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Abstract—Recent studies have shown the benefits o f using 
SMART attributes to predict disk failures in homogeneous 
populations of disks from the same make and model. We address 
here the case of data centers with more heterogeneous disk 
populations, such as the ones described in the BackBlaze datasets, 
and propose to build global disk failure predictors that would 
apply to disks of all makes and models. Our first c hallenge was 
the large number of SMART parameters that were missing for 
most makes and models in many disk instances of our dataset. 
As a result, we had to discard the SMART attributes that were 
missing in at least 90 percent of the disks, which left us with 21 
SMART attributes. We then applied a Reverse Arrangement Test 
to these attributes to select the strongest disk failure indicators.

We investigated three different machine learning models 
(Decision Trees, Neural Networks, and Logistic Regression) using 
the 2015 BackBlaze data to train and validate our predictors. Our 
best model was a decision tree that identified t rue f ailure events 
among the disks that tested positive for at least one of our failure 
indicators. We then used the 2016 BackBlaze data to evaluate its 
performance. Our results show that our decision tree identifies 
at least 52 percent of all disk failures and makes nearly all its 
predictions several days ahead: no more than 2.45 percent of the 
predicted failures occur within one day or two of the prediction.

Finally, we compared the performance of our predictor with 
those of the RAIDShield and the original BackBlaze predictor. 
We found out that RAIDShield could predict at most 18 percent 
of disk failures, that is, 34 percent fewer failures than our decision 
tree while the BackBlaze predictor predicted 60 percent of disk 
failures but generated 4 to 5 false alarms per correct prediction.

Keywords: hard disk failure prediction, SMART attributes, 
machine learning, data-driven simulation

I. INTRODUCTION

Magnetic disk drives offer the most cost-effective way to 
store large amounts of data. At the same time, they happen 
to be the least reliable component of modern computers, 
mostly because they include fast moving parts [1], [2]. As a 
result, all disk-based storage systems must include provisions 
for preventing data losses, such as replication and omission 
correcting codes [3], [4].

A more proactive approach can supplement these provi-
sions. Rather than waiting for disks to fail, we could try to 
predict which ones are the most likely to fail by periodi-
cally sampling their SMART attributes, several of which are 
positively correlated with an increased risk of disk failure. 
This would let us save ahead of time the contents of the 
suspected disks, thus reducing the risk of data loss. Several 
recent studies show the viability of the approach [5], [6], [7];
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their sole limitation resides in their focus on homogeneous
populations of disks from the same make and model. In
reality, many data centers include disks from multiple makes
and models as new disks are constantly added to replace
failed ones or to expand their storage capacity. One well-
known instance is the BackBlaze disk farm [8]. To address
this issue, we decided to focus our study on an exemplar
of a heterogeneous disk population, namely, that described in
BackBlaze quarterly hard drive reliability reports [8]. We used
the 2015 data to train our predictors and data from 2016 to
evaluate their performance, treating all disks equally regardless
of their specific makes and models. Given the high number
of SMART attributes that were missing for many disks, we
used a two-step approach. First, we identified six SMART
attributes that were the most correlated with an impending disk
failure for our whole disk population. Second, we use machine
learning to build a decision tree discrimination between true
failure predictions and false alarms among the small minority
of disks that tested positive for at least one of our failure
indicators.

The results presented here illustrate the limits and the
benefits of the approach. We found out that we could predict
around 52 percent of all disk failures. The main culprit is the
lack of standardization among the various SMART attributes
that are reported by disks of different makes, which greatly
reduced the number of attributes that were good overall failure
indicators for our disk population.

We also compared the performance of our predictor with
those of the RAIDShield [9] and the original BackBlaze
predictor. We found out that RAIDShield could predict at most
18 percent of disk failures, that is, 34 percent fewer failures
than our decision tree. In addition, RAIDShield could only
achieve this result by setting its detection threshold at the
lowest possible level, producing many more false alarms than
correct predictions. The BackBlaze predictor would predict
60 percent of disk failures, that is, 8 percent more than our
predictor but generated four to five false alarms per correct
prediction.

II. RELATED WORKS

Xu et al. [5] used a health status assessment parameter
(instead of a binary parameter) based on the SMART values to
introduce a novel method based on recurrent neural networks to
predict disk failures. In 2014, researchers from the same group
(Li [7]) used classification and regression trees to predict disk
failures based on the same health status assessment parameter.
Both works applied the same methodology based on the reverse
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arrangement test, rank-sum test, and z-scores to select the
SMART parameters. They also used the same three datasets,
each consisting of disks from the same manufacturer, to train,
validate, and score their models. The results from both papers
showed at least 95 percent accuracy for the best test case.
However, due to the homogeneity of their datasets and the
missing information about the number of models per dataset,
their solutions will not work with high accuracy for data
centers with disks from other manufacturers.

Botezatu et al. [6] presented a method based on decision
trees to predict the necessity of a disk replacement based on
the SMART parameter values. This approach utilized statistical
techniques to automatically select the SMART parameters
that correlate with a disk replacement. The results showed a
98 percent accuracy using as dataset 30,000 disks from two
manufacturers (monitored over a period of 17 months). The
proposed solution will not be applicable to a real-world data
center because the researchers only used a limited dataset (one
model per manufacturer for the training and validation process,
and one model per manufacturer for the scoring process) to
train, validate, and score the proposed model.

Zhu et al. [10] applied support vector machines and neural
networks to predict disk failures. They used a dataset from a
real data center consisting of 23,395 identical model drives.
The results showed that the highest failure detection rate (95
percent) was achieved with the neural network model while
the lowest false alarm ratio (0.03 percent) was achieved with
the support vector machine model. Even though the authors
used a real-world dataset, the distribution of the disks in the
dataset (only one model) makes these results not applicable to
heterogeneous environments.

Other studies, among them [11], [12], [13], and [14],
applied different machine learning and statistical solutions to
predict disk failures based on the SMART parameter values.
In all four cases, their authors only considered population
consisting of the same make and often the same models.

More recently, Jing Li et al. [15] proposed to measure
the effectiveness of disk failure prediction models using the
migration rate and the mismigration rate that result from the
model predictions. Their work shows that warning time is as
important as the accuracy of the model when measuring the
performance of disk failure predictor.

We propose here to develop a different methodology to
train, validate and score a disk failure prediction model by
using a real-world dataset that includes disks from different
manufacturers and models. This should help us understand
the limitations of the selected machine learning techniques to
predict disk failures in such environments.

III. DISK FAILURE PREDICTION

A. The Datasets

To work with a real-world dataset from a heterogeneous
environment, we decided to use data from BackBlaze [8]. They
measure 88 SMART parameters (44 raw and 44 normalized)
per disk per day. To train and validate our model, we use the
data from 2015 (17,509,251 records), while for scoring our
model we use the data from 2016 (24,472,345 records).

The 2015 dataset from BackBlaze includes 62,898 drives.
The fraction of drives that failed in this period is 2.27 percent
(1,428 drives). Table I shows the distribution in terms of the
manufacturer, the number of drives, and the number of models
for the 2015 dataset.

TABLE I: BackBlaze 2015 Dataset Distribution

Manufacturer Number of Disks Number of Models
HGST (Western Digital) 10,384 5

Hitachi 12,991 9
Samsung 2 1
Seagate 36,213 24
Toshiba 247 3

Western Digital 3,061 36
Total 62,898

The 2016 dataset from BackBlaze consists of 81,173 drives.
The fraction of drives that failed in this period is 1.76 percent
(1,431 drives). Table II shows the distribution in terms of the
manufacturer, the number of drives, and the number of models
for the 2016 dataset.

TABLE II: BackBlaze 2016 Dataset Distribution

Manufacturer Number of Disks Number of Models
HGST (Western Digital) 17,383 5

Hitachi 12,727 9
Samsung 1 1
Seagate 47,947 21
Toshiba 339 4

Western Digital 2,776 37
Total 81,173

B. SMART Parameters Selection

To select the SMART parameters to build our model, we
decided to use a methodology based on the following criteria:

a) SMART parameter type (Raw and Normalized): Each
attribute has a raw value, whose measurement is entirely up
to the drive manufacturer (counts or a physical unit, such
as degrees Celsius or seconds), and a normalized value, that
transforms the raw value using a scale from 0 (bad) to some
maximum (good) value. The maximum value is manufacturer
and model dependent (different models from the same manu-
facturer can have a different initial value = 100, 200, or 253).
We decided to use the RAW values of the selected parameters
in our study because they were the most likely to remain the
same among various makes and models.

b) Statistical Analysis: To keep the number of inputs to
a manageable size and to eliminate irrelevant variables (para-
meters without any relationship to the target), we performed a
statistical analysis of the 44 RAW parameters from the dataset
using SAS Enterprise Miner. We applied the R-Square and
Chi-Square methods to rank these 44 parameters based on their
fitness for predicting disk failures while rejecting those with
more than 90 percent of missing values. After this procedure,
we were able to reduce the number of SMART parameters in
our dataset to 21 variables by considering only the relevant
parameters present in at least 10 percent of the disks in the
studied dataset.

c) Trend test: We decided to perform a reverse arrangement
test on the 21 SMART attributes selected from BackBlaze
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dataset after applying the statistical analysis. We calculated
the percentage of good and failed drives that have a trend per
SMART parameter.

SMART 5 Raw Value

D
ate

Fig. 1: Disk with a Trending Parameter

Figure 1 shows an example of a disk with a positive
trending parameter (SMART 5 RAW), where the value of the
studied variable increases as the time progresses.

Table III shows the results of the trend test. Based on
these results, we selected the following parameters using the
percentage of disks with a trend (high percentage of failed disk
with a trend and low percentage of good disks with a trend):

- Reallocated Sectors Count (SMART 5): is the number of
the bad sectors that have been found and remapped.

- Reported Uncorrectable Errors (SMART 187): is the
number of errors that could not be recovered using
hardware ECC.

- Command Timeout (SMART 188): is the number of
aborted operations due to HDD timeout.

- Reallocation Event Count (SMART 196): is the number
of attempts to transfer data from reallocated sectors to a
spare area.

- Current Pending Sector Count (SMART 197): is the
number of sectors waiting to be remapped because of
unrecoverable read errors.

- Uncorrectable Sector Count (SMART 198): is the num-
ber of uncorrectable errors when reading/writing a sector.

Finally, it is important to mention that our six attributes
include the five attributes used by BackBlaze to predict the
failure or potential failure of a disk, showing that our trend
test analysis agrees with the practical knowledge applied by
BackBlaze to solve the hard disk failure detection problem.

C. Dataset Sampling

As we have seen, the 2015 BackBlaze dataset contained
an overwhelming majority of disks that did not fail and a tiny
minority of bad disks. Such unbalances make it harder for any
machine learning technique to produce a predictor that could
not neglect the failed disks.

Using our knowledge of the domain, we decided to solve
this problem by using an informed undersampling method. We

TABLE III: Reverse Arrangement Test SMART Parameter
Distribution

Parameter Description %Good %Bad
% Disks w/o

Missing
Values

Smart 5 Raw Reallocated
Sectors Count 1.887243 28.9916 100

Smart 187 Raw
Reported

Uncorrectable
Errors

1.562193 38.2227 56.69

Smart 188 Raw Command
Timeout 1.247511 10.27837 56.97

Smart 196 Raw Reallocation
Event Count 1.584494 27.32794 43.30

Smart 197 Raw Current Pending
Sector Count 1.417423 38.02521 100

Smart 198 Raw Uncorrectable
Sector Count 0.977863 27.10084 100

used the one-sided selection (OSS) method [16], to select a
representative subset of the majority class E and combines
it with the set of all minority instances Smin to form a
preliminary set N , N=E ∪ Smin.

To implement the selected unbalanced dataset solution, we
define Smin (minority class) as all instances of bad disks with
at least one of the selected parameters with a trend, and E
(majority class) as all instances of good disks with at least
one of the selected parameters with a trend. Based on these
definitions, we present the distribution of the instances for Smin

and E:

Minority Class (Bad Disks):

- Total = 1,428.
- Bad disks with at least one parameter different than zero
or missing = 891 (62.40 percent).

- Bad disks with all selected parameters equal to zero or
missing = 537 (37.60 percent).

Majority Class (Good Disks):

- Total = 61,470.
- Good disks with at least one parameter different than
zero or missing = 3,133 (5.09 percent).

- Good disks with all selected parameters equal to zero or
missing = 58,337 (94.91 percent).

Our goal is to build the decision boundary between the
minority class (failed disks) and the majority class (good
disks), by only using 6.37 percent of the instances. The sole
drawback of the approach is that it will classify as good all
drives that have all six parameters equal to zero or missing.

D. Machine Learning Technique Selection

We implemented three different machine learning models
(Decision Trees, Neural Networks, and Logistic Regression)
using SAS Enterprise Miner version 14.1.

For the decision tree model, we used the following para-
meters:

- Max number of branches = 2.
- Max depth = 10.
- Assessment measure = Misclassification rate.
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- (SAS automatically trains and prunes the tree based on
the training and validation dataset).

For the neural network model, we used the following
parameters:

- Architecture = Block Layers.
- Max number of interactions = 50.
- Max number of hidden units = 100.
- Activation functions = Direct, Logistic, Sine, Softmax,
and Tanh.

- (SAS automatically selects the best network based on the
selected parameters).

For the regression model, we used the following para-
meters:

- Main Effects.
- Two-factor Interactions.
- Polynomial terms (polynomial degree = 3).
- Regression type = Logistic.
- (SAS automatically selects the best regression model
based on these parameters).

We decided to modify the prior probabilities of our training
dataset to improve the capability of the proposed model to
detect disk failures. The original training proportions were
0.22142 for the failed disks and 0.77858 for the good disks,
and the new decision prior probabilities used are 0.5 for the
minority class and 0.5 for the majority class. To validate our
models, we used a five repetition ten-fold cross validation
to provide ten random partitions of the original sample per
repetition.

Model Comparison:

Tables IV and V present the results for the Fit Statistics and
Confusion Matrix for the selected machine learning methods:

TABLE IV: Fit Statistics for the Selected Machine Learning
Methods

Model Misclassification
Rate

Average
Squared

Error

ROC

Index

Gini
Coefficient

Decision Tree 0.15805 0.10036 0.883 0.766
Regression 0.22142 0.22142 0.5 0

Neural Network 0.22145 0.22145 0.5 0

TABLE V: Confusion Matrix for the Selected Machine Learn-
ing Methods

Model False
Negative

True
Negative

False
Positive

True
Positive

Decision Tree 110 2,607 526 781
Regression 891 3,133 0 0

Neural Network 891 3,133 0 0

Out of these three methods, we selected the decision tree
because it has the lowest misclassification rate (15.80 percent)
and the highest number of true positives (781 failed disk
predicted). The poor performance of both neural network and
regression is a consequence of the presence of too many
missing values for all instances of the minority class (disk
failures). We then tried to impute the missing values using
different parameters (median, mean, min, and max). Even

though we saw an improvement for both neural network and
regression after replacing the missing values with the median,
the model with the best performance still was the decision tree.

Figure 2 shows the decision tree generated by SAS Enter-
prise Miner based on the selected parameters. For each node,
we have the node id, the percentage of good disks (labeled
as 0), the percentage of failed disks (labeled as 1), and the
number of drives.

Node	 Id:																1
0:																							50%
1:																							50%
Count:	 												4024

SMART_197_RAW

Node	 Id:																2
0:																	68.08%
1:																	31.92%
Count:	 												2710

Node	 Id:																3
0:																	12.71%
1:																	87.29%
Count:	 												1314

< 1.5 Or Missing >= 1.5

SMART_187_RAW

Node	 Id:																4
0:																	76.95%
1:																	23.05%
Count:	 												2302

Node	 Id:																5
0:																	18.10%
1:																	81.90%
Count:	 												408

< 0.5 Or Missing >= 0.5

SMART_5_RAW

Node	 Id:																8
0:																	81.42%
1:																	18.58%
Count:	 												2140

Node	 Id:																9
0:																	18.15%
1:																	81.85%
Count:	 												162

< 430 Or Missing >= 430

SMART_188_RAW

Node	 Id:														16
0:																	89.04%
1:																	10.96%
Count:	 												1731

Node	 Id:														17
0:																	49.10%
1:																	50.90%
Count:	 												408

Non-Missing Values Missing Values

SMART_5_RAW

Node	 Id:														32
0:																	90.83%
1:																			9.17%
Count:	 												1625

Node	 Id:														33
0:																	61.70%
1:																	38.29%
Count:	 														106

< 44.5 Or Missing >= 44.5

SMART_188_RAW

Node	 Id:														46
0:																	73.19%
1:																	26.81%
Count:	 																85

Node	 Id:														47
0:																	17.58%
1:																	82.41%
Count:	 																21

< 1.5 Or Missing >= 1.5

SMART_197_RAW

Node	 Id:														34
0:																	60.45%
1:																	39.55%
Count:	 														229

Node	 Id:														35
0:																	34.66%
1:																	65.34%
Count:	 														179

< 0.5 Or Missing >= 0.5

SMART_5_RAW

Node	 Id:														48
0:																	64.05%
1:																	35.95%
Count:	 														214

Node	 Id:														49
0:																			8.66%
1:																	91.34%
Count:	 														14

< 238.5 Or Missing >= 238.5

Fig. 2: Disk Failure Prediction Model based on Decision Trees

The limitation of the proposed model is shown by node
17. This node includes all instances with a zero or missing
value for the SMART parameters 197, 187, 5 and 188, with a
distribution of 49.10 percent of failed disks and 50.90 percent
of good disks. This result shows that our model performs worst
when an instance has all parameters equal to zero or missing.

IV. EXPERIMENTAL RESULTS

We present the results of our study of the proposed model
by using the 2015 and 2016 datasets from BackBlaze. We
analyzed the failure detection rate (FDR), taking into consid-
eration the fraction of predictable failures by using only the
failed disks with at least one parameter greater than zero (Smin

subset).

A. Testing with the complete 2015 Dataset

Since we built our model only 6.37 percent of the 2015
BackBlaze dataset, we had to check first how our model would
perform on the whole 2015 BackBlaze dataset.
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TABLE VI: Model Validation Results using the BackBlaze
2015 dataset

Failures
Predicted

Failures
Missed

False
Alarms

Good
Predicted

778 650 526 60,944

As we can see in table VI, our model achieves a failure
detection rate (FDR) of 54.48 percent. To understand the
behavior of the FDR for our model, we calculate the fraction
of failures with non-zero values for one of our six indicators.
From 1,428 failed disks in the dataset, only 891 have non-zero
values, therefore the fraction of predictable failures is equal
to 87.31 percent. This result shows that our model was able
to predict almost 88 percent of the failures used to build the
decision tree. For the false alarm rate (FAR), our model shows
a value of 0.85 percent (because the number of true negatives
is high).

B. Scoring with the 2016 BackBlaze Dataset

For the actual evaluation of the performance of our model,
we used the 2016 dataset from BackBlaze.

TABLE VII: BackBlaze 2016 Scoring Results

Failures
Predicted

Failures
Missed

False
Alarms

Good
Predicted

747 684 551 79,191

As we can see in table VII, our model shows a failure
detection rate (FDR) of 52.20 percent. For the studied dataset,
only 858 failed disks have non-zero values. Therefore, the
fraction of predictable failures is equal to 87.06 percent. This
value can be explained by the relatively high number, 573 out
of 1,431, that were not accompanied by any change in the
values of any of our six SMART parameters. As our method
was able to predict 747 failures out of the remaining 858
failures, it indeed predicted 87 percent of all failures that it
could predict. For the false alarm rate (FAR), our model shows
a value of 0.69 percent.

The failure detection rate (FDR) and the false alarm rate
(FAR) are closely related to both predictable and unpredictable
failures. Figure 3 shows the relationship between these para-
meters for the datasets.

To evaluate the timeliness of our predictions, we collected
failure latencies, that is, the time interval between each failure
prediction and the actual failure. A latency shorter than one or
two days would give not enough time to save the information
from a failed drive. Conversely, predicting disk failures too far
ahead of time will offer little useful guidance to the system
administrator.

Figure 4 shows the distribution of the predictions in terms
of days. The results show that only 2.40 percent of the
predictions occur within two days of the actual failure.

We also measured the latency in weeks to show how much
ahead of time our model is making the predictions. Figure 5
shows the distribution of the predictions in terms of weeks.

These results show that 72.55 percent of disk failures are
detected within four weeks of the actual failure date.
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Fig. 3: Relationship between FDR and FAR
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C. Performance Comparison

We decided to compare the performance of our predictor
against two extant predictors:

1) The disk failure predictor used in RAIDShield [9],
which assumes that an excessive amount of sector
errors typically precedes the failure of the whole-disk.

2) A baseline model used by BackBlaze that predicts a
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disk failure each time any of the five relevant SMART
parameters turns positive.

RAIDShield:

RAIDShield uses the SMART 5 Raw parameter (Reallo-
cated Sector Count) to predict disks that are prone to failures. If
the SMART 5 Raw exceeds a given failure threshold, the disk
is considered to have become unreliable. The dataset they used
to evaluate the performance of their detection mechanism is
based on a population of 100,000 disks from the same family.
Their results show a failure detection rate between 52 and 70
percent and a false alarm rate between 0.8 and 4.5 percent for
SMART 5 values between 20 and 200.

We measure the performance of the RAIDShield predictor
[9] using the 2016 dataset from BackBlaze. We used a range
of values for the SMART 5 parameter between 1 and 600. We
then compare these results against the results of our predictor
for the same dataset.

Figure 6 shows the failure detection rate comparison be-
tween our predictor and RAIDShield detection mechanism.
The results show that our predictor significantly outperforms
RAIDShield detection mechanism with a difference between
36.82 percent (for SMART 5 value = 1) and 48.98 percent (for
SMART 5 value = 600).
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Fig. 6: Failure Detection Rate Comparison (Our Predictor vs
RAIDShield)

Figure 7 shows the false alarm rate comparison between
our predictor and RAIDShield detection mechanism. The very
low FAR achieved by RAIDShield can be simply explained by
observing that it makes much fewer predictions, good or bad,
than our predictor.

These results are much worse than those reported by the
authors of RAIDShield. This should not surprise us because
RAIDShield was originally developed for and tested on a
homogeneous population of disks, all the same make and
model. In our study, only 18 percent of the failing disks were
found to display any changes in the value of the SMART
attribute associated with the number of relocated sectors before
failing.

We conclude that our solution improves significantly the
prediction of disk failures in heterogeneous environments when
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Fig. 7: False Alarm Rate Comparison (Our Predictor vs
RAIDShield)

compared to RAIDShield while offering a similar performance
for the true to false alarm ratio.

BackBlaze Predictor:

The original BackBlaze predictor uses five SMART para-
meters (SMART 5, SMART 187, SMART 188, SMART 197,
and SMART 198). In other words, they use five out of our six
parameters, missing SMART 196. They verify the status of a
disk when the RAW value for one of these five attributes is
greater than zero.

Since the baseline model predicts a disk failure each time
any of our failure indicators turns positive, we can expect it
to have a higher failure detection rate than our predictor. This
was indeed the case: when we applied to the 2016 data, the
baseline model correctly predicted 858 of the 1,431 observed
disk failures, thus achieving a 60 percent failure detection rate,
which is better than our predictor. This better performance
came however with a price: the model issued 3,916 false
alarms, that is, slightly more than 4.5 false alarm per correct
prediction. Table VIII shows the results of the scoring process
for the 2016 BackBlaze dataset with the baseline model:

TABLE VIII: Scoring the Baseline model with BackBlaze
2016 dataset

Failures
Predicted

Failures
Missed

False
Alarms

Good
Predicted

858 573 3,916 75,826

In addition, we observed that 25 percent of its predictions
were made more than sixty days ahead of time of the actual
disk failure. This very long delay would greatly complicate the
task of asserting the correctness of the predictions made by the
model. It could indeed result in having many of these long-term
predictions incorrectly classified as false alarms. Should this
be the case, the effective failure prediction rate of the model
would fall below the failure detection rate of our predictor.

V. CONCLUSION

We have presented a decision-tree based disk failure predic-
tor for heterogeneous populations of disks, such as the ones

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 25,2020 at 00:26:52 UTC from IEEE Xplore.  Restrictions apply. 



encountered in many large data centers. The main problem
we encountered was the lack of standardization among the
SMART attributes of various makes and models of the disk
population we investigated. As a result, we were only able to
identify six SMART attributes that were the strongly correlated
with an impending disk failure for our whole disk population.
We found out that only a small minority of disks (around 3
percent) were flagged by one or more of these attributes. We
then used machine learning to build a decision tree that would
separate true failure predictions from false alarms among the
flagged disks. Our decision tree was built using disk reliability
data collected at BackBlaze in 2015 and scored using data
collected there during 2016.

Our results indicate that we can predict 52 percent of all
disk failures. This corresponded to 87 percent of the disk
failures that were preceded by any change in one of this
SMART attributes we monitored.

We also compared the performance of our predictor with
that of the RAIDShield predictor and that of a baseline predic-
tion model that predicted a failure each time one of our failure
indicators turned positive. We found out that RAIDShield
performed very poorly in our heterogeneous environment and
was never able to predict more than 18 percent of disk failures.
While the BackBlaze predictor (baseline model) could predict
60 percent of disk failures, it also generated between 4 and 5
false alarms per correct prediction. These results illustrate the
difficulty of developing a good generic disk failure predictor
for a heterogeneous population of disks.

In a future work, we plan to regroup disks by manufacturer
and construct a separate disk failure predictor for each make.
This should allow us to include more SMART attributes in our
decision trees and, hopefully, result in higher failure detection
rates. Even then, our generic predictor would still apply to
makes of disks that are barely present in the disk population
or were recently inserted.
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