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DEBATE Open Access

Why we need a small data paradigm
Eric B. Hekler1*, Predrag Klasnja2, Guillaume Chevance1, Natalie M. Golaszewski1, Dana Lewis3

and Ida Sim4

Abstract

Background: There is great interest in and excitement about the concept of personalized or precision medicine
and, in particular, advancing this vision via various ‘big data’ efforts. While these methods are necessary, they are
insufficient to achieve the full personalized medicine promise. A rigorous, complementary ‘small data’ paradigm
that can function both autonomously from and in collaboration with big data is also needed. By ‘small data’ we
build on Estrin’s formulation and refer to the rigorous use of data by and for a specific N-of-1 unit (i.e., a single
person, clinic, hospital, healthcare system, community, city, etc.) to facilitate improved individual-level description,
prediction and, ultimately, control for that specific unit.

Main body: The purpose of this piece is to articulate why a small data paradigm is needed and is valuable in itself, and
to provide initial directions for future work that can advance study designs and data analytic techniques for a small data
approach to precision health. Scientifically, the central value of a small data approach is that it can uniquely manage
complex, dynamic, multi-causal, idiosyncratically manifesting phenomena, such as chronic diseases, in comparison to
big data. Beyond this, a small data approach better aligns the goals of science and practice, which can result in more
rapid agile learning with less data. There is also, feasibly, a unique pathway towards transportable knowledge from a
small data approach, which is complementary to a big data approach. Future work should (1) further refine appropriate
methods for a small data approach; (2) advance strategies for better integrating a small data approach into real-world
practices; and (3) advance ways of actively integrating the strengths and limitations from both small and big data
approaches into a unified scientific knowledge base that is linked via a robust science of causality.

Conclusion: Small data is valuable in its own right. That said, small and big data paradigms can and should be
combined via a foundational science of causality. With these approaches combined, the vision of precision health can
be achieved.

Keywords: Precision medicine, Personalized medicine, Precision health, Small data, Artificial intelligence, Data science

Background
A variety of global initiatives are advancing ways of pro-
viding more personalized and precise care to individuals.
These initiatives go under various monikers, such as
‘precision medicine’ in the US and ‘personalised medi-
cine’ in the UK, but it is herein referred to as precision
health. The general focus of precision health is on pre-
vention and treatment strategies that take individual dif-
ferences into account [1]. These efforts are being
advanced in several nations, including the All of Us Re-
search Initiative in the US and the 100,000 Genomes

Project in the UK, with a current focus on identification
of actionable genetic mutations that predict response to
cancer treatment.
Precision health is both old and new. It is old in that it

aligns with evidence-based practice [2], which empha-
sizes the use of evidence and clinical expertise to make
clinical decisions that take individuals’ physiology, condi-
tion, and circumstances into account. Such matching of
treatment to individual differences takes many forms; in-
deed, blood type is a classic example of matching inter-
ventions (in this case blood transfusion) to individual
differences. Another example is adjusting the dosage of
a drug, such as anti-retroviral treatments, based on well-
measured, dynamic clinical markers (e.g., white blood
cell count), using clearly specified if/then logic to drive
adaptive dosing. In the realm of public health, support
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individuation has taken the form of matching adaptive
and ‘tailored’ support through coaching for complex is-
sues such as preventing and treating obesity.
The new element in precision health arises from new

data, informatics tools, and data analytic technologies
[3–5], which promise to advance individualization. Many
new data types (e.g., whole genome sequencing or wear-
able device, microbiome, or environmental exposure
data) offer unique insights into health phenomena. Ro-
bust informatics infrastructures are being developed to
support the rigorous and efficient collection, storage, re-
trieval, and organization of data. Finally, artificial
intelligence, machine learning, data science analytics, and
‘-omics’ sciences (e.g., genomics, metabolomics, microbio-
mics) offer new possibilities for gleaning insights from
data that go well beyond classic evidence-based practice.
We label the majority of currently used data analytic tech-
niques as ‘big data analytics’ since researchers commonly
conduct these data analyses with new data types via robust
informatics infrastructures, with the insights sought often
aimed towards helping other individuals, beyond those for
whom the data were collected.
While insights from big data analytics are essential,

they are insufficient. A rigorous ‘small data’ paradigm
that functions autonomously and collaboratively with big
data analytics is also needed. By ‘small data’ we build on
Estrin’s formulation [6] and refer to the rigorous use of
data collected to advance the goals of the specific N-of-1
unit for whom the data are about (i.e., a single person,
clinic, hospital, healthcare system, community, city, etc.).
The goal of a small data approach is to achieve improved
individual-level description, prediction and, ultimately,
control for that specific unit. As part of this, the unit it-
self plays a role in defining the objectives of data ana-
lysis. In contrast, a ‘big data’ approach refers to the use
of data collected from one set of individuals with the
goal of improved description and prediction of a
phenomenon for other individuals, not necessarily those
from whom the data were collected. This is typically
done by some other entity, such as a researcher, com-
pany, or health insurance group, with the individuals
whose data formed the datasets often not involved in de-
fining data use objectives. As such, most health science
research methods, such as epidemiology and clinical tri-
als, including randomized controlled trials, fit into a big
data approach, coupled with the many current uses of
artificial intelligence, machine learning, and other ap-
proaches more commonly linked with ‘big data’. While
we are using the word ‘small’ as a counter to ‘big’, these
data are ‘small’ only in the sense that the data are col-
lected from and are being used for a single unit. Indeed,
an N-of-1 unit could have a very large dataset in terms
of data types (e.g., the various -omics data) and length of
time series data (e.g., years).

The purpose of this piece is to articulate why a small
data paradigm is needed and valuable in itself, and to pro-
vide initial directions for future work that can advance
study designs and data analytic techniques for a small data
approach to precision health in a complementary and ex-
plicitly not subservient way to a big data approach.

Why we need a small data paradigm
Scientific reason
At the heart of precision health is the notion of individu-
alizing treatment based on the specifics of a single unit.
Matching the right intervention to the right individual at
the right time, in context, is contingent upon the inher-
ent complexity of a phenomenon. On the simple end are
problems like matching blood transfusions to blood
types, which is relatively straightforward since the prob-
lem is (1) not dynamic (i.e., blood type does not change),
(2) there is only one key cause (i.e., heredity), and (3) the
mechanism is well understood and easily measurable to
support clear classifications (e.g., type A, B, O, AB, +/−).
A more complex problem is supporting adaptive dosing,
such as anti-retroviral care, where the phenomenon is
(1) dynamic (i.e., dosage is contingent upon changing
white blood count) and (2) multi-causal, as a wide range
of factors, beyond just the person’s disease state, influ-
ence white blood count. Nevertheless, often, such prob-
lems can be simplified into if/then adaptation rules
because, like blood type, the mechanism is well-
understood and characterized with appropriately vali-
dated measures. For problems in this class (i.e., low to
moderate complexity), the big data approach to preci-
sion health will be very valuable.
However, there are highly complex health problems

whose characteristics are poorly matched to using a big
data approach alone. A good example of such problems
is obesity prevention and treatment. As illustrated else-
where [7], obesity is highly complex since it is dynamic
and multi-causal, and the mechanisms – even seemingly
universal ones such as energy balance – manifest idio-
syncratically. For example, it is well known that eating
less facilitates weight loss. However, each person ‘eats
less’ or struggles with eating less differently, based on
food preferences, cultural practices, food access, time of
day, learning history, etc. The level of calorie restriction
required also varies, thus suggesting physiological differ-
ences. Individualizing prevention and treatment likely
require that those idiosyncrasies be accounted for. Mod-
est successes, particularly for achieving robust weight
loss maintenance [8, 9], suggest room for improvement
for supporting individuals. As most major health issues
today are chronic as opposed to acute [10], in all likeli-
hood, the level of complexity of the problems we seek to
address will increasingly be closer to that of obesity than
of blood type.
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If the problems we face are more akin to obesity than to
blood type, then the big data approach alone will be insuffi-
cient since the more dynamic, multi-causal, and idiosyncrati-
cally manifesting a problem is, the harder it will be to obtain
the appropriate data types of meaningful causal factors at the
appropriate temporal density from a large enough number
of units. Data analytics that are based, in part, on identifying
clusters and patterns across people will experience exponen-
tial growth of complexity of the modeling space, and thus re-
quire huge samples with long time series. Nevertheless,
increasingly large datasets are becoming available. Thus, big
data will play an important role, such as modeling variations
in comorbidities across units.
Even with the large datasets available, the big data ap-

proach requires a great deal of knowledge about a
phenomenon to ensure the right data types are included. For
example, race is commonly measured, partially because it is
relatively easy to measure via self-report and uses ‘standard-
ized’ categories. Prior work is challenging assumptions about
the meaning of this variable, particularly an implicit assump-
tion that race is a biological as opposed to a socially con-
structed concept. ‘Race’ is largely contingent upon the
cultural context for which an individual exists within [11]. It
is quite plausible that the categories of race create more
noise than signal when used, particularly if they are treated
as biological, immutable realities, which could propagate in-
equities from the research conducted [12]. This issue will
only magnify when data are aggregated across individuals.
While we recognize this issue with race, it is quite plausible
that similar hidden misclassifications exist, thus creating a
high risk of inappropriate conclusions from big data. A cen-
tral task, then, even when the goal is to use big data ap-
proaches, is to advance ways of gathering complementary
prior knowledge to understand and analyze a complex
phenomenon. This has classically occurred through clinical
expertise and qualitative methods and, as justified herein,
could be further supported with a small data approach.
Even if this colossally complex issue of obtaining the right

data types at sufficient temporal density from a large enough
sample based on robust prior knowledge were solved, if the
mechanism is known to manifest idiosyncratically (see [13]
for many concrete examples), then big data will become not
just insufficient but, potentially, problematic as it may wash
out or ignore meaningful individual differences. For example,
the behavioral science version of reinforcement learning (i.e.,
increasing future behaviors via giving rewards, like giving a
dog food after sitting) is one of the most well understood
drivers of behavior across organisms [14, 15]. While the
mechanism is universal, it manifests idiosyncratically [14,
15]. Think, for example, of the pickiness of children. One
child might find strawberries to be a reward whereas another
child might find them to be aversive. Learning histories and
individual preferences combine to create tremendous vari-
ability in how different people respond [13] to both specific

elements in the environment (e.g., strawberries) as well as
classes of those elements (e.g., dessert). These concrete de-
tails of mechanism manifestation will be averaged out in ag-
gregated analyses, yet it is precisely at that level of
concreteness that treatments have to be individualized [14–
16]. Because of its focus on advancing goals of an N-of-1
unit and inclusion of that N-of-1 unit in the process, a small
data approach has unique capabilities for issues that manifest
idiosyncratically and, thus, are important for advancing pre-
cision health.
A small data approach uses different strategies to under-

stand dynamic, multi-causal, and idiosyncratically manifest-
ing phenomena, which can help to make these complexities
more manageable. Within a big data paradigm, there is an
implicit requirement that all plausibly meaningful variation
is included in the dataset at a large enough scale to enable
meaningful clusters and relationships in aggregate to be
gleaned. Without this, what has been called ‘the black swan
effect’ [17], can occur, whereby a rare phenomenon not in a
dataset is not deemed possible and, thus, not part of the
modeling efforts. Using a small data approach, there is an
incentive for people for whom the data are about to think
carefully through insights collected from the data and, thus,
to engage in gathering the right data types at sufficient tem-
poral density to enable them to gather actionable insights
for improved prediction and control for themselves. Further,
a great deal of causal factors can be ruled out based on attri-
butes of the person, context, or time, with the individual
unit playing an important role in ruling out these possibil-
ities (e.g., “I never eat those types of food; I’m not ever ex-
posed to those environmental issues”). An individual
understands their own lives, contexts, and preferences,
which can facilitate specifying the idiosyncratic manifesta-
tions that need to be measured. For example, an individual
may know – or could quickly learn – the degree to which
salty foods versus sugary foods might trigger them to over
eat. Finally, as discussed in detail below, a small data ap-
proach targets helping individuals first, not transportable
knowledge first, which enables insights to be gleaned from
data without the higher bar of those insights being
generalizable to others.
In summary, from a scientific perspective, a small data

approach has unique, complementary strategies for man-
aging complex, dynamic, multi-causal, idiosyncratically
manifesting phenomena compared to a big data approach,
which could be valuable regardless of their value to big data
approaches as well as for improving big data analytics.

Practical reasons for advancing a small data approach
There are three practical arguments – a small data ap-
proach (1) uses success criteria that match the goals of
individuals, clinicians, healthcare systems, and commu-
nities; (2) can facilitate more rapid agile learning from
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each unit; and (3) can offer a unique pathway to trans-
portable knowledge.

Small data aligns activities to the success of individuals,
clinicians, healthcare systems, and communities
The central defining feature of a small data approach is that
data are being used by and for individual units themselves
for their own purposes [6]. This means that the goals and
desires of the individuals for whom the data are about are,
by definition, used to partially define successful data use.
There is an increasing number of technologies that fit with
this goal, such as helping individuals identify which foods
impact irritable bowel syndrome symptoms [18], which
sleep hygiene recommendations are appropriate for them
[19], determining if a particular evidence-based behavioral
intervention ‘works’ for a particular person [20], or creating
an individualized behavior change plan [21]. In contrast, a
big data approach seeks to produce transportable know-
ledge first [22]. By transportable knowledge, we mean in-
sights that are gathered from a group of observed units
applicable to a different group of units and using it instead
of generalizability based on possible confusion with the
term [23].1 In a big data paradigm, the people who benefit
are other individuals, not the individuals for whom the data
are about. Small data, by definition, aligns the goals of data
analytics and individuals.
Turning to clinicians, healthcare systems, and popula-

tion health, the central goal of evidence-based medicine
is a practical one – to help specific units (e.g., individ-
uals, families, physicians) get better. Yet, while success
for clinical care is tied to improvement in individual
units, success in evidence-based medicine research –
first and foremost, randomized controlled trials – is fun-
damentally about average improvements across abstract,
artificially created groups. A small data approach em-
phasizes the same success criteria as clinical practice,
thus better aligning science and practice towards a com-
mon goal. This same alignment of data analytics and
practice also holds true for other units, including a sin-
gle healthcare system, city, region, or other core popula-
tion [24]. Based on this, a small data approach may not
only be valuable for individuals and clinicians, but also
for advancing the vision of a learning healthcare system
[25] and population health.
Small data might not only be valuable scientifically for

big data (to bring in prior knowledge to support appro-
priate categorization and articulation of measurement
approaches) but also be practically valuable for big data
efforts. Large scale projects, such as All of Us in the US,
require sufficient data types (e.g., whole genome sequen-
cing, wearable device data, microbiome data, environ-
mental exposures data, etc.) at appropriate temporal
density (e.g., daily for some concepts) from a large num-
ber of people. This requires a great deal of participant

engagement. Based on the focus of small data, it is more
likely that more people will engage with data collection
as they receive direct benefit, thus helping to establish
the pre-conditions for engagement with the types of
studies needed to use big data analytics.

Small data can facilitate more rapid agile learning from
each unit
As discussed elsewhere [26], it takes a long time for
transportable knowledge to be disseminated and imple-
mented in clinics or communities of practice towards
helping individuals (Fig. 1). A small data paradigm, with
its use of success criteria matched to the individual unit,
can very likely learn more rapidly; this basic point was
articulated well by Staddon [15]. If a well-specified pre-
diction is made and it did not come to pass within a spe-
cific unit via replications within that individual, the
prediction was wrong for that unit; there is no need for
replication with others. Instead, the next step is to ask
why the prediction did not pan out for that unit, includ-
ing the quality of measurement or methods, understand-
ing of the phenomenon, specified success criteria, study
implementation, etc. When description, prediction, or
control does not occur for an N-of-1 unit, that is suffi-
cient to trigger reflection and learning. Robust individual
predictions are, arguably, how key advances in physics
have occurred, for example, Einstein’s very precise predic-
tion about how light would bend around objects of great
mass such as the sun. Only one observation was needed
to suggest Einstein’s predictions better aligned with reality
compared to Newton’s. As we articulate within agile sci-
ence [16, 27], carefully defined proximal outcomes, in-
cluding those that can be defined for a single unit, can
greatly speed the pace of learning with less resources.

Small data offers a unique pathway to transportable
knowledge that could be grounded in clinical practice
There is a plausible way to produce transportable know-
ledge from small data, as illustrated in Fig. 1. Specific-
ally, after meaningful success is achieved for an
individual, clusters of actionable insights, particularly
about key mechanisms of change, can then occur. How-
ever, the clustering would be different from that of big
data clustering as it would occur based on mechanisms
and models of mechanisms that achieved meaningful
success for each individual. For example, our prior work
illustrates how system identification [28] (an approach
used in control systems engineering, which could be
thought of as an N-of-1 hypothesis-driven approach)
can be used to identify individualized predictive models
for each person related to their physical activity [27, 29].
In this work, some individuals’ steps were best predicted
by day of the week whereas, for others, some other vari-
able(s), such as stress or busyness, or a combination of
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factors, were most predictive. If a big data approach of
aggregation across individuals had been used, an in-
appropriate tailoring variable would have been selected
for 75% of participants, thus establishing the importance
of small data methods [27, 29]. These different models
for each unit (see our prior papers [29, 30]) could be
used as the starting point for clustering individuals based
on the models and not individual variables. Such cluster-
ing of models corresponds to the second step in the
above visualization and, thus, offers a pathway to trans-
portable knowledge. This knowledge could then be vig-
orously vetted by clearly specifying hypotheses of
transportability and then using the emerging science of
causality to vet the hypotheses (third step on right side
of Fig. 1) [22].

Limitations of a small data approach
While we see great value in a small data approach, just
like big data, there are limitations. First and foremost is
concern that this approach will not be available for many
individual units and, instead, only possible for individ-
uals with sufficient skill and understanding of data and
data analytics and, by extension, groups such as health-
care organizations, cities, or larger, that have the tech-
nical expertise to do this work. Further, the goal of small
data being used by and for the individual for whom the
data are about is particularly challenging in this respect.
Without careful thought and reflection, this point could
be a pathway towards propagating or furthering existing
inequities, as those with means can continue to learn
from data whereas those without will not. This is a crit-
ical issue that requires careful thought and reflection on
when to use small data as well as building capacity to fa-
cilitate equitable small data use.
With that said, the work of Lewis illustrates a concrete

example of a small group of individuals using their data
for their own purposes and how their work can function

in a complementary fashion to big data efforts and posi-
tively influence them. Specifically, Lewis and collabora-
tors developed components for a DIY artificial pancreas
system and licensed it to be available through open
source (www.openaps.org) for individuals as well as any
interested researchers or commercial organizations.
Their work in the OpenAPS community has had a clear
impact on the type 1 diabetes research community as
well as on corresponding big data efforts by influencing
the pace of FDA approval for commercial artificial pan-
creas systems, impacting the design of new systems, and
playing active roles in both advising and working within
research and commercialization efforts [31]. As this ex-
ample illustrates, these limitations can be overcome to
help more individuals when small and big data efforts
work synchronously.
Beyond this, there is also concern for the potential

biases that can be brought into the scientific process due
to the ‘subjective’ nature of individuals and their beliefs.
Classically, the approach in science is to strive for an
‘objective’ view on reality to guide decision-making. A
counter argument for this view was seeded in the work
of Michael Polanyi in the 1950s. As Polanyi stated in his
book, Personal Knowledge, “… complete objectivity as
usually attributed to the exact sciences is a delusion and
is in fact a false ideal” [32]. While Polanyi articulates a
variety of reasons for this, some key points include that,
(1) since scientists are humans, they will always bring
their personal knowledge into their assessment of a situ-
ation, thus establishing the need to understand how that
personal knowledge may influence conclusions drawn
from evidence and (2) perhaps more importantly, a per-
son’s personal knowledge, particularly the tacit know-
ledge they hold, which they cannot necessarily convey
using language (think the skills of engaging in a craft
such as being an artist, mechanic, surgeon, or the like),
plays an essential role in guiding a person’s decision-

Fig. 1 Small versus big data paradigm pathways to help individuals and transportable knowledge
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making. This tacit knowledge is valuable in itself and
should be acknowledged even if not conveyed via lan-
guage alone. This philosophical stance is increasingly be-
ing supported by insights obtained from neuroscience
[13, 33]. Based on this, a small data approach may be a
valuable way to incorporate the personal and tacit know-
ledge of individuals who experience a phenomenon into
scientific discourse [34].
Finally, there are practical issues such as the difficul-

ties that often manifest when a small data effort gets
started and the need for sufficiently long time series
datasets to collect insights from a small data approach.
One way to conceptualize the complementarity of a big
versus small data approach is that big data efforts are ex-
cellent for providing insights for a ‘warm start’ under-
standing of what might be going on by establishing
plausible variables to measure and potential actions that
one could take. In contrast, a small data approach is use-
ful for moving beyond a warm start towards an increas-
ingly more individualized understanding that is matched
to that unit. Thus, the long history of health sciences
was a very important pre-condition to advancing a small
data paradigm. As illustrated in other work [35], these
approaches can be quite complementary and, based on
the fact that a small data approach is less common, it is
time to further refine and advance these methods.

Future work
While this paper articulates the need for a small data para-
digm in precision health, future work is needed to articu-
late how to operationalize this approach. Key areas of
future work include (1) specifying a structure for under-
standing the rigor versus practicality tradeoff of small data
methods; (2) integrating a small data approach into real-
world practices, including for individuals themselves, cli-
nicians, healthcare systems, and communities; and (3) ar-
ticulating a science that actively integrates the strengths
and limitations from both small and big data approaches.
One way we situate small data methods is via the small

data hypothesis-driven pyramid (Fig. 2, [36]), which
highlights a way of thinking about methods from across
medicine (N-of-1 cross-over designs [37–39]), behavioral
science (i.e., single case experimental designs [40, 41]),
and control systems engineering (i.e., system identifica-
tion [28]) to achieve individualized description, predic-
tion and, ideally, control by and for the individual unit
for whom the data are about. This pyramid offers a
structure for thinking through the tradeoffs between the
rigor of a future prediction and control for an N-of-1
unit compared to the level of practical technical specifi-
cation and expertise needed. On the bottom are study
approaches that are easy for many units to implement,
but sacrifice rigor in terms of prediction, causal infer-
ence, and control for the N-of-1 unit. The apex of this

pyramid is system identification, which is a well-
described method from control systems engineering
(also called automation and control or control theory),
with a wide range of tutorials available for the method
[28]; for a concrete example in health, see [27]. System
ID is the apex, as it is focused on improved prediction
for an N-of-1 unit, which can then be directly used by
an adaptive intervention (called a controller within con-
trol systems engineering) to improve control towards a
desired state for an N-of-1 unit [27]. Future work is
needed to vet this pyramid and to advance different ways
of organizing study designs and analytic techniques.
Second, future work is needed to guide individuals, cli-

nicians, and communities in the use of data for supporting
improved individual description, prediction, and control.
There are important efforts into this, such as PREEMPT
[42, 43], but more work is needed, particularly to balance
the real-world needs with the value gathered from small
data methods. As already referenced, the field of human–
computer interaction is engaging in this topic and produ-
cing a wide range of tools [18, 19, 21] that fit well into the
real-world needs of people, while also honoring the princi-
ples of a small data approach. Discussions on learning
healthcare systems are conceptually analogous and, thus,
provide a good starting point for advancing a small data
approach for N-of-1 units beyond a specific person and,
instead, to individual systems, including communities.
Third, a critical area of future work is to advance the

understanding of ways to combine the strengths and
limitations of both big and small data approaches. To do
this, two critical areas are needed – (1) specifying the
different success criteria implied by different study ap-
proaches and (2) advancing the emerging science of
causality as a likely bridge between big and small data.
As illustrated in Fig. 3, one way of organizing research

studies (i.e., study design plus differing data analytic ap-
proaches) is around the success criteria of each ap-
proach. Two instructive dimensions are whether the
study goals are meant to support individual units (small

Fig. 2 Small data hypothesis-driven pyramid
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data) versus being more useful across an aggregation of
units (big data) and if the methods are data driven ver-
sus hypothesis driven. The upper quadrants illustrate
some plausible success criteria for small data analytics,
with quadrant A aligning with data-driven approaches
proposed by Estrin [6] and Quadrant B aligning with our
small data, hypothesis-driven pyramid. Big data ap-
proaches (quadrants C and D) also include data-driven
(e.g., machine learning, reinforcement learning, etc.), and
hypothesis-driven (e.g., classical evidence-based pyramid
in health sciences) approaches.
Building a robust understanding of a phenomenon re-

quires the use of a diversity of methods that can be used
to explore an issue [44]. When the different methods
point in a common direction, consilience (i.e., a common
conclusion drawn from disparate methods) can occur,
thus increasing confidence in the conclusions [27, 44]. A
small data approach is, arguably, a strong countervailing
approach to understand health conditions that balances
the limitations of big data. Similarly, big data balances the
limitations of a small data approach (e.g., pure small data,
not linked to the science of causality, does not produce
transportable knowledge, thus setting up the need to ‘re-
learn’ with each person, which would be highly inefficient
when meaningful patterns exist). When small and big data

approaches are combined, they offer a robust pathway for
consilient knowledge of complex health phenomena.
Based on the desire for consilience, there is also a

requirement for an approach that fosters triangulation
of insights from disparate methods towards consili-
ence. The emerging science of causality (e.g., [22, 45])
is very likely the foundational method for enabling ef-
fective triangulation between big and small data ap-
proaches. There are two key basic assumptions that
are important from a causal perspective, namely (1)
that humans (e.g., individuals, clinicians, researchers)
know things that data do not know and (2) that data
know things that humans do not know. The science
of causality could be thought of as a rigorous way to
balance those assumptions. Arguably, the movement
towards big data emphasizes that data know things,
with less emphasis on the idea that humans know
things. There is good reason for this, as, according to
Pearl and Mackenzie [22], various researchers have
argued for this focus on data over human understand-
ing; current big data efforts are, thus, a logical out-
growth of that line of thinking.
As illustrated in epidemiology (e.g., Rubin [45]) and

computer science (e.g., Pearl [22]), there is increased
recognition that, if the goal is not merely prediction but

Fig. 3 Different success criteria for big versus small data. While multiple methods can be used in each quadrant, to help illustrate, there is a
rough mapping to different methods as used in different disciplines. Quadrant A includes techniques such as supervised and unsupervised
machine learning, deep learning, reinforcement learning, and recommender systems, commonly used in computer science and the technology
industry. Quadrant B includes techniques such as single case experimental designs, N-of-1 cross over designs, and system identification as
respectively used in the social and behavioral sciences, medicine, and control systems engineering. Quadrant C includes techniques such as
supervised and unsupervised machine learning and deep learning, commonly used in computer science, the technology industry, and various
‘-omics’ efforts. Quadrant D includes techniques articulated as part of the evidence-based pyramid and inferential statistics, commonly used in
fields like medicine, epidemiology, public health, and psychology
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causal inference and, by extension, control, then a rigor-
ous process of balancing these two assumptions is
needed. There is active work advancing N-of-1 causal in-
ference [46] and machine learning approaches [47],
coupled with the more foundational causal inference
already mentioned. A robust science of causality could
establish a bridge across approaches and, thus, is very
likely the scientific foundation for triangulating insights
towards consilience to support precision health. More
work is needed to advance this reality.

Conclusion
Small data is valuable in its own right for a variety of
reasons. Scientifically, a small data approach can more
effectively and efficiently advance understanding of truly
complex problems that are dynamic, multi-causal, and
manifest idiosyncratically. Practically, small data matches
success criteria of the science with those of individuals
for whom the data are about, can likely speed the pace
of learning, and offers a plausible unique pathway to
transportable knowledge. Future work should advance
ways individuals can use small data methods with their
own data. This could extent to larger units such as health-
care systems and community and population health ef-
forts. Small and big data paradigms can and should be
linked via a science of causality. With these approaches
combined, the vision of precision health can be achieved.

Endnotes
1In health sciences, this is often labeled

‘generalizability’. As described by Shadish et al. [23], the
concept of generalization is more multifaceted than
commonly considered in medicine as it can involve both
whether an effect is transferable to another individual or
group, what Pearl et al. [22] label transportability, as well
as whether future predictions can be made for a specific
N-of-1 unit. To avoid the confusion, we do not use the
word generalization.
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