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A cross-validation-based approach for
delimiting reliable home range estimates
Eric R. Dougherty1* , Colin J. Carlson1, Jason K. Blackburn2,3 and Wayne M. Getz1,4

Abstract

Background: With decreasing costs of GPS telemetry devices, data repositories of animal movement paths are
increasing almost exponentially in size. A series of complex statistical tools have been developed in conjunction with
this increase in data. Each of these methods offers certain improvements over previously proposed methods, but each
has certain assumptions or shortcomings that make its general application difficult. In the case of the recently
developed Time Local Convex Hull (T-LoCoH) method, the subjectivity in parameter selection serves as one of the
primary impediments to its more widespread use. While there are certain advantages to the flexibility it offers for
question-driven research, the lack of an objective approach for parameter selection may prevent some users from
exploring the benefits of the method.

Methods: Here we present a cross-validation-based approach for selecting parameter values to optimize the
T-LoCoH algorithm. We demonstrate the utility of the approach using a case study from the Etosha National Park
anthrax system.

Results: Utilizing the proposed algorithm, rather than the guidelines in the T-LoCoH documentation, results in
significantly different values for derived site fidelity metrics.

Conclusions: Due to its basis in principles of cross-validation, the application of this method offers a more objective
approach than the relatively subjective guidelines set forth in the T-LoCoH documentation and enables a more
accurate basis for the comparison of home ranges among individuals and species, as well as among studies.

Keywords: Time Local Convex Hulls, T-LoCoH, Home range, Epidemiology, Visitation, Duration, cross-validation

Background
Dramatic advancements in GPS telemetry devices have
enabled researchers to gain a more comprehensive under-
standing of animal movement behaviors [1]. The decreas-
ing costs of such devices have resulted in their widespread
deployment and a capacity for data collection at unprece-
dented spatial and temporal resolutions [2]. Movement
ecology has emerged as a discipline in its own right [3],
with numerous methods and tools being developed and
disseminated to analyze the wealth of available data. Ecol-
ogists can now quantitatively characterize home ranges
and space use patterns over time. Often, the purpose
of applying such quantification methods to movement
paths is comparison of space use among individuals or
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species in order to examine such processes as niche par-
titioning [4, 5], optimal foraging [6, 7], social aggregation
[8], or even decision-making [9]. However, many meth-
ods require user-defined input parameters, and results are
often highly sensitive to the selection of such values. For
meaningful comparisons, standardization is required [10],
yet protocols to achieve consistency across applications
are often non-existent.
One of the most fundamental concepts in movement

ecology is the home range, conventionally defined as
“the area traversed by the individual in its normal activ-
ities of food gathering, mating, and caring for young”
[11]. Despite the apparent simplicity of this definition,
the statistical formalization of the home range remains
challenging, with alternative approaches emphasizing dif-
ferent aspects of animal movement and space use. The
lack of a shared underlying theoretical framework makes
comparison and standardization among methods all the
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more difficult, and the practical implications of select-
ing a particular conception of the home range make such
considerations important.
Methods for home range delineation have evolved sub-

stantially since the concept of the home range first
emerged in the literature [11]. The Minimum Convex
Polygon (MCP) method was the most commonly used in
the early years of home range description [12], despite
its sensitivity to outliers [13] and its inability to further
partition internal space [14]. The MCP-based conception
of the home range lends itself naturally to some prin-
ciples of space use in behavioral ecology, such as the
general rule that individuals of territorial species often
exhibit larger home ranges in relatively lower quality habi-
tat. Kernel Density Estimation (KDE; [15]) emerged as a
popular alternative that overcomes some of the limitations
of the MCP method, but numerous parameter choices
make comparisons among studies tenuous and replication
of results difficult [16]. The KDE-based conception of the
home range offers a probabilistic framing of animal space
use, but may obscure some of the uncertainty inherent
in movement data extracted at discrete time points. Both
of these methods and their descendants also treat input
points as independent, an assumption that is frequently
violated with regularly sampled positions from move-
ment paths. Efforts to overcome this inherent autocorre-
lation have included resampling or weighting algorithms
[17, 18], but more recently, methods like the Brownian
Bridge Movement Model (BBMM; [19]) and autocorre-
lated KDE (AKDE; [20]) have been developed to explicitly
incorporate the serial nature of movement data. These
more nuanced conceptions of the home range and move-
ment behaviors account statistically for uncertainty and
autocorrelation, but reliance on random walk dynamics
and related assumptions may not account for the behav-
ioral dependency of animal movements [21]. While some
of the earlier home range delineation methods could be
built for multiple individuals simultaneously, many of
these more rigorous methods are parameterized for each
individual separately.
The recently developed Time Local Convex Hull

method (T-LoCoH; [22]) builds upon the non-parametric
LoCoH method [23] by explicitly integrating the tempo-
ral component of movement data, effectively scaling time
with distance in the construction of local point sets, or
hulls. Essentially, this method is governed by a simpler,
MCP-based conception of the home range, but works at
a finer spatiotemporal scale and enables extension to a
more probabilistic description of space use. The T-LoCoH
algorithm constructs a utilization distribution (UD) by
aggregating local convex polygons, or hulls, built around
each point. The hulls are created by selecting the k near-
est neighbors of a given point and then sorted by density
and merged together to form the UD. The selection of

nearest neighbors can be modified by the inclusion of
a dimensionless scaling parameter s, which transforms
the time interval between points into a third axis in
Euclidean space. The distance between points in this
three-dimensional volume is called time-scaled distance
(TSD), and it serves to separate points that are far apart
in time despite their close proximity in two-dimensional
space. Thus, an s value of zero will produce the same home
range as the original LoCoH method. Guidelines exist for
choosing appropriate values to construct a suitable home
range, but much discretion is left to the researcher based
on the particular subject of their inquiry [22].
A similar approach relies upon the parameter a, which

selects nearest neighbors whose distance from the focal
point sums to the value a. This method also requires the
s parameter for weighting the TSD, but the alternative
parameterization may be especially useful for more adap-
tive hull creation, such that more densely clustered areas
of the movement path result in hulls with more points
than areas of sparse usage [22]. A rough sensitivity analysis
reveals that small differences in either of these parame-
ters has dramatic impacts on the qualities of the resulting
home range. The values of these parameters are also con-
tingent upon the movement path itself, meaning that the
paths of individuals of the same (or different) species
may not result in comparable home ranges. To make
such comparisons ecologically and statistically sound, the
procedure must be standardized, but to date no such
method exists.
Here we demonstrate the use of a novel cross-

validation-based method to optimize parameter value
selection for implementing the T-LoCoH algorithm based
on the unique qualities of each individual movement
path. This approach overcomes much of the subjectivity
inherent in the recommended parameter selection proto-
col [22], circumventing the primary challenge to building
and interpreting T-LoCoH home ranges. In addition, this
method has the added benefit of enabling comparisons
of home range features and derived metrics across indi-
viduals, species, and spatiotemporal scales, as the same
underlying characteristics are used to select the opti-
mal parameter values. We demonstrate the utility of this
method with a case study on herbivore movement in
the anthrax-dominated landscape of Namibia’s Etosha
National Park.

Methods
Case study
Pathogens indirectly transmitted via environmental reser-
voirs (e.g., water, soil, or animal excretions) represent a
unique challenge for ecologists and epidemiologists. Risk
of infection in such cases will depend upon the particular
conditions at reservoirs [24, 25], the feeding behavior of
the host [26–28], and the spatial arrangement of reservoir
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sites relative to susceptible animals [29], all of which may
serve to facilitate or dilute pathogen transmission. Cer-
tain characteristics of movement behavior may aid in
identifying the variation in risk of infection among indi-
viduals of the same and different species, including home
range size [30], site fidelity [31, 32], and contact network
structure [33, 34]. Comparisons of movement-associated
transmission risk across individuals may serve to guide
management efforts in areas affected by environmen-
tally borne pathogens by identifying high-risk individuals
and areas [35, 36], but a failure to explicitly account for
individual differences may preclude robust evaluations
of epidemiologically-relevant space use patterns [37]. We
applied our novel method to the movement trajecto-
ries of individuals from two herbivore species in relation
to anthrax (the acute disease caused by the bacterium
Bacillus anthracis) in Etosha National Park, Namibia. As a
disease transmitted via environmental reservoirs, anthrax
represents an ideal case study for exploring the connec-
tions between individual movement on the landscape and
resulting disease risk.
GPS point locations were obtained for individuals of two

different susceptible ungulate species during the anthrax
season in Etosha National Park, Namibia. For both the
plains zebra (Equus quagga) and springbok (Antidorcas
marsupialis), the anthrax season was defined as the five-
month period between February 1 and June 31 [36]. Due
to differences in the temporal resolutions at which the
data were initially collected, subsets of the data were cre-
ated so that each individual had one point location per
hour throughout the sampling period. The total number
of points for each individual during this period ranged
from 2111 to 3601 (Table 1). Any missing data values dur-
ing the sampling period were estimated using a Kalman
smoothing approach [38]. Plains zebra and springbok

show no sex-related disparity in infection rate [39]. All five
zebra individuals chosen for analysis were female, while
four of the six springbok were female and two were male.

Existing parameter selection protocol
The k (number of nearest neighbors) and s (time-scaled to
distance) parameter values obtained using the proposed
algorithm (below) were compared to those one might
select based on the guidelines set forth in the T-LoCoH
documentation [22]. In addition, the derived metrics,
including visitation rate (the number of visits to a given
hull, separated by a pre-defined amount of time) andmean
duration (the average number of relocations within a hull
during each of those visits) were compared to determine
the impact of selecting these alternative parameter sets on
epidemiologically and ecologically meaningful measures.
Because these values are calculated at the scale of the hull,
they are likely to strongly depend upon the size of the hulls
themselves, with larger hulls leading to relatively higher
duration and lower visitation rates as it becomes more dif-
ficult to “leave” a hull. The selection of values for the k and
s parameters will therefore have implications on the mean
values calculated for each individual.
To select appropriate k and s values using the guidelines,

the proportion of time-selected hulls (PTSH) method
was used. The PTSH approach calculates the distances
between pairs of points under a set of alternative s values,
and notes the proportion of pairs that are selected due to
their temporal proximity rather than their spatial proxim-
ity. Ten repetitions of the method were implemented for
each trajectory and all s values associated with a PTSH
between 0.4 and 0.8 were obtained from each run. The
median value was then chosen from this set and assigned
as the s value for that individual. Using these s values, six
potential isopleth sets were created, ranging from k=5 to

Table 1 Parameter values for analysis

ID Species Sample points s (Algo) k (Algo) s (Guide) k Range (Guide)

AG063 Zebra 2111 0 8 0.023125 20-25

AG252 Zebra 3601 0.775 16 0.0140625 20-25

AG253 Zebra 3601 0.925 12 0.0140625 25-30

AG255 Zebra 3601 0.85 12 0.0184375 20-25

AG256 Zebra 3601 0.9 14 0.0171875 15-20

AG205 Springbok 2887 0.375 8 0.003125 25-30

AG206 Springbok 3601 0.6 14 0.00875 25-30

AG207 Springbok 3601 0.85 10 0.01140625 20-25

AG209 Springbok 2887 0.125 12 0.002421875 25-30

AG214 Springbok 2887 0.6 8 0.00265625 15-20

AG215 Springbok 2883 0.025 10 0.00328125 25-30

The s and k values selected using the algorithm and the guidelines in the T-LoCoH documentation. A range of k values were used for the Guide due to the subjective nature
of parameter selection
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k=30 in increments of 5. Isopleths are created after the
hulls are merged together by taking their union, whereby
the ith isopleth contains i-percent of points. The k values
used in subsequent analyses were chosen using two inde-
pendent researchers who were asked to select an isopleth
set (or range of sets) that satisfied the minimum spuri-
ous hole covering criteria, which calls for the selection
of the smallest k value that minimizes the holes present
in the core area of the individual’s home range. To convey
the subjectivity associated with the k selection procedure,
both the lower and upper bounds of the ranges of k val-
ues selected by the independent researchers were mapped
and derived metrics extracted.

Cross-validation-based parameter selection
In developing a cross-validation-based approach to
parameter selection, we aim to remove much of the sub-
jectivity in the process and enable the data to inform
appropriate values. The cross-validation method depends
upon the creation of a series of training and testing data
sets. For each set, test points were chosen randomly from
the full movement path such that approximately one out
of every 450 sampled points was selected as a test point
(thus, each point had a probability of 0.002222 of being a
test point). To ensure independence of the testing points,
the 50 points preceding and following each selected test
point were removed from the full dataset, and the remain-
der was considered the training data. For a path with 3600
points, this results in the selection of 8 test points, on aver-
age, for each testing set, leaving 2792 points in the training
set. The resulting training datasets therefore consisted of
approximately 80% of the original data points (Fig. 1). To
minimize variation in the procedure, this stochastic split-
ting process is repeated n times (in this case, 100) for each
movement path.
A grid-based exploration of parameter space was then

conducted (Fig. 2), whereby each of the 100 train-
ing/testing datasets was analyzed at every combination of
k and s values on the grid. This analysis entailed the cre-
ation of local convex hulls with k nearest neighbors and a
scaling factor of s. In all subsequent analyses, we assume
that the scaling of time follows a linear formulation; how-
ever, when movement patterns more closely exemplify
diffusion dynamics, an alternative equation for the TSD
may be more accurate [22]. The test points were then laid
upon the resulting hulls, and the probability of each was
calculated as the proportion of the total number of hulls
(equivalent to the total number of points in the training
dataset) that contained the test point (Fig. 1). Test points
that were not contained within any hulls were assigned
a probability equal to the inverse of the total number of
points in the full movement path divided by 100, effec-
tively penalizing any hull sets that did not include each of
the test points. Though an arbitrary selection, the choice

of a consistent penalty term across individuals will serve
to standardize the procedure. A larger penalty will likely
result in a higher optimal k value and bear a closer resem-
blance to the MCP. The natural log of the probability was
calculated and information criterion values analogous to
Akaike’s Infromation Criterion (AIC) were derived using
the equation:

IC = −2 ∗ ln
( n∑

i=1
P(test points | training hullsets)

)
+ 2 ∗ k

The choice of 2k as the penalty term was made to main-
tain a structure analogous to the AIC equation. Given
the expansive literature concerning the performance and
behavior of AIC under various scenarios, maintaining
this structure may offer insight into similar strengths and
weaknesses of the proposed approach. Ultimately, without
such a penalty, all movement paths would tend towards a
k equal to the number of points in the training set, such
that each individual point was assigned a probability of
one. It should be noted that this penalty term is specific
to the k (nearest neighbors) method, but the underlying
cross-validation procedure could very easily be extended
for the optimization of the a (adaptive parameter) method
if an appropriate penalty term is selected. An ideal penalty
term would likely result in an increase of the informa-
tion criterion value by a similar magnitude as in the k-
based formulation above (i.e., ranging from approximately
100 to 102).
Despite the use of a testing and training dataset in the

creation of the hullsets, we deemed that the use of a mea-
sure of sensitivity versus specificity, such as the receiver
operator characteristic (ROC) curve, would not serve as
an effective means of comparing alternative parameter
sets. While false negatives (i.e., test points that are not
contained within any hulls) are certainly easy to measure,
without some form of pseudo-absence point, one cannot
easily obtain a false positive rate (i.e., points that fall within
the home range defined by the hulls, but not actually a
point occupied by the animal). Rather, the log probabil-
ity measure was chosen, as test points can be penalized
for being false negatives by assigning a consistent small
value as its probability, but there is no need to create
pseudo-absence points or account for false positives in
any way.
The grid-based search of parameter space allows for the

identification of the combination of s and k values that
offer the optimal information criterion value (Fig. 2). In
the case that multiple k or s values offer the same level of
information, a ridge will appear in the information content
surface. This was not especially uncommon in the paths
analyzed here, particularly along the s value axis. This
likely indicates that relatively large differences between
the optimal s value from the proposed algorithm and that
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Fig. 1 Conceptual Figure of the Proposed Algorithm. A test case of the algorithm using a simulated movement trajectory of 1000 relocation points
(a). Three of the subsets of those points, with red points indicating those locations that remain in the training sets and blue points representing the
test points for the later probability calculation (b,f,j). For each subset of points, a hullset is created using T-LoCoH, with an arbitrarily chosen s value
of 0.5 and k values of 5 (c,g,k), 15 (d,h,l), or 25 (e,i,m). These three subsets serve to illustrate three possible scenarios as the k values increases: either
test points that are not covered by the hull set at low k values continue to be uncovered with high k values (left-hand column), test points that were
not originally covered by the hull set at smaller k values becomes covered (center column), or test points are covered at low k values and continue
being covered at higher k values (right-hand column)

derived using the guideline-based criteria may reflect rela-
tively small differences in actual information content. Fur-
ther, this common shape to the resulting surfaces suggests

that the k value tends to have a much more dramatic
impact on the criterion. R code for a parallelized version
of the algorithm using this grid (where each individual
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Fig. 2 Conceptual Figure of Grid-based Search. An information surface is generated as the algorithm searches over a grid of alternative s and k
values for each individual movement path. The increments of the grid can be chosen by the user. The peak in the surface indicates that the
maximum level of information about the home range is obtained at the associated parameter set. The ridge in surface illustrated here suggests that
multiple parameters sets with different s values offer the same information content. In such cases, the parameter set with the smallest s and k values
was selected. Here, the white outlines denote the highest information criterion value, and thereby, the optimal parameter set

movement path is run in parallel) is supplied in the
Additional file 1.

Results
The algorithmic grid-based search covered s values from 0
to 1 in increments of 0.025 and k values between 2 and 30
in increments of 1. In the subsequent statistical analyses,
the results of paired t-tests are presented to demonstrate
the significance of differences when the proposed method
was used relative to the guide-based parameter selection
criteria, beginning with the k and s parameters themselves
(Table 1). The mean k value selected using the algorithm
for springbok (N = 6) was 10.33 (SE = 0.95) and for zebra
(N = 5) was 12.40 (SE = 1.33). The median of the range
of k values selected using the T-LoCoH guidelines was
used for comparison with k values resulting from the
use of the algorithm. The mean of these median values
was 22.5 (SE = 1.71; p < 0.001) for the springbok and 20
(SE = 1.58; p = 0.03) for the zebra. The mean s value
selected using the algorithm for springbok was 0.43 (SE =
0.13) and for zebra was 0.69 (SE = 0.17). The mean s value
selected using the guidelines was 0.0053 (SE = 0.0016; p =
0.02) for springbok and 0.017 (SE = 0.0017; p = 0.02) for
zebra. These results indicate that significantly different s
and k values are obtained when using the algorithm rather
than the upper or lower k and s values from the guide-
lines. According to either method, the difference in the s

values between species indicates that zebra move greater
distances than springbok in the same amount of time,
further supported by other qualities of the home range.
In terms of the area of the home ranges resulting

from each parameter set (Table 2), comparisons were
conducted using both the low and high values from
the range of the guideline-based parameters relative to
the algorithm-based parameter set (Fig. 3). The mean
home range area for springbok using the algorithm was

Table 2 Home range areas (in square kilometers)

ID HR area (Algo) HR area (Guide low) HR area (Guide high)

AG063 278.03 570.65 602.61

AG252 885.29 913.26 958.41

AG253 443.82 501.23 513.06

AG255 558.01 578.60 600.14

AG256 848.06 740.47 797.94

AG205 157.44 256.03 268.42

AG206 459.75 557.74 587.54

AG207 254.43 298.64 317.98

AG209 184.17 207.30 215.62

AG214 22.41 23.01 25.46

AG215 145.08 164.57 177.42

The total area of the home range obtained using the parameter sets recommended
by the algorithm and by the guidelines set forth in the T-LoCoH documentation
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AG207

10 sq km

AG253

Fig. 3 Comparison of Resulting Home Ranges. An illustration of two sets of home ranges that result from the parameter sets chosen by the
algorithm (red), the low range of the guide (blue), and the high range of the guide (black). The home range set on the left is based on the sample
points from the springbok AG207, and the largest home range covers 317.98 km2. The home range set on the right is based on the GPS fixes from
zebra AG253, and the largest home range covers 513.06 km2

203.88 km2 (SE = 59.71 km2) and 602.64 km2 (SE = 116.77
km2) for zebra. The mean home range area for springbok
using the low value of the range based on the guidelines
was 251.22 km2 (SE = 72.51 km2; p = 0.04) and 660.84
km2 (SE = 74.30 km2; p = 0.42) for zebra. The mean
home range area for springbok using the high value of the
guideline-based range was 265.41 km2 (SE = 76.23 km2;
p = 0.03) and 694.43 km2 (SE = 80.81 km2; p = 0.21) for
zebra. This indicates that the home ranges constructed
using the algorithm-based parameter set were signifi-
cantly lower than even the low value in the guideline-
based range for springbok, but the difference between the
resulting home ranges using either set from the guidelines
and the algorithm were not statistically significant for
the zebra.
For the derived fidelity metrics, duration (Table 3) and

visitation (Table 4), comparisons only concern the mean
values of each metric for each individual, though other

Table 3 Mean duration (MNLV) values

ID MNLV (Algo) MNLV (Guide low) MNLV (Guide high)

AG063 4.07 10.02 11.32

AG252 9.88 10.37 11.74

AG253 7.64 10.71 12.45

AG255 7.57 9.50 10.34

AG256 8.42 8.00 9.70

AG205 13.24 24.38 27.10

AG206 10.92 14.32 16.42

AG207 7.95 12.26 14.47

AG209 16.74 23.41 26.04

AG214 11.10 16.54 19.43

AG215 20.39 37.89 42.63

The derived metrics obtained using the parameter sets recommended by the
algorithm and by the guidelines set forth in the T-LoCoH documentation

descriptive statistics of the distribution of all duration and
visitation values may be of interest in some cases. The
mean duration (MNLV) for springbok using the algorithm
values was 13.39 (SE = 1.84) and for zebra was 7.52 (SE =
0.96). Mean duration derived using the low values in the
range of s and k values obtained based on the guidelines
were between 21.47 (SE = 3.84; p = 0.01) for springbok and
9.72 (SE = 0.47; p = 0.11) for zebra. The mean duration
derived using the high values in the guideline-based range
were 24.35 (SE = 4.20; p = 0.007) for springbok and 11.11
(SE = 0.49; p = 0.03) for zebra. The mean visitation rate
(NSV) for springbok using the algorithm values was 7.37
(SE = 1.92) and 7.58 (SE = 1.65) for zebra. Mean visitation
rates derived using the low value from the range of s and k
values obtained using the guidelines were 8.38 (SE = 2.06;
p = 0.01) for springbok and between 8.39 (SE = 1.71; p =
0.36) for zebra. Using the high value from the guideline-
based range, the mean visitation rate is 9.00 (SE = 2.27;

Table 4 Mean visitation (NSV) values

ID NSV (Algo) NSV (Guide low) NSV(Guide high)

AG063 2.74 5.82 6.58

AG252 6.01 5.64 6.30

AG253 12.82 15.00 16.04

AG255 7.84 8.07 9.46

AG256 8.52 7.43 8.62

AG205 2.77 4.24 4.50

AG206 6.07 6.46 6.90

AG207 12.92 14.85 15.67

AG209 3.28 3.60 3.80

AG214 13.52 14.56 16.3

AG215 5.64 6.57 6.83

The derived metrics obtained using the parameter sets recommended by the
algorithm and by the guidelines set forth in the T-LoCoH documentation
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p = 0.008) for springbok and 9.40 (SE = 1.77; p = 0.07) for
zebra. Once again, the derivedmetrics exhibit the patterns
observed in the home range area comparison; the use of
the algorithm results in statistically significant changes in
the mean duration and visitation rates for the springbok,
but not for the zebra.

Discussion
The concept of the home range remains a contentious
one, with some researchers suggesting that the choice of
delineation method should be defined by the question at
hand [10]. When comparison is an element of an analysis,
however, standardization of sampling protocols and esti-
mation techniques is required [14, 37]. Considering the
multitude of statistical issues overcome by the T-LoCoH
method, it should become an increasingly prevalent
tool for such analyses. Therefore, eliminating subjectiv-
ity from the procedure represents an important step for
enabling comparisons both within and among species
and studies.
One important consideration is that the “true” k and s

values are inherently unknowable. Even the use of sim-
ulation methods, which would offer perfect knowledge
of the position of an agent at any given time, would not
enable the construction of a “true” home range because
that would entail the selection of one particular concep-
tion of the home range. The approach laid out here offers
one such conception, where consistency, as measured by
the ability to capture testing points in home ranges cre-
ated using a subsample of the full movement trajectory, is
valued above other measures, such as contiguity or inclu-
sion. By applying this conception of the home range to
movement data from different individuals or species, the
proposed method effectively unifies the resulting home
ranges, enabling further comparison.
Recent empirical studies utilizing the T-LoCoH algo-

rithm for delineating home ranges illustrate the subjectiv-
ity involved in parameter value selection [40–42]. While
many studies rely upon the guidelines set forth in the
Tutorial and Users Manual provided by the creators of
the ‘tlocoh’ package in R [22], there was some variation
among studies regarding the selection of s values (i.e.,
choosing different proportions of hulls that are consid-
ered time-selected) and whether the k or a approach was
used for selecting nearest neighbors. Most of the home
range studies applying the T-LoCoH method do so across
multiple individuals, and researchersmust decide whether
to select separate parameter values for each individual or
to have a single overarching parameter set. This decision
is particularly important in cases where multiple species
are being compared [43], as attribution of differences
in home ranges to actual ecology rather than parameter
choice may be muddled. Most troubling, however, is the
fact that several studies implementing T-LoCoH neglect

to specify the parameter values they ultimately used
for their analyses, making replication of results nearly
impossible.
With regard to the decision about a single parameter set

used across individuals or separate sets for each move-
ment path, we argue that consistency and comparability
does not emerge from the parameter sets themselves.
Rather, the resulting home ranges can be unified by the
home range conception that guided their creation. As
previously mentioned, the method proposed here serves
as that unifying conception, prioritizing consistency in
the home range through the use of a cross-validation
approach. In order to construct such a home range for a
particular individual, a very different parameter set from
another individual may be necessary. Thus, we recom-
mend the use of the proposed algorithm (and the under-
lying conception of the home range upon which it is built)
to make home range analyses more readily comparable
between movement tracks.
The results from this case study indicate several impor-

tant trends. The first is that the s and k parameter sets
selected by the cross-validation-based approach are sig-
nificantly different from those one would obtain using the
proportion time-selected hulls (PTSH) method and the
minimization of holes approach set forth in the T-LoCoH
documentation. While the guidelines may be suitable in
some cases, the average difference between the algorithm-
based k value and the lower bound of that chosen using
the guidelines is over 10, suggesting that using isopleths to
judge a home range rather than the hulls results in higher
k values. Similarly, the s values selected by the algorithm
are orders of magnitude larger than those selected by the
PTSH method, demonstrating the important role of the
temporal aspect in predicting space use patterns in the
proposed approach.
Another important trend concerns the relationship

between the derived metrics of visitation and dura-
tion. While both are ecologically and epidemiologically
important measures of individual space use patterns
that rely upon the underlying hullsets, the mean visi-
tation value was not statistically significantly different
when the algorithm was used rather than the guide-
lines, whereas the mean duration did exhibit marked
differences. This suggests that the two metrics respond
differently to changes in k and s values, a somewhat
surprising result given that one might expect a simulta-
neous increase in both values, or a trade-off, such that
an increase in one would indicate a decrease in the other.
This non-parametric scaling further suggests the impor-
tance of having a standardized method for selecting k and
s values.
Changes in site fidelity metrics can have impor-

tant ecological implications. For diseases like anthrax,
which are caused by indirect pathogen transmission at
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environmental reservoirs, if a locally infectious zone (LIZ;
[44]) is present within the home range of an individual,
a greater level of site fidelity is likely to place the indi-
vidual at repeated and extended risk of encountering the
pathogen. However, this same high site fidelity may pro-
tect an individual against exposure if there are no LIZs
in the home range. Consequently, higher mean visitation
and duration values are likely to produce a greater level
of heterogeneity of infection risk for individuals within a
spatially structured population.
In the case of these particular herbivores in the Etosha

system, this difference in heterogeneity may be observed
in the relative likelihood of a lethal versus non-lethal infec-
tion in the two species. The zebra population in Etosha
is approximately 13,000 and the springbok population is
estimated at 15,600 [44]. After accounting for imperfect
detection [45], carcass surveillance data from 2000–2013
suggest that themean annual mortality rate directly linked
to anthrax is approximately 1.34% (95% CI: 0.80% - 1.88%)
in zebra and 0.26% (95% CI: 0.18% - 0.35%) in springbok.
Additionally, the rate of sub-lethal exposure as indicated
by the existence of antibodies in blood serum samples is
between 52 and 87% for zebra and between 0 and 15%
for springbok [44]. Based on the high values of non-
lethal infection, the annual rate of a zebra exposed to
anthrax experiencing a lethal dose is approximately 1.5%
whereas exposed springbok experience a lethal dose at an
annual rate of approximately 1.8%. This suggests that the
zebra population may experience higher overall exposure
rates to the pathogen, but because of their relatively low
mean duration, a large proportion of the exposed popu-
lation will contract a non-lethal dose, as they will move
on from LIZs relatively quickly. The greater mean dura-
tion value observed in the springbok population would
lead to expectations that some individuals will experience
high doses based on repeated and lengthy visits to LIZs
or no exposure, with moderate, non-lethal exposure being
fairly rare.
The same principles can be applied to other disease sys-

tems, where indirect pathogen transmissionmay be linked
to the spatial overlap of a species shedding a pathogen into
the environment and naive hosts of another species con-
tacting the pathogen during commingling, as in the case
of brucellosis [46]. Commingling, frequently calculated as
a function of home range overlap, is a commonmeasure of
inter-specific transmission risk, particularly between live-
stock and wildlife (e.g., bovine tuberculosis [47, 48]). The
use of the algorithm enables the construction of compa-
rable home ranges among different species with greater
confidence, thereby overcoming one of the most impor-
tant challenges of using and interpreting T-LoCoH and
allowing for a broader application in multi-species dis-
ease systems. Though the general patterns observed using
the guideline-based parameter sets are similar to those

observed using the algorithm-based parameter sets, there
are some potentially important differences regarding the
derived metrics of space usage. Namely, the difference
in the mean duration values between the two species
has decreased in magnitude. While the difference in
the mean duration values of the species remains signif-
icant, the algorithm-based parameter set results in val-
ues that suggest a greater level of similarity between the
two species than those obtained using the guidelines to
select the s and k values. These subtle differences may
ultimately have significant consequences for the over-
all accuracy of agent-based models in ecoepidemiology,
and a more consistent method of selection can ultimately
accelerate the development of those models for such
systems.
Finally, the concept of the probabilistic home range was

an important advancement in the home range literature
[16], but in the case of T-LoCoH, where isopleths are built
atop a series of hulls, the resulting home range may rep-
resent an overfitting to the data (Fig. 4b). As such, this
process may be useful for identifying core areas, but may
overlook corridors or treat such outlying landscape fea-
tures as part of the core area by altering the parameter
set to fill in “holes” in the home range. The guidelines
aim to minimize holes in the core area of the home
range, but because they are based on the probabilistic iso-
pleths, the hulls may need to grow considerably (i.e., the
k value must increase) before the underlying hulls pre-
dict presence in those areas. Using the hulls underlying
those isopleths themselves may represent an underfitting
to the data (Fig. 4e), in essence, a return to the MCP con-
cept whereby toomuch unused space would be considered
suitable. The algorithm circumvents the intermediate step
of using isopleths by minimizing holes in the hullset itself.
The home range that one builds from these hulls (based
on a considerably smaller k value) may therefore represent
an ideal trade-off between the overfitting of the isopleths
and the underfitting of the hulls at an inflated k value.

Conclusion
Here we present a unifying protocol for parameter selec-
tion based on a cross-validation approach. Using the hulls
created by the T-LoCoH method as the guiding element
for choosing appropriate s and k values, one can maxi-
mize the information content of the home range, penal-
izing parameter sets that resemble the uninformative
MCP while maintaining a level of generality that allows
for inference beyond the telemetry points themselves.
This approach enables consistent comparisons among the
derived metrics of different individuals and species, as
well as among different time periods, removing subjec-
tivity from the T-LoCoH parameter selection process.
The lack of a unifying conception of the home range
contributes to the broad and inconsistent application of
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a b

c d

e f

Fig. 4 Hulls versus Isopleths. Using the simulated movement trajectory, home ranges can be delimited using the hulls themselves (a,c,e) or the
isopleths (b,d,f) derived from the level of overlap among hulls (in this case, the 95% isopleth is displayed). When the k value is relatively small (k=5),
the hulls (a) outline the movements of the animal very closely, offering insight, not only into core areas, but also potentially important movement
corridors. Using isopleths (b) at low k values may result in large holes throughout the home range while failing to capture corridors. At moderate
and high k values (c,d,e,f), both the hulls and isopleths begin to fill in many of the ancillary features, delimiting similar home ranges at slightly
different rates (i.e., at k=25, the isopleths (f) resemble the home range outlined by the hulls at k=15 (c)). This illustrates the issue of underfitting when
using hulls at high k values and overfitting when using isopleths at low k values. The algorithm proposed here serves to balance these two scenarios
as effectively as possible

the term throughout the movement ecology literature and
beyond. While the method proposed here has its own
assumptions, it offers an objective alternative that can be
applied across taxa and study sites to unify results. Ulti-
mately, standardization will facilitate a more explicit con-
nection between animal movement and our conception
of space use patterns with major implications for the
conservation and management of wildlife.

Additional file

Additional file 1: R Code for the parameter selection algorithm. The code
is parallelized so that multiple movement paths can be analyzed
simultaneously on a multi-core computer. (R 7 kb)
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