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ABSTRACT
The design of automotive electronic systems needs to address a
variety of important objectives, including safety, performance, fault
tolerance, reliability, security, extensibility, etc. To obtain a feasible
design, timing constraints must be satis�ed and latencies of certain
functional paths should not exceed their deadlines. From function-
ality perspective, soft errors caused by transient or intermittent
faults need to be detected and recovered with fault tolerance tech-
niques. Moreover, during the lifetime of a vehicle design or even
the same car, updates are often needed to add new features or �x
bugs in existing ones. It is therefore critical to improve the design
extensibility for accommodating such updates without incurring
major redesign and re-veri�cation cost. In this work, we discuss the
metrics for measuring latency, fault tolerance and extensibility, and
present a simulated annealing based algorithm to search the design
space with respect to them. Experimental results on industrial and
synthetic examples demonstrate clear trade-o�s among these ob-
jectives, and hence the importance of quantitatively analyzing such
trade-o�s and exploring the design space with automation tools.
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1 INTRODUCTION
The design of automotive electronic systems has become increas-
ingly challenging due to large design space and stringent design re-
quirements. The development of autonomous and semi-autonomous
features, as well as vehicle connectivity functionality, requires more
complex automotive software and hardware. In addition, the under-
lying architecture platform is shifting from the traditional federated
architecture, where each function is deployed to one ECU (Electronic
Control Unit) and provided as a black-box by a Tier-1 supplier, to
the integrated architecture, where one function can be distributed
over multiple ECUs and multiple functions can be supported by
one ECU.

Model-based design (MBD) methodology has been proposed to
address the deign challenges in complex systems such as vehicles
and avionic systems [13, 14]. In MBD, system functionality is �rst
captured with formal or semi-formal models for early-stage analy-
sis and validation. These functional models are then mapped onto
an architectural platform (often also captured with models) for soft-
ware or hardware implementation. For automotive electronic sys-
tems, this mapping/synthesis process involves generating software
tasks from functional models (sometimes through another layer
of runnables), allocating tasks onto ECUs connected with buses
(such as CAN [7, 15, 22] or FlexRay [3, 16]), and scheduling the
execution of tasks and the transmission of bus messages (Figure 1).
During this process, a variety of design objectives, such as safety,
performance, fault tolerance, reliability, security and extensibility,
need to be addressed.
Extensibility: A major challenge in vehicle design is to cope with
software and hardware evolutions over the lifetime of a design or
across multiple versions in the same product family or even for
the same car. Updates such as adding new application software,
reallocating some software among ECUs, or adding a new ECU are
needed to �x bugs and provide new functionality. Due to the fast
development of automotive applications, such updates (especially
software updates) are expected to be more frequent. For instance,
Tesla has already been able to carry out regular software updates
over-the-air since version 8.1 [23].

However, small changes in software and hardware may cause big
and unexpected changes in system timing and functionality. It is
often necessary to re-verify and re-certify the entire system, which
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Figure 1: Mapping of software tasks onto ECUs connected
with a CAN bus. The signals communicated between tasks
aremapped to either local communication throughmemory
or CAN messages.

could lead to prohibitively expensive costs and undermine system
availability and reliability. Therefore, it is important to improve the
extensibility of designs so that future updates can be accommodated
without incurring major redesign and re-veri�cation cost. This is a
challenging goal, especially due to the sharing and contention of
software functions over limited computation and communication
resources.
Fault tolerance: Soft errors caused by transient or intermittent faults
have become a major design concern, because of the continuous
scaling of technology, high energy cosmic particles and radiation
from the application environment [2, 24]. Fault tolerance techniques
are greatly needed to detect and recover errors such as application
crashes, illegal branches and silent data corruption. In this paper,
similarly as in [8, 26], we focus on two categories of error detection
techniques: embedded error detection (EED) and explicit output
comparison (EOC). More speci�cally, EED includes a variety of
error detection techniques such as instruction signature checking,
control �ow check (CFC) and watchdog timers [17]. EOC detects
errors through explicit redundancy of task execution. For instance,
the same program can be executed twice and output mismatch
indicates occurred error(s) [8]. Choosing EOC or EED techniques
for speci�c tasks could signi�cantly improve system’s ability to
tolerate soft errors.
In addition to extensibility and fault tolerance, there are often timing
constraints that must be satis�ed to ensure functional correctness
and system safety, such as task execution deadlines, message trans-
mission deadlines, and latency deadlines along functional paths.

In this work, we discuss the metrics for measuring extensibility,
fault tolerance and latency, optimize them in task allocation and
scheduling, and analyze their trade-o�s. We consider automotive

systems that are based on CAN, the prevalent bus protocol cur-
rently in vehicles. For tasks on the same ECU, the communication
is through local memory and very fast. For tasks on di�erent ECUs,
the communication is through CAN bus messages/frames and the
transmission time is much longer.

Intuitively, maximizing extensibility or fault tolerance may lead
to a more “balanced” task allocation and therefore more bus mes-
sages and longer path latencies. To quantitatively evaluate such
trade-o�s, we �rst de�ne timing models for software tasks, mes-
sages and schedulability constraints, and metrics for extensibility
and fault tolerance. We then optimize these metrics with a sim-
ulated annealing based approach, and conduct experiments with
industrial and synthetic examples.

The rest of the paper is organized as follows. In Section 2, we dis-
cuss previous work on extensibility and fault tolerance. In Section 3,
we introduce our system models on timing/latency, extensibility
and fault tolerance. In Section 4, we demonstrate the trade-o�s
among these objectives with an illustrating example, and then in-
troduce our simulated annealing-based algorithm for optimizing
them. We present experimental results and discuss our �ndings in
Section 5, and conclude the paper in Section 6.

2 RELATEDWORK
In the literature, a number of studies have addressed robustness,
scalability, �exibility and extensibility of real-time embedded sys-
tem. The notions of these objectives could sometimes be obfus-
cated since they all relate to system’s capability of accommodating
changes (which could come from variations or updates). For in-
stance, in [25], scalability refers to how well a system can handle
task execution time increases. In [1], �exibility describes system’s
ability to add additional tasks without impeding existing ones.

Various viewpoints and de�nitions have also been proposed
for system extensibility. In [25], Yerraballi et al. develop a method
to �nd an optimal execution time scaling factor for all tasks in a
given subset while ensuring system schedulability. In [21], novel
de�nitions of sustainability and extensibility for FlexRay-based
communication systems are presented, which can then be combined
with CAN-based system. In [10], although no formal de�nition of
extensibility is provided, an original approach utilizing contract-
based design is proposed to negotiate among contracts for software
updates. In this work, we adopt the task-level extensibility metric
from [27], which measures how much task execution time can be
increased without violating design constraints.

Regarding fault tolerance, many error detection techniques, such
as triple modular redundancy, watchdog timers and instruction
signature checking, have been proposed [4, 5, 11, 12, 17–20]. For
instance, in [12, 20], Izosimov et al. employ process re-execution
and replication to tolerate transient faults and then extend their
algorithm by checkpointing with rollback recovery. In [11], they
develop a heuristic algorithm to trade-o� between hardware hard-
ening and re-execution in software. In [4, 5], Burns et al. propose
schedulability analysis and priority assignment with embedded
error detection techniques.

In our previous work [26], we formulate the impact of EOC and
EED on system timing for di�erent platform con�gurations. An



Addressing Extensibility and Fault Tolerance in CAN-based Automotive SystemsNOCS ’17, October 19–20, 2017, Seoul, Republic of Korea

MILP (mixed integer linear programming) model is then devel-
oped to explore task allocation and scheduling, together with the
selections of error detection techniques for individual tasks.

3 SYSTEM MODEL
In our systemmodel, the CAN-based architectural platform includes
a set of p ECUs E = {e1, e2, . . . , ep } connected through a CAN
bus. The functional model is represented as a task graph G =
{T ,S}, where T = {�1,�2, . . . ,�n } is the set of tasks and S =
{s1, s2, . . . , sm } is the set of signals that impose data dependency
and execution order among tasks.

We assume all tasks are invoked periodically and scheduled
based on static priorities with preemptions allowed. Each task
�i has its own activation period T�i , worst-case execution time
(WCET) c�i and priority p�i . If two tasks are allocated to the same
ECU, signals are transmitted through local memory and we assume
the communication delay is negligible. If two dependent tasks are
mapped onto di�erent ECUs, data will be exchanged through mes-
sages/frames on the CAN bus. The set of CAN messages is denoted
asM = {m1,m2, . . . ,mq }.

In the task graph, a path is an interleaving sequence of tasks
and signals denoted as p = [�r1 , sr1 ,�r2 , sr2 , . . . , srk�1 ,�rk ]. �r1 , the
source node of the path, is usually triggered by external events such
as sensor inputs. The sink node �rk is often the task that activates
actuators. It is possible that multiple paths exist between a source
task and a sink task.

3.1 Worst-case End-to-end Path Latency
We de�ne worst case end-to-end latency lp of a path p as the maxi-
mum time delay needed for the input changes on the source node
to be propagated to the outputs of the sink node. To ensure sys-
tem safety and performance, a deadline dp may be imposed on lp ,
i.e. lp  dp . The computation of lp requires the computation of
worst-case response time for tasks and messages along the path, as
explained in below.
Task worst-case response time: In our model, tasks running on
the same ECU are scheduled based on static priorities with preemp-
tions (commonly supported by OSEK standard and its derivatives).
The execution of a task is subject to the interferences from higher
priority tasks on the same ECU. Therefore, the worst-case response
time r�i of a task �i , which represents the longest time delay needed
to complete the task after its activation, can be calculated as follows
(similarly as in [9, 28]):

r�i = c�i +
X

�j 2hp (�i )

&
r�i
T�j

'
c�j (1)

where hp (�i ) denotes the set of higher priority tasks on the same
ECU. The second term represents the interferences from these
higher priority tasks within the response time. This formula can be
solved with an iterative numerical method.
Message worst-case response time: In our model, when two
tasks communicating through signals are allocated to di�erent
ECUs, their communication signals are packed into messages and
transmitted over the CAN bus. We further assume each signal si is
mapped to its own messagemi . The transmission delays of these
messages contribute signi�cantly to the path latencies, and can be

calculated similarly as tasks. Slightly di�erent from the preemptive
task scheduling policy though, CAN bus employs a �xed priority
non-preemptive scheduling. Thus, a CAN message may su�er from
additional blocking delay caused by lower priority messages, which
can be approximated with the largest possible transmission time
among all messages transfered on the same CAN bus. Equation (2)
below is the formula for calculating message worst-case response
time rmi , where Bmax is the largest blocking time and cmi is the
worst-case transmission time of the messages.

rmi = cmi + Bmax +
X

mj 2hp (mi )

&
rmi � cmi

Tmj

'
cmj (2)

Path latency: The worst-case end-to-end path latency lp of path p
is the summation of the periods and worst-case response times of
all tasks and global signals (i.e., signals that are packed into CAN
messages) on the path, as shown below in Equation (3). GS is the
set of global signals. Note that in our model, a global signal has
the same worst-case response time as its corresponding message,
i.e. rsi = rmi . The periods are taken into account because of the
asynchronous communication nature.

lp =
X

�i 2p
(r�i +T�i ) +

X

si 2p^si 2GS
(rsi +Tsi ) (3)

Schedulability: In this work, a system is schedulable if all the
timing constraints shown below in (4) to (6) are met. Constraint (4)
ensures that the response time of every task is not greater than
its deadline, which equals to its period in our model. Similarly,
Constraint (5) ensures that every message is transmitted within its
period. Constraint (6) ensures that the end-to-end latency of every
path will not exceed its deadline.

8�i 2 T , r�i  T�i (4)
8mj 2M, rmj  Tmj (5)
8pk 2 P, lpk  dpk (6)

3.2 Task Level Extensibility
We adopt the task level extensibility metric from [27], which mea-
sures how much task WCET can be increased without violating
design constraints. More speci�cally, we calculate system extensibil-
ity as the weighted sum of each task’s maximum possible increase
of its WCET:

E = 1
|T |

X

�i 2T
w�i

�c�i
T�i

(7)

where w�i is a predetermined value that indicates how likely a
task’s WCET might be increased in future updates. �c�i is the
maximum possible increase of task WCET c�i without violating
design constraints (i.e., schedulability constraints (4) to (6) in this
work), while all other system con�gurations remain unchanged.

A binary search based algorithm is used to compute the exten-
sibility, as shown in Algorithm 1. In this algorithm, E denotes the
system extensibility and is initialized to zero. For every task �i ,
we use binary search to calculate how much its WCET c�i can be
increased, as shown from line 2 to line 11. During the binary search,
the lower bound lb is initially set to 1, representing the normalized
factor with respect to the original WCET; while the upper bound
ub is initially set toT�i /c�i , representing the normalized factor with



NOCS ’17, October 19–20, 2017, Seoul, Republic of Korea Hengyi Liang, Zhilu Wang, Bowen Zheng, and Qi Zhu

Algorithm 1: System Extensibility Computation
1: E = 0;
2: for all task �i 2 T do
3: lb = 1; ub = T�i /c�i ; cor i�inal = c�i
4: while ub � lb > � do
5: mid = (lb + ub )/2;
6: c�i =mid ⇤ cor i�inal ;
7: isSched = checkTaskSched();
8: if isSched == true then
9: lb =mid ;
10: else
11: ub =mid ;
12: E +=w�i ⇤ (mid � 1) ⇤ cor i�inal /T� i ; c�i = cor i�inal
13: return E/ |T |;

respect to the task deadline/period. The iterations end when the
upper bound and lower bound meet within � . Inside each iteration,
we calculate the middle valuemid (line 5) and update WCET c�i
(line 6). Then, function checkTaskSched () updates all the response
times of lower priority tasks, and checks whether any schedulability
constraint has been violated (line 7). If the system is schedulable,
we continue search the upper half (i.e., trying larger value for the
execution time), otherwise we search the lower half. The system
extensibility is the weighted sum of all tasks.

3.3 Soft Error Tolerance Model
We consider two major soft error detection techniques, i.e. embed-
ded error detection (EED) and explicit output comparison (EOC).
Usually, EED covers part of the total errors with additional compu-
tation overhead (which depends on speci�c application and imple-
mentation method). For instance, state-of-the-art CFC techniques
may cover 70% of total errors. EOC can achieve almost 100% error
detection at the cost of 100% execution time overhead (temporal re-
dundancy) or 100% resource overhead (spatial redundancy). In this
work, we assume EOC detection rate is 100%, similarly as in [26].
System error coverage: During the hyperperiod Th�per of a task
set T (i.e., the least common multiple of the task periods), a to-
tal number of K � 0 errors may occur. System error coverage is
then de�ned as the probability that all errors are either i) detected
and recovered within hyperperiod while all timing constraints are
satis�ed or ii) happened during idle time [26].

Let teoc , teed , tnone denote the accumulative time needed by
tasks employing EOC, EED and no error detection technique, re-
spectively. tidle denotes the total idle time. An exact analysis of
system error coverage depends on the speci�c error occurrence
pro�le and timing pattern, and is hard to capture with a closed
form formulation. For simplicity, on a single ECU, we assume that
K arbitrary errors of uniform distribution may occur during a hy-
perperiod. The system error coverage P is then approximated as:

P ⇡
KX

i=0

iX

j=0

 
K

i

!  
i

j

!
(
� · teed
Th�per

) j (
� · teoc
Th�per

)i�j (
tidle
Th�per

)K�i (8)

where � and � represent the error detection rate of EED and EOC,
respectively.
Task execution time with error detection and recovery: As
we mentioned, EED and EOC come with additional computation
overhead. We characterize a task using error detection technique

with Cdec�i , which denotes the time for execution and error detec-
tion of task �i . For EOC,Cdec�i = 2C�i+�i if a temporal redundancy
approach is used. �i denotes the time for comparing outputs. If we
duplicate the execution of same task on di�erent cores (i.e. a spatial
redundancy approach), Cdec�i = C�i + �i . For EED, since we run
a task with built-in detection, Cdec�i = C�i + �C�i , where �C�i is
the increased timing cost for EED.Cr ec�i is the error recovery time
for task �i if the error is detected. We assume the re-execution of a
task is scheduled immediately if error(s) is detected. Cr ec�i = C�i
for EOC, while Cr ec�i = C�i + �C�i for EED.
Worst-case response time analysis with error detection: To
analyze the response time of task with EED/EOC technique, we
need to integrate error detection time and recovery time into Equa-
tion (1). For this, we employ two binary �i and oi to distinguish
error detection strategy. �i is 1 if either EED or EOC is employed
for task �i and 0 otherwise. oi is 1 if EOC if used, and 0 if EED is
used. We rewrite Cdec�i and Cr ec�i as following:

Cdec�i = C�i + [o�i (C�i + ��i ) + (1 � o�i )�C�i ]��i (9a)
Cr ec�i = (C�i + (1 � o�i )�C�i )��i (9b)

Let r�i ,�j denote worst-case response time for task �i when er-
ror(s) occurs during the execution of task �j . Task �i will be blocked
by task �j ’s recovery time if �j has higher priority. Follow the same
idea of Equation (1), we have:

r�i ,�j = Cdec�i +Cr ec�j p�i ,�j +
X

�k 2T ^�i,�j

&
r�i ,�j
T�k

'
Cdec�k

p�i ,�j

(10)
where p�i ,�j denotes the relative priority between task �i and �j .
Considering a complete task with K errors, the response time of
task �i can be formulated as:

r�i =
X

el 2E
a�i ,elCdec�i + K max

�j 2T
{
X

el 2E
Cr ec�j p�i ,�jh�i ,�j ,el }

+
X

�k 2T^�i,�j

X

el 2E

&
r�i ,�j
T�k

'
Cdec�k

p�i ,�jh�i ,�j ,el
(11)

where Boolean variable a�i ,el is 1 if task �i is assigned to core el
and 0 otherwise. h�i ,�j ,el is 1 if task �i and �j are on the same core
el and 0 otherwise. To ensure each tasks is only mapped to one
ECU, the following relations must be enforced:

X

el 2E
a�i ,el = 1 (12)

a�i ,el + a�j ,el � 1  h�i ,�j ,el (13)
h�i ,�j ,el  a�i ,el (14)
h�i ,�j ,el  a�j ,el (15)

4 OPTIMIZATION AND TRADE-OFFS AMONG
OBJECTIVES

Based on the models introduced in Section 3, we quantitatively an-
alyze the trade-o�s among extensibility, fault tolerance and latency
(as well as other metrics related to communication cost, such as the
number of CAN messages and the bus utilization). In this section,
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Figure 2: An illustrating example showing the trade-o� between extensibility and communication cost (i.e., number of mes-
sages and path latencies), under di�erent task mapping choices: (a) task �1 and task �3 mapped to ECU-A while task �2 mapped
to ECU-B, and (b) task �1 and task �2 mapped to ECU-A while task �3 mapped to ECU-B.

we will �rst demonstrate such trade-o�s with an illustrating exam-
ple, and then introduce a simulated annealing based algorithm for
optimizing these di�erent design objectives/metrics.

4.1 Illustrating Example
Figure 2 shows how the mapping of three tasks onto a CAN-based
platform with two ECUs can a�ect system extensibility and com-
munication cost (measured by the number of CAN messages or
path latencies). The task graph, task WCETs and periods are shown
on the left side. Task �1 and �2 send their output to task �3.

In mapping (a), task �1 and �3 are mapped to the same ECU-
A, while �2 is mapped to ECU-B. We assign higher priority to �3
than �1, based on the Rate Monotonic policy. Although there is still
16.7% utilization left on ECU-A, this mapping makes it impossible to
increase the execution time for either �1 or �3, i.e., their extensibility
is zero. On ECU-B, task �2 can increase its WCET by 2 time unit.
Thus, the total system extensibility is 2/3/3 = 22.2%. In terms of
communication, only message m2 needs to be transmitted over
CAN bus and the latency on path �1 to �3 should be relatively short.

In mapping (b), task �2 and �3 are swapped. On ECU-A, task �1
and �2 have the same period and WCET, and we assume �1 has the
higher priority. The maximum increase of WCET for either task is
1 time unit. The system extensibility is calculate as (1/3 + 1/3 +
1/2)/3 = 38.9%. In terms of communication, messagesm1 andm2
need to be transmitted over the CAN bus, and the latency on path
�1 to �3 is also higher than mapping (a).

In this example, we clearly see the trade-o� between extensibility
and communication cost (i.e., latency or number of messages). Next,
we will introduce how we can optimize these design objectives.

4.2 Objective Function and Constraints
We optimize an objective function (16) that includes extensibility,
fault tolerance and communication cost, by exploring allocation,
priority assignment and error detection technique (EED or EOC or

none detection) for each task. The communication cost could be
measured by total path latency, number of CAN messages or bus
utilization.

Costext , Costf t , Costcom in (16) are costs for extensibility, fault
tolerance and communication, respectively. For instance,Costext =
1 � E, where E is the system extensibility in (7). Note that the
higher the extensibility, the lower the cost Costext is. �, µ and �
are weights and can be tuned to trade o� these objectives.

The optimization is subject to the schedulability constraints in (4)
to (6), and possible constraint on each design objective. For instance,
there could be upper bounds EXTmax , FTmax and COMmax on
each cost, as shown below.

min � ⇤Costext + µ ⇤Costf t + � ⇤Costcom (16)

s .t . 0 � � � 1, 0 � µ � 1, 0 � � � 1 (17)
Costext  EXTmax (18)

Costf t  FTmax (19)
Costcom  COMmax (20)

4.3 Simulated Annealing
We developed a simulated annealing based algorithm for the above
optimization, as shown in Algorithm 2. For the initial con�guration,
tasks are randomly allocated to ECUs and scheduled using the Rate
Monotonic policy. T represents current simulation temperature,
T ⇤ is the �nal temperature and � is the cooling factor. K⇤ is the
maximum number of iterations within each temperature.

During each iteration, function randomChan�e modi�es current
solution Acur into a candidate solution Anew by randomly per-
forming one of the following operations: i) changing the allocation
of a task from one ECU to another, ii) swapping the priorities of
two tasks on the same ECU, or iii) changing the error detection
technique of a task. Function ComputeObjecti�e (Anew ) then com-
putes corresponding cost Cnew as de�ned in (16), and function
checkSched (Anew ) determines the schedulability of this candidate
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solution. Note that if the candidate solution is infeasible, we add a
penalty � to the cost instead of rejecting the solution directly. Func-
tion P (Ccur ,Cnew ,T ) then computes the acceptance possibility of
Anew . Acur and Ccur keep track of the latest solution and its cost.
Aopt stores the best solution. The simulated annealing procedure
stops when temperature reaches the prede�ned value T ⇤.

Algorithm 2: Simulated Annealing for Task Allocation, Sched-
uling and Error Detection Technique Selection

1: Construct initial con�guration.
2: while T � T ⇤ do
3: while K < K ⇤ do
4: Anew = randomChange(Acur )
5: Cnew = ComputeObjective(Anew )
6: isSched = checkSched(Anew )
7: if isSched == f alse then
8: Cnew = Cnew + �
9: if Cnew < Ccur then
10: Acur = Anew , Ccur = Cnew
11: if isSched = true then
12: Aopt = Acur
13: else if P(Ccur , Cnew , T ) > rand() then
14: Acur = Anew , Ccur = Cnew

K = K + 1
15: T = T ⇤ �
16: return Aopt

5 EXPERIMENTAL RESULTS
We conducted experiments on an industrial case and a set of syn-
thetic examples. The industrial case is derived from an experimental
vehicle subsystem and contains 41 tasks communicating through
81 signals. The subsystem involves distributed functions collecting
data from 360� sensors to actuators. All the periods and taskWCETs
are given in the industrial case. We also use the TGFF tool [6] to gen-
erate a set of synthetic examples with random periods and WCETs.
We impose end-to-end latency deadlines on selected critical paths.
The examples are tested for a number of di�erent platform con�gu-
rations. For the industrial case, a minimum of 5 ECUs is needed for
�nding feasible solutions.

5.1 Extensibility vs. Latency
We �rst explore the trade-o� between extensibility and commu-
nication cost, which is measured by the total critical path latency
(i.e., the sum of end-to-end latencies for all selected critical paths).
We conduct optimizations using our simulated annealing approach
(Algorithm 2). More speci�cally, for extensibility optimization, we
set � = 1 and µ = � = 0 in the objective function (16). For latency
optimization, we set � = µ = 0 and � = 1. We carry out these
optimizations for platform con�gurations containing 5 to 10 ECUs,
and record both extensibility and latency for each optimization.
The comparison results for the industrial case are shown in Fig-
ure 3, with yellow bars on the right in both sub-�gures representing
extensibility optimization results and blue bars on the left in both
sub-�gures representing latency optimization results.

We can clearly see a trade-o� between extensibility and latency.
Extensibility optimization indeed signi�cantly improves the ex-
tensibility metric over latency optimization, but leads to longer
total latency. Intuitively, optimizing extensibility leads to more “bal-
anced" allocation of tasks on ECUs and thus more CAN messages
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Figure 3: Comparison between extensibility optimization
and latency optimization for industrial case.

(rather than communication through local memory) and longer
total latency. In our experiments, extensibility optimization results
have over 70 signals mapped to CAN messages while latency opti-
mization results only have 10-20 messages. Furthermore, we can see
that the extensibility increases with more ECUs. This is as expected
since the tasks get more timing slacks with lower average ECU
utilization.

5.2 Error Coverage vs. Latency
We then explore the trade-o� between error coverage (fault toler-
ance) and latency. We employ EED and the temporal redundancy
model of EOC as described in Section 3.3, and we set � = � = 0
and µ = 1 for error coverage optimization. Figure 4 shows the
comparison between error coverage optimization (yellow bars on
the right) and latency optimization (blue bars on the left) for the
industrial case. The trade-o� between the two is also very clear.
Intuitively, more balanced allocation of tasks leads to more timing
slacks for tasks to add error detection techniques, but results in
longer latency. We can also see the error coverage increases with
more ECUs.

5.3 Extensibility vs. Error Coverage
We study the relation between extensibility and error coverage,
by mapping the industrial case onto a platform of 5 ECUs with an
average ECU utilization of 58%. Note that extensibility and error
coverage are not always mutually exclusive. Both metrics get better
when more time slack is available. However, applying the slack
to error detection techniques does take away some capability to
accommodate future changes. Table 1 shows the trade-o� between
extensibility and error coverage, when error coverage optimization
is performed with minimum extensibility set to 0, 0.1, 0.2, 0.3, 0.4
and 0.5, respectively.
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Figure 4: Comparison between error coverage (fault toler-
ance) optimization and latency optimization for industrial
case.

Table 1: Optimizing error coverage at di�erentminimum ex-
tensibility requirement for industrial case.

min. ext. 0 0.1 0.2 0.3 0.4 0.5
error coverage 0.5775 0.5176 0.5122 0.4568 0.4472 0.4089
extensibility 0.1354 0.1582 0.2162 0.3027 0.4036 0.5605

5.4 Optimization of All Three Objectives
We then optimize all three objectives (extensibility, error cover-
age / fault tolerance, latency / communication cost) by setting
� = µ = � = 1 in (16). Costext , Costf t and Costcom are all normal-
ized. In particular, Costext = 1 � E. Costf t is as de�ned in Equa-
tion (8). Costcom represents the cost of total latency, and is de�ned
asCostcom = (Lat�Latlb )/(Latub �Latlb ). Lat =

P
pk 2P lpk is the

total latency, Latlb =
P
pk 2P

P
�i 2pk (T�i +c�i ) is a lower bound for

the total latency, and Latmax = 2⇤Ppk 2P (
P
�i 2pk T�i +

P
sj 2pk Tsj )

is an upper bound.

Table 2: System total critical path latency, extensibility and
error coverage in the solutions from optimizing each indi-
vidual objective and from optimizing all three objectives (in-
dustrial case).

5 ECUs
Path Latency Extensibility Error Coverage

Opt. Path Latency 4718.02 0.296 0.629
Opt. Extensibility 5174.52 0.490 0.507

Opt. Error Coverage 5488.06 0.323 0.684
Opt. All 5206.46 0.418 0.699

8 ECUs
Path Latency Extensibility Error Coverage

Opt. Path Latency 4761.50 0.415 0.856
Opt. Extensibility 4969.90 0.681 0.692

Opt. Error Coverage 5357.31 0.485 0.918
Opt. All 5221.79 0.633 0.806

As shown in Table 2, optimizing all three objectives provides
more balanced solutions, when compared with optimizing for each
individual objective. Such results are not surprising qualitatively,
but the quantitative comparison should facilitate designers to make
design choices.

5.5 Impact of ECU Speed and Number of Tasks
Finally, we study how extensibility is a�ected by the ECU computa-
tion speed and the number of tasks. We generate a set of synthetic
examples with di�erent number of tasks and map them to a plat-
form with 5 ECUs. We scale all task WCETs by a factor of 1X, 1.5X
and 2X to model di�erent ECU computation speed while task pe-
riods remain unchanged. Figure 5 demonstrates the quantitative
impact of ECU speed and number of tasks on system extensibility.
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Figure 5: System extensibility under di�erent ECU speed
and number of tasks (synthetic examples).

6 CONCLUSION
In this work, we quantitatively analyze the trade-o�s among ex-
tensibility, fault tolerance and latency for CAN-based automotive
electronic systems. We introduce metrics for de�ning these three
objectives and present a simulated annealing based algorithm for op-
timizing them. The clear trade-o�s among these objectives demon-
strate the need to develop design automation methods for facilitat-
ing the design space exploration in automotive systems.
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