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ABSTRACT
Objective The study aimed to develop natural language 
processing (NLP) algorithms to automate extracting 
patient- centred breast cancer treatment outcomes 
from clinical notes in electronic health records (EHRs), 
particularly for women from under- represented 
populations.
Methods The study used clinical notes from 2010 to 
2021 from a tertiary hospital in the USA. The notes were 
processed through various NLP techniques, including 
vectorisation methods (term frequency- inverse document 
frequency (TF- IDF), Word2Vec, Doc2Vec) and classification 
models (support vector classification, K- nearest 
neighbours (KNN), random forest (RF)). Feature selection 
and optimisation through random search and fivefold 
cross- validation were also conducted.
Results The study annotated 100 out of 1000 clinical 
notes, using 970 notes to build the text corpus. TF- IDF 
and Doc2Vec combined with RF showed the highest 
performance, while Word2Vec was less effective. RF 
classifier demonstrated the best performance, although 
with lower recall rates, suggesting more false negatives. 
KNN showed lower recall due to its sensitivity to data 
noise.
Discussion The study highlights the significance of using 
NLP in analysing clinical notes to understand breast cancer 
treatment outcomes in under- represented populations. 
The TF- IDF and Doc2Vec models were more effective in 
capturing relevant information than Word2Vec. The study 
observed lower recall rates in RF models, attributed to the 
dataset’s imbalanced nature and the complexity of clinical 
notes.
Conclusion The study developed high- performing NLP 
pipeline to capture treatment outcomes for breast cancer 
in under- represented populations, demonstrating the 
importance of document- level vectorisation and ensemble 
methods in clinical notes analysis. The findings provide 
insights for more equitable healthcare strategies and 
show the potential for broader NLP applications in clinical 
settings.

INTRODUCTION
Breast cancer is the second leading cause 
of cancer deaths in US women, comprising 
30% of new female cancer diagnoses.1 It is 
the most common cancer across all ethnic 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Before this study, it was understood that breast can-
cer is the most prevalent cancer affecting women 
of all ethnic groups in the USA, with disparities in 
outcomes among different racial and ethnic groups.

 ⇒ The widespread use of electronic health records 
and advances in natural language processing (NLP) 
offered avenues for improved patient care through 
detailed data analysis; however, there was a gap 
in automated, detailed analysis of clinical notes, 
especially for breast cancer treatment outcomes in 
women from under- represented populations, neces-
sitating this study.

WHAT THIS STUDY ADDS
 ⇒ This study contributes by developing a robust NLP 
pipeline to analyse clinical notes for breast can-
cer treatment outcomes in under- represented 
populations.

 ⇒ It demonstrates the effectiveness of specific text 
vectorisation methods (term frequency- inverse doc-
ument frequency and Doc2Vec) combined with clas-
sification models, particularly random forest (RF), in 
extracting relevant treatment outcome data from 
clinical notes.

 ⇒ The study also reveals the challenges in achieving 
high recall rates in predictive models, highlighting 
the complexity of clinical data and the need for spe-
cialised NLP approaches.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ This study has significant implications for future re-
search, clinical practice and health policy.

 ⇒ It underscores the potential of NLP in enhancing 
the understanding of breast cancer treatment out-
comes, particularly for under- represented groups, 
thereby guiding more personalised and equitable 
healthcare strategies.

 ⇒ The findings could influence policy decisions related 
to healthcare data management and the integration 
of NLP techniques in clinical settings.

 ⇒ Moreover, the developed pipeline can be adapt-
ed for other clinical NLP applications, potential-
ly broadening its impact beyond breast cancer 
research.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-1771-7361
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjhci-2023-100966&domain=pdf&date_stamp=2024-07-01
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groups in the USA, but disparities exist in outcomes.2 
While white women have higher incidence rates, black 
and Hispanic women face higher mortality rates.3 4 Addi-
tionally, the incidence is increasing rapidly among Asian/
Pacific Islanders and American Indian/Alaska Natives.4

The widespread adoption of electronic health records 
(EHRs) offers promising opportunities for predicting 
future events using large amounts of data.5 Especially, 
unstructured clinical notes contain important informa-
tion often not captured in structured, coded formats.6 
For example, patient- reported outcomes from patients 
with cancer are often not captured in structured 
EHRs, but is increasingly found in unstructured or 
semi- structured text formats within EHRs, facilitating 
translational research and personalised care.7–9 One 
common approach in clinical text analysis involves 
using a rule- based natural language processing (NLP) 
algorithm that leverages distinct medical keywords 
from clinical texts.10 11 Specifically, with the advance-
ments in neural language modelling, integrating neural 
networks with features extracted from this rule- based 
NLP method can be achieved by using word embedding 
models for feature extraction.12 This approach allows 
for building a fully neural network- based pipeline that 
combines embedding models with supervised learning 
algorithms.13

In cancer research, incorporating clinical notes 
into analyses is crucial for capturing information on 
comprehensive symptoms and side effects that patients 
experience,14 as it can provide insights into monitoring 
and individualised symptom management. Several 
studies have investigated breast cancer treatment 
outcomes using clinical notes and NLP14–16; however, 
research that specifically aims the capture of treatment 
side effects and patient- reported outcomes in patients 
with breast cancer from under- represented popula-
tions remains sparse. Addressing this research gap 
is important, because these populations face unique 
health disparities that impact treatment outcomes and 
patient care. Understanding these specific challenges 
and barriers enables the development of targeted inter-
ventions to mitigate disparities and enhance health 
outcomes. There is a clear need for an automated tool 
to capture symptoms and side effects from clinical 
notes, enabling accurate symptom management and 
tailored nursing care planning for those patients from 
under- represented populations.

The goal of this study was to develop NLP algorithms to 
automate the knowledge extraction process for patient- 
centred breast cancer treatment outcomes from clinical 
notes, aiming to gain valuable insights to improve care 
for those from under- represented populations. Specif-
ically, we aimed to compare the effectiveness of these 
algorithms in providing scientific evidence for their use 
in the care of patients with breast cancer from under- 
represented populations.

METHODS
To harness the full potential of large health datasets from 
the EHRs and unique application of NLP techniques, we 
sourced EHR clinical notes dated 1 January 2010 to 31 
August 2021 at a tertiary hospital in the USA, selecting 
patients who met the following criteria: (1) women 
from under- represented populations (Hispanic, Amer-
ican Indian or Alaska Native, Asian, black or African- 
American, Native Hawaiian or Other Pacific Islander or 
multiple race); (2) aged 18 years or greater; (3) diag-
nosed with invasive breast cancer; (4) had at least one 
follow- up visit at the medical centre after breast cancer 
treatment (ie, surgery, radiation therapy, chemotherapy, 
endocrine therapy or hormone therapy). We excluded 
the patients who were not followed up at the medical 
centre.

Overview of the NLP pipeline
In this study, we developed a classification model to 
predict a binary outcome: whether a side effect was 
observed in relation to breast cancer treatment, based on 
the text within a clinical note. Our approach involved a 
multistep process, as illustrated in figure 1. The process 
began with raw clinical notes from which text was 
extracted to train and test the downstream models. The 
extracted texts underwent preprocessing to ensure they 
were clean and normalised. Following preprocessing, the 
cleaned text corpus was used for text vectorisation. Addi-
tionally, we randomly sampled notes and had them anno-
tated by clinical experts. After annotation, the texts were 
mapped into a feature vector space (vectorisation). We 
then selected the most impactful features and reduced 
the feature dimension (feature selection) to train a 
conventional classifier and predict the outcome using this 
feature vector. Subsequent sections provide a detailed 
description of each step involved.

Data preprocessing and annotation
To prepare text data for the NLP process, it must undergo 
preprocessing. This involves standard NLP cleaning tech-
niques such as removing numbers, special characters 
and duplicated words; performing word tokenisation; 
removing stop words and applying stemming.17 Once 
cleaned, these text data serve as a corpus to train a vectori-
sation model that converts input text into numerical form 
(feature vector). This vectorisation can proceed without 
explicit document annotation, relying on the text corpus 
of the clinical notes. In contrast, expert annotations are 
crucial for the classification phase, making it a supervised 
learning task. Notes were labelled as positive if they refer-
enced side effects or symptoms of breast cancer treat-
ment, adhering to guidelines from the American Cancer 
Society and American Society of Clinical Oncology.18 A 
clinical expert annotated 100 notes, which were randomly 
selected from the original texts. Subsequently, the anno-
tated data were divided into training and test sets using a 
7:3 ratio.
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Text vectorisation
The texts were converted into a set of numerical values—a 
vector that represents a given text. We used three 
different vectorisation approaches—term frequency- 
inverse document frequency (TF- IDF),19 Word2Vec20 
and Doc2Vec21—and compared their performance with 
different predictive models (text vectorisation step in 
figure 1).

TF- IDF measures a word’s importance in a text by 
computing its term frequency, indicating the word’s rela-
tive frequency in a document.19 This method is effec-
tive for assessing word relevance in document queries. 
Word2Vec vectorises text using a neural network to create 
word embeddings, mapping words to vectors.20 It employs 
a sliding window technique, using either the continuous 
bag- of- words (CBOW) method to predict a word from its 
context or the skip- gram method to predict context words 
from a given word. Doc2Vec, a generalised Word2Vec, 
vectorises entire paragraphs or documents directly into 
single vectors, bypassing the averaging step required in 
Word2Vec.21 It offers two algorithms: distributed memory 
(DM) and distributed bag of words (DBOW).22 Figure 2 
shows the Word2Vec and Doc2Vec algorithms.

Predictive modelling
After the texts were vectorised, the rows of numerically 
encoded features for both the training and test sets were 
prepared. We performed feature selection to filter out 
features that did not positively contribute to the classifi-
cation task. This step further reduced the feature dimen-
sion, resulting in a more compact space. We trained a 
random forest (RF) classifier to determine the top rele-
vant features for each text vectoriser (feature selection 
step in figure 1).

The transformed training set was used to train the 
predictive models using multiple classification methods 

(classification step in figure 1). We used three different 
classification approaches: support vector classification 
(SVC), K- nearest neighbours (KNN) and RF. These 
approaches spanned a wide variety of classifier catego-
ries, including support vector machines, non- parametric 
methods and ensemble methods, enabling us to evaluate 
a broader spectrum of model performance. All of these 
methods were supervised learning techniques; therefore, 
we used the annotated training set, composed of 70 clin-
ical notes, to train each model.

The SVC finds a hyperplane that maximises the margin 
between the nearest data points of each label, with hyper-
parameters tuned for optimal separation.23 KNN classifies 
by voting among the ‘k’ nearest training data points to an 
input query, leading to larger models with more data.24 25 
RF, an ensemble of decision trees, combines their predic-
tions to reduce overfitting and variance, using moder-
ately tuned hyperparameters for peak performance.26 We 
chose the hyperparameter set with moderate parameter 
tuning to maximise model performance and trained 
an RF model with the same feature- label pairs from the 
training set to build a classifier.

We performed a random search combined with fivefold 
cross- validation to determine the optimal parameters for 
SVC, KNN and RF methods. Random hyperparameter 
search randomly selects values from predefined ranges or 
distributions to evaluate model performance. This is typi-
cally done using techniques such as k- fold cross- validation, 
where the training set is further divided into k- folds, and 
the model is trained and evaluated on different subsets 
of data, with each fold used as the validation set once. 
Then the model is trained and tested multiple times with 
different hyperparameter values to obtain an estimate of 
its performance.27 28

Figure 1 Overview of the natural language processing pipeline. T, true label; F, false label of clinical notes.
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We used the NLTK library29 for text cleaning, Scikit- 
Learn for data splitting, TF- IDF vectorisation, predictive 
modelling (SVC, KNN and RF), random search with 
cross- validation and evaluation and the Gensim library 
for Word2Vec and Doc2Vec implementation.30

Model evaluation
We used three commonly used performance metrics for 
model evaluation: precision, recall and area under the 
receiver operating characteristic curve (AUC). Preci-
sion gauges the model’s accuracy in predicting positive 

Figure 2 Word2Vec and Doc2Vec algorithms (Wi represents i- th word in a given text). CBOW, continuous bag of words; 
DBOW, distributed bag of words; DM, distributed memory.



5Park JI, et al. BMJ Health Care Inform 2024;31:e100966. doi:10.1136/bmjhci-2023-100966

Open access

classes, aiming to reduce false positives. Recall measures 
the model’s success in identifying actual positives, 
targeting the reduction of false negatives. AUC reflects 
the model’s ability to differentiate between classes across 
various thresholds, with higher values denoting greater 
discrimination.

RESULTS
Among the 1000 clinical notes we collected, 100 were 
randomly selected and annotated by a clinical expert, 
while the remaining 900 were used to build the text 
corpus. We found 41 positive notes and 59 negative notes 
from these 100 annotated notes. We divided the anno-
tated notes into training and test sets (using random 
selection of 70 and 30 notes, respectively) for modelling. 
The training set included 27 positive samples, whereas 
the test set had 14 due to random selection. The anno-
tated dataset comprised 41% of positive labels. The distri-
bution of positive labels was 39% in the training set and 
47% in the test set, closely reflecting the entire dataset. 
We used the 900 unannotated notes and 70 training notes 
(970 in total) to build our text corpus in the text vectori-
sation model for the final analysis. We identified 13 029 
unique words after the stemming process18 among the 
970 clinical notes selected for training text vectorisation 
(embedding) model. The mean value was 657.8, and the 
SD was 438.0. The minimum value recorded was 8, and 
the maximum was 2721. The 25th percentile was 372.5, 
the median (50th percentile) was 619.0 and the 75th 
percentile was 857.8.

We began by using 970 clinical notes as the corpus 
input for the TF- IDF model, transforming these notes 
into vectorised features for training and test sets. The 
n- gram range was set from 1–3 g, resulting in an output 
feature dimension of 408 791 for the training set. Simi-
larly, we used the same corpus to train a Word2Vec word 
embedding model, following the TF- IDF approach. After 

training, each word in a note was converted into a vector, 
and each note was represented by the average of these 
vectors.

For the Doc2Vec approach, we trained a word- 
embedding model with the same set of clinical notes, 
treating each note as a document in the Doc2Vec frame-
work. This enabled us to infer document vectors for each 
note, which were then used in training predictive models. 
Both Word2Vec and Doc2Vec models were assigned a 
feature size of 2000. In the Word2Vec model, the CBOW 
approach was preferred over Skip- gram due to its supe-
rior performance, while for the Doc2Vec model, we chose 
the DM model over the DBOW method. A window size of 
three was selected for both models. The hyperparameters 
for these models are detailed in table 1.

Feature selection is a crucial step in machine learning 
model development, as it helps identify the most relevant 
features or variables that contribute to a model’s predic-
tion performance. We employed a selection- by- model 
approach for feature selection after training the vecto-
risers. In this method, an intermediate model is trained 
to rank the importance of features based on their impact 
on the overall accuracy or performance of the model. 
Specifically, we trained an intermediate RF classifier to 
rank the importance of features based on their contribu-
tion to maximising the accuracy of the classifier. The RF 
classifier was chosen for its ability to handle non- linearity, 
interactions and most importantly, its ability to provide 
feature importance estimation. Then we selected the top 
300 features ranked by the RF classifier across all text 
vectorisation models to balance between capturing rele-
vant information and avoiding overfitting or issues with 
high- dimensional data.

We performed a random search with fivefold cross- 
validation to determine the optimal parameters for 
each model. The hyperparameters used in the random 
search are listed in table 1. The random search keeps the 

Table 1 Text vectoriser classifiers hyperparameters for each text vectorisation model

Text vectoriser hyperparameters

TF- IDF n- gram range: 1–3; max document frequency: 1.0; min document frequency count: 1

Word2Vec Features size: 2000; window size: 3; min count: 1; training algorithm: CBOW; training epochs: 20

Doc2Vec Features size: 2000; window size: 3; min count: 1; training algorithm: distributed memory; training epochs: 20

Classifier hyperparameters

SVC Kernel: type: RBF, inverse regularisation coefficient: 1.0

KNN TF- IDF Number of neighbours: 3, leaf size: 10

Word2Vec Number of neighbours: 10, leaf size: 10

Doc2Vec Number of neighbours: 3, leaf size: 10

RF TF- IDF Number of estimators: 50, max tree depth: 10

Word2Vec Number of estimators: 50, max tree depth: 5

Doc2Vec Number of estimators: 50, max tree depth: 5

KNN, K- nearest neighbours; RBF, radial basis function; RF, random forest; SVC, support vector classification; TF- IDF, term frequency- inverse 
document frequency.
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best- performing model from the fivefold validation, and 
we used the cached model for subsequent evaluations.

We used a test set comprising 30 annotated clinical 
notes to evaluate the models. These clinical notes were 
annotated with ground truth labels, serving as the refer-
ence for evaluating the model’s predictions. We calcu-
lated precision, recall, F1- score, accuracy and AUC for 
each trained model using the test set and used these 
performance metrics to assess the model’s performance. 
These metrics provide quantitative measures of the 
model’s performance and can aid in selecting the best 
performing model for the given classification task. The 
results can be found in table 2, where combination of 
text vectorisation and classification models were evalu-
ated using specific metrics along with their 95% CI. We 
measured the CI using the bootstrapping method, with 
1000 iterations of sampling.

The TF- IDF results indicated the highest AUC perfor-
mance when combined with SVC (0.82), followed by 
RF (0.82) and KNN (0.73) on the test set. However, the 
Word2Vec model failed to train effectively with SVC, as 
indicated by zero scores in both precision and recall. 
For KNN (0.58) and RF (0.57), the AUC was also low 
compared with other vectorisation methods. In contrast, 
the Doc2Vec results showed the highest AUC when paired 
with RF (0.90), followed by SVC (0.86) and KNN (0.57). 
Notably, the Doc2Vec- RF combination achieved the best 
AUC results across all combinations. The performance of 
Word2Vec was lower than that of other text vectorisers, 
and KNN was generally less effective than other classi-
fiers, except when used with Word2Vec. Although we 
used k- fold cross- validation for hyperparameter tuning, 
the RF results from the training set suggested overfitting. 
Interestingly, the Doc2Vec- RF combination showed a 
narrower gap between training and test set results across 
all metrics. Figure 3 illustrates the ROC curves for text 
vectorization and classification methods (figure 3).

DISCUSSION
The main goal of this study was to develop an end- to- end 
NLP pipeline for extracting treatment outcomes of breast 
cancer among women from under- represented popu-
lations, aiming to obtain important insights to enhance 
care for these populations. By focusing on these groups, 
our study sought to fill a critical knowledge gap and 
contribute to fostering equity in healthcare treatment 
outcomes.

We designed and implemented a systematic and auto-
mated approach that leverages NLP techniques to extract 
relevant information from clinical notes and accurately 
classify the extracted texts. We compared several algo-
rithms to assess the efficiency of each approach. Specif-
ically, this project holds significant value because it 
employed algorithms to analyse the treatment outcomes 
of patients with breast cancer from under- represented 
populations. These groups have been previously under-
studied, leading to a gap in our understanding of how 

treatments affect them differently. By employing NLP to 
analyse clinical notes, we gained a more comprehensive 
understanding of the optimal algorithms for extracting 
treatment outcomes for patients with breast cancer from 
under- represented populations. This approach has the 
potential to lead to more equitable healthcare outcomes 
in these communities.

The development of this NLP system involved consid-
eration of two key components: text vectorisation and 
classification. We compared and evaluated different text 
vectorisation methods (TF- IDF, Word2Vec and Doc2Vec) 
in combination with classification models (SVC, KNN 
and RF). The results indicated that both the TF- IDF and 
Doc2Vec text vectorisation models demonstrated the 
highest performance in terms of AUC when combined 
with the RF classification model. This suggests that these 
two vectorisation methods were effective in capturing the 
relevant information from the clinical notes data and 
improving the performance of the classification model. 
In comparison, the SVC and KNN classification models 
performed worse in terms of AUC when combined 
with the TF- IDF and Doc2Vec vectorisation methods. 
The fact that the TF- IDF and Doc2Vec models outper-
formed the Word2Vec model in our specific task suggests 
that performing vectorisation at the document level, as 
opposed to individual words, is crucial for building a 
stable and accurate clinical note classifier. The simple 
mean vector approach, where individual feature vectors 
from the words in a document are averaged to obtain a 
document- level representation, used in Word2Vec, was 
not suitable for the clinical notes in an EHR system.

Among the different classification algorithms we eval-
uated, the RF classifier demonstrated the best perfor-
mance in most of the comparisons. This suggests that 
the underlying structure of the 300- feature space used in 
our study was non- linear, and the reduction of variation 
achieved through ensemble learning in RF contributed 
to better model training. This finding aligns well with our 
expectations, considering the complexity of clinical notes 
data and the relatively large size of the feature vector used 
in our study.

However, we also observed that the recall scores of the 
RF model were relatively lower compared with precision, 
indicating that the model had more false negatives. In 
other words, it tended to miss some positive cases, leading 
to lower recall rates. The same trend is also observable in 
other methods, indicating this is not a classifier- specific 
problem. Instead, this could be due to the imbalanced 
nature of the dataset, or the specific characteristics of 
the clinical notes being analysed. Further investigation is 
needed to understand the reasons behind this observation 
and identify potential ways to improve the recall perfor-
mance of the classification model. On the other hand, 
KNN model showed the lowest performance in terms of 
recall compared with the SVC and RF models. This could 
be attributed to the fact that KNN is an instance- based 
model, which is more susceptible to noise in the data. 
Perhaps the clinical notes in our study data might have 
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contained noise or outliers that affected the performance 
of the KNN model negatively.

Our study has some limitations. Due to the small size 
of annotated notes, our approach has limited generalis-
ability. We aim to collect more data and annotations to 
address this in the future work. Expanding our dataset 
will allow us to better validate our findings, refine our 
methodology and potentially increase the accuracy and 
robustness of our predictions. Additionally, we observed 
that document- level approaches, especially the deep 
learning- based Doc2Vec model, performed better than 
other methods in general. We plan to explore the possi-
bility of using embeddings from large language models 
for text vectorisation to further improve performance.

Overall, our study contributes to the field of clin-
ical NLP by developing a high- performing pipeline for 
capturing invasive breast cancer treatment outcomes of 
women from under- represented populations. While the 
NLP methods we employed were not new in themselves, 
their application to our specific target demographic sets 
our work apart. We were able to access and interpret a 
wealth of nuanced, unstructured data that would other-
wise have been difficult to investigate. We could identify 
potential disparities in care, offering valuable insights 
that can be used to develop strategies for achieving more 
equitable healthcare outcomes for these vulnerable 
groups. In addition, our findings provided insights into 
the importance of document- based text vectorisation and 

Figure 3 Receiver operating characteristic curves for text vectorisation and classification methods. AUC, area under the curve; 
KNN, K- nearest neighbours; RF, random forest; SVC, support vector classification; TF- IDF, term frequency- inverse document 
frequency.
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the efficacy of ensemble methods in the context of clin-
ical notes data. Furthermore, the pipeline we developed 
is adaptable and generalisable to other NLP tasks that 
involve different clinical note classifications, based on its 
fully automated end- to- end design. This suggests that the 
approach we developed has potential for broader appli-
cations in various clinical NLP tasks beyond breast cancer 
treatment outcomes.

CONCLUSION
In this study, we developed a high- performance NLP 
pipeline that accurately discerns treatment outcomes 
of invasive breast cancer in under- represented women, 
highlighting previously overlooked disparities in care. 
Emphasising the significance of document- based text 
vectorisation, our method notably leveraged the TF- IDF 
and Doc2Vec models. Coupled with the superior perfor-
mance of ensemble methods, especially the RF classifier, 
we could effectively navigate complex clinical notes. 
Despite challenges like lower recall rates in some clas-
sifiers, the adaptable design of our pipeline signifies its 
potential for broader clinical NLP applications beyond 
just breast cancer outcomes. Future research should 
validate its scalability and generalisability across diverse 
healthcare datasets.
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