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Abstract
Culture is considered an evolutionary adaptation that enhances
human reproductive fitness. A common explanation is that
social learning, the learning mechanism underlying cultural
transmission, enhances fitness by avoiding the extra costs of
individual learning. This explanation was disproved by a math-
ematical model of individual and social learning, showing that
social learners can invade a population but do not enhance
its fitness. We extend this model to include a more complex
environment, limited cognitive resources, and hybrid learners
that combine social and individual learning. In this extended
model, we show that social learning evolves and enhances pop-
ulation fitness via hybrid learners capable of specializing their
individual learning.
Keywords: Rogers’ Paradox, Social Learning, Evolution of
Learning, Skill Pools, Specialization

Introduction
In cognitive science, explanations often view evolution in
opposition to learning and development (e.g., Elman et al.,
1996; Pinker, 2002). Such an oppositional stance misses
the point that all three processes are concerned with change,
albeit on different time scales. We see learning cycles as
nested within developmental cycles, and developmental cy-
cles nested within evolutionary cycles. This permits consid-
eration of possible interactions between these three mech-
anisms of adaptation. Here we study interactions between
learning and evolution with an agent-based simulation. We
are particularly interested in the evolution of social learning.

For many years, a common assumption was that social
learning enhances a population’s fitness by reducing costs—
such as metabolic, opportunity or predation costs—below
those incurred by individual learning (Boyd & Richerson,
1985). However, in a seminal model, Rogers (1988) showed
that costs cannot be the only factor. In this model, a popu-
lation of individual learners track a temporally varying envi-
ronment. Because social learners acquire information more
cheaply than individual learners, they are selected for. How-
ever, this eventually leads to there being too few individual
learners tracking the environment for up-to-date information
to be learned and spread. Social learners’ fitness thus de-
clines until an evolutionary equilibrium is reached, and the
population becomes a mix of both types of learners. Rogers’
key observation was that social learners’ fitness at this stage
must equal that of individual learners. In other words, while
lower costs gave social learners an initial fitness advantage
that allowed them to invade, social learning did not increase
the population’s mean fitness. These results contradict the no-
tion that, just because social learning can increase individual

fitness by reducing costs, it must increase the population’s fit-
ness as well. Though not strictly paradoxical, this finding was
considered so striking that it came to be known as Rogers’
paradox (Enquist & Ghirlanda, 2007; Rendell et al., 2010a).

It is worth noting that humanity’s extreme population
growth, which is indicative of an increase in absolute fitness,
is commonly attributed to social learning (Ehn & Laland,
2012). Accordingly, Rogers (1988) did not dispute the no-
tion that social learning enhances population fitness. Rather,
his model was intended to show that costs cannot be the sole
reason why. A number of extensions have been made to the
model in an effort to resolve his “paradox.” These include
adding flexible learning (Boyd & Richerson, 1995; Enquist &
Ghirlanda, 2007; Kameda & Nakanishi, 2002, 2003), cumu-
lative improvement across generations (Boyd & Richerson,
1995; Tomasello, 1999; Ehn & Laland, 2012), adaptive filter-
ing (Enquist & Ghirlanda, 2007), spatial structure (Kobayashi
& Ohtsuki, 2014; Rendell et al., 2010a), and risk avoid-
ance (Arbilly, Motro, Feldman, & Lotem, 2011).

Here, we present a novel approach, inspired by the social
foraging literature. We propose that social learning increases
mean fitness by enabling the formation of a skill pool. A
skill pool is a group of foragers in which different individuals
specialize in searching for different resources (Giraldeau &
Caraco, 2000). Rather than focusing exclusively on foraging,
we consider individuals who specialize their learning across
multiple problems, which may—but need not—include for-
aging. By devoting attention to solving a particular problem,
individuals learn better solutions. Coincidentally, they may
use social learning to copy peers who specialize in solving
other problems. We show that this complementary use of so-
cial learning resolves Rogers’ paradox by enhancing mean
fitness. Like other proposed resolutions (Boyd & Richer-
son, 1995; Enquist & Ghirlanda, 2007; Ehn & Laland, 2012;
Kameda & Nakanishi, 2002, 2003), we focus on a behavioral
strategy that combines social and individual learning in a flex-
ible manner. However, our resolution is both ecologically and
psychology plausible, and provides a particularly robust res-
olution to Rogers’ paradox.

We extend Rogers’ model by: (a) adding a second envi-
ronmental dimension and set of actions, (b) adding an atten-
tion parameter that determines the effectiveness of individual
learning, and (c) creating hybrid learners that learn one envi-
ronmental dimension individually and the other socially.
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Extension (a): the second environmental dimension.
Rogers’ model specifies an environment that exists in one of
two possible states (0 or 1). Individuals match their behavior
to the environment by choosing between two behaviors (also
0 and 1). We allow the environment to vary across n states,
each of which is paired with a behavior that maximizes the
payoff when used in the proper context. We also add a sec-
ond environmental dimension that is in one of n states, but
changes independently of the first dimension. The environ-
ment may therefore be in any of n2 states, when both dimen-
sions are taken into account. This scheme enables special-
ization by allowing an individual to learn individually on one
dimension and socially on the other.

Extension (b): the attention parameter. By introducing
an attention parameter, we limit the accuracy of individual
learning by limiting its available resources. We assume that
the problems individuals face are sufficiently challenging that
finite resources must be allocated between them. This param-
eter ranges from 0 to 1 and indicates the extent to which one
environmental dimension is attended to over the other. When
no attention is paid to a particular dimension, an individual
learner must randomly guess which action to take for that di-
mension. The total amount of attention across the two di-
mensions sums to 1, such that paying more attention to one
dimension necessitates paying less attention to the other.

Extension (c): hybrid learning. Because we consider en-
vironments that vary across two dimensions, two new behav-
ioral strategies are possible: learning individually on the first
dimension and socially on the second, or the reverse. Be-
cause these strategies involve using both social and individual
learning, we refer to them as “hybrid learning.” We include
both hybrid learning strategies, as well as purely social and
purely individual learners. Note that a group consisting of
both types of hybrid learners is analogous to a skill pool, be-
cause each type can use social learning to exploit the other
type’s specialized individual learning. However, instead of
taking hybrid learning for granted (Boyd & Richerson, 1995;
Tomasello, 1999; Rendell et al., 2010a, 2010b; Kobayashi &
Ohtsuki, 2014), we examine how social learning and hybrid
learners evolve.

We argue that these extensions lead to a more ecologi-
cally and psychologically plausible model. First, complicat-
ing the environment to include more problems reflects the re-
ality that learners must often cope with multiple problems,
where solutions do not necessarily generalize. Second, we
use an attention parameter to capture the notion that engag-
ing with multiple problems requires distributing resources be-
tween them. Though social and individual learning are often
treated as alternative processes, they are typically comple-
mentary (Laland, 2004). Moreover, there is strong evidence
for skill pool-based hybrid learning. For instance, birds are
known to form skill pools (Giraldeau & Caraco, 2000).

By creating an agent-based simulation, we show that social
learning can improve mean fitness by enabling the formation

of a skill pool of specialized hybrid learners. Because our
model builds on that of Rogers (1988), we turn next to de-
scribing his model.

Rogers’ Analytical Model
Rogers’ model assumes a large population of haploid indi-
viduals undergoing weak selection, where generations do not
overlap. We denote the fitness of individual learners by wi,
the benefit of accurate learning by b, and the cost of individ-
ual learning by c. In Rogers’ model, we have:

wi = b(1− c), (1)

where 1− c represents the cost efficiency of individual learn-
ing. For simplification, we omit base fitness w, which was in
Rogers’ original model.

Assuming no significant cost of social learning, the aver-
age fitness of social learners, ws, is a function of two factors:
(i) the proportion of agents adopting social learning, p and
(ii) the probability of environmental change, u. Since a so-
cial learner copies behavior that was originally acquired by
individual learning, the rate of environmental change (i.e.,
whether or not the environment has changed since the orig-
inal, individual learning) is a critical factor.

A social learner chooses an individual learner to copy uni-
formly at random. Given that the proportion of individual
learners is 1− p, the probability that an action was initially
discovered by an individual learner τ generations ago, and has
been copied ever since by social learners is pτ−1(1− p). Tak-
ing into account the fact that the environment changes at each
step with probability u, the probability that the copied action
is still accurate, Pk, can be computed as pτ−1(1− p)(1−u)τ.
Since in social learning, τ can take any integer values, we
need to sum all the probabilities:

Pks =
∞

∑
τ=1

pτ−1(1− p)(1−u)τ =
(1− p)(1−u)
1− p(1−u)

(2)
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Figure 1: Fitness of social and individual learners and average
fitness (mean) as the proportion of social learners increases in
Rogers’ (1988) analytical model.
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Thus, the average fitness of social learners in Rogers’
model, ws, can be computed as:

ws = b ·Pks =
b(1− p)(1−u)

1− p(1−u)
(3)

At evolutionary equilibrium, when wi = ws, we get:

b(1− c) =
b(1− p̂)(1−u)

1− p̂(1−u)
⇒ p̂ = 1− (1− c)u

(1−u)c
(4)

Replacing p̂ in (3) gives the same fitness as (1) for individ-
ual learners. Thus, in Rogers’ model, social learning does not
enhance population fitness at equilibrium (Figure 1).

Our Extension of Rogers’ Model
We modify Rogers’ model in a few ways. First, we add an-
other environmental dimension with the same benefit, b, for
selecting the correct action. In computing the fitness of pure
individual learners, wii, we define the cost as a separate con-
stant instead of as a proportion of benefit as in Equation (1).
We also assume that attention is divided between the two di-
mensions; a is the attention paid to one dimension, and 1−a
is the attention paid to the other dimension. In this section,
we develop some intuitions regarding our simulation results
by extending Rogers’ analytical work.

We denote the type of learning by subscripts: i for individ-
ual learning and s for social learning; ii refers to pure individ-
ual learners, ss refers to pure social learners, is refers to hy-
brid learners who learn individually on only the first dimen-
sion, and si refers to hybrid learners who learn individually
on only the second dimension.

Taking into account the attention parameter, the probabil-
ity of choosing the correct behavior by individual learning is
Pki1 = 1/n+ a(n− 1)/n for the first dimension, and Pki2 =
1/n+(1−a)(n−1)/n for the second dimension. Therefore,
paying full attention to one dimension guarantees accurate
learning, and paying no attention is equivalent to selecting an
action uniformly at random.

For individual learners, the average fitness is computed as
the sum of average benefit on each dimension minus the cost
of individual learning on both dimensions:

wii = b
(

1
n
+

n−1
n

a
)
+b
(

1
n
+

n−1
n

(1−a)
)
−2c

=
b(n+1)

n
−2c. (5)

Note that this average payoff does not depend on a.
We modify Equation (2) to account for our extensions to

Rogers’ model. The proportion of all social learners, p, is
replaced by the proportion of all agents learning socially on
a dimension (pss + psi for the first dimension and pss + pis
for the second dimension). Similarly, the proportion of all
individual learners, 1− p, is replaced by pii and pis for the
first dimension and pii and psi for the second dimension, each
multiplied by the probability of choosing the correct action,

Pki, on the corresponding dimension. Putting this together,
we modify Equation (2) to get:

Pks1 =
(Pii

ki1 · pii +Pis
ki1 · pis)(1−u)

1− (pss + psi)(1−u)
, (6a)

Pks2 =
(Pii

ki2 · pii +Psi
ki2 · psi)(1−u)

1− (pss + pis)(1−u)
, (6b)

where the third subscript shows the dimension and the super-
script shows the type of learner.

Since the average fitness of pure individual learners does
not depend on a, there should be no evolutionary prefer-
ence for how attention is divided. Assuming a uniform ran-
dom distribution for a, we can say that on average there is a
E[1/n+a(n−1)/n] = (n+1)/2n probability that copying an
individual learner on an environmental dimension yields the
correct action (where E[·] represents the expected value). As
for hybrid learners, they do not need to pay any attention to
the dimension for which they are doing social learning. Thus,
hybrid learners can fully specialize on the individual learning
dimension. With this, we can represent the fitness of hybrid
and social learners as follows:

wss = b

(
( n+1

2n pii + pis)(1−u)
1− (pss + psi)(1−u)

)
+b

(
( n+1

2n pii + psi)(1−u)
1− (pss + pis)(1−u)

)

wis = b
(

1
n
+

n−1
n

a
)
+b

(
( n+1

2n pii + psi)(1−u)
1− (pss + pis)(1−u)

)
− c

wsi = b

(
( n+1

2n pii + pis)(1−u)
1− (pss + psi)(1−u)

)
+b
(

1
n
+

n−1
n

(1−a)
)
− c

Our goal here is to identify the situations where hybrid
learning is a more adaptive strategy than individual learning
(i.e., wis,wsi > wii). The fitness of hybrid learners is maxi-
mized when pis = psi = 0.5. Thus, under relatively favorable
conditions, we can roughly predict that hybrid learners will
be selected for when:

b
c
<

nu+n
(n+1)u− (n−1)

(7)

Even when the cost of individual learning is c = 0, hybrid
learners should be selected for when u < (n− 1)/(n + 1).
Similarly, we can identify likely parameter settings where
pure social learning is favored (i.e., wss > wis,wsi):

0.5(1+u)
u

>
b
c

(8)

Note that this does not depend on n.
The curves in Figure 2 mark the predicted boundaries be-

tween regions where evolution favors particular learners (the
boundary between social and hybrid regions does not depend
on n). For values of u below (n− 1)/(n + 1), the b/c ra-
tio would be negative which does not make conceptual sense.
Thus, we allow b/c to asymptote at u = (n− 1)/(n+ 1), by
letting u vary only above (n−1)/(n+1) up to 1.

1071



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Rate of environmental change (u)

b
/c

 

 

social/hybrid
hybrid/individual (n=2)
hybrid/individual (n=3)
hybrid/individual (n=4)
hybrid/individual (n=5)

Figure 2: Boundaries of regions where evolution favors par-
ticular learners.

Simulations
Although our analytical predictions give a rough indication
of expected evolutionary outcomes, we also test these predic-
tions using agent–based computer simulations. Each agent
has three genes: (i) learning strategy (social or individual)
on the first environmental dimension, (ii) learning strategy on
the second environmental dimension, and (iii) attention to the
first environmental dimension (ranging from 0 to 1). Each of
these three genes are initialized randomly. States of the two
environmental dimensions are also randomly chosen.

Each evolutionary cycle has four phases: reproduc-
tion/death, environmental change, learning, and recording.
Reproduction is asexual, and an agent’s probability of repro-
duction is equal to its fitness. The population consists of up
to 300 agents, where an agent can reproduce only if there is
space for its offspring. A child inherits its genes from its par-
ent, with a mutation (changing the genes to another random
value) probability of 0.0001 per gene. After reproduction,
each agent dies with probability 0.1. Following that, each
environmental dimension can change with probability u.

The next phase of every evolutionary cycle is learning. If
an agent has the social learning allele on a dimension, it se-
lects another agent uniformly at random and imitates its be-
havior on that dimension. A pure social learner can copy dif-
ferent agents for each dimension.

Individual learning follows social learning. Agents with
the individual learning allele on one or both dimensions
observe the corresponding environmental dimension(s) with
their inherent attention parameters.

Following the learning cycle, the fitness and frequency of
each of the genotypes are recorded. Fitness is determined by
the total benefit (b times the number of the agent’s correct ac-
tions) minus the total cost (c times the number of dimensions
for which the agent uses individual learning).

Each run or simulated world has 1000 evolutionary cycles.
The rate of environmental change is varied from 0 to 0.8 in
steps of 0.2 and b/c ratio is varied from 1 to 6 (30 different
pairs of parameters in total). We ran 20 worlds in each of
these 30 cells. Benefit of learning is held at a constant value
of 0.2. Results are robust across other variations of b/c ratio,
rate of environmental change, and mutation rates.

Figure 3 shows proportions of genotypes, in the form of
pie–chart results for n = 2, 3, 4, and 5 levels on each envi-
ronmental dimension along with the predicted evolutionary
boundaries. Each pie chart is derived by averaging propor-
tions of the three genotypes across 20 simulated worlds,
where each world is initially populated by 300 agents. As
number of levels of environment and behaviors increase
from 2 to 5, hybrid genotypes become more prevalent at the
expense of the pure individual genotype. This is indicated
by a decrease in red and increase in lime as number of levels
increases, from Figure 3(a) to 3(d). All boundaries agree
with the analytical predictions (Fig. 2).

Table 1 presents the relative adaptive advantage of social
learning across the parameter space of our simulations for n=
2 and n = 5 (results are similar for other n and get stronger
as n increases). Each entry in the table represents the percent
difference between the average fitness values obtained from
simulations (averaged over 20 runs) and the predicted average
fitness for a population of individual learners as computed in
Equation (5). Each percent advantage of social learning is
computed as:

100× w−wii

wii
, (9)

where w is the mean fitness averaged across 20 runs and wii
is the theoretical fitness of a population of individual learners
as computed in Equation (5).

Results are shown for each combination of b/c ratio (from
2 to 6) and each rate of environmental change (from 0 to 0.8).
Results for the b/c ratio of 1 are omitted because individual
learner fitness is negative at that b/c value. The results show
that social learning strongly enhances population fitness ev-
erywhere else in this parameter space. Fitness enhancement
due to social learning is strongest at lower levels of these two
key parameters (i.e. low b/c ratios in a relatively stable en-
vironment), and weakest at the highest levels of these two
parameters (i.e. high b/c ratios in an unstable environment).
The tri-color background groups similar values in a heat map
to better illustrate the trend for greater fitness enhancement
of social learning with decreases in rate of environmental
change and b/c ratio. The fitness advantage provided by so-
cial learning increases with problem complexity, defined as
n, the number of possible behaviors.

Discussion
Our simulation results support the hypothesis that the inclu-
sion of hybrid learners enhances fitness by fostering spe-
cialization, similar to skill pools in foraging bird popula-
tions (Giraldeau & Caraco, 2000). We find that individual
learning is favored at high rates of environmental change and
moderate to high benefit/cost ratios, while social learning is
favored in more stable environments with low benefit/cost ra-
tios. Between these two extremes, we find that hybrid learn-
ing is favored where one or both of these two key parameters
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(a) 2 levels

(b) 3 levels

(c) 4 levels

(d) 5 levels

Figure 3: Proportions of genotypes as a function of environ-
mental and behavioral variation.

Table 1: Percent fitness advantage provided by social learn-
ing in 20 simulations (5 b/c ratios × 4 levels of problem
complexity), each averaged over 20 runs for (a) n = 2 and (b)
n = 5. Results are similar for other n and get stronger as the
number of states increases.

(a) n = 2

(b) n = 5

are at a moderate level. We also show that, as environments
become more complex, hybrid social learning becomes in-
creasingly favored, at the expense of individual learners. This
invasion of hybrids in a parameter space that otherwise favors
pure individual learners (in simpler environments) is due to
the hybrids’ unique combination of cost–saving social learn-
ing with individual exploration of a rapidly changing, com-
plex environment. In these circumstances, the inherent flex-
ibility provided by hybrid learners is more adaptive than the
rigidity of pure social and pure individual learners.

These genotypic trends are driven by underlying differ-
ences in individuals’ fitness. When individual learning has a
cost, the presence of social learning, whether pure or hybrid,
strongly enhances reproductive success. Mirroring this pat-
tern, the population’s mean fitness increases with stability of
the environment and decreasing benefit/cost ratio, providing
a robust resolution to Rogers’ paradox.

Rogers showed that pure social learning ultimately does
not raise mean population fitness, because as social learners
become more prevalent they increasingly risk acquiring out-
dated behaviors (Rogers, 1988). This problem is particularly
severe as environments become less stable. Hybrid learners
can resolve this problem because they are flexible enough to
maintain both individual and social learning within a popula-
tion over a wide range of environments.

In contrast to previous proposed resolutions of Rogers’
paradox, by allowing for hybrid learners, our model makes
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fewer complicating assumptions and exhibits adaptive social
learning in a broader range of circumstances. Notably, we
find that social learning strongly enhances fitness in every
sector of the large parameter space we explore. Other pro-
posed resolutions of Rogers’ paradox find that social learn-
ing enhances fitness by relatively small amounts and often in
restricted parametric conditions, whether using conditional
social learning (Kameda & Nakanishi, 2002, 2003; Ren-
dell, Fogarty, & Laland, 2009), critical social learning (Boyd
& Richerson, 1995; Enquist & Ghirlanda, 2007; Rendell
et al., 2009), individual refiner learning (Ehn & Laland,
2012), adaptive filtering of maladaptive behaviors (Enquist
& Ghirlanda, 2007), cumulative cultural transmission across
generations (Boyd & Richerson, 1995; Ehn & Laland, 2012;
Tomasello, 1999), strategic social learning strategies (Laland,
2004), risk avoidance (Arbilly et al., 2011), or spatial char-
acteristics of the environment (Kobayashi & Ohtsuki, 2014).
Although none of these other techniques operate in the simu-
lations described here, it is likely that many of them could fur-
ther enhance the adaptive advantage of social learning within
the context of our hybrid learning scheme. While postulating
a novel resolution of Rogers’ paradox, our model is also sim-
ple enough to be applicable to a wide range of species and
is supported by evidence from foraging birds (Giraldeau &
Caraco, 2000). Many of the previously proposed techniques
require more complex cognition, and are in some cases likely
restricted to humans.

In conclusion, we find that Rogers’ paradox can be robustly
resolved by the inclusion of hybrid learners who can special-
ize in learning one problem individually and another socially.
With hybrid learning and an extra cost for individual learning,
social learning becomes particularly adaptive. The extra cost
of learning individually is not the whole story, as it is not nec-
essary for the evolution of social learning. Thus, we identify
several important factors involved in the evolution of social
learning: hybrid genotypes enabling complementary special-
ization, relative environmental stability, a relatively low ratio
of benefit to cost, and extra costs for individual learning. In
our framework, only hybrid genotypes are essential for the
emergence of social learning, but the other three factors can
increase the payoffs of social learning.

The role of specialization in driving cooperation, produc-
tivity, and social organization in humans has been widely rec-
ognized by scholars from Plato and Ibn Khaldun to Adam
Smith, Emile Durkheim, and many others. Work discussed
and presented here suggests that such specialization of agents
could have deep evolutionary roots well beyond the human
species.
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