UC Riverside UC Riverside Previously Published Works

Title

(E)-2-{Ethyl[4-(4-nitrophenyldiazenyl)phenyl]amino}ethyl anthracene-9-carboxylate

Permalink

 $\underline{https://escholarship.org/uc/item/1c79w40v}$

Journal

Acta Crystallographica Section E: Crystallographic Communications, 64(3)

ISSN 2056-9890

Authors

Rodriguez, Mark A Zifer, Thomas Vance, Andrew L <u>et al.</u>

Publication Date 2008-03-15

DOI

10.1107/s1600536808004108

Peer reviewed

Z = 2

Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

T = 173 (2) K $0.20 \times 0.08 \times 0.06$ mm

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-2-{Ethyl[4-(4-nitrophenyldiazenyl)phenyl]amino}ethyl anthracene-9carboxylate

Mark A. Rodriguez,^a* Thomas Zifer,^b Andrew L. Vance,^b Bryan M. Wong^b and Francois Leonard^c

^aPO Box 5800, MS 1411, Sandia National Laboratories, Albuquerque, NM 87185, USA, ^bPO Box 969, MS 9403, Sandia National Laboratories, Livermore, CA 94551, USA, and ^cPO Box 969, MS 9161, Sandia National Laboratories, Livermore, CA 94551, USA

Correspondence e-mail: marodri@sandia.gov

Received 5 February 2008; accepted 8 February 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.067; wR factor = 0.124; data-to-parameter ratio = 13.7.

The crystal structure of the title compound, $C_{31}H_{26}N_4O_4$, displays a *trans* conformation for the nitrophenyldiazenyl portion of the molecule. Packing diagrams indicate that weak $C-H\cdots O$ hydrogen bonds, likely associated with a strong dipole moment present in the molecule, dictate the arrangement of molecules in the crystal structure.

Related literature

Simmons *et al.* (2007) describe the use of the title compound in the fabrication of carbon nanotubes with optically modulated electronic conduction. Sekkat *et al.* (1992) document the use of Disperse Red 1 for reversible photoisomerization in thin films.

For related literature, see: Atassi et al. (1998); Becke (1993).

Experimental

Crystal data $C_{31}H_{26}N_4O_4$ $M_r = 518.56$

Triclinic, $P\overline{1}$ a = 9.3161 (9) Å

D = 10.0380 (10) A	
c = 13.5328 (13) Å	
$\alpha = 101.134 \ (3)^{\circ}$	
$\beta = 104.667 \ (4)^{\circ}$	
$\gamma = 99.779 \ (3)^{\circ}$	
V = 1241.2 (2) Å ³	

10 (50((10))

Data collection

Bruker SMART CCD area-detector	9650 measured reflections
diffractometer	4824 independent reflections
Absorption correction: multi-scan	2786 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1999)	$R_{\rm int} = 0.050$
$T_{\min} = 0.982, \ T_{\max} = 0.994$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	353 parameters
$wR(F^2) = 0.123$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
4824 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1 \cdot \cdot \cdot O3^{i}$	0.95	2.56	3.230 (4)	128
$C3-H3 \cdot \cdot \cdot O4^{1}$	0.95	2.65	3.570 (4)	163
$C16-H16B\cdots O4^{i}$	0.99	2.61	3.462 (4)	144
$C21 - H21 \cdots O2^{ii}$	0.95	2.31	3.176 (4)	152

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT-Plus* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *XSHELL* (Bruker, 2000); molecular graphics: *XSHELL* and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04–94 A L85000.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2188).

References

- Atassi, Y., Chauvin, J., Delaire, J. A., Delouis, J. F., Fanton-Maltey, I. & Nakatani, K. (1998). Pure Appl. Chem. 70, 2157–2166.
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.
- Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). XSHELL. Version 4.01. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sekkat, Z., Morichere, D., Dumont, M., Loucif-Saibi, R. & Delaire, J. A. (1992). J. Appl. Phys. 71, 1543–1545.
- Sheldrick, G. M. (1999). SADABS. Version 2.03. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Simmons, J. M., In, I., Campbell, V. E., Mark, T. J., Leonard, F., Gopalan, P. & Eriksson, M. A. (2007). *Phys. Rev. Lett.* **98**, 086802.

supplementary materials

Acta Cryst. (2008). E64, o595 [doi:10.1107/S1600536808004108]

(E)-2-{Ethyl[4-(4-nitrophenyldiazenyl)phenyl]amino}ethyl anthracene-9-carboxylate

M. A. Rodriguez, T. Zifer, A. L. Vance, B. M. Wong and F. Leonard

Comment

Figure 1 shows an atomic displacement ellipsoid plot of the title compound (I). (I) is a merger of 9-anthracenecarboxylic acid and 4-[*N*-(2-hydroxyethyl)-*N*-ethyl]-amino-4'-nitroazobenzene which is better known as Disperse Red 1 or (DR1). In (I) the azobenzene-based DR1 takes on the *trans* conformational state. Atassi *et al.* (1998) has documented photoisomerization to a *cis* conformation under UV light with decay back to the equilibrium *trans* species upon removal of the UV stimulus. (I) has three terminal oxygen atoms: O2, O3 and O4. All three of these atoms display double bonds, O2 being a remnant of anthracene and O3 and O4 at the termination of the nitroazobenzene. The C15=O2 bond length is 1.207 (3)Å while O3=N4 and O4=N4 are slightly longer at 1.230 (3) and 1.229 (3) Å, respectively. All other bond lengths (C—C, C—N, N=N, and C—O) in (I) were consistent with expected values.

Figure 2 shows a packing arrangement of two molecules of (I). The two molecules are related by inversion, consistent with the P-1 space group and the nitroazobenzene portion of (I) is positioned close to the a-c plane of the unit cell. Weak C—H···O hydrogen bonds are observed from O3 to H1—C1 of a neighboring molecule, with an intermolecular O3···H1 distance of 2.559 Å. Likewise, O4 shows similar weak hydrogen bonding to H3—C3 and H16—C16 of a neighboring molecule with intermolecular distances of 2.652 and 2.611 Å, respectively. These weak C—H···O hydrogen bonds generate a supramolecular head-to-tail dimer *via* the nitro groups that terminate each molecule. Atassi, *et al.* (1998) has calculated the dipole moment for the *trans* form of DR1 to be about 9D. Since compound (I) contains the DR1 molecule, it is reasonable to presume a comparable dipole presence for (I). Our calculations of the geometry and dipole moment for compound (I) using a three-parameter hybrid functional (B3LYP) with the 6–311 G(d,p) basis set (Becke, 1993) yielded a value of 11.8 D. This relatively strong dipole likely plays a role in the head-to-tail alignment of the molecules as viewed in Figure 2.

Figure 3 shows a packing diagram for (I) which illustrates the supramolecular interactions along the *b* axis of the unit cell. Again we can see the inversion symmetry for the two molecules of (I) and see that the carbonyl O2 atom is coordinated to H21—C21 of a neighboring molecule with an intermolecular distance of 2.307 Å. This is shorter than for interactions observed in figure 2 and likely indicates a more rigid C—H…O interaction along the *b* axis.

Experimental

The title compound was obtained using the published synthetic procedure of Simmons, *et al.* (2007). The product was synthesized from 9-anthracenecarboxylic acid and Disperse red 1 *via* a dicylcohexylcarbodiimide esterification in anhydrous dichloromethane. Following purification by silica gel chromatography with chloroform eluent, the dark red powder was characterized by 1*H*-NMR, UV/Vis and FTIR. Crystals were obtained by re-crystallization from acetonitrile/ethanol.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. Packing of (I) as viewed down the *a* axis illustrating weak C—H···O hydrogen bonding associated with terminal O atoms O3 and O4. The nitroasobenzene portion of (I) resides near the a-c plane of the unit cell.

Fig. 3. Packing diagram of (I) viewed down the *a* axis illustrating weak hydrogen bonding between the carbonyl oxygen (O2) and the neighboring molecule of (I). This interaction dictates the packing behavior of (I) along the *b* axis.

$(\textit{E})\-2-\{\textit{Ethyl}\[4-(4-nitrophenyldiazenyl)phenyl\]amino\}\-ethyl\ anthracene-9-carboxylate$

$C_{31}H_{26}N_4O_4$	Z = 2
$M_r = 518.56$	$F_{000} = 544$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.388 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
<i>a</i> = 9.3161 (9) Å	Cell parameters from 100 reflections
b = 10.6586 (10) Å	$\theta = 1.6 - 26.0^{\circ}$
c = 13.5328 (13) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 101.134 (3)^{\circ}$	T = 173 (2) K
$\beta = 104.667 \ (4)^{\circ}$	Irregular, orange
$\gamma = 99.779 \ (3)^{\circ}$	$0.20 \times 0.08 \times 0.06 \text{ mm}$
V = 1241.2 (2) Å ³	

Data collection

Bruker SMART CCD area-detector diffractometer	4824 independent reflections
Radiation source: fine-focus sealed tube	2786 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.050$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}$
T = 173(2) K	$\theta_{\min} = 1.6^{\circ}$
phi and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)	$k = -13 \rightarrow 13$
$T_{\min} = 0.982, \ T_{\max} = 0.994$	$l = -16 \rightarrow 16$
9650 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.123$	$w = 1/[\sigma^2(F_o^2) + (0.0333P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.001$
4824 reflections	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
353 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4311 (4)	0.4301 (3)	1.1818 (2)	0.0357 (8)
H1	0.3552	0.3878	1.1167	0.043*
C2	0.3871 (4)	0.4647 (3)	1.2740 (2)	0.0380 (8)
H2	0.2823	0.4455	1.2705	0.046*
C3	0.5796 (3)	0.4565 (3)	1.1849 (2)	0.0314 (8)
H3	0.6066	0.4332	1.1218	0.038*
C4	0.4936 (3)	0.5249 (3)	1.3672 (2)	0.0330 (8)
H4	0.4624	0.5486	1.4285	0.040*
C5	0.6965 (3)	0.5190 (3)	1.2820 (2)	0.0256 (7)
C6	0.6513 (3)	0.5536 (3)	1.3752 (2)	0.0267 (7)
C7	0.8515 (3)	0.5491 (3)	1.2887 (2)	0.0233 (7)
C8	0.7638 (3)	0.6146 (3)	1.4708 (2)	0.0295 (8)
H8	0.7339	0.6371	1.5328	0.035*
С9	0.9635 (3)	0.6111 (3)	1.3845 (2)	0.0262 (7)
C10	0.9183 (3)	0.6438 (3)	1.4782 (2)	0.0271 (7)
C11	1.1225 (3)	0.6452 (3)	1.3946 (2)	0.0308 (8)
H11	1.1560	0.6250	1.3339	0.037*
C12	1.0315 (4)	0.7073 (3)	1.5759 (2)	0.0363 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H12	1.0017	0.7292	1.6380	0.044*
C13	1.2262 (4)	0.7058 (3)	1.4892 (3)	0.0385 (9)
H13	1.3313	0.7279	1.4938	0.046*
C14	1.1804 (4)	0.7369 (3)	1.5816 (3)	0.0404 (9)
H14	1.2548	0.7785	1.6476	0.049*
C15	0.8955 (3)	0.5179 (3)	1.1890 (2)	0.0262 (7)
C16	0.9915 (3)	0.3710 (3)	1.0822 (2)	0.0283 (7)
H16A	1.0823	0.4372	1.0856	0.034*
H16B	0.9086	0.3672	1.0185	0.034*
C17	1.0292 (3)	0.2372 (3)	1.0778 (2)	0.0306 (8)
H17A	1.1023	0.2286	1.0364	0.037*
H17B	1.0808	0.2334	1.1503	0.037*
C18	0.8293 (4)	0.0686 (3)	1.1033 (2)	0.0326 (8)
H18A	0.9052	0.0919	1.1739	0.039*
H18B	0.8035	-0.0283	1.0777	0.039*
C19	0.6864 (4)	0.1132 (3)	1.1141 (2)	0.0384 (9)
H19A	0.7124	0.2081	1.1454	0.058*
H19B	0.6428	0.0670	1.1595	0.058*
H19C	0.6117	0.0934	1.0443	0.058*
C20	0.8434 (3)	0.0764 (3)	0.9246 (2)	0.0252 (7)
C21	0.9076 (3)	0.1361 (3)	0.8559 (2)	0.0271 (7)
H21	0.9850	0.2148	0.8846	0.032*
C22	0.8607 (3)	0.0830 (3)	0.7490 (2)	0.0274 (7)
H22	0.9083	0.1238	0.7053	0.033*
C23	0.7442 (3)	-0.0300 (3)	0.7038 (2)	0.0248 (7)
C24	0.6742 (3)	-0.0860 (3)	0.7695 (2)	0.0275 (7)
H24	0.5922	-0.1614	0.7394	0.033*
C25	0.7210 (3)	-0.0349 (3)	0.8769 (2)	0.0259 (7)
H25	0.6704	-0.0750	0.9195	0.031*
C26	0.6993 (3)	-0.0968 (3)	0.4302 (2)	0.0248 (7)
C27	0.7983 (3)	-0.1047 (3)	0.3689 (2)	0.0271 (7)
H27	0.9051	-0.0733	0.4009	0.033*
C28	0.7414 (3)	-0.1583 (3)	0.2614 (2)	0.0270 (7)
H28	0.8081	-0.1663	0.2190	0.032*
C29	0.5850 (3)	-0.1999 (3)	0.2170 (2)	0.0255 (7)
C30	0.4844 (3)	-0.1891 (3)	0.2755 (2)	0.0303 (8)
H30	0.3775	-0.2172	0.2427	0.036*
C31	0.5424 (3)	-0.1365 (3)	0.3829 (2)	0.0298 (7)
H31	0.4751	-0.1274	0.4246	0.036*
N1	0.8986 (3)	0.1256 (2)	1.03191 (18)	0.0281 (6)
N2	0.6851 (3)	-0.0883 (2)	0.59401 (18)	0.0278 (6)
N3	0.7671 (3)	-0.0435 (2)	0.54054 (18)	0.0281 (6)
N4	0.5237 (3)	-0.2560 (2)	0.10309 (19)	0.0333 (7)
01	0.9436 (2)	0.40590 (19)	1.17640 (14)	0.0297 (5)
O2	0.8885 (3)	0.5849 (2)	1.12621 (17)	0.0432 (6)
O3	0.6111 (3)	-0.2485 (2)	0.04881 (16)	0.0490 (7)
O4	0.3869 (3)	-0.3075 (2)	0.06570 (16)	0.0461 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.030 (2)	0.0329 (19)	0.036 (2)	0.0005 (16)	0.0081 (16)	-0.0016 (16)
C2	0.030 (2)	0.035 (2)	0.046 (2)	0.0021 (16)	0.0162 (17)	0.0015 (17)
C3	0.036 (2)	0.0261 (18)	0.0289 (18)	0.0055 (15)	0.0106 (16)	-0.0005 (14)
C4	0.036 (2)	0.0326 (19)	0.035 (2)	0.0098 (16)	0.0191 (17)	0.0063 (16)
C5	0.0308 (19)	0.0178 (16)	0.0267 (18)	0.0049 (14)	0.0099 (15)	0.0010 (13)
C6	0.0305 (19)	0.0233 (17)	0.0282 (18)	0.0062 (14)	0.0133 (15)	0.0046 (14)
C7	0.0281 (18)	0.0186 (16)	0.0264 (17)	0.0059 (13)	0.0135 (14)	0.0054 (13)
C8	0.040 (2)	0.0282 (18)	0.0238 (17)	0.0098 (15)	0.0150 (16)	0.0049 (14)
C9	0.0315 (19)	0.0203 (16)	0.0285 (18)	0.0071 (14)	0.0084 (15)	0.0096 (14)
C10	0.0320 (19)	0.0227 (17)	0.0256 (18)	0.0058 (14)	0.0084 (15)	0.0045 (14)
C11	0.0299 (19)	0.0324 (19)	0.0326 (19)	0.0089 (15)	0.0110 (16)	0.0100 (15)
C12	0.043 (2)	0.036 (2)	0.0251 (18)	0.0072 (17)	0.0068 (16)	0.0028 (15)
C13	0.029 (2)	0.036 (2)	0.047 (2)	0.0041 (16)	0.0076 (17)	0.0102 (17)
C14	0.044 (2)	0.035 (2)	0.032 (2)	0.0020 (17)	0.0012 (17)	0.0036 (16)
C15	0.0232 (18)	0.0212 (17)	0.0312 (19)	0.0026 (14)	0.0074 (15)	0.0027 (14)
C16	0.0292 (18)	0.0356 (19)	0.0184 (16)	0.0067 (15)	0.0081 (14)	0.0021 (14)
C17	0.0261 (18)	0.0376 (19)	0.0230 (17)	0.0103 (15)	0.0047 (14)	-0.0035 (15)
C18	0.043 (2)	0.0314 (19)	0.0253 (18)	0.0130 (16)	0.0100 (16)	0.0077 (15)
C19	0.046 (2)	0.035 (2)	0.036 (2)	0.0086 (17)	0.0176 (17)	0.0064 (16)
C20	0.0260 (18)	0.0265 (18)	0.0263 (18)	0.0137 (14)	0.0094 (15)	0.0052 (14)
C21	0.0234 (17)	0.0249 (17)	0.0292 (18)	0.0042 (14)	0.0072 (14)	0.0000 (14)
C22	0.0256 (18)	0.0321 (18)	0.0276 (18)	0.0088 (15)	0.0114 (14)	0.0076 (15)
C23	0.0248 (17)	0.0263 (17)	0.0204 (17)	0.0071 (14)	0.0052 (14)	0.0003 (13)
C24	0.0282 (18)	0.0263 (17)	0.0242 (17)	0.0053 (14)	0.0061 (14)	0.0007 (14)
C25	0.0292 (18)	0.0249 (17)	0.0242 (17)	0.0075 (14)	0.0095 (14)	0.0046 (14)
C26	0.0329 (19)	0.0179 (16)	0.0247 (17)	0.0092 (14)	0.0085 (15)	0.0048 (13)
C27	0.0248 (17)	0.0273 (17)	0.0256 (18)	0.0035 (14)	0.0053 (14)	0.0033 (14)
C28	0.0268 (18)	0.0322 (18)	0.0250 (18)	0.0079 (15)	0.0095 (14)	0.0104 (14)
C29	0.0332 (19)	0.0233 (17)	0.0178 (16)	0.0077 (14)	0.0045 (14)	0.0032 (13)
C30	0.0271 (18)	0.0328 (19)	0.0285 (18)	0.0077 (15)	0.0050 (15)	0.0056 (15)
C31	0.0293 (19)	0.0346 (19)	0.0268 (18)	0.0101 (15)	0.0096 (15)	0.0070 (15)
N1	0.0309 (16)	0.0331 (15)	0.0189 (14)	0.0075 (12)	0.0072 (12)	0.0028 (12)
N2	0.0308 (15)	0.0296 (15)	0.0245 (15)	0.0111 (12)	0.0093 (12)	0.0049 (12)
N3	0.0306 (16)	0.0308 (15)	0.0218 (14)	0.0083 (12)	0.0070 (12)	0.0037 (12)
N4	0.0376 (18)	0.0333 (16)	0.0253 (16)	0.0071 (14)	0.0045 (14)	0.0064 (13)
01	0.0383 (13)	0.0302 (12)	0.0231 (12)	0.0128 (10)	0.0121 (10)	0.0043 (10)
O2	0.0657 (17)	0.0346 (14)	0.0456 (15)	0.0187 (12)	0.0329 (13)	0.0194 (12)
03	0.0528 (16)	0.0625 (17)	0.0281 (13)	0.0052 (13)	0.0163 (12)	0.0045 (12)
O4	0.0316 (14)	0.0597 (16)	0.0327 (14)	0.0039 (12)	-0.0035 (11)	0.0011 (12)

Geometric parameters (Å, °)

C1—C3	1.352 (4)	C18—N1	1.460 (3)
C1—C2	1.411 (4)	C18—C19	1.519 (4)
C1—H1	0.9500	C18—H18A	0.9900

supplementary materials

C2—C4	1.350 (4)	C18—H18B	0.9900
C2—H2	0.9500	C19—H19A	0.9800
C3—C5	1.431 (4)	С19—Н19В	0.9800
С3—Н3	0.9500	С19—Н19С	0.9800
C4—C6	1.421 (4)	C20—N1	1.373 (3)
C4—H4	0.9500	C20—C25	1.413 (4)
С5—С7	1.400 (4)	C20—C21	1.416 (4)
C5—C6	1.431 (4)	C21—C22	1.373 (4)
C6—C8	1.397 (4)	C21—H21	0.9500
С7—С9	1.399 (4)	C22—C23	1.392 (4)
C7—C15	1.500 (4)	C22—H22	0.9500
C8—C10	1.394 (4)	C23—C24	1.392 (4)
С8—Н8	0.9500	C23—N2	1.418 (3)
C9—C11	1.429 (4)	C24—C25	1.376 (4)
C9—C10	1.433 (4)	C24—H24	0.9500
C10-C12	1.422 (4)	С25—Н25	0.9500
C11—C13	1.354 (4)	C26—C27	1.391 (4)
C11—H11	0.9500	C26—C31	1.391 (4)
C12—C14	1.349 (4)	C26—N3	1.423 (3)
C12—H12	0.9500	C27—C28	1.381 (4)
C13—C14	1.418 (4)	С27—Н27	0.9500
С13—Н13	0.9500	C28—C29	1.384 (4)
C14—H14	0.9500	C28—H28	0.9500
C15—O2	1.207 (3)	C29—C30	1.378 (4)
C15—O1	1.341 (3)	C29—N4	1.463 (3)
C16—O1	1.457 (3)	C30—C31	1.379 (4)
C16—C17	1.519 (4)	С30—Н30	0.9500
C16—H16A	0.9900	C31—H31	0.9500
C16—H16B	0.9900	N2—N3	1.275 (3)
C17—N1	1.457 (3)	N4—O4	1.229 (3)
С17—Н17А	0.9900	N4—O3	1.230 (3)
C17—H17B	0.9900		
C3—C1—C2	120.9 (3)	N1—C18—C19	114.1 (3)
C3—C1—H1	119.5	N1-C18-H18A	108.7
С2—С1—Н1	119.5	C19—C18—H18A	108.7
C4-C2-C1	120.2 (3)	N1-C18-H18B	108.7
С4—С2—Н2	119.9	C19—C18—H18B	108.7
С1—С2—Н2	119.9	H18A—C18—H18B	107.6
C1 - C3 - C5	120 9 (3)	C18—C19—H19A	109.5
С1—С3—Н3	119.6	C18—C19—H19B	109.5
C5-C3-H3	119.6	H19A—C19—H19B	109.5
$C^2 - C^4 - C^6$	121 2 (3)	C18—C19—H19C	109.5
С2—С4—Н4	119.4	H19A—C19—H19C	109.5
С6—С4—Н4	119.4	H19B—C19—H19C	109.5
C7—C5—C6	119.2 (3)	N1—C20—C25	122.4 (3)
C7—C5—C3	122.8 (3)	N1—C20—C21	121.0 (3)
C6—C5—C3	118.0 (3)	C25—C20—C21	116.6 (3)
C8—C6—C4	122.4 (3)	C22—C21—C20	121.7 (3)
C8—C6—C5	118.9 (3)	C22—C21—H21	119.2
	(-)		

C4—C6—C5	118.8 (3)		C20—C21—H21		119.2
C9—C7—C5	121.6 (3)		C21—C22—C23		120.8 (3)
C9—C7—C15	120.1 (3)		С21—С22—Н22		119.6
C5—C7—C15	118.2 (3)		С23—С22—Н22		119.6
C10—C8—C6	122.2 (3)		C22—C23—C24		118.4 (3)
С10—С8—Н8	118.9		C22—C23—N2		124.4 (3)
С6—С8—Н8	118.9		C24—C23—N2		117.1 (3)
C7—C9—C11	123.4 (3)		C25—C24—C23		121.6 (3)
C7—C9—C10	119.1 (3)		С25—С24—Н24		119.2
C11—C9—C10	117.5 (3)		С23—С24—Н24		119.2
C8—C10—C12	121.6 (3)		C24—C25—C20		120.8 (3)
C8—C10—C9	118.9 (3)		С24—С25—Н25		119.6
С12—С10—С9	119.5 (3)		С20—С25—Н25		119.6
C13—C11—C9	121.1 (3)		C27—C26—C31		120.1 (3)
C13—C11—H11	119.5		C27—C26—N3		116.6 (3)
C9—C11—H11	119.5		C31-C26-N3		123.3 (3)
C14—C12—C10	121.0 (3)		C28—C27—C26		120.0 (3)
C14—C12—H12	119.5		С28—С27—Н27		120.0
C10-C12-H12	119.5		С26—С27—Н27		120.0
C11—C13—C14	121.0 (3)		C27—C28—C29		118.5 (3)
C11—C13—H13	119.5		С27—С28—Н28		120.8
C14—C13—H13	119.5		С29—С28—Н28		120.8
C12—C14—C13	120.0 (3)		C30—C29—C28		122.6 (3)
C12—C14—H14	120.0		C30-C29-N4		118.6 (3)
C13—C14—H14	120.0		C28—C29—N4		118.8 (3)
O2—C15—O1	123.0 (3)		C29—C30—C31		118.5 (3)
O2—C15—C7	124.5 (3)		С29—С30—Н30		120.8
O1—C15—C7	112.4 (3)		С31—С30—Н30		120.8
O1—C16—C17	107.3 (2)		C30—C31—C26		120.3 (3)
O1—C16—H16A	110.3		С30—С31—Н31		119.9
C17—C16—H16A	110.3		С26—С31—Н31		119.9
O1—C16—H16B	110.3		C20—N1—C17		120.5 (2)
C17—C16—H16B	110.3		C20—N1—C18		121.5 (2)
H16A—C16—H16B	108.5		C17—N1—C18		118.0 (2)
N1—C17—C16	115.0 (2)		N3—N2—C23		113.5 (2)
N1—C17—H17A	108.5		N2—N3—C26		112.1 (2)
С16—С17—Н17А	108.5		O4—N4—O3		122.8 (3)
N1—C17—H17B	108.5		O4—N4—C29		118.6 (3)
C16—C17—H17B	108.5		O3—N4—C29		118.6 (3)
H17A—C17—H17B	107.5		C15—O1—C16		115.4 (2)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C1—H1···O3 ⁱ		0.95	2.56	3.230 (4)	128
C3—H3····O4 ⁱ		0.95	2.65	3.570 (4)	163

0.99

0.95

2.61

2.31

C16—H16B…O4ⁱ

C21—H21…O2ⁱⁱ

144

152

3.462 (4)

3.176 (4)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+2.

Fig. 1

Fig. 3

