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1 CANCER RESEARCH | TUMOR BIOLOGYAND IMMUNOLOGY

2

3 Polyunsaturated FattyQ1 Acid–Bound Alpha-Fetoprotein
4 Promotes Immune Suppression by Altering Human
5 Dendritic Cell MetabolismQ2

6 Paul V. Munson1,2, Juraj Adamik1,2, Felix J. Hartmann3,4,5, Patricia M.B. Favaro3, Daniel Ho3,
7 Sean C. Bendall3, Alexis J. Combes6,7, Matthew F. Krummel6, Karen Zhang7, Robin K. Kelley7,8,9, and
8 Lisa H. Butterfield1,2

ABSTRACT910

11

12
◥

14 Alpha-fetoprotein (AFP) is expressed by stem-like and poor
15 outcome hepatocellular cancer tumors and is a clinical tumor
16 biomarker. AFP has been demonstrated to inhibit dendritic cell
17 (DC) differentiation and maturation and to block oxidative phos-
18 phorylation. To identify the critical metabolic pathways leading to
19 human DC functional suppression, here, we used two recently
20 described single-cell profiling methods, scMEP (single-cell meta-
21 bolic profiling) and SCENITH (single-cell energetic metabolism by
22 profiling translation inhibition). Glycolytic capacity and glucose
23 dependence of DCs were significantly increased by tumor-derived,
24 but not normal cord blood-derived, AFP, leading to increased
25 glucose uptake and lactate secretion. Key molecules in the electron
26 transport chain in particular were regulated by tumor-derived AFP.
27 Thesemetabolic changes occurred atmRNAandprotein levels, with
28 negative impact on DC stimulatory capacity. Tumor-derived AFP
29 bound significantly more polyunsaturated fatty acids (PUFA) than
30 cord blood-derived AFP. PUFAs bound to AFP increasedmetabolic
31 skewing and promoted DC functional suppression. PUFAs inhib-
32 ited DC differentiation in vitro, and w-6 PUFAs conferred potent
33 immunoregulation when bound to tumor-derived AFP. Together,

34 these findings provide mechanistic insights into how AFP antag-
35 onizes the innate immune response to limit antitumor immunity.
36
37 Significance: Alpha-fetoprotein (AFP) is a secreted tumor pro-
38 tein and biomarker with impact on immunity. Fatty acid-bound
39 AFP promotes immune suppression by skewing human dendritic
40 cellmetabolism toward glycolysis and reduced immune stimulation.
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43 Introduction
44 Liver cancer accounts for 8.3% of cancer-related deaths worldwide,
45 making it the third leading cause of cancer-related mortality (1).
46 Hepatocellular carcinoma (HCC) represents 70%–85% of primary

48liver cancers (2). Important drivers of HCC rates include chronic
49hepatitis B (HBV) and C (HCV) infections and control of these
50infections has decreased HCC rates in East Asia and Southern Eur-
51ope (3). Unfortunately, downward trends in HBV andHCV infections
52are offset by increases in other HCC-risk factors, including alcohol
53consumption, smoking, and obesity. Obesity can lead to fatty infil-
54tration into the liver causing non-alcoholic fatty liver disease
55(NAFLD), leading to non-alcoholic steatohepatitis (NASH; ref. 4). In
56the United States, more than 1 in 3 people have some form of NAFLD,
57and 6 million people have NASH (4). Given HCC’s lethality, coupled
58with the concerning rise in HCC risk factors, new therapies are
59urgently needed.
60Treatments for patients with early stages of HCC include surgery,
61ablative therapies, embolization approaches, or liver transplanta-
62tion (5) can be effective. For the majority of patients with more
63advanced stages of disease, systemic therapy options have expanded
64in recent years to include small-molecule multikinase inhibitors,
65monoclonal antibodies targeting VEGF or its receptors, and most
66recently, immune checkpoint inhibition (6–12)
67The combination of bevacizumab and atezolizumab, targeting
68VEGF and PD-L1, respectively, has emerged as a new global standard
69forfirst-line therapy based upon substantial improvement in outcomes
70compared with the multikinase inhibitor, sorafenib, with median
71overall survival (OS) of 19.2 months for the combination versus
7213.4 months for sorafenib (HR, 0.66; P¼ 0.0009; refs. 9, 13) Objective
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75 responses occurred in 30% of patients treated with the combination,
76 including 8% with complete responses, with median duration of
77 response not reached. Other immunotherapy combinations have also
78 shown striking improvements in rates of objective radiographic
79 response compared with historical controls (10, 14, 15), and the
80 combination of the PD-L1 inhibitor, durvalumab, with the CTLA-4
81 inhibitor, tremelimumab, improved OS compared with sorafenib in a
82 randomized, phase III trial (8, 16). These studies demonstrate the
83 potential for robust and durable immune responses in a subset of
84 patients with HCC and underscore the urgent necessity to identify and
85 address mechanisms of resistance in the majority of patients who do
86 not achieve prolonged responses. Although immunotherapies block-
87 ing exhaustionmarkers (PD-1, PD-L1, andCTLA-4) and/or VEGF are
88 encouraging, there are additional barriers in vivo that limit the potency
89 of antitumor immunity.
90 Alpha-fetoprotein (AFP) is an oncofetal glycoprotein, similar to
91 albumin, which is expressed by the majority of HCC tumors (tAFP)
92 and can be detected in serum as well as the tumor microenvironment.
93 Elevated serumconcentration ofAFP is associatedwith poor prognosis
94 across stages of HCC, and tumors with high AFP expression may
95 represent a distinct biologic subtype associated with activation of
96 proliferative pathways and VEGF signaling (17–19). Like albumin,
97 tAFP is a secreted protein that can bindmultiple metabolites and enter
98 activated lymphocytes, hepatocytes, natural killer (NK) cells, and
99 monocytes. Because its initial discovery in a patient with HCC in the
100 1960s (20), interest in tAFP has focused on its prognostic (21) and
101 diagnostic potential in HCC (22), as a cancer vaccine antigen
102 target (23–25), and its immunoregulatory properties on NK cells (26),
103 macrophages (27, 28),monocytes, and dendritic cells (DC; refs. 29, 30).
104 AFP is also being targeted in TCR-engineered adoptive cell transfer
105 studies (31, 32). Our group demonstrated that tAFP has more potent
106 immunoregulatory properties than cord blood-derived “normal” AFP
107 (nAFP; ref. 29). The molecular features of AFP that are immunoreg-
108 ulatory have been attributed to differences in glycosylation pat-
109 terns (33, 34), isoforms (35, 36) or isoelectric points (37), and the
110 presence of specific ligands (29, 38–40). In addition, our group has
111 determined that tAFP-mediated suppression of DCs’ function
112 depends on a low molecular mass (LMM; ref. 29) molecule that is
113 neither protein nor glycan.
114 Here, using novel single-cell methods and lipid profiling in both
115 in vitro models and in vivo human HCC patient blood samples, we
116 have determined that tAFP uptake by DC causes reduced fatty acid
117 uptake and metabolism and a switch to glycolysis accompanied by
118 increased glucose uptake and lactate secretion. This metabolic skewing
119 is accompanied by a shift in immune phenotype, with reduced
120 costimulatory molecule expression and increased DC CD14 and
121 PD-L1 expression. For the first time, we identify differences in the
122 ligand composition between nAFP and tAFP and show that these fatty
123 acids are essential for the immunoregulatory features of tAFP. These
124 findings have important implications for understanding how AFPþ

125 HCC limits innate immune responses, identifying strategies to
126 improve DC function in vivo, and development of more potent DC
127 vaccines.

128 Materials and Methods
129 Patient samples
130 HCC patient blood (with written informed consent; Table 1) and
131 healthy donor (HD) blood [purchased (Trima Residuals RE202,
132 Vitalant)] was collected in BD Vacutainer heparin tubes (Cat # 02–
133 689–6), and in some cases, BD Vacutainer serum tubes (Cat #

135B-D367820Z) were collected. Heparinized blood was centrifuged to
136separate the blood and plasma components. Plasma was stored at
137�80�C. The remaining cellular fraction was overlaid over Ficoll
138(Cytiva, Cat# 45–001–749) in Leucosep tubes (Greiner, Cat # 07–
139000–983) and centrifuged to isolate peripheral blood mononuclear
140cells (PBMC). PBMCs were washed with PBS, and viable cells were
141quantified via trypan blue (Gibco, Cat # 15–250–061) on a Nexcelom
142Cellometer Spectrum. If cell pellets had substantial red blood cells, they
143were briefly lysed using ACK lysing buffer (Thermo Fisher Scientific,
144Cat #A1049201). Cells were resuspended in freezing media (80%
145CellGenix þ 20% DMSO (MP Biomedicals, Cat #ICN19141880),
146stored at �80�C overnight, and stored in gas-phase LN2.

147In vitro DC differentiation
148DCs were differentiated in vitro similarly as previously described
149(29). In brief, cryopreserved PBMCs were thawed and CD14þ mono-
150cytes weremagnetically labeled usingCD14MicroBeads (Miltenyi, Cat
151# 130–050–201) and isolated by LS columns (Miltenyi, Cat # 130–042–
152401) per the manufacturer’s instructions. Viable eluted cells were
153enumerated using trypan blue on a Nexcelom Cellometer Spectrum.
154To generate iDCs, monocytes were stimulated for 5 days in the
155presence of 800 IU/mL of rGM-CSF (Miltenyi, Cat # 130–093–862)
156and 500 IU/mL of rIL-4 (Miltenyi, Cat # 130–095–373) as well asOVA,
157nAFP, or tAFP in CellGenix GMPDCmedia (Cat #20801–0500) 37�C
158at 5% CO2. Highly purified grade tAFP was obtained from Bio-Rad,
159and the AFP-L3 is approximately 70% as compared with 10% in
160human cord serum, by PAGE analysis. The nAFP was obtained from
161Cell Sciences (Cat # CSI0379), with a purity of >99% by SDS-PAGE
162analysis and sterile filtered. The chicken ovalbumin was obtained by

Table 1. Characteristics of patients with HCC.Q5

Characteristic
(N ¼ 8 patients)

Number or median
(range) (%)

Gender (n)
Male 6 75%
Female 2 25%

Age, y
Median (range) 72 (61–83)

Race
African-American 2 25%
Asian 2 25%
Caucasian 4 50%

Ethnicity
Non-Hispanic/Latino 8 100%
Hispanic/Latino 0 0%

Liver Disease Etiology
Hepatitis C (cAbþ) 4 50%
Hepatitis B (sAgþ) 2 25%

Child Pugh Score at Enrollment
Child Pugh A 7 87%
Child Pugh B 1 13%

Serum AFP (mg/L)
Median (range) 229 (<2.0–7287.9)

Disease stage
Stage IIIB 1 13%
Stage IVA 3 38%
Stage IVB 4 50%

Histologic grade
Moderately differentiated 4 50%
Poorly differentiated 2 25%
Unknown 2 25%

Munson et al.
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165 Sigma (Cat # A5503–1G) with a purity of >98% by agarose gel
166 electrophoresis. All proteins were aliquoted to prevent multiple
167 freeze-thaw cycles and stored at�80C. Finally, an additional 24-hour
168 stimulation with 1,000 IU/mL of rIFNg (Peprotech, Cat #300–02) and
169 250 ng/mL of LPS (Sigma-Aldrich, Cat# L2630–10MG) to produce
170 monocytic DCs (mDC). To harvest cells, DCs were detached using
171 TrypLE Select (Gibco, Cat #12563011) for 15minutes at 37�Cand then
172 washed several times with cold PBS.

173 SCENITH
174 SCENITH was performed as described in ref. (41). The SCENITH
175 reagents kit (inhibitors, puromycin and antibodies) was obtained from
176 www.scenith.com/try-it and used according to the provided protocol
177 for in vitro-derived myeloid cells. Briefly, control and tol-moDC
178 cultures at desired timepoints, were treated for 18 minutes with
179 Control (DMSO), 2-Deoxy-Glucose (2-DG; 100mmol/LQ6 ), Oligomycin
180 (O; 1 mmol/L), a combination of 2DG and Oligomycin (DGO) or
181 Harringtonine (H; 2 mg/mL). Following metabolic inhibitors, Puro-
182 mycin (final concentration 10 mg/mL) was added to cultures for 17
183 minutes. After puromycin treatment, cells were detached from wells
184 using TrypLE Select (Thermo Fisher Scientific, 505914419), washed in
185 cold PBS and stained with a combination of Human TureStain FcX
186 (BioLegend, 422301) and fluorescent cell viability dye (BioLegend,
187 423105) for 10 minutes 4�C in PBS. Following PBS wash step, primary
188 antibodies against surface markers were incubated for 25 minutes at
189 4�C in Brilliant Stain Buffer (BD Biosciences, 563794). Next, cells
190 were fixed and permeabilized using True-Nuclear Transcription
191 Factor Buffer Set (BioLegend, 424401) as per the manufacturer’s
192 instructions. Intracellular staining of puromycin and protein targets
193 was performed for 1 hour in diluted (10x) permeabilization buffer at
194 4�C. Finally, data acquisition was performed using the Cytek
195 Aurora flow cytometer. Primary conjugated antibody information
196 used in SCENITH panel is listed in Supplementary Table S1. All
197 antibodies were titrated to reduce spillover and increase resolution
198 using single-stained moDC (generated as described above) samples.
199 Unstained cell controls used for autofluorescence extraction were
200 generated for each time point, culture conditions (OVA, nAFP, and
201 tAFP) and metabolic inhibitor treatments (C, 2DG, O, DGO).
202 Samples were unmixed using reference controls generated in com-
203 bination with stained Ultracomp beads (Thermo Fisher Scientific,
204 01–2222–41) and stained cells using the SpectroFlo Software
205 v2.2.0.1. The unmixed FCS files were used for data processing and
206 analysis using FlowJo (BD Biosciences, version 10.7.1). Manually
207 gated CD14�HLA-DRþCD86þ cells were used for downstream
208 analysis. gMFI expression values were imported into R environment
209 for correlation and heatmap analysis.

210 Glucose and lactate measurements
211 Glucose and lactate were measured by applying approximately 5 mL
212 of supernatant to Clarity BG1000 Blood Glucose strips (Cat #75840–
213 798) and meter (Cat #75840–800) system or the Lactate Plus strips
214 (NovaBiomedical, Cat# 40813) andmeter version 2 (NovaBiomedical,
215 Cat# 62624) system. Each meter was quality checked with control
216 glucose and lactate solutions and CellGenix media before each
217 experiment.

218 CyTOF phenotypic profiling
219 scMEP (single-cell metabolic profiling) analysis was performed as
220 recently described in ref. (42). In short, antibodies targeting metabolic
221 features were conjugated in-house using an optimized conjugation
222 protocol (Hartmann and colleagues, ref. 42) and validated onmultiple

224sample types. Cells were prepared for scMEP analysis by incubation
225with small molecules to be able to assess biosynthesis rates of DNA,
226RNA and protein, cisplatin-based live/dead staining, PFA-based cell
227fixation and cryopreservation (dx.doi.org/10.17504/protocols.io.
228bkwkkxcw). Next, cells were stained with metabolic antibodies in
229a procedure that includes surface staining for 30 minutes at room
230temperature (RT), PFA-fixation for 10 minutes at RT, MeOH-based
231permeabilization for 10 minutes on ice, intracellular staining for
2321 hour at RT and DNA intercalation (dx.doi.org/10.17504/proto-
233cols.io.bntnmeme). Finally, cells were acquired on a CyTOF2 mass
234cytometer (Fluidigm). Protein targets and antibody information
235used in scMEP are listed in Supplementary Table S2.Raw mass
236spectrometry data were pre-processed, de-barcoded and imported
237into R environment using the flowCore package (version 2.0.1;
238ref. 43). Values were arcsinh transformed (cofactor 5) and normal-
239ized (42) for downstream analyses based on previously reported
240workflow (44).

241Microarray and gProfiler
242OVA, nAFP, and tAFP-treated DC were lysed, and total mRNA
243was obtained for microarray (Affymetrix HG-U133A). DE genes
244were uploaded in g:Profiler in R Studio for pathway analysis and
245visualization (45).

246Zn measurement
247Intracellular Zn was quantified by flow cytometry using the Zinc
248Assay Kit (Cell-based; Abcam, Cat #ab241014). Monocytes were
249differentiated to iDCs as described above in the presence of OVA,
250nAFP, tAFP, or ZnSO4. Zn staining was performed per the manu-
251facturer’s suggested protocol with positive (Zn) and negative (Zn þ
252chelator) controls as well as a Zn FMO included in each experiment.
253Cells were stained with LD Aqua for 10 minutes at RT. Cells were
254washed in 1XAssayBuffer, then stained in 100mLofAssay Bufferþ 0.2
255mL of Zn Probe for 30 minutes at 37�C. Cells were then washed
256twice with 1X Assay buffer then stained with HLA-DR-APC-H7 (BD,
257Clone: GF6–6, Cat #561358, Lot #0023290, 0339025), CD86-BV785
258(BioLegend, Clone : IT2.2, Cat # 305441, Lot # B277560), CD206 PE-
259Cy7 (BioLegend, Clone : 15–2, Cat # 321123, Lot #B331254), and
260CD14-BUV805 (BD Biosciences, Clone : M5E2, Cat # 612903, Lot
261#0297714), in Brilliant Stain Buffer (BD Horizon, Cat # 566349, Lot #
2620121427) for 20 minutes at 4�C. Cells were washed twice in FACS
263Buffer and fixed in 1% paraformaldehyde (Thermo Fisher Scientific,
264Cat #J19943-K2, Lot # 195273, diluted in PBS) for at least 30 minutes
265before acquisition on a BDLSRFortessa X-50. As a negative control, we
266briefly treated cells with Zn but did not stain for Zn as a fluorescence-
267minus-one (FMO) control (MFI¼ 421) or stained with a Zn probe as a
268positive control (MFI ¼ 25,850). Zn-treated cells were treated with a
269Zn chelator included in the kit before staining, and this resulted in a
270marked approximately 97% reduction in Zn MFI compared with the
271positive control.

272Lipid analysis by mass spectrometry or gas chromatography
273Commercially available OVA (N¼ 3; Sigma-Aldrich, Cat # A5503–
2741G, Lot # SLCB8249), nAFP (N¼ 3; Cell Sciences, Cat # CSI10379, Lot
275# 4111714), and tAFP (N ¼ 3; Bio-Rad, Cat #13752600, Lot #
27664110896) were submitted diluted in PBS (Gibco, Cat #20–012–
277050) at 1,000 mg /mL on dry ice. CellGenix GMP DC Medium
278(N ¼ 1; CellGenix, Cat #20801–0500) media and supernatants of
279mDCs from an HD (N ¼ 1) differentiated in the presence of 5 mg per
280mLofOVA, nAFP, or tAFPwere tested. Lipid analysis (Supplementary
281Table S1) was performed at the UCSD Lipidomics Core (46).

PUFA-Bound AFP Skews Human DC Metabolism
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284 Fatty acid screen
285 Fatty acids (Supplementary Table S3) were acquired from Cayman
286 Chemical, including 16:0 (palmitic acid, Item # 10006627, Batch #
287 0523612–48), 18:1 (oleic acid, Item #90260, Batch #0540276–62), 20:3
288 N6 (dihomo-g-linolenic acid, Item #90230, Batch #0532009–37), 20:3
289 N9 (5,8,11-eicosatrienoic acid, Item #90190, Batch #0564724–7), 20:4
290 (arachidonic acid, Item #90010, Batch #0570304–50), 22:4 (adrenic
291 acid, Item #90300, Batch #0537603–20), 20:5 (eicosapentaenoic acid,
292 Item #26415, Batch #0583627), 22:5 N3 (docosapentaenoic acid, Item
293 #90165, Batch #0569492–11), 22:5 N6 (docosapentaenoic acid, Item
294 #10008335, Batch #0462864–36), and 22:6 (docosahexaenoic acid,
295 Item #90310, Batch #0593448–15).
296 Fatty acids were resuspended in ethanol and stored at �20�C at
297 100 mmol/L. High molar mass (HMM) fractions of OVA, nAFP, and
298 tAFP were obtained by removing the LMM contents with the
299 Amicon Ultra – 0.5 mL Centrifugal Filters Ultracel—3K (Millipore,
300 Cat #UFC500324, Lot #R9HA51100) per the manufacturer’s sug-
301 gested protocol and stored at �80�C. Both the native preparations
302 and HMM fractions contained similar amounts of protein
303 (�0.5 mg/mL), whereas protein was undetectable (<0 mg/mL) in
304 the LMM fraction. In addition, we determined the A260/A280 ratio as
305 a measure of purity and found the LMM fraction had an approx-
306 imately 3-fold increase in the A260/A280 ratio indicating a large
307 proportion of non-protein compounds in the LMM fraction, as
308 expected. Fats (� HMM) were added to pre-warmed media and
309 incubated for 1 hour, mixing at 37�C before adding to cells (47).
310 Fats were combined with HMM at a 3:1 molar ratio, as previously
311 described (47).

312 Statistical analysis and visualization
313 Statistical comparisons between groups were performed using
314 paired-sample t tests unless otherwise stated using R (version 4.0.2)
315 and R Studio (Version 1.3.1093) or Prism (Version 9.0.2). P values
316 are represented as �, P ≤ 0.05; ��, P ≤ 0.01; ���, P ≤ 0.001; ����, P ≤
317 0.0001. P values of <0.05 were considered statistically significant.
318 Numerical labels indicate near significant values). Figure graphs
319 were generated using the R package ggplot2 (version 3.3.3) or in
320 Prism.

321 Study approval
322 Blood collection from patients with HCC was approved by the
323 UCSF Hepatobiliary Tissue Bank and Registry Oversight Commit-
324 tee (CC#124512). The UCSF Cancer Immunotherapeutics Tissue
325 Use Committee approved samples from HDs at UCSF (CC#16983).

326 Data availability statement
327 The data generated in this study as well as data from prior pub-
328 lications are available upon request from the corresponding author.
329 The array data discussed in this publication were previously deposited
330 in NCBI’s Gene Expression Omnibus and are accessible through GEO
331 Series accession number GSE62005 (http://www.ncbi.nlm.nih.gov/
332 geo/query/acc.cgi?acc¼GSE62005)"

333 Results
334 tAFP induces immunometabolic dysregulation of DCs
335 To determine the mechanism of immune suppression induced by
336 AFP, we performed immune and metabolic profiling human DC.
337 Previously, we demonstrated using population-based assays that tAFP
338 decreases the differentiation mDCs and reduces their T-cell stimula-
339 tory potential (29). We demonstrated that tAFP limited DC HLA-DR

341and CD206 expression with a trend for reduced CD86. Furthermore,
342the Boolean analysis revealed a decreased co-expression of multiple
343activation markers (HLA-DR, CD206, CD86, and ICOSLG/CD275)
344among tAFP-treated DC.
345To understand the immuno-metabolic impact of tAFP on DCs at
346the single-cell level, we used the recently described single-cell
347energetic metabolism by profiling translation inhibition (SCE-
348NITH) assay (41). Ovalbumin (OVA, negative control), nAFP, and
349tAFP-treated DCs were generated in vitro (Fig. 1A). Viable cells
350(LD�) actively translating RNA into protein (Puroþ) were analyzed
351(Supplementary Fig. S1) that expressed cell surface molecules
352associated with mDCs (HLA-DRþ, CD206þ, CD86þ; previously
353shown to be representative of many common DC phenotypic
354markers; ref. 30). To assess the broad immuno-metabolic state of
355the cells, a tSNE analysis was performed on all parameters that
356indicated tAFP-treated cells tended to cluster separately from nAFP
357or OVA-treated mDCs. The calculated metabolic profiles are shown
358for glucose dependency, mitochondrial dependency, glycolytic
359capacity, and fatty acid and glutaminolysis (FAAO; Fig. 1B). Even
360among mDC with strong expression of activation markers (HLA-
361DRþ, CD206þ, and CD86þ), there was a dramatic increase in
362glycolysis and a reduction in mitochondrial dependency and FAAO
363in tAFP-treated DCs. Consistent with a greater reliance on glycol-
364ysis, tAFP-treated cells had significantly less glucose in culture
365supernatants at day 6 (Fig. 1C). OVA and nAFP-treated DCs had
366relatively higher frequencies of pAMPKþ DCs, which is consistent
367with their increased mitochondrial dependency and mitochondrial
368mass as opposed to tAFP-treated DCs. This result is consistent
369with our previous study, in which increased pAMPK signaling as
370opposed to mTOR activation upregulated mitochondrial metabo-
371lism and FAAO in DCs (48). In conjunction with a decrease in
372FAAO, a decline in expression of the fatty acid transporter CD36
373was detected (Fig. 1D). Similarly, free fatty acids in the culture
374supernatants at day 6 were inversely correlated (r ¼ �0.7110, P ¼
3750.0318) with the expression of CD36. Taken together, these data
376indicate that tAFP-treated DCs rely on glycolysis and have a
377decreased ability to take up and oxidize fatty acids.
378In agreement with decreased mitochondrial capacity by SCE-
379NITH (Fig. 1B), we previously confirmed decreased mitochondrial
380mass in tAFP-treated DCs (30). With decreased mitochondrial
381activity and the DC reliance on glycolysis, we investigated the
382potential release of lactate. Given the immunoregulatory functions
383of lactate, we determined whether tAFP could promote lactate
384secretion by DC. Lactate was measured in the media of OVA,
385nAFP, and tAFP-treated DCs (Fig. 1D). In all HDs, tAFP-treated
386DC secreted the most lactate at approximately twice the concen-
387tration of OVA-treated DCs, which may in part explain tAFP-
388treated DCs diminished capacity to stimulate T cells (29). The
389increased concentrations of lactate inversely correlated with glucose
390in the supernatant (r ¼�0.9326, P ¼ 0.0002), suggesting this build-
391up of lactate results from increased reliance on glycolysis, as
392opposed to oxidative phosphorylation or FAAO, for the production
393of ATP.
394Given that tAFP induced both immune and metabolic changes, we
395examined correlations between costimulatory markers and metabolic
396state. Cells were gated on the basis relativemitochondrialmass (Fig. 2).
397As mitochondrial size decreased, the cells coalesced around a single
398cluster. To determine the impact of altered mitochondrial load on
399the expression of key costimulatory molecules, we determined the
400relative expression of activation markers (i.e., CD80 and ICOSLG)
401based onmitochondrial size. We observed strong positive correlations
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Figure 1.

tAFPQ7 exposure skews dendritic cell (DC)metabolism to glucose dependency. CD14þmonocyteswere isolated fromhealthy donors and treatedwith IL4þGM-CSF in
theQ8 presence of OVA, nAFP or tAFP to produce immature DCs (iDC) and in some experiments treated with IFNg and LPS to produce mature DCs (mDCs). A, A
representative gating scheme is shown to identify live cells containingpuromycin, aswell as expressingmarkers consistentwith iDCs (HLA-DRandCD206) andmDCs
(CD86; A). DCs treated with OVA (black), nAFP (blue), and tAFP (red) were clustered on the basis of their immune parameters by tSNE, as well as the percentage of
live cells expressing HLA-DR, CD206, and CD86. The proportion of cells expressing HLA-DR, CD206, CD86, and ICOSLG is shown from3 to 5 technical replicates from
a single donor (A). B, Shown are 3 technical replicates of one healthy donor of a SCENITH assay to quantify the glucose dependency (black), mitochondrial
dependency (blue), glycolytic capacity (red), and fatty acid and glutaminolysis (FAAO; purple) with mDCs treated with OVA (black), nAFP (blue) or tAFP (red).
Glucose and concentrations of cellular supernatants and intracellular glucose are shownwith three technical replicates form a single donor, aswell as the intracellular
glucose uptake as determinedby the influx of the fluorescent glucose analogue 2NDBG froma single replicate froma single donor.C, Shown are cellular supernatants
of in vitro generated DCs from 3 healthy donors performed in technical replicates, as well as correlations with glucose in the supernatant and mitochondrial size. D,
The glucose supernatant concentrations, %pAMPK, andCD36 gMFI are shown fromhealthy donors (N¼ 3) treatedwith OVA, nAFP or tAFP. The correlation between
supernatant fatty acids and CD36 levels are shown.
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404 between mitochondrial size and the expression of CD80 (r ¼ 0.8216,
405 P¼ 0.0066), ICOSLG (r¼ 0.8747,P¼ 0.0020), andB7-H3/CD276 (r¼
406 0.8216, P ¼ 0.0066; Fig. 2C). Although there was a trend toward
407 a negative correlation between mitochondrial size and PD-L1/CD274
408 (r ¼ �0.6482, P ¼ 0.0590), this reached statistical significance when
409 directly comparing PD-L1 levels between MitoHi versus MitoLo cells
410 (Fig. 2D). These findings indicate that decreased mitochondrial mass
411 skews the cells toward glycolysis and is also associated with weaker
412 expression of activating ligands (CD80, ICOSLG, B7-H3) and
413 increased expression of inhibitory ligands (PD-L1).

414 Single-cell phenotypic profiling
415 To further dissect the metabolic molecular pathways affected by
416 AFP, we used the recently described single-cell metabolic regulome
417 profiling (scMEP; ref. 42) on OVA, nAFP, and tAFP-treated cells.
418 Consistent with a less differentiated phenotype and with our previous
419 studies21,22, tAFP DC had reduced expression of DC markers, includ-
420 ing CD206, PD-L1, CD11b, CD1c, HLA-DR, CD86, and CD11c

422(Fig. 3A). Multiple metabolic parameters related to the electron
423transport chain (ETC)/TCA, including ATP5A, CS and SDHA, were
424lower in tAFP-treated cells (Fig. 3B). However, levels of cytochrome C
425(CytC) were elevated in both nAFP and tAFP-treated DCs (Fig. 3B).
426Fatty acid oxidation (FAO) associated or fatty acid synthase (FAS)
427proteins CD36, CDPT1A, HADHA, and ACLY were decreased in
428tAFP-treated mDCs. Proteins involved in amino acid (AA) pathways
429had modest changes, CD98 and G6PD were significantly decreased
430andGLS tended to be lower, whereas ASCT2was unchanged (Fig. 3B).
431Proteins involved in glycolysis (GLUT1, GLUT3, LDHA, EN01,
432GAPDH, and MTC1) displayed modest differences that were not
433statistically significant. A schematic summarizing the proteins that
434were upregulated, unchanged or downregulated is shown (Fig. 3C). A
435heatmapwith hierarchical clustering on the basis ofmetabolicmarkers
436(FAO, AA, and ETC/TCA) and treatment condition (Fig. 3D). The
437tAFP-treated mDC cluster separately from the nAFP or OVA-treated
438mDCs. This clustering was due in large part to FAO and ETC/TCA
439proteins CPT1A, HADHA, ACLY, CS, and ATP5A.

Figure 2.

Mitochondria expression correlates with costimulatory molecule expression. Shown are puromycin histograms (a measurement of translation and a surrogate for
ATPproduction) for OVA (black), nAFP (blue) or tAFP (red)-treatedDCs. tAFP-treatedDCs treatedwith oligomycinwere separated into puromycin low (purple) and
high (green). The expression levels of PD-L1 and CD86 are shown in the puromycin low and high DCs (A). Mitochondrial size, as measured by mitotracker was
determined inOVA, nAFP, and tAFP-treatedDCs (B).mDCs treatedwithOVA, nAFP, or tAFPwere characterized bymitochondrial sizewith high (dark red),mid/high
(pink),mid/low (teal), and low (dark blue), and clusteredon thebasis of immuneparameters by tSNEcoloredbymitochondrial size or treatment condition. Shownare
the expression levels of CD80 and ICOSLG based on mitochondrial size (C). Correlations between mitotracker and CD80, ICOSLG, B7-H3, and PD-L1 are shown.
Differences in PD-L1 expression levels are shownbetweenmito hi andmito lo cells color coded by treatment condition (D). All data are fromonedonor performed in 3
technical replicates.
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Figure 3.

Immune and metabolic profile by scMEP. mDC were generated in vitro in the presence of OVA, nAFP, tAFP and analyzed the immune-metabolic profile was
determined by scMEP using CyTOF. Shown are the arc sinh-transformed values for immune response related molecules (A), and metabolic pathway proteins (B). A
schematic is shown to summarize the tAFP-induced immune-metabolic changes (C). A heatmap of various metabolic markers was generated and hierarchical
clustering was performed on the basis of marker expression and treatment condition. The red box indicates the unique clustering of the tAFP-treated cells (D). Data
are representative of three separate healthy donors each performed in a single replicate.
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Figure 4.

DC gene expression profiles. Monocytes from healthy donors (N ¼ 4) were differentiated into iDCs in the presence of OVA, nAFP, and tAFP and gene expression
profiles were determined by microarray. Principle components were determined, and color coded by treatment condition. Volcano plots were generated to
identify genes that were differentially enriched (>2-fold change, significant adjusted P value) and that list of genes was used in a functional enrichment
analysis by g:Profiler (A). Shown are predicted upregulated and downregulated pathways between tAFP and nAFP (B). Show are differences in genes involved
in glycolysis and fatty acid metabolism pathways, and a schematic summary of tAFP upregulated (red) and downregulated (blue) genes (C). Data are from 4
healthy donors each performed once.

Munson et al.

Cancer Res; 2023 CANCER RESEARCH8



442 tAFP induces transcriptional changes consistent with PUFA
443 exposure
444 Given the AFP-induced protein level changes in multiple transcrip-
445 tion factors, we determined the tAFP-induced transcriptional changes
446 in DCs by microarray (Fig. 4). Principle component (PC) analysis
447 revealed tAFP clustered separately fromOVA and nAFP, and PC1 and
448 PC2 were independently significant (Fig. 4A). We developed volcano
449 plots for the three possible comparisons to determine differentially
450 expressed genes (DEG). Consistent with the metabolic data, analysis
451 revealed that pathways associated with lipid metabolism were signif-
452 icantly downregulated in tAFP compared with nAFP. The upregulated
453 gene pathways demonstrated a stress response to metal ions, partic-
454 ularly zinc (Fig. 4B).
455 To dissect these classifications, we analyzed individual genes that
456 could be important in promoting glycolysis and downregulated FA
457 uptake or oxidation. Consistent with tAFP decreasing free glucose in
458 the media and increasing lactate concentrations, we observed an
459 increase in SLC2A3 (GLUT3) gene expression (Fig. 4C). In contrast,
460 we observed a consistent tAFP-induced downregulation with genes
461 involved in fatty acid metabolism, including genes encoding PDH,
462 ACLY, ACC, FASN, LPL, CD36, and CACT (Fig. 4C). Interestingly,
463 the ACS gene did not reach statistical significance, and tAFP
464 increased the gene expression of CPT1A. Overall, these data provide
465 strong orthogonal evidence in agreement with the SCENITH and
466 scMEP experiments that tAFP alters fatty acid metabolism at the
467 transcript level.

468 tAFP ligands are enriched for zn and PUFAs
469 To further define the mechanism by which tAFP alters metabolism
470 and function of DC (more so than nAFP), we examined the AFP-
471 bound LMM ligands (29) that we previously demonstrated altered
472 immunoregulatory properties of tAFP22. nAFP has been previously
473 shown to bind more polyunsaturated fatty acids (PUFA; ref. 49) and
474 zinc (Zn; refs. 39, 40) than albumin. Zn can induce tolerogenicDC (50),
475 and PUFAs are known inhibitors of DC differentiation (51) and have
476 previously been shown to limit lipid metabolism in hepatocytes, in
477 particular through the direct downregulation of the FASN gene. These
478 findings, taken together, suggest that the tAFP may bind more Zn and
479 PUFAs compared with nAFP, and therefore result in more potent
480 immuno-metabolic changes.
481 On the basis of the g:Profiler Zn gene signature (Fig. 4B), we
482 quantified the amount of intracellular Zn in OVA, nAFP, and tAFP-
483 treated iDCs.Monocytes were differentiated to iDCs in the presence of
484 OVA, nAFP, or tAFP. The tAFP-treated DC had a statistically
485 significant approximately 30% increase in Zn MFI compared with
486 nAFP (P ¼ 0.0293) or OVA-treated (P ¼ 0.0228) iDCs (Fig. 5A).
487 These findings are consistent the transcriptional data (Fig. 4), and
488 demonstrate that tAFP is more efficient at increasing intracellular Zn
489 concentrations in iDCs, when compared with OVA or nAFP.
490 OVA, nAFP, and tAFP LMM ligands were quantified by mass
491 spectrometry and gas chromatography. The total quantity of bound
492 fatty acids was similar among all proteins, with a mean concentration
493 of approximately 1,500 pmol/mL. In contrast, tAFP bound less
494 saturated fatty acids (SUFA; mean ¼ 77%) compared with nAFP
495 (82%, P¼ 0.0003) or OVA (99%, P < 0.0001). Although the amount of
496 monounsaturated fatty acids (MUFA)was low among all proteins,
497 tAFP bound 2- and 4-fold more MUFAs compared with OVA (P ¼
498 0.0042) and nAFP (P ¼ 0.0318), respectively (Fig. 5B). PUFAs were
499 greater on tAFP (P < 0.0001) and nAFP (P¼ 0.0003) when compared
500 with OVA. On the basis the terminal double-bond location, PUFAs
501 can be further divided into w-3 and w-6. Both tAFP (P¼ 0.0067) and

503nAFP (P ¼ 0.0264) had greater w-3:w-6 ratios than OVA. Next, we
504examined each protein’s ligand composition based upon the carbon
505length and the number of double bonds of each FA. Although we did
506not observe a bias based on FA length, nAFP and tAFP tended to bind
507FAs with 4 or more double bonds. Next, we analyzed the proportion of
508individual FAs from each protein (Fig. 5C). We hypothesized
509that FAs present in high quantities in the media would be unlikely
510to mediate tAFP’s immunoregulatory properties, and FAs unique
511to tAFP would be compelling candidates. To identify FAs statisti-
512cally unique to tAFP, we generated volcano plots for all three
513possible comparisons (Fig. 5D). Only a single fatty acid, 17:0, was
514increased on OVA. As expected, both nAFP and tAFP bound
515several PUFAs at a greater concentration relative to OVA. When
516comparing nAFP and tAFP, PUFAs were enriched on nAFP (18:2,
51718:3 N3) and tAFP (16:1, 20:3 N6, 22:5 N3, 20:5). To determine
518which were shared or unique based on each comparison, a Euler
519diagram of all the differentially bound fatty acids was generated
520(Fig. 5E). Several of these differentially bound FAs were present in
521the media (18:2, 18:3 N3, 16:1, 18:1) or attached equally to nAFP
522and tAFP (20:4, 22:6, 22:5N6). However, the three fatty acids 20:5,
52320:3 N6, 22:5N3 were statistically increased on tAFP and not
524present in the other comparisons.

525PUFA restore tAFP’s suppression of DCs
526We developed an in vitro assay to screen-specific FAs that are
527necessary for tAFP-mediated suppression of DC formation (Fig. 6A;
528Supplementary Fig. S2).Many of the FAs screened have known roles in
529promoting (52, 53) or limiting DC differentiation (51). Therefore, to
530determine their necessity for tAFP-mediated DC suppression, we
531titrated several FAs unique to tAFP (20:3 N6, 20:5, and 22:5 N3), and
532other PUFAs to determine the concentration they lost their inherent
533ability to suppress DC differentiation in the absence of OVA, nAFP, or
534tAFP (Fig. 6A). None of the FAs, at any concentration, tested induced
535production of lactate to levels caused by tAFP, indicating that lactate
536secretion and reduced costimulatory molecule expressions are sepa-
537rable immune suppression effects. Treatment with high concentra-
538tions (5–20 mmol/L) of 16:0 (palmitic acid) tended to decrease the
539production of lactate relative to control cells (black-dashed line),
540suggesting a less glycolytic phenotype (Fig. 6B). All three PUFAs at
541high concentrations inhibited CD206 expression onDCs (51), at levels
542equivalent to or greater than tAFP treatment. In contrast, the SUFA
54316:0 (palmitic acid) tended to promote DC differentiation (52). All
544PUFAs lost immunoregulatory activity at the 0.2 mmol/L concentra-
545tion (Fig. 6B).
546Although all of the PUFAs could inhibit CD206 expression of DC,
547they did not robustly increase lactate production under these condi-
548tions; in contrast, the saturated FA palmitic acid was unique in its
549ability to increase CD206 expression and decrease lactate secretion
550(Fig. 6A). None of the FAs combined with either OVA, nAFP or tAFP
551induced lactate secretion comparable with native tAFP. When mea-
552suring CD206 expression at the iDC stage, we observed immunoreg-
553ulatory activity with FAs 20:3 N6 and 20:4 when combined with tAFP
554—but not with OVA or nAFP (Fig. 6A). For mDC, we observed
555inhibition (�15%) of CD206 expression with 20:3 N6, 20:4, and 22:4
556when combined with tAFP (Fig. 6B). The more modest reduction at
557the matured DC (matDC) timepoint suggests that treatment with
558rIFNg and LPS can partially, but not entirely reverse, the effects of
559HMM tAFP þ PUFAs. When multiple FA þ HMM tAFP were
560compared with controls, only 20:3N6 and 20:4 showed significantly
561reduced CD206 expression (Fig. 6B). Importantly, in the metabolism
562of w-6 FAs, 20:3 N6 is converted to 20:4, which can then be further
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Figure 5.

tAFP bound lipids are enriched for PUFAs. Levels of zinc were quantified in iDCs treated with OVA (black), nAFP (blue) or tAFP (red) in 3 technical replicates from a
single donor and are shown as histograms aswells as ZnMFIs (percentageof controls;A). Shownare the totalmass of all bound fatty acids and the proportion that are
saturated,monounsaturated, and polyunsaturated (PUFA) fatty acids (B). Displayed are the proportions of individual fatty acids present in CellGenixDCmedia,OVA,
nAFP, or tAFP (C). Shown is a heatmapof the proportion of individual fatty acids bound to each protein (C). Volcanoplotswere generatedon the basis of each protein
compared with each other protein and color-coded on the basis of the class of fatty acid: Saturated (green), monounsaturated (yellow), and PUFA (red; D). The
horizontal-dashed line indicates the significance threshold based on an FDR of 1%. A Euler diagram demonstrates the various combinations of differentially bound
fatty acids (from C), indicating that are present in the media and are unique or shared amongst the proteins (D). Error bars are based onmean� standard deviation.
Statistical differences in the mass or proportion of saturated, monounsaturated, or polyunsaturated fatty acids were determined on the basis of a one-way ANOVA
with Tukey’s multiple comparison test. Volcano plots were generated based upon unpaired t tests using a single pooled variance; multiple comparisons were
accounted for using an FDR of 1% via a two-stage step-up.
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565 converted into a variety of molecules by COX and LOX enzymes
566 (Fig. 6B). Taken together, these data suggest that PUFAs are necessary
567 for tAFP inhibition of DC differentiation in vitro. Furthermore, these
568 effects may result from exposure to increased 20:3 N6 and/or 20:4,
569 COX/LOX enzymatic derivates of 20:4.

570 HCC patient monocyte and DC metabolic profiling
571 To better understand how these in vitro results extend to in vivo
572 circulating patient myeloid cells, we measured the immunometabolic
573 profile of patient with HCC and HD PBMCs. SCENITH was used to
574 determine the percentage of glycolytic capacity and FAAO (Fig. 7A
575 and B) across cell types. Monocytes were classified as classical
576 (CD14þCD16�, cMo), intermediate (CD14þCD16þ, iMo) or non-
577 classical (CD14�CD16þ, ncMo). Among the monocyte subsets, met-
578 abolic differences between HCC and HD were most consistent among
579 the cMo (Fig. 7A and B). cMo from patients with HCC had decreased
580 glucose and mitochondrial dependence and increased glycolytic
581 capacity and FAAO compared with HD (Fig. 7C). Patient-derived
582 classical monocytes resembled in vitro-differentiated DCs treated with
583 AFP (Fig. 1B), showing decreased mitochondrial dependency and

585elevated glycolytic capacity. In contrast with the in vitro-generated
586DCs, patients with HCC had decreased glucose dependence and
587increased FAAO (Fig. 7D). These in vivo findings are in partial
588contrast with the prior in vitro data that suggested AFP-treated DCs
589were more glucose-dependent and had decreased FAAO (Fig. 1B).
590Regardless of the source of DCs, both in vitro treatment with tAFP or
591ex vivo derived from patients with HCC were associated with DCs
592retaining a more monocyte-like metabolic phenotype, consistent with
593tAFP impairing the immuno-metabolic reprogramming required for
594generating immunostimulatory DCs.
595Given the correlation between metabolic state and suppression of
596key stimulatory molecules (Fig. 2), we measured immune markers on
597cMo and DCs. The immunoglobulin-like transcript 3 (ILT3) is an
598important inhibitory receptor expressed on multiple myeloid cells,
599including monocytes and DCs (54–56). Consistent with a more
600immunoregulatory phenotype, HCC cMo (Fig. 7E) and DCs
601(Fig. 7F) expressed more ILT3 compared with HDs. Consistent with
602the in vitro data, CD206 was decreased in HCC patient DCs. Inter-
603estingly, and in contrast with the in vitro data, HCCDCs expressed less
604PD-L1 (Fig. 7H). Although this may suggest a less immunoregulatory

Figure 6.

Low molar mass–binding partner screening. Low molar mass ligands were removed from OVA, nAFP and tAFP (A). Fatty acids (FA) were titered onto iDCs and
supernatant lactate was measured. Control levels are indicated by a black-dashed line and native tAFP lactate induction indicated by a red-dashed line. Levels of
CD206 were alsomeasured with black and red-dashed lines indicated control and native tAFP-treated cells, respectively (A). Individual fatty acids were added back
to highmolarmass (HMM)purifiedOVA, nAFP, and tAFPproteins and supernatant lactate andCD206 levelsweremeasured at the iDCandmDCstage. CD206gMFI of
the HMMþ FAwere normalized to the HMM only control. The red-dashed line indicated the level of suppression seenwith native tAFP (B). The red asterisks indicate
the fatty acidsmost significantly associatedwith a decrease in CD206. Also shown is a schematic of their role in fatty acidmetabolism. Datawere performedwith 1–3
technical replicates from one healthy donor.
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Figure 7.

HCC patientQ9 monocytes and DCs have a dysregulated immunometabolism. PBMCs were isolated from patients with hepatocellular carcinoma (HCC) for SCENITH
analysis. Shown are the percentages of glycolytic capacity (A) and % FAAO (B) in multiple immune cell subsets (A and B). The total SCENITH metabolic profiles are
shown for classic monocytes (C) and HLA-DRþ cells (D), with healthy donors (HD, in black) and HCC (in red), statistically significant differences are indicated with an
asterisk. Levels of ILT3 are indicated on classical monocytes (cMo, E) and HLA-DR-positive cells (F). In addition, shown are CD206 and PD-L1 expression levels on
HLA-DRþ cells (G andH). Correlations between ILT3 (I), CD206 (J), and PD-L1 (K) are shownwith%FAAO in healthy donors (black circles) andpatientswith HCC (red
squares). Data are presentative from 3 healthy donors and 8 patients with HCC.
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607 phenotype because immature DCs (iDC) tend to express less PD-L1
608 than matDCs, it could also result from a blockade in full DC differ-
609 entiation (57). To understand the connection between these immune
610 markers and their metabolic profiles, we performed correlations
611 between these immune markers on DCs and the %FAAO. Although
612 patients with HCC DCs tended to have greater %FAAO and ILT3
613 expression, these variables were not significantly correlated (P ¼
614 0.3269, r ¼ 0.3273, Fig. 7I).
615 The serum concentration of AFP in patient blood (Table 1)
616 did not show a direct correlation with circulating myeloid cell
617 phenotypes or metabolic profiles (not shown). This may indicate
618 that the type or amount of tumor-associated ligands binding tAFP
619 in vivo vary between patients and tumors. This was not entirely
620 unexpected, as our previous clinical trial analyses of DC vaccina-
621 tion, and of NK, CD8þ, and CD4þ T-cell activity in AFPþ and
622 AFP� patients with HCC showed significant skewing and dysfunc-
623 tion that was not directly correlated to in vivo serum AFP con-
624 centrations (23, 24, 25, 58, 59, 60). Similarly, the tumor microen-
625 vironment concentrations of AFP are likely different from circu-
626 lating concentrations.

627 Discussion
628 Here, using scMEP, we have identified key metabolic pathways
629 and both transcriptional and protein-level regulatory molecules
630 used by tAFP to suppress DC function. nAFP modestly increases
631 glucose uptake and glucose-dependent metabolism and similarly
632 reduces FAO. tAFP has a much more potent impact on DC
633 metabolism, promoting a complete dysregulation of all measured
634 metabolic pathways. tAFP-exposed DCs take up more glucose and
635 secrete high levels of lactate, which is a well-recognized immune
636 suppressive mediator (61, 62, 63). We recently showed that mono-
637 cytes cultured in vitamin D3 to become functionally tolerogenic also
638 have increased reliance on glycolysis and secrete high levels of
639 lactate (48). Lactate blockade reversed the immune-suppressive
640 phenotype of the tolerogenic DC. Here, we show that tAFP has a
641 similar effect on DC.
642 We have also identified specific FA-binding partners of AFP
643 that mediate some of these effects. These findings are consistent
644 with groups that have shown that PUFAs inhibit DCs, some of these
645 have been previously described (DPA, AA, and EPA) whereas
646 others are newly described here (Dihomo-gamma). We also found
647 consistent data that palmitic acid can promote DC differentiation
648 and are the first to observe that palmitic acid can promote OxPhos.
649 In our examination of the transcriptional pathways associated
650 with Zn, our findings are consistent with groups who have shown
651 Zn can induce tolerogenic DC. We now show that tAFP delivers
652 more Zn intracellularly than nAFP and induces a glycolytic phe-
653 notype in DCs. Although AFP has been known to bind Zn, here, we
654 report that the Zn bound to tAFP is important for the observed
655 glycolytic switch.
656 It is important to consider is that metabolism of in vitro cultured
657 DC may not fully reflect cellular metabolism in circulating cells
658 in vivo, given the high concentration of glucose commonly present
659 in culture media. Our comparative SCENITH analysis of HD and
660 HCC PBMC revealed DCs that more closely resembled the meta-
661 bolic profile of monocytes than of DCs. Both in vitro-generated DCs
662 treated with tAFP and ex vivo DCs from patients with HCC had
663 decreased mitochondrial dependency and increased glycolytic
664 capacity when compared with controls. However, though in vitro
665 generated DCs had increased glucose dependency and decreased

667FAAO compared with controls, we saw the opposite pattern in
668HCC-derived DCs. Despite the similarities and differences between
669the in vitro and ex vivo DCs, in both instances, DCs treated with
670tAFP or derived from patients with HCC more closely resembled
671their respective monocyte metabolic profiles. These findings are
672consistent with tAFP limiting the immune-metabolic reprogram-
673ming during monocyte differentiation yielding DCs retaining
674monocyte profiles. Of note, there are several drugs (including
675TPST1120; ref. 64) being studied in HCC to inhibit PPARa and
676FAO. Such an approach could negatively impact the myeloid
677compartment and immune reactivity while targeting metabolic
678dysfunction in tumor cells, which could be investigated.
679These data provide mechanistic insights on how AFP antagonizes
680the innate immune response to limit antitumor immunity in vivo.
681Understanding the impact of tAFP on the tumor immune microen-
682vironmentmay inform the development of future immune checkpoint
683inhibition combination strategies in HCC overall and in the subset of
684patients with high tumor AFP expression. Furthermore, these data
685suggest novel strategies to generate more potent DC vaccines for
686patients with HCC, including supplementing culture media with
687SUFAs and inclusion of Zn chelators.
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