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ABSTRACT OF THE DISSERTATION

Improving Data Efficiency on Histopathology Image Analysis Using Deep Learning

by

Wenyuan Li

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Corey Wells Arnold, Co-Chair

Professor Gregory J Pottie, Co-Chair

Ever since the advent of Alexnet in the ImageNet challenge in 2012, the medical image

analysis community has taken notice of deep learning techniques and made the transition

from systems that use handcrafted features to systems that learn feature from the data

gradually. Histopathology images have been widely used to detect and diagnose a variety

of cancers. With the growing availability of large scale gigapixel whole-slide images (WSI)

of tissue specimen, digital pathology has become a very popular application area for deep

learning techniques. Nevertheless, challenges exist in current computer-aided histopathology

image analysis. Perhaps the biggest challenge is the insufficiency of annotated data. Deep

learning requires extremely abundant training data to achieve good performance. However,

only pathologists, who have been trained for years, can annotate the histopathology image

accurately. Therefore, labeling histopathology images is both expensive and labor-intensive.

The scarcity of the annotation can also be found at different scales. For example, to do

a semantic segmentation task, it requires the network to have annotations at “pixel-wise”

level; by tiling WSIs into different patches, patch-level labels are needed to provide accurate

predictions. But in reality, most labels of WSIs are at case-level (e.g . final diagnosis) at

most.

This dissertation attempts to improve data efficiency on histopathology image analy-
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sis. We first start with a novel fully-supervised segmentation model for Gleason grading of

prostate cancer. This method adopts two branches, an Epithelial Network Head (EHN) for

detecting epithelial cells, and a Grading Network Head (GNH) for detecting, segmenting,

and classifying the cancerous regions. Then we present a series of studies on semi-supervised

learning, where we can take leverage of unannotated data. We focus on methods using

generative adversarial networks (GANs). To this end, we demonstrate a pyramid GAN

structure for high-resolution large-scale histopathology image generation and segmentation

on both fully-supervised and semi-supervised scenarios. Finally, we present an active learn-

ing framework that is able to reduce the annotations required from the expert and handle

noisy labels simultaneously. Extensive experiments and results have proved the effectiveness

of these methods, paving the way to optimize and improve the effectiveness of data usage in

histopathology image analysis.
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CHAPTER 1

Introduction

1.1 Motivation

Deep neural networks (DNNs) have rapidly become a methodology of choice for analyzing

medical images in recent years [88]. One of the most prominent methods of DNNs that

has achieved tremendous success in image analysis is convolutional neural networks (CNNs).

CNNs contain many layers that transform input images to the output target with convo-

lution filters. Ever since the most recent CNNs’ breakthrough by Krizhevsky et al . to the

ImageNet challenge in 2012 [70], the medical image analysis community has taken notice of

these pivotal developments and gradually transitioned from systems that use handcrafted

features to systems that learn features from the data. DNNs/CNNs have been used for image

classification, object detection, semantic segmentation, image registration, and other tasks

in the medical domain.

The growing availability of large scale gigapixel whole-slide images (WSIs) of tissue spec-

imen has made digital pathology a very popular application area for DNNs/ CNNs. The

most actively researched task in digital pathology image analysis is computer-assisted diag-

nosis (CAD), where the computer algorithm is used to help the expert to predict the final

diagnostic outcome. In this regard, deep learning techniques have been applied for detecting,

segmenting or classifying nuclei, large organs or disease severity in different cases. Since the

errors made by a machine learning system reportedly differ from those made by a human

pathologist [133], the diagnostic accuracy could be improved using a CAD system. CAD

may also reduce the variability in interpretations and prevent overlooking by investigating

all pixels within WSIs [65]. Additionally, recent works have applied deep learning techniques
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for image normalization [115], image re-staining [56], content based image retrieval [125],

etc., of digital histopathology.

1.2 Challenges and Objectives

Though it has become easier and cheaper to get the digitized histopathology images, there are

some unique characteristics of histopathology image analysis and computational challenges

to treat them.

Insufficient Labeled Images

Probably the biggest problem in histopathology image analysis using DNNs is that only a

small number of labeled data is available. The success of deep learning techniques requires

extremely abundant training data. Annotations for the natural image analysis can be easily

retrieved from the internet and it is also possible to use crowd-sourcing approach since

anyone can identify simple objects such as “cat” and “dog”. However, only pathologists, who

have been trained for years, can annotate the histopathology images accurately. Therefore,

labeling histopathology images is both expensive and labor-intensive. The scarcity of the

annotation can also be found at different scales. For example, to do a semantic segmentation

task, it requires the network to have annotations at “pixel-wise” level; by tiling WSIs into

different patches, patch-level labels are needed to provide accurate predictions. Nevertheless,

most labels of WSIs are at case-level (e.g . final diagnosis) at most.

As reflected by the title Improving Data Efficiency on Histopathology Image Analysis

using Deep Learning, throughout the dissertation we are trying to address the label scarcity

challenge. We start from the fully supervised learning semantic segmentation task in Chap-

ter 2, and gradually move to semi-supervised learning that can take leverage of the unlabeled

data in Chapter 3, Chapter 4, and Chapter 5. Finally, we demonstrate an active learning

framework that is able to identify the most “infromative” data for annotations and lead to

the labeling effort reduction in Chapter 6.
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Very Large Image Size

DNNs were first applied to relatively smaller image sizes, such as 256 ˆ 256 pixels, and

achieved good success. Since increasing the size of the input image results in increasing the

number of parameters to be estimated, and the required computational memory and power,

images with large size often need to be scaled into smaller size that still permit sufficient

distinction. Unfortunately, rescaling WSIs for analysis may not be as successful as it is

for natural images. WSIs usually have gigapixels, which contain complex structures such

as cells and glands. Information regarding cellular level features such as cells shape are

well captured in high-power field microscopic images, but structural information such as a

glandular structure made of many cells are better captured in a lower-power field. Both

of these features are needed for an accurate clinical diagnosis. Simply rescaling the entire

image to a smaller size, such as 256 ˆ 256 pixels, would lead to the loss of information at

the cellular level, resulting in the decrease of the diagnostic accuracy.

To solve this problem, entire WSIs are commonly tiled into partial regions of smaller

patches (e.g . 256 ˆ 256), and each patch is analyzed independently. More sophisticated

algorithms can be developed during this process. For example, in Chapter 2, we develop

a region-based CNN to first detect the region of interests (ROIs) and then zoom in the

area for detailed analysis; once the analysis is done for each single patch, we stitch all of

them back and apply conditional random field to remove the unnatural predictive boundary

between patches. In Chapter 5, we propose a novel high-resolution large-scale histopathology

image generation and segmentation framework by hierarchical structures to enable the image

analysis with large size on higher-power field.

Low Concordance Rate and Noisy Labels

Besides being time-consuming and labor-intensive, manually annotating the histopathology

images can also be plagued by inter- and intra-observer variability. This problem is partic-

ularly pronounced when differentiating the hard cases (e.g . Gleason 3 (G3) vs. Gleason 4
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(G4) in prostate cancer). In a Gleason grade study for prostate cancer, the concordance rate

of multiple pathologists can be as low as 57.9% [144]. This fact will make the annotations

inevitably noisy. At the same time, it is easy for the DNNs with huge capacity to fit noisy

annotations, which can hurt their generalization ability for the real clinical usage. Further-

more, it is challenging to distinguish mislabeled samples from hard samples. Mislabeled

samples are samples with wrong annotations, while hard samples have the right label but

the samples themselves are not “typical”. The lack of massive and clean annotations are big

challenges in histopathology image analysis. They make the capability of DNNs unscalable

to the size of collected data.

A CAD tool could impact clinical practice by providing a repeatable and more precise

method for diagnosis. Compared with the traditional method, an automated analysis system

would alleviate the inter- and intra-observer variability from the pathologists. Furthermore,

we propose a machine learning methodology to distinguish between noisy samples and hard

samples in Chapter 6. By excluding noisy samples, we prevent them from hurting the DNNs

performance.

1.3 Contributions and Novelties of Dissertation

The contributions and novelties of the dissertation are summarized as follows.

A Region-based CNN for Gleason Grading of Prostate Cancer

We start with a fully supervised region-based convolutional neural network (R-CNN) for

Gleason grading of prostate cancer. Prostate cancer is the most common and second most

deadly form of cancer in men in the United States. The classification of prostate cancers

based on Gleason grading using histological images is important in risk assessment and treat-

ment planning for patients. Here, we demonstrate our R-CNN for multi-task prediction using

a Epithelial Network Head and a Grading Network Head. Compared to a single task model,

our multi-task model can provide complementary contextual information, which contributes
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to better performance. Our model achieved state-of-the-art performance in epithelial cells

detection and Gleason grading tasks simultaneously. Using five-fold cross-validation, our

model achieved an epithelial cells detection accuracy of 99.07% with an average AUC of

0.998. As for Gleason grading, our model obtained a mean intersection over union of 79.56%

and an overall pixel accuracy of 89.40%.

The main contributions of our work are twofold: first, by adding an Epithelial Network

Head (EHN), we adapted the Mask R-CNN to be suitable for the histological image analysis

for Gleason grading task with little additional computational overhead; second we developed

a two-stage training strategy which enables our model to detect epithelial cells and predict

Gleason grades simultaneously.

Semi-supervised Learning Framework using Generative Adversarial Network

We explore the potential usage of generative adversarial network (GAN) in semi-supervised

learning for histopathology images. Specifically, we study semi-supervised semantic seg-

mentation in Chapter 5. Semantic segmentation of histopathology images can be a vital

aspect of computer-aided diagnosis, and deep learning models have been effectively applied

to this task with varying levels of success. However, their impact has been limited due to

the small size of fully annotated datasets. Data augmentation is one avenue to address this

limitation. Generative Adversarial Networks (GANs) have shown promise in this respect,

but previous work has focused mostly on classification tasks applied to MR and CT images,

both of which have lower resolution and scale than histopathology images. There is limited

research that applies GANs as a data augmentation approach for large-scale image seman-

tic segmentation, which requires high-quality image-mask pairs. In this work, we propose a

multi-scale conditional GAN for high-resolution, large-scale histopathology image generation

and segmentation. Our model consists of a pyramid of GAN structures, each responsible for

generating and segmenting images at a different scale. Using semantic masks, the genera-

tive component of our model is able to synthesize histopathology images that are visually

realistic. We demonstrate that these synthesized images along with their masks can be used

5



to boost segmentation performance especially in semi-supervised scenarios.

The main contributions of this work are twofold. First, by using a pyramid generation

scheme, we are able to generate large-scale histopathological images up to 1024 ˆ 1024 at

high resolution (20x). Compared to the state-of-the-art pathology synthesis methods, which

generate images up to 256 ˆ 256 allowing for only limited context such as simple nuclei

( [93, 114]), our generation allows us to incorporate richer context such as gland structures

and nuclei details that are useful for precise diagnosis. Second, the generation is based upon

a conditional method, which produces good image-mask pairs. These image-mask pairs

can be used to compensate for the lack of data points in training segmentation models.

We demonstrate the effectiveness of our method in segmentation tasks and analyze how it

performs differently in supervised and semi-supervised settings.

An Active Learning Framework for Histopathology Image Analysis

We develop an active learning framework that is tailored to histopathology image analysis,

namely PathAL, in Chapter 6. PathAL is able to dynamically identify the noisy labels and

sample the images that need to be annotated. We provide a solution that is able to reduce the

annotations required from the expert and handle noisy labels simultaneously. Specifically,

for each iteration of PathAL, we first train the network using the annotated images. Then we

make the network to transfer from overfitting to underfitting status cyclically by adjusting

the hyper-parameters. In this process, we monitor and rank the normalized average loss

of every labeled example and the normalized average prediction entropy of every unlabeled

example. We also measure the complexity of data points using their distribution density in

the feature space, and rank their complexity in an unsupervised manner. By doing so, the

noisy labeled samples can be identified and discarded, while the hard and minority samples

can be preserved; the unlabeled images that are most informative to the model as it trains

are selected for annotations and added to the training for the next iteration. In addition, the

typical unlabeled samples with highest predictive confidence are added to the training pool

with pseudo annotations generated by the model itself. This cost-effective sample selection
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strategy is able to improve the classification performance with much less manual annotations.

Our proposed method is a tailor-made strategy for histopathology image analysis. The main

contributions of this work include: 1) an active learning framework (PathAL) that is able to

dynamically identify important samples to annotate, distinguish noisy and hard samples in

the training sets, is proposed; 2) extensive experiments are done to show promising results

on enhancing the model performance with much less annotation efforts and noisy samples.

1.4 Organization of Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, we present region-

based CNN for Gleason grading of prostate cancer. This chapter is based on my previous

publication [82]. In Chapter 3, we discuss our initial exploration on semi-supervised learning

using a generative adversarial network (GAN). Further, we present UGAN, a semi-supervised

method that uses both good and bad samples in Chapter 4. In Chapter 5, we develop

a hierarchical model for high-resolution large-scale histopathology image generation and

segmentation. These chapters are based on my previous publications [84,84] and a prepared

manuscript. In Chapter 6, an active learning framework that is tailored to histopathology

images is presented. This chapter is based a manuscript in preparation for submission.

Chapter 7 concludes the dissertation and highlight open research questions.
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CHAPTER 2

Path R-CNN for Prostate Cancer Diagnosis and

Gleason Grading of Histological Images

2.1 Introduction

Supervised learning (SL) attempts to learn a function that maps an input to an output based

on a set of training examples. In supervised learning, each example is a pair consisting of an

input object and a desired output value, i.e. SL requires each training sample to be paired

with a human annotated label. In this section, we will first introduce our supervised learning

effort, namely “Path R-CNN”, on the prostate cancer Gleason grading task.

2.1.1 Motivation

Prostate cancer is the most prevalent form of cancer and the second deadliest cancer in men

in the U.S. [118]. Pathologists use several screening methodologies to qualitatively describe

the diverse tumor histology in the prostate. Normal prostate tissue includes stroma and

glands. Stroma is the fibromuscular tissue surrounding glands. Each gland unit is composed

of a lumen and rows of epithelial cells located in an orderly fashion around it. The stroma

holds the gland units together. Cancerous tissue has epithelial cells that replicate in an

uncontrolled manner, disrupting the regular arrangement of gland units. In high grade

cancer, both stroma and lumen are generally replaced by epithelial cells.

One of the most reliable methods to quantify prostate cancer aggressiveness is through

the Gleason grading system [34]. Gleason grades are used to describe growth patterns in

prostate adenocarcinoma and are related to severity of disease. Gleason grades range from
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Gleason 1 (G1) to Gleason 5 (G5), with a score of G1 corresponding to tissue with the highest

degree of resemblance to normal tissue and best prognosis, and a score of G5 corresponding

to poorly differentiated tissue and the poorest prognosis.

The Gleason grading system continues to be updated by the consensus of the International

Society for Urological Pathology [25]. This system supports clinical decision-making in a

number of ways. First, the grades help physicians identify the extent of the disease. Second,

the grades correlate well with patient outcomes. Finally, the grades aid in the determination

of the most appropriate treatment options [24].

However, to date, most Gleason scores are assigned manually through pathologist review,

a process that is time-consuming and plagued by inter- and intra-observer variability. This

problem is particularly pronounced when differentiating Gleason 3 (G3) vs. Gleason 4 (G4),

a distinction that may have substantial impact on further treatment [49,51,74].

Therefore, a CAD tool for Gleason grading could impact clinical practice by providing a

repeatable and more precise method for grading prostate cancers. Compared with traditional

methods, an automated Gleason grading system would alleviate a time-consuming portion

of the pathologist’s workload.

2.1.2 Related Works

In this section, we review the related works from the literature from three perspectives. First,

we briefly review the previous CAD work on prostate cancer diagnosis. Then, several recent

representative biomedical image segmentation methods are discussed. Finally, we review

the region-based convolutional neural networks (R-CNN) approach for object detection and

instance segmentation [44], upon which our proposed method is based.

2.1.2.1 Prostate Cancer Diagnosis and Gleason Grading of Histological Images

A few previous papers have been published in developing an automatic Gleason grading sys-

tem for prostate cancer diagnosis. A commonly used approach is to extract tissue features
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and apply classifiers upon the selected features. Stotzka et al . [128] extracted statistical

and structural features from the spatial distribution of epithelial nuclei over the image area.

They used a hybrid neural network/Gaussian statistical classifier to distinguish moderately

and poorly differentiated histological samples. Smith et al . [123] used the power spectrum of

tissue images to represent their texture characteristics. They used a nearest neighbor classi-

fier to assign the input image to Gleason grades 1 through 3 and the combined grades of 4

and 5. Wetzel et al . [139] proposed the use of features derived from spanning trees connect-

ing cell nuclei across the tumor image to represent tissue images belonging to each grade.

Jafari-Khouzani and Soltanian-Zadeh [55] used features based on co-occurrence matrices,

wavelet packets, and multi-wavelets combined with a k -nearest neighbor (kNN) classifier to

classify each image into grades 2 through 5. Farjam et al . [26] proposed a multistage classi-

fier based on morphometric and texture features for Gleason grading. First, gland units are

identified using texture features. Then, morphometric and texture features obtained from

gland units are used in a series of classification stages to classify the image into grades 1

through 5. Tabesh et al . [130] aggregated color, texture, and morphometric cues at the global

and histological object levels for classification and compared Gaussian, k -nearest neighbor,

and support vector machine classifiers along with the sequential forward feature selection

algorithm. Nguyen et al . [100] used structural features of prostate glands to classify pre-

extracted regions of interest (ROIs) into benign, G3, and G4. Gorelick et al . [38] proposed a

two stage Adaboost model to classify around 991 sub-images extracted from 50 whole-mount

sections of 15 patients.

Though most of these papers achieved good results on their datasets due to heavy reliance

on feature extraction, the systems described above are prone to subjectivity and limited intra-

and inter-system reproducibility. Moreover, all of the systems require accurate localization of

the small image area (region of interest, RoI) to extract features from, which is a non-trivial

problem [22].
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2.1.2.2 Deep Learning Models for Biomedical Image Segmentation

Recent developments using deep convolutional neural networks (CNNs) [76], particularly

fully convolutional networks (FCNs) [89], have demonstrated success for biomedical image

analysis [5, 6, 40, 57, 88]. These neural network approaches learn features directly, rather

than using handcrafted features. Ronneberger et al . [111] proposed U-Net, a U-shaped

neural network that consists of a contracting path to capture context and a symmetric

expanding path that enables precise localization. The Multi-scale U-Net proposed by Li

et al . [79] incorporated different scale input information without overly increasing memory

requirements and achieves better results than the original U-Net and the previous work by

Gertych et al . [30]. A more comprehensive comparison was done by Ing et al . [52], where

they tested four CNNs including FCN-8s, two SegNet variants, and multi-scale U-Net for

performance in semantic segmentation of high and low Gleason grade tumors. Chen et al . [13]

proposed DCAN, which added a unified multi-task object to the U-Net learning framework,

which won the MICCAI2015 Gland Segmentation Challenge [120]. Based on DCAN, Yang et

al . [146] proposed suggestive annotation, which extracts representative samples as a training

dataset, by adopting active learning into their network design. With the refined training

sample and optimized structure, suggestive annotation achieves state-of-the-art performance

on the MICCAI Gland Segmentation dataset [120]. More recently, Li et al . [81] have proposed

a semi-supervised learning method using the expectation maximization in a deep learning

framework for prostate cancer grading. The successes of the above methods demonstrate

that deep learning has substantial applicability to medical image analysis. Moreover, multi-

task learning that provides more information to train the network [13], and deep active

learning [146] that helps the model focus on representative images, have both been proven

to boost performance. In the same vein, we have developed a model that adopts an R-CNN

into a larger framework.
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2.1.2.3 R-CNN Approach on Image Segmentation

Object proposal methods were first adopted in CNNs [70] by R-CNN [33]. The R-CNN

method trains CNNs end-to-end to classify the proposed RoIs into object categories or back-

ground. Fast R-CNN [32] advanced R-CNN to allow extracting RoIs on feature maps using

an RoIPool layer, improving both speed and accuracy. Faster-RCNN [110] followed this

path and extended it by learning an attention mechanism with a Region Proposal Network

(RPN), which simultaneously predicts object bounds and objectness scores at each position.

The uniqueness of these R-CNN methods is that by using RPN components, the network

learns where to focus within a given image.

Driven by the success of R-CNN and its extensions, many recent approaches to image

segmentation are based on segment proposals. In particular, Mask R-CNN [44] added a third

branch that outputted the object mask on the basis of Faster R-CNN [110] and demonstrated

remarkable power on image instance segmentation. In their network settings, segmentation

masks were generated for every class without competition among classes, while relying on the

classification branch to predict the class label. This is different from previous deep-learning

based segmentation methods [79, 89, 111] where classification and segmentation tasks were

coupled by a pixel-wise soft-max layer. This difference is the key for the improved instance

segmentation results. In addition, Mask R-CNN proposes a “RoIAlign” layer, that faithfully

preserves exact spatial locations. The “RoIAlign” layer properly aligns the extracted features

from the network with the input image, which improves segmentation accuracy by a large

margin. However, the “RoIAlign” layer extracts features for each RoI at the same scale; this

works well for natural image instance segmentation but might not be effective for medical

image analysis as we will discuss in Section 2.4. We refer readers to [44] for more details of

Mask R-CNN.
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2.1.3 Contributions

In this chapter, we propose a novel model that can automatically diagnose prostate cancer

and perform Gleason grading based on histological whole slide images. Compared with previ-

ous work, our proposed method achieves state-of-the-art performance in both epithelial cells

detection and Gleason grading accuracy. The main contributions of our work are twofold:

first, by adding an Epithelial Network Head (EHN), we adapted the Mask R-CNN to be

suitable for the histological image analysis for Gleason grading task with little additional

computational overhead; second we developed a two-stage training strategy which enables

our model to detect epithelial cells and predict Gleason grades simultaneously. Extensive

experimental results show that our model achieved state-of-the-art performance in epithelial

cells detection and Gleason grading tasks simultaneously. Using five-fold cross-validation,

our model achieved an epithelial cells detection accuracy of 99.07% with an average AUC of

0.998. As for Gleason grading, our model obtained a mean intersection over union of 79.56%

and an overall pixel accuracy of 89.40%.

2.1.4 Organization

The rest of the chapter is organized as follows. We start with a brief introduction of our

dataset and proposed method are described in Section 2.2. In Section 2.3 we present our

experimental results. We then discuss the limitations of our work and provide directions

for possible future work in Section 2.4. Finally, conclusions are drawn in Section 2.5, which

concludes the chapter.

2.2 Methods

In this section, we first describe the dataset we used for our effort. After that, we formally

define our problem in the context of image instance segmentation problem. Then, we de-

scribe the novel framework that we used to solve our problem in detail. Finally, we provide

evaluation metrics on which our model was assessed and compared with previous efforts.
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Table 2.1: Dataset summary.

No. Image No. Patient Label Set

SetA [30] 224 20

Stroma, Benign,

Low-grade (CG3),

High-grade (CG4)

SetB [52] 289 20

Stroma, Benign,

Low-grade (CG3),

High-grade (CG4, CG5)

Total No. Image: 513 Total No. Patient: 40

2.2.1 Dataset

Our dataset consists of 513 images, which were retrieved from archives in the Pathology

Department at Cedars-Sinai Medical Center (IRB# Pro00029960). The 513 images are

combined from two sets of tiles. 224 of the images are from 20 patients and contain stroma

(ST), benign or normal glands (BN, rated as GG2 or below), low-grade cancer (LG, image

areas rated as GG3) and high-grade cancer (HG, image areas rated as GG4) (Set A) [30].

The remaining 289 images are from 20 different patients and contain dense high-grade tumors

including Gleason grade 5 (GG5) as well as Gleason grade 4 (GG4) with cribriform and non-

cribriform glands. In addition, some of these images contain only stromal constituents such

as nerve tissue and blood vessels (Set B) [52]. Slides from Set A were digitized using a

high resolution whole slide scanner SCN400F (Leica Biosystems, Buffalo Grove, IL), whereas

slides from the Set B were acquired through the Aperio scanning system (Aperio ePathology

Solutions, Vista, CA). The scanning objective in both systems was set to 20x. The output

was a color RGB image with the pixel size of 0.5 µmˆ0.5 µm and 8 bit intensity depth for each

color channel. Representative tiles previously identified by the pathologist were extracted

from whole slide images (WSIs) and then saved as 1200ˆ1200 pixel tiles for analysis. The

content of each tile was hand-annotated by an expert research pathologist using an in house

developed graphical user interface [8,27,30]. Figure 2.1 shows three representative examples
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from the dataset we used in this study. All annotated image tiles were cross-evaluated by

the pathologists, and corrections made by consensus. All tiles were normalized to account

for stain variability in the pre-processing stage [109]. Data augmentation including, image

flip, mirror, and rotate, were applied to the tiles before being fed into the network. These

two datasets were also used in previous studies in [30] and [52]. For more information about

the Gleason grading system and how we classify the tissues into four categories, we refer

readers to the Appendix Appendix A.1.

2.2.2 Problem Definition

Here, we formulate the prostate cancer diagnosis and Gleason grading problem in the context

of a common computer vision problem, instance segmentation. We assigned the stromal

components of the input images as the background class. Other epithelial cells in the input

image that have been annotated by the pathologists as benign, low-grade or high-grade

were assigned as instance objects, i.e. the RoIs we want our network to find. Under these

assignments, the epithelial detection is a natural binary classification problem, in which our

network needs to output 1 if there are any specific RoIs in the image or 0 if the whole input

image contains only stroma. The Gleason grading problem involves detection of the epithelial

cells’ areas, classification of the grade of each area, and segmentation of the epithelial areas

from the background. These questions can be solved by object detection (draw a bounding

box around the epithelial cells’ areas), object classification (classify each epithelial cell’s

area into different categories: benign, low-grade, etc.), and instance segmentation (draw a

segmentation mask for each epithelial area). The right column of Figure 2.1 demonstrates

this idea. Each epithelial area (RoI) is represented by a unique color, which has a bounding

box, class label and segmented mask associated with it.
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Original Image Ground Truth Problem SettingOriginal Image Ground Truth Problem Setting

Figure 2.1: Samples from the dataset used for this work. Three representative examples are

shown. The top row shows a stroma-only example; the middle row is an example with a large

benign region; the bottom row is an example with both high-grade and low-grade cancer.

(Left Column): Original histological image tiles stained by H&E. (Middle Column):

Micrographs annotated by pathologists for stroma (red), benign glands (yellow), low-grade

cancer (green), and high-grade cancer (blue). (Right Column): Annotated data used to

form a multi-task problem. We treat stroma as background (BG), and each cancer area as

a separate object with a bounding box, class label, and segmented mask as its properties

(BN: benign, LG: low-grade, HG: high-grade).
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2.2.3 Model Definition

2.2.3.1 Network Architecture

Figure 2.2 shows the entire system and the components of the proposed model. We use

ResNet as the backbone for our image parser. First, the image parser generates feature

maps. These feature maps are then fed into two branches. In the left branch, we adopted

the same two-stage procedure as in the Mask R-CNN. The feature maps are first used by

a Region Proposal Network (RPN) that generates region proposals (RoIs). In the second

stage, a Grading Network Head (GNH) is then used for predicting the class, box offset, and

a binary mask for each RoI. To this we add a right branch that outputs an epithelial cell

score that detects the presence of epithelial cells in the image. We refer to this part as the

Epithelial Network Head (ENH). The final prediction of the network depends on the results

of the ENH and GNH. Finally, a post-processing step based on a conditional random field

is applied to the prediction. Because our model is inspired by Mask R-CNN [44], we name

it Path R-CNN.

2.2.3.2 Objective Function

The goals of our model are to detect the presence of epithelial cells and to output a Gleason

grade segmentation mask. The ENH and GNH are designed to complete these two tasks

separately. In the GNH, there are three separate networks. We define classification loss Lcls,

which evaluates whether the model can output Gleason grades accurately, bounding-box loss

Lcls, which evaluates whether the model can locate the epithelial cells accurately, and mask

loss Lmask, which evaluates whether the model can segment the epithelial regions’ boundaries

accurately. The objective function for training the model follows the same spirit in Mask

R-CNN [44] and Faster R-CNN [110] that applies bounding-box classification, regression and

per-pixel sigmoid mask segmentation. In addition, we add an objectness prediction loss Lobj

for the ENH, which represents misclassification of whether there are epithelial cells in the

given pathological image. Lobj is designed as a common binary classification loss, which is
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Figure 2.2: Overview of the proposed Path R-CNN model architecture. We use the ResNet

model as a backbone to extract feature maps from the input image. Extracted feature maps

are then fed into two branches. In the left branch, the region proposal network (RPN)

first generates proposals to tell which regions the grading network head (GNH) should focus

upon. The GNH is then used to assign Gleason grades to epithelial cell areas. In the right

branch, an Epithelial Network Head (ENH) is used to determine if there is epithelial tissue

in the image. The final output depends on the results of the ENH. If there is no epithelial

cells, the model outputs the whole image as stroma. Otherwise the model outputs its results

from the GNH.
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given by

Lobj “
N
ÿ

i“1

p´yi logppiq ´ p1´ yiq logp1´ piqq (2.1)

where N stands for the total image number in the training datasets; pi P p0, 1q is the sigmoid

layer output of our model, which can be interpreted as the probability of RoI presence in

the image; yi P 0, 1 is the ground truth of the given image where yi “ 1 if the given image

has at least one RoI, otherwise yi “ 0. Thus, the total loss L of our model is given by

L “ Lobj
ENH

` Lcls ` Lbox ` Lmask
looooooooooomooooooooooon

GNH

. (2.2)

2.2.3.3 Transfer Learning

As with most medical image analysis domains, we are limited by a scarcity of accurately

annotated training data due to the difficulty and cost of producing high quality data. We

compensate for this limitation by using natural image data, which is known as transfer

learning. Previous studies have shown that transfer learning in CNNs can alleviate the

problem of insufficient training data [12,117]. This is mainly because the learned parameters

in the lower layers of neural networks are generic (edges, blobs etc.) and can be kept after

the pre-training. Thus, transfer learning can help to reduce overfitting on limited medical

datasets and allow us to take advantage of networks with more parameters.

Therefore, we utilized an off-the-shelf implementation of Mask R-CNN from Matterport

[94], which was trained on the MS COCO dataset [87]. The MS COCO dataset contains more

than 200,000 images with pixel-level annotations. Leveraging the effective generalization

ability of transfer learning in deep neural networks, we initialized the layers using the pre-

trained model followed by fine tuning the ENH and GNH (see details in Section 2.2.3.4).

2.2.3.4 Implementation and Training

Limited by the memory of our GPU, we first cropped our 1200ˆ1200 pixel input image

tiles into 16 patches (with overlap) and then downsampled each patch to be 512ˆ512 pixels.

These patches, along with their corresponding annotations, were served as the input data for
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the training stage. In the testing stage, we again first cropped the images to small patches

and then stitched together the network output into the full tiles.

Our main Path R-CNN framework was implemented using the open-source deep learning

library Tensorflow [1]. We developed a two-stage training strategy for our model:

‚ Stage 1 train the GNH along with the higher layers (stage 4 and 5 in 101 layer

structure in [45]) of the ResNet backbone. We used the MS COCO pre-trained model

to initialize the network. The network was optimized using stochastic gradient descent

(SGD) with backpropagation following the outline of [45]. Adopting a backward fine-

tuning strategy, we first trained the GNH for 25 epochs. Then we fine-tuned the

ResNet [45] upper layers along with the network head. Figure 2.3 shows a typical

training process in Stage 1.

‚ Stage 2 takes the fixed weights trained in Stage 1 and only trains the ENH. We

chose to fix the Stage 1 weights in this step because of our intuition that epithelial cell

detection is a relatively simple task. We empirically found that this method worked

very well in practice (see results in Section 2.3.2).

2.2.3.5 Fully Connected Conditional Random Field Post-Processing

After generating predictions from our Path R-CNN model on each image patch, we stitched

patches back into the original tiles. This stitching step can lead to artifacting on the edges

of each individual patch, as shown in the last two rows of Figure 2.5. We used a fully

connected conditional random field (CRF) model to address this problem. This method

was first proposed by Krähenbühl et al . [67] to compute image segmentations efficiently,

which demonstrated the ability to both capture fine edge details and make use of long range

dependencies. Chen et al . [15] later incorporated this method into CNNs as a post-processing

step. A conditional random field pI,Xq is characterized by P pX|Iq “ 1
ZpIq

expp´EpX|Iqq,

where X is defined over the whole image tx1, x2, . . . xNu. xi denotes the label of the ith pixel,
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Figure 2.3: The training process to train our proposed model in Stage 1. The model was

initialized with the pre-trained weights on MS COCO dataset. The GNH was first trained

for 25 epochs with a learning rate of 1e-3. The ResNet stage 4 and upper layers along with

GNH were then fine-tuned for 40 epochs with the same learning rate. After convergence

of the model parameters, we reduced the learning rate to 1e-4 and trained to 55 epochs.

Finally, we included the ResNet stage 3 and fine tuned for another 15 epochs with a learning

rate of 1e-5.
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N is the total number of pixels. The model employs the energy function

EpX|Iq “
ÿ

i

θipxiq `
ÿ

i,j

θi,jpxi, xjq (2.3)

where we refer to first term on the right hand side as the unary potential and the second

term as the pairwise potential. The unary potential is defined as θipxiq “ ´ logP pxiq, where

P pxiq is the label assignment probability at pixel i as computed by the segmentation head in

the GNH. The pairwise potential is θi,j “ µpxi, xjq
řK
m“1 ω ¨ k

mpfi, fjq, where µpxi, xjq “ 1

if xi ‰ xj , and zero otherwise. Each km is the Gaussian kernel, which depends on features

(denoted as f) extracted for pixel i and j and is weighted by a learnable parameter ωm.

Following the example of [15], we use bilateral position and color terms in the kernels

ω1 expp´
}pi ´ pj}

2

2σ2
α

´
}Ii ´ Ij}

2

2σ2
β

q ` ω2 expp´
}pi ´ pj}

2

2σ2
γ

q (2.4)

where p denotes pixel position and I denotes pixel color intensity. Thus, the first kernel

term forces nearby pixels with similar color to be in the same class, while the second kernel

term removes small isolated regions. The hyperparameters σα, σβ and σγ control the “scale”

of the Gaussian kernels, which were obtained in the experiment empirically. For simplicity,

we refer fully connected CRF as CRF in the later parts of this chapter.

2.2.4 Evaluation Metrics

To make our model comparable with previous work [30,79,111], we use the standard metrics:

mean Intersection Over Union (mIOU), Overall Pixel Accuracy (OPA) and Standard Mean

Accuracy (SMA) to evaluate the performance of segmentation results. The definition of

these metrics is as follows. Assume we have segmentation results f , ground truth label l,

and a pixel-wise confusion matrix C, where Ci,j is the number of pixels labeled as li and

predicted as fj. The mIOU is defined as the average of individual Jaccard coefficients, Ji,

for all classes li. To compute Ji from the confusion matrix C, we use the Jaccard index

definition:

Ji “
TP

TP ` FP ` FN
“

Ci,i
Ti ` Pi ´ Ci,i

(2.5)
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where Ti “
ř

j“1Ci,j denotes the total number of pixels with label li. Pj “
ř

iCi,j denotes

the number of pixels predicted as fj [18]. The mIOU is then given by

J “ 1

N

N
ÿ

Ji (2.6)

where N is the number of classes. The OPA is defined as

OPA “

ř

iCi,i
ř

i

ř

j Ci,j
. (2.7)

The standard mean accuracy is defined as

SMA “
1

N

ÿ

i

Cii
ř

j Cij
. (2.8)

2.3 Validation Experiments

In this section, we will show our experiment design briefly followed by several experimental

results to validate our design for the epithelial cell detection and Gleason grading tasks.

The instance segmentation results from the model were converted to semantic segmentation

results by choosing the largest probability instance class at each pixel location for the purpose

of easy comparison with the previous work.

2.3.1 Experiment Design

We used a ResNet [45] in our Path R-CNN model for feature extraction from the input

pathological image. Both the RPN and the GNH adopt a feature pyramid network (FPN) [86]

structure by replacing single-scale feature maps with feature pyramids. As in [86], the FPN

generates feature pyramids tP2, P3, P4, P5, P6u. For the RPN, we assigned different scale

anchors (potential RoIs) t322, 642, 1282, 2562, 5122u at each feature pyramid respectively. The

RPN is then trained with the parameters shared across all feature pyramid levels. For the

GNH, we assign each RoIs of width w and height h (on the input image to the network) to
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the feature pyramid Pk by

k “
Y

k0 ` log2p
?
wh{224q

]

. (2.9)

Intuitively, Equation (2.9) means that if the RoI’s scale becomes smaller (say, 1/2 of 224),

it should be mapped into a finer-resolution level (say, k “ 3). Through this operation, the

model extracts each RoI’s information in a similar scale to feed into the GNH. For more

implementation detail, we refer readers to [86].

Note that the dataset we have only provides pixel-level annotations. To extract the

bounding box of each RoI on the fly, we pick the smallest box that encapsulates all the

pixels of the mask. This makes it easy to apply certain image augmentations, such as image

rotation, scaling, etc., in the pre-processing step.

2.3.2 Results and Discussions

We first discuss quantitative results, which are shown in Table 2.2. We show the averaged

performance (measured by OPA, SMA and mIOU) of our proposed method as well as of

different baseline methods on our dataset. We then show the results of ablation studies that

analyze the effect of adding the ENH and CRF to our framework.

2.3.2.1 5-fold Cross Validation

For our tile-based model evaluation, the full 513 image tileset was randomly divided into 5

non-overlapping cross validation folds. During training, we observed quick convergence when

using pre-trained weights trained on MS COCO dataset. Table 2.2 (Row 3) and Figure 2.4

show the performance of our model. Our model achieves 79.56% mIOU, 88.78%SMA, and

89.40% OPA among the four classes. In these four classes, Path R-CNN has a relatively

good performance in “stroma”, “benign”, and “high-grade” classification. However, it only

achieves 79.54% IOU for “low-grade”. This is because of the large appearance variance of

“low-grade” glands. In “low-grade”, the glands differ in size and shape, and are often long
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Table 2.2: Model performance on segmenting prostate histological images as “Stroma” (BG),

“Benign” (BN), “Low-Grade” (LG), and “High-Grade” (HG).

JBG JBN JLG JHG mIOU OPA SMA

Handcrafted [30] 59.5% 35.2% 49.5%1 N/A 48.1% N/A N/A

Multi-Scale U-Net [79] 82.42% 72.13% 58.70% 78.38% 72.91% 87.30% 86.04%

FCN-8s [52] N/A N/A N/A N/A 75.9% 87.3% N/A

Path R-CNN 83.14% 83.87% 71.54% 79.69% 79.56% 89.40% 88.78%

Path R-CNN w/o ENH 73.26% 75.71% 71.13% 71.57% 72.91% 84.13% 86.19%

Path R-CNN w/o CRF 82.94% 83.63% 71.32% 79.48% 79.34% 89.26% 88.70%

and/or angular. They are usually micro-glandular, however, some may be medium to large

in size. This size and shape variation can be easily seen in the second column of Figure 2.4,

where “low-grade” glands are shown by the green color.

2.3.2.2 Model Comparison

We compared our model with several baseline models. For the standard and multi-scale

U-Net models, pixel-wise confusion matrices were summed across all 5 folds. Results from

a support vector machine and random forest model based on handcrafted features [30] are

also reported in Table 2.2. Note that the IOU of the random forest model for “Low-Grade”

class is calculated by combining “Low-Grade” and “High-Grade” together, as done in their

paper. Our proposed Path R-CNN achieved the highest performance in both the single

class evaluation and the four class mIOU. We credit the performance improvement to the

following five differences between our model and the baseline models. First, we adopted a

two-stage approach in the left branch. Using the recently popular concept of neural networks

with “attention” mechanisms, the RPN module (1st stage) tells the GNH module (2nd stage)

where to focus. Second, compared to previous efforts that used a simple segmentation mask

as the ground truth label, we extracted and provided more information (cancer ROI location,
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Figure 2.4: Path R-CNN model results. (Left Column): Original histological image tiles

stained by H&E. (Middle Left Column): Slides annotated by pathologist experts served

as the ground truth to train Path R-CNN. (Middle Right Column): Multi-Scale U-Net

Predictions. (Right Column): Path R-CNN Predictions.
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shape, and aggressiveness) to the network by using a multi-task framework. Training different

tasks simultaneously using the GNH module helped regularize the network. Third, by adding

the ENH to the framework, we solved the issue of models commonly predicting cancer areas

in images consisting entirely of stroma, which helped boost performance by a large margin.

Fourth, we used a large neural network, ResNet, for image feature extraction. ResNet was

able to take advantage of a large number of parameters while avoiding the degradation

problem [45]. Fifth, the GNH decouples the segmentation task and classification task, which

proved to be key in boosting model performance [44].

2.3.2.3 ENH Effect

Here, we analyze the important role that the ENH played in our system.

We first formulated our network as a multi-task framework that minimizes a multi-

task loss function (Equation 2.2) simultaneously. However, this formulation did not yield

substantial improvement over the baseline model [79]. We hypothesize two possible reasons

for this: 1) The objectness prediction loss shown in Equation (2.1) for ENH, which is a per-

image loss, is not within the same scale as the other losses, and 2) The ENH might interfere

with the GNH in a complex manner that lowers the performance of every task when trained

simultaneously. To solve this problem, we adopt a two-stage training approach as stated in

Section 2.2.3.4 under the assumption that epithelial cell detection is a relatively simple task.

To measure the performance of the ENH, we calculated the area under the curve (AUC)

of the receiver operating characteristic (ROC) curve using the same 5-fold cross-validation

method described previously. The ENH had superb performance, with an AUC of 0.9984˘

1.329e-3. This result demonstrates that epithelial cell detection can be performed robustly

using the simple network structure of the ENH.

We also demonstrate the mIOU results without the ENH in Row 5 of Table 2.2 and

the first two rows of Figure 2.5. By comparing the results of Row 4 and Row 5 in Table

1The previous model by Gertych, et al . [30] only addressed three class segmentation by combining G3
and G4 together.
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Figure 2.5: Effectiveness of adding the ENH and CRF to our proposed Path R-CNN. The

first two rows show two examples to demonstrate the effectiveness of the ENH. The last two

rows show two additional examples to demonstrate the effectiveness of adding the CRF.
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2.2, we see that the ENH boosts the segmentation performance by a large margin. This is

mainly because of the trade-off between objectness prediction accuracy and the segmentation

accuracy in our model settings. Without ENH, if we want our system to have a high precision

that minimizes failure to detect potential epithelial areas, we need to lower the detection

threshold. This will give us a model that is intended to predict epithelial cells more often

even in an image that is full of stroma; thus the performance will be reduced dramatically.

This can been observed in the first two rows of Figure 2.5. In the last column, we see that the

model is prone to predict ROIs in large areas of stroma. Thus, we conclude that the ENH is

crucial for achieving good performance in our system. Additional rationale and advantages

of the ENH are discussed in the Supplementary Information.

2.3.2.4 Post-Processing using CRF

Our results using the CRF show that adding the method helps remove unnatural boundaries

created by stitching, as shown in last two rows of Figure 2.5. The red arrows in the figure

(Row 3 and 4) indicate the unnatural boundaries output by the stitching process. After

CRF post-processing, we observe these unnatural boundaries are removed. The CRF also

helps improve mIOU slightly, as shown in Row 6 of Table 2.2.

2.4 Limitations and Future Work

Here, we discuss some limitations of our work and provide potential research directions that

could help address these limitations.

We note that the 5-fold validation used in our experiments is not a patient-wise validation.

Unfortunately, we did not have patient-level information with which to perform a more

rigorous patient-level stratification. This might result in a positive bias since a cancer can

look similar in tiles within the same patient, especially in tiles that are spatially close to one

another. However, we argue that relative model comparisons in this work are fair as we used

the exactly same train-test data split as in [52] across all models.
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Additional careful tuning of the loss scale of Lcls, Lbox, Lmask, Lobj could allow all training

to happen simultaneously (rather than in two stages) by achieving a better balance of trade-

offs between the losses. In this case, a single end-to-end training process could be achieved

for the system.

Another area for potential improvement is the “RoIAlign” layer. The “RoIAlign” layer

[44] extracts a small feature map from the corresponding feature pyramid layer for each RoI

right before the network head by using Equation 2.9. It results in the loss of some scale

information which might be important for histopathology. In particular, this information

might be helpful for the Gleason grading task as different sizes of glands can be categorized

into levels in the Gleason system. Therefore, incorporating scale information in the GNH

might be helpful to improve the system’s performance.

Finally, we re-examined those individual images upon which our system performed worst.

We found in some of these images that there were intrinsic difficulties that even expert

pathologists might not agree upon. If we were to treat our model as another pathologist,

some experts might agree with its predictions while others might not. This observation

leads to bigger questions: how do we best form a “Doctor-AI Ecosystem”? How might the

experts’ annotations affect the training of computer systems? How do our computer systems’

performance affect doctors’ decisions in practice? And what is a good criterion that we can

use to tell if computer systems are trustworthy enough to make their diagnosis alone [129].

Those are the questions we need to answer in the future.

2.5 Conclusions

In this chapter, we present a novel framework that achieved state-of-the-art performance in

epithelial cell detection and Gleason grading based on histological images. We adopted a two-

stage model, R-CNN, to help the network focus on regions that need a careful inspection. By

adding an Epithelial Network Head (EHN), our model performance was boosted by detecting

epithelial cells and predicting Gleason grades simultaneously with little additional overhead.
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We also employed a fully connected conditional random field (CRF) as a post-processing

step to compensate for the artifacts caused by the system. Extensive experiments were

conducted to validate the robustness of our method and the effectiveness of each module in

our model. We envision that our method would help the pathologist to make the diagnosis

more efficiently in the near future.
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CHAPTER 3

Initial Exploration on Semi-supervised Learning Using

Generative Adversarial Network

3.1 Introduction

In this chapter, we start to move our focus to semi-supervised learning (SSL). In particular,

we investigate semi-supervised learning methods based on generative adversarial networks

(GANs), which have received much attention. Among them, two distinct approaches have

achieved competitive results on a variety of benchmark datasets. Bad GAN learns a clas-

sifier with unrealistic samples distributed on the complement of the support of the input

data. Conversely, Triple GAN consists of a three-player game that tries to leverage good

generated samples to boost classification results. In this chapter, we perform a comprehen-

sive comparison of these two approaches on different benchmark datasets. We demonstrate

their different properties on image generation, and sensitivity to the amount of labeled data

provided. By comprehensively comparing these two methods, we hope to shed light for our

GAN-based semi-supervised learning in the next chapter.

3.1.1 Motivation

Semi-supervised learning (SSL) aims to make use of large amounts of unlabeled data to

boost model performance, typically when obtaining labeled data is expensive and time-

consuming. Various semi-supervised learning methods have been proposed using deep learn-

ing and proven to be successful on several standard benchmarks. Weston et al . [138] em-

ployed a manifold embedding technique using the pre-constructed graph of unlabeled data;
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Rasmus et al . [107] used a specially designed auto-encoder to extract essential features for

classification; Kingma and Welling [63] developed a variational auto encoder in the context

of semi-supervised learning by maximizing the variational lower bound of both labeled and

unlabeled data; Miyato et al . [97] proposed virtual adversarial training (VAT) that tied to

find a deep classifier, which had a good prediction accuracy on training data and meanwhile

was less sensitive to data perturbation towards the adversarial direction.

In recent years, generative adversarial networks (GANs) [37], have demonstrated their

capability in SSL frameworks [16, 19, 29, 71, 75, 83, 113]. GANs are a powerful class of deep

generative models that are able to model data distributions over natural images [95, 106].

Salimans et al . first proposed to use GANs to solve a pK ` 1q-class classification problem,

where the dataset contained K class originally and the additional pK ` 1qth class consisted

of the synthetic images generated by the GAN’s generator. Later on, Li et al . [16] realized

that the generator and discriminator in [113] may not be optimal at the same time (i.e.,

the discriminator was able to achieve good performance in SSL, while the generator may

generate visually unrealistic images). They proposed a three-player game (Triple-GAN) to

simultaneously achieve good classification results and obtained a good image generator. Dai

et al . [19] realized the same problem, but instead gave theoretical justifications of why using

bad samples from the generator was able to boost SSL performance. Their model is called

Bad GAN, which achieves state-of-the-art performance on multiple benchmark datasets.

Another line of work focused on manifold regularization [7]. Kumar et al . [71] estimated

the manifold gradients at input data points and added an additional regularization term to

a GAN, which promoted invariance of the discriminator to all directions in the data space.

Lecouat et al . [75] performed manifold regularization by approximating the Laplacian norm

that was easily computed within a GAN and achieved competitive results.

In this chapter, we focus on two GAN-based SSL models, Triple GAN and Bad GAN,

and perform a comprehensive comparison between them. For simplicity, we refer to Triple

GAN as Good GAN in contrast to Bad GAN.
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Figure 3.1: Network architecture of Bad GAN (a) and Good GAN (b). Bad GAN (a) consists

of two parts: a generator G aims to generates “bad” samples, and a discriminator/classifier

D/C that distinguishes real and fake samples and put the labeled samples into the right

classes; Good GAN (b) consists of three parts: two conditional networks G and C that

generate pseudo labels given real data and pseudo data given real labels respectively, and

a separate discriminator D that distinguish the generated data-label pair from the real

data-label pair.

3.1.2 Related Works

3.1.2.1 Bad GAN

Suppose we have a classification problem that requires classifying a data point x into one ofK

possible classes. A standard classifier takes in x as input and outputs a K-dimensional vector

of logits tl1, ..., lKu. Salimens et al . [113] extend the standard classifier C by simply adding

samples from the GAN generator G to the dataset, labeling them as a new “generated” class

y “ K ` 1, and correspondingly increasing the dimension of C output from K to K ` 1.

The loss function LC{D for training C (i.e., the extended discriminator D from the GAN’s
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perspective) then becomes

LC/D “ Lsupervised ` Lunsupervised

Lsupervised “ E
x,y„plpx,yq

r´ logppC{Dpy|x, y ă K ` 1qqs

Lunsupervised “ E
x„pupxq

r´ logp1´ pC{Dpy “ K ` 1|xqqs

` E
x„pgpxq

r´ logppC{Dpy “ K ` 1|xqqs

(3.1)

The supervised loss term Lsupervised is a traditional cross-entropy loss that is applied to

labeled data px, yq „ plpx, yq. The unsupervised loss requires C/D to put the synthetic

data from generator x „ pgpxq into the pK ` 1qth class, while putting the unlabeled data

x „ pupxq into the real K classes. For the generator, [113] found feature matching loss in Eq.

3.2 is the best in practice, though they generated visually unrealistic images. The feature

matching loss is,

LG “

›

›

›

›

E
x„pu

pfpxqq ´ E
zg„pzpzq

pfpGpzgqqq

›

›

›

›

2

2

(3.2)

where zg „ pzpzq is drawn from a simple distribution such as uniform.

On the basis of this formulation, Dai et al . [19] give a theoretical justification on why

the visually unrealistic images (i.e., “bad” samples) from the generator could help with SSL.

Loosely speaking, the carefully generated “bad” samples along with the loss function design

in Eq. 3.1 could force C ’s decision boundary to lie between the data manifolds of different

classes, which in turn improves generalization of the classifier. Based on this analysis, they

propose a Bad GAN model that learns a bad generator by explicitly adding a penalty term

to generate “bad” samples. Their objective function of the generator becomes:

LG “ ´Hrpgpxqs ` E
x„pgpxq

plog pptpxq Irpptpxq ą εs

`

›

›

›

›

E
x„pupxq

pfpxqq ´ E
zg„pzpzq

pfpGpzgqqq

›

›

›

›

2

2

(3.3)
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where the first term measures the negative entropy of the generated samples and tries to

avoid collapsing while increasing the coverage of the generator. The second term explicitly

penalizes generated samples that are in high density areas by using a pre-trained model, and

the third term is the same feature matching term as in Eq. 3.2.

3.1.2.2 Good GAN

Li et al . [16] also noticed the same problem in [113] as the generator and the discriminator

have incompatible loss functions, but took a different approach to tackling this issue. In-

tuitively, assume the generator can generate good samples in the original settings of [113],

the discriminator should identify these samples as fake samples as well as predict the correct

class for the generated samples. To address the problem, [16] present a three-player game

called Triple-GAN that consists of a generator G, a discriminator D, and a separate classifier

C. C and D are two conditional networks that generate pseudo labels given real data and

pseudo data given real labels respectively. To jointly evaluate the quality of the samples

from the two conditional networks, a single discriminator D is used to distinguish whether

a data–label pair is from the real labeled dataset or not. We refer this model as Good GAN

because one of the aims for this formulation is to obtain a good generator.

The authors prove that instead of competing equilibrium states as in [113], Good GAN

has the unique global optimum for both C and G, i.e., ppx, yq “ pgpx, yq “ pcpx, yq, the

three joint distributions match one another. In other words, a good classifier will result in a

good generator and vice versa. Furthermore, Good GAN is trained using the REINFORCE

algorithm, in which it generates pseudo labels through C for some unlabeled data and uses

these pairs as positive samples to feed into D. This is a key to the success of the model, as

one of the crucial problems of SSL is the limited size of the labeled data. Figure 3.1 shows

the network architecture of Good GAN and Bad GAN.
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3.1.3 Contributions

In this chapter, we systematically and extensively compared two GAN-based SSL methods,

Good GAN and Bad GAN, by applying these two models with commonly-used benchmark

datasets. As both of models attempt to solve a similar issue in the original setting [113] but

are motivated by dissimilar perspectives, we believe that our comparison will provide insight

for future SSL research, including our proposed UGAN model in the next chapter.

3.1.4 Organizations

The rest of the chapter is organized as follows. In Section 3.2, we show the network architec-

ture we employed, benchmark datasets we used, and hyperparameters we selected in order

to perform a fair comparison between these two models; in Section 3.3, we demonstrate our

comparison results and discuss several important aspects we found for these two models; we

conclude this chapter in Section 3.4.

3.2 Methods

3.2.1 Network Architecture

To perform a fair comparison between Good GAN and Bad GAN, we use the same net-

work architecture for the generator G and the classifier C in both models. We follow the

architecture closely in [16] to set up the additional discriminator D in Good GAN. Both of

them use Leaky-Relu activation and weight normalization to ease the difficulty of GAN’s

training. Implementing them using same architecture ideally avoids the possibility of using

an architecture that is custom-tailored to work well with one or the other. Detailed model

architectures can be found in the Appendix B.1.
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3.2.2 Datasets

Using the above-defined network architectures, we compare the two models on the widely

adopted MNIST [77], SVHN [99], and CIFAR10 [69] datasets. MNIST consists of 50,000

training samples, 10,000 validation samples, and 10,000 testing samples of handwritten digits

of size 28ˆ 28. SVHN consists of 73,257 training samples and 26,032 testing samples. Each

sample is a colored image of size 32 ˆ 32, containing a sequence of digits with various

backgrounds. CIFAR10 consists of colored images distributed across 10 general classes –

airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. It contains 50,000

training samples and 10,000 testing samples of size 32 ˆ 32. Following [16], we reserve

5,000 training samples from SVHN and CIFAR10 for validation if needed. For our CIFAR10

experiment, we perform zero-based component analysis (ZCA) [73] as suggested in [16] for

the input of C, but still generate and estimate the raw images using G and D.

We perform an extensive investigation by varying the amount of labeled data. Following

common practice, this is done by throwing away different amounts of the underlying labeled

dataset [104,112,113,132]. The labeled data used for training are randomly selected stratified

samples unless otherwise specified. We perform our experiments on setups with 20, 50, 100,

and 200 labeled examples in MNIST, 500, 1000, and 2000 labeled examples in SVHN, and

1000, 2000, 400, 8000 examples in CIFAR10.

3.2.3 Hyperparameter Selection

For the hyperparameter selection such as learning rate and beta for Adam optimization,

and the coefficient for each cost function term, we closely follow [16, 19]. In addition, we

perform extensive study of the effects of batch size on performance for Bad GAN. As reported

by [75], Bad GAN training is sensitive to training batch size, and thus we vary batch size in

the training phase and compare their final performances on MNIST and SVHN.

38



Table 3.1: Test accuracy on semi-supervised MNIST. Results are averaged over 10 runs. *

denotes the special selection of labeled data. See details in Section 3.3.3.

Model
Test accuracy for

a given number of labeled samples

20 50 100 200

Bad GAN [19] - - 99.21˘ 0.01% -

Triple GAN [16] 95.19˘ 4.95% 98.44˘ 0.72% 99.09˘ 0.58% 99.33˘ 0.16%

Bad GAN (ours) 68.12˘ 0.60% 96.24˘ 0.16% 99.17˘ 0.03% 99.20˘ 0.03%

Good GAN (ours) 95.93˘ 4.45%˚ 98.68˘ 1.12% 99.07˘ 0.46% 99.17˘ 0.08%

Table 3.2: Test accuracy on semi-supervised SVHN. Results are averaged over 10 runs.

Model
Test accuracy for

a given number of labeled samples

500 1000 2000

Bad GAN [19] - 95.75˘ 0.03% -

Triple GAN [16] - 94.23˘ 0.17% -

Bad GAN (ours) 94.21˘ 0.45% 95.32˘ 0.07% 95.47˘ 0.39%

Good GAN (ours) 94.67˘ 0.12% 95.30˘ 0.38% 95.37˘ 0.09%

Table 3.3: Test accuracy on semi-supervised CIFAR10. Results are averaged over 10 runs.

Model
Test accuracy for

a given number of labeled samples

1000 2000 4000 8000

Bad GAN [19] - - 85.59˘ 0.03% -

Triple GAN [16] - - 83.01˘ 0.36% -

Bad GAN (ours) 77.58˘ 0.17% 81.36˘ 0.08% 82.89˘ 0.13% 85.47˘ 0.10%

Good GAN (ours) 81.08˘ 0.57% 81.79˘ 0.37% 82.82˘ 0.41% 85.37˘ 0.18%
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3.3 Experimental Results and Discussion

We implement Good GAN based on Tensorflow 1.10 [31] and Bad GAN based on Pytorch

1.0 [103]. The generated images from gG is not applied until the number of epochs reach a

threshold that gG could generate reliable image-lable pairs. We choose 200 in all three cases.

All of the other hyperparameters including initial learning rate, maximum epoch number,

relative weights and parameters in Adam [62] are fixed according to [16,19,113] across all of

the experiments.

3.3.1 Classification

We report our classification accuracy on the test set in Table 3.1, Table 3.2 and Table 3.3 for

MNIST, SVNH and CIFAR10, respectively, along with the results reported in the original

papers. The similarity of our results to those reported in the original papers suggests that our

reproduced models are accurate instantiations of Good GAN and Bad GAN. Furthermore,

we perform extensive study by varying the amount of labeled data and observe that Good

GAN and Bad GAN behave quite differently under various circumstances.

First, with a medium amount of labeled data (e.g., MNIST with 100 or 200 labeled data,

SVHN with more than 2000 labeled data, or CIFAR10 with more than 2000 labeled data),

Bad GAN performs better than Good GAN. In fact, to the best of our knowledge, Bad GAN

achieves the current state-of-the-art performance on those benchmark datasets. However,

with low amounts of labeled data, Good GAN performs better, which demonstrates that

Good GAN is less sensitive to the amount of labeled data than Bad GAN. One possible

explanation is due to the use of the REINFORCE algorithm in Good GAN, because it

generates pseudo labels through C for some unlabeled data and uses these pairs as positive

samples of D. Since C converges quickly, this trick provides a clever way to enable the

generator to explore a much larger data manifold that includes both the labeled and unlabeled

data information. In other words, the classifier is able to provide pseudo labels for the

unlabeled data, while the discriminator will judge if the pseudo labels are reliable or not
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Figure 3.2: Generated images from both Bad GAN (top) and Good GAN (bottom). The

images generated from Good GAN are produced by varying the class label y in the vertical

axis and the latent vector z in the horizontal axis.

throughout the training. This in return will affect the evolution of the generator, which will

take advantage of the unlabeled data to generate good images. Generated good image-label

pairs that implicitly contain unlabeled data information will eventually benefit the classifier.

This works extremely well for relatively simple datasets like MNIST, as Good GAN is able

to model the class-awarded data distribution through weak supervision. On the other hand,

Bad GAN yields decreased performance when the amount of labeled data is low, as it does

not have any mechanism to augment the information that could be used to train the classifier

in this case.

3.3.2 Generated Images

In Figure 3.2, we compare the quality of images generated by Good GAN and Bad GAN. As

can be seen, Good GAN is able to generate clear images and meaningful samples conditioned
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Figure 3.3: Class-conditional latent space interpolation. We first sample two random latent

vectors z and linearly interpolate them. Then we map these vectors to the image space

conditioned on each class y. The vertical axis is the direction for latent vector interpolation

while the horizontal axis is the direction for varying the class labels.

on class labels, while Bad GAN generates “bad” images that look like a fusion of samples

from different classes. In addition, Good GAN is able to disentangle classes and styles. In

Figure 3.2 bottom, we vary the class label y in the vertical axis and the latent vectors z in the

horizontal axis to generate the images. As shown in the figure, the latent vector z encodes

meaningful physical appearances, such as scale, intensity, orientation, color and so on, while

the label y controls the semantics of the generated images. Furthermore, Good-GAN can

transition smoothly from one style to another with different visual factors without losing the

label information as shown in Figure 3.3. This proves that Good GAN can learn meaningful

latent space representations instead of simply memorizing the training data.

3.3.3 Importance of Selection of Labeled Data

Another interesting observation is that the selection of labeled data plays a crucial role for

training the Good GAN model in the low labeled data scenario. As mentioned above, the

labeled data used for the training are randomly selected stratified samples, except for the

MNIST-20 case. In this case, we found selecting representative labeled data to train is the

key to achieving good performance. The reported accuracy in Table 3.1 is averaged over
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(a) (b)

Figure 3.4: Two-runs of Good GAN model on MNIST dataset. (a) A single run where we

randomly select 20 labeled data. The generator generates a lot of wrong images conditioned

on the label and the classifier has lower performance. (b) Another run where we manually

select 20 representative labeled examples. This time the generator is able to generate correct

images, and the classifier achieves good classification performance.

10 runs where we manually selected different representative labeled data in a stratified way.

Figure 3.4 (a) shows a single run that uses randomly selected labeled data and does not

achieve good results, while Figure 3.4 (b) shows another run that is able to achieve higher

accuracy. The failure of the first run is due to the initial selections for digit 4 being similar

to 9, causing the generator to generate many 9s when conditioned on label 4. The generator

also generates low-quality images. We also report that with a random selection of 20 labeled

data, the Good GAN was able to achieve 76.78˘ 6.47% accuracy over 3 runs.

3.3.4 Importance of Batch Size

We found that batch size significantly affects the final training results, in both Good GAN

and Bad GAN. To investigate the effect of batch size on Bad GAN performance, we performed

experiments with different batch sizes on MNIST (with 100 labeled samples) and SVHN (with

1000 labeled samples) using Bad GAN. As shown in Table 3.4, we empirically show that the

performance of Bad GAN is sensitive to training batch size, and the optimal performance

for each dataset is achieved with a batch size of 100.
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To further understand the effect of the batch size on Bad GAN training, we present the

generator loss with different batch sizes for MNIST and SVHN in Figure 3.5. The results

indicate that smaller batch sizes lead to larger generator loss in the final stage of training.

As that generator loss mainly depends on the first-order feature matching loss in Bad GAN,

an intuitive explanation could be that larger batch sizes reduce the variance of the sample

mean, allowing the generator to quickly approximate the entire training set. This leads to

smaller generator loss, especially when model training becomes more stable in the final stage.

As noted by [19], feature matching is performing distribution matching in a weak man-

ner, which could be significantly affected by batch size. On one extreme, when the batch

size is too small, the power of the generator in distribution matching is weak due to the

excessive generator loss. Generated samples are therefore more likely to diverge from the

manifold. Especially when data complexity increases, it is more difficult to minimize the

KL divergence between the generator distribution and a desired complement distribution in

Bad GAN, which could be one possible reason why model degradation is more significant on

SVHN when using 20 batch size. On the other extreme, larger batch size leads to smaller

generator loss, which comes with reduced diversity of generated samples. When the batch

size is too large, the small generator loss will lead to a collapsed generator which fails to gen-

erate diverse samples that cover complement manifolds. As a result, the decision boundary

between such missing manifolds becomes under-determined, which will also degrade model

performance. We plot Bad GAN performance under different batch sizes for MNIST and

SVHN in Appendix B.2.

Based on our experience, Good GAN is best when we use a large batch size. Intuitively, a

small batch size is not good for the REINFORCE algorithm adopted in Good GAN because

a single wrong prediction of the unlabeled data will have a big impact on the weight update

in each iteration. We perform Good GAN experiments on SVHN using different batch sizes.

The results are shown in Table 3.5. Empirically, we find that with small batch size, Good

GAN is not able to generate good image-label pairs, hence the generated image-label pairs

even hurt the classifier’s performance when we use them to train. (See in Appendix B.2).
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Figure 3.5: Batch size effect on generator loss in Bad GAN. The experiments are performed

on (a) MNIST using 100 labeled samples and (b) SVHN using 1000 labeled samples.
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Table 3.4: Bad GAN performance versus batch size on MNIST and SVHN. The results are

achieved using 100 labeled samples in MNIST and 1000 labeled samples in SVHN.

Batch size 20 50 100 200 400

MNIST-100 98.90˘ 0.04% 99.10˘ 0.03% 99.17˘ 0.03% 99.16˘ 0.03% 98.89˘ 0.02%

SVHN-1000 93.35˘ 0.05% 95.29˘ 0.03% 95.56˘ 0.02% 95.19˘ 0.02% 94.20˘ 0.04%

Table 3.5: Good GAN performance versus batch size on SVHN. The results are achieved

using 1000 labeled samples in SVHN.

Batch size 20 50 100

SVHN-1000 92.47% 92.59% 95.30%

3.4 Conclusions

In this chapter, we systematically and extensively compared two GAN-based SSL methods,

Good GAN and Bad GAN, by applying these two models with commonly-used benchmark

datasets. We illustrate the distinct characteristics of the images they generated, as well as

each model’s sensitivity to varying the amount of labeled data used for training. In the

case of low amounts of labeled data, model performance is contingent on the selection of

labeled samples; that is, selecting non-representative samples results in generating incorrect

image-label pairs and deteriorating classification performance. Furthermore, selecting the

optimal batch size is crucial to achieve good results in both models. Notably, Good GAN

and Bad GAN models can be used for complementary purposes; Good GAN generates good

image-label pairs to train the classifier, while Bad GAN generates samples that force the

decision boundary between data manifold of different classes. We envision that combining

these two methods should yield further performance improvement in SSL.
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CHAPTER 4

Semi-supervised Learning using Adversarial Training

with Good and Bad Samples

4.1 Introduction

In this chapter, we investigate semi-supervised learning (SSL) for image classification using

adversarial training. Previous results have illustrated that generative adversarial networks

(GANs) can be used for multiple purposes in SSL . Triple-GAN, which aims to jointly opti-

mize model components by incorporating three players, generates suitable image-label pairs

to compensate for the lack of labeled data in SSL with improved benchmark performance.

Conversely, Bad (or complementary) GAN, optimizes generation to produce complementary

data-label pairs and force a classifier’s decision boundary to lie between data manifolds.

Although it generally outperforms Triple-GAN, Bad GAN is highly sensitive to the amount

of labeled data used for training. Unifying these two approaches, we present unified-GAN

(UGAN), a novel framework that enables a classifier to simultaneously learn from both good

and bad samples through adversarial training. We perform extensive experiments on various

datasets and demonstrate that UGAN: 1) achieves competitive performance among other

GAN-based models, and 2) is robust to variations in the amount of labeled data used for

training.

4.1.1 Motivation

With recent progress in deep learning, large labeled training datasets are becoming in-

creasingly important [2, 20, 68, 87]. However, labeling such datasets is expensive and time-
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consuming. Semi-supervised learning (SSL) aims to leverage large amounts of unlabeled data

to boost model performance. Various SSL methods have been proposed using deep learning

and proven to be successful. Weston et al . [138] employed a manifold embedding technique

using a pre-constructed graph of unlabeled data; Rasmus et al . [107] used a specially de-

signed auto-encoder to extract essential features for classification; Kingma and Welling [63]

developed a variational auto encoder by maximizing the variational lower bound of both

labeled and unlabeled data; Miyato et al . [97] proposed virtual adversarial training (VAT),

which helped find a deep classifier that had a good prediction accuracy and was less sensitive

to data perturbation towards the adversarial direction.

Recently, generative adversarial networks (GANs) [37], have demonstrated their capabil-

ity in SSL frameworks [16,19,29,71,75,83,113]. GANs are a powerful class of deep generative

models that can represent data distributions over natural images [95, 106]. Specifically, a

GAN is formulated as a two-player game, where the generator G takes a random vector z

as input and produces a sample Gpzq in the data space, while the discriminator D identifies

whether a certain sample comes from the true data distribution ppxq or the generator. As an

extension, Salimans et al . [113] first proposed feature-matching GANs (FM-GANs) to solve

an SSL problem. Suppose we have a classification problem that requires classifying a data

point x into one of K possible classes. A standard classifier takes x as input and outputs a

K-dimensional vector of logits tl1, ..., lKu. Salimans et al . extended the standard classifier by

simply adding samples from a GAN’s G to the dataset, labeling them as a new “generated”

class y “ K ` 1, and correspondingly increasing the classifier’s output dimension from K

to K ` 1. They also found that using feature matching loss in G improved classification

performance. The pK`1q-class discrimination objective with feature matching loss in G led

to strong empirical results.

Empirically, FM-GANs demonstrate good performance on SSL classification tasks; how-

ever, the generated images from the generator are low-quality, i.e., the generator may create

visually unrealistic images. Li et al . [16] realized that the generator and the discriminator

in FM-GANs may not be optimal at the same time. Intuitively, assuming the generator
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can create good samples, the discriminator should identify these samples as fake samples

as well as predict the correct class for them. To address this problem, they proposed a

three-player game, Triple-GAN, to simultaneously achieve superior classification results and

obtain a good image generator. Meanwhile, Dai et al . [19] realized the same problem of the

generator, but instead gave theoretical justifications of why using “bad” samples from the

generator could boost SSL performance. Loosely speaking, they defined samples that form a

complement set of the true data distribution in feature space as “bad” samples. Their model

was called Bad GAN, which achieved better performance on multiple benchmark datasets

compared to Triple-GAN.

Most recently, Li et al . [84] performed a comprehensive comparison between Triple-GAN

and Bad GAN. They illustrated the distinct characteristics of the images the models gener-

ated, as well as each model’s sensitivity to various amount of labeled data used for training.

Furthermore, they showed that in the case of low amounts of labeled data, Bad GAN’s per-

formance decreased faster than Triple-GAN, and both models’ performance were contingent

on the selection of labeled samples; in other words, selecting non-representative samples

would deteriorate the classification performance.

4.1.2 Related Work

Besides the aforementioned FM-GAN [113], Triple-GAN [16], and Bad GAN [19], several

previous studies have also incorporated the idea of adversarial training in SSL. CatGAN

[127] substituted the binary discriminator in standard GAN with a multi-class classifier

and trained both the generator and discriminator using information theoretical criteria on

unlabeled data. Virtual adversarial training (VAT) [97] effectively smoothed the classifier

output distribution by seeking virtual adversarial samples. In adversarial learned inference

[23], the inference network approximated the posterior of latent variables given true data in

an unsupervised manner. Another line of work has focused on manifold regularization [7].

Kumar et al . [71] estimated the manifold gradients at input data points and added an

additional regularization term to a GAN, which promoted invariance of the discriminator

49



to all directions in the data space. Lecouat et al . [75] achieved competitive results by

performing manifold regularization using the approximate Laplacian norm that was easily

computed within a GAN.

Apart from adversarial training, there have been other efforts in SSL recently. One class

of the most successful algorithms in SSL are based on pseudo labels [53, 73, 105, 107, 132].

Pseudo labels are artificial labels generated by the model, which play the same role as labels

of manually annotated data. Γ model [107] evaluated unlabelled data with and without

noise, and applied a consistency cost between the two predictions. It assumed a dual role as

a teacher and a student. The teacher generated targets of unlabeled data, which were then

used to train a student. Since the model itself generated the targets, they could be incorrect.

To alleviate the problem, Π model [73] added noise at the inference time, and consequently a

noisy teacher could yield more accurate targets. Π model was further improved by Temporal

Ensembling [73], which maintained an exponential moving average (EMA) prediction for each

of the training examples. Consequently, the EMA prediction of each example was formed by

an ensemble of the model’s current version and those earlier versions that evaluated the same

example. This ensembling improved the quality of the predictions, and using the predictions

as teacher signals improved results. Mean Teacher [132] averaged model weights to form a

target-generating teacher model. Unlike Temporal Ensembling, Mean Teacher worked with

large datasets and on-line learning, which was able to improve the speed of learning and

classification accuracy simultaneously.

Our proposed UGAN is mainly inspired by Triple-GAN and Bad GAN. These models

can be used for complementary purposes. We restrict our discussion to GAN-based models

for most of this chapter. Nevertheless, it has a connection with those “teacher” models, as

will be seen in Section 4.2, our model provides a smart way to generate input-label pairs and

use them as teaching signals to improve the SSL results.
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4.1.3 Contributions

In this work, we present unified-GAN (UGAN), a semi-supervised learning framework that

unifies both good and bad generated samples and takes advantage of them through adver-

sarial training. Inspired by Triple-GAN and Bad GAN, we find that good and bad synthetic

samples can be used for complementary purposes. Generated good image-label pairs can

be used to train the classifier, while the bad samples can force the decision boundary to

be between the data manifold of different classes. Hence, we leverage both good and bad

generated samples in the proposed UGAN and achieve further performance improvement in

SSL. Overall, our main contributions of this chapter are: 1) we propose a novel SSL frame-

work, UGAN, which simultaneously trains a good and a bad generator through adversarial

training and takes advantage of both generated samples to boost SSL performance; 2) we

analyze our proposed UGAN, theoretically prove its global optimum, and additionally put

UGAN in the Expectation-Maximization (EM) framework and validate its non-increasing

divergence property; and 3) we do extensive experiments to show that UGAN can improve

upon Triple-GAN and Bad GAN classification results in SSL, and show the effectiveness of

the model with different amounts of labeled data.

4.1.4 Organization

The rest of the chapter is organized as follows. In Section 4.2, we present the problem

definition and outline our approach to solve it. The experiments and discussions are presented

in Section 4.3 followed by the limitations of the study in Section 4.4. Finally, Section 4.5

concludes the chapter.

4.2 Methods

To outline our approach, we consider the following SSL problem. Given a relatively small

labeled set pxl, ylq „ plpx, yq, where y P t1, 2, ¨ ¨ ¨, Ku is the label space for classification, and

a large unlabeled set xu „ pupxq, the goal is to utilize the large amount of unlabeled data
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Figure 4.1: Network architecture of UGAN. UGAN consists of four components: 1) a bad

generator, bG, generates “bad” samples; 2) two conditional networks, gG and C, that gen-

erate pseudo labels given real data, and pseudo data given real labels; and 3) a separate

discriminator, D, that distinguishes the generated data-label pair from the real data-label

pair. “CE” denotes the cross entropy loss for supervised learning, while “BCE” denotes the

binary cross entropy loss that distinguish the real data and fake data generated by bG.

to predict the labels y of the unseen samples. Suppose the true data distribution is denoted

as ppx, yq, we aim to obtain a classifier that can approximate the conditional distribution

pCpy|xq « ppy|xq. To achieve this, we will use an adversarial training process that enables

the classifier to learn from both good and bad samples. Specifically, a good generator is able

to generate good image-label pairs to train the classifier, while a bad generator generates

samples that force the classifier’s decision boundary between the data manifolds of different

classes. As will be shown, our model takes advantage of both good and bad synthetic samples,

and improves the SSL results in a wide range of labeled training data.

4.2.1 Adversarial Training Process with Four Players

Our model consists of four parts: 1) a good generator, gG, that characterizes the conditional

distribution pgGpx|yq « ppx|yq; 2) a bad generator, bG, that takes in a latent vector z and

outputs “bad” samples [19]; 3) a classifier, C, that characterizes the conditional distribution

pcpy|xq « ppy|xq; and 4) a discriminator, D, that distinguishes whether a pair of data px, yq

comes from the true distribution ppx, yq or not. All the components are parameterized as

neural networks, as shown in Figure 4.2(a).
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Figure 4.2: (a) Left: randomly selected data from datasets; mid: bG generated images;

right: gG generated images sampled by varying the class label y in the horizontal axis and

the latent vectors z in the vertical axis. (b) Class-conditional latent space interpolation.

The vertical axis is the direction for latent vector interpolation, while the horizontal axis for

varying the class labels.

We assume that the samples from both real data ppxq and real label ppyq can be easily

obtained.1 In our model, gG produces a pseudo input-label pair by first drawing y „ ppyq

and latent vector z „ ppzq (we use a uniform distribution for z in our experiments), and then

generating xgG „ pgGpx|y, zq. bG generates bad samples by transforming the latent vector

1In semi-supervised learning, ppxq is the empirical distribution of inputs and ppyq is assumed same to the
distribution of labels on labeled data, which is uniform in our experiments.
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z „ ppzq as in a traditional GAN to obtain xbG „ pbGpx|zq. C takes in four different types

of samples (i.e., labeled data, unlabeled data, samples from gG, and samples from bG) and

produces pseudo labels y for them following the conditional distribution pCpy|xq. For the

labeled data xl, and the gG generated samples xgG, we expect C to put them into the right

class (i.e., either the class yl of the labeled data xl, or the conditional labels y based on

which xgG are generated). For the generated samples from bG xbG „ pbGpx|zq, and unlabeled

data xu „ pupxq, we expect C to put them into the pK ` 1qth class (i.e. the “fake” class)

and one of the K classes of real data, respectively. Due to the fact that the softmax layer is

over-parameterized, we can still model C with K neurons at the output layer by modifying

the loss function (see details in Appendix C.1). D accepts the input-label pairs generated by

both C pxC , yCq „ ppxuqpCpy|xuq, and gG pxgG, ygGq „ ppyqpgGpx|yq, and the pairs from the

labeled data distribution pxl, ylq „ plpx, yq for judgement. D treats the labeled data pairs

as positive samples, while the pairs from both gG and C as negative. We refer to the loss

function of gG as2

LgG “ Ex,y„pgGpx,yqrlogp1´ pDpx, yqs (4.1)

The loss function of bG is

LbG “ ´HppbGpxqq

`
›

›Ex„pupxqpfpxqq ´ Ex„pbGpxqpfpxqq
›

›

2

2

(4.2)

where ´HppbGpxqq measures the negative entropy of bG generated samples. ´HppbGpxqq is

used to avoid collapsing while increasing the coverage of bG. The second term is feature

matching loss, where fpxq denotes a feature map of an intermediate layer of C. D’s loss

2In practice, we use LgG “ ´Ex,y„pgGpx,yqrlogppDpx, yqs to ease the training process [37].
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function becomes

LD “´ Ex,y„plpx,yqrlogppDpx, yqs

´
1

2
Ex,y„pgGpx,yqrlogp1´ pDpx, yqs

´
1

2
Ex,y„pCpx,yďKqrlogp1´ pDpx, yqs

(4.3)

where D treats the labeled data as positive samples, and the pseudo input-label pairs from

both gG and C as negative samples. Finally, the loss function of C consists of four compo-

nents,

LC1 “ ´Ex,y„plpx,yqrlogppCpy|x, y ď Kqs

LC2 “ ´Ex,y„pgGpx,yqrlogppCpy|x, y ď Kqs

LC3 “ ´Ex„pupxqrlogp1´ pCpy “ K ` 1|xqs

LC4 “ ´Ex„pbGpxqrlogppCpy “ K ` 1|xqs

(4.4)

and the total loss for C is

LC “ LC1 ` λ0LC2 ` λ1LC3 ` λ2LC4 (4.5)

where LC1 and LC2 denote the cross entropy loss for labeled and gG generated samples,

LC3 forces C to put the unlabeled data into real classes, while LC4 forces C to put the bG

generated samples into the “fake” class. λ0,1,2 is a hyperparameter used to balance each loss

component.

The model defined by (4.1)-(4.5) achieves its equilibrium if and only if ppx, yq “ pgGpx, yq “

pCpx, y ď Kq. In other words, incorporating the bad samples does not change the equilib-

rium point of Triple-GAN (see Section 4.2.2.1). Our model consists of three adversarial

parts: 1) gG tries to fool D by generating realistic images conditioned on label y; 2) C

tries to fool D by generating good labels for unlabeled images; and 3) bG tries to fool C by

generating images that are close to the data manifold. At convergence, D cannot distinguish

both pgGpx, yq and pCpx, yq from the true data distribution ppx, yq, which indicates that we

have obtained both a good gG and a good C. Bad samples from bG accelerate this process

and improve the generalization of C.
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One key problem of SSL is the limited amount of labeled data. A powerful D may mem-

orize the empirical distribution of the labeled data, and reject other types of samples from

the true data distribution. Limited labeled data also restricts gG to explore a larger space

of the true data distribution. To address this problem, we adopt the practical techniques

in Li et al . [16]. We generate pseudo labels through C for some unlabeled data and use

these pairs as positive samples of D. This introduces some bias to the target distribution

of D, but using the EM framework to analyze the training procedure (see Section 4.2.2.2),

we are able to prove the rationality of this choice. Moreover, since C converges quickly, this

operation provides a way to enable gG to explore a much larger data manifold that includes

both the labeled and unlabeled data information. As illustrated in Figure 4.2 (b), C is able

to provide pseudo labels for the unlabeled data, while D will judge if the pseudo labels are

reliable or not. This in return will affect the evolution of gG that will take advantage of the

unlabeled data to generate good images. Generated good image-label pairs that implicitly

contain unlabeled data information will eventually benefit C. This works extremely well for

relatively simple datasets like MNIST, and under the circumstance where only an extremely

low amount of labeled data is available.

4.2.2 Theoretical Analysis

We now give theoretical justification for our four-player game based on the loss functions

as mentioned above. We mainly focus on two important properties of our model: 1) the

global optimum of the game is the true distribution, which satisfies ppx, yq “ pgGpx, yq “

pCpx, y|y ď Kq; and 2) the KL divergence between the conditional density of C and the

true density, KLpppy|xq||pCpy|x, y ď Kqq, is non-increasing after each iteration when we

assume the maximum likelihood estimate (MLE) of C is obtained. A detailed proof of these

properties is provided in Appendix C.3.
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4.2.2.1 Global Optimum

We first show that the optimalD balances between the true data distribution and the mixture

distribution defined by C and gG, as summarized in Lemma 1.

Lemma 1. For any fixed C and gG, the optimal D of the game defined by loss functions

(4.1)-(4.4) is

D˚C,gG,bGpx, yq “
plpx, yq

plpx, yq ` p 1
2
px, yq

, (4.6)

where p 1
2
px, yq “ 1

2
pgGpx, yq `

1
2
pCpx, y|y ď Kq.

GivenD˚C,gG,bG, we can plug the optimalD˚ into (4.3) and get a value function V pC, gG, bGq.

VC,gG,bGpx, yq “ ´ Ex,y„plpx,yqrlogppD˚px, yqs

´
1

2
Ex,y„pgGpx,yqrlogp1´ pD˚px, yqs

´
1

2
Ex,y„pCpx,yďKqrlogp1´ pD˚px, yqs

“ ´ Ex,y„plpx,yqrlogp
pl

pl ` p1{2q
s

´
1

2
Ex,y„pgGpx,yqrlogp

p1{2
pl ` p1{2q

s

´
1

2
Ex,y„pCpx,yďKqrlogp

p1{2
pl ` p1{2q

s

(4.7)

Now the left problem is to maximize the V pC, gG, bGq, so that gG and C confuse D most.

For that, we have the following theorem:

Theorem 2. The global maximum of V pC, gG, bGq is achieved only when plpx, yq “ pgGpx, yq “

pCpx, y|y ď Kq.

From (4.7), it is easy to see the global maximum is achieved if and only if plpx, yq “

p1{2px, yq. By introducing the cross-entropy loss in (4.4) LC1, we enforce pCpx, y|y ď Kq “

plpx, yq. Therefore, the global optimality will achieve if and only if plpx, yq “ pgGpx, yq “

pCpx, y|y ď Kq. (See more details in Appendix C.3)

We now consider the case for pCpy “ K ` 1|xq with the following Corollary 2.1.
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Corollary 2.1. The optimal classifier C will have pCpy “ K ` 1|x „ pupxqq “ 0 and

pCpy “ K ` 1|x „ pbGpxqq “ 1.

Corollary 2.1 indicates that optimal C will put bG generated images into K ` 1 class

(i.e., “fake” class), while put unlabeled data into real classes.

4.2.2.2 Non-increasing Divergence Property

Our goal is to estimate the conditional distribution ppy|xq with a parameterized C modeled as

pθpy|x, y ď Kq. The objective function can be written as minimizing KLpppy|xq||pθpy|x, y ď

Kqq. In the SSL setting, we only have part of the labels y, so we can thus rewrite the

problem as minimizing KLpppyl|xq||pθpyl|x, y ď Kqq. One natural way to facilitate the model

performance is using the EM algorithm to first infer the label of xu and then update based

on the complete data [101]. In our four-player game, in addition to the predicted label yu

from unlabelled data xu, we further introduce pxgG, ygGq pairs from gG as latent variables,

denoted as Z “ txgG, ygG, yuu. We then interpret our mechanism from a variational view of

the EM algorithm to illustrate the non-increasing property of the KL divergence.

Property I. Chain rule of KL divergence:

KLpP pX,Zq||PθpX,Zqq “ KLpP pXq||PθpXqq

`Ex„P pXqrKLpP pZ|xq||PθpZ|xqqs.
(4.8)

By Property I, we can rewrite our objective function as:

min
θ

KLpppyl|xq||pθpyl|x, y ď Kqq “

min
θ

min
ppZ|xq

KLpppyl, Z|xq||pθpyl, Z|x, y ď Kqq,
(4.9)

which is an iterative minimization procedure. Following the EM algorithm, we have an E-

step and an M-step in UGAN. More specifically, for the E-step at the sth iteration, given

parameters θs of C, we have:

ppZ|xq “ pθspZ|xq “

pgGpxgG, ygG|xu, xl, yu, ylqpθspyu|xuq,
(4.10)
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which indicates the procedure that C first predicts labels for unlabelled data, and then

sends them to D and gG to generate good pseudo pairs pxgG, ygGq. After gathering the

latent variables, the M-step is:

θs`1 “ argminθKLpppyl, Z|xq||pθpyl, Z|x, y ď Kqq

“ argmaxθEpyl,Z|xq„f rlog pθpyl, Z|x, y ď Kqs,
(4.11)

where f “ pθspZ|xuqplpyl|xlq. This will result in θs`1 being the MLE based on the data

at current iteration s. By applying the EM mechanism, we can inherit its non-increasing

property which is stated in the following Corollary 2.2.

Corollary 2.2. If applying the iterative procedure described in (4.10) and (4.11), and the

exact maximization can be obtained at (4.11) for each iteration, then

KLpppyl|xq||pθs`1pyl|x, y ď Kqq ď

KLpppyl|xq||pθspyl|x, y ď Kqq
(4.12)

The non-increasing property guarantees that our classifier will be improved after each it-

eration under the ideal situation. Though we make some approximations during the training

process in practice, it still provides us a high-level justification on why the algorithm should

work.

4.3 Experiments and Discussion

We now present UGAN’s performance on MNIST [77], SVHN [99], and CIFAR10 [69]

datasets (see details of datasets in Appendix C.4). We implement our model based on

Tensorflow 1.10 [31] and optimize it on NVIDIA Titan X GPUs. The detailed architecture

can be found in Appendix C.5. The gG generated images are not applied until the num-

ber of epochs reaches a threshold such that gG can generate reliable image-lable pairs. For

MNIST and SVHN, we choose 200, while for CIFAR10 we choose 400. Batch size is an

important parameter that affects model performance [84]. In our experiments, we use 50 for

bG on MNIST and SVHN, 25 for bG on CIFAR10. For gG, we fix batch size as 100. All of
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the other hyperparameters including relative weights and parameters in Adam [62] are fixed

according to [16,19,113] across all of the experiments.

4.3.1 Classification

We report our classification accuracy, along with other GAN-based SSL methods, on bench-

mark datasets in Table 4.1. Our results show that UGAN consistently improves performance,

and achieves the best results on all of the datasets without the use of data augmentation,

such as rotation, flip, etc.

To understand our model’s behavior over different numbers of labeled data, we re-

implemented Triple-GAN and Bad GAN, and performed an extensive investigation by vary-

ing the amount of labeled data. Following common practice, this was done by omitting

different amounts of the underlying labeled dataset [104, 112, 113, 132]. The labeled data

used for training were randomly selected stratified samples unless otherwise specified. For

fair comparison, we used the same network architecture for each component in all models

(see Appendix C.5). Table 4.2 shows the results of the experiments on MNIST. The sim-

ilarity of our results to those reported in the original papers suggests that our reproduced

models are accurate instantiations of Triple-GAN and Bad GAN. We observe that with a

medium amount of labeled data (e.g., MNIST n “ 100), Bad GAN performs better than

Triple-GAN. However, with smaller amounts of labeled data, Triple-GAN performs better,

which demonstrates that it is less sensitive to the amount of labeled data than Bad GAN.

UGAN inherits the good properties from both of them, resulting in a constant improvement

across all cases (see results on SVHN and CIFAR10 in Appendix C.6). Another interest-

ing observation is that the selection of labeled data plays a crucial role in the low-labeled

data regime, that is, selecting representative labeled data with which to train is the key to

achieving good performance. This issue is further discussed in Appendix C.7.

To further validate that our model significantly improves the baseline model, we have

performed Welch’s t-test. We found that our model significantly improves Triple-GAN and

Bad-GAN with a maximum p-value in order of 1e-5 for both SVHN and CIFAR10 datasets.
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For the MNIST dataset, we have found that for some results, our model’s performance is

not significantly different form the literature, such as the Bad-GAN case with 100 labeled

samples. This is because the MNIST classification task is a relatively easy task, and the

previous study has already achieved very good performance. The small p-values for SVHN

and CIFAR10 have demonstrated that our model improves the baseline model significantly

on more complex datasets.

Table 4.1: Comparison with state-of-the-art methods on three benchmark datasets. Only

methods without data augmentation are included. Results are averaged over 10 runs and

shown in terms of mean accuracy ˘ standard deviation.

Methods MNIST n “ 100 SVHN n “ 1000 CIFAR10 n “ 4000

CatGAN [127] 98.09˘ 0.1% - 80.42˘ 0.46%

ALI [23] - 92.58˘ 0.65% 82.01˘ 1.62

VAT [97] 98.64% 93.17% 85.13%

Π Model [73] - 94.57˘ 0.25% 83.45˘ 0.29%

Γ Model [107] 99.11˘ 0.50% - 79.40˘ 0.47%

Mean Teacher [132] - 96.05˘ 0.19% 84.27˘ 0.31%

FM-GAN [113] 99.07˘ 0.07% 91.89˘ 1.3% 81.37˘ 2.32%

Triple-GAN [16] 99.09˘ 0.58% 94.23˘ 0.17% 83.01˘ 0.36%

Bad-GAN [19] 99.21˘ 0.10% 95.75˘ 0.03% 85.59˘ 0.30%

UGAN 99.21˘ 0.08% 96.49˘ 0.09% 85.66˘ 0.06%

4.3.2 Image Generation

UGAN is able to train a gG and a bG simultaneously (see an evolution of the generated

images in Appendix C.8). In Figure 4.2 (a), we show the images generated by gG and bG after

training. Our gG is able to generate clear images and meaningful samples conditioned on

class labels, while bG generates “bad” images that look like a fusion of samples from different

classes. We quantitatively evaluate generated samples on CIFAR10 via the inception score
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Table 4.2: Test accuracy on semi-supervised MNIST. Results are averaged over 10 runs and

shown in terms of mean accuracy ˘ standard deviation. ˚ denotes hand selection of labeled

data. : denotes our implementation of the model.

Model Test accuracy for a given number of labeled samples

20 50 100 200

FM-GAN [113] 83.23˘ 4.52% 97.79˘ 1.36% 99.07˘ 0.07% 99.10˘ 0.04%

Bad GAN [19] - - 99.21˘ 0.10% -

Triple-GAN [16] 95.19˘ 4.95% 98.44˘ 0.72% 99.09˘ 0.58% 99.33˘ 0.16%

Bad GAN: 88.38˘ 3.08%˚ 96.24˘ 0.16% 99.17˘ 0.03% 99.20˘ 0.03%

Triple-GAN: 95.93˘ 4.45%˚ 98.68˘ 1.12% 99.07˘ 0.46% 99.17˘ 0.08%

UGAN 97.34˘ 6.86%˚ 98.92˘ 0.13% 99.21˘ 0.08% 99.35˘ 0.05%

following [113]. The value of gG generated samples is 4.19˘0.07, while that of bG generated

samples is 3.31˘ 0.02. In addition, gG retains Triple-GAN’s advantage in that it is able to

disentangle classes and styles. In Figure 4.2(a), the gG generated images are sampled by

varying the class label y in the horizontal axis and the latent vectors z in the vertical axis. The

latent vector z encodes meaningful physical appearances, such as scale, intensity, orientation,

color, etc., while the label y controls the semantics of the generated images. Furthermore,

gG can transition smoothly from one style to another with different visual factors without

losing the label information as shown in Figure 4.2 (b). This demonstrates that gG can learn

meaningful latent representations instead of simply memorizing the training data.

4.3.3 Hyper-parameters Sensitivity Analysis

We perform hyper-parameter sensitivity analysis along with some network architecture ef-

fects. We discover that the hyper-parameters used in Triple-GAN and Bad GAN are also

good for UGAN. In fact, aside from batch size, we use the same hyper-parameters across all

three datasets, and consistently achieve good results. UGAN is not sensitive to the learning

rate due to the usage of Adam optimization as shown in Table 4.3. However, UGAN is quite
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sensitive to the batch size in training. Our results indicate the noise induced by mini-batch

benefits the bG, while it hurts the gG capability to model the true data distribution. We also

find that a weight-norm layer is important to ease GAN’s training. UGAN doesn’t usually

converge when the layer is taken out. A smaller network architecture of C would not result

in a significant drop in the performance. We use a C with filter size {32, 64, 96} and get

96.27% on SVHN n = 4000. For details on how our hyper-parameters sensitivity analysis is

performed, we refer readers to Appendix C.9.

Table 4.3: Initial Learning Rate Effect on Model Performance. The experiments are done

on MNIST n “ 100. Despite the differences of the training loss in the initial stage, the final

results are not significant different after training 400 epochs.

Learning Rate lr “ 1e´ 2 lr “ 1e´ 3 lr “ 5e´ 4 lr “ 3e´ 4

Accuracy 99.13% 99.18% 99.24% 99.18%

4.3.4 Effectiveness of Good and Bad Generators

(a) (b)

Figure 4.3: (a) Comparison of Validation Accuracy vs. Training Epochs on our implemented

Triple-GAN, Bad GAN, and UGAN. The experiments are performed on SVHN n “ 1000.

(b) UGAN Validation Accuracy vs. Training Epochs under various amounts of labeled data

on MNIST.

As discussed in Section 4.3.1, UGAN achieves consistent improvement across all the cases
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due to inheriting the best properties of Triple-GAN and Bad GAN. In Figure 4.3 (a), we

demonstrate a comparison of Validation Accuracy vs. Training Epochs for our implemented

Triple-GAN, Bad GAN, and UGAN on SVHN n “ 1000. Note that for Triple-GAN, we

trained it to 1000 epochs, but only show the first 400 epoch in the figure. Qualitatively, we

observe three separate training phases:

1. In Phase I, the performance of Bad GAN and UGAN are worse than Triple-GAN.

We speculate this is due to the fact that Triple-GAN C deals with a classification of

K classes, while Bad-GAN and UGAN, C deal with K ` 1 classes.

2. In Phase II, Bad GAN and UGAN start to surpass Triple-GAN, which indicates bG

generated samples start to exert an effect on the classification boundary. UGAN also

performs better than Bad GAN in this phase thanks to the adversarial game that

requires C to produce reliable pseudo labels for unlabeled data to fool D.

3. In Phase III, we start to use gG generated samples to train C. UGAN surpasses both

Triple-GAN and Bad GAN by a clear margin. From the perspective of C, gG generates

samples that are used to complement the lack of training data in SSL, bG generated

samples are used to force the decision boundary to lie in the correct place, and D

requires C to keep moving itself toward the true data distribution ppxqpCpy|x, y ď

Kq « ppx, yq. All of these factors contribute to the final performance of UGAN.

Similar observations can also be found in Appendix C.10 on MNIST and CIFAR10.

Moreover, we hypothesize that for fewer labeled data, gG plays an important role, as gG

is able to model the class-aware data distribution under weak supervision and use them

to complement the lack of the training samples. For larger labeled data, bG plays a more

important role by generating complementary samples and forcing the decision boundary to lie

between the data manifolds of different classes. Empirically, we show our model’s validation

accuracy under various amounts of labeled data on MNIST in Figure 4.3 (b). As can be

seen, when we push the number of labeled data to extremely low numbers, the training curve

becomes more like that in Triple-GAN i.e., a bump is shown clearly at epoch “ 200 when we
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start to use gG generated samples to train C. However, we do not find a similar transition

on SVHN and CIFAR10 (see Appendix C.10). One possible explanation is that when we use

too few labeled data, gG fails to model the conditional distribution due to the complexity of

SVHN and CIFAR10. Note that we only used traditional techniques for training the GAN.

With recent advances in generating high quality images using GANs [9, 90, 96], our model

may be able to achieve further performance improvements on more complex datasets with

even fewer labeled data.

4.4 Limitations of the Study

Here, we discuss some limitations of our work and provide potential research directions that

could help address these limitations.

We note that we assume the marginal distribution ppyq to be uniform, which is easy to

sample for the generation process. However, it is not always true for other applications where

ppyq is no longer uniform. In these cases, we expect that the non-uniform label distribution

affects both good sample generation and classification. For good sample generation, the

generator will have difficulty capturing features for the minority class. For classification,

the classifier tends to cheat by always predicting the majority class. These problems are

expected to be more severe when the dataset is highly skewed. One potential future research

direction is to investigate how a non-uniform label distribution will affect our model and how

common data balancing methods such as upsampling and data augmentation can provide

help to it.

Another area for potential investigation is to generate high-resolution, large-scale images,

so that our model can be used in more complex scenarios. In this chapter, we have only

applied the model to relatively simple datasets with less complexity, such as MNIST (28*28),

SVHN (32*32) and CIFAR10 (32*32). Part of the reason is that the model in the current

form is not able to generate reliable image-label pairs on large-scale. With the advancement

in high-resolution large-scale image generation using GAN recently, we expect that our model
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will be able to applied to much more complex scenarios such as ImageNet classification, and

pixel-wise segmentation.

4.5 Conclusions

We have presented unified-GAN (UGAN), a new GAN framework for semi-supervised learn-

ing. By learning from good and bad samples through adversarial training, we have demon-

strated that our model performs better on image classification tasks across several benchmark

datasets and under a range of labeled training data. We envision that UGAN can be used

in a variety of scenarios, such as healthcare, where obtaining labeled data can be expensive

and time-consuming. We also consider adapting UGAN to other types of data such as text

(e.g. improving SSL text categorization performance for 20 newsgroups, Reuters, NYTimes,

Wiki, PubMed etc.).
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CHAPTER 5

High Resolution Histopathology Image Generation and

Segmentation through Adversarial Training

5.1 Introduction

5.1.1 Motivation

Review of histopathology slides is important in medical diagnosis and treatment planning. It

requires accurate quantitative analysis such as morphological feature extraction and cancer

grading. Good segmentation may pave the way for these analyses and increase their re-

producibility [82]. Recently, deep learning has brought significant improvement to semantic

segmentation in medical image analysis. However, its performance typically relies on large

annotated datasets [88], and thus segmentation of histopathology images remains a challenge

given the relative paucity of annotations. The images resulting from digitized histopathology

slides are inherently high resolution (high-res), and obtaining large amounts of annotated

data is laborious. Moreover, histopathological features in the images vary widely for different

cancer grades, making them difficult to segment at a granular level.

Recently, generative adversarial networks (GANs) have been rapidly adopted by the med-

ical imaging community [147]. GANs have shown promise in data augmentation as they are

able to synthesize high quality data to help overcome privacy issues and tackle the insuf-

ficiency of training data. However, most studies have focused on relatively low-resolution,

small-scale images, such as CT and MRI [3, 148]. The few GAN-based methods applied on

pathology image synthesis focus only on cell-level feature representation [72, 93, 121]. High-

res histopathology images contain diverse descriptors, and require GANs to preserve spatial
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consistency at a large scale, which has posed a challenge for their synthesis. In this work,

we propose a high-res large-scale histopathology image generation and segmentation frame-

work through adversarial training. By setting up a dedicated multi-scale/pyramid training

scheme, we are able to synthesize realistic histopathology images conditioned on semantic

masks and use the synthesized images to train a segmentation network end-to-end in both

fully-supervised and semi-supervised scenarios. To the best of our knowledge, our approach

is the first conditional generation model for high-res histopathology images and the first

approach to use image synthesis for high-res histopathology image augmentation. Extensive

experiments have been conducted to show the effectiveness of our proposed method in both

image generation and semi-supervised segmentation. Detailed analysis is also provided to

demonstrate how the multi-scale/pyramid structure and synthetic data augmentation each

contribute to the model’s performance.

5.1.2 Related Works

5.1.2.1 Conditional GAN for Image Synthesis

Many researchers have leveraged conditional adversarial learning for image synthesis (also

known as image-to-image translation), whose goal is to generate images based upon the

conditional input. For example, in natural images, pix2pix framework [54] used image-

conditional GANs for different applications, such as generating cats from user sketches and

transforming Google maps to satellite views. On top of it, pix2pixHD [136] proposed a

multi-layer discriminator to synthesize high-resolution photo-realistic imagery without any

hand-crafted losses or pre-trained networks. SinGAN [116], on the other hand, introduced

a pyramid of fully convolutional GANs, each responsible for learning the patch distribution

at a different scale of a single image. In our proposed models, we incorporate the ideas of

multi-layer discriminator and construct the image generation in a pyramid fashion.

Medical images can also be generated by implementing constraints on segmentation maps.

Guibas et al . and Costa et al . proposed a two-stage process that first trained a segmentation
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network to produce the vessel geometry, and then used the produced masks to synthesize

fundi images [17, 41]. Mok et al . proposed a coarse-to-fine network to generate brain MR

images conditioned on a segmentation mask [98]. Senaras et al . proposed a conditional GAN

model for generating pathology images conditioned on nuclei segmentation masks [114].

Unlike the above models, our model works on high-res gland-level histopathology image

generation, and we further leverage the synthetic images to train the segmentation tasks

end-to-end in both supervised and semi-supervised settings.

5.1.2.2 GAN for Segmentation

GANs have been used for segmentation tasks in medical images. In these cases, the discrim-

inator can be regarded as a regulator and the adversarial loss can be viewed as a similarity

measure between the segmented outputs and the annotated ground truth. Kamnitsas et al .

proposed an unsupervised domain adaptation model using adversarial neural networks to

train a segmentation task on brain MR datasets [60]. Yang et al . achieved cross-modality

domain adaptation, i.e. between CT and MRI images, via disentangled representations using

adversarial training [145]. Xue et al . used a multi-scale L1 loss as a similarity measure in the

BRATS challenges [143]. Li et al . introduced an auxiliary classifier to regularize both the

discriminator and the segmenter for fluorescent images [85]. Mahmood et al . demonstrates

a nuclei segmentation methods across different organs using deep adversarial training [93].

Unlike the above models, our model consists of three components: a generator that can

generate good images conditioned on the mask, a segmenter that can segment the input

histopathological images, and a discriminator that distinguishes the ground-truth image-

mask pairs from the pseudo image-mask pairs. The three network components forms two

adversarial games in training: one is between the generator and the discriminator that helps

the generator to synthesize realistic images to compensate for the limited data size; and the

other is between the segmenter and the discriminator to help regularize the segmenter, so

that the segmenter can output better masks to deceive the discriminator. Compared to the

above models, our method provides two advantages in achieving better segmentation results:
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(1) the conditional generated images by the generator will be used to compensate the lack of

training data (2) the adversarial game between segmenter and discriminator will regularize

the model to learn the image-mask distribution.

5.1.2.3 GAN for Semi-supervised Learning

Several studies have adopted semi-supervised learning (SSL) training schemes using GANs in

medical image classification problems. Madani et al . and Lecouat et al . found that an SSL-

GAN can achieve comparable performance with traditional convolutional neural networks

with less data in chest abnormality classification, retinal vessel classification, and cardiac

disease diagnosis [75,92]. Most of the other works that used GANs to generate new training

samples applied a two stage process, with the first stage trained to augment the images

and the second stage trained to perform a classification task. In contrast, our approach

utilizes a single model that is capable of performing conditional synthesis and uses it to

improve the downstream segmentation task simultaneously. Furthermore, there is limited

research on segmentation in SSL on histopathology images. Zhang et al . proposed to use

both annotated and unannotated images in a segmentation task, where the unannotated

images are used to compute the segmentation masks to confuse the discriminator [149].

Bulten et al . used a semi-automatic segmentation method to generated semantic mask and

grade prostate biopsies [11]. To the best of our knowledge, we are the first to explore GAN

data augmentation effectiveness for segmentation in an SSL framework on histopathology

images.

5.1.3 Contributions

The main contributions of this study are twofold. First, by using a pyramid generation

scheme, we are able to generate large-scale histopathological images up to 1024x1024 at

high resolution (20x). Compared to the state-of-the-art pathology synthesis methods, which

generate images up to 256x256 allowing for only limited context such as simple nuclei [93,114],

our generation allows to incorporate richer context such as gland structures and nuclei details
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that are useful for precise diagnosis. Second, the generation is based upon a conditional

method, which produces good image-mask pairs. These image-mask pairs can be used to

compensate the lack of data points in training segmentation models. We demonstrate the

effectiveness of our method in segmentation tasks and analyze how it performs differently in

supervised and semi-supervised settings.

5.1.4 Organization

The rest of this chapter is organized as follows: we first discuss the details of our proposed

model in Section 5.2. The datasets used in our experiments and experimental results are

discussed in Section 5.3. We also discuss the limitations of our work and provide directions

for possible future work in Section 5.4. Finally, conclusions are drawn in Section 5.5.

5.2 Methods

Our goal is to synthesize realistic histopathology images x based on an arbitrary semantic

mask y, so that px, yq can be used to compensate for a small data size when training a

segmentation network. Image synthesis for data augmentation using GAN is not new, but

it is not widely used in histopathology analysis because generating images with fine details

is difficult. Synthesizing images for gland segmentation poses even more challenges, as the

generated images have to preserve both global gland structures and finer nuclear details

based on the masks on a large scale. To overcome these problems, we design the generation

and segmentation networks using pyramid structures. Subsequently, we show that the syn-

thesized image-mask pairs can be used to boost segmentation performance, especially in the

semi-supervised scenario seen in Section 5.3.

5.2.1 Generation

To synthesize high-res, large-scale histopathology images conditioned on semantic masks,

our model must capture the statistics of complex image features at different scales. We wish
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Figure 5.1: Schematics of our approach. (a) A pyramid model that consists of a Generator

Gn, a Segmenter Sn, and a Discriminator Dn at each scale. Gn synthesizes image based

on mask yn and lower-scale generation x̃n`1; Sn segments image based on image x and

lower-scale segmentation ỹn`1; Dn enforces image-mask pairs from both Gn and Sn to match

the real distribution. Once Gn achieves good results, we can use the synthetic data to train

Sn. This path has been omitted in the figure for simplicity. Note that noise is injected

to Gn and Sn, which has also been omitted in the figure. (b) Illustration of the generator

Gn. Each generator Gn attempts to generate realistic images x̃n conditioned on yn and

the previous generated images x̃n`1. (c) Illustration of the segmenter Sn. Sn is symmetric

with Gn as it conditions on the input image xn and lower-scale segment results ỹÒn`1, and

attempts to segment the xn. (d) Illustration of the discriminator Dn. Dn takes in image-mask

pairs as input, and differentiates whether they are real pxn, ynq or fake px̃n, ynq from the

generator or the segmenter. To differentiate large-scale high-res real and synthesized images,

we adopt a three-layer discriminator, which effectively increase the receptive field. Ò, Ó,`

denote upsampling, downsampling, and add operation respectively.
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to preserve global gland structures, such as shape and arrangement, while analyzing the

finer details and textural information of the glands themselves, such as nuclei arrangement

and lumen size. To achieve this, we propose to use a pyramid of conditional patch-GANs

(Markovian discriminator) [54]. While similar pyramid architectures have been explored for

natural image generation [61, 116, 136], we are the first to explore it on high-res, large-scale

histopathology image synthesis and use it to augment data for segmentation.

5.2.1.1 Pyramid Generation

Our framework consists of a pyramid of conditional generators, tG0, G1, ..., GNu. It is trained

on a pyramid of image-mask pairs px, yq: tpx0, y0q, ..., pxN , yNqu where pxn, ynq is a down-

sampled version of the original, px0, y0q. Each generator Gn attempts to generate realistic

images x̃n conditioned on yn. Through adversarial training, Gn learns to deceive an associ-

ated discriminator Dn, which attempts to distinguish pxn, ynq from px̃n, ynq.

The pyramid framework begins at the coarsest scale GN and proceeds sequentially to the

finest scale G0. Each Gn has the same architecture, and noise is injected at every scale to

increase the variability among generated images. By progressing to finer scales throughout

the generation process, the generators capture feature information of decreasing size. To

start, GN takes in a semantic map yN with spatial white Gaussian noise zN and maps it to

an image x̃N . At finer scales, Gn accepts an upsampled version of the generated image from

the previous level x̃Òn`1. The up-sampling is done via bi-linear interpolation. Spatial noise

zn is injected during this process, i.e.,

x̃n “ Gnpx̃
Ò

n`1, yn, znq

“ x̃Òn`1 ` Φnpyn, zn ` x̃
Ò

n`1q.
(5.1)

Each of the generators Gn at finer scales pn ă Nq performs residual learning and adds

details that are not generated by the previous scales, while maintaining features learned in

previous steps of the pyramid. By going up in the generation process, finer details such as

nuclei arrangement and lumen size are added while the global gland structures are preserved.

Figure 5.1(b) illustrates the details of Gn.
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5.2.1.2 Multi-layer Discriminator

Our discriminators take in image-mask pairs as input and differentiate whether they are real

pxn, ynq or synthesized px̃n, ynq by the generator. To differentiate large-scale high-res real

and synthetic images, the discriminator requires a large receptive field to stabilize training

and improve generation performance. In practice, we found that using a multi-layer discrim-

inator ( [135]) increases the training stability. Specifically, for each discriminator Dn, we

downsample the real and synthetic image-mask pairs by factors of two and four to create

a pyramid. Then the discriminators operate at each step of the pyramid to differentiate

whether they are real or synthetic. The discriminators have identical architectures at each

scale. Similar to the generators, their receptive fields get smaller at each finer scale. The

discriminator at the coarsest view guides the generator to generate images that are globally,

spatially consistent images, thereby preserving the gland structure based on semantic masks.

The discriminator at the finest scale encourages the generator to produce finer details within

this consistent structure. The multi-layer discriminator is illustrated in Figure 5.1(d).

5.2.1.3 Training of Generation

Our model is trained sequentially, from the coarsest scale to the finest scale. Once each

scale is trained, it is kept fixed. Our training loss consists of four parts: adversarial loss,

reconstruction loss, feature matching loss, and perceptual loss, i.e.,

min
Gn

max
Dn

LadvpGn, Dnq ` αLrecpGnq`

βLfeatpGnq ` γLpercpGnq.

(5.2)

Adversarial loss. The adversarial loss Ladv penalizes for the distance between the dis-

tribution of patches in pxn, ynq and the distribution of patches in generated sample px̃n, ynq

through a Markovian discriminator.

Reconstruction loss. The reconstruction loss Lrec insures that the generator is able to
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generate the original images based on the semantic mask.

LrecpGnq “

›

›

›
Gnpx̃

Ò,rec
n`1 , yn, znq ´ xn

›

›

›

2

. (5.3)

Feature matching loss. The feature matching loss Lfeat is incorporated to improve the

stability of training. We extract features from multiple layers of Dn and learn to match these

intermediate representations from pxn, ynq and px̃n, ynq by L1 loss.

LfeatpGnq “ Epxn,ynq
›

›Dpiqn pxn, ynq ´D
piq
n px̃n, ynq

›

›

1
. (5.4)

Perceptual loss. The perceptual loss is also incorporated to ease the optimization [135].

We adopt a pre-trained VGGNet [119] for perceptual loss. Specifically, both the real and syn-

thesized image-mask pairs are fed into a pre-trained VGGNet. We penalize the L1 distance

using features from the intermediate layers.

Note that Lrec, Lfeat, and Lperc are only functions of Gn, i.e. we only use these losses to

update Gn while keeping Dn fixed. We summarize the training algorithm in Algorithm 1.

Algorithm 1 Pyramid Generation

for Each scale of generation do

for Number of training epochs do

(1) Sample a batch of pairs px̃n, ynq „ pGnpxn, ynq of size mg, a batch of pairs pxn, ynq „

ppxn, ynq of size ml;

(2) Update Dn by ascending along its stochastic gradient based on Equation (5.2);

(3) Update Gn by descending along its stochastic gradient based on Equation (5.2);

end for

end for

5.2.2 Segmentation

To make the synthetic images useful for segmentation, we further design a pyramid structure

with three players at each scale: (1) a segmenter Sn that characterizes the conditional

distribution pSnpỹn|xn, ỹ
Ò

n`1q « ppyn|xnq, i.e. segmenting the input image based on the input

image xn and the semantic mask upsampled from the coarser level ỹÒn`1; (2) a generator
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Gn that characterizes the conditional distribution in the other direction pGnpx̃n|yn, x̃
Ò

n`1q «

ppxn|ynq, i.e. generating image based on the mask yn and the upsampled synthetic image

from the coarser level x̃Òn`1; and (3) a discriminator Dn that distinguishes whether a pair of

image-mask comes from the true distribution ppxn, ynq. While Gn and Dn are parameterized

the same way as in Section 5.2.1, we use a mini FC-DenseNet (m-FCDenseNet) ( [58]) with

42 layers as Sn. The detailed architectures for Gn, Sn and Dn are shown in Appendix D.1.

Figure 5.1(c) illustrates the schematic of Sn. As mentioned above, Sn is symmetric with Gn

since it takes in a upsampled version of lower-scale segment results ỹÒn`1 with the image xn.

ỹn “ Snpxn, ỹ
Ò

n`1, znq. (5.5)

Accordingly, Dn, as an adversarial part of Sn, takes pseudo image-mask pair from segmenter

pxn, ỹnq and distinguishes it from the real distribution pxn, ynq. The adversarial component

between Sn and Dn can be formulated as a minimax game:

min
Sn

max
Dn

LadvpSn, Dnq

LadvpSn, Dnq “ Epxn,ynqrlogpDnpxn, ynqq

` EpxSn ,ySn q
rlogp1´DpSnpyn|xn, ỹ

Ò

n`1qqqs.

(5.6)

However, the game defined in Equation (5.6) cannot guarantee that ppxn, ynq “ ppxsn , ysnq “

ppxgn , ygnq is the unique global optimum. To address this problem, we introduce the standard

supervised loss for segmentation (i.e., cross-entropy loss) in Sn, LcepSnq “ Epxn,ynqrlogppSnpyn|xn, ỹ
Ò

n`1qqs.

Consequently, the minimax game between Sn and Dn becomes:

LcepSnq “ Epxn,ynqrlogppSnpyn|xn, ỹ
Ò

n`1qqs. (5.7)

Consequently, the minimax game between Sn and Dn becomes:

min
Sn

max
Dn

LadvpSn, Dnq ` LcepSnq. (5.8)
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5.2.2.1 Training of Segmentation

Training follows the same procedure as in Section 5.2.1.3, which starts from the coarsest

scale and proceeds sequentially to the finest scale, except that for each scale we optimize

Dn, Gn and Sn iteratively. Combining the minimax games defined in Equation (5.2) and

Equation (5.8), we formulate the game with three players Gn, Sn, Dn as:

min
Gn,Sn

max
Dn

LadvpGn, Sn, Dnq ` αLrecpGnq ` βLfeatpGnq`

γLpercpGnq ` α
1LcepSnq.

(5.9)

The desired equilibrium of our model defined in Equation (5.9) is that the joint dis-

tributions defined by the segmenter Sn and the generator Gn at each scale both converge

to the true data distribution [84]. This is an important property, as pointed out by Li et

al ., because it ensures that the generator Gn generates realistic image-mask pairs, enabling

the segmenter Sn to leverage the synthetic image-mask pairs for training. We provide the

detailed theoretical analysis of the equilibrium in Appendix D.2.

It should be noted that, during the initial stage of training at each scale, the synthetic

images from the generator Gn are not realistic enough for training the segmenter Sn due to

their low quality. Therefore, these generated image-mask pairs are not used to train Sn until

the number of epochs reaches a threshold such that Gn can generate reliable image-mask

pairs. In practice, we hold the synthetic images for 100 epochs and then use them as normal

labeled image-mask pairs for training Sn, except the coefficient for the cross-entropy loss is

smaller compared to the real annotated data (see details in Section 5.2.4). The threshold

is determined by visually inspecting the synthetic images. Using the synthetic image-mask

pairs in early training stages can disrupt the optimization process and potentially hurt seg-

mentation performance. We summarize the segmentation training algorithm in Algorithm 2.
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Algorithm 2 Pyramid Generation and Segmentation

for Each scale of generation and segmentation do

for Number of training epochs do

(1) Sample a batch of pairs px̃n, ynq „ pGnpxn, ynq of size mg, a batch of pairs pxn, ỹnq „

pSnpxn, ynq of size ms, and a batch of pairs pxn, ynq „ ppxn, ynq of size ml;

(2) Update Dn by ascending along its stochastic gradient based on Equation (5.6);

(3) Update Gn by descending along its stochastic gradient based on Equation (5.6);

(4) Update Sn by descending along its stochastic gradient based on Equation (5.6);

end for

end for

Figure 5.1(a) illustrates our proposed pyramid model for histopathology image generation

and segmentation. It has three advantages over the standard FC-DenseNet and U-Net, the

current de facto model for medical image segmentation [111]. First, the synthetic image-

mask pairs (x̃n, yn) can be used as complementary data to train the segmenter Sn. Second,

the discriminator Dn will enforce the Sn to generate good masks by matching segmented

outputs and the annotated ground truth. Finally, by using the pyramid structure and being

conditioned on the lower-level segmentation results, Sn increases its receptive field effectively.

As a result, our model can be applied to high-res large-scale images without breaking the

gland structures into different parts.

5.2.3 Semi-Supervised Segmentation

We further extend our framework to a semi-supervised learning (SSL) scenario. In SSL,

we have a relatively small labeled set pxl, ylq „ plpx, yq, and a large unlabeled set xu „

pupxq. We want to take advantage of the unlabeled data points xu to boost our model’s

performance. To achieve this goal, we use the same architecture as in Section 5.2.2 with

the following modification: at each scale, Sn takes in synthetic data, labeled data, and

unlabeled data for training. We anticipate Sn to segment labeled data and synthetic data

based on their masks (normal cross-entropy loss). For unlabeled images, we anticipate Sn to

generate masks that are realistic enough that the image-mask pairs can confuse Dn through

adversarial loss. The discriminator Dn accepts the image-mask pairs from the segmenter
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(a) pix2pix (b) pix2pixHD

(d) original(c) ours

Figure 5.2: Randomly generated images by different models and the original real images.

The figure illustrates that our model preserves the global structures of the semantic masks

and generates sharper images with finer details than the baselines.

SnpxSn , ySnq „ ppxu,nqpSnpyu,n|xu,nq, the generatorGnpxGn , yGnq „ ppynqpGnpxn|ynq, and from

the labeled data distribution pxl,n, yl,nq „ plpxn, ynq for judgement. Dn treats the labeled

data as positive samples, and the pairs from both Gn and Sn as negative samples. By doing

so, Gn and Dn, and Sn and Dn form two sets of adversarial training. The discriminator Dn
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will enforce both SnpxSn , ySnq „ ppxu,nqpSnpyu,n|xu,nq and GnpxGn , yGnq „ ppynqpGnpxn|ynq

to match with pxl,n, yl,nq „ plpxn, ynq during the training process, thus we will have a good

generator Gn and good segmenter Sn at the end of the training.

One key problem in SSL is the limited amount of labeled data. A powerful Dn may

memorize the labeled data and reject other types of samples. Consequently, Gn may collapse

to these modes. To address this problem, we adopt the practical techniques introduced in

( [16, 84]). We generate pseudo masks through Sn for some unlabeled data and randomly

choose these pairs as positive samples of Dn. This process introduces some bias to the

target distribution of Dn, but it gives Dn a better chance to model the complete data

distribution( [16, 84]). Moreover, since Sn converges much faster compared to Gn, this

operation enables Gn to explore a much larger image-mask distribution that includes both

the labeled and unlabeled data information. In other words, Sn is able to provide pseudo

masks for the unlabeled image xu, while Dn will judge if the pseudo masks are reliable or

not. This in turn will affect the evolution of Gn, which will take advantage of the unlabeled

image to generate high quality images-mask pairs. These synthetic image-mask pairs that

implicitly contain unlabeled data information will eventually benefit the training of the

segmenter Sn. We will demonstrate that it serves as a key for performance improvement in

SSL. We summarize the entire training procedure for SSL in Algorithm 3.
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Algorithm 3 Pyramid Semi-supervised Segmentation

for Each scale of generation do

for Number of training epochs do

(1) Sample a batch of pairs px̃g, ygq „ pGnpxn, ynq of size mg, a batch of labeled pairs

pxl, ylq „ ppxl, ylq of size ml, and a batch of unlabeled pairs xu „ ppxuq of size mu;

(2) Input xu to Sn and get pxu, yuq „ pSnpxn, ynq, input pxl, ylq to Sn and get pxl, ỹlq „

pSnpxn, ynq;

(3) Input pxl, ylq „ ppxl, ylq, pxu, yuq „ pSnpxn, ynq, pxl, ỹlq „ pSnpxn, ynq, and px̃g, ygq „

pGnpxn, ynq to Dn to get the output;

(4) Update Dn by ascending along its stochastic gradient based on Equation (5.9);

(5) Update Gn by descending along its stochastic gradient based on Equation (5.9);

(6) Update Sn by descending along its stochastic gradient based on Equation (5.9);

end for

end for

5.2.4 Implementation Details

We train the proposed model on a single Tesla V100S GPU with 32GB memory. We set

the learning rates for Gn, Sn, and Dn to 1ˆ 10´4, 5ˆ 10´4, and 5ˆ 10´4, respectively. We

use an Adam optimizer and employ β1 “ 0.5 and β2 “ 0.999. We set the hyperparameters

α, β, γ, α1 in Equation (5.9) to be 0.001, 10, 10, 1, respectively, same as in pix2pixHD and

SinGAN [116, 135]. We do not further tune these hyperparameters, as they provide good

generation and segmentation results. Once the synthetic data are used to train Sn, we set the

coefficient of cross-entropy loss to 0.03 in order to decrease the adversarial effect of imperfect

synthetic data. To choose the batchsize ml,mg,mu in Algorithm 3, we follow the principle

discovered by Li et al . [84] and set ml “ 8,mg “ 4,mu “ 10.

5.3 Experiments

In this section, we will first introduce the two datasets we used in our experiments, the GalS

and Prostate Gleason grading datasets. Then, we evaluate our proposed method in three as-

pects: image synthesis, image segmentation, and semi-supervised segmentation. We compare
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(a)

(b)

Gland
Stroma

HG
Stroma

LG
Benign

Figure 5.3: Samples from the GalS and Prostate datasets. Three representative examples

are shown from each dataset. (a) Samples from GalS dataset with their segmentation ground

truth. Green color indicates the gland in the images while red color indicates stroma. (b)

Samples from Prostate dataset with their segmentation ground truth. Images are annotated

by pathologists for stroma in red, benign glands in yellow, low-grade cancer in blue, and

high-grade cancer in green.

our method with baseline models, including pix2pix, pix2pixHD in image generation, mini

FCDenseNet (m-FCDenseNet), U-Net, DCAN etc. in segmentation, and demonstrate the

effectiveness of our method under different scenarios (fully-supervised v.s semi-supervised).
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Original

Healthy Adenomatous Moderate 
Differentiated

Moderate-to-poorly 
Differentiated

Poorly 
DifferentiatedOriginal

Mild Aggressive

(c)

Figure 5.4: (a) Generated coarse-to-fine results trained on the GlaS dataset. (b) Three

generated images based on the same mask. Noise is injected during generation so that the

model can synthesize images with variations. Clearer variations can been seen in the video

clip in SI. (c) Image manipulation on synthesized images. Different gland types are observed

when we changed the label from healthy to poorly differentiated.

5.3.1 Datasets

Our experiments are conducted on two histopathology image segmentation datasets, includ-

ing the GlaS dataset [120] and the prostate Gleason Grading dataset [30,52].

5.3.1.1 GlaS Dataset

The GlaS dataset [120] was acquired by a team of pathologists at the University Hospitals

Coventry and Warwickshire, UK. It consists of a training set with 85 images and a testing
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set with 80 images for colorectal cancer. The majority images are 775 ˆ 522 pixel patches

from whole-slide histology images of the colon. These images are scanned by Zeiss MIRAX

MIDI and set to 20X magnification. The output was a color RGB image with the pixel size

of 0.62 µm ˆ 0.62 µm. Along with the images, pixel-wise annotations for epithelial glands

(binary masks) and a spreadsheet detailing the type of the glands are provided. The types of

glands are characterized as healthy, adenomatous, moderately differentiated, moderate-to-

poorly differentiated, and poorly differentiated. The test dataset is divided into two subsets;

subset A (60 images) released earlier and subset B (20 images) released during the original

MICCAI workshop in 2015. We report results on the combined test set and the individual

subsets.

5.3.1.2 Prostate Gleason Grading Dataset

The prostate Gleason grading dataset [30, 52] consists of 513 images. The dataset is re-

trieved from archives in the Pathology Department at Cedars-Sinai Medical Center (IRB#

Pro00029960). The 513 images are combined from two sets of tiles. 224 of the images are

from 20 patients and contain stroma (ST), benign or normal glands (BN, rated as GG2 or

below), low-grade cancer (LG, image areas rated as GG3) and high-grade cancer (HG, image

areas rated as GG4) (subset A). The remaining 289 images are from 20 different patients and

contain dense high-grade tumors including Gleason grade 5 (GG5) as well as Gleason grade

4 (GG4) with cribriform and non-cribriform glands (subset B). Slides from subset A were

digitized using a high resolution whole slide scanner SCN400F (Leica Biosystems, Buffalo

Grove, IL), whereas slides from the subset B were acquired through the Aperio scanning

system (Aperio ePathology Solutions, Vista, CA). The scanning objective in both systems

was set to 20x. The output was a color RGB image with the pixel size of 0.5 µmˆ0.5

µm and 8 bit intensity depth for each color channel. Representative tiles were extracted

from whole slide images as 1200ˆ 1200 pixel tiles for analysis. The content of each tile was

hand-annotated by an expert research pathologist using an in house developed graphical user

interface. We use 80% of the images as training with the remaining 20% as testing unless
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otherwise specified.

5.3.1.3 Pre-processing

To handle different image sizes, we tiled the images into squares with overlap but without

any scaling. Specifically, we tiled the GlaS images to 512ˆ512, resulting around 500 patches,

the prostate images to 1024 ˆ 1024, resulting around 1000 patches. The intensity value of

the images was normalized to r´1, 1s. At training time we applied flipping, rotation, and

color jitter to augment the data. When scaling, bi-linear interpolation was used for images

while nearest neighbor method was used for masks. Figure 5.3 shows some representative

images of the cropped patches from both datasets.

5.3.2 Image Generation

5.3.2.1 Qualitative Evaluation

We first show the generation results of our model qualitatively. For the GlaS dataset, the

model was trained on 512ˆ512 image patches on two types of masks: binary masks (stroma

vs . epithelial glands) and multi-category masks that indicated the gland type. Here, we made

a minor assumption that all the glands in one single patch have the same type as indicated

in the data spreadsheet. When training the model, we first downsampled the original images

and started from patches of size 64 ˆ 64. For each following scale, we multiplied the image

length by a factor of two. Thus it led to a four-level training scheme with image size of

642, 1282, 2562, 5122. For the prostate Gleason grading dataset, the model was trained on

1024ˆ 1024 image patches starting from 64ˆ 64, which led to a five-level training scheme of

642, 1282, 2562, 5122, 10242. We compared our method with two baseline methods: pix2pix

generation [54] and pix2pixHD generation [135]. To qualitatively analyze the results, we

show samples of synthetic images in Figure 5.2. The figure illustrates that our method

preserves the global structure indicated by the semantic mask, and generates sharper images

with finer details than the baseline methods. More synthetic high-resolution samples can be
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found in Appendix D.3.

Next, we demonstrate some interesting aspects during the model’s generation process.

Figure 5.4(a-c) shows the generation results from the GlaS dataset conditioned on multi-

category masks. Figure 5.4(a) shows the coarsest-to-finest generation process. We observe

that as the training process progresses, the generated images are honed (i.e. more details

are added while the gland structures are preserved) so that the images look more realistic.

Figure 5.4(b) shows three images that are generated based upon the same mask. Once

training was completed, we performed inference using the mask shown in the top-left corner.

The generation process also started from 64ˆ 64 patch size and then went up to 512ˆ 512.

Though all three of the images preserve global structures, subtle details are different due to

the injected noise, e.g . the stroma details in the rectangle in Figure 5.4(b). It can be more

easily observed in the animation provided in the Appendix, where we cycle through these

generated images. Since we injected noise during the generation process, we can continually

generate images based upon the same mask and use them for training in the segmentation

task. Figure 5.4(c) shows image manipulation results by changing the mask from healthy to

poorly differentiated. For these images, we changed the gland labels on the input masks and

fed them into our generation framework to generate images of different grades with the same

gland boundaries. It suggests that the generator can learn meaningful latent representations

instead of simply memorizing the training data. Similar observations can be found for the

Prostate dataset, where we changed the labels from low grade to high grade and vice versa.

For more results on prostate dataset generation, noise injection, and image manipulation,

we refer readers to Appendix D.3.

5.3.2.2 Quantitative Evaluation

If our generated images are realistic looking, then their distribution should be indistinguish-

able from that of the real images. Therefore, we can quantitatively evaluate the quality

of the synthetic images by computing the Frechet Inception Distance (FID) between the

distributions of real images and synthetic images ( [46]). Lower values of FID indicate
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Table 5.1: FID score for image generation.

GalS Prostate

pix2pix 3.654 4.354

pix2pixHD 1.028 2.577

Ours 0.0059 0.013

Original images 8.4ˆ 10´4 2.3ˆ 10´4

the distribution are more similar, implying more realistic-looking images. Specifically, we

adopted a ResNext50 model pre-trained on large-scale histopathology images to extract fea-

tures for computing FID. We didn’t use the Inception v3 model that commonly used in other

literature, as we could not find an off-the-shelf Inception model pre-trained on histopathol-

ogy images. Therefore, our FID values are not directly comparable to common FID values

in other studies. We provide the FID score of our model and other baselines in Table 5.1. As

shown in Table 5.1, our model achieves lower FID compared to the baselines in both dataset.

To make the comparison more meaningful, we also provide the FID values for the original

images as a comparison. We calculated the FID of original images by randomly dividing the

images into two groups. The score represents a level of best generation performance possible

measured by FID. The FID quantities imply that our model generates more realistic images

compared with the baseline models. More details regarding on how we calculate FID score

can be found in Appendix D.4.

5.3.3 Segmentation

We examine whether our proposed method can boost the performance in a fully-supervised

segmentation task and reveal the contribution of each component to the performance through

an ablation study.

87



𝑥 "
𝑆 "

𝑥 "
𝑦 "

𝐺 "
𝑦 "

Figure 5.5: Segmentation and generation results under fully-supervised scenario. x0 are the

original images; S0px0q are the semantic segmentation results by S0; y0 are the ground truth

segmentation annotation; G0py0q are the synthetic images by G0 conditioned on y0.

5.3.3.1 Fully-supervised Segmentation Results

We first implemented the segmentation model as discussed in Section 5.2.2 in fully-supervised

fashion. In supervised learning, we used the full training dataset, while using image synthesis

to augment the training sets. Table 5.2 shows the segmentation performance of our model on

the GalS dataset compared with other studies. The performance shown in the table is based

on the binary ((stroma vs . epithelial glands)) segmentation task, which is the same as in

MICCAI Challenge 2015. We report the GlaS challenge metrics [120] including object-level

F1 score, object-level dice coefficient, and object-level Hausdorff distance, and compare them

with other main studies in literature. As shown in Table 5.2, we achieved the second best

performance among all other studies, though our method does not surpass the state-of-the-

art performance ( [39]). We also present the segmentation results in Figure 5.5 (row 1-3).
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We want to point out that instead of cropping the images to small patches, stitching back

after the segment inference, and performing tedious post-processing as all other studies did,

our method directly applies the segmentation model on the original 512ˆ 512 size. A direct

comparison between our proposed method and m-FCDenseNet (backbone of Sn) reveals our

model is able to boost the performance by a large margin when applied on high-res large-

scale images directly. Similar findings are observed for the Prostate dataset, which we list

in Appendix D.3.

5.3.3.2 Ablation Study

As we mentioned above, our proposed fully-supervised segmentation model is different from

the traditional segmentation method in two ways. First, our method consists of a pyramid

structure for generation and segmentation. Therefore, we can perform segmentation on large

histopathology images and do not need to tile the image and stitch them back together.

Thanks to the pyramid structure, the final segmentation network S0 has a larger receptive

field that makes it able to consider both the large gland structures and finer nuclear details

simultaneously. By skipping the tiling process, we are also able to avoid splitting the gland

structure into different tiles and deteriorating the prediction accuracy. Second, our method

leverages the synthetic images from Gn as augmented data to train Sn. It enlarges the

training set size and is expected to improve the segmentation performance.

To determine how these two aspects affect the final performance, we perform an ablation

study. As shown in Table 5.2 of column “100%”, the first three rows are all operating on

512 ˆ 512 images. In first row m-FCDenseNet, we only have a single level S0 applied to

512 ˆ 512 image. Due to the limited receptive field, m-FCDenseNet alone has the worst

segmentation performance. The m-FCDenseNet+pyramid model (row two) has the same

pyramid structure as our model except that the synthetic images are not used to train

Sn. Compared with m-FCDenseNet alone, the pyramid structure can effectively enlarge

the receptive filed, leading to a performance improvement by a large margin. Conversely,

comparing m-FCDenseNet+pyramid (row two) and our full model (row three), we observe
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the improvement is marginal, which indicates the synthetic images are not the key for per-

formance boost in fully-supervised settings. It explains why our model does not surpass

the state-of-the-art results. As our large receptive field, led by the pyramid structure, can

be achieved by tiling the image to small sizes equivalently. The performance improvement

of our model is negligible in fully-supervised settings. We will further discuss this issue in

Section 5.4.3.

Table 5.2: GlaS challenge metrics for the total test set and subsets (A, B). ˚ denotes methods

that are operating on 512ˆ 512 scale.

Method Object Dice (A, B) F1 Score (A, B) Hausdorff (A, B)

m-FCDenseNet˚ 0.748 (0.731, 0.792) 0.676 (0.662, 0.710) 123.39 (122.4, 125.9)

m-FCDenseNet + pyramid ˚ 0.870 (0.894, 0.822) 0.860 (0.878, 0.776) 65.7 (54.1, 108.3)

Ours˚ 0.874 (0.895, 0.825) 0.866 (0.890, 0.803) 61.85 (50.3, 100.4)

FCN-8 [89] 0.781 (0.795, 0.767) 0.763 (0.783, 0.692) 124.2 (105.0, 147.3)

DeepLab [14] 0.833 (0.859, 0.804) 0.813 (0.862, 0.764) 96.2 (65.7, 124.9)

Seg-Net [4] 0.838 (0.864, 0.807) 0.806 (0.858, 0.753) 92.6 (62.6, 118.5)

U-Net [111] 0.868 (0.884, 0.819) 0.841 (0.865, 0.768) 69.6 (55.6, 111)

DCAN [13] 0.868 (0.897, 0.781) 0.863 (0.912, 0.716) 74.2 (45.4, 160.3)

Graham [39] 0.902 (0.919, 0.849) 0.896 (0.920, 0.824) 54.7 (41.0, 95.7)

5.3.4 SSL-Segmentation

In this section, we examine whether our proposed method can boost the performance in

a semi-supervised segmentation task and analyze how the pyramid structure and synthetic

data augmentation contribute to the final performance.

5.3.4.1 SSL-Segmentation Results

We implemented SSL-segmentation and evaluated it by varying the amount of labeled data

provided for training as commonly used by the literature [16,84]. The labeled data used for

training were randomly selected. In our experiments we used 20%, 40%, 60%, 80% and the
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Table 5.3: mIOU for SSL-segmentation on GalS dataset. All the results are generated under

inductive learning unless specified in the parenthesis.

Task Method 20% 40% 60% 80% 100%

Binary

m-FCDenseNet 0.674 0.686 0.701 0.750 0.774

m-FCDenseNet+pyramid 0.717 0.730 0.767 0.806 0.810

Ours 0.793 0.799 0.817 0.823 0.827

Ours (transductive) 0.817 0.824 0.845 0.830 0.849

Multi-Category

m-FCDenseNet 0.203 0.254 0.262 0.282 0.290

m-FCDenseNet+pyramid 0.216 0.259 0.289 0.325 0.358

Ours 0.242 0.287 0.301 0.336 0.368

Ours (transductive) 0.325 0.341 0.386 0.375 0.383

full training dataset as labeled data and the rest as unlabeled data to train the model. For

fair comparison, we also used m-FCDenseNet as a baseline. Furthermore, we conducted both

inductive learning and transductive learning for our models, where in transductive learning

the images in the test set were also treated as unlabeled data points for training. For GalS

dataset, we performed two sets of SSL experiments: one for a binary segmentation task,

where we only used a binary mask (stroma v.s epithelial gland) for training; and the other

for a six-category segmentation task, where the mask not only contains the information of

gland location but also the type of gland (healthy, adenomatous, moderately differentiated,

moderate-to-poorly differentiated, or poorly differentiated). We used mean intersection over

union (mIOU) as a metric to evaluate the segmentation performance in both experiments.

The results are presented in Table 5.3. Note that all the results are generated under inductive

learning unless specified in parentheses. As can be seen, our model outperforms the m-

FCDenseNet in all the cases of varying the amount of training data, demonstrating the

effectiveness of our model. Transductive learning outperforms inductive learning as expected,

since transductive learning incorporates the testing data as unlabeled data in training. More

results of SSL-segmentation on Prostate dataset can be found in Appendix D.3.
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5.3.4.2 Ablation Study

To determine the effectiveness of the pyramid structure and synthetic data augmentation

in the SSL setting, we present the binary segmentation results in column chart as shown

in Figure 5.6. In this figure, we only focus on inductive learning cases for fair comparison.

Specifically, we calculate the performance gap between the single m-FCDenseNet baseline

and our model and define two δ’s as δ1 to be normalized performance improvement be-

tween m-FCDenseNet and m-FCDenseNet + pyramid, and δ2 to be normalized performance

improvement between m-FCDenseNet + pyramid and our method. Intuitively, δ1 roughly

characterizes the contributions from the pyramid structure and δ2 roughly characterizes the

contribution from synthetic data augmentation. As can be observed, δ1 gradually increases

as we increase the amount of labeled data, while δ2 gradually decreases. This result indicates

that in the low-labeled data scenario, synthetic data augmentation plays a more important

role than the pyramid structure. As we have more labeled data, the pyramid structure be-

comes the key factor of performance improvement compared with m-FCDenseNet. Similar

trends have been observed in other SSL-experiments (see Appendix D.3). We will further

discuss the effectiveness of synthetic data augmentation in Section 5.4.3.
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Figure 5.6: Analysis of SSL-segmentation results on GalS dataset. The experiments are done

by using 512ˆ 512 images for binary segmentation task.
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5.4 Discussion

5.4.1 Image Generation

As shown both quantitatively (Table 5.1) and qualitatively (Figure 5.2), our model generates

more realistic images compared to the baseline models. The pix2pix method only leverages

traditional conditional generative adversarial networks with a single Markovian discriminator

(PatchGAN). It is more suitable for small-size images synthesis since the receptive field for

both the generator and discriminator is limited. As a result, the generation of local patches

is unaware of the global structure, potentially leading to spatial inconsistency. Pix2pixHD

adopts a multi-scale generator and discriminator to capture the image features of different

scales. As a result, it generates more realistic images with higher spatial consistency (e.g .

gland structures are distinguishable from stroma). In contrast, our proposed model provides

a pyramid structure, such that different scales focus on generating features of different levels.

By conditioning on the generated images of the previous scale, our model is able to add finer

details to the generated images while preserving the gland structure based on the semantic

masks. As a result, our synthetic images are better in spatial consistency (compared with

pix2pix model), and sharper with finer details (compared with pix2pixHD model).

5.4.2 Image Scales for Segmentation

Input image patch size is a key factor for segmentation performance. Therefore, to achieve

good performance in histopathology image segmentation, researchers often have to tile the

large-scale histopathology images into small patches and design a network structure with

suitable receptive field. As a result of tiling, gland structures are often split into different

parts, which deteriorates the segmentation accuracy. One of the merits of our proposed

method for segmentation is that our model is not as sensitive to the input image scales com-

pared to the single model with fixed receptive field. To demonstrate this, we evaluated our

model from 64ˆ64, up to 512ˆ512 images on the GalS dataset for the binary segmentation

task. We compared it with m-FCDenseNet, which has the same architecture at a single scale

93



Sn. Figure 5.7 illustrates the results. In general, as we increase the image size, we expect

the segmentation accuracy to increase because the resolution becomes higher. As can be

seen, our model performs similar as m-FCDenseNet on small scale images. Once we input

512 ˆ 512 images, the performance of our model increases while m-FCdenseNet suffers a

sharp drop (see the red rectangle in Figure 5.7). Since our model is relatively insensitive to

the input image size, it is able to process large histopathology images with high magnification

without breaking the gland structures into different tiles, which has been demonstrated to

improve the segmentation accuracy in both fully-supervised and semi-supervised scenarios

(see ablation study in Section 5.3.3 and Section 5.3.4).
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Figure 5.7: Model performance with different input image scales. Our model is less sensitive

to image scale compared to single-scale model such as m-FCDenseNet.

5.4.3 Effectiveness of Synthetic Data

As briefly discussed in Section 5.3.3 and Section 5.3.4, we found that the synthetic data

augmentation is not always helpful. In general, synthetic data augmentation is more effective

in SSL, especially when the labeled images are extremely limited. These observations are

aligned with other studies ( [36]), where people find that generating a lot of additional

samples by GAN and use them to provide a bigger dataset to train a classifier does not

improve performance. The reason behind it is that it requires the generator to generalize
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better than the classifier, which is hard to achieve if you train both the generator and classifier

on the same dataset. In this case, the generator gets no extra information compared to the

classifier. It explains why our proposed model with synthetic data augmentation does not

provide significant improvement compared to the m-FCDesnseNet + pyramid baseline in

supervised settings. In fact, we argue that the normal data augmentation methods, such as

flipping, rotation, color jitters etc., are enough to provide strong regularization. Though the

synthetic data augmentation provide extra regularization, the performance improvement is

almost negligible (see Table 5.2 and Table 5.3 in column “100%”).

On the contrary, synthetic data augmentation works well in SSL as discussed in Sec-

tion 5.3.4. Specifically, We generate pseudo masks through Sn for some unlabeled data and

randomly choose these pairs as positive samples of Dn. This process introduces some bias

to the target distribution of Dn, but it gives Dn a better chance to model the complete data

distribution. In return, it enables Gn to explore a much larger image-mask manifold that

includes both the labeled and unlabeled data information. In other words, Gn generated

image-mask pairs are able to provide extra information gains compared with the labeled

training sets. It also explains why we observe δ2 is larger in the low-data scenario, while

it is negligible when we use 100% labeled data for training. Intuitively, the larger informa-

tion gains Gn can provider, the bigger improvement the synthetic data augmentation can

contribute.

5.4.4 Limitations and Future Work

5.4.4.1 Exploring Meaningful Latent Representations

Besides the image generation results, we also provide image manipulation results by changing

the gland labels in Figure 5.4(c). It suggests that the generator Gn is not memorizing the

training data itself but learning useful representations that are predictive for clinically rele-

vant measurements. Nevertheless, in this study we do not provide any quantitative analysis

on the learned representations. In future work, we plan to make the latent representations
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more explainable and associate them with clinically relevant measurements through mutual

information maximization. We also plan to seek help from pathologists to provide clinically

relevant measurements in future work.

5.4.4.2 Increasing Memory Efficiency

At each scale, our proposed model consists of three players, and because the algorithm has

to maintain the weights of previous scales during training, the current model can occupy

a lot of memory in GPU. Currently, when implementing the algorithm in a single Tesla

V100S GPU, we are only able to generate 1024 ˆ 1024 images using Gn and Dn alone. By

incorporating Sn, we can only process image with sizes up to 512 ˆ 512 at best. Therefore,

potential future work is to increase the memory efficiency of the proposed method. It can

be improved by two ways: first, we can take advantage of more memory-efficient network

modules as backbone, such as EfficientNet etc.; second, we can develop a random selection

process to make the finer scale only focus on a sub-volume of images.

5.4.4.3 Improving Segmentation Results

As we demonstrated, our model does not surpass the state-of-the-art results in the fully

supervised case. However, our model is complementary to the current state-of-the-art meth-

ods. For instance, the rotated convolution kernels used by [39] can also be applied to Sn to

increase performance. In the future, we would like to incorporate other ideas to improve the

segmentation performance.

Additionally, we also found that there are generation artifacts in the synthetic images.

For example, the synthetic image may miss a small part of a gland (see Figure 5.5 column

2 red rectangular area), or the synthetic gland may not have a clear boundary as the real

gland does (see Figure 5.5 column 4 red rectangular area). These artifacts can potentially

deteriorate the performance of segmentation, as we use the ground truth mask along with the

synthetic images to train Sn. In the future, we would like to study the generation artifacts

with the help of pathologist and improve the quality and diversity of synthetic images.
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5.4.4.4 Investigating Active Learning

We performed multiple runs for SSL-training on the prostate dataset (see in Appendix D.3).

For each run, we randomly selected a number of images as labeled data with the rest as

unlabeled. We found that the variance of model performance increased as we decreased

labelled training data, i.e. the performance variance was larger when we only used 20%

training data compared to the whole training set. It indicates the importance of selected

labeled data in the initial training stage. The results are not surprising and are related

to active learning. In active learning, we have to develop a model to identify the most

“important,” “typical” images for expert to annotate. In this way, we can stabilize the

performance in the low-labelled data regime. A potential future work could be extending

our model for active learning.

5.5 Conclusion

In this work, we present a novel pyramid framework for synthesizing high-res histopathology

images and use it to augment a dataset for a segmentation task in both supervised and

semi-supervised scenarios. We provide detailed analysis on our synthetic images both qual-

itatively and quantitatively. We also demonstrate how the pyramid structure and synthetic

data augmentation contribute to the final model performance differently. We conclude that

GANs can be effectively used to augment small pathology datasets to improve semantic seg-

mentation in semi-supervised settings, which could potentially enhance downstream clinical

analysis. We anticipate our findings can shed the light to the future researches on low-cost,

high-res, large-scale histopathology image analysis.
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CHAPTER 6

PathAL: An Active Learning Framework for

Histopathology Image Analysis

6.1 Introduction

In this chapter, we investigate an active learning framework, called PathAL, that is tailored

to histopathology image analysis. To reduce the required number of expert annotations,

PathAL selects two groups of unlabeled data in each training iteration: one “informative”

sample that requires additional expert annotation, and one “confident predictive” sample

that is automatically added to the training set using the model’s pseudo-labels. To reduce

the impact of the noisy-labeled samples in the training set, PathAL systematically identifies

the noisy samples and excludes them to improve the generalization of the model. Our model

advances the existing AL method for medical image analysis in two ways. First, we present

a selection strategy to improve classification performance with fewer manual annotations.

Unlike traditional methods focusing only on finding the most uncertain samples with low

prediction confidence, we discover the large amount of high confidence samples from the

unlabeled set and automatically add them for training with assigned pseudo-labels. Second,

we design a method to distinguish between noisy samples and hard samples using a heuristic

approach. We exclude the noisy samples while preserving the hard samples to improve model

performance. Extensive experiments demonstrate that our proposed PathAL framework

achieves promising results on a prostate cancer Gleason grading task, obtaining similar

performance with 40% fewer annotations compared to the fully supervised learning scenario.

An ablation study is provided to analyze the effectiveness of each component in PathAL,
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Figure 6.1: (a) Schematics of our proposed PathAL. The core algorithm of PathAL consists

of three steps in the ith iteration: discarding noisy samples Ni, requesting human experts

to annotate informative samples Ii and adding them to Li`1, adding confident predictictive

samples Ci with their “pseudo-labels” to Li`1. The curriculum classification (CC) algorithm

and overfitting to underfitting (O2U) monitor are used to select Ni, Ii, Ci. (b) Illustration

of the CC algorithm. Tissues from one slide are mapping to one single point in deep feature

space, where K-Means Clustering is used to group them in subsets. The CC algorithm is

applied to each subsets and classify the image complexity to “easy”, “medium” and “hard”

based on their local density. (c) Principles on how to determine Ni and Ci based on CC

and O2U results. A sample that is classified as “easy” based on its complexity but has large

training loss variation is more likely to be annotated wrong; while if it is classified as “hard”

for its complexity, it is more likely to be a hard sample. Conversely, if a sample is classified

as “easy” on its complexity, and the variation of its predictive entropy is low by the current

model, we will have a higher confidence that the current prediction is correct.
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and a pathologist reader study is conducted to validate our proposed algorithm.

6.1.1 Motivation

Deep neural networks (DNNs) have achieved great success in a wide variety of medical

image analysis tasks [88]. However, noise-free expert annotations are crucial to achieve

high performance. Unfortunately, in medical image analysis, obtaining enough annotations

can be expensive and time-consuming for many tasks. In histopathology images analysis,

the size of the collected dataset can be large, but performing annotations requires years of

professional training and domain knowledge. In addition, the labels provided by different

pathologists can demonstrate low inter-reader variability. For example, in prostate cancer

grading using Gleason scoring, the concordance rate of multiple pathologists can be as low

as 57.9% [144], which results in noisy annotations. DNNs are capable of fitting to noisy

annotations, but they may not generalize to unseen data, which is an important component

of clinical applications. Furthermore, it is challenging to distinguish mislabeled samples

from hard samples. Mislabeled samples are samples with incorrect annotations, while hard

samples have the correct label, but the samples themselves are not “typical.” The lack

of large and noise-free annotation sets is a significant challenge in histopathology image

analysis, preventing DNNs to scale to the size of collected data.

Recent studies have investigated methods for dealing with annotation challenges in medi-

cal imaging. One solution is to use active learning (AL) [10]. AL aims to reduce the amount

of labeled data necessary for the learning task. It employs various sampling methods to

select samples from an unlabeled set. The selected samples are then annotated by experts

and used to train the model. A carefully designed sampling method can reduce the overall

number of labeled data points required to train the model and make the model robust to

class imbalances. However, traditional AL methods do not address the noisy label issue.

A few studies have also sought to detect noisy labels in training data and enhance the

performance of DNNs in medical image analysis. Specifically, addressing the issue of noisy

labels remains an ongoing challenge for the medical imaging analysis community. Dgani et
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al . [21] adopted a noisy channel in neural networks, which models the stochastic relation

between the correct label and the observed noisy label. Xue et al . [142] proposed an online

uncertainty sample mining strategy to suppress the noisy samples. However, these methods

do not distinguish mislabeled samples from hard samples. Making this distinction could

greatly improve histopathology images analysis tasks with noisy labels.

In this work, we present a histopathology AL framework (PathAL) that is able to dy-

namically identify noisy labels and sample images that need to be annotated. Our goal is to

provide a solution that is able to reduce annotations required from experts and to simulta-

neously handle noisy labels. For each iteration of PathAL, we first train the network using

annotated images. We then force the network to modulate between overfitting and underfit-

ting by adjusting the hyper-parameters. In this process, we monitor and rank the normalized

average loss of every labeled sample and the normalized average predictive entropy of every

unlabeled sample. We also measure the complexity of data points using their distribution

density in the feature space and rank their complexity in an unsupervised manner. By doing

so, the noisy labeled samples can be identified and discarded, while the hard and minority

samples can be preserved. The unlabeled images that are most informative to the model

are selected for annotations and added for training for next iteration. In addition, the typi-

cal unlabeled samples with the highest predictive confidence are added to the training pool

with pseudo annotations generated by the model itself. This cost-effective sample selection

strategy is able to improve the classification performance with far fewer manual annotations.

Our proposed method is a tailor-made strategy for histopathology image analysis. The main

contributions of this chapter include: 1) an AL framework (PathAL) that is able to dynam-

ically identify important samples to annotate and to distinguish noisy from hard samples in

the training set, 2) extensive experiments that demonstrate model improvement with less

annotation effort and noisy samples; and 3) a reader study performed by a domain expert

to validate our algorithm.
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6.1.2 Related Work

6.1.2.1 Active Learning

A typical AL framework consists of a method to evaluate the informativeness of each unan-

notated data point xu given f 1px|L1q, where f 1 is a model trained on a labeled dataset L1.

In literature, methods to evaluate informativeness can be generally classified into two types:

1) calculate the uncertainty, and 2) calculate the representativeness. In uncertainty-related

methods, it is assumed that the more uncertain a prediction, the more information we can

gain by including the ground truth for that sample in the training set. Wen et al . [137] pro-

posed an AL method that uses uncertainty sampling to support quality control of nucleus

segmentation in pathology images. Gal et al . [28] introduced Bayesian CNNs to measure

the uncertainty of predictions. They demonstrated their approach for skin cancer diagnosis

to show significant performance improvements over uniform sampling using the Bayesian

Active Learning by Disagreement (BALD) method for sample selection [48], which sought to

maximize the mutual information between predictions and model posterior. Konyushkova et

al . [66] proposed to exploit geometric smoothness priors in the image space to aid the seg-

mentation process in AL. They demonstrated state-of-the-art performance on mitochondria

segmentation from electron microscopy (EM) images and on an magnetic resonance imaging

(MRI) tumor segmentation task for both binary and multi-class segmentation. Another area

of work focuses on the measure of representativeness in addition to uncertainty measures.

This research uses the idea that methods only concerned with uncertainty have the poten-

tial to focus only on small regions of the distribution, and that training on samples from

the same area of the distribution will introduce redundancy to the selection strategy or may

skew the model towards a particular area of the distribution. Therefore, the selection method

should also cover a large range of the data distribution in order to increase sample repre-

sentativeness. Yang et al . [146] presented Suggestive Annotation, a deep AL framework for

medical image segmentation, which uses an alternative formulation of uncertainty sampling

combined with a form of representativeness density weighting. They demonstrated state-

of-the-art performance using 50% of the available data on the MICCAI gland segmentation
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challenge and a lymph node segmentation task. Smailagic et al . [122] proposed MedAL,

an AL framework for medical image segmentation. They proposed a sampling method that

combines uncertainty and distance between feature descriptors to extract the most informa-

tive samples from an unlabeled dataset. Ozdemir et al . [102] proposed a Borda-count based

combination of an uncertainty and representativeness measure to select the next batch of

samples. They introduced new representativeness measures such as “Content Distance,”

defined as the mean squared error between layer activation responses of a pre-trained clas-

sification network. Sourati et al . [124] proposed a method for ensuring diversity among

queried samples by calculating the Fisher Information. They demonstrated the performance

of their approach improved after labelling a small percentage of voxels, outperformed random

sampling, and achieved higher accuracy than entropy based querying.

Our proposed PahtAL model combines both uncertainty and representativeness measures

in the data selection algorithm. Unlike the methods discussed above, our AL framework

also involves a complementary sampling strategy, in which the framework selects from an

unlabeled dataset with: 1) a set of most uncertain samples to be annotated by an oracle,

and 2) a set of highly certain samples that are “pseudo-labeled” by the framework. A

similar idea has been proposed by [134] in natural images, but it has never been used in

histopathology images. Furthermore, PathAL also considers the noisy label issue, which can

deteriorate the performance of the AL framework in histopathology analysis. To the best of

our knowledge, joint modeling of uncertainty and representation has not been explored in

the previous literature in histopathology image analysis.

6.1.2.2 Noisy Label Detection

Addressing noisy labels in machine learning is an ongoing challenge. Several attempts have

been made in natural image tasks. In general, there are two types of solutions to deal with

noisy labels in a training dataset: 1) train models to detect the noisy labels and then clean or

remove them to reduce their impact in the model training; and 2) directly train a noise-robust

model with noisy labels. In line with the first approach, Koh and Liang [64] proposed an
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influence function to measure samples that were “harmful” to model training. Lee et al . [78]

proposed CleanNet, which was a joint neural embedding network. This approach summarized

the knowledge of label noise from a fraction of manually verified classes. Transfer learning

was then conducted to transfer the knowledge to other classes to handle label noise. Han et

al . [43] proposed co-teaching, in which two deep networks were trained simultaneously. Each

network selected which samples the other network used for training. Each of the networks

taught the other to identify noisy labels. In [42], Guo et al . proposed CurriculumNet, in

which training data were divided into several subsets by ranking their distribution density

as a measure of complexity. The subsets were formed as a curriculum to teach the model

to understand label noise gradually. A similar idea was proposed in [59]. In this work, a

MentorNet was trained to identify potential noisy labels. The network then provided a data-

driven curriculum for StudentNet, which was trained on the less noisy data samples. Huang

et al . [50] proposed O2U-Net to make the network transition from overfitting to underfitting

(O2U) automatically. By monitoring the training loss variation, they could detect and

remove noisy labels from the original dataset. On the other hand, several other approaches

that directly train a noise-robust model with noisy labels have been proposed. Goldberger

and Ben-Reuven [35] proposed to model label noise by adding softmax layers to estimate the

transition between correct labels and noisy labels. Xiao et al . [141] proposed a probabilistic

model to describe the relations among images, true labels, noisy labels, and noise types.

The probabilistic model required a small set of verified labels without noise. Reed and

Lee [108] proposed the notion consistent to model noisy labels. Sample reconstruction errors

were applied as the consistency objective to estimate the noise distribution. There are a

few studies that have addressed issues of noisy labels in medical imaging. Dgani et al . [21]

used a noise adaptation layer similar to [35] on a mammography classification task and

outperformed standard training methods. Xue et al . [142] proposed an online uncertainty

sample mining method (OUSM) to detect the noisy labels and iteratively re-weight sample

losses.

To the best of our knowledge, we are the first to incorporate a noisy sample detector in
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an AL framework. In our proposed PathAL, we adopt O2U-Net as a noisy label detector.

It enhances our AL framework for the following reasons: 1) O2U-Net is a noise-cleansing

method, so AL can be conducted after noisy label detection and removal to reduce the need

for human annotations and improve the generalization capacity of the model; 2) other noise-

cleansing methods require either particular assumptions on noise distribution estimation or

extra specifically designed loss functions or networks (e.g. Co-teaching and MentorNet),

while O2U-Net only requires adjusting the hyper-parameters of deep networks; and 3) by

leveraging curriculum learning, in which images are divided into several subsets by ranking

their distribution density in deep feature space, we can distinguish between the noisy labeled

samples and the hard samples, which is a challenging task in histopathology image analysis.

6.1.3 Contributions

Our proposed method is a tailor-made strategy for histopathology image analysis. The main

contributions of this chapter include: (1) an active learning framework (PathAL) that is able

to dynamically identify important samples to annotate, distinguish noisy and hard samples

in the training sets, is proposed; (2) extensive experiments are done to show promising results

on enhancing the model performance with much less annotation efforts and noisy samples.

6.1.4 Organization

The rest of this chapter is organized as follows: we first discuss our proposed method in

Section 6.2. The datasets used in our experiments and experimental results are shown in

Section 6.3. Finally, conclusions are drawn in Section 6.4.

6.2 Methods

In this section, we first formally define our problem and the notations we use in this study.

We then introduce curriculum sample classification and noisy sample detection methods, two

key components of our proposed PathAL model. Finally we describe our proposed PathAL
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method in detail.

6.2.1 Problem Definition

In traditional AL, we assume there is a large pool of unlabeled data U available and an

oracle to help with labeling for every unlabeled data point xu to add to labeled set L. We

consider the whole training set to be T “ L Y U “ L1 Y U1 “ ¨ ¨ ¨ “ Lk Y Uk, where Li, Ui

represents the labeled and unlabeled sets in ith iteration. AL starts from a small labeled

set L1 and tries to find the most informative samples x˚1,j P U1. All the informative samples

selected by the algorithm form a set I1 and will be annotated by domain experts and added

to the labeled set for model training in the next iteration. Thus, we have L2 “ L1 ` I1 and

in general Li`1 “ Li ` Ii.

In contrast to the traditional AL model, our proposed PathAL considers three groups of

samples in the data pool: 1) annotated samples that are in the training dataset that have a

high probability of incorrect label assignment (noisy samples), denoted as the noisy set Ni;

2) unlabeled samples that are most informative to the current model (informative samples),

denoted as the informative set Ii; and 3) unlabeled samples for which the current model is

confident in its predictions (confident samples), denoted as the confident set Ci. PathAL

will discard the noisy samples, require experts to annotate the informative samples and add

them to the training pool, and add confident samples to the data pool with their own, model-

assigned annotations, simultaneously. Thus we have Li`1 “ Li´Ni`Ii`Ci, where Ni Ď Li,

Ii Ď Ui, and Ci Ď Ui, and the training set T “ Li ` Ui. The general process of PathAL is

illustrated in Figure 5.1(a). The core goals for PathAL are: 1) detect the noisy samples and

distinguish them from hard samples, and 2) detect the informative samples to be annotated

and add confident samples automatically. To meet these goals, we first briefly discuss our

curriculum sample classification method, inspired by CurriculumNet [42] and O2U-Net [50]

noisy sample detection, upon which these two questions are answered in PathAL.
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6.2.2 Curriculum Sample Classification

A key component of our PathAL framework is to leverage curriculum learning to classify

each example in a training set to be easy, medium and hard based on its complexity. We

extend CurriculumNet [42] for AL scenarios and use it in a fully unsupervised fashion. In

each iteration, we use a trained model to compute a deep representation for each image in

the training set T . This step aims to roughly map all training images into a feature space

where the underlying structure and the complexity of the images can be discovered. We then

classify each sample into different complexity levels, ranging from easy samples with high-

signal labels to difficult samples whose labels may contain noise. To do so, we first reduce

the dimension of the deep features using t-distributed Stochastic Neighbor Embedding (t-

SNE) [91]. With this set of reduced features, we use the K-means algorithm to cluster the

images into different groups. Each group will ideally contain images with similar diagnoses.

This step aims to help the following process select representative samples covering the whole

training sample space. Next, we calculate a Euclidean distance matrix D Ď Rnˆn as,

Di,j “ }fpIiq ´ fpIjq}
2 (6.1)

where n is the number of images in the same group, Ii, Ij are two images in this group,

fpIiq, fpIjq are the feature vectors of the two images in deep feature space. Di,j indicates a

similarity value between Ii and Ij. Then we calculate a local density (ρi) for each image,

ρi “
ÿ

j

XpDi,j ´ dcq (6.2)

where

Xpdq “

$

&

%

1 d ă 0

0 other
(6.3)

dc in the above equation is a distance threshold we select for determining the local density.

It is selected by first sorting n2 distances from small to large values, and choosing the top

k%. Following the practice in [42], we set k “ 60 in all our experiments. The local density ρi

counts how many samples are closer to image Ii in the deep feature space than the threshold

dc. Finally, we use a K-means clustering method to classify each sample as easy, medium,
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or hard based on their local density for each group. To this end, we assume that a group of

easy images with correct labels will often have similar visual characteristics, project closely to

each other in the feature space, and therefore have a high ρi. By contrast, hard images often

have more visual diversity, resulting in a sparse distribution with a smaller ρi. Figure 5.1(b)

illustrates the workflow of our curriculum classification (CC) algorithm. We also summarize

the CC in Algorithm 4.

Algorithm 4 Curriculum Classification

Require: trained DNN (f), images (xi) in training set T ;

(1) Generate deep image features fpxiq for each image xi;

(2) Reduce dimensionality using t-SNE, then use K-means cluster algorithm to cluster these

features into k different groups g1, g2, ...gk;

(3) Calculate a Euclidean distance matrix D Ď Rnˆn as Di,j “ }fpxiq ´ fpxjq}
2;

(4) Calculate a local density function for each image ρi “
ř

j XpDi,j ´ dcq;

(5) Use K-means cluster algorithm to classify each image xi to easy, medium, and hard based on

their local density ρi in each group gi.

Note that although our curriculum classification algorithm is inspired by CurriculumNet

[42], it is substantially different from it in the following aspects. CurriculumNet is performed

in weakly supervised learning settings, where the authors have access to all the labels of the

samples and are able to use the subgroup with same label for curriculum classification.

In this study, our curriculum classification is performed in each iteration of AL, where we

do not have full access to the annotations of training samples. Therefore, we have to use

unsupervised K-means clustering to first group the training images, and then classify the

samples in each group based on the local density. In this way, we are able to sample the

unlabeled images evenly in the deep feature space.

As our model evolves during each AL iteration, it is hard to distinguish whether a sample

is a noisy sample that has a wrong label or is a complex sample that the model has not learned

yet. Accordingly, we introduce another key component of PathAL, with which we are able

to distinguish noisy samples from hard ones, and discover the most informative samples to

be annotated.
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6.2.3 Noisy Sample Detection

It is challenging to determine whether an incorrectly classified sample is a noisy one with the

wrong label or a complex one that is inherently hard to learn for deep learning models. The

CC algorithm in Section 6.2.2 only considers the visual complexity of the training samples,

but does not provide much information about how well the current AL model learns these

samples. To help with this, we introduce a noisy sample detector by using O2U-Net [50].

The key observation from O2U-Net is that noisy-labeled samples are usually memorized

at the late stages of training, as is the case with hard samples. At the beginning of training,

when the network is still underfitting, the losses of noisy and hard samples are larger than

those of easy samples because the model quickly fits to easy samples. Conversely, during

the late stages of training, the network usually overfits to the training set. It memorizes

both the noisy/hard samples and easy samples, so that the losses generated from them are

indistinguishable. Therefore, by tracking the variation of loss for every sample at different

stages of training, it is possible to detect noisy and hard samples. Based on this idea,

the O2U-Net attempts to cycle training between underfitting and overfitting by tuning the

learning rate, while observing the variation of loss for every sample in Li. Specifically, at

the beginning of training, a large learning rate is set. The learning rate gradually decreases

to some extent during training and is then reset to the original learning rate. This process

repeats for multiple rounds until enough loss statistics are gathered. When the network

almost converges to some minimum (nearly overfitting), a large learning rate can make the

network jump out of the minimum. As a result, the network will quickly start underfitting the

data. By monitoring the training loss for each sample, we can expect the larger the average

loss of a sample after the cyclical training, the higher probability of being a mislabeled or

a hard sample. We apply the same network to detect noisy labels and to train the final

classifier using EfficentNet-B0 [131] (see Section 6.3.3 for more training details). For a more

detailed description of O2U-Net, please refer to [50].

The original O2U-Net only monitors the training loss for each sample in Li. We extend it

to monitor the predictive entropy for every sample in the unlabeled dataset Ui. Specifically,
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we do inference after each epoch in the O2U training cycles. We record the predictive entropy

for each sample in Ui and find the samples with highest average predictive entropy. These

samples are the most “informative” samples to the current model because they cannot be

predicted confidently and may not be represented in the feature space of the current labeled

set Li. We summarize the O2U training workflow in Algorithm 5. We point out that the

O2U-Net alone cannot distinguish between noisy samples and hard samples. With the help

of curriculum classification, however, we are able to heuristically separate these two types of

samples, which we will discuss in the next section.

Algorithm 5 Training O2U

Require: trained DNN (f), labeled image xli , unlabeled image xui ;

for Each epoch do

Adjust learning rate via Equation (6.8).

for Each labeled image xli do

(1) Compute and record training loss lssi;

(2) Update the network f ;

end for

for Each unlabeled image xui do

(1) Compute and record predictive entropy enti;

end for

end for

(1) Compute the normalized average loss Ělssi of every labeled sample among all the epochs;

(2) Compute the normalized average predictive entropy Ěenti of every unlabeled sample among

all the epochs;

(3) Obtain the order by ranking all the labeled samples by Ělssi and all the unlabeled samples by

Ěenti.

6.2.4 PathAL

After introducing the CC algorithm and the O2U process, we now specify the core goals

of PathAL: 1) detect noisy samples and distinguish them from hard samples, and 2) de-

tect informative samples to be annotated and add confident samples using “pseudo-labeles”

assigned by the model itself.
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At the ith iteration of PathAL, we first train a network using the current labeled dataset

Li until it converges. Then we apply the O2U process to continue the training. We monitor

the loss variation of each labeled sample and predictive entropy of each unlabeled sample.

Simultaneously, we apply the CC algorithm on the samples in training set T and classify

them into easy, medium, and hard samples based on their local density in the feature space.

To detect the noisy samples, we find those that have large loss variations in Li and are

also classified as easy by the the CC algorithm. On one hand, these samples have large

loss variations, which means they are hard to learn by the current network. On the other

hand, the samples must have a high local density in the deep feature space in order to be

labeled as “easy”, i.e. they are typical samples that are visually similar to other samples in

T . Thus, there is a higher probability that the pathologist annotations for these samples

contain noise. To prevent them from impacting the model’s training and performance, we

discard these samples in the next training iteration. To detect the informative samples

that require additional expert annotations, we select the samples with the highest average

predictive entropy during O2U training. As discussed in Section 6.2.3, these samples are

most informative because they cannot be predicted confidently by the current model. In

addition, we add unlabeled samples that have the lowest predictive entropy and are classified

as “easy” or “medium” by the CC algorithm. Our model is confident in these predictions,

and they are “typical” samples in the deep feature space, so there is a high probability that

the model predictions are correct. Therefore, it is cost-effective to add them automatically

into Li`1 with self-assigned “pseudo-labels.” Algorithm 6 illustrates the workflow of our

PathAL algorithm.
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Algorithm 6 PathAL

Require: a DNN (f), training set T , initial selected labeled image set L1 and the rest unlabeled

image set U1;

for Each iteration of PathAL do

(1) Train DNN f based on the current labeled image set Li until it is converged;

(2) Perform CC and O2U training in training set T ;

(3) Select noisy samples Ni, most informative samples Ii, and confident predicted samples Ci

based on CC and O2U results;

(4) Update the training set for next iteration as Li`1 “ Li ´Ni ` Ii ` Ci;

end for

As the model evolves during the training process, both the CC and O2U results change.

Therefore, we do not discard the noisy samples completely. Instead, we keep them in a pool

and examine if they need to be added back in throughout the training process. In doing

so, we build a mechanism for the model to correct errors made at the beginning of the AL

process. We summarize how to combine the CC and O2U results based on their relationship

in Figure 5.1(c).

6.3 Datasets, Experiments and Results

In this section, we first introduce the dataset and evaluation metrics we used in our experi-

ments. We then discuss the implementation details of our model, followed by the description

of several baseline models. Finally, we demonstrate and discuss the experimental results.

6.3.1 Dataset and Pre-processing

To demonstrate the effectiveness of our PathAL technique, we use the Kaggle dataset from

the “Prostate cANcer graDe Assessment using the Gleason grading system” (PANDA) chal-

lenge to simulate the AL scenario. The dataset consists of over 11,000 whole-slide images of

digitized H&E-stained biopsies originating from two centers (Karolinska Institute and Rad-

boud University Medical Center). Different slide scanners with slightly different maximum

microscope resolutions were used for digitization and labels were generated from different
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pathologists. The Karolinska dataset was labeled by a single experienced pathologist. Label

noise may exist in this dataset due to the lack of label validation by another pathologist.

The Radboud dataset was read by trained students. For this dataset, some minor label noise

may also exist in the training set due to mistakes in the annotation process or inconclusive

results. Though the label noise presents a modeling challenge, it resembles many real-world

scenarios. As mentioned above, even experts in the field with years of experience do not

always agree on how to interpret prostate histology.

Each sample image in the PANDA dataset is a large, which requires an efficient algorithm

to locate areas of concern on which to focus. We used our previously developed tiling algo-

rithm with a blue-ratio selection criteria to identify the most informative tissue areas [126].

Specifically, the algorithm consists of four steps. First, a binary mask of the tissue on the

slide is created by setting a threshold for the average intensity. This threshold is set empir-

ically to 90% of the maximum image intensity value. Second, the mask is smoothed using

morphological closing and the skeleton of the smoothed mask is then found and branches are

removed by finding the endpoints with the maximum geodesic distance. Third, the mid-line

is partitioned based on the patch size and overlap, tangent lines are found at each of these

locations by looking at the neighborhood of nine pixels along the mid-line and the perpen-

dicular line is drawn until intersection with the mask boundary. Finally, a set of patches that

intersect with more than 60% with the mask are chosen to calculate their blue ratio, and

the top k blue-ratio patches are selected. In this work, a patch size of 256ˆ 256 pixels was

used, and 36 patches were selected for each slide. Figure 5.4 illustrates the pre-processing

steps of the PANDA dataset.

6.3.2 Evaluation Metrics

The task of the PANDA challenge is to predict the ISUP grade on a 0-5 scale for each

biopsy image based on Gleason grading system. Gleason grading is a subjective task, with

high inter- and intra-observer variability. Agreement between pathologists is often measured

using Cohen’s kappa. Therefore we used the quadratic weighted kappa (QWK) to evaluate
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Figure 6.2: Illustration of data pre-processing steps. A binary mask of tissue is first extracted;

then the mid-line is found using morphological closing; after that, the mid-line is partitioned

to form patches based on the batch size and overlap; finally, the blue ratios of patches are

calculated and the top k patches are selected.

our model’s performance. QWK measures the agreement between two outcomes. It typically

varies from 0 (random agreement) to 1 (complete agreement), though it may be negative if

there is less agreement than expected by chance.

The QWK is calculated as follows. First, an N ˆN histogram matrix O is constructed,

such that Oi,j corresponds to the number of ISUP grade i (actual) that received a predicted

value j. An NˆN matrix of weights, w, is calculated based on the difference between actual

and predicted values as,

wi,j “
pi´ jq2

pN ´ 1q2
(6.4)

After that, an NˆN histogram matrix of expected outcomes, E, is calculated assuming that

there is no correlation between values. This is calculated as the outer product between the

actual histogram vector of outcomes and the predicted histogram vector, normalized such
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that E and O have the same sum. From these three matrices, the QWK is calculated as,

κ “ 1´

ř

i,j wi,jOi,j
ř

i,j wi,jEi,j
(6.5)

6.3.3 Network Backbone, Loss Function, and Other Training Details

In this study, we used EfficientNet-B0 [131] for all of our experiments. We used EfficientNet-

B0 because it achieved competitive results in the challenge without high computational cost.

Note that PathAL does not require a specific network backbone and can be easily adapted

to use other networks in various scenarios. We used normal Adam optimization in all the

experiments. The model is trained on one single Tesla V100S GPU in PyTorch.

To predict an ISUP grade on a 0-5 scale, we used the ordinal regression loss function at the

final layer of our network. This can better capture the ordinal relationship between grade

and severity in the training set compared to multi-class classification or the mean square

error loss function. Specifically, we used binary cross entropy loss with binning labels. For

example, label “ r0, 0, 0, 0, 0s means ISUP grade 0, label “ r1, 0, 0, 0, 0s means ISUP grade

1, and label “ r1, 1, 1, 1, 1s means ISUP grade 5.

We performed four-fold cross-validation to show the effectiveness and robustness of

PathAL. In each fold, we used a hold-out set as the testing set, and the rest as the training

set. For comparison, we asked the expert pathologist to annotate 10% of the training sam-

ples each time. We compared PathAL performance with other baseline models alongside the

pathologist annotations. In each iteration of PathAL, we excluded 1% of the whole training

set |T | as noisy samples, added the other 10% ˚ |T | annotated data and 5% ˚ |T | confidently

predicted samples with their “pseudo-labels.”

6.3.4 Baselines

We compared our model with three baseline models. In this section, we describe the acqui-

sition functions used by these baseline models.

‚ Choose pool points that maximize the predictive entropy (Max Entropy). As the
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ordinal regression used in our experiments can be viewed as a binary classification in

each position of the output, we can form the entropy calculation as,

5
ÿ

i“1

r´pi logppiq ´ p1´ piq logp1´ piqs (6.6)

‚ Choose pool points that are predicted with low confidence (also known as variation

ratios). In our ordinal regression formation, a simple way to represent the prediction

confidence can be calculated as,

5
ÿ

i“1

|pi ´ 0.5| (6.7)

‚ Choose pool points randomly: apxq “ unifpq with unifpq as a function returning a

draw from a uniform distribution over the interval [0, 1]. Using this acquisition function

is equivalent to choosing points uniformly at random from the pool.

6.3.5 Experimental Results

We conducted experiments in various settings and compared PathAL with other AL base-

lines. Note that the ISUP grade for samples in Ui is not available in the real AL scenario.

However, we used the label in the dataset as ground truth to provide a quick sanity check

and demonstrate that PathAL worked as expected.

6.3.5.1 Illustration of Curriculum Classification

We first illustrate the process of the CC algorithm to help explain its effectiveness. As

training proceeds, the deep image features should be more separable according to their

ISUP grades in feature space. In other words, if we use k-means to group them in a fully

unsupervised fashion, the label diversity within one group should decrease. We defined a

metric called “grade concentration” to measure the ISUP diversity for each cluster group at

each iteration in PathAL. The “grade concentration” was calculated as an average negative

entropy of ISUP grade distribution of each group. Figure 6.3(a) demonstrates the t-SNE plot
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Figure 6.3: (a) t-SNE plot in deep feature space. Each point in the figure represents a slide

whose color indicates its ISUP grade. As training went on, different ISUP grades became

more separable in the deep feature space, indicating the model captured more essential

information to make the correct predictions. (b) The trend of “grade concentraion” that

measured the ISUP grade distribution within subsets clustered by k-means. The insets of

the figure demonstrates a typical ISUP distribution for the subsets. At the beginning of

training, the ISUP grades were more diffuse, while at the end of the training, each cluster

concentrated on fewer grades. (c)(d) The training loss for every sample in Li, and predictive

entropy for every sample in Ui during the O2U process.
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in the deep feature space. Each point in the figure represents a slide whose color indicates

its ISUP grade. As expected, in the early iterations of PathAL, different ISUP gardes

were not well separated in the feature space, indicating the model was not able to achieve

high accuracy in its predictions. As training went on, ISUP images became more separable

according to their grades. As a result, the subsets clustered by k-means methods would

have higher “grade concentration”. Figure 6.3(b) depicts the trend of “grade concentraion.”

The insets of the figure demonstrate a typical ISUP distribution for the clusters. At the

beginning of the training iterations, the ISUP grades were more spread, while at the end of

the training, each cluster had lower label diversity.

6.3.5.2 Illustration of O2U Cyclic Training

In this illustration, we demonstrate the cyclic training in O2U process. After the model

converged in each iteration, we adjusted the learning rate periodically so that the network

could transition from overfitting to underfitting cyclically. The learning rate was adjusted

based on a cosine annealing function in each cyclic round as,

lr “ lrmin `
1

2
plrmax ´ lrminqp1` cosp

Tcur
Tmax

πqq (6.8)

where Tmax was the epoch for one cycle, lrmin and lrmax were the minimum and maximum

learning rates in one cycle.

We monitored the training loss for every sample in Li, and the predictive entropy for every

sample in Ui. This process is illustrated in Figure 6.3(c)-(d). After the cyclic training, the

samples were ranked according to their losses and predictive entropy variation. The samples

were plotted in terms of three groups: top 0%´40% ranked samples, top 40%´80% ranked

samples, and the rest of the samples. It was observed that the training losses and predictive

entropy fluctuated with the cyclical adjustment of the learning rate. The training losses of

the top 40% of samples fluctuated drastically during the cyclical training when compared

to the rest of the samples, which may indicate they were noisy or hard samples (see Figure

6.3(c)). It is also observed in Figure 6.3(d) that the top 40% samples ranked for predictive
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entropy did not change during early iterations, which implies that the samples in Li contained

limited information for the model to classify these samples. As the training proceeded, we

observed that the predictive entropy of the top 40% started to fluctuate, as the samples in

Li contained more information about the samples in Ui, even for the most uncertain group.

6.3.5.3 PathAL Performance

We compared our proposed PathAL with the three common AL baselines mentioned in

Section 6.3.4. Figure 6.4(a) demonstrates the comparison results of QWK on ISUP grade

prediction between PathAL and the baselines. The QWK was calculated as the average

performance for the four folds and the standard deviation was plotted as the error bar. As

shown in the figure, PathAL significantly improved the QWK with less required annota-

tions. It achieved a higher QWK compared with the full training set supervision baseline

with only 60% annotations required for the expert. The lowest confidence and predictive

entropy methods performed better at the early stage of AL (when the annotated samples

were limited). However, their effectiveness gradually decreased and converged to the same

level of the fully supervised performance when the model had access to the full annotations.

Though PathAl did not outperform the fully-supervised baseline by a large margin, we argue

that it achieved slightly better performance because it discarded the noisy labels. We also

found that the predictive entropy model achieved its highest QWK performance when using

only 90% annotations, indicating that excluding “noisy” samples can improve the prediction

accuracy. To illustrate the effectiveness of each component in PathAL, we performed an

ablation study in Section 6.3.5.4.

To determine whether: 1) the samples we discarded in each iteration were noisy with low

QWK, 2) the samples we asked the expert to annotate were “informative” with low QWK,

and 3) the samples we added with their “pseudo-label” were correct with high QWK, we

plotted the QWK for each group during the training process in Figure 6.4(b). It is observed

that the noisy sample group Ni had a relatively low QWK even though their labels were used

for training, while the confident predicted samples in Ui have a much higher QWK. Samples
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in Ii that were re-annotated by the expert had low QWK, indicating that those samples were

most “informative” to the current models, and would improve the model’s performance by

a large margin if added to Li with annotations.
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Figure 6.4: (a) Performance comparison between PathAL and other AL baselines. (b) QWK

for each group (Ni, Ci, Ii) during the training process.

6.3.5.4 Ablation Study

To illustrate the effectiveness of each component in PathAL, we performed an ablation study

with varying amounts of labeled data until 60% of expert annotations were added to Li,

when PathAL would have access to all sample labels either through expert’s annotations or

pseudo-assigned labels. Section 6.3.5.4 demonstrates the results when only parts of PathAL
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components were used. The QWK is shown as an average for four different folds with a

calculated standard deviation.

From the table, we observed that using a simple predictive entropy measure by O2U in

row 2 (Entropy (O2U)) to select the most “informative” samples improved the QWK by 1.3%

compared with the random selection baseline, while PathAL improved the random baseline

by 2.4%. When we excluded the noisy samples in row 3 (Entropy + Noisy (O2U)), we saw

QWK improve by 0.3%, while adding the high-confidence predictive samples by self-assigned

pseudo-labels (row four Entropy + Conf Preds) improved the QWK by 0.4%. To illustrate

whether the O2U component helped with the selection of Ni, Ii, Ci, we implemented PathAL

with selection based on the predictive entropy (row 5 PathAL (w/o O2U & CC)), i.e. we

selected the top ranked samples in Li based on the model’s predictive entropy as Ni, the top

ranked samples in Ui as Ii, and the bottom ranked samples as Ci. We showed that using

O2U and CC in combination as a sample selective strategy improved the QWK by 1.3%,

indicating the effectiveness of their roles in PathAL.

Table 6.1: Ablation Study of PathAL.

QWK

Random 87.1 ˘ 0.6

Entropy (O2U) 88.4 ˘ 0.5

Entropy + Noisy (O2U & CC) 88.6 ˘ 0.3

Entropy + Conf Preds (O2U & CC) 88.8 ˘ 0.5

PathAL (w/o O2U & CC) 88.6 ˘ 0.4

PathAL 89.5 ˘ 0.5

6.3.5.5 Pathologist Validation

To validate our algorithm for detecting easy, noisy, and hard samples, a pathologist at our

institution with expertise in Gleason grading (AS) performed an independent reader study.

Specifically, we provided three groups of slides that were labeled as easy, noisy, and hard by
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our algorithm. Each group consisted of 100 slides. The pathologist was asked to give final

ISUP grades without knowing the ground truth labels provided by the dataset. As shown

in Section 6.3.5.5, we measured the QWK of each group. Surprisingly, the QWK of the

“easy” group was 1, indicating 100% agreement between the pathologist and the ground-

truth label for the 100 samples. Conversely, the QWK of the “noisy” group was -0.14. The

high variance between the dataset labels and pathologist readings may be explained by noise

in the dataset labels. The QWK of the “hard” samples was 0.10, which was slightly higher

than that of the “noisy group”. By visually inspecting the discordant slides in the “hard”

group, we found that some of the slides were likely to have incorrect labels. In other slides,

the cancerous regions were either small or ambiguous, so it was difficult for the pathologist

to spot the cancerous areas or reach a consensus. In general, we found that our algorithm

robustly distinguished between “easy” and “hard & noisy” groups. However, there is still

room for improvement in distinguishing between “hard” and “noisy” samples. For more

details, please refer to the Appendix.

Table 6.2: Pathologist Reader Study.

Group Easy Hard Noisy

QWK 1.00 0.10 -0.14

6.4 Conclusion

In this chapter, we have proposed PathAL, a novel AL framework for histopathology image

analysis. Unlike prior studies in medical image AL, which only consider the most “infor-

mative” samples to be added in each iteration, PathAL also heuristically excludes noisy

samples and adds confident predictive samples with self-assigned pseudo-labels. Specifically,

the combination of a curriculum classification (CC) algorithm and an overfitting to under-

fitting (O2U) process was used to detect noisy, confident and informative samples. Our

proposed method achieved competitive performance while requiring only 60% of samples to
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be annotated, compared to the fully supervised learning baseline on the PANDA challenge.

Extensive experiments conclude the effectiveness of each component in PathAL. We expect

to apply PathAL to other histopathological image analysis scenarios in the future.
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CHAPTER 7

Conclusion

7.1 Summary of Contributions

In this dissertation, we focus on one of the biggest challenges in histopathology image analysis

using deep learning, namely the insufficient number of labeled images for training. We

have designed and analyzed novel deep learning models to enable cost-effective, scalable

image processing and diagnosis on histopathology in supervised and semi-supervised settings.

Furthermore, we have studied an active learning framework, which is also known as “human

in the loop” approach, to further reduce the experts’ annotation effort. Our proposed active

learning framework is tailored to the specific characteristics in histopathology image analysis.

In Chapter 2, we start with a fully supervised segmentation method, which is named as

Path R-CNN, for Gleason grading of prostate cancer. We formally define our problem in

the context of the image instance segmentation problem. We assign the stromal components

of the input images as the background class. Other epithelial cells in the input image that

have been annotated by the pathologists as benign, low-grade or high-grade are assigned as

instance objects, i.e. the RoIs we want our network to find. Under these assignments, we

take advantage of R-CNN model and modify it to be more suitable for the Gleason grading

task. Specifically, we use ResNet as the backbone for our image parser. First, the image

parser generates feature maps. These feature maps are then fed into two branches. In one

branch, we adopt the same two-stage procedure as in the Mask R-CNN. The feature maps

are first used by a Region Proposal Network (RPN) that generates region proposals (RoIs).

In the second stage, a Grading Network Head (GNH) is then used for predicting the class,

box offset, and a binary mask for each RoI. To this we add another branch that outputs an
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epithelial cell score that detects the presence of epithelial cells in the image. We refer to this

part as the Epithelial Network Head (ENH). The final prediction of the network depends

on the results of the ENH and GNH. Finally, a post-processing step based on a conditional

random field is applied to the prediction.

The main contributions of our proposed Path R-CNN are twofold: first, by adding an

Epithelial Network Head (EHN), we adapt the Mask R-CNN to be suitable for the histological

image analysis for Gleason grading task with little additional computational overhead; second

we develop a two-stage training strategy which enables our model to detect epithelial cells

and predict Gleason grades simultaneously.

In Chapter 3, Chapter 4, and Chapter 5, we present a series of studies focusing on semi-

supervised learning (SSL) using generative adversarial networks (GAN). We first focus our

efforts on natural images. In Chapter 3, we systematically compared two GAN-based SSL

methods, Good GAN and Bad GAN, by applying these two models with commonly-used

benchmark datasets. We illustrate the distinct characteristics of the images they generated,

as well as each model’s sensitivity to varying the amount of labeled data used for training. In

the case of low amounts of labeled data, model performance is contingent on the selection of

labeled samples; that is, selecting non-representative samples results in generating incorrect

image-label pairs and deteriorating classification performance. Furthermore, selecting the

optimal batch size is crucial to achieve good results in both models. Notably, Good GAN

and Bad GAN models can be used for complementary purposes; Good GAN generates good

image-label pairs to train the classifier, while Bad GAN generates samples that force the

decision boundary between data manifold of different classes. Inspired by this study, in

a follow-up study we present in Chapter 4, we develop a unified-GAN (UGAN), a novel

framework that enables a classifier to simultaneously learn from both good and bad samples

through adversarial training. We perform extensive experiments on various datasets to

show that UGAN: 1) achieves competitive performance among other GAN-based models,

and 2) is robust to variations in the amount of labeled data used for training. Overall,

our main contributions of this study are: 1) we propose a novel SSL framework, UGAN,
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which simultaneously trains a good and a bad generator through adversarial training and

takes advantage of both generated samples to boost SSL performance; 2) we analyze our

proposed UGAN, theoretically prove its global optimum, and additionally put UGAN in

the Expectation-Maximization (EM) framework and validate its non-increasing divergence

property; and 3) we do extensive experiments to show that UGAN can improve upon Triple-

GAN and Bad GAN classification results in SSL, and show the effectiveness of the model

with different amounts of labeled data.

In Chapter 5, we switch our gear back on histopathology image analysis. Our goal is

to synthesize a realistic histopathology image x based on an arbitrary semantic mask y, so

that px, yq can be used to compensate for the small data size when training a segmentation

network. Image synthesis for data augmentation is not widely used in histopathology anal-

ysis because generating images with fine details is difficult. Synthesizing images for gland

segmentation poses even more challenges, as the generated images have to preserve both

global gland structures and finer nuclear details based on the masks. To overcome these

problems, we design the generation and segmentation networks using pyramid structures.

We show that the synthesized image-mask pairs can be used to boost the segmentation per-

formance, especially in semi-supervised scenario. The main contributions of our model are

twofold. First, by using a pyramid generation scheme, we are able to generate large-scale

histopathological images up to 1024ˆ 1024 at high resolution (20x). Compared to the state-

of-the-art pathology synthesis methods, which generate images up to 256ˆ 256 allowing for

only limited context such as simple nuclei, our generation allows to incorporate richer con-

text such as gland structures and nuclei details that are useful for precise diagnosis. Second,

the generation is based upon a conditional method, which produces good image-mask pairs.

These image-mask pairs can be used to compensate for the lack of data points in training

segmentation models. We demonstrate the effectiveness of our method in segmentation tasks

and analyze how it performs differently in supervised and semi-supervised settings.

In Chapter 6, we study an active learning framework that is tailored to histopathology

image analysis, namely PathAL. PathAL is able to dynamically identify the noisy labels and

126



sample the images that need to be annotated. We provide a solution that is able to reduce the

annotations required from the expert and handle noisy labels simultaneously. Specifically,

for each iteration of PathAL, we first train the network using the annotated images. Then we

make the network to transfer from overfitting to underfitting status cyclically by adjusting

the hyper-parameters. In this process, we monitor and rank the normalized average loss

of every labeled example and the normalized average prediction entropy of every unlabeled

example. We also measure the complexity of data points using their distribution density in

the feature space, and rank their complexity in an unsupervised manner. By doing so, the

noisy labeled samples can be identified and discarded, while the hard and minority samples

can be preserved; the unlabeled images that are most informative to the model as it trains

are selected for annotations and add to the training for the next iteration. In addition, the

typical unlabeled samples with highest predictive confidence are added to the training pool

with pseudo annotations generated by the model itself. This cost-effective sample selection

strategy is able to improve the classification performance with much less manual annotations.

Our proposed method is a tailor-made strategy for histopathology image analysis. The main

contributions of this work include: 1) an active learning framework (PathAL) that is able to

dynamically identify important samples to annotate, distinguish noisy and hard samples in

the training sets, is proposed; 2) extensive experiments are done to show promising results

on enhancing the model performance with much less annotation efforts and noisy samples.

7.2 Future Works

There are still many open research problems in the topics that this dissertation doesn’t cover.

7.2.1 Discovery of Novel Objects in Long-tail Distribution

In real diagnostic situations, unexpected objects could exist. For example, aberrant organi-

zations and rare tumors can show up in inference time while they are not included in training

data. Although this dissertation focuses on how we can use data effectively, we didn’t put

127



much effort on dealing with the novel objects in the long-tail distribution. In the future, we

can potentially solve this problem by adding an outlier detection algorithm to our proposed

models. The outlier detection algorithm can raise a red flag whenever it sees a novel object,

so that domain experts can take a closer look at it.

7.2.2 Correlate Deep Features with Clinical-Relevant Features

In Chapter 5, we provide image manipulation results by changing the gland labels in Figure

5.4(c). It suggests that deep learning models are able to learn useful representations that are

predictive for the clinical-relevant measurements. Nevertheless, in this dissertation we don’t

provide any quantitative analysis on the learned representations. In the future, a potential

direction is to make the latent representations more explainable and correlate them with

clinical-relevant measurements through mutual information maximization. It is also helpful

to seek assistance from pathologists to provide clinical-relevant measurements.

7.2.3 Interpretable Deep Learning Models

Deep learning is often criticized as a “black box” for its decision-making process, since it is

not understandable to humans. In histopahtology image analysis, doctors and patients want

to know the decision process for the diagnostic basis. In Chapter 6, we present a heuristic

way to distinguish between noisy samples and hard samples, and provide interpretability to

some extent. Nevertheless, the explanation is purely from the computational point of view

and doesn’t incorporate opinions from domain experts. Thus a crucial future direction is to

increase the interpretability of our developed models.
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APPENDIX A

Appendix for Chapter 2

A.1 Gleason Grading System for Prostate Cancer Diagnosis

The most common method for histological grading of prostate tissue is the Gleason grading

system. Depicted in Figure A.1, this system classifies tissue into five grades, numbered 1-

5. The grade increases with increasing malignancy and, therefore, cancer aggressiveness.

Gleason grade characterizes tumor differentiation, i.e., the degree of tumor resemblance to

normal tissue. Grade 1 corresponds to well differentiated tissue, i.e., tissue with the highest

degree of resemblance to normal tissue, and indicates a high chance of patient survival.

Grade 5 corresponds to poorly differentiated tissue and indicates a lower chance of survival.

In this chapter, we classify tissue into four categories based on the Gleason grading

results. These are Stroma (ST), the fibromuscular tissue surrounding glands; Benign (BN),

tissue featuring well-formed glands, which are rated as Gleason 2 or below; Low-grade (LG),

tissue featuring recognizable glands with darker cells, which are rated as Gleason 3; and

High-grade (HG), tissue featuring non-recognizable, poorly differentiated glands, which are

rated as Gleason 4-5.

A.2 More Insights for ENH and Comparison with Multi-Scale U-

Net

The starting point of our chapter is our previous Multi-scale U-Net work in [79]. We found the

main drawback of the Multi-scale U-Net model is the softmax layer at the end. As illustrated

in Figure A.2, the Multi-scale U-Net model performs much better than the U-Net; however
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Figure A.1: Gleason grading diagram. Reprinted from [140].

it still leaves some “noisy prediction” in between of the gland structures. We argue that

the reason behind this phenomenon comes from the fact that the softmax layer requires

the prediction to compete with different classes at each pixel, which enforces the model to

“think” in a pixel-wise level. On the other hand, our proposed R-CNN method is a region

based method wherein the label prediction is based on a super-pixel group, the “instance.”

For each instance, the model will give one label prediction. Decoupling the classification

and segmentation problem therefore eliminates the “noisy prediction” that appears in the

Multi-scale U-Net.

Our initial implementation of R-CNN did not perform as expected as it performed similar

to the Multi-scale U-Net. One key observation we had after carefully reviewing the results
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Figure A.2: Results of Multi-Scale U-Net

was that the Path R-CNN model had difficulty distinguishing between stroma and epithelial

cells (especially high-grade cancer regions, see Figure 2.5 Column 4). Therefore, we first

added another individual network to distinguish the presence of epithelial cells prior to the

R-CNN. As stated in Section 2.3.2.3 ENH Effect, we empirically found that explicitly adding

this network performed much better than tuning the “detection threshold” inside the GNH.

To reduce the computational overhead, we moved this individual network after the ResNet

backbone, resulting a more efficient Epithelial Network Head (ENH).

As the result from Path R-CNN w/o the ENH is nearly same as the Multi-scale U-

Net results, a natural question to ask is: can the Multi-scale U-Net combined with the

ENH prediction suppress false positives in non-epithelial cell regions? We did an additional

experiment by combining the ENH with the Multi-scale U-Net. As listed in Table A.1, it

actually improves the performance by 1.2% in mIOU, which is not as large as the Path
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R-CNN. In Figure A.3, we show the prediction results of the Multi-scale U-Net and the

Path R-CNN with and without EPH. We argue that while the R-CNN method suffers from

distinguishing the stroma from the epithelial cells, the Multi-scale U-Net performs very well

on stroma classification. Thus adding the EPH explicitly does not improve performance

much.

Ground Truth Original ImagePath R-CNNMS U-Net
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w
/o
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Figure A.3: Multi Scale U-Net model prediction with and without ENH compared with Path

R-CNN.

Table A.1: Multi-scale U-Net performance with ENH

JBG JBN JLG JHG mIOU

Multi-Scale U-Net 82.42% 72.13% 58.70% 78.38% 72.91%

Multi-Scale U-Net w ENH NA% NA% NA% NA% NA%
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A.3 Effect of Transfer Learning

We empirically found that the pre-training network did not necessarily give more accurate

results. However, it did accelerate the convergence rate during model training. As shown in

Figure A.4, the training loss without transfer learning decreases slowly compared with trans-

fer learning. The loss without transfer learning decreases to the same “stopping level” at

epoch 90 compared to epoch 70 with transfer learning. [47] provided a possible explanation

on why transfer learning only helps with model convergence and not model performance.

Though different initialization weights will lead to different “local minimums” in the end,

these “local minimums” can join to form macroscopic basins (known as Hopfield memories

in the neural network community), which results in similar performance. The detailed dis-

cussion is beyond the scope of our thesis, but we refer interested readers to [47] for more

information.
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Figure A.4: Impact of Transfer Learning on Model Convergence
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APPENDIX B

Appendix for Chapter 3

B.1 Network Architecture

We list the detailed architecture we used to compare Good GAN and Bad GAN on MNIST,

SVHN, and CIFAR10 datasets in Table B.1, Table B.2 and Table B.3 respectively.

Table B.1: MNIST
Generator G Classifier C Discriminator D (Good GAN only)

Input Label y, Noise z Input 28ˆ 28 Gray Image Input 28ˆ 28 Gray Image, Label y

MLP 500 units, softplus, batch norm

MLP 500 units, softplus, batch norm

MLP 500 units, softplus, batch norm

MLP 1000 units, lRelu,

Gaussian noise, weight norm

MLP 500 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 10 units, softmax,

Gaussian noise, weight norm

MLP 1000 units, lRelu,

Gaussian noise, weight norm

MLP 500 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 12 units, sigmoid,

Gaussian noise, weight norm

B.2 Batch Size Effect in Bad GAN

Figure B.2 shows the classification accuracy under different batch sizes for Bad GAN during

the first 400 epochs of training. As can be seen, the model performance is very sensitive to

batch size. Figure B.1 shows the generated images of Good GAN under different batch sizes.

With small batch size, Good GAN is not able to generate good image-label pairs.
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Table B.2: SVHN
Generator G Classifier C Discriminator D (Good GAN only)

Input Label y, Noise z Input 32ˆ 32 Colored Image Input 32ˆ 32 Colored Image, Label y

MLP 8192 units,

Relu, batch norm

Reshape 512ˆ 4ˆ 4

5ˆ 5 deconv. 256. stride 2,

Relu, batch norm

Gaussian noise, 0.2 dropout

3ˆ 3 conv. 64. lRelu, weight norm

3ˆ 3 conv. 64. lRelu, weight norm

3ˆ 3 conv. 64. lRelu,

stride 2, weight norm

0.5 dropout

0.2 dropout

3ˆ 3 conv. 32. lRelu, weight norm

3ˆ 3 conv. 32. lRelu,

stride 2, weight norm

0.2 dropout

5ˆ 5 deconv. 128. stride 2,

Relu, batch norm

3ˆ 3 conv. 128. lRelu, weight norm

3ˆ 3 conv. 128. lRelu, weight norm

3ˆ 3 conv. 128. lRelu,

stride 2, weight norm

0.5 dropout

3ˆ 3 conv. 64. lRelu, weight norm

3ˆ 3 conv. 64. lRelu,

stride 2, weight norm

0.2 dropout

5ˆ 5 deconv. 3. stride 2,

sigmoid, weight norm

3ˆ 3 conv. 128. lRelu, weight norm

3ˆ 3 conv. 128. lRelu, weight norm

3ˆ 3 conv. 128. lRelu, weight norm

Global pool

MLP 10 units, softmax, weight norm

3ˆ 3 conv. 128. lRelu, weight norm

3ˆ 3 conv. 128. lRelu, weight norm

Global pool

MLP 1 unit, sigmoid, weight norm
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Table B.3: CIFAR10
Generator G Classifier C Discriminator D (Good GAN only)

Input Label y, Noise z Input 32ˆ 32 Colored Image Input 32ˆ 32 Colored Image, Label y

MLP 8192 units,

Relu, batch norm

Reshape 512ˆ 4ˆ 4

5ˆ 5 deconv. 256. stride 2,

Relu, batch norm

Gaussian noise, 0.2 dropout

3ˆ 3 conv. 96. lRelu, weight norm

3ˆ 3 conv. 96. lRelu, weight norm

3ˆ 3 conv. 96. lRelu,

stride 2, weight norm

0.5 dropout

0.2 dropout

3ˆ 3 conv. 32. lRelu, weight norm

3ˆ 3 conv. 32. lRelu,

stride 2, weight norm

0.2 dropout

5ˆ 5 deconv. 128. stride 2,

Relu, batch norm

3ˆ 3 conv. 192. lRelu, weight norm

3ˆ 3 conv. 192. lRelu, weight norm

3ˆ 3 conv. 128. lRelu,

stride 2, weight norm

0.5 dropout

3ˆ 3 conv. 64. lRelu, weight norm

3ˆ 3 conv. 64. lRelu,

stride 2, weight norm

0.2 dropout

5ˆ 5 deconv. 3. stride 2,

sigmoid, weight norm

3ˆ 3 conv. 192. lRelu, weight norm

3ˆ 3 conv. 192. lRelu, weight ntheirorm

3ˆ 3 conv. 192. lRelu, weight norm

Global pool

MLP 10 units, softmax, weight norm

3ˆ 3 conv. 128. lRelu, weight norm

3ˆ 3 conv. 128. lRelu, weight norm

Global pool

MLP 1 unit, sigmoid, weight norm
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Figure B.1: Batch size effect in Bad GAN. The classification accuracy over the initial 400

training epochs under different batch size. (a) The experiments are performed on MNIST

dataset, using 100 labeled data. (b) The experiments are performed on SVHN dataset, using

1000 labeled data.

Figure B.2: Batch size effect in Good GAN. With small batch size, Good GAN is not able

to generate good image-label pairs. Experiments are performed on SVHN with n “ 1000.

All the images are generated at epoch “ 200 when we start to use the generated image to

train.
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APPENDIX C

Appendix for Chapter 4

C.1 Loss Function of the Classifier

Softmax layer is over-parameterized, therefore we can still model C with K neurons at the

output layer. To represent K ` 1 classes, the loss function should be modified as detailed

below.

First let us rewrite the four components of C’s objective function:

LC1 “ ´Ex,y„plpx,yqrlogppCpy|x, y ď Kqs LC2 “ ´Ex,y„pgGpx,yqrlogppCpy|x, y ď Kqs

LC3 “ ´Ex„pupxqrlogp1´ pCpy “ K ` 1|xqs LC4 “ ´Ex„pbGpxqrlogppCpy “ K ` 1|xqs

(C.1)

Suppose tl1pxq, l2pxq, l3pxq, ¨ ¨ ¨, lKpxq, lK`1pxqu represents the logits before the softmax-

layer for input x, by using the fact that softmax is over-parameterized, we can fix the logit

lK`1pxq “ 0 @x for the bG generated images and the output of the softmax remains the

same. Hence, we can reformulate the above four components as

LC1 “ ´Ex,y„plpx,yqr´ly ` logp
K
ÿ

i“1

expliqs

LC2 “ ´Ex,y„pgGpx,yqr´ly ` logp
K
ÿ

i“1

expliqs

LC3 “ ´Ex„pupxqr´ logp
K
ÿ

i“1

expliq ` logp1`
K
ÿ

i“1

expliqs

LC4 “ ´Ex„pbGpxqrlogp1`
K
ÿ

i“1

expliqs

(C.2)

Define the log sum exponent function as LSEpxq “ logp
ř

j expxjq and softplus function
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as softpluspxq “ logp1` expxq, the losses can be further simplified as

LC1 “ ´Ex,y„plpx,yqr´ly ` LSEplqs

LC2 “ ´Ex,y„pgGpx,yqr´ly ` LSEplqs

LC3 “ ´Ex„pupxqr´LSEplq ` softpluspLSEplqqs

LC4 “ ´Ex„pbGpxqrsoftpluspLSEplqqs

(C.3)

which are used in our code implementation.

C.2 How does bG work?

In order to get a more intuitive understanding of why a complement generator could boost

SSL performance, we conduct analysis experiments based on 2D synthetic data. As shown

in the Figure C.1, labeled and unlabeled data are denoted by a dark-colored triangle and

a light-colored circle respectively, and two classes are indicated by different colors. We add

fake data points (denoted by yellow triangles) which lie between the data manifolds of two

classes in Figure C.1(c). The exact same model and parameters are then used to train binary-

classification models with two groups of data points. We visualize decision boundaries of

these two classification models. As expected, the decision boundary in Figure C.1(d) always

lies in the fake data area outside data manifolds, which in turn improved generalized ability

of model.

C.3 Detailed Theoretical Analysis

Lemma 1 For any fixed C and G, the optimal D of the game defined by the loss function

(1) - (5) is

D˚C,gG,bGpx, yq “
plpx, yq

plpx, yq ` p 1
2
px, yq

, (C.4)

where p 1
2
px, yq “ 1

2
pgGpx, yq `

1
2
pCpx, y|y ď Kq.

Proof : This follows from Proposition 1 of [10] directly.
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(a) (b)

(c) (d)

Figure C.1: Effectiveness of bG on synthetic data. (a) data points without fake data gener-

ated by bG; (b) decision boundary without bG; (c)data points with fake data generated by

bG; (d) decision boundary with bG
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Theorem 2 The global minimum of V pC, gG, bGq is achieved only when plpx, yq “ pgGpx, yq “

pCpx, y|y ď Kq.

Proof :

Given D˚C,gG,bG, we can reformulate our value function as

V pC, gG, bGq “ ´ log 4` 2JSDpplpx, yq, p 1
2
px, yqq ` LC1 ` LC2 ` LC3 ` LC4. (C.5)

We first focus on the term with respect to pCpx, y|y ď Kq, denoted the corresponding loss

as Ṽ pC|y ď Kq, we have

Ṽ pC|y ď Kq92JSDpplpx, yq, p 1
2
px, yqq ´ Ex,y„plpx,yqrlogppCpy|x, y ď Kqs

´ Ex,y„pgGpx,yqrlogppCpy|x, y ď Kqs

92JSDpplpx, yq, p 1
2
px, yqq `KLppβpx, yq||pCpy|x, y ď Kq,

(C.6)

where pβpx, yq “ βplpx, yq ` p1´ βqpgGpx, yq and β{p1´ βq is the ratio of data we feed into

classifier between true labeled data and data pairs from good generator. Therefore the global

minimum can only be achieved when

plpx, yq “
1

2
pgGpx, yq `

1

2
pCpx, y|y ď Kq

pCpx, y|y ď Kq “ βplpx, yq ` p1´ βqpgGpx, yq,

(C.7)

and it is obtained when plpx, yq “ pgGpx, yq “ pCpx, y|y ď Kq.

Corollary 2.1 The optimal classifier C will have pCpy “ K ` 1|x „ pupxqq “ 0 and

pCpy “ K ` 1|x „ pbGpxqq “ 1.

Proof : Because pCpy “ K ` 1|xq and pCpy|x, y ď Kq are independent, we can consider

them separately. The term related to pCpy “ K ` 1|xq in loss function is

LC3 ` LC4 “ ´Ex„pupxqrlogp1´ pCpy “ K ` 1|xqs ´ Ex„pbGpxqrlogppCpy “ K ` 1|xqs, (C.8)

which achieves its minimal 0 when pCpy “ K ` 1|x „ pupxqq “ 0 and pCpy “ K ` 1|x „

pbGpxqq “ 1.

Corollary 2.2 If applying the iterative procedure described in (9) and (10),

KLpppyl|xq||pθs`1pyl|x, y ď Kqq ď KLpppyl|xq||pθspyl|x, y ď Kqq (C.9)
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Proof: Define

Jpθ, ppZ|xqq “ KLpppyl|xqppZ|xq||pθpyl, Z|x, y ď Kqq, (C.10)

and

Jpθq “ KLpppyl|xq||pθpyl|x, y ď Kqq. (C.11)

Then we have

Jpθs`1q ď Jpθs`1, pθspZ|xqq ď Jpθs, pθspZ|xqq “ Jpθsq. (C.12)

C.4 Datasets

We apply UGAN on the widely adopted MNIST [77], SVHN [99], and CIFAR10 [69] datasets.

MNIST consists of 50,000 training samples, 10,000 validation samples, and 10,000 testing

samples of handwritten digits of size 28ˆ 28. SVHN consists of 73,257 training samples and

26,032 testing samples. Each sample is a colored image of size 32ˆ32, containing a sequence

of digits with various backgrounds. CIFAR10 consists of colored images distributed across

10 general classes – airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. It

contains 50,000 training samples and 10,000 testing samples of size 32ˆ 32. Following [19],

we reserve 5,000 training samples from SVHN and CIFAR10 for validation if needed in our

experiments.

C.5 Network Architecture

We list the detailed architecture we used to construct UGAN in Table C.1, Table C.2 and

Table C.3 respectively. To re-implement Triple-GAN and Bad GAN, we also use the same

architecture of the corresponding parts for fair comparison. Note that in Bad GAN, the

discriminator has two roles: to classify the real data into the right class and to distinguish

the real samples from the fake samples. For clarity, we refer to Bad GAN’s D as C in the

table, while D is a conditional network that presents in Triple-GAN and UGAN.
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Table C.1: MNIST

bG gG C D

z „ ppzq y „ ppyq, z „ ppzq x „ ptl,u,gG,bGupxq px, yq „ ptl,gG,Cupx, yq

MLP 500 units,

softplus, batch norm

MLP 500 units,

softplus, batch norm

MLP 500 units,

softplus, batch norm

MLP 1000 units, lRelu,

Gaussian noise, weight norm

MLP 500 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 10 units, softmax,

Gaussian noise, weight norm

MLP 1000 units, lRelu,

Gaussian noise, weight norm

MLP 500 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 12 units, sigmoid,

Gaussian noise, weight norm

C.6 Results of Varying Amount of Labeled Data

We perform our experiments on setups with 20, 50, 100, and 200 labeled examples in MNIST,

500, 1000, and 2000 labeled examples in SVHN, and 1000, 2000, 400, 8000 examples in

CIFAR10. Table C.4 „ C.5 show the results of the experiemts on SVHN, and CIFAR10

respectively. We find that our UGAN constantly outperforms Triple-GAN and Bad GAN

across a wide range of labled data.

C.7 Importance of Selected Labeled Data

One interesting observation is that the selection of labeled data plays a crucial role for

training Triple-GAN, Bad GAN and UGAN in the low labeled data scenario. For most cases,

the labeled data used for the training in our experiments are randomly selected stratified

samples, except for the MNIST-20 case. In this case, we found selecting representative
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Table C.2: SVHN

bG gG C D

z „ ppzq y „ ppyq, z „ ppzq x „ ptl,u,gG,bGupxq px, yq „ ptl,gG,Cupx, yq

MLP 8192 units,

Relu, batch norm

Reshape 512ˆ 4ˆ 4

5ˆ 5 deconv. 256. stride 2,

Relu, batch norm

Gaussian noise, 0.2 dropout

3ˆ 3 conv. 64.

lRelu, weight norm

3ˆ 3 conv. 64.

lRelu, weight norm

3ˆ 3 conv. 64. lRelu,

stride 2, weight norm

0.5 dropout

0.2 dropout

3ˆ 3 conv. 32.

lRelu, weight norm

3ˆ 3 conv. 32. lRelu,

stride 2, weight norm

0.2 dropout

5ˆ 5 deconv. 128. stride 2,

Relu, batch norm

3ˆ 3 conv. 128.

lRelu, weight norm

3ˆ 3 conv. 128.

lRelu, weight norm

3ˆ 3 conv. 128. lRelu,

stride 2, weight norm

0.5 dropout

3ˆ 3 conv. 64.

lRelu, weight norm

3ˆ 3 conv. 64. lRelu,

stride 2, weight norm

0.2 dropout

5ˆ 5 deconv. 3. stride 2,

sigmoid, weight norm

3ˆ 3 conv. 128.

lRelu, weight norm

3ˆ 3 conv. 128.

lRelu, weight norm

3ˆ 3 conv. 128.

lRelu, weight norm

Global pool

MLP 10 units,

softmax, weight norm

3ˆ 3 conv. 128.

lRelu, weight norm

3ˆ 3 conv. 128.

lRelu, weight norm

Global pool

MLP 1 unit,

sigmoid, weight norm
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Table C.3: CIFAR10

bG gG C D

z „ ppzq y „ ppyq, z „ ppzq x „ ptl,u,gG,bGupxq px, yq „ ptl,gG,Cupx, yq

MLP 8192 units,

Relu, batch norm

Reshape 512ˆ 4ˆ 4

5ˆ 5 deconv. 256. stride 2,

Relu, batch norm

Gaussian noise, 0.2 dropout

3ˆ 3 conv. 96. lRelu, weight norm

3ˆ 3 conv. 96. lRelu, weight norm

3ˆ 3 conv. 96. lRelu,

stride 2, weight norm

0.5 dropout

0.2 dropout

3ˆ 3 conv. 32.

lRelu, weight norm

3ˆ 3 conv. 32. lRelu,

stride 2, weight norm

0.2 dropout

5ˆ 5 deconv. 192. stride 2,

Relu, batch norm

3ˆ 3 conv. 192.

lRelu, weight norm

3ˆ 3 conv. 192.

lRelu, weight norm

3ˆ 3 conv. 192. lRelu,

stride 2, weight norm

0.5 dropout

3ˆ 3 conv. 64.

lRelu, weight norm

3ˆ 3 conv. 64. lRelu,

stride 2, weight norm

0.2 dropout

5ˆ 5 deconv. 3. stride 2,

sigmoid, weight norm

3ˆ 3 conv. 192.

lRelu, weight norm

3ˆ 3 conv. 192.

lRelu, weight norm

3ˆ 3 conv. 192.

lRelu, weight norm

Global pool

MLP 10 units,

softmax, weight norm

3ˆ 3 conv. 192.

lRelu, weight norm

3ˆ 3 conv. 192.

lRelu, weight norm

Global pool

MLP 1 unit,

sigmoid, weight norm

labeled data to train is the key to achieving good performance. The reported accuracy in

Table 2 is averaged over 10 runs where we manually selected different representative labeled
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Table C.4: Test accuracy on semi-supervised SVHN. Results are averaged over 10 runs.

Model
Test accuracy for

a given number of labeled samples

500 1000 2000

Bad GAN [5] - 95.75˘ 0.03% -

Triple-GAN [4] - 94.23˘ 0.17% -

Bad GAN (ours) 94.21˘ 0.45% 95.32˘ 0.07% 95.47˘ 0.39%

Triple-GAN (ours) 94.67˘ 0.12% 95.30˘ 0.38% 95.37˘ 0.09%

UGAN 95.53˘ 0.13% 96.49˘ 0.09% 96.51˘ 0.05%

Table C.5: Test accuracy on semi-supervised CIFAR10. Results are averaged over 10 runs.

Model
Test accuracy for

a given number of labeled samples

1000 2000 4000 8000

Bad GAN [5] - - 85.59˘ 0.03% -

Triple-GAN [4] - - 83.01˘ 0.36% -

Bad GAN (ours) 77.58˘ 0.17% 81.36˘ 0.08% 82.89˘ 0.13% 85.47˘ 0.10%

Triple-GAN (ours) 81.08˘ 0.57% 81.79˘ 0.37% 82.82˘ 0.41% 85.37˘ 0.18%

UGAN 82.34˘ 0.17% 83.88˘ 0.13% 85.66˘ 0.06% 86.58˘ 0.09%

data in a stratified way. Figure C.2(a) shows a single run that UGAN uses randomly selected

labeled data and does not achieve good results, while Figure C.2(b) shows another run that

is able to achieve higher accuracy. The failure of the first run is due to the initial selections

for digit 4 being similar to 9, causing the generator to generate many 9s when conditioned

on label 4. The generator also generates low-quality images. We also report that with a

random selection of 20 labeled data, Triple-GAN is able to achieve 76.78 ˘ 6.47% accuracy

over 3 runs, Bad GAN is achieving 68.12˘0.60% over 10 runs, and UGAN is able to achieve

89.35 ˘ 7.61% accuracy over 3 runs. As can be seen, in both cases Triple-GAN outperfoms

Bad GAN, while UGAN outperforms both of them, revealing that UGAN is least sensitive to
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(a) (b)

Figure C.2: Two-runs of UGAN model on MNIST dataset. (a) A single run where we

randomly select 20 labeled data. gG generates a lot of wrong images conditioned on the

label, resulting in bad performance of C. (b) Another run where we manually select 20

representative labeled examples. This time gG is able to generate correct images, and C

achieves good classification performance.

the amounts of labeled data. The importance of selected labeled data is not surprising and

is related to active learning, a potential future work could be extending UGAN for active

learning.

C.8 Generator Evolution

By iteratively updating D, gG, C, and bG using gradient descent, UGAN is able to obtain

a good generator and a bad generator simultaneously. To illustrate this, Figure C.3 shows

an evolution of both gG and bG generated samples throughout the training on MNIST,

SVHN, and CIFAR10. As the training progresses, gG generated samples become clearer and

semantic meaningful; bG generated samples are more close to data manifold but semantically

meaningless.
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Figure C.3: gG and bG evolution. Generated images from both bG and gG throughout

training are shown. UGAN are trained on MNIST (upper), SVHN (middle), and CIFAR10

(lower). Through training, UGAN is able to obtain a good generator and a bad generator

simultaneously.
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C.9 Hyper-parameters Sensitivity Analysis

GAN-based methods do require hyper-parameter tuning on a relatively large dataset. Nev-

ertheless, we found that the hyper-parameters used in Triple-GAN and Bad GAN are

good starting points for UGAN. In fact, aside from batch size, we use the same hyper-

parameters across all three datasets, and consistently achieved good results. We perform

hyper-parameter sensitivity analysis, along with some network architecture effects, which

are summarized in this Section. Table C.6 summarizes the initial learning rate effect on final

model performance. The experiments are done on MNIST n “ 100. Despite the differences

of the training loss in the initial stage, the final results are not significantly different after

training 400 epochs, indicating the algorithm is not sensitive to learning rate, which is ex-

pected when using the Adam optimizer. However, as we mention in the chapter, UGAN

is sensitive to batch size. Besides the experimental settings in the chapter, we also apply

different batch sizes in SVHN n “ 1000. UGAN fails to perform well when using 25 and 50

in gG since it cannot generate reliable image-label pairs. Using 100 in bG, UGAN achieves

96.31% accuracy, around a 0.2% drop in accuracy. The results indicate the batch noise ben-

efits the bG, while it hurts the gG capability to model the true data distribution. For the

model architecture, we find that the weight-norm layer is important to ease GAN’s training.

We also use a smaller architecture of C with filter size {32, 64, 96} and get 96.27% on SVHN

n = 4000. No significant drop compared to our reported results indicates that UGAN is

robust to model architecture in a range.

Table C.6: Initial Learning Rate Effect on Model Performance.

Learning Rate lr “ 1e´ 2 lr “ 1e´ 3 lr “ 5e´ 4 lr “ 3e´ 4

Accuracy 99.13% 99.18% 99.24% 99.18%

149



C.10 Good and Bad Samples Effectiveness

As mentioned in Section 4.4, we also observe a similar three phases training process in

MNIST and CIFAR10. Figure C.4(a) and (b) show the comparison among Triple-GAN, Bad

GAN, and UGAN on MNIST and CIFAR10 respectively. The experiments are done under

MNIST n “ 100 and SVHN n “ 1000.

For the number of labeled data effect, we don’t find a similar transition on SVHN and

CIFAR10 as in Fig. 3(b). Instead, we find a gradual change of the learning curve under

different amounts of labeled data. We also have tried to push the number of labeled data

even lower (i.e., n ă 500 in SVHN and n ă 1000 in CIFAR10), but UGAN fails to generate

good image-label pairs. One possible explanation is that when we use too few labeled data,

gG fails to model the conditional distribution due to the complexity of SVHN and CIFAR10.
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(a) (b)

(c) (d)

Figure C.4: Comparison of Triple-GAN, Bad GAN, and UGAN on (a) MNIST n “ 100 and

(b) SVHN n “ 1000. Similar three-phase training processes have been observed in both

cases. UGAN Validation Accuracy vs. Training Epochs under various amount of labeled

data on (c) SVHN and (d) CIFAR10. We don’t find a similar transition on SVHN and

CIFAR10 as in Fig. 3(b). The vertical dot line in (c) and (d) denotes the epoch when we

start to use gG generated image-label pairs to train C.
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APPENDIX D

Appendix for Chapter 5

D.1 Network Architectures

We list the detailed network architecture we used as Gn, Sn, and Dn in Table D.1. Note that

the discriminator Dn consists of a multi-scale structure. Each scale has the same network

architecture. For simplicity, we only list one-level network layout in the table.

Table D.1: Network Architecture for Gn, Sn and Dn.

Gn Sn Dn

(x̃Òn`1, yn, zn) (xn, ỹ
Ò
n`1, zn) pxn, ynq, px̃Gn

, ynq, pxn, ỹSn
q

ReflectionPadding, Conv 7ˆ7

Instance-Norm, ReLU

Downsampling:

(Conv 3ˆ3, Instance-Norm, ReLU)*2

Resnet Blocks:

ResnetBlocks (Instance-Norm, ReLU) * 2

Upsampling:

(Deconv 3ˆ3, Instance-Norm, ReLU)*2

ReflectionPadding, Conv 7ˆ7

Instance-Norm, Tanh

Conv 3ˆ3, BatchNorm, ReLU

Downsampling:

(DenseBlock (BatchNorm, ReLU),

Transition Down)*3

Bottleneck: DenseBlock

Upsampling:

(DenseBlock (BatchNorm, ReLU),

Transition Up)*3

Conv 3ˆ3, ReLU

Softmax

Single-Layer Discriminator:

Conv 4ˆ4, Instance-Norm, lReLU

Conv 4ˆ4, Instance-Norm, lReLU

Conv 4ˆ4, Instance-Norm, lReLU

Conv 4ˆ4, Instance-Norm, lReLU

Conv 4ˆ4, Instance-Norm, Sigmoid

D.2 Theoretical Analysis

We now provide theoretical analysis of Gn, Sn, and Dn at each scale. First we can show that

the optimal Dn balances between the true data distribution and the mixture distribution
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defined by Gn and Sn, as summarized in Lemma 3.

Lemma 3. For any fixed Sn and Gn, the optimal Dn of the game defined by loss functions

(5.2) and (5.6) is

D˚npGn,Snq
px, yq “

ppx, yq

ppx, yq ` p 1
2
px, yq

, (D.1)

where p 1
2
px, yq “ 1

2
pGnpx, yq `

1
2
pSnpx, yq, ppx, yq represents the real data distribution.

This follows from Proposition of 1 of [37] directly. Given the above result that p 1
2
px, yq “

1
2
pGnpx, yq `

1
2
pSnpx, yq, it is easy to verify that ppx, yq “ pGnpx, yq “ pSnpx, yq is a global

equilibrium point. However, it may not be unique and we should minimize an additional

objective to ensure the uniqueness. In fact, we can achieve the uniqueness by adding a

cross-entropy loss as shown in Equation (5.9).

Theorem 4. The global equilibrium of the minimax game defined by Equation (5.9) is

achieved only when ppx, yq “ pGnpx, yq “ pSnpx, yq.

Proof. According to the definition,

LcepSnq “ Epr´ log pSnpy|xqs (D.2)

which can be rewritten as:

DKLpppx, yq||pSnpx, yqq `Hppy|xq (D.3)

Namely, minimizing LcepSnq is equivalent to minimizing DKLpppx, yq||pSnpx, yqq, which is

always non-negative and zero if and only if ppx, yq “ pSnpx, yq. Besides, from Lemma 3,

p 1
2
px, yq “ 1

2
pGnpx, yq `

1
2
pSnpx, yq, ppx, yq, we will have ppx, yq “ pGnpx, yq “ pSnpx, yq,

which concludes the proof.

D.3 More Generation and Segmentation Results on Prostate Dataset

Here, we show more experimental results that have not been shown in the main context.

As we mentioned in the chapter, we conduct the same generation, segmentation, SSL-
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segmentation on GalS and Prostate datasets. We show additional results on the Prostate

dataset in this section.

D.3.1 Generation

First, we show the generation results on the Prostate dataset in D.1(a-c). Figure D.1(a) shows

the generation process from the coarsest scale to the finest scale. Different from the GalS

dataset, we used a five-level training scheme with image size of 642, 1282, 2562, 5122, 10242,

which makes our final outcome to be 1024 ˆ 1024. Figure D.1(b) shows three images that

are generated based upon the same mask. Figure D.1(c) shows image manipulation results

by changing the mask from high-grade (blue) to low-grade (green) and low-grade (green) to

high-grade (blue).

D.3.2 Segmentation

Next, we implemented the fully-supervised learning on Prostate dataset. To make the results

comparable with the previous literature [30,52,80], we used 5-fold cross validation with the

standard metrics: mean Intersection Over Union (mIOU), Overall Pixel Accuracy (OPA)

and Standard Mean Accuracy (SMA) to evaluate the performance of segmentation results.

Assume we have segmentation results f , ground truth label l, and a pixel-wise confusion

matrix C, where Ci,j is the number of pixels labeled as li and predicted as fj. The mIOU

is defined as the average of individual Jaccard coefficients, Ji, for all classes li. The OPA

is defined as the average of percent of pixels that are classified correctly for all classes li,

OPA “
ř

i Ci,i
ř

i

ř

j Ci,j
. The standard mean accuracy is defined as SMA “ 1

N

ř

i
Cii

ř

j Cij
. Table

D.2 shows the segmentation performance of our model on the Prostate dataset. Similar to

the observations in the GalS dataset, our model achieves competitive results, though not

surpassing the state-of-the-art results.
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(a) (b)

Original

(c)
Original Generated Generated Generated GeneratedOriginal

Figure D.1: (a) Generated coarse-to-fine results trained on the Prostate dataset. (b) Three

generated images based on the same mask. Noise is injected during generation so that the

model can synthesize images with variations. Clearer variations can been seen in the gif

animation in SI. (c) Image manipulation on synthesized images. Different gland types are

observed when we changed the label from low-grade (blue) to high grade (green).

D.3.3 SSL-Segmentation

We also did the similar SSL-Segmentation test on the Prostate dataset. Note that to reduce

the experimental time, instead of doing 5-fold cross-validation, we kept the 20% testing

dataset fixed and report our evaluation on it. For each experiment discussed in this section,

we run it 5 times with different random seeds and report the mean and variance in Table D.3.

As can be seen, we observe the similar trend with more substantial improvement as in GalS.

Around 20% and 13% increase in mIOU are achieved compared with the m-FCDenseNet
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Table D.2: Model performance on segmenting prostate histological images as “Stroma” (BG),

“Benign” (BN), “Low-Grade” (LG), and “High-Grade” (HG). ˚ denotes methods that are

operating on 512ˆ 512 scale.

Method JBG JBN JLG JHG mIOU OPA SMA

m-FCDenseNet ˚ 0.566 0.492 0.614 0.524 0.549 0.694 0.679

Ours ˚ 0.826 0.741 0.713 0.786 0.767 0.876 0.872

Handcrafted Features ( [30]) 0.595 0.352 0.4951 N/A 0.481 N/A N/A

Multi-Scale U-Net ( [80]) 0.824 0.721 0.587 0.784 0.729 0.873 0.860

FCN-8s ( [52]) N/A N/A N/A N/A 0.759 0.873 N/A

Path R-CNN ( [82]) 0.831 0.839 0.715 0.797 0.796 0.894 0.888

Table D.3: mIOU for SSL-segmentation on Prostate dataset. All the results are generated

under inductive learning unless specified in the parenthesis.

Method 20% 40% 60% 80% 100%

m-FCDenseNet 0.387˘ 0.037 0.420˘ 0.027 0.406˘ 0.025 0.492˘ 0.012 0.551˘ 0.013

m-FCDenseNet+pyramid 0.437˘ 0.051 0.500˘ 0.039 0.581˘ 0.029 0.661˘ 0.017 0.751˘ 0.009

Ours 0.527˘ 0.063 0.573˘ 0.045 0.632˘ 0.030 0.694˘ 0.021 0.767˘ 0.012

Ours (transductive) 0.577˘ 0.045 0.620˘ 0.028 0.664˘ 0.027 0.721˘ 0.013 0.787˘ 0.008

baseline for transductive and inductive learning respectively. In addition, we observe the

similar trend of contributions from pyramid structure and synthetic data augmentation. Gn

generated image-mask pairs are able to provide extra information gains in low-data regime,

while it is negligible when we use 100% labeled data for training. Moreover, we found that

the variance of model performance increases as we went to low training data regime, i.e.

the performance variance was larger when we only used 20% training data compared to the

whole training set. It indicates the importance of selected labeled data in the initial training

stage.
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D.4 FID Score Calculation

To calculate the Frechet Inception Distance (FID) of our synthetic images, we adopted a

ResNext50 pre-trained on a large histopathology dataset. Specifically, the output layer of

the model was removed and the output was taken as the activations from the last pooling

layer, a global spatial pooling layer. This output layer had 1,280 activations, therefore, each

image is predicted as 1,280 activation features. We applied the network on both synthetic

images and real images, and got two collections of 1,280 feature vectors for them. The FID

score is then calculated as follows,

FID “ ||µ1 ´ µ2||
2
` TrpC1 ` C2 ´ 2pC1C2q

1{2
q, (D.4)

where ||µ1´µ2||
2 refers to the sum squared difference between the two mean vectors, the C1

and C2 are the covariance matrix for the real and synthetic feature vectors.
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APPENDIX E

Appendix for Chapter 6

E.1 Pathologist Validation

ID: *848ba4 Source: Radboud 
Label: 5 Dx: 0

ID: *d69afe Source: Radboud 
Label: 5 Dx: 0

ID: *610ed6 Source: Radboud 
Label: 5 Dx: 0

Figure E.1: Samples from “noisy” group identified by the algorithm, overlaid with the seg-

mentation mask provided by the dataset. The mask has the following color scheme: green

indicates benign, and yellow, orange and red indicate ISUP grade 3-5 respectively.

We asked a pathology expert to annotate the “easy”, “noisy”, and “hard” groups of

samples detected by our algorithm. The pathologist would annotate these samples indepen-

dently without knowing the labels provided by the dataset. As shown in the main chapter,
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we found that the QWK of the “easy” group was 1, indicating 100% agreement between

the pathologist and the ground-truth label for the 100 samples. Conversely, the QWK of

the “noisy” group was -0.14, indicating the labels provided by the dataset were not fully

consistent for these slides. The QWK of the “hard” samples was 0.10. The agreement was

slightly improved compared to the “noisy group”. In the following, we manually inspect

example slides in each group to determine if it is reasonable that our algorithm identified

them to be “noisy” and “hard” samples.

Figure E.1 shows three samples from the “noisy” group, which were annotated to be

ISUP grade 0 by pathologist but labeled as ISUP grade 5 in the dataset. The slides are

overlaid with the provided segmentation mask where the green color indicates benign, and

yellow, orange and red indicate ISUP grade 3-5 respectively. We visually inspected the slides

and did not find any suspicious cancerous areas in the slides. This was also confirmed by the

segmentation mask, where no red color (ISUP grade 5) was found. Therefore, we have high

confidence that these samples were annotated incorrectly, and that our algorithm identified

them to be “noisy” correctly.

On the contrary, we show three samples from the “hard” group in Figure E.2. In these

samples, our pathologist did not find any cancerous regions, but the ISUP grades indicated

high grade cancer. By inspecting the segmentation mask, we found that only a small portion

of the biopsy was overlaid with red; when zoomed in, the pathology expert could not de-

termine the accurate ISUP grade for some slides. We argue that the disagreement between

our pathologists and the dataset label is partially due to: 1) the dataset generates the ISUP

grades using other information outside the biopsy, and 2) the difficult nature of Gleason

grading task. Our model can successfully identify these samples to be “hard” samples that

require additional inspection from the expert.

159



ID: *b5a058 Source: 
Radboud Label: 5 Dx: 0

ID: *7223ec Source: 
Karolinska Label: 5 Dx: 0

ID: *be352f Source: 
Karolinska Label: 4 Dx: 0

Figure E.2: Samples from “hard” group identified by the algorithm with zoomed in cancerous

region.
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