, C. B., et al. (2010). Visualizing biological data-now and in the future.
Nat. Methods 7, S2–S4. doi: 10.1038/nmeth.f.301

Pafilis, E., Buttigieg, P. L., Ferrell, B., Pereira, E., Schnetzer, J., Arvanitidis, C., et al.
(2016). EXTRACT: interactive extraction of environment metadata and term
suggestion for metagenomic sample annotation. Database J. Biol. Databases

Curat. 2016:baw005. doi: 10.1093/database/baw005
Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson,

R., Farne, A., et al. (2007). ArrayExpress–a public database of microarray
experiments and gene expression profiles. Nucleic Acids Res. 35, D747–D750.
doi: 10.1093/nar/gkl995

Pavlopoulos, G. A., Hooper, S. D., Sifrim, A., Schneider, R., and Aerts, J. (2011b).
Medusa: a tool for exploring and clustering biological networks. BMC Res.

Notes 4:384. doi: 10.1186/1756-0500-4-384
Pavlopoulos, G. A., Iacucci, E., Iliopoulos, I., and Bagos, P. (2013). “Interpreting

the omics ‘era’ data,” in Multimedia Services in Intelligent Environments, eds
G. A. Tsihrintzis, M. Virvou, and L. C. Jain (Heidelberg: Springer International
Publishing), 79–100. Available online at: http://link.springer.com/10.1007/978-
3-319-00375-7_6 (accessed January 13, 2019).

Pavlopoulos, G. A., Kontou, P. I., Pavlopoulou, A., Bouyioukos, C., Markou,
E., and Bagos, P. G. (2018). Bipartite graphs in systems biology and
medicine: a survey of methods and applications. GigaScience 7, 1–31.
doi: 10.1093/gigascience/giy014

Pavlopoulos, G. A., Malliarakis, D., Papanikolaou, N., Theodosiou, T., Enright,
A. J., and Iliopoulos, I. (2015). Visualizing genome and systems biology:
technologies, tools, implementation techniques and trends, past, present and
future. GigaScience 4:38. doi: 10.1186/s13742-015-0077-2

Pavlopoulos, G. A., O’Donoghue, S. I., Satagopam, V. P., Soldatos, T. G., Pafilis, E.,
and Schneider, R. (2008b). Arena3D: visualization of biological networks in 3D.
BMC Syst. Biol. 2:104. doi: 10.1186/1752-0509-2-104

Pavlopoulos, G. A., Paez-Espino, D., Kyrpides, N. C., and Iliopoulos, I. (2017).
Empirical comparison of visualization tools for larger-scale network analysis.
Adv. Bioinforma. 2017:1278932. doi: 10.1155/2017/1278932

Pavlopoulos, G. A., Promponas, V. J., Ouzounis, C. A., and Iliopoulos, I. (2014).
Biological information extraction and co-occurrence analysis. Methods Mol.

Biol. 1159, 77–92. doi: 10.1007/978-1-4939-0709-0_5
Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida,

S., Aerts, J., et al. (2011a). Using graph theory to analyze biological networks.
BioData Min. 4:10. doi: 10.1186/1756-0381-4-10

Pavlopoulos, G. A., Soldatos, T. G., Barbosa-Silva, A., and Schneider, R. (2010).
A reference guide for tree analysis and visualization. BioData Min. 3:1.
doi: 10.1186/1756-0381-3-1

Pavlopoulos, G. A., Wegener, A.-L., and Schneider, R. (2008a). A survey
of visualization tools for biological network analysis. BioData Min. 1:12.
doi: 10.1186/1756-0381-1-12

Pearson, W. R. (2000). Flexible sequence similarity searching with
the FASTA3 program package. Methods Mol. Biol. 132, 185–219.
doi: 10.1385/1-59259-192-2:185

Peixoto, T. P. (2017). The Graph-Tool Python Library. Figshare. Available
from: https://figshare.com/articles/graph_tool/1164194 (accessed December
19, 2019).

Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda, C. K.,
Surendranath, V., et al. (2003). Development of human protein reference
database as an initial platform for approaching systems biology in humans.
Genome Res. 13, 2363–2371. doi: 10.1101/gr.1680803

Pillich, R. T., Chen, J., Rynkov, V., Welker, D., and Pratt, D. (2017). NDEx:
a community resource for sharing and publishing of biological networks.
Methods Mol. Biol. 1558, 271–301. doi: 10.1007/978-1-4939-6783-4_13

Platig, J., Castaldi, P. J., DeMeo, D., and Quackenbush, J. (2016). Bipartite
community structure of eQTLs. PLoS Comput Biol. 12:e1005033.
doi: 10.1371/journal.pcbi.1005033

Przulj, N., Corneil, D. G., and Jurisica, I. (2004). Modeling interactome:
scale-free or geometric? Bioinform. Oxf. Engl. 20, 3508–3515.
doi: 10.1093/bioinformatics/bth436

Rand, W. M. (1971). Objective Criteria for the evaluation of clustering methods. J.
Am. Stat. Assoc. 66, 846–850. doi: 10.1080/01621459.1971.10482356

Rao, V. S., Srinivas, K., Sujini, G. N., and Kumar, G. N. S. (2014)Protein-protein
interaction detection: methods and analysis. Int. J. Proteomics 2014:1–12.
doi: 10.1155/2014/147648

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., et al.
(2019). g:Profiler: a web server for functional enrichment analysis and
conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198.
doi: 10.1093/nar/gkz369

Reimand, J., Isserlin, R., Voisin, V., Kucera, M., Tannus-Lopes, C., Rostamianfar,
A., et al. (2019). Pathway enrichment analysis and visualization of omics
data using g:Profiler, GSEA, cytoscape and enrichmentmap. Nat. Protoc. 14,
482–517. doi: 10.1038/s41596-018-0103-9

Reisig, W. (1985). Petri Nets: An Introduction. Berlin, NY: Springer-
Verlag. 161 (EATCS monographs on theoretical computer science).
doi: 10.1007/978-3-642-69968-9

Rodchenkov, I., Babur, O., Luna, A., Aksoy, B. A., Wong, J. V., Fong, D., et al.
(2019). Pathway commons 2019 update: integration, analysis and exploration
of pathway data. Nucleic Acids Res. 48, D489–D497. doi: 10.1093/nar/
gkz946

Romanuk, T. N., Vogt, R. J., Young, A., Tuck, C., and Carscallen, M. W.
(2010). Maintenance of positive diversity-stability relations along a gradient of
environmental stress. PLoS ONE 5:e10378. doi: 10.1371/journal.pone.0010378

Sabidussi, G. (1966). The centrality of a graph. Psychometrika 31, 581–603.
doi: 10.1007/BF02289527

Saito, R., Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., Lotia, S., et al.
(2012). A travel guide to cytoscape plugins. Nat. Methods 9, 1069–1076.
doi: 10.1038/nmeth.2212

Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for
reconstructing phylogenetic trees.Mol. Biol. Evol. 4, 406–425.

Santolini, M., and Barabási, A.-L. (2018). Predicting perturbation patterns from the
topology of biological networks. Proc. Natl. Acad. Sci.U.S.A. 115, E6375–E6383.
doi: 10.1073/pnas.1720589115

Satagopam, V. P., Theodoropoulou, M. C., Stampolakis, C. K., Pavlopoulos, G. A.,
Papandreou, N. C., Bagos, P. G., et al. (2010). GPCRs, G-proteins, effectors and
their interactions: human-gpDB, a database employing visualization tools and
data integration techniques. Database J. Biol. Databases Curat. 2010:baq019.
doi: 10.1093/database/baq019

Schreiber, F., and Schwöbbermeyer, H. (2005). MAVisto: a tool for the
exploration of network motifs. Bioinform. Oxf. Engl. 21, 3572–3574.
doi: 10.1093/bioinformatics/bti556

Secrier, M., Pavlopoulos, G. A., Aerts, J., and Schneider, R. (2012). Arena3D:
visualizing time-driven phenotypic differences in biological systems. BMC

Bioinform. 13:45. doi: 10.1186/1471-2105-13-45
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage,

D., et al. (2003). Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res. 13, 2498–2504.
doi: 10.1101/gr.1239303

Sharan, R., Suthram, S., Kelley, R. M., Kuhn, T., McCuine, S., Uetz, P., et al. (2005).
Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad.
Sci. U.S.A. 102, 1974–1979. doi: 10.1073/pnas.0409522102

Sharan, R., Ulitsky, I., and Shamir, R. (2007). Network-based prediction of protein
function.Mol. Syst. Biol. 3:88. doi: 10.1038/msb4100129

Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002). Network motifs in the
transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68.
doi: 10.1038/ng881

Siebourg-Polster, J., Mudrak, D., Emmenlauer, M., Rämö. P., Dehio, C.,
Greber, U., et al. (2015). NEMix: single-cell nested effects models for
probabilistic pathway stimulation. PLoS Comput. Biol. 11:e1004078.
doi: 10.1371/journal.pcbi.1004078

Slenter, D. N., Kutmon, M., Hanspers, K., Riutta, A., Windsor, J., Nunes,
N., et al. (2018). WikiPathways: a multifaceted pathway database bridging

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 25 January 2020 | Volume 8 | Article 34

https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1186/s12859-016-1317-x
https://doi.org/10.1098/rstb.2012.0362
https://doi.org/10.1038/nmeth.f.301
https://doi.org/10.1093/database/baw005
https://doi.org/10.1093/nar/gkl995
https://doi.org/10.1186/1756-0500-4-384
http://link.springer.com/10.1007/978-3-319-00375-7_6
http://link.springer.com/10.1007/978-3-319-00375-7_6
https://doi.org/10.1093/gigascience/giy014
https://doi.org/10.1186/s13742-015-0077-2
https://doi.org/10.1186/1752-0509-2-104
https://doi.org/10.1155/2017/1278932
https://doi.org/10.1007/978-1-4939-0709-0_5
https://doi.org/10.1186/1756-0381-4-10
https://doi.org/10.1186/1756-0381-3-1
https://doi.org/10.1186/1756-0381-1-12
https://doi.org/10.1385/1-59259-192-2:185
https://figshare.com/articles/graph_tool/1164194
https://doi.org/10.1101/gr.1680803
https://doi.org/10.1007/978-1-4939-6783-4_13
https://doi.org/10.1371/journal.pcbi.1005033
https://doi.org/10.1093/bioinformatics/bth436
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1155/2014/147648
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1038/s41596-018-0103-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1093/nar/gkz946
https://doi.org/10.1371/journal.pone.0010378
https://doi.org/10.1007/BF02289527
https://doi.org/10.1038/nmeth.2212
https://doi.org/10.1073/pnas.1720589115
https://doi.org/10.1093/database/baq019
https://doi.org/10.1093/bioinformatics/bti556
https://doi.org/10.1186/1471-2105-13-45
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1073/pnas.0409522102
https://doi.org/10.1038/msb4100129
https://doi.org/10.1038/ng881
https://doi.org/10.1371/journal.pcbi.1004078
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Koutrouli et al. Biological Network Analysis

metabolomics to other omics research. Nucleic Acids Res. 46, D661–D667.
doi: 10.1093/nar/gkx1064

Smith, T. F., and Waterman, M. S. (1981). Identification of common molecular
subsequences. J. Mol. Biol. 147, 195–197. doi: 10.1016/0022-2836(81)90087-5

Smola, A. J., and Kondor, R. (2003). “Kernels and regularization on graphs,” in
Learning Theory and Kernel Machines, eds B. Schölkopf and M. K. Warmuth
(Berlin: Springer Berlin Heidelberg), 144–158. Available online at: http://link.
springer.com/10.1007/978-3-540-45167-9_12 (accessed December 17, 2019).

Sommer, B. (2019). The CELLmicrocosmos tools: a small history of java-based
cell and membrane modelling open source software development. J. Integr.
Bioinform. 16:20190057. doi: 10.1515/jib-2019-0057

Sonawane, A. R., Weiss, S. T., Glass, K., and Sharma, A. (2019). Network
medicine in the age of biomedical big data. Front. Genet. 10:294.
doi: 10.3389/fgene.2019.00294

Spirin, V., and Mirny, L. A. (2003). Protein complexes and functional modules
in molecular networks. Proc. Natl. Acad. Sci. U.S.A. 100, 12123–12128.
doi: 10.1073/pnas.2032324100

Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M.
(2006). BioGRID: a general repository for interaction datasets. Nucleic Acids
Res. 34, D535–D539. doi: 10.1093/nar/gkj109

Stone, L., Simberloff, D., and Artzy-Randrup, Y. (2019). Network motifs and their
origins. PLoS Comput. Biol. 15:e1006749. doi: 10.1371/journal.pcbi.1006749

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.
102, 15545–15550. doi: 10.1073/pnas.0506580102

Szklarczyk, D., and Jensen, L. J. (2015). “Protein-protein interaction databases,” in
Protein-Protein Interactions, eds C. L. Meyerkord and H. Fu (New York, NY:
Springer New York), 39–56.

Szklarczyk, D., Santos, A., von Mering, C., Jensen, L. J., Bork, P., and
Kuhn, M. (2016). STITCH 5: augmenting protein-chemical interaction
networks with tissue and affinity data. Nucleic Acids Res. 44, D380–D384.
doi: 10.1093/nar/gkv1277

Theocharidis, A., van Dongen, S., Enright, A. J., and Freeman, T. C. (2009).
Network visualization and analysis of gene expression data using biolayout
express(3D). Nat. Protoc. 4, 1535–1550. doi: 10.1038/nprot.2009.177

Theodosiou, T., Efstathiou, G., Papanikolaou, N., Kyrpides, N. C., Bagos, P. G.,
Iliopoulos, I., et al. (2017). NAP: The network analysis profiler, a web tool
for easier topological analysis and comparison of medium-scale biological
networks. BMC Res. Notes 10:278. doi: 10.1186/s13104-017-2607-8

Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., et al. (2004).
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of
metabolic pathways and other biological processes. Plant J. Cell Mol. Biol. 37,
914–939. doi: 10.1111/j.1365-313X.2004.02016.x

Thomas, R., and Portier, C. J. (2013). Gene expression networks.MethodsMol. Biol.
930, 165–178. doi: 10.1007/978-1-62703-059-5_7

Tian, W., and Samatova, N. F. (2008). “Pairwise alignment of interaction networks
by fast identification of maximal conserved patterns,” in Biocomputing 2009

(Kohala Coast, HI: World Scientific), 99–110. Available online at: http://
www.worldscientific.com/doi/abs/10.1142/9789812836939_0010 (accessed
December 16, 2019).

Tipney, H., and Hunter, L. (2010). An introduction to effective use of enrichment
analysis software. Hum. Genomics 4, 202–206. doi: 10.1186/1479-7364-4-3-202

Torres, J. M., Gamazon, E. R., Parra, E. J., Below, J. E., Valladares-Salgado, A.,
Wacher, N., et al. (2014). Cross-tissue and tissue-specific eQTLs: partitioning
the heritability of a complex trait. Am. J. Hum. Genet. 95, 521–534.
doi: 10.1016/j.ajhg.2014.10.001

Towfic, F., Greenlee, M. H. W., and Honavar, V. (2009). “Aligning biomolecular
networks using modular graph kernels,” in Algorithms in Bioinformatics, eds
S. L. Salzberg and T. Warnow (Berlin: Springer Berlin Heidelberg), 345–361.
Available online at: http://link.springer.com/10.1007/978-3-642-04241-6_29
(accessed December 11, 2019).

Tripathi, K. P., Evangelista, D., Zuccaro, A., and Guarracino, M. R. (2015).
Transcriptator: an automated computational pipeline to annotate

assembled reads and identify non coding RNA. PLoS ONE 10:e0140268.
doi: 10.1371/journal.pone.0140268

Ulgen, E., Ozisik, O., and Sezerman, O. U. (2019). pathfindR: An R package
for comprehensive identification of enriched pathways in omics data
through active subnetworks. Front. Genet. 10:858. doi: 10.3389/fgene.2019.
00858

Ulrich, L. E., and Zhulin, I. B. (2007). MiST: a microbial signal transduction
database. Nucleic Acids Res. 35, D386–D390. doi: 10.1093/nar/gkl932

Vázquez, A., Dobrin, R., Sergi, D., Eckmann, J.-P., Oltvai, Z. N., and Barabási, A.-
L. (2004). The topological relationship between the large-scale attributes and
local interaction patterns of complex networks. Proc. Natl. Acad. Sci.U.S.A. 101,
17940–17945. doi: 10.1073/pnas.0406024101

Wagner, S., and Wagner, D. (2007). Comparing Clusterings - An Overview.
Karlsruhe. Available online at: https://publikationen.bibliothek.kit.edu/
1000011477 (accessed July 24, 2019).

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of “small-world”
networks. Nature 393, 440–442. doi: 10.1038/30918

Wernicke, S., and Rasche, F. (2006). FANMOD: a tool for fast
network motif detection. Bioinform. Oxf. Engl. 22, 1152–1153.
doi: 10.1093/bioinformatics/btl038

Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., and
Eisenberg, D. (2000). DIP: the database of interacting proteins. Nucleic Acids
Res. 28, 289–291. doi: 10.1093/nar/28.1.289

Xu, R., and Wunsch,II. D. (2005). Survey of clustering algorithms. IEEE Trans.

Neural Netw. 16, 645–678. doi: 10.1109/TNN.2005.845141
Yang, Z. (1996). Phylogenetic analysis using parsimony and likelihood methods. J.

Mol. Evol. 42, 294–307. doi: 10.1007/BF02198856
Yevshin, I., Sharipov, R., Kolmykov, S., Kondrakhin, Y., and Kolpakov, F. (2019).

GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids
Res. 47, D100–D105. doi: 10.1093/nar/gky1128

Yifan, H. (2005). Efficient, high-quality force-directed graph drawing. Math. J.

10, 37–71. Available online at: http://asus.myds.me:6543/paper/ktall/37%20-
%201984%20-%20Efficient,%20High-Quality%20Force-Directed%20Graph
%20Drawing.pdf

Yook, S.-H., Oltvai, Z. N., and Barabási, A.-L. (2004). Functional and topological
characterization of protein interaction networks. Proteomics 4, 928–942.
doi: 10.1002/pmic.200300636

Yue, X., Wang, Z., Huang, J., Parthasarathy, S., Moosavinasab, S.,
Huang, Y., et al. (2019). Graph embedding on biomedical networks:
methods, applications and evaluations. Cowen L Ed. Bioinform. btz718.
doi: 10.1093/bioinformatics/btz718

Zampelli, S., Deville, Y., and Solnon, C. (2010). Solving subgraph isomorphism
problems with constraint programming. Constraints 15, 327–353.
doi: 10.1007/s10601-009-9074-3

Zhang, H., Liang, Y., Han, S., Peng, C., and Li, Y. (2019). Long noncoding RNA
and protein interactions: from experimental results to computational models
based on network methods. Int. J. Mol. Sci. 20:1284. doi: 10.3390/ijms200
61284

Zhou, C. (2016). A Survey of Edge Bundling Methods for Graph Visualization.
Zhou, H., Panpan, X.u, Yuan, X., and Qu, H. (2013). Edge bundling

in information visualization. Tsinghua. Sci. Technol. 18, 145–156.
doi: 10.1109/TST.2013.6509098

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Koutrouli, Karatzas, Paez-Espino and Pavlopoulos. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 26 January 2020 | Volume 8 | Article 34

https://doi.org/10.1093/nar/gkx1064
https://doi.org/10.1016/0022-2836(81)90087-5
http://link.springer.com/10.1007/978-3-540-45167-9_12
http://link.springer.com/10.1007/978-3-540-45167-9_12
https://doi.org/10.1515/jib-2019-0057
https://doi.org/10.3389/fgene.2019.00294
https://doi.org/10.1073/pnas.2032324100
https://doi.org/10.1093/nar/gkj109
https://doi.org/10.1371/journal.pcbi.1006749
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/nar/gkv1277
https://doi.org/10.1038/nprot.2009.177
https://doi.org/10.1186/s13104-017-2607-8
https://doi.org/10.1111/j.1365-313X.2004.02016.x
https://doi.org/10.1007/978-1-62703-059-5_7
http://www.worldscientific.com/doi/abs/10.1142/9789812836939_0010
http://www.worldscientific.com/doi/abs/10.1142/9789812836939_0010
https://doi.org/10.1186/1479-7364-4-3-202
https://doi.org/10.1016/j.ajhg.2014.10.001
http://link.springer.com/10.1007/978-3-642-04241-6_29
https://doi.org/10.1371/journal.pone.0140268
https://doi.org/10.3389/fgene.2019.00858
https://doi.org/10.1093/nar/gkl932
https://doi.org/10.1073/pnas.0406024101
https://publikationen.bibliothek.kit.edu/1000011477
https://publikationen.bibliothek.kit.edu/1000011477
https://doi.org/10.1038/30918
https://doi.org/10.1093/bioinformatics/btl038
https://doi.org/10.1093/nar/28.1.289
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1007/BF02198856
https://doi.org/10.1093/nar/gky1128
http://asus.myds.me:6543/paper/ktall/37%20-%201984%20-%20Efficient,%20High-Quality%20Force-Directed%20Graph%20Drawing.pdf
http://asus.myds.me:6543/paper/ktall/37%20-%201984%20-%20Efficient,%20High-Quality%20Force-Directed%20Graph%20Drawing.pdf
http://asus.myds.me:6543/paper/ktall/37%20-%201984%20-%20Efficient,%20High-Quality%20Force-Directed%20Graph%20Drawing.pdf
https://doi.org/10.1002/pmic.200300636
https://doi.org/10.1093/bioinformatics/btz718
https://doi.org/10.1007/s10601-009-9074-3
https://doi.org/10.3390/ijms20061284
https://doi.org/10.1109/TST.2013.6509098
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	A Guide to Conquer the Biological Network Era Using Graph Theory
	Introduction
	Data Structures and Representations
	General Network Properties
	Network Centralities
	Motifs
	Models
	Biological and Biomedical Networks
	Protein-Protein Interaction Networks (PPIs)
	Sequence Similarity Networks (SSNs)
	Gene Regulatory Networks
	Signal Transduction Networks
	Metabolic Networks
	Gene Co-expression Networks
	Expression Quantitative Trait Loci (eQTL) Network
	lncRNA–Protein Interaction Networks

	Functional Annotation and Overrepresentation Analysis
	File Formats
	Graph Layouts and Edge Bundling
	Network Visualization
	Graph-Based Clustering
	Hierarchical Clustering
	Clustering Comparison
	Network Alignment
	Link Prediction
	Network Perturbation
	Tools
	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References




