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ABSTRACT OF THE DISSERTATION

Applications of Information Dynamics to the Study of Nanopores

By

Claire Gilpin

Doctor of Philosophy in Physics

University of California, Irvine, 2018

Professor Craig Martens, Chair

Over the previous three decades both experimental and theoretical research into nanopores

has been gaining momentum. It has been discovered that nanopores play an important role

in controlling important molecular and cellular scale physiological processes. It has also been

discovered that both synthetic and biotic nanopores may have groundbreaking potential for

both biomedical devices and scientific research instruments. In particular, nanopores are

currently being studied for their potentially cost effective application to DNA sequencing

and protein, drug, and pathogen sensing. Additionally, research into the time-dependent

electrical properties of nanopores may aid in our understanding and ability to model the

behavior of physiological nanoscale membrane ion channels. Recent advances in information

theory, particularly the development of time-dependent measures of Shannon entropies, have

opened the door to studying these nanoscale systems from a new angle. In this work we will

share results of the novel application of these techniques, highlighting their ability to track

autonomous fluctuations in nanopore currents. We will also discuss a proposed extension

of these techniques that may allow short-time scale prediction of current fluctuations in

the future. Additionally, we will discuss a process for testing for potentially interesting

nonlinear structure in nanopore interevent interval sequences, where the events are current

fluctuations. Lastly, we will discuss some potential future research directions in light of what

we have learned.

xii



Chapter 1

Introduction

1.1 Dynamical Systems

Understanding dynamical systems is fundamental to understanding our world. A dynam-

ical system is any system whose behavior changes as a function of time. Some prominent

examples of dynamical systems most of us think about regularly are systems like the stock

market and weather patterns. For as many dynamical systems as we can observe with the

naked eye, there are many that operate beneath our visual limits. Among the more obscure

dynamical systems is the time-dependent electrical behavior of nanopores; nanometer-scale

channels that are currently being investigated for their potential biomedical and scientific

applications.

In this introduction we will cover the historical highlights of scientific research on dynamical

systems including commonly used analysis techniques. We will then explore the advent of

information theory and how recently developed time-dependent measures of entropy rate

make it possible to explore dynamical systems in a new light.
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1.2 Background on Dynamical Systems

1.2.1 Types of Data

To understand dynamical systems research we need to understand the types of data we might

be analyzing. Time series data may take the form of symbol sequences (an example of which

would be the left and right bar presses in a rat behavior experiment), interevent interval

sequences (such as inter-beat intervals of the heart, neural spike trains, and as we will see,

sequences created by successive current fluctuations in a nanopore), or continuous valued

waveforms (such as seismograph data) [39, 86]. We acknowledge that ‘continuous valued’ is

continuous valued within the limits of digital measurement technology.

It is possible to convert between some of these types of data. For example, interevent inter-

val sequences and continuous valued data can be converted to symbol sequences by setting

threshold values and assigning values in certain ranges to a particular symbol. Continuous

valued waveforms may also be converted to interevent interval sequences by detecting tran-

sitions [9, 10]. Transition detection is still an active area of research and there is no general

consensus on an ideal method [1].

1.2.2 Categorization of Methods for Analyzing Dynamical Sys-

tems

There are multiple categories of analysis techniques that can be applied to dynamical systems

research. Each has its own scope of applicability. We will discuss the predominant categories

briefly, acknowledging which techniques are the focus of this research.
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Statistical Time Series Analysis

Statistical analysis techniques have broad applications to dynamical systems. Statistical

characterization can be useful for characterizing the distribution of data from dynamical

systems, determining the quality of the data, and can also be useful for model development

applications. For example, it can be useful for determining if something has gone awry during

a measurement if, for example, a much broader distribution that is expected for a particular

variable is seen. In modeling applications, statistics such as regression analysis are often used

to inform the development of and refine models for a particular process/variable [90, 19].

From the point of view of time series analysis statistical analysis provides the ability to

model complicated sets of data either through using well characterized parametric models

or through non-parametric modeling when a well defined set of parameters isn’t known.

Parametric statistical analyses, such as linear regression and autoregressive moving average

have the advantage of being computationally efficient, but require a priori assumptions that

a well characterized model class is a good fit for the data. While more computationally

burdensome, non-parametric techniques do not require such a priori assumptions. Non-

parametric modeling is used in this work for the purposes of model order selection (see

section 2.2) [7].

Spectral Analysis

Spectral analysis can be a useful tool in time series analysis, particularly from the point of

view of model validation or from the point of view of matching contributions from a signal to

a well established model [53]. For example, in the process of modeling a dynamical system

the power spectral density may be estimated for experimental data and simulated data from

the model [4]. Comparing these power spectra, which show the signal amplitude in the

frequency domain can be part of model validation or the identification of errors in modeling.

3



One drawback of spectral analysis is that its inherent assumption is that the dynamical

system in question can be modeled by a group of oscillators. This is often a good approx-

imation for many physical dynamical systems, but it may overlook important behavior in

others. Explicit procedures exist in the literature for comparing spectra [4].

Additionally, spectral analysis can be useful in analyzing noisy experimental data by using

spectra-based filtering methods, such as band pass filters [61, 79]. In this work we use

spectral analysis for this purpose.

Time-Frequency Analysis

Time-frequency analysis is a supplementary technology to spectral analysis. In spectral

analysis we can learn about and characterize a signal in the frequency domain, but it does

not tell us which frequencies are active in the signal at specific times. This is possible by using

time-frequency analysis technologies such as wavelet, Gabor, and S transforms [27, 84, 20].

These transformations aim to provide a time-dependent frequency analysis. These techniques

are extremely useful when analyzing signals where it is known that certain time-dependent

frequencies have important behavioral implications, such as analysis of electrocardiogram

data where the timing of different frequency components of the signal is an indicator of

cardiac function [52, 68].

One notable drawback to time-frequency analysis is that there is a tradeoff between temporal

and frequency precision. This tradeoff is akin to a Heisenberg uncertainty principle in that

the more temporal precision you achieve the less frequency precision you will achieve (the

reverse is true as well) [26].
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Dynamical Systems Theory

The development of dynamical systems theory has spanned more than 100 years in time, and

an early lead in to the subject might be thought of as Henri Poincare’s attempt to construct

analytic solutions to the three body problem [64]. His analysis showed that differential

equations could have solutions that are represented by geometric objects (what later became

known as attractors) and that deterministic systems could present what are now known

to be chaotic solutions. A later parallel occurred as Dutch scientist Balthasar van der

Pol observed an odd mode-locking behavior in vacuum tube-containing electrical circuits at

certain frequencies [91]. This became a possible problem for electrical engineers who were

concerned about the impact of aperiodic oscillations in their circuits.

Mary Cartwright and John Littlewood were recruited to address these concerns in the con-

text of their application to radar systems and their work became one of the foundations

for the development of chaos theory [8, 55]. Another critical foundational contribution to

the development of chaos theory occurred when Edward Lorenz was modeling weather pat-

terns [51]. In his simulation studies he opted to begin a simulation using conditions at the

midpoint of his previous simulation as his new initial conditions. He was surprised by the

markedly different results he obtained and he explored other initial conditions. This lead

to the discovery that slight changes in initial conditions result in different behavior in the

solutions to some nonlinear differential equations.

Chaos theory has developed into its own discipline over the years and there is active research

into its applicability to physical and biological systems. Common measures emerging from

the chaos theory community are correlation dimension, Lyapunov exponents, and Hurst

exponents. Correlation dimension is a measure of the dimension of the space occupied by a

set of points (where points on a line have correlation dimension of 1, points on a plane have

correlation dimension of 2, etc.), where non-integer values are possible [25, 24]. Lyapunov
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exponents provide a quantification for the divergence of trajectories for infinitesimally close

initial conditions [2, 21]. Hurst exponents are measures of persistence in time series data,

where persistence means tendency to follow the current trajectory (i.e. to increase following

past increases and decrease following past decreases) [34].

Correlation dimension, Lyapunov exponents, and Hurst exponents have some practical draw-

backs to the analysis of experimental data. In particular nonstationary data complicate

estimation of the correlations dimension and it is necessary to have long, stationary data

sets [88, 87, 22]. Lyapunov and Hurst exponents for experimental data analysis have the

added drawback of sensitivity to noise and identification of false values. There is not yet

a clear consensus for how to circumvent these issues for a clean analysis of non-stationary

experimental data.

1.3 Information Dynamics

1.3.1 Early Developments

Following preceding work by Harry Nyquist in 1924 [59] and Ralph Hartley in 1928 [28], in

1948, while working at Bell Labs, Claude Shannon published a groundbreaking paper [76]

entitled “The Mathematical Theory of Communication,” in which he proposed the following

definition for information entropy, H[X],

H[X] = −
∑
x∈X

p(x) log p(x). (1.1)

This definition, based on probability theory, quantifies the uncertainty in a message X, where

H is the entropy, x is the realized form of the message, X represents the possible “alphabet”

from which successive entries in X were realized, and p(x) is the probability of any particular

6



realized element or subset of the message. The definition above concerns discrete variables,

however his work also included a generalization to continuous variables, differential entropy

H[X] = −E[log f(x)] = −
∫ ∞
−∞

f(x) log f(x)dx (1.2)

where f(x) is a probability density associated with a continuous variable X [76, 12]. As an

aside, we will be working with continuous variables in this work and as such will address the

mathematical details of differential entropy in more detail in the next chapter. Shannon’s

paper is commonly regarded as the start to the formal study of information theory. Since its

creation this basic equation has been adapted and built upon in an attempt to describe how

information is stored, processed, and transmitted in physical systems. A notable contribution

was made in the 1950s by Andrey Kolmogorov and Yakov Sinai that was directly applicable

to chaotic systems. Generally, Kolmogorov-Sinai entropy is the rate at which information

about the initial conditions as more data are observed [42, 80]. One important point about

the Kolmogorov-Sinai entropy is that it is only finite and non-zero for chaotic systems and

goes to infinity for stochastic systems [60].

1.3.2 Modern Developments

Modern developments in information dynamics have seen the creation of new extensions of

entropy to time dependent measures usable on stochastic dynamical systems. These notable

developments include Shannon entropy variants local entropy rate, which quantifies the time-

dependent surprise associated with a particular known future state given knowledge of the

past states, and specific entropy rate, which quantifies the time-dependent uncertainty in an

unknown future state given knowledge of the past states [49, 48, 47, 14, 17].

These measures are the primary focus of this dissertation research and are applicable to

the system of interest, an autonomously fluctuating conical nanopore. We explore them in

7



greater mathematical detail in chapter 2.

1.4 Nanopores

1.4.1 Background on Nanopores

What is a Nanopore

Nanopores are nanometer-scale channels that allow the passage of certain substances. They

may be present in biological systems, such as membrane pores created by pore forming

proteins or synthetic, such as pores created in a polymer film via track etching. They are

unique and have distinct physical behavior not seen in larger pores because the physical

impact of the properties of the pore walls plays a significant role at the nanometer size

scale [37, 83, 65].

Brief History of Nanopore Research

Nanopores have become a topic of interest in recent decades as researchers began studying

their potential advantages for prominent, real world applications such as genome sequencing

and biosensing, and in developing a mechanistic understanding of cellular and molecular

scale physiological processes [63, 40, 43, 32, 36, 71, 67, 6, 5, 31, 29, 56, 96, 93, 72, 89, 62].

We will briefly discuss each of these applications so as to construct an overview of important

advances in nanopore research.

Since the advent of the Human Genome Project in the late 1900s, there has been a push

in the scientific community to develop faster and more cost efficient methods for DNA se-

quencing [70]. We have determined that our the sequence of our base pairs, the nitrogenous
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subunit of DNA, is critical to understanding the human body, and in particular, states of

disease [11]. Understanding these sequences is also the first step to developing gene therapies

that may hold the key to combatting many disease processes. One of the primary barriers

to genome research was the cost of DNA sequencing. Just after the turn of the century the

original endeavor of the Human Genome Project was announced as complete, but it was not

yet cost efficient enough for DNA sequencing to be used widely for research. Finding more

cost effective, high accuracy DNA sequencing techniques became one of the subsequent goals

in the scientific community [18].

Nanopores were identified as having promise for cost efficient DNA sequencing. It was

discovered that different bases traveling through a nanopore result in different electrical

currents [58, 92, 31, 93, 82, 33]. This information was used to create nanopore-based DNA

sequences that are currently on the market, such as those available from Oxford Nanopore

Technologies. The high throughput sequencing technology uses an enzyme, which attaches to

the DNA strand and docks on the nanopore, to ratchet DNA strands through the nanopore.

The current is measured and the values are paired with the corresponding nitrogenous base.

Additionally, recent advances in nanopore research have lead to the ability to detect single

molecules, also by detecting changes in the nanopore current [54, 83, 37, 65, 30]. This paves

the way for applications of nanopore in both scientific research and medical diagnostics with

nanopores potentially providing portable rapid analysis of samples ranging from biological

fluids to environmental samples. Detection could be customized to include targets from

proteins, to drugs, to single viruses.

Biological nanopores are also found in the membranes of our cells and are responsible for

controlling fluxes of ions into and out of our cells [83, 65]. Studying both biotic and synthetic

nanopores in laboratory environments, particularly their electronic behavior can be used

to provide insight into the physiological processes they model. In particular it has been

noted that nanopores in contact with ion solutions can exhibit bias dependent autonomous
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current fluctuations [83, 65]. In other words, application of a sufficient external bias voltage

to a nanopore immersed in an ion solution can result in autonomous current fluctuations.

The theorized mechanism of action behind these autonomous fluctuations is the alternating

precipitation/dissolution of components of the ionic solution due to their interaction with

charges on the nanopore walls [65, 37]. Understanding theses current fluctuations is an area

of active research within the UC Irvine community.

In this project we conduct new explorations of these current fluctuations both for a model

system and experimental data using time-dependent information dynamics tools. In partic-

ular we apply new time dependent measures of entropy rate to identify and study features

of interest in the current time series for single conical nanopores. We additionally begin

efforts to identify evidence of nonlinear structure in the sequences of interevent intervals

(where the events of interest are the current fluctuations). We begin by describing both the

experimental and model systems researched in our work below.

1.4.2 Experimental Nanopore

In this work we will be considering a system comprised of a single nanopore current oscil-

lator in contact with an ion solution [65, 37]. Experimentally, these conical nanopores are

fabricated by irradiating polyethylene terephthalate (PET) with heavy ions to form tracks

and subsequently subjecting those tracks to controlled chemical etching. The resulting pores

are between 2 and 6 nm in diameter [65].

The pores are immersed in a solution containing 0.1 M KCl and 0.3 mM CaCl2. With

sufficient applied external bias voltage, these pores exhibit autonomous current fluctuations

between positive and negative conductance states. There is evidence that these fluctuations

are the result of CaCl2 nanoprecipitate formation/dissolution on the narrow walls of the

nanopore (due to the dynamic interactions of the Ca2+ and Cl− ions with the surface charges
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on the nanopore walls) [65, 37]. A model for nanopore current fluctuations under similar

experimental conditions was proposed in 2015 and we will discuss it in the next section

below [35].

1.4.3 Nanopore Model

The following is an excerpt from [23]: “A single nanopore current oscillator, which is observed

in a single state x as a function of time t, can be modeled as a coupled nonlinear oscillator

with bistable potential U(x, y) forced by dynamical noise:

dXt = − 1

γx

∂U

∂x
(Xt, Yt) dt+ σx dWx

dYt =
1

γy
[k+Θ(Xt)− k−Θ(−Xt)]dt+ σydWy

(1.3)

where Xt is the nanopore current, Yt is an unobserved state variable that controls the opening

and closing behavior of the nanopore, γ is a coefficient of friction, Θ is a Heaviside function

with amplitude determined by rate constants k+ and k−, and Wx and Wy are standard

Brownian motions representing other unaccounted for inputs to the system. The double-

well potential U(x, y) is taken to be

U(x, y) =
1

4
ax4 − 1

2
b(V )x2 + cxy (1.4)

where b(V ) is the voltage-dependent parameter that determines the barrier height:

b(V ) = b0

(V − Vc
Vc

)
(1.5)

with Vc as the critical voltage. The behavior of the potential as it relates to both X and Y

is critical to understanding the behavior of the nanopore current and should be examined
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in more detail. When X takes positive values, Y will be a random walk with drift k+
γy

plus

dynamical noise. As Y drifts to more positive values, the potential tips towards the negative

well, making it likely that a transition will occur from a positive to a negative current. This

effect can be seen in Figure 1.1A below. Conversely, when the nanopore current X takes

negative values, Y will be a random walk with drift −k−
γy

plus dynamical noise. Eventually, Y

drifts negative to a point of tipping the potential towards the positive well, making it likely

that a transition will occur from a negative current to a positive current. This effect can be

seen in Figure 1.1B below. Between fluctuations, Y will pass through Y = 0.
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Figure 1.1: Potential at fixed positive values of y (A) and fixed negative values of y (B).
The y = 0 configuration is shown on both plots. As y becomes more positive, it causes the
potential to skew towards a transition to negative x. As y becomes more negative, it causes
the potential to skew towards a transition to positive x. Physically, positive values of x in
this graph correspond to positive current values.

The structure of the potential term as it relates to X and Y acts to ensure that the system

undergoes transitions frequently and never becomes stuck indefinitely in one of the wells.

Similar behavior of the nanopore current should therefore be expected across realizations

of data simulated using this model, despite expected differences in the profiles of individual

transitions due to the dynamical noise.”

We should briefly note that the values shown in the graphs of the potential above are ex-

aggerated to show the change in shape of the potential. They are not intended to show the

range of Y values seen in our simulations, which may be smaller.
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1.4.4 Solving the Nanopore Equations

We used a stochastic Runge-Kutta method to compute realizations of 1.3 [69]. The method

was employed through the SRI2 integrator from the sdeint package for python. We used the

following parameters in our simulations for this work, consistent with those used in [35].

Figure 1.2: Parameter values for simulation of nanopore data. The external bias voltage is
taken to be constant.

We can look directly at a trace of both X and Y with some displayed transitions in the

example below. We see that as Y drifts to more positive values it eventually hits a value

extreme enough to trigger a shift in the potential associated with a probable transition to

the negative conductance state. As Y then drifts to more negative values it eventually hits a

value extreme enough to trigger a shift in the potential associated with a probable transition

to the positive conductance state.
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Figure 1.3: X and the unobserved variable Y for simulated transitions in a conical nanopore.
We can observe that as the value of Y increases, eventually it reaches a tipping point where
a transition then occurs. This corresponds to a change in shape to the potential similar to
those seen in 1.1A. As the value of Y decreases, we can also see that it reaches a value low
enough to trigger a transition back to the positive state. This corresponds to a change in
shape to the potential similar to those seen in 1.1B.

We computed a total of five realizations for analysis in this work.

1.5 Time series notation

We will be using standard statistical notation throughout this work. Any exceptions will be

explicitly identified in text.

{Xt} will represent a stochastic process modeling some observable/random variable, X. We
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can think of Xt as representing the state of this observable in the immediate future and

Xt−1 as representing the state in the immediate past. It is perhaps natural to think of Xt

as representing the value of the observable at the present moment, but here we construct a

mental framework which only contains pasts and futures. We can represent a block of states

by using a subscript/superscript notation Xn
m = (Xm, Xm+1, ..., Xn−1, Xn).

Realizations, or observed values, of the stochastic process X1, X2, X3, ..., XT (where T is

the length of the time series) will be denoted using lower case notation x1, x2, x3, ..., xT .

Pictorially, we can imagine that we have a “realization space” (or “ensemble space”) as

shown below. We’ve called the realizations shown α, β, and γ in order to distinguish them

from each other and other realizations.

Figure 1.4: Pictorial representation of ensemble (realization) space. A single realization is a
string of measurements taken over time. Three distinct realizations are shown in this figure.

We can also explicitly denote the set of accepted values for an observable as X , which

represents an alphabet of possible values for the observable. In a binary process, for example,
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this alphabet contains only options 0 and 1 (i.e. {0, 1}).

Figure 1.5: Example of three possible realizations for a binary alphabet.

The alphabet can become much larger for continuous-valued observables. Let us imagine

that we are observing a random variable, X to three decimal places of precision and its

possible alphabet ranges from 0 to 2. A realization in this case might look like the following
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Figure 1.6: Example of three possible realizations for a more complicated alphabet where
measurements are collected to three decimal places of precision and can range from 0 to 2.

1.6 Probability Densities

Probability densities will appear extensively in this work. As is standard practice, p(x)

or f(x) will denote a probability mass function and density function for a discrete-valued

or continuous-valued variable, X, respectively [94, 85, 12]. This density is often referred

to in statistics as the marginal density of X. For ease of writing, this general discussion

be formulated for continuous-valued variables. The probability density function f(x) must

satisfy the following conditions [12]

f(x) ≥ 0 (1.6)
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for all x (i.e. that the probability density must be non-negative), and the normalization

condition

∫ ∞
−∞

f(x)dx = 1. (1.7)

It will also be important to understand the concept of joint and conditional probability

densities. Joint probability densities can be thought of as the probability density associated

with observing both x and y in a process with a joint density fX,Y . That joint probability

density is written fX,Y (x, y). Joint probability densities are subject to a normalization

condition analogous to the marginal probability density above

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y)dxdy = 1. (1.8)

Conditional probability densities can be thought of as the probability density associated with

observing Y given that X was observed (or X given that Y was observed) in a process with

conditional probability density fY |X (or fX|Y ). In this case the ordering of the observations

is crucial. Conditional probability density is written to reflect the order as [12]

fY |X(y|x) =
fX,Y (x, y)

fX(x)
(1.9)

or

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
. (1.10)

We can think, graphically, of conditional probability densities as being the cross-section of

joint probability density at a fixed value of one or the other variable, normalized by the

marginal probability density of that variable [94].
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One example that is commonly introduced to aid in the understanding of marginal, joint,

and conditional probability densities is a Gaussian (normal) distribution. For a univariate

(single-variable) Gaussian, the marginal probability density associated with a continuous-

valued variable X is

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (1.11)

where µ is the distribution’s mean, σ is the standard deviation, and σ2 is the variance. µ

can be thought of as the expected value of X and σ determines the degree of spread of

the distribution. Three examples of the marginal probability density function for Gaussian

distributions with µ = 0 and different values of σ, a small, medium, and large value, are

shown in the plot below. This plot serves the purpose of highlighting the general shape of

the distribution, and furthermore, highlights how the impact of the variance on that shape.

Intuitively, we expect to see a larger spread in the marginal probability density, centered

around mean µ as the standard deviation increases, and the plot below is consistent with

that intuition.

Figure 1.7: Examples of Gaussian (normal) distributions with mean 0 and different values
of the standard deviation, 1, 2, and 5. Plotted together, they illustrate how the spread of
the marginal probability density changes with σ.
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Changing the mean, µ of the distribution results in a shift of the marginal probability density

along the horizontal axis, as shown below.

Figure 1.8: Examples of Gaussian (normal) distributions with means 1, 2, and 5 and standard
deviation 1. Plotted together, they illustrate how the marginal probability density shifts with
changing mean.

For multivariate (multiple variable) Gaussian distributions we can discuss joint and condi-

tional probability densities. Taking the simplest example, a bivariate Gaussian, with vari-

ables X and Y , the known joint probability density is expressed below

f(x, y) =
1

2πσxσy
√

1− ρ2
e

−z
2(1−ρ2) (1.12)

where z is defined as the following

z =
(x− µx)2

σ2
x

− 2ρ(x− µx)(y − µy)
σxσy

+
(y − µy)2

σ2
y

. (1.13)

In the above equation, µx and µy are the means of the X and Y distributions respectively.
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Σ is the covariance matrix [12]

Σ =

 σ2
x ρσxσy

ρσxσy σ2
y

 (1.14)

and ρ is the correlation between X and Y . Choosing the following parameter values,

µx 10

µy 10

σx 4

σy 4

ρ 0.5

Table 1.1: Parameters for example bivariate Gaussian distribution. Parameter values were
chosen to aid in visualization of the joint probability density,

chosen for ease of visualization of the joint density, we arrive at the following graphical

representation of the joint density. Additionally, the conditional density, as we know is

obtained by taking a cross-section of the joint probability density at a fixed value of one of

the random variables, X or Y . Below, we also show the conditional probability for a fixed

value of X, x = 10.
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Figure 1.9: Example of a bivariate Gaussian joint probability density (left) and conditional
probability density when X = x = 10 (right). The conditional probability density can be
thought of as a renormalized cross-section of the joint probability density at a fixed value of
one of the random variables. The parameter values used can be found in table 1.1.

The marginal probability densities associated with variables X and Y can also be found di-

rectly from the joint probability density function through integration of the joint probability

density over each of the random variables respectively. The marginal probability density of

X is

f(x) =

∫ ∞
−∞

f(x, y)dy (1.15)

and the marginal probability density of Y is

f(y) =

∫ ∞
−∞

f(x, y)dx. (1.16)

Using the example bivariate Gaussian above, we can obtain the following marginal proba-

bility densities through use of these equations

f(x) =
e
−1
32

(−10+x)2

4
√

2π
(1.17)
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Figure 1.10: Marginal probability density f(x) from the example bivariate Gaussian above.

f(y) =
e
−1
32

(−10+y)2

4
√

2π
(1.18)

Figure 1.11: Marginal probability density f(y) from the example bivariate Gaussian above.

The above discussion of marginal, joint, and conditional probability densities gives sufficient

foundational knowledge to understand how the marginal, joint, and conditional entropies

used in this work are constructed.
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1.7 Overview of the Thesis

In this work we use a variations of Shannon entropy, the total entropy rate, local entropy

rate, and specific entropy rate, to explore the information dynamics of a nonlinear stochastic

nanopore system. This work represents the first such application of information dynamics

to nanometer-scaled objects. Through study of simulated and empirical nanopore data, we

demonstrate the utility of both local and specific entropy rate in tracking the dynamics of

the nanopore current oscillations. We additionally probe for deeper, previously unknown

structure in these nanopore current oscillations by analyzing the intervals between oscilla-

tions.

In this work we will discuss information dynamics in the continuous case, building a foun-

dation for understanding from the ground up. We will then discuss application of the noted

Shannon entropy measures to the simulated and experimental nanopore data and discuss

the discoveries we have made therein. Our discoveries to date have opened doors to several

interesting pathways for further research including application of an extension of specific

entropy rate, the normalized q-step specific entropy rate, and preliminary testing to identify

non-linear structure to nanopore interevent interval sequences through surrogate time series

analysis. Finally, we will summarize our findings and future research plans in the conclusion.

Appendices can also be found after the text to provide further information and results.
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Chapter 2

Shannon Entropy and Entropy Rates

2.1 Differential Entropy

2.1.1 Definition of Differential Entropy

Differential entropy, H[X] is the entropy associated with a continuous random variable,

X [12]. This Shannon entropy is defined in terms of the marginal probability density f(x)

as the following, if such a density function exists for that variable AND the above integral

exists

H[X] = −E[log f(x)] = −
∫ ∞
−∞

f(x) log f(x)dx (2.1)

where the logarithm will be taken to be in base e in this work.

In contrast to discrete entropy, which is always positive, differential entropy can be positive

or negative. A simple example of a uniform distribution can be used to illustrate this point.
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Consider the following uniform distribution

f(x) =


c if x in [0, a]

0 otherwise.

The standard normalization condition lets us ascertain that c = 1
a

[12]. Plugging this into

the equation for differential entropy, we obtain the following

H[X] = −
∫ ∞
−∞

f(x) log f(x)dx = −
∫ a

0

1

a
log

1

a
dx. (2.2)

When we perform the integration, we see that

H[X] = −a
a

log
1

a
+

0

a
log

1

a
= − log

1

a
= log a. (2.3)

a is greater than zero, but it is not necessarily greater than 1. If a is indeed less than 1,

H[X] will be negative.

Now that we know the definition of differential entropy and have seen it applied to a specific

example, the uniform distribution, it might be logical to ask what it tells us. Conceptually,

it tells us, on average, how surprised we are to have seen X (a generic X), given that we

know the probability density f(x) [12]. It is an overall measure and is sequence-insensitive.

Sequence-insensitive means that changing the order of values in a realization of a time series

representing a continuous valued variable will result in the same differential entropy as the

original ordering.
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2.1.2 Conditional Differential Entropy

In the section above, we defined differential entropy, discussed the question it addresses,

and explored a key difference between it and discrete entropy through an example. What

if, however, we are not interested in an overall, sequence-insensitive measure of statistical

surprisal? Perhaps instead we are interested in a time-dependent (i.e. a sequence-sensitive)

measure of entropy. Sequence sensitive measures of entropy are also referred to as conditional

entropies.

The simplest conditional entropy can be constructed without explicit time dependence. We

can ask the question “what is the entropy of Y given a known value for X?” In similar form

to the differential entropy, conditional entropies are expressed in terms of the conditional

probability density. In the case of continuous variables, this takes the following form

H[Y | X] = −E[log fY |X(Y | X)] = −
∫ ∞
x=−∞

∫ ∞
y=−∞

fX,Y (x, y) log fY |X(y | x)dydx

(2.4)

where the weighting is over the joint probability density as it is representative of all possible

pairings of X and Y . This statement tells us what the average surprise is at seeing Y given

that we already know X, averaged over all possible values of X [12].

It is also common to see the conditional entropy expressed in terms of a difference between

the joint and marginal entropy [12]

H[Y | X] = H[X, Y ]−H[Y ] (2.5)

and in practice, conditional entropies may be computed using this definition for convenience.
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As an aside, the joint entropy can also be expressed in integral notation as the following

H[X, Y ] = −E[log fX,Y (X, Y )] = −
∫ ∞
x=−∞

∫ ∞
y=−∞

fX,Y (x, y) log fX,Y (x, y)dydx. (2.6)

The statement H[Y | X] = H[X, Y ] − H[Y ] is simplest to see graphically, with an I-

diagram, a Venn diagram for information theory relationships [85, 95]. In an I diagram,

circles representing the entropy associated with two distinct random variables, X and Y are

shown overlapping. The area of overlap is known as the mutual information, I[X;Y ], between

X and Y . The outline of the overlapping circles represents the joint entropy H[X, Y ] and

the left and right crescent shapes represent the conditional entropies H[X | Y ] and H[Y | X]

respectively. We show a detailed version of an information theory I diagram below.

Figure 2.1: Pictorial representation of Shannon entropies using an I-diagram. A typical
I-diagram is shown in the top right (overlapping circles). The additional content in the
figure is added for step-by-step conceptual clarification. We begin with two variables X and
Y , each of which have an associated marginal entropy H[X] and H[Y ], represented by the
separate circles on the top left. The intersection of the two circles is the mutual information
I[X;Y ]. The left and right crescent shapes represent the conditional entropies H[X | Y ] and
H[Y | X] respectively. The external outline of the I-diagram represents the joint entropy
H[X, Y ].
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Using the I-diagram, we can readily see the relationship between the marginal, joint, and

conditional entropies.

2.1.3 Definition of Entropy Rate

We have now constructed a sufficient foundation to construct entropy rates, which are con-

ditional entropies with explicit time dependence. The simplest example of an entropy rate

arises when we ask the question “what is the average surprise at seeing the immediate fu-

ture Xt given my knowledge of the past vector X t−1
−∞?” In this case, we need not fear the

notational complexity - Xt simply refers to Y from 2.6 and X t−1
−∞ refers to X from 2.6. To

answer the question above, we need to construct the entropy rate

H[Xt | X t−1
−∞] = −E[log fXt|Xt−1

−∞
(Xt | X t−1

−∞)] (2.7)

= −
∫
xt∈R

∫
xt−1
−∞∈R∞

fXt,Xt−1
−∞

(xt, x
t−1
−∞) log fXt|Xt−1

−∞
(xt | xt−1−∞)dxt−1−∞dxt

(2.8)

again, if it exists [14]. When computing an entropy rate on a tangible set of data we cannot

look infinitely far into the past. We may look at a past vector that proceeds a particular

number of steps p into the past. This gives us the following entropy rate equation

H[Xt | X t−1
t−p ] = −E[log fXt|Xt−1

t−p
(Xt | X t−1

t−p )] (2.9)

= −
∫
xt∈R

∫
xt−1
t−p∈Rp

fXt,Xt−1
t−p

(xt, x
t−1
t−p) log fXt|Xt−1

t−p
(xt | xt−1t−p)dx

t−1
t−pdxt

(2.10)

where X t−1
t−p is the block of states from p steps to 1 step in the past [14]. 2.8 can be thought

of as the limit of H[Xt | X t−1
t−p ] as p approaches ∞. This gives us the average surprise at

seeing the immediate future Xt given the past vector X t−1
t−p . Another way to think about the
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knowledge gained from computing a p-step entropy rate is that it tells us how uncertain we

are about particular pairings of the past and future obtained by averaging over all possible

pairings of the past and future.

2.1.4 Local Entropy Rate

The time-dependent entropy rates previously discussed are averages over all possible pasts

and all possible values of the immediate future. In practice, if we take a set of measurements

of a random variable X for any given point in time we will already know the realized values

of the past vector xt−1t−p. If we then view xt, we can ask the question “how surprised am I to

have seen this particular, realized value of xt given that I know the realized past xt−1t−p?” To

answer this question we need not evaluate any averages over pasts or futures. We need only

look at the expectand of 2.9 (i.e. the content within the expectation value). This quantity

is called the local entropy rate, HL(xt | xt−1t−p) as it is local to that particular time point

xt [49, 48, 47]. The local entropy rate is defined as

HL(xt | xt−1t−p) = − log fXt|Xt−1
t−p

(xt | xt−1t−p) (2.11)

which can be re-expressed in terms of the joint and the marginal entropy as the following

HL(xt | xt−1t−p) = − log
fXt,Xt−1

t−p
(xt, x

t−1
t−p)

fXt−1
t−p

(xt−1t−p)
. (2.12)

The figure below offers a visual representation of a possible question which would require

calculation of local entropy rate to answer.
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Figure 2.2: This figure shows a realization of a continuous valued time series. The measure-
ments boxed in green represents the past p = 4 steps and the measurement boxed in pink
represents the immediate future. Local entropy rate, LER, asks the question “how surprised
are we to have seen the measurement in pink given that we observed the measurements in
green?”

2.1.5 Specific Entropy Rate

The previously discussed expressions of entropy rates require observation of the immediate

future and allow us to see how surprised we were to see that future given knowledge of the

past. What happens if instead of asking how surprised we are to have seen a particular

future, we ask how uncertain we are about the immediate future we have not yet seen given

our knowledge of the past? This question may be answered by constructing a strategic

average of local entropy rate values, where the average is taken only over future states [14].

This new quantity, the average of local entropy rate values over the future space, is known as

the specific differential entropy rate, or specific entropy rate (SER) and is defined in terms

of the local entropy rate as

HS(xt−1t−p) = −E[HL(Xt | X t−1
t−p ) | X t−1

t−p = xt−1t−p] (2.13)
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which can be expressed in terms of the conditional probability density as follows

HS(xt−1t−p) = −
∫
xt∈R

fXt|Xt−1
t−p

(xt | xt−1t−p) log fXt|Xt−1
t−p

(xt | xt−1t−p)dxt. (2.14)

The following figure represents the question specific entropy rate aims to address.

Figure 2.3: This figure shows a realization of a continuous valued time series. The measure-
ments boxed in green represents the past p = 4 steps and the measurement boxed in pink
represents the immediate future, which is unknown. Specific entropy rate, SER, asks the
question “how uncertain are we about the measurement in pink given that we observed the
measurements in green?”

2.1.6 Summary of Entropy Rate Definitions

We have now constructed a mathematical framework that can be used to answer several

different interesting questions about a time series representing a random continuous valued

variable. It should be noted, however, that as written, all of the previously discussed equa-

tions require a system with a known probability density. In practice we may not have an

analytical statement of the probability density function and may just have realizations from

a stochastic process. In such cases the probability density much be estimated from the data.

The next section will highlight the density estimation techniques used in this work and will

discuss their application.
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2.2 Model Order Selection and Probability Density Es-

timation

In this section we will address the methods used in this work to estimate probability density

functions from data. As in other places in this work it is important to build a foundation

to enhance understanding. We will begin by exploring accepted techniques for density es-

timation, including kernel density estimation, kernel nearest neighbor estimation, and kth

nearest neighbor estimation (also referred to as k nearest neighbor estimation).

The first step to probability density estimation involves identifying the number of steps of

past information necessary to appropriately estimate the probability density at a given point

in time. This number of steps in the past, which we have referred to as p in previous sections,

is known formally as the model order [94]. We will also specifically discuss the process of

selecting the model order [15]. It will be important for us to proceed into this discussion

with the express mindset that model order selection and probability density estimation are

two distinct activities.

Because model order selection is the first step to entropy rate estimation, it might make sense

to discuss it in detail first. As it turns out, however, the process of identifying the model

order relies on density estimation techniques. For that reason we will enter the discussion by

presenting methods of density estimation as stand-alone techniques before explaining their

role in context and discussing model order selection.

2.2.1 Kernel Density Estimation

Kernel density estimation (KDE) is a technique that uses a kernel function K to smooth

the data around each point in a data set. The kernel functions at each point are then

33



summed to produce an estimate of the probability density. Kernel functions are positive-

valued functions that must integrate to 1 and they can take many different forms (uniform

distribution, Gaussian distribution, etc.) [94, 74, 77]. Because most kernels have comparable

efficiency, the functional form is a matter of choice. We have selected a Gaussian kernel for

this work, which takes the general form for a variable u

K(u) =
1

2π
e−

u2

2 . (2.15)

We can think of this as placing a Gaussian function on top of any particular data point [94,

74, 77].

To estimate the probability density function from data generated by a stochastic process

at a particular point we can sum the contributions from all of the kernels at the particular

point in question. This method gives us the following estimate for the normalized probability

density function

f̂X(x) =
1

Nh

N∑
i=1

K

(
Xi − x
h

)
, (2.16)

where u from 2.15 becomes the distance between the ith data point and x, N is the total

number of data points, and h is the bandwidth. The bandwidth h can be thought of as

a smoothing parameter that determines the degree of smoothing the kernel will do. While

the choice of kernel function is not critical to obtaining a good estimate of the density,

the choice of the bandwidth is. The simple example of points from a random, normally

distributed sample below highlights how the bandwidth impacts the estimation.
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Figure 2.4: This figure from [45] shows points from a normally distributed sample and
shows the impact of bandwidth selection on kernel density estimation performed to estimate
the probability density function. The grey is the true normal probability density and the
red, black, and green are obtained using kernel density estimation with kernel bandwidths
h=0.05, 0.337, and 2 respectively.

Consequently, the proper bandwidth should be chosen via an optimization technique. This

will be discussed briefly in a subsequent section.

2.2.2 Kernel Nearest Neighbor Estimation

While kernel density estimation is a well accepted technique for estimating probability den-

sity functions, one of its major drawbacks is that is it computationally expensive to compute

the distance between each point and all other points. The contribution to the overall kernel
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from points that are spatially far away from a particular x can be expected to be negligible.

What do we mean by “spatially far” in this context? We mean behaviorally different and

this is easiest to understand with a visual aid. The figure below shows a three dimensional

space constructed from points in the form (Xt−2, Xt−1, Xt).

Figure 2.5: This figure shows points plotted in the form (Xt−2, Xt−1, Xt). Points spatially
close in this behavior space will be most contributory to the density at a particular point of
interest, often called the evaluation point. The figure highlights that these spatially nearby
points need not be temporally nearby.

Points that are temporally close in time may not be behaviorally similar. We seek a set of

behaviorally similar points nearest to a particular point. These behaviorally similar points

will be most helpful in estimating the probability density at our point of interest. With this

in mind, we use a hybrid density estimator that combines kernel density estimation with a

separate estimation technique nearest neighbor regression [46, 15]. The hybrid kernel nearest

neighbor technique allows us to include only points that make a non-negligible contribution

to the density at any particular x. As we might expect, the number of points used will also

be a parameter obtained via an optimization technique. This will also be discussed in the

following subsection, where it will be notated as J .
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2.2.3 Model Order Selection in This Work

The following has been reproduced from [23]: “In analyzing stochastic systems, the goal

is to determine whether information contained in the past is useful to understanding the

immediate future. If we do not look back far enough, we may miss useful information

from the past that could help us determine the future. If we look too far back, we may

inadvertently include information not relevant to determining the immediate future. As

a concrete example, consider the case where the observable is well-modeled by a Markov

process of some order p. In that case, after knowing the previous p values of the process,

the future is independent of any values further in the past, so those values do not aid

in the prediction of the process. However, they do increase the burden of the associated

estimation problem, through the curse of dimensionality [78]. That is, geometrically more

data is necessary to achieve the same level of precision in the estimate of the density. In the

case where the process is not Markovian, a similar argument applies, except with the added

consideration for balancing between the contribution of including more of the past and its

increasing burden to estimation process. We seek the model order that results in a minimum

uncertainty. Using the information theoretic criterion from [15], the model order is chosen

to minimize the negative log predictive likelihood (NLPL)

NLPL(p) = − 1

N − p

N∑
i=p+1

log f̂−i(Xi | X i−1
i−p ) (2.17)

where N is the number of points in the time series, and f̂−i is an estimator of the predictive

density estimated holding out the block X i
i−p. We use a kernel-nearest neighbor estimator for

f , which performs kernel density estimation over the set of nearest neighbors in the future

space [46, 38]. The estimator takes the form

f̂−i(Xi | X i−1
i−p ) =

1

J

∑
m∈NJ (Xi−1

i−p)

Kh(Xi −Xm) (2.18)
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where Kh is a Gaussian kernel, J is the number of nearest neighbors to X i−1
i−p , NJ(X i−1

i−p ) is

the index set of the J-nearest neighbors, and h is a bandwidth for the density estimator over

futures. Equation (2.17) over h, J , and p is optimized using the constrained Nelder–Mead

method from the NLopt library, where h is constrained to (0,∞) and J is constrained to

{1, ..., Jmax}, where Jmax � N [57].”

We should note to clarify the above statements that the Nelder-Mead optimization routine

is performed at fixed values of p in a predefined range. At each value of p the optimization

can be performed over the variables J and h, the number of nearest neighbors and the

kernel bandwidth respectively. Ultimately, the sole purpose of this optimization process is

to identify the model order that minimizes the negative log predictive likelihood, and as

such, the value of p which accomplishes this goal is selected. An upper bound may be set

on the number of nearest neighbors to use for computational efficiency but it is important

that we not set the upper bound too low. If we do, we risk identifying a local rather than

a global minima of the negative log predictive likelihood. One way to avoid this unwanted

consequence is to carefully monitor the value of J chosen by the optimization routine and

ensure that it is sufficiently below the upper bound.

We should also explicitly address the mathematical space in which the evaluation point and

its neighbors exist. Because we use the kernel nearest neighbor technique described in the

previous section to construct the probability density, the space in question can be thought of

as a p-dimensional embedding space with points taking the form (xt−p, ..., xt−2, xt−1, xt). We

note that the nearest neighbors used for computing the kernel nearest neighbor estimated

density are the points spatially nearest the evaluation point in this embedding space, not

the points temporally nearest xt. The graphic shown in the previous subsection, Figure 2.5

serves as a visual reminder.

Once we have computed the optimal model order, we do not utilize the same density estima-

tor to perform subsequent entropy rate calculations, as the primary goal of this procedure
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was to construct a sufficient density estimator for use in determining the optimal model

order. The following subsection will introduce the density estimation technique that will

be used to construct the probability density estimator for computing estimators of entropy

rates.

2.2.4 kth Nearest Neighbor Estimation

We compute the estimator of the probability density which will be used to compute local

entropy rate by using a variant k nearest neighbor method, wherein the density estimate is

inversely proportional to volume of a p dimensional sphere with radius equal to the distance

between the evaluation point and its kth nearest spatial/behavioral neighbor [81, 50, 44].

k is pre-determined and must be thought of in the context of the expected use of the local

entropy rate. If the density estimator is intended to be used to compute a local entropy rate

estimator en route to computing specific entropy rate estimator, k can be chosen to be small

because computing the estimator for specific entropy rate involves averaging many local

entropy rate estimators, thereby averaging out the impact of variance in the estimator. If,

however, the density estimator is intended to be used to compute a free-standing estimator

of the local entropy rate (in other words, a superiorly estimated local entropy rate), where

no subsequent averaging will be performed, k must be chosen to scale with a power of N in

order to ensure consistency of the estimator (i.e. that the estimator converges to the true

probability density) [3]. The expression for estimating the density for a block of states X i−1
i−p

using a kth nearest neighbor method is as follows

f̂Xi−1
i−p

(xi−1i−p) =
k

N − d+ 1

1

Vrd
(2.19)

where N is the total number of points, d is the dimension of the past vector X i−1
i−p , and Vrd
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is the volume of a d dimensional sphere

Vrd =
π
d
2

Γ(d
2

+ 1)
rd (2.20)

where r is the Euclidian distance between the evaluation point xi−1i−p and its kth nearest

neighbor in the distribution of the past vectors, X i−1
i−p . d = p in the case of estimation of a

marginal probability density. To compute the probability density estimator for a conditional

probability (i.e. fXi|Xi−1
i−p

, we recall the fact that a conditional probability density can be

written as the joint probability density divided by the marginal probability density. k and

N will be the same for both the joint and marginal probability densities, but d for the joint

probability density will be one higher than d for the marginal probability density. We will

have the following:

f̂Xi|Xi−1
i−p

(xi | xi−1i−p) =
Vrd+1

Vrd
(2.21)

where we assume d corresponds to the dimension of the marginal (past) distribution.

2.2.5 Computing Entropy Rate Estimators

Once the optimal model order has been selected and the density estimator has been com-

puted, we used the following expressions to compute the entropy rate estimators [16]

Local Entropy Rate Estimator

The estimator of local entropy rate at time ti, Ĥ
L
ti

is [49, 47, 48, 14]:

ĤL
ti

= − log

{
f̂
Xi,X

i−1
i−p

(xi,x
i−1
i−p)

f̂
Xi−1
i−p

(xi−1
i−p)

}
. (2.22)
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Specific Entropy Rate Estimator

For practical purposes, the integral in 2.14 won’t be directly calculable. The estimator for

specific entropy rate at each time ti is calculated in practice by taking k∗ values of the

estimated local entropy rate and averaging them. The particular estimated values of the

local entropy rate are chosen such that

ĤS
ti

=
1

k∗

∑
j∈Nk∗ (Xi−1

i−p)

ĤL(Xj | Xj−1
j−p ) (2.23)

where Nk∗(X i−1
i−p ) is the index set of the k∗ nearest neighbors of X i−1

i−p and k∗ is set at
√
N

(to ensure consistency) [14].

Total Entropy Rate Estimator

We will find in this work that it is also useful to have an estimate for an overall entropy

rate for a realization of a stochastic process. By taking the arithmetic average of the local

entropy rate measures computed for each time point we arrive at the estimated total entropy

rate for the realization. This estimated total entropy rate will be utilized in this work to

help identify non-linear structure in a series of nanopore interevent intervals (see chapter 5).

The estimated total entropy rate is

ĤT =
1

N − p

N−p∑
i=1

ĤL
i (2.24)
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Chapter 3

Local and Specific Entropy Rates in

Nanopore Simulation Study

We report and discuss the results of a simulation study in which estimators for local and

specific entropy rate were computed for data obtained using the methods and parameters

discussed in chapters 1 and 2. The results are presented as an excerpt from for a single

simulated realization [23].

“Figure 3.1 shows the nanopore current, the LER, and the SER for a group of transitions

in the nanopore system (pore open/close events). All three panels are aligned in time. The

uppermost panel represents the nanopore current as a function of time. Each orange point

is one measurement. Open/close (transition) events can be seen in the rapid switching of

the nanopore current from positive to negative values or vice versa. The middle panel is

the estimated free-standing LER, computed using Equation (2.22). We can see that there

are peaks in the free-standing LER aligned with the transition events of the nanopore.

This indicates that information is generated by these events, and there was some surprise

associated with their occurrence. The bottom panel is the SER estimate computed via
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Equation (2.23). We see that the SER also increases around the transition events in the

nanopore, indicating an increase in uncertainty about future states near the transitions.

These results are a subset of results from a single realization, but are representative of

the behavior seen in these information measures during transition events across all five

realizations, as is expected for this model.

Figure 3.1: Top: the nanopore current, with each orange dot representing a measurement.
Middle: the estimate of the local entropy rate (LER) of the nanopore system as a function of
time. Bottom: the estimate of the specific entropy rate (SER) of the nanopore system as a
function of time. This is a representative excerpt from a 40,000 point time series containing
on the order of 100 transitions.

The peaks in the LER and SER corresponding to transitions should be considered in the

context of the model. It will be easiest to make a transition between positive and negative

currents when the slope of the potential is greater (i.e., when the magnitude of y is further

from zero). Additionally, when the slope of the potential is large, any small kick from

the dynamical noise could lead to a wider array of possible futures (noise amplification).
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There will accordingly be a greater uncertainty in an unseen future (higher SER) during the

transition events. There will also be an elevated LER in these regions because, of the many

possible outcomes for current values, when the potential slope is large, individual outcomes

may occur only rarely. This will translate to a relatively high surprise.

It should also be noted that there are substantial peaks in the LER that are not always

associated with transitions. The LER metric is sensitive to viewing any atypical future. In

the relatively flatter (low variation in nanopore current) regions between transitions, any

variation above the noise level from the anticipated trajectory may result in high surprise,

even though a transition may not occur. This is particularly prominent about 6430 au and

6620 au in Figure 3.1. If the future is unseen, as in the SER, in these relatively flatter regions

there will be low uncertainty about the future. In other words, variation above the noise

level is not expected. This is why similar peaks not associated with transitions are rarely

seen in the SER.

To further investigate transitions, we consider how the LER and SER vary as a function of

the reconstructed state space of the nanopore system. Figure 3.2 shows a 3D projection of

the p = 4 reconstructed state space, where each point is shaded by the LER (left) and SER

(right). We use the projection (Xt−2, Xt−1, Xt) for the LER and (Xt−3, Xt−2, Xt−1) for the

SER. The arrows indicate the direction of the transitions with respect to time. We know

that, if the nanopore is in a closed state, it is likely to remain closed and that, if it is in

an open state, it is likely to remain open. We thus see relatively low surprise (a low LER)

and relatively low uncertainty (a low SER) under those conditions, corresponding to the

points in the bottom left and top right of the reconstructed state space. When a transition

event is occurring, corresponding to the points along the central “tubes”, we are relatively

more surprised (a higher LER) and relatively more uncertain about the immediate future

(a higher SER). It should also be noted that, if all transitions in this system were identical,

the reconstructed state-space trajectory would not show spread about the average path (i.e.,
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the “fuzziness” is due to differences in the profile of the transitions). Although the LER and

SER have similar regions of relatively high/low values in their corresponding measures, it

is important not to conflate them. The LER measures information generated by seeing the

future, and it should not surprise us to see a high degree of symmetry in the LER plot, with

maximal information generated for more atypical transitions (on the outsides of the transition

“tubes”). The SER, by contrast, measures uncertainty in the future, given a known past,

and we might expect high uncertainty in the region of all transitions. It is additionally

noteworthy that there is some anti-symmetry between the two transition tubes in the SER

plot with respect to the location of the onset of elevation in the SER. This, together with

the arrows indicating the direction of the trajectory with time, shows that uncertainty is

highest at the beginning of a transition. Uncertainty decreases as the transition proceeds to

completion. This is not apparent from examination of the time series.
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(a)

(b)

Figure 3.2: A projection of the reconstructed state space for the nanopore system shaded by
the estimates of the LER (a) and SER (b) associated with the overall state. The plots reveal
a clear trajectory in the reconstructed state space, and the arrows indicate the direction along
the transitions between open and closed states. Along this trajectory, regions of relatively
low surprise (LER) and low uncertainty (SER) occur when the system is in an open/closed
state. Conversely, in the central regions, corresponding to transitions, we see increases in
both the LER and SER. Anti-symmetry is noted in the onset of increase in SER, which shows
that uncertainty is highest at the beginning of a transition and decreases as the transition
proceeds to completion. (a) LER; (b) SER.
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It may also be helpful to look directly at the transition region in both the LER and SER

schemes, i.e., to look inside the trajectory in the transition regions. To do so, we take a cross

section of the plots in Figure 3.1 at xt = 0 and xt−1 = 0, respectively, and include points

that fall within a tolerance of ε = ± 0.05. This cross section is shown in Figure 3.3. We can

see that the LER is highest in the regions corresponding to less typical transitions (i.e., on

the outside of the tubes), as previously mentioned. Additionally, as expected, all transitions

in the SER scheme are associated with a similarly elevated SER.
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(a)

(b)

Figure 3.3: A 2D cross section of the reconstructed state space constructed from points
within ε = ± 0.05 of the xt = 0 (a) and xt−1 = 0 (b) planes for each plot, respectively. These
plots show that information is generated most heavily around atypical transition events (the
highest LER visible on the periphery of the transition tubes in the LER plot), and there is
relatively uniform, high uncertainty for all transitions in the SER plot. (a) LER; (b) SER.”

We should explicitly state that the direction of the reconstructed state space trajectory is
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identified by choosing a single transition event and plotting its associated reconstructed state

space using a color scale for the time variable. An example for a simulated transition is shown

below and is consistent with the direction arrows shown in 3.2a and 3.2b.

Figure 3.4: Left: A single simulated nanopore transition and Right: its corresponding recon-
structed state space. The purpose of this plot is to demonstrate how the trajectory relates
to features of the transition. The color is scaled by time, allowing us to follow the transition
through the reconstructed state space trajectory.

This study demonstrated the utility of both local and specific entropy rate in tracking the

dynamical behavior of this nanopore system. It also set the stage for further investigation

into specific entropy rate, both in simulation and experimental nanopore data. In the next

chapter we explore an extension of specific entropy rate, q-step specific entropy rate (cite

personal communication with Dave). We will discuss the technique and its applications to

simulation and experimental nanopore data.
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Chapter 4

Q-Step Specific Entropy Rate In a

Nanopore

4.1 What is q-step Specific Entropy Rate

To this point, our discussion of specific entropy rate has been limited to evaluating the

uncertainty associated in the immediate future. We can think of this as evaluation of the

uncertainty associated with the 0-step future. In this chapter, we explore a possible extension

of the 0-step specific entropy rate and its utility for analyzing simulation and experimental

nanopore data.

This extension is referred to as the normalized q-step specific entropy rate and its purpose is

to provide a method for computing the divergence between the predictive probability density

associated with q steps in the future Xt+q and the immediate future Xt. It is defined in terms

of the 0-step conditional probability density as the Kullback-Leibler divergence from the q-

step to the 0-step conditional probability density. A Kullback-Leibler Divergence quantifies

the difference between an expected distribution and a secondary distribution [94, 12]. In this
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case, the expected distribution is that associated with the 0-step future. The normalized

q-step specific entropy rate is defined as the following

H̃(x; q) =

∫
R
f0(y | x) log

f0(y | x)

fq(y | x)
dy (4.1)

or

H̃(x; q) =

∫
R
f0(y | x) log f0(y | x)dy −

∫
R
f0(y | x) log fq(y | x)dy (4.2)

where f0(y | x) is the conditional probability density associated with the immediate futures

given the past x and fq(y | x) is the conditional probability density associated with the q step

future given the past x [13]. The normalized q-step specific entropy rate is identically zero

when the q-step future looks the same as the 0-step future (i.e. when f0(y | x) = fq(y | x)),

for almost all y, and is otherwise positive. We should again reiterate that the normalized

q-step specific entropy rate is a relative measure taken to compare the q-step future to the

0-step future.

As is the case for computing 0-step specific entropy rate, we must compute estimators for

the conditional density f0(y | x). The estimators for both the 0-step conditional probability

density f0(y | x) and the q-step conditional probability density fq(y | x) are computed using

the kth nearest neighbor estimation procedure outlined in chapter 2 using the model order

selected for the 0-step specific entropy rate. The known past vector for both conditional

probability densities is thus X t−1
t−p . The estimator for normalized q-step specific entropy is

expressed as the following

ˆ̃H(x; q) = Ef̂0

[
log

f̂0(Y | X)

f̂q(Y | X)

∣∣∣∣X = x

]
(4.3)

where, x is the known past vector X t−1
t−p [13]. We should take a moment before moving into

the applications section to solidify understanding of this equation, in particular to solidify
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understanding of the two distinct conditional probability density estimators. When we com-

pute f̂0(Y | X), we do so using the nearest neighbor method described in section 2.2.5, where

Y is the immediate future Xt and the nearest neighbors to the evaluation point for the joint

probability density and marginal probability density ((X t−1
t−p , Xt) and (X t−1

t−p ) respectively)

are found in the spaces created from the data in the format (Xt−p, Xt−p+1, ..., Xt−1, Xt) and

(Xt−p, Xt−p+1, ..., Xt−1) respectively. To compute f̂q(Y | X), where again Y is the immediate

future Xt, the only difference is in the construction of the nearest neighbor space. The new

nearest neighbor spaces will be (Xt−p, Xt−p+1, ..., Xt−1, Xt+q) and (Xt−p, Xt−p+1, ..., Xt−1) for

the q step future and the past spaces respectively. The projection onto three dimensional

space below can be used as a guide.
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(a)

(b)

Figure 4.0: This figure shows an example of the space that would be constructed to find
nearest neighbors for estimating the joint probability density for the 0-step case (a) and
the q-step case (b). These estimated joint probability densities would be used to compute
the estimator for their respective conditional probabilities. It should be noted that this
example space is shown in 3D for convenience, but the dimension of the space constructed
for each estimator calculation will be p+1 dimensional, where p is the model order. These
are example points shown for conceptual understanding.
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For completeness, we also show the space constructed to find the nearest neighbors to es-

timate the marginal probability density, which is the same for both the 0-step and q-step,

because it is purely a p dimensional past space.

Figure 4.1: This figure shows an example of the space that would be constructed to find the
nearest neighbors for estimating the marginal probability density for both the 0-step case
and the q-step case. Again, this is shown in 2D for convenience, but the dimension of this
space will be p dimensions. Again, these are example points only to aid in understanding,
but they are consistent with the example plotted in the previous figure.

4.2 Application of q-step Specific Entropy Rate to Nanopore

Simulation Data

The addition of q into the parameter space gives us a new tool to use to track the dynamical

behavior of the nanopore system. We began by exploring the estimated q step specific

entropy rate applied to the nanopore simulation data for different values of q. We show
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results for q = 1 to q = 20 for the data set used in analysis in chapter . We note that scaling

is different than 0-step specific entropy rate.

We see that as the value of q increases the q-step future begins to diverge increasingly from

the 0-step future. This is visible in the increase in the normalized q-step specific entropy

rate in the reconstructed state space trajectories shown below. Additionally, we note that

this increase is more concentrated in certain regions of the reconstructed state space. We

note that there is an increase in the normalized q-step specific entropy rate both during the

transition from the positive to the negative state and from the negative to the positive state.

During transitions, we expect the q-step future to look increasingly more different than the

immediate 0-step future as q increases, which is consistent with our observations. As q

changes, the region of increase in the normalized q-step specific entropy rate also shifts: with

increasing q, the normalized q-step specific entropy rate increases earlier during both types

of transitions. Lastly, transitions from the negative to the positive state show the greatest

enhancement of the normalized q-step specific entropy rate. This indicates that each type

of transition event produces distinct information, and furthermore, distinct information at

different q values.
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(q) (r)
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(s) (t)

Figure 4.2: This figure shows the evolution of the normalized q-step specific entropy rate
with changing q. q changes from 1 (a) to 20 (t). The q step future looks increasingly more
different than the zero step future with increasing q and the effect is most notable during
transitions. We also note that negative to positive conductance state transitions show the
greatest enhancement.

4.3 Application of q-step Specific Entropy Rate to Ex-

perimental Nanopore Data

In this section we will discuss the application of the normalized normalized q-step specific

entropy rate to the experimental data discussed in section 1.4.2. Application of the tech-

nique to experimental data comes with some additional considerations and data preparation.

We will first discuss how the data are prepared for analysis, then share and discuss some

preliminary results.
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4.3.1 Considerations in the Application of normalized q-step spe-

cific Entropy Rate

One potential challenge of analyzing experimental data is the precision of the measurements.

It is extremely important for the purposes of model order selection that there be no repeated

data values. Repeated values will be detrimental to the kernel nearest neighbor estimation.

The precision in the simulation nanopore data makes repeated data values extremely un-

likely; however, digitizers used to collect experimental data can lead to repeated values

(which cause numerical instabilities in these analyses). This can be simply addressed using

a standard technique of adding uniformly distributed noise to the time series with the a

similar magnitude to the precision of the data. For the experimental data analyzed in this

work, we add uniform noise between -0.5 and +0.5. Following this processing step, the next

thing we need to consider is selection of a downsampling rate.

It should be noted that there is no established procedure for choosing a downsampling

rate for these experimental data. Downsampling may help us reduce the contribution from

experimental noise in the analysis, and it is therefore worthwhile to explore several reasonable

downsampling rates. We explore the analysis for downsampling rates of 2, 4, and 8. We

present the results from downsampling by 2 in the next subsection for discussion. The results

obtained from downsampling by 4 and 8 can be found in appendix A.

4.3.2 Preliminary normalized q-step specific Entropy Rate Results

for Experimental Nanopore Data

We obtained preliminary normalized normalized q-step specific entropy rate results for an

empirical nanopore with experimental parameters discussed in chapter and externally biased

at a voltage of −1.00 V . We first verify the direction of the transition trajectory in the
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reconstructed state space

Figure 4.3: This figure shows the reconstructed state space (right) associated with a single
transition (left). The color scale represents time. The purpose of this graph is to show the
direction of the transition trajectory in reconstructed state space and will serve as a reference
for the state space reconstructions shown in the figure below. The sampling rate is 10000
Hz. The data are downsampled by a factor of 2.

We see that there is also an evolution of the reconstructed state space, with the normalized

normalized q-step specific entropy rate increasing in some portions of the space with increas-

ing q. We also see that the transition from higher to lower conductance states is associated

with the earliest increases in the normalized normalized q-step specific entropy rate with

increasing q. We note that as q increases, we also begin to see enhancement of the normal-

ized normalized q-step specific entropy rate for the most negative conductance states. This

nanopore tends to spend relatively less time in the most negative conductance states than

it does in higher conductance states, and therefore a higher normalized normalized q-step

specific entropy rate with increasing q makes sense.

61



(a) (b)

(c) (d)

(e) (f)

62



(g) (h)

(i) (j)

(k) (l)

63



(m) (n)

(o) (p)

(q) (r)

64



(s) (t)

Figure 4.4: This figure shows the evolution of the reconstructed state space for normalized q-
step specific entropy rate for experimental nanopore data with changing q. Plots (a) through
(t) are associated with q = 1 through q = 20. The transitions from high to low conductance
states are associated with the earliest increase in the normalized q-step specific entropy rate
with increasing q. With increasing q we also see increases in the normalized q-step specific
entropy rate for the lowest conductance states.

These results may lead to interesting and more broadly applicable future exploration. We

discuss the potential next steps for this research in chapter 6.
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Chapter 5

Detection of Nonlinear Structure in

Nanopore Interevent Intervals

5.1 Design and Aim of the Study

To this point we have discussed analysis methods that involved computations on the raw

simulation or (minimally pre-processed) experimental nanopore data. It is possible that

there is knowledge we can gain from looking at the interevent intervals (i.e. the time between

successive high to low or low to high conductance state transitions). Mechanistically, we know

that it is likely that each fluctuation may set the conditions for the next (recall the proposed

formation/dissolution of nanoprecipitates inside of the pores in [66, 37]), and that there may

thus be evidence of a non-linear structure to be found in these interevent intervals. In this

chapter we discuss the application of surrogate data analysis as a method for identifying non-

linear structure to the interevent intervals. In this section we will discuss the process of data

smoothing, identifying interevent intervals, surrogate generation, and hypothesis testing. In

the subsequent sections, we will discuss application of these methods to both simulation and
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experimental nanopore data and discuss our preliminary results.

5.1.1 Methods Overview

The following is a conceptual overview of the methods we employed to search for nonlinearity

in the interevent interval (II) data. Specific details for both simulation nanopore data and

experimental nanopore data will be discussed in subsequent sections.

We convert the time series representing the nanopore current to a time series of interevent

intervals. In this preliminary work, we chose to identify events as transitions from high to

low conductance states. The new data represents the interval between successive events.

We have discussed the possibility that there may be an interdependence of events in the

experimental nanopore data, but we may not see this in simulation data. If we look at

the model system in chapter 1, we note that the transition behavior is largely dominated

by the unobserved variable Y , a noise process with drift. We therefore might hypothesize

that the interevent interval sequence for simulation data generated from that model will be

memoryless. A natural null hypothesis to test would be that the interevent intervals are gen-

erated by a process that is some monotonic nonlinear transformation of colored noise (such

as cubing colored noise). Rejection of this null hypothesis can be interpreted as evidence of

a nonlinearity in the interevent intervals.

We test this hypothesis using a surrogate data technique described in [73, 41]. This method

entails using the original interevent interval sequence to create surrogates as though they

arise from a monotonic nonlinear transformation of colored noise. The surrogate generation

process has the following steps:
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1 Initialize surrogate to random shuffle of II sequence

2 Compute Fourier Transform

3 Construct Fourier Series with same Fourier amplitudes

as original II sequence and phases of shuffled II sequence

4 Compute inverse Fourier Transform of

Series constructed in step 3 to obtain {XT}

5 Take original II sequence and rank order entries

to match rank order of {XT}

6 Take new time series from step 5

it becomes the new input for step 2

7 Iterate steps 2-6 100 times.

Table 5.1: Steps to constructing a single surrogate data set. The algorithm used creates
amplitude adjusted Fourier transform (AAFT) surrogates.

The initial 4 steps of the process can be thought of as a constrained colored noise process.

Gaussian colored noise processes preserve the power spectral density but do not necessarily

preserve the time series amplitudes (and thus will not preserve the marginal probability

density). Our interevent interval sequences are not normally distributed, and if we were

to generate surrogates through a Gaussian colored noise process we would be engineering a

hypothesis test that was sure to reject the null each time. It is therefore important that we

constrain the surrogate generation process to also preserve the time series amplitudes. Step

5 can be thought of as the application of a nonlinear monotonic transformation. Thus the

surrogates have been constructed in such a way as to test the proposed hypothesis.

We then apply our target metric, the estimator for total entropy rate, to the original in-

terevent interval data and its surrogates, compare the results, and compute a P value.

Specifically, the P value is computed by determining what fraction of the surrogates have
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a lower estimated total entropy rate than the original interevent interval sequence. If tran-

sitions influence future transitions and there is an associated nonlinear structure to the

interevent interval sequence we would expect to see the original interevent sequence have a

lower estimated total entropy rate (associated with more certainty) than its surrogates. In

other words, the process of surrogate generation would be expected to break this nonlinear

structure, if it exists, resulting in higher estimated total entropy rates for the surrogates.

We use the standard P < 0.05 as the criteria for rejecting the null hypothesis.

We also need to consider the model order as we are computing the estimated total entropy

rate. Model order selection is conducted in accordance with the procedures discussed in

chapter 2 of this work. For a memoryless set of interevent intervals where there is no con-

nection between each event and future events, we would expect the optimal model order to

be 0. We therefore expect to see an optimal model order of 0 for the interevent interval

sequence (as distinct from the raw time series represented by the variable X in the model,

which certainly has memory) for the simulation data (and its surrogates). We do not nec-

essarily expect to see any particular optimal model order selected for the interevent interval

sequence or its surrogates for the experimental nanopore data.

5.2 Application to Simulation Nanopore Data

5.2.1 Computing Interevent Intervals

The first step is to take our raw simulation data and convert it into an interevent interval

sequence. For the simulation nanopore data, we accomplish this by observing that all high

to low conductance state transitions are associated with crossing the line of zero current.

We identify the points on either side of that crossing and fit a line between them to find the

approximate time of this crossing. The following figure is an example of transitions identified
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in simulation nanopore data using this method.

Figure 5.1: The top panel shows nanopore simulation data with the transitions marked by
the blue delta functions in the bottom panel. Interevent interval sequences are constructed
from the difference in time of the each successive event.

The interevent intervals are computed by taking the time differences between the times of

successive events, followed by a log transform.

We generated 500 surrogates, computed the estimated total entropy rates for the original

interevent interval sequence and the surrogates, and computed the associated P value. We

present the results for a realization of the simulation data.

5.2.2 Results and Discussion

We show a histogram of the estimated total entropy rates for the surrogate data, with the

estimated total entropy rate value of the original data labeled. The optimal model order
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selected for the original interevent interval sequence and all surrogates is 0. The P value from

the hypothesis testing (which should not be confused with p, the model order) is P = 0.918.

We cannot reject the null hypothesis that the interevent intervals for the simulation nanopore

data are generated by a transformation of a white noise process. Using this method, we do

not detect evidence of a nonlinear structure in this interevent interval sequence.

Figure 5.2: This figure is a histogram of the estimated total entropy rates computed for
interevent interval surrogate data simulated from the nanopore model discussed in chapter
2. The estimated total entropy rate for the original interevent interval sequence is also
indicated by the red arrow. The hypothesis test yields P = 0.918. We cannot reject the null
hypothesis.

5.3 Application to Experimental Nanopore Data

5.3.1 Preparation of the Data

The experimental nanopore data must be smoothed to avoid double counting of transitions

due to noise. We selected a Butterworth filter, a type of low pass filter, to attenuate high
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frequency components of the signal [75]. The transition activity of interest occurs at relatively

low frequencies, and therefore attenuation of higher frequencies would not be expected to

impact results. We choose the parameters for the filter by looking at the power spectral

density of the data as a function of frequency. In the figure below we show the semilog-

scaled power spectral density for the experimental nanopore data at different bias voltages.

Figure 5.3: We show the power spectral density as a function of frequency for experimental
nanopore data. The plot helps to determine an appropriate frequency for the Butterworth
filter.

We attenuate all frequencies above 0.1fNyquist, where fNyquist is the Nyquist frequency, or half

the sampling frequency. The sampling frequency for these data is 10, 000 Hz, the Nyquist

frequency is 5, 000 Hz, and the frequency cutoff for the Butterworth filter is 500 Hz. A plot

shown at two different scales shows a snapshot of the filtered current time series atop the

raw current time series.

72



(a)

(b)

Figure 5.4: This figure depicts an example of the results of smoothing experimental nanopore
data with a Butterworth low pass filter. The filter was selected to attenuate frequencies above
500 Hz. Raw data shown in blue, filtered data shown in orange. The filter smoothes high
frequency noise, while leaving the lower frequency features of interest unchanged. Sampling
frequency is 10000 Hz. Data are shown at two different time scales.
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5.3.2 Computing Interevent Intervals

We compute interevent intervals by determining an appropriate threshold amplitude for

events of interest, determining the time associated with the threshold crossing (also by

linear interpolation between the two points on either side of the threshold), and computing

the differences between successive events. We need to take more care in determining the

threshold for each experimental data set than is needed for the simulation data, as the

experimental data are not stationary. If we set the threshold too low or too high, we risk

missing some events or double counting others due to wiggles in the data. The figure below

shows examples of these concerns.
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(a)

(b)

Figure 5.5: This snapshot highlights some potential problems encountered when choosing
a current threshold for events of interest in the experimental nanopore data. Specifically,
the two concerns are double counting of events due to small wiggles in the data about the
threshold current value and missing events of interest by setting the threshold current too
low. Filter data shown in green, raw data shown in orange.
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Our goal is to find an optimal compromise that avoids double counting events and results

in a minimal number of missed events, acknowledging that it is not possible to view each

potential event by eye but is feasible to view multiple sections of the data to ensure this

balance is adequately fulfilled. For the data above, this balance is best struck with a current

threshold of −250 pA. Thresholds of between −250 pA and −400 pA were used for all

interevent interval data sets analyzed in this work.

Figure 5.6: This snapshot shows the same data as are shown above with a threshold current
chosen to strike the best balance between counting all events that might be important to
understanding the dynamics of the interevent intervals and not double counting any events.
We aim to strike this balance for each set of experimental nanopore data.

Once we have determined a threshold for events of interest we compute the interevent in-

tervals, generate surrogates, compute the estimator for total entropy rate associated with

each surrogate and the original interevent interval sequence, and compute the P value for

the hypothesis test. We identified that 500 surrogates was more than necessary and for
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computational efficiency 200 surrogates were computed for each experimental nanopore data

set.

5.3.3 Results and Discussion

In the table below we state the parameters selected for hypothesis testing of five experimental

nanopore data sets and the P value obtained from hypothesis testing with 200 surrogates.

We find evidence of nonlinear structure in the interevent intervals associated with the highest

two magnitudes of external bias voltage, −0.95 V and −1.00 V .

Bias (V ) Threshold (pA) P V alue

−0.80 −350 0.37

−0.85 −400 0.20

−0.90 −400 0.26

−0.95 −300 0.005

−1.00 −250 0.005

Table 5.2: The table shows the results of hypothesis testing for experimental nanopore
interevent intervals. We reject the null hypothesis that the data come from a constrained
colored noise process with an applied monotonic nonlinear transformation for the two highest
magnitude externally applied bias voltage, indicating evidence of a potentially interesting
nonlinear structure.

We also present the histograms for the estimated total entropy rates of the surrogates for

each entry in table 5.2. We label the value of the total entropy rate. In the cases where

the null hypothesis is rejected we see that the estimated total entropy rate for the original

interevent interval sequence lies outside of the distribution of estimated total entropy rates for

its surrogates, which is evidence the nonlinear structure of the original does not come about

from a monotonic nonlinear transformation of colored noise (which would be an uninteresting

source of nonlinear structure).
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(a) Vbias = −0.80 V

(b) Vbias = −0.85 V
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(c) Vbias = −0.90 V

(d) Vbias = −0.95 V
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(e) Vbias = −1.00 V

Figure 5.7: This figure shows histograms for the estimated total entropy rates associated
with the interevent interval sequence surrogates. The estimated total entropy rate of the
original entropy rate is labeled and shows whether it lies within the distribution of interevent
intervals for the surrogates. The null hypothesis that the original interevent interval sequence
comes from a process like the one used to construct the surrogates is rejected for the two
highest magnitude applied bias voltage. Further experimental investigation should be con-
ducted to ensure repeatability and a wider range of applied bias voltages should be explored.
Preliminarily, these results are evidence that there may be an interesting nonlinear structure
in the interevent intervals in the experimental data that may be physically linked with the
proposed nanoprecipitation/dissolution mechanism in [66, 37].

In some cases where the null hypothesis was not rejected, additional hypothesis testing was

conducted on interevent interval sequences constructed using other current threshold values.

This is a check done to ensure the threshold we found ideal did not result in overlooking an

otherwise present nonlinear structure. We present results for bias voltages −0.85 and −0.90

V at a threshold of −250 pA in appendix B.

The detection of evidence for nonlinear structure to the interevent interval sequences at

some bias voltages and not others leads us to wonder if this is an emergent, bias-dependent

property. As the results presented for this portion of our research are preliminary results, we

caution against overinterpretation and instead suggest future studies to hopefully determine
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whether this structure is linked to the formation/dissolution of nanoprecipitates. There

is still significant parameter space to explore with respect to stronger bias voltages and

different ionic solutions and concentrations. We discuss some possible next experimental

steps in chapter 6.
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Chapter 6

Future Directions and Conclusions

Both the normalized q-step specific entropy rate and interevent interval analyses have yielded

promising early results and have set the stage for future research. In this chapter we will

explore some possible future directions.

6.1 Future Directions for Normalized q-step Specific

Entropy Rate

The normalized q-step specific entropy rate offers the ability to compare the future q steps

ahead to the immediate future and to determine how different those two futures look. The

next logical step would be to explore its utility to predict transitions. One possible route to

explore would be to collect a set of data and use it as a training set to create the reconstructed

state space at different values of q. A subsequent set of data may then be analyzed step

by step to determine whether a particular block X t−1
t−p in question is nearby a point in the

training set’s reconstructed state space associated with an impending transition.
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6.2 Future Directions for Interevent Interval Analysis

The hypothesis testing conducted on the interevent interval sequences for the experimental

nanopore data revealed evidence of a potentially interesting nonlinear structure that may be

voltage dependent. The natural next steps to take would be to collect multiple new, longer

data sets (with a greater number of events) and to extend the upper range of bias voltages to

determine whether evidence of nonlinear structure is seen consistently and only for certain

experimental parameters. If we can characterize the range of experimental parameters for

which this effect is seen, we may take future steps to use these mathematical results to help

illuminate the physical behavior of the pores.

Additionally, the difference between the interevent intervals for the simulation and exper-

imental nanopore data suggest that there may be a need to revise the nanopore model to

reflect the information dynamics of the experimental system. A future student focused on

mathematical modeling may find this project an exciting endeavor.

6.3 Computational Suggestions for Future Work

We suggest future students interested in working on any component of this project apply

to use a supercomputer for data analysis. Use of a supercomputer would substantially

reduce the amount of time necessary to compute specific entropy rates, normalized q-step

specific entropy rates, and total entropy rates. It would therefore allow for the expeditious

exploration of a wide experimental parameter space.
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6.4 Conclusions

As we conclude this writing it is helpful to summarize what we have learned and the utility of

what we have learned. In our initial simulation studies of the application of local and specific

entropy rates to nanopore simulation data have shown us that we can track transition events

in nanopores and that the changes in local, specific, and q-step specific entropy rates during

the transition processes reveals underlying changes in the information dynamics associated

with those events. This is in contrast to systems where transitions may occur in the absence

of underlying information changes, such as fully deterministic systems or systems where

all transitions are alike. Although we can detect the transition events by simple visual

inspection of the time series, we cannot determine changes to information status through

visual inspection. Understanding that there are fundamental information-linked changes

surrounding and during these transitions/current fluctuations is a new development and may

help us explore new methods of characterizing transition behavior in dynamical systems.

We have also obtained preliminary results that point to a possibly interesting non-linear

structure present in experimental nanopore interevent interval sequences at certain experi-

mental parameters. It is possible that this non-linear structure may be linked to the pro-

posed formation/dissolution of ionic nanoprecipitates inside of the nanopore that temporarily

block/allow passage of current in the pores. These findings motivate future experimental

study of nanopores to fully understand the phenomenon and revise mathematical models to

include its contribution. We hope that a better understanding of this process mathemati-

cally will lead to advances in our understanding of these nanoscale objects and potentially

nanometer scale physiological processes.
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Appendix A

Additional Normalized q-step Specific

Entropy Rate Results

We show additional normalized q-step specific entropy rate results for our experimental

nanopore with downsampling factors of 4 and 8. One notable difference between these

normalized q step specific entropy rates and the factor of 2 downsampled normalized q-step

specific entropy rate is the region which undergoes the initial increase with increasing q.

For these higher rates of downsampling the lowest conductance states experience the initial

increase in the normalized q-step specific entropy rate. in the factor 8 downsampled results

we also see that this increase begins to fall off as we reach the highest measured values of

q. If we think about these results, it is logical to expect that as we downsample the regions

associated with the lowest conductance states would have a q-step future that looks very

different than the corresponding 0-step future. When we have downsampling rates of 8 it

also makes sense that for the highest values of q this effect would diminish as it is possible

that q steps down it is more likely the system will be undergoing a subsequent transition to

the negative conductance states.
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Figure A.1: This figure shows the evolution of the normalized q-step specific entropy rate
with changing q. q changes from 1 (a) to 20 (t). The q step future looks increasingly more
different than the zero step future with increasing q and the effect is most notable in the
lowest conductance states. Downsampling rate = 4.
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Figure A.2: This figure shows the evolution of the normalized q-step specific entropy rate
with changing q. q changes from 1 (a) to 20 (t). The q step future looks increasingly
more different than the zero step future with increasing q and the effect is most notable
in the lowest conductance states. This effect diminishes at the highest measured q values.
Downsampling rate = 8.
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Appendix B

Additional Surrogate Analysis

We started the process of performing additional surrogate analysis using different thresholds

for identification of events of possible interest. We do not know a priori whether partial pore

openings play an important role in the underlying dynamics of the experimental system. We

have begun testing additional threshold values, prioritizing these tests for data where initial

hypothesis testing with other current thresholds did not yield evidence of an underlying

nonlinear structure in the interevent interval sequences.

We present results for the following conditions:

Bias (V ) Threshold (pA) P V alue

−0.85 −250 0.15

−0.90 −250 0.83

Table B.1: The table shows the results of additional hypothesis testing for experimental
nanopore interevent intervals. The null hypothesis is not rejected in either test.

The histograms for total entropy rate are shown below with the value of the total entropy

rate for the original interevent interval sequences explicitly marked.
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(a) Vbias = −0.85 V

(b) Vbias = −0.90 V

Figure B.1: This figure shows histograms for the estimated total entropy rates associated
with the interevent interval sequence surrogates. The estimated total entropy rate of the
original entropy rate is labeled and shows whether it lies within the distribution of interevent
intervals for the surrogates. The null hypothesis is not rejected for either set of experimental
conditions. Further experimental investigation should be conducted to ensure repeatability
and a wider range of applied bias voltages should be explored.
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