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Abstract

Transport in quantum materials: lessons from (almost) exactly solvable models

by

Tessa Sky Cookmeyer

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

In this dissertation, I develop new approaches, and apply and extend known techniques
towards theoretical understanding of transport experiments in two quantum materials: α-
RuCl3 and CeCoIn5. The first material, α-RuCl3, is a candidate Kitaev material as it may
realize the Kiteav model, a rare example of an exactly solvable two-dimensional (2D) quan-
tum spin system. The Kitaev model exhibits a spin liquid ground state, where the spins do
not align even at zero temperature, with anyonic elementary excitations, a kind of excitation
unique to 2D. Being able to generate and manipulate these anyons may form some of the key
components of topological quantum computers. The second material, CeCoIn5, has a similar
phase diagram to the high-temperature superconductors, implying that insights gained from
understanding this material may lead to breakthroughs in other high-temperature supercon-
ductors.

After the introduction, in the second chapter of this thesis, I discuss the Kitaev model,
its exact solution, and time-dependent mean-field theory (TDMFT). Although TDMFT was
developed by other authors, I rederive and extend it to be able to compute any experimentally
relevant quantity. With this approach, TDMFT agrees with exact results, and its main
advantage is that it can be applied for more general models than the Kitaev model, unlike
the exact solution. We demonstrate the value of the technique via computation of the
expected results of an inelastic neutron experiment on a hypothetical Kitaev material.

In the third chapter, I start by briefly discussing the key experiments performed on α-
RuCl3 and focus on two experiments in particular that measure the longitudinal and Hall
conductivity. Recent experiments have observed what appear to be quantum oscillations
in the low-temperature longitudinal thermal conductivity. I will set up an application of
our newly formulated TDMFT approach to theoretically predict the longitudinal thermal
transport for the Kitaev model in a magnetic field, since not many methods can compute
the necessary quantities for a 2D system and it is not known what the effect of the field
will be. Furthermore, in the absence of an in-plane magnetic field, α-RuCl3 becomes an
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antiferromagnet at around seven Kelvin. In this phase, I am able to compute the thermal
Hall effect via spin-wave theory (SWT), a well-established theory that works for systems
with magnetic ordering, and compare the results directly with experiments on α-RuCl3.

Starting part two of the thesis, in chapter four, I discuss a series of experiments on CeCoIn5.
I interpret these experiments as observing an exotic quantum critical point (QCP) separating
two Fermi liquids with different sized Fermi surfaces. I discuss a theoretical model exhibiting
such a phase transition and compute the electrical Hall resistivity expected near this QCP. In
doing so, I explain one of the most surprising features of the experiment—a large peak in the
Hall resistivity as a function of temperature. The computation, however, cannot perfectly
capture all the features of the experiment, including the T -linear longitudinal resistivity that
is a hallmark of the high-temperature superconductors in the normal state.

In the fifth chapter, I introduce a new model for the above QCP that is exactly solvable in
the same way as the Sachdev-Ye-Kitaev (SYK) model, a model that exhibits T -linear resis-
tivity. Within my model, I compute the longitudinal and Hall resistivities and find T -linear
resistivity in the critical fan above the QCP, which compares favorably with experiments on
high-temperature superconductors, particularly CeCoIn5.

In the final chapter, I discuss other potential uses for TDMFT and these SYK inspired
models, and the large open questions that remain about these two materials.
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Chapter 1

Introduction

”In the land of quantum, words mean nothing. There is only math[.]” – CGP Grey

1.1 What are quantum materials

In principle, it is simple enough to describe a solid. Simply write down the Hamiltonian
describing 1023 atomic nuclei and their associated electrons interacting through electromag-
netism, and solve for the ground state. This starting point, although correct, is utterly
useless. Instead we simplify: take the nuclei as roughly fixed, and consider the electrons on
top of that periodic background potential.

Here is where many solid state physics courses begin, and in simple metals and insulators,
much of their properties can be characterized by (essentially) non-interacting electrons. With
1023 particles occupying a solid, it would be surprising if we could understand all the possible
phenomenon with this paradigm. Indeed, solids can exhibit fundamentally different physics
from the universe at large such as realizing new kinds of excitations that are neither boson
nor fermion, a separation of the spin and electron degrees of freedom of the electron, and
topological order, and these emergent properties often require a fully quantum mechanical
approach, as we will see below.

Like many broad categories, a “quantum material” is not rigorously defined but is per-
haps meant to capture such “novel” physics. One definition of a “quantum material” requires
a solid to exhibit properties we cannot understand through contemporary condensed matter
techniques [136]. However, this definition makes the category of quantum materials time
dependent: as we study a quantum material and develop the necessary analytic and numer-
ical techniques to understand it, such insights will render it no longer a quantum material.
In particular, even though the physics of fractional quantum Hall states at ν = p/(2p + 1)
are well-understood through analysis of a Laughlin wave function, since they exhibit anyons,
excitations with fractional statistics, they should likely be classified as quantum materials.

As the name suggests, an alternative definition is any material whose observed properties
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cannot be understood without quantum mechanics [23]. A (partial) list of quantum mate-
rials would then be (fractional) quantum Hall systems, superconductors, spin liquids, Weyl
semimetals, Dirac materials, (fractional) Chern insulators, and quantum magnets. Even
though the latter definition will include materials we already firmly understand, it has the
advantage of being clearly stated, even to non-experts.

Regardless of the definition, materials where large open questions exist provide some
of the most intriguing directions for current and future research as a condensed matter
theorist. We will now describe two such categories of materials that will be relevant to the
work contained in this dissertation.

1.2 Spin liquid

To arrive at a spin liquid, we should first describe a “spin solid.” The familiar example is
iron or other ferromagnets that exhibit a magnetic moment in the absence of a magnetic
field. One way to capture this physics is the nearest-neighbor Heisenberg model1

H = J
∑
⟨ij⟩

SSSi ·SSSj (1.1)

where we have spins localized on a lattice of sites where nearest-neighbor pairs, ⟨ij⟩, interact.
Although the question of why iron is magnetic is more complex [184], we can see how this

kind of interaction arises in a simplified model of a material. The Hubbard model describes
a single band of spinful electrons on a lattice interacting with each other only on the same
site

H = t
∑
⟨ij⟩

∑
σ=↑,↓

c†iσciσ + U
∑
i

c†i↑ci↑c
†
i↓ci↓. (1.2)

The interaction is meant to approximate the coulomb interaction, which, due to screening,
becomes short ranged. Depending on the lattice and the dimension, the Hubbard model
is difficult to solve for general t/U and number of electrons. However, when t/U is small
and the band is half-filled, there will be one electron per site. Effectively, then, we have
a spin degree of freedom per site, which interact with each other when t is non-zero. The
approximate Hamiltonian is given by the Hubbard model with J = t2/U [118] where the
spins are spin-1/2 moments.

Although this approach generates an antiferromagnetic interaction, it is worth considering
what happens for J or either sign. If J < 0, the interaction is ferromagnetic the ground
state will have all the spins aligned, which we can consider a spin solid. Even when J > 0,
the ground state can still be ordered if the lattice is bipartite. Due to the Mermin-Wagner
theorem, there will only be a spontaneously chosen direction in three dimensions, but, in
lower dimensions, the spins can still be “aligned”, in the sense that ⟨SSSi ·SSSj⟩ can be large even

1Unless explicitly stated, ℏ = kB = c = |e| = 1.
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at large distances (e.g. [86, 226, 70, 54, 205, 156, 53, 69]). This quantity has the advantage
of being probed by neutron scattering experiments [103].

However, if the lattice is not bipartite, the ground state is less clear. Particularly, what
is the ground state of the antiferromagnetic Hubbard model on the triangular lattice? This
question is what led Anderson to propose the first spin liquid state [3]. Instead of an “aligned”
state, he considered a state that was a superposition of all possible singlet coverings of the
lattice. With the advent of the density-matrix renormalization group method [204], it was
instead confirmed that the ground state is ordered but, by adding other physically motivated
terms, a spin liquid can appear [86, 226, 70, 54, 205, 156, 53, 69, 36]. Other frustrated lattices,
such as the Kagome lattice [125, 52, 60, 206, 71, 55, 61], are also likely to exhibit spin liquid
states.

Unfortunately, there is no uniform definition of what a ”spin liquid” is. Based on the
above discussion, as long as ⟨SSSi · SSSj⟩ is short-ranged, the state could be considered a spin
liquid, but there are other possible orderings that might not be bona fide spin liquids. For
instance, spins can pair up to form singlets and the pattern of singlets could be ordered [59].

The definition put forth in Ref. [168] is long-ranged entanglement. Entanglement is an
expected feature of a quantum state, but the distinction that the authors of Ref. [168] make
is that, in a spin liquid, the entanglement is essential for the properties of the phase and
therefore a spin-liquid state cannot be “continuously deformed” into an unentangled state.
Although this definition may, in principle, be suitable for all spin liquids, we lack a fully
general rigorous definition of long-range entanglement and the above deformation picture,
and it is further not clear how to apply this definition to experiments. Nevertheless, one of the
consequences of long-range entanglement is fractionalization, where the good quasiparticles
are non-bosonic excitations. The idea is simply that spin flips carry integer spin, and if
the entanglement is local or can be made local, any excitation will then only carry integer
spin. However, if there exist excitations carrying fractional spin, it necessarily means that
the excitations have long-ranged effects. Although good quasiparticles may not exist for
every spin liquid, when they do, they have the potential to be observed experimentally and
detected numerically, and therefore can serve as a sufficient signature of a spin liquid.

In 2+1 dimensions, for the same reasons that knot theory is only interesting in three
spatial dimensions, the fractionalized excitations can be neither bosons nor fermions but
instead anyons [94]. In this case, a wave function containing multiple anyons does not need
to just pick up a factor ±1 from exchange of the two anyons, but it instead can pick up
a complex phase or, if there are other degenerate states, can become a superposition of
other states in the manifold. Both the Toric code [93] and the Kitaev model [94] (discussed
more below) are important paradigmatic spin liquid models as they are exactly solvable and
exhibit anyons; numerical evidence for the bosonic analog of a fractional quantum Hall state,
having different anyonic excitations, has also been found [189, 36, 206].

The list of spin liquids is long [168], but which have been found in real materials? Un-
forutnately, there are no materials that are confidently known to exhibit a specific kind of
spin liquid, and it remains an ever-more-important task to find and characterize a concrete
example material. Candidate materials exist through multiple routes: Herbertsmithite real-
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izes a Kagome lattice, known to harbor many varieties of spin liquid, and has broad features
in its inelastic neutron scattering spectrum; the rare-earth pyrochlores, like Yb2Ti2O7, are
expected to be well-modeled by a Hamiltonian known to harbor a spin-liquid in a range of pa-
rameters; triangular-lattice organic compounds, like κ-(ET)2Cu2(CN)3 and
EtMe3Sb[Pd(dmit)2]2, potentially realize an extended Hubbard model on the triangular lat-
tice and are in insulating phases without clear magnetic order; and, as we will talk more
below, there is a range of Kitaev materials that may be close to realizing the Kitaev spin
liquid [168]. Furthermore, advances in cold atoms have allowed for the possibility of gen-
erating spin-liquid states or probing spin-liquid physics in two-dimensional trapped atom
systems [174, 162]. In part, the excitement of α-RuCl3 is due to it potentially being the
first confirmed spin liquid: it seems likely to exhibit the Kitaev spin liquid phase, which has
a clear experimental signature that has been observed in some experiments [87, 218, 20].
Unfortunately, as we discuss below, the experimental signature is not as clear cut, and it
remains an open question whether α-RuCl3 has a spin liquid phase at all.

We will discuss a specific example, the Kitaev spin liquid in detail in Chapter 2 and the
experimental case of α-RuCl3, as well as other Kitaev materials, in Chapter 3. However, we
have only scratched the surface of spin-liquid research in general, and, for more background,
we recommend Ref. [168] as a thorough review article.

1.3 Heavy fermion compounds and strange metals

In the presence of large interactions the resulting degrees of freedom behave quite differently
than the noninteracting system. As discussed above, the Hubbard model, at small t/U and
half-filling, has localized electrons. In contrast, in the absence of interactions, the half-filled
band should produce metallic behavior with delocalized electrons and a well-defined Fermi
surface.

In many systems, though, the interactions produce surprisingly little effect, as elucidated
by Fermi liquid theory (FLT) [171, 2]. The basic idea of FLT is that the quantum numbers
of the excitations at the Fermi surface do not change in the presence of interactions, and
they remain quasiparticles albeit with a finite lifetime. However, the lifetime, due to decay
to other particles near the Fermi surface, becomes longer and longer as the momentum
gets closer and closer to the fermi momentum. The main effect of the interactions, then,
is that the various parameters, most importantly the effective mass of the excitation, can
be renormalized. For thermodynamic quantities, FLT predicts the following scaling with
temperature [194, 2]

CV = γT

ρ = ρ0 + AT 2 (1.3)

where γ ∼
√
A ∼ m∗, the effective mass.

In many materials, the mass is only slightly renormalized (i.e. m∗/me ∼ 1), but in the
heavy-fermion compounds m∗/me can be almost 1000. As we will discuss in Chapter 4, the
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large effective mass can be understood through Kondo lattice physics as hybridization of a
localized and conduction band. One consequence of a large effective mass is the reduction of
the kinetic energy of the excitations, which creates the opportunity for interactions to play
a more important role and uncover new states of matter [194]. Phenomenologically, using
the Hubbard model example, this is understood as reducing t thereby reducing t/U .

In many of these compounds, antiferromagnetism can be induced or suppressed leading to
a quantum critical point where there are large departures from the FLT scaling. Indeed, the
resistivity appears to scale as ρ = ρ0+A

′T , having a strong linear -in-temperature component
[194].

This scaling is the most abundant example of non-Fermi liquid physics. Termed “strange
metal” behavior, it is seen across numerous heavy-fermion compounds [194], magic-angle
twisted bilayer graphene [22], and high-temperature superconductors [109]. Due to its ubiq-
uity, it is hoped that there some kind of universal mechanism that can explain the origin
of strange metal physics [109, 194, 42, 57, 201]. Furthermore, the connection to high-
temperature superconductors, understanding the mechanism behind strange metal physics
may lead to the engineering of higher temperature superconductors.

It is important, however, that this scaling occurs at low temperature; in an ordinary
Fermi liquid, at temperatures much larger than the bandwidth, the resistivity is T -linear
[27] and this regime is considered a “bad metal.” The dividing line between “bad” and
“strange” metals is given heuristically by the Mott-Ioffe-Regel criterion, where the mean-
free path is shorter than the lattice spacing [27] and coherent quasiparticles are unable to
be formed [57].

One further unifying features is that many materials seem to exhibit a “Planckian bound”
on the scattering rate [57, 194, 109]. In these analyses, the timescale τPl = ℏ/(kBT ) is thought
to be a lower bound on the scattering rate for the system, and, in carrying out a Drude
analysis of strongly correlated materials, it is found that the relevant scattering rate is of the
same order as τPl [194, 109]. At temperatures T ≳ TD, the Debye temperature, scattering
off of phonons is expected to produce this Planckian transport, but at low temperatures,
a quantum critical explanation is expected [57]. Not all criticality, however, will produce
Planckian transport and T -linear resistance extending from low temperature to temperatures
comparable to the Debye scale is seen in materials requiring a crossover from one mechanism
to another [57]. It is also argued that systems without quasiparticles will exhibit relaxation
on the Planckian timescale [27].

Even with years of concentrated effort, there is no accepted model that produces strange
metal behavior. One well-explored route, as mentioned above, is the role of a quantum
critical point (QCP) where a metal with a fermi surface are interacting with a gapless boson.
Depending on the nature of the critical point, the resulting transport properties can be
different than those expected from a Fermi liquid [27, 13, 175, 145]. This line of theoretical
work aligns with experimental evidence that there is a QCP beneath superconducting dome
of some of the cuprates [13].

One of the key issues is that needing analytic tractability limits the models that we can
consider and fully understand. With the advent of larger-scale numerics, transport can be
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predicted in a wider range of models with quantum critical points. Remarkably, the Hubbard
model on the square lattice, being studied with quantum Monte Carlo methods, yields a
strange metal at certain dopings with T -linear resistivity over several decades [72], though
the results are limited to temperature of order the hopping strength. Recent advances further
allow for a sign-problem-free formulation of quantum Monte Carlo simulations of nematic-
ising or spin-density wave transitions [13] All these cases show T -linear resistivity but are
subject to the usual challenge in QMC of analytic continuation. A Kondo-Ising model
amenable to classical Monte Carlo, without the need to carry out analytic continuation,
provides further examples of the role of critical fluctuations in producing T -linear resistivity
[216].

One phenomenological idea is that of a marginal Fermi liquid, where the self-energy is
proposed to have the following form [201]

Σ(ω,kkk) ∼ g2ν20

[
ω ln

(x
Λ

)
− ix

π

2

]
(1.4)

where x ∼ max(|ω|, T ), ν0 is the density of states at the Fermi surface, and Λ is a cutoff scale.
Although proposed without a microscopic picture of its origin, this form of the self-energy
captures much of the phenomenology of high-temperature superconductivity [201]. However,
a simple model with “hot” electron pockets shows that the electrons can still behave as a
Fermi liquid and produce strange-metal physics [127].

As we will discuss in more detail in Chapter 5, a major recent advance has been the
Sachdev-Ye-Kitaev (SYK) model [27, 161]. Originally describing an all-to-all random cou-
pling, several lattice models were introduced often containing strange metal phases [143, 144,
28, 1]. Furthermore, the original model is dual to a black hole in two-dimensional anti-de
Sitter space [158, 157] indicating perhaps a tantalizing connection between black holes and
strange metals. The analytic tractability occurs in these models due to the presence of a
large number of flavors (or bands) and the random couplings. Although the randomness is
not clearly of a physical origin, perhaps in materials with many relevant bands, the couplings
between them are effectively random. Regardless, the SYK approach gives a new analytic
method for understanding strongly-interacting compounds that can even clarify the physics
of the previously-mentioned models [27].

Given the wide range of theories of strange metallicity, it may be the case that there are
several mechanisms needed to understand all the various compounds. Experiments continue
to provide new information about strange metals, like the recent B-linear resistivity scaling
in certain strange metal compounds [58, 112, 166], allowing some models to be ruled out.
The ultimate test in any theory would be to predict new strange metal compounds due to
an understanding of the necessary ingredients.

1.4 This dissertation

In the remainder of this dissertation, our eyes are oriented towards two quantum materials:
α-RuCl3 and CeCoIn5. The first is an example of a Kitaev material, which is hoped to
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exhibit a particular Kitaev spin liquid phase. In Chapter 2, we will discuss the Kitaev
model, its exact solution and its spin liquid ground state, and a technique that I extended to
compute any desired quantity approximately beyond the exactly solvable point. We will use
that technique to compute the signal expected in inelastic neutron scattering experiments
to emphasize its accuracy and utility.

With the set up, we will explore the situation for α-RuCl3 in Chapter 3. As we will see,
the best-fit models that come out of various ab initio or experimental fits do not predict a
transition to a spin liquid phase that is reportedly seen in the material. We will set up an
additional calculation for the longitudinal thermal conductivity in the presence of a magnetic
field, which we will carry out in future work. Although there are promising experimental
signatures for α-RuCl3, there remain significant challenges towards reconciling our theoretical
understanding with the experiments.

The second material, CeCoIn5, is a heavy-fermion compound which exhibits a strange
metal phase, and recent experiments have indicated that it might be close to an unusual
quantum critical point. We will consider the experimental situation and provide a semiclas-
sical calculation of transport to support this interpretation in Chapter 4. Our model will be
able to capture a surprising amount of the experiments, but it is not exactly solvable and
does not predict a strange metal phase.

We will then consider an exactly solvable model for the quantum critical point in Chapter
5. In addition to capturing much of the phenomenology of this material, we will capture the
strange metallicity in the critical fan. This model may be adaptable to other strange metal
systems like the cuprates.

Finally, in Chapter 6, we will discuss the outlook for Kitaev materials and understanding
strange metals. Throughout this work, we will review the theoretical techniques in sufficient
detail that they may be applied to other systems.
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Chapter 2

The Kitaev model: exact and
approximate approaches

In the introduction we discussed a potential spin liquid state that variationally has a low
ground state energy for the Heisenberg antiferromagnet on the triangular lattice [3]. As
numerical work demonstrates, it is not the ground state. Are there models where we can
exactly demonstrate that their ground state is a spin liquid? The answer is yes and we will
discuss one such example that has become critical in spin-liquid research: the Kitaev model.

The exact solution will demonstrate the presence of non-bosonic low-energy excitations,
implying the necessary long-ranged entanglement for a spin liquid [168]. As an experimental
signature, we will compute inelastic neutron scattering whose broad features are implied by
the fractionalization of the spins.

2.1 The model, Majoranas, and exact approach

This section largely draws on Kitaev’s original work [94], which is itself quite accessible, and
a few other works [12, 130]. The model starts with spin-1/2’s located at each of the sites
of a honeycomb lattice. Each site has three nearest neighbors, and they are connected by
bonds that we label x, y, and z as shown in Fig. 2.1. The Kitaev model Hamiltonian is then
given by

HK = K
∑
⟨ij⟩α

Sα
i S

α
j . (2.1)

The notation ⟨ij⟩α indicates a sum over nearest neighbor pairs and α specifies which of the
three bonds connects the pair.

Although the model appears contrived, it is unique because it has an extensive number
of conserved quantities, the plaquette operators WP . These operators are defined around a
plaquette (i.e. a hexagon) and are given by

WP = 26Sx
1S

y
2S

z
3S

x
4S

y
5S

z
6 (2.2)
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Figure 2.1: a) The honeycomb lattice with bond labeling around one hexagon and with
the lattice sites labeled in accordance with the Jordan-Wigner transformation. Note the A
sublattice is represented in black circles and the B sublattice in white. b) The plaquette
operator labeling.

as shown in Fig. 2.1b. Beyond making the model integrable, this feature suggests that it
may be exactly solvable. We will solve the model in two ways: the familiar Jordan-Wigner
transformation and a different Majorana rewriting.

Jordan-Wigner transformation

The idea of the Jordan-Wigner (JW) transformation is to replace our spin degrees of freedom
with fermionic ones. For this transformation, we pick a labeling of sites through the system
such that adding or subtracting one gives a site connected by an x or y bond (except at the
boundaries) as shown in Fig. 2.1. The JW transformation is then given by

2Sz
i = 2f †

i fi − 1; Si =
∏
j<i

(−2Sz
j );

2Sx
i = Si(fi + f †

i ); 2Sy
i = iSi(fi − f †

i ).

(2.3)

where fi are the usual fermion creation and annihilation operators.
The Si are called the JW strings, and, in many one-dimensional models, they no longer ap-

pear in the Hamiltonian. With periodic boundary conditions in 1D, the string that stretches
across the entire system does appear in the Hamiltonian and splits the excitation spectrum
into physical and unphysical states, but no such complication arises when there are open
boundaries. In this case, we think about the various sites connected by x and y bonds as
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constituting a “row” and these rows are connected by the z bonds. As a slightly technical
point, we must use open boundary conditions on the left and right side of the model as
otherwise the JW strings corresponding to stretching across entire rows will appear in HK .
Ordinarily, in one-dimensional models, this feature is acceptable as the JW string containing
all sites commutes with the Hamiltonian. In this case however, the string corresponding to
just a single row, for instance, does not commute with the Hamiltonian and therefore cannot
be simultaneously diagonalized. The restriction to open boundary conditions only is often
ignored in the literature, but rigorously it must be used if we use the JW transformation.

Instead of writing the degrees of freedom in terms of complex fermions fi, we consider
Majorana fermions. We define two Majoranas per site

ci =

{
fi + f †

i if i ∈ A

−i(fi − f †
i ) if i ∈ B

c̄i =

{
fi + f †

i if i ∈ B

−i(fi − f †
i ) if i ∈ A

(2.4)

where A and B denote the two sublattices of the honeycomb lattice. Note that c†i = ci,
{ci, cj} = 2δij, and {ci, c̄j} = 0 (and similarly for c̄i).

With these restrictions, after carrying out the transformation, we find

HK = i
K

4

∑
i

cici+x + cici+y + cici+z(ic̄ic̄i+z) (2.5)

where i + α refers to the site where we have moved from i along and α bond. The magic
of this model is that the products c̄ic̄i+z commute with the Hamiltonian, which we can
interpret as directly linked to the conserved plaquetter operators as they can rewritten as
WP = (ic̄1c̄2)(ic̄5c̄4). From here, we can simultaneously diagonalize HK and all of the c̄ic̄i+z

and confirm, either numerically or through a theorem due to Lieb, that the ground state
occurs when all the ic̄ic̄i+z = 1 [94]. It is worth noting that every eigenstate has some
distribution of the values of these conserved quantities. To just find the ground state, then,
we restrict to the sector where the ic̄ic̄i+z = 1 are uniform, and we are left with a Hamiltonian
quadratic in Majorana operators

HK,c = i
K

4

∑
i∈A

∑
α

cici+α =
1

4

∑
ij

cihijcj (2.6)

We can diagonalize this Hamiltonian in the usual way. We introduce a scaling to the
Majorana’s, ci = c̃i

√
2, which allows them to be transformed into a complex fermion basis

by a unitary operator. That is, c̃i = U0,ij āj where āT = (a1, a2, ..., aN , a
†
1, ..., a

†
N). We then

have
1

2
c̃†hc̃ =

1

2
ā†U †

0hU0ā =
1

2
ā†Λā =

N∑
i=1

Ei

(
a†iai −

1

2

)
(2.7)

where Λ = diag{E1, E2, ..., EN ,−E1, ...,−EN} is a diagonal matrix with the set as its entries.
Recall that for Majorana’s, the energy spectrum can be chosen to be all positive (or all
negative).
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Because of the translation invariance in the ground state sector, the diagonalization just
amounts to performing a Fourier transform. The dispersion relation is given by [94]

Ekkk = |K|
∣∣eikkk·nnn+ + eikkk·nnn− + 1

∣∣ (2.8)

where nnn± =
(
±1

2
,
√
3
2

)
, which are the basis vectors of the underlying triangular Bravais

lattice of the honeycomb lattice.

Nature of the excitations

Since the excitations are written in terms of complex fermions, we have fractionalization
and therefore a spin liquid (using the definition in the introduction). In fact, there are
two different excitations: the akkk that diagonalize the quadratic ci Hamiltonian, and the
excitations of the conserved quantities ic̄ic̄j.

The former are gapless, as can be seen by plugging in kkk = (±2π/3, 0) into Ekkk above.
The latter are gapped: by flipping ic̄ic̄j = −1 for one of the conserved quantities, the
resulting Hamiltonian is still quadratic in the ci. The difference in the lowest energy of
that Hamiltonian and the ground state energy is the flux gap, ∆F ≈ 0.065|K|. Physically,
the energy cost is associated with creating two “fluxes” by flipping the values of two of the
plaquette operators WP .

Notice that, due to the Jordan-Wigner transformation, the akkk carry superpositions of
strings of spin operators. That is, they are non-local when written in the spin degrees of
freedom. Furthermore, notice that if we want to flip a single plaquette, we must flip all the
ic̄kc̄l to the left of ic̄ic̄j. Therefore, a single flux carries with it a “string” as well.

As a consequence of these “strings,” the excitations exhibit anyonic statistic [94]. Strictly
speaking, we need to gap out the akkk through an applied magnetic field to define the statistics,
but, once that is done, we can consider braiding a flux and a akkk excitation. In general, when
we consider excitations of different types, there is no effect one the wave-function of wrapping
one around the other. Instead, in this case, the wave function picks up a −1 indicating that
these excitations are anyons [94].

Dynamic spin-spin correlator

Beyond calculating the static properties of the ground state, we can even evaluate time-
dependent correlators exactly. Our prototypical example is the dynamic spin-spin correlator,
which is defined for a system with N sites to be:

Sαβ(q, ω) =
1

N

∑
i,j

e−iqqq·(xxxi−xxxj)

∫
dteiωt⟨Sα

i (t)S
β
j ⟩ (2.9)

By symmetry, we only need to consider α = z and β = {z, x}. Since the Hamiltonian is
quadratic in Majorana’s and Sx is written as the product of an odd number of Majorana’s,
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it is identically true that ⟨Sz
i (t)S

x
j ⟩ = 0. Therefore, we only need to consider

4⟨Sz
i (t)S

z
j ⟩ = i(−1)i+jeiE0t⟨cic̄ie−iHKtcj c̄j⟩ (2.10)

where we have chosen a convention so that i is even on A sites and odd on B sites.
Since c̄i appears in only one term in HK , we can see

[HK , c̄i] = i(K/2)cici+(−1)iz(ic̄ic̄i+(−1)iz)c̄i, (2.11)

from which it follows

4⟨Sz
i (t)S

z
j ⟩ = −i(−1)i+jeiE0t⟨cie−i(HK−iK

2
cici+(−1)iz(ic̄ic̄i+(−1)iz))tcj c̄ic̄j⟩. (2.12)

Now, the key observation is that c̄i (c̄j) flips the value of the conserved quantity ic̄ic̄i+(−1)iz

(ic̄j c̄j+(−1)jz), respectively. All other terms commute with the conserved quantities, so their
flips must cancel in order to return to the same sector. Therefore, the only non-zero terms
are when i = j and when j = i+ (−1)iz. Picking i to be on the A sublattice, we find

4⟨Sz
i (t)S

z
i ⟩ = −ieiE0t⟨cie−i(HK,c−iK

2
cici+z)tci⟩

4⟨Sz
i (t)S

z
j ⟩ = eiE0t⟨cie−i(HK,c−iK

2
cici+z)tcj⟩.

(2.13)

These expression can be generalized to any eigenstate. Because the cj Majorana are evolving
in time through a perturbed Hamiltonian, these expressions are reminiscent of the x-ray edge
problem [12]. I will discuss how to numerically evaluate them below, but it is worth noting
that there is an exact approach [97].

Alternative transformation

The JW transformation’s main drawback is the presence of the non-local strings, which
makes applying this approach impossible to most Hamiltonians. There is an alternative
local transformation where we instead have a local constraint. It is

2Sα
i = ib0i b

α
i (2.14)

where α ∈ {x, y, z} and bµi (with µ ∈ {0, x, y, z}) are four Majorana operators. This trans-
formation is equivalent to the Abrikosov fermion approach [169], which has the constraint
of one fermion per site. In this case, the constraint is written as b0i b

x
i b

y
i b

z
i = Di = 1.

In this language, the Hamiltonian becomes

HK = −K
4

∑
⟨ij⟩α

ib0i b
0
j(ib

α
i b

α
j ) (2.15)

and now the ibαi b
α
j = u⟨ij⟩α commute with the Hamiltonian. To fix the sign ambiguity, u⟨ij⟩α

specifies that i is on the B sublattice and j is on the A sublattice. If we set all of them to
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u⟨ij⟩α = −1, we recover the same quadratic Hamiltonian as before. The plaquette operators
can again be rewritten, and are given by WP = u⟨12⟩zu⟨32⟩xu⟨34⟩yu⟨54⟩zu⟨56⟩xu⟨15⟩y .

The main complication from the constraint can be handled by noting that Di commutes
with the physical spin operators SSSi and therefore the Hamiltonian. If |Ψ⟩ is an eigenstate of
HK , then so is Di|Ψ⟩. With

P =
∏
i

1 +Di

2
(2.16)

the state P |Ψ⟩ is then an eigenstate satisfying the constraint. Although this representation
of the state appears unwieldy, its main effect is to enforce a parity requirement on excited
states [34, 146, 199].

2.2 An approximate method: time-dependent

mean-field theory

As we will discuss in the next chapter, in realistic materials, we do not just have the Kitaev
term in the Hamiltonian.1 In particular, we will have a Hamiltonian with the following spin
interactions:

H = −
∑
⟨ij⟩α

[
KSα

i S
α
j + Γ

∑
β ̸=β̄ ̸=α

Sβ
i S

β̄
j + JSSSi ·SSSj

]
+
∑
i

hhh ·SSSi. (2.17)

The sum is over all nearest-neighbor bonds and each bond has an index α = x, y, z according
to its type.

One challenge in studying the Kitaev model is that adding such generic perturbations will
break either of the exact solutions described above. One natural way to extend the analysis
is to treat the conserved quantities, the ic̄ic̄i+z or the ib

α
i b

α
j as mean-fields. In applying mean-

field theory, it was noted that the ground state energy and static correlators reproduce the
exact result [169, 133, 111, 43, 14, 81, 26, 222, 135, 173, 151, 44, 49, 124], but the authors
of Ref. [98] argue that mean-field theory fails to capture the exact result.

Although the latter critique may be true, depending on your definition of mean-field
theory, a natural self-consistent application of the idea of mean-field theory, time-depnendent
mean-field theory (TDMFT), does recover the exact result. TDMFT as applied to electrons
has been around, under the name time-dependent Hartree-Fock approximation (TDHFA),
since Dirac [40, 102, 17], and, more recently, has been used to study lattice Hamiltonians
relevant to solids [195, 193, 66]. The general analysis is natural and straightforward [34],
and is predicated on the observation that the mean-field approximation requires reference to
a state (or density matrix) that is being acted on.

Let us first review the case where the Hamiltonian is number-conserving. For N particles
with creation operators f †

i , one computes the self-consistent decoupling of the Hamiltonian

1This section is adapted from [34]
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and diagonalizes the system into H(Θ) = H0 = f⃗ †M0(Θ)f⃗ =
∑

n ϵnγ
†
nγn via f⃗ = Uγ⃗ where

Θ denotes some mean-field parameters like the density ⟨f †
i fi⟩, and ϵn ≤ ϵn+1. The ground

state wave-function is given by

|Ψ(t = 0)⟩ = γ†1γ
†
2 · · · γ

†
N |0⟩ (2.18)

with |0⟩ being the vacuum.
One can then imagine evolving this state under some time-dependent Hamiltonian,

H(Θ(t)) =
∑

n,m f
†
mMm,n(Θ)fn which depends on the time-dependent values of Θ(t), and

time-evolution over a short time is given by e−iH(Θ(t))∆t. Evolution then follows by commut-
ing the infinitesimal time evolution past each of the γ†i

|Ψ(t+∆t)⟩ = e−iH(t)∆tγ†1(−t) · · · γ
†
N(−t)|0⟩

= γ†1(−t−∆t) · · · γ†N(−t−∆t)|0⟩
(2.19)

where γ†i (−t−∆t) = e−iH(t)∆tγ†i (−t)eiH(t)∆t = f †
jUji(t+∆t).

We can compute that U(t + ∆t) = e−iM(Θ)∆tU(t) and therefore the columns of U(t)
satisfy a Schrodinger equation evolving under the single-particle HamiltonianMn,m(Θ). It is
then straightforward to compute any expectation needed for Θ(t) by converting to the basis
of γ†i (−t). In practice, γ†i (−t) is used to compute Θ(t), which is used to evolve γ†i (−t) to
γ†i (−t−∆t), though methods with higher order error in ∆t exist [193, 102].

In order to study the Kitaev model, this method has recently been extended to Majoranas
[130, 126, 190]. In that case, number is not a conserved quantity, and the authors of Ref. [130]
argue by analogy that the same method would work. Here we rigorously derive why this
analogy holds and provide an explicit expression for the wave function at time t.

In the Majorana case, we have some Hamiltonian

H(M (t;θij)) =
1

4

∑
ij

ciM
(t;θij)
ij cj (2.20)

where Mij is a function of time and MFT parameters θij and c2i = 1 is a typical Majorana
operator. Here θij = i⟨cicj⟩ and is implicitly a function of time. We imagine that any constant
term (which can depend on t or θij) has been written separately from the Hamiltonian, and
that we have MT = −M . The factor of 1/4 is chosen such that

[H(M), H(N)] = H([M,N ]) (2.21)

as can easily be checked [94]. As above, we introduce rescaled Majoranas ci → c̃i
√
2 so that

c̃2i =
1
2
and {c̃i, c̃j} = δij. It is still true that c̃†i = c̃i, and we choose this rescaling because it

makes M diagonalizable by a unitary matrix into a complex fermion basis.
At time t = 0, we diagonalize H0 = 1

2
ā†Λ0ā where c̃i = U0,ij āj for

āT = (a1, a2, ..., aN , a
†
1, ..., a

†
N) and Λ0 = diag{E1, E2, ..., EN ,−E1, ...,−EN} as before. The
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ground state is now given by the unique state |v⟩ such that ai|v⟩ = 0. Arguing by analogy, we
should expect that the time-evolved state will always be the vacuum of operators ā(t) = U(t)†⃗̃c
where instantaneously, we evolve the columns of the matrix U(t) via a Schrodinger equa-
tion. Noting that infinitesimal time evolution is governed by the quadratic Hamiltonian
H(M (t;θij)), it is clear that

ā(t+∆t) = e−iH(M(t;θij))∆tā(t)eiH(M(t;θij))∆t

= U(t)†ei∆tM(t;θij)⃗̃c
(2.22)

will annihilate |vt+∆t⟩ = e−iH(M(t;θij))∆t|vt⟩ where |vt⟩ is the vacuum for ā(t). It follows that

U(t+∆t) = e−i∆tM(t;θij)

U(t) implying, once again, that U(t) satisfies a Schrodinger equation
under the single-particle matrix M (t;θij) confirming our expectation.

However, this calculation does not fix the phase, and it will be necessary in our case.
Using standard results for the expression of the relationship between the vacuum states for

two different fermionic bases, and the result of Ref. [97] for the evaluation of ⟨e−iH(M(t;θij))∆t⟩,
we find

e−iH(Mt)|v⟩ =
√
detXe

1
2
(a⃗†)TF a⃗†|v⟩. (2.23)

The matrix e−iH(Mt) =
∏

n e
−iH(M(tn,θij))∆t is the approximate time evolution operator, and

we use the notation e−iMt =
∏

n e
−iM(tn,θij)∆t. The matrices F = −X−1Y , X, and Y are

determined by the change of basis formula between the operators ā(t) and ā, namely

ā(t) = U †(t)⃗̃c = U †
0e

iMtU0ā =

(
X Y
Y ∗ X∗

)
ā. (2.24)

As in Ref. [97], we evaluate
√
detX =

√
|detX|e−iϕ(t)/2 and the sign ambiguity due to

ϕ(t) = arg[det(X)] is avoided by requiring that ϕ(t)/2 is a continuous function.
Now, evolving |v⟩ proceeds as in the number-conserving case. At any time step, we

compute θij by rewriting cicj in the a(t) basis and using Eq. (2.23). The θij specify the

approximate infinitesmial time evolution operator U(t + ∆t, t) = e−iH(M(t,θij))∆t, which is
then used to find the a(t+∆t) basis and contribution to the phase ϕ(t+∆t). This procedure
can straightforwardly be extended to other states beyond |v⟩, an example of which we will
see below.

An alternative perspective on the above results comes from considering more carefully
the approximate time-evolution operator.

U(t, 0) = e−iH(Mt) =
∏
n

e−iH(M(tn,θij))∆t

= exp

[
H

(
log

(∏
n

e−i∆tM(tn;θij)

))]
= exp

[
H
(
log
(
e−iMt

))]
(2.25)
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where the second step follows by the Baker-Campbell-Hausdorff theorem since the H(M)
distributes over addition, multiplication, and commutation, and [M,N ] is still an antisym-
metric matrix with no trace [199]. This calculation justifies our use of the notation e−iMt

from earlier. It is only, therefore, necessary to be able to compute the θij and, instead of
evolving the wavefunction, one can just consider updating the time-evolution operator.

We can generalize this procedure to evaluate ground-state time-dependent correlators of
the form

⟨O(t)O⟩ = eiEMFt⟨OU(t, 0)O⟩ ≈ eiEMFt⟨OU(t, 0)O⟩. (2.26)

where we have introduced EMF as the mean-field ground state energy. Now, we simply
compute θij for the state O|v⟩ and we need a way to evaluate the expression ⟨Oe−iH(Mt)O⟩
for an arbitrary matrix Mt. If O is a product over the Majorana operators, we can evaluate
these correlators with the following modified versions of Wick contractions. That is, [34,
199, 97]

⟨c̃1e−iH(Mt)c̃2⟩ =
√
detX(UŨ † − UFŨT )12 (2.27)

⟨c̃1c̃2e−iH(Mt)c̃3c̃4⟩ =
√
detX

[
(UU † − UFUT )12(Ũ Ũ

† − ŨF ŨT )34

− (UŨ † − UFŨT )13(UŨ
† − UFŨT )24

+(UŨ † − UFŨT )14(UŨ
† − UFŨT )23

] (2.28)

where U is the first N columns of U0, Ũ = eiMtU , and X and F are defined from Eq. (2.24).
These expressions can be straightforwardly derived from the time evolution of the vacuum,
Eq. (2.23). They generalize to arbitrary correlators in the obvious way [34, 199].

Application: dynamic spin correlators in the perturbed Kitaev
model

To make this process concrete, let us consider the Hamiltonian given above in Eq. (2.17).
The presence of the J and Γ term makes the JW transformation unwieldy; consequently, we
will use the alternative transformation 2Sα

i = ib0i b
α
i [94]. We get

H =
1

4

∑
⟨ij⟩α

[
Kib0i b

0
j(ib

α
i b

α
j ) + J

∑
β

ib0i b
0
j(ib

β
i b

β
j )

+ Γ
∑

β ̸=β̄ ̸=α

ib0i b
0
j(ib

β̄
i b

β
j )

]
+

1

2

∑
i

∑
α

hαib
0
i b

α
i .

(2.29)

We mean-field decouple all the four Majorana terms in every possible channel.

H = H ′
MF = Hb0 +Hb +Hh︸ ︷︷ ︸

H′
b

+HC +H ′
C︸ ︷︷ ︸

H′′
C

=
1

8

∑
a,b

ψaMabψb +H ′′
C (2.30)
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Hb0 =
1

4

∑
⟨ij⟩α

(K + J)⟨ibαi bαj ⟩+ J
∑
β ̸=α

⟨ibβi b
β
j ⟩+ Γ

∑
β̄ ̸=β ̸=α

⟨ibβ̄i b
β
j ⟩

 ib0i b0j = 1

8

∑
i,j

M b0
ij b

0
i b

0
j

Hb =
1

4

∑
⟨ij⟩γ

⟨ib0i b0j⟩

Γ ∑
β̄ ̸=β ̸=γ

ibβ̄i b
β
j +

∑
α

(Kδα,γ + J) ibαi b
α
j

 =
1

8

∑
i,j

M bα
ij b

α
i b

α
j

HC = −⟨Hb0⟩ = −1

4

∑
⟨ij⟩α

(K + J)⟨ibαi bαj ⟩+ J
∑
β ̸=α

⟨ibβi b
β
j ⟩+ Γ

∑
β̄ ̸=β ̸=α

⟨ibβ̄i b
β
j ⟩

 ⟨ib0i b0j⟩

(2.31)

Hh =
1

4

∑
⟨ij⟩α

[∑
β

(J +Kδα,β)
(
ib0i b

β
j ⟨ib0jb

β
i ⟩+ ib0jb

β
i ⟨ib0i b

β
j ⟩ − ib0i b

β
i ⟨ib0jb

β
j ⟩ − ib0jb

β
j ⟨ib0i b

β
i ⟩
)

+
∑

β ̸=β̄ ̸=α

Γ
(
ib0i b

β
j ⟨ib0jb

β̄
i ⟩+ ib0jb

β̄
i ⟨ib0i b

β
j ⟩ − ib0i b

β̄
i ⟨ib0jb

β
j ⟩ − ib0jb

β
j ⟨ib0i b

β̄
i ⟩
)+

1

2

∑
i

∑
α

hαib
0
i b

α
i

(2.32)

H ′
C =

1

4

∑
⟨ij⟩α

[∑
β

(J +Kδα,β)
(
⟨ib0i b

β
i ⟩⟨ib0jb

β
j ⟩ − ⟨ib0i b

β
j ⟩⟨ib0jb

β
i ⟩
)

+
∑

β ̸=β̄ ̸=α

Γ
(
⟨ib0i b

β
i ⟩⟨ib0jb

β̄
j ⟩ − ⟨ib0i b

β
j ⟩⟨ib0jb

β̄
i ⟩
)] (2.33)

Since all the Majorana’s are being intermixed, we introduced
ψT = (b01, ..., b

0
2N , b

x
1 , ..., b

x
2N , b

y
1, ..., b

y
2N , b

z
1, ..., b

z
2N). For ease of notation, we will let

(b0i , b
1
i , b

2
i , b

3
i ) = (b0i , b

x
i , b

y
i , b

z
i ) so that ψiα = bαi where iα = i+ 2Nα.

All the expectation values ⟨ibai bbj⟩ for a, b ∈ {0, 1, 2, 3} are the θij from the previous
section.2 We find a self-consistent ground state aj|v⟩ = 0 starting with initial guess of
correlators corresponding to the exact solution of the unperturbed model where ψ = U0ā
diagonalizes the Hamiltonian. Letting EMF be the ground state energy from mean-field
theory, we have

Sαβ
ij (t) = ⟨Sα

i (t)S
β
j ⟩ = −1

4
eiEMFt⟨b0i bαi U(t, 0)b0jb

β
j ⟩. (2.34)

We now evolve the state |Ψ⟩ = cjb
β
j |v⟩ in time, and we will need to compute the corre-

lators like θabjk(t) = i⟨bαi b0i baj (t)bbk(t)b0i bαi ⟩. We can evaluate these expressions using standard

2We use Roman letters to indicate belonging to the set {0, 1, 2, 3} and Greek letters to indicate belonging
to the set {1, 2, 3}.
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techniques (i.e. Wick’s theorem). We then need to evaluate the expression

Sαβ
ij (t) = −1

4
eiEMFt−iϕC′ (t)⟨b0i bαi e−iH′

b(Mt)b0jb
β
j ⟩

e−iH′
b(Mt) =

∏
n

e−i∆tH′
b(tn); ϕC′(t) =

∫ t

0

dsH ′′
C(s).

(2.35)

where H ′
b(tn) is evaluated using the correlators θabij (tn).

Using Eq. (2.28), we have

Sαβ
ij (t) = −1

4

√
detXeiEMFt−iϕC′ (t)

×
[
(UU † − UFUT )iiα(Ũ Ũ

† − ŨF ŨT )jjβ

− (UŨ † − UFŨT )ij(UŨ
† − UFŨT )iαjβ

+(UŨ † − UFŨT )ijβ(UŨ
† − UFŨT )iαj

]
,

(2.36)

where the various matrices are defined above.
There is one additional subtlety, however. In a magnetic field, ⟨Sα

i ⟩ can develop an
expectation. Then, Sαβ(qqq, ω) = S̃αβ(qqq, ω)+δ(ω)δ(qqq)⟨Sα

i ⟩⟨S
β
j ⟩. We therefore only really want

to calculate
S̃αβ
ij (t) = Sαβ

ij (t)− ⟨Sα
i (t)⟩⟨S

β
j ⟩. (2.37)

If we focus on the first term of Eq. (2.36), we see that it can alternatively be written

T1 = −1

4
⟨U †(0, t)ψiψiαU(t, 0)⟩

⟨U(t, 0)ψjψjβ⟩
⟨U(t, 0)⟩

. (2.38)

Remember, though, that U(t, 0) = e−iH′
bc(Mt)−iϕ′(t) ≈ U(t, 0) is just an approximation for the

true time-evolution operator. Using the fact that the ground state should be an eigenstate
of U(t, 0), we undo the approximation and find T1 = ⟨Sα

i (t)⟩⟨S
β
j ⟩. Therefore, S̃

αβ
ij (t) simply

involves the last two terms of Eq. (2.36).
If we do not cancel the term exactly, then when computing S̃αβ = (qqq = 0, ω) in a

magnetic field, the small approximation on every site gets amplified by the number of sites.
A percent-level error then translates to a large discrepancy.

Recovering the exact solution

At the exactly solvable point J = Γ = hhh = 0, it is clear that the three directional flavors of
b’s decouple and Hb =

∑
αH

α
b can always be diagonalized by the transformation ibαi b

α
j = 1−

2χ†
⟨ij⟩αχ⟨ij⟩α ; put another way, H

α
b are all diagonal in the bond-fermion basis [12]. We choose

the gauge where χ†
⟨ij⟩αχ⟨ij⟩α = 0 describing the ground state, meaning that the expectations

needed for Hb0 can be readily evaluated: ⟨v|ibβkb
β
l |v⟩(t) = 1, if k and l are connected via a
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β bond. When computing the time-evolution operator acting on the state |Ψ⟩ = b0jb
α
j |v⟩,

all the expectations remain the same, i.e. ⟨Ψ|ibβkb
β
l |Ψ⟩ = 1, except that ⟨Ψ|ibαi bαj |Ψ⟩⟩(t) =

−⟨v|ibαi bαj |v⟩. Therefore, Hb0 is the same as the exact Hamiltonian, HK where one uα⟨ij⟩ has
changed sign.

Due to the absence of a magnetic field, we can break apart the b0 and bα parts of Eq. (2.35)
giving

Sϵβ
ij (t) =

1

4
eiEMFt−iϕC′ (t)⟨b0i e−iHb0(Mb0

t )b0j⟩⟨bϵie−iHb(M
b
t )bβj ⟩ (2.39)

where e−iHb(Mb
t) and e−iHb0(Mb0

t ) have the analogous definition to e−iH′
b(Mt).

BecauseHα
b (tn) is diagonal in the bond-fermion basis, it is clear the bond-fermions cannot

move. Breaking the ground state into a product of the ground states of each of the bα’s we
therefore compute

⟨vb|bϵie−iHb(M
b
t )bαj |vb⟩ = δαϵ⟨vbαbαi e−iHα

b (Mbα

t )bαj |vbα⟩

× ⟨vbβ |e−iHβ
b (M

bβ

t )|vbβ⟩⟨vbγ |e−iHγ
b (M

bγ

t )|vbγ⟩
= −iδαϵeiϕC′ (t)⟨vbα|ibαi bαj |vbα⟩.

(2.40)

The phase exactly cancels that accumulated from the HC term because |Ψ(t)⟩ is still an
eigenstate of the bond-fermion operators so ibαi b

α
j = ⟨ibαi bαj ⟩. In the ground state, ⟨bαi bαj ⟩ = 0

unless i, j are connected by an α bond.
Putting everything together, and noting that EMF is exactly the ground state energy for

the Kitaev model, we find that we recover the exact result [12, 97]:

Hb0(tn) = HF = −1

2
Kicicj +

1

4

∑
⟨kl⟩α

Kickcl

Sαα
ij = − i

4
eiE0t⟨cie−iHF tcj⟩

Sαα
ii =

1

4
eiE0t⟨cie−iHF tci⟩.

(2.41)

In our approach, the flip of the value of ibαi b
α
j in the Hamiltonian for the time-evolution

operator, as seen in the exact case [12], occurs because we recompute the mean-field param-
eters for the state on which the Hamiltonian is acting.

Recovering the flux gap

One further critique of mean-field theory as applied to the Kitaev model is that it fails
to reproduce the flux gap as the energy of one bond fermion excitation, as read off of the
mean-field Hamiltonian, is four times larger than the flux gap [98]. However, if we consider
what changes when we add in excitations, the flux gap is reproduced within the framework
of TDMFT. To stay in the physical subspace, we should actually add two excitations [146,
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199], but we will consider only single excitations since the argument is simpler and straight-
forwardly generalized. First, let us consider adding one itinerant Majorana excitation. The
Fourier transform nearly diagonalizes Hc, so we know the excitations have the rough form
γ†kkk = 1√

2N

∑
i cie

ikkk·xxxi where xxxi is the location of site i. If want to compute Hγ†kkk|v⟩, we need

to mean-field decouple H with respect to the state γ†kkk|v⟩. In the thermodynamic limit, the
mean-field parameters will be the same and therefore this state is an approximate eigenstate
of H.

If we attempt the same calculation with the state χ†
⟨ij⟩α|v⟩, the mean-field parameters

will not stay the same in the thermodynamic limit because ⟨ibαi bαj ⟩ = 1. When J = Γ = 0,
the state is still an eigenstate of Hb but is no longer an eigenstate of Hc. Therefore, this
excitation is not an energy eigenstate.

If we wanted to describe the state with one bond fermion inserted, we would need to
search for a different self-consistent mean-field deocupling with ⟨ibαi bαj ⟩ = 1 and, on all other

bonds ⟨kl⟩β, ⟨ibβkb
β
l ⟩ = −1. Without any perturbations, this will clearly reproduce the flux

gap energy, and, in the presence of perturbations, we can use the self-consistent solution as
an initial guess to find how the flux gap changes.

Comparing with augmented mean-field theory

It is worth comparing TDMFT to the augmented mean-field theory approach of Ref. [98].
In order to recover the correct expressions for Sαβ

ij (t) the “flip” in the value of u⟨ij⟩α occurs
due to the anticommutation relations between bαi and a newly introduce Z2 link variable. A
series of approximations is needed in order to perform the computation, and the presence of
perturbations leads to modifications in how the computation is carried out. In TDMFT, the
only approximation is mean-field theory applied self-consistently.

Despite agreeing for the exact case, we will see that these two different approaches predict
quite different physics in the presence of perturbations. Furthermore, their approach relies
on time evolution being generated by the mean-field Hamiltonian. Combining TDMFT and
their approach will lead to disagreement in the exact case.

Finally, Ref. [98] proposes computing ⟨bαi Hbαi ⟩ − ⟨H⟩ in the ground state to find the flux
gap, ∆F . However, it is worth noting that this calculation, when performed using the exact
solution, yields 4∆F , just as you would get in a mean-field calculation without modifications
or TDMFT, and not ∆F as they claim to find with augmented mean-field theory.

The necessity and validity of TDMFT

Although TDMFT clearly is an important starting point for the Kitaev case, the computation
of the mean-field parameters at each time step and the exponentiation ofMt greatly increases
the cost of computing dynamical quantities. For other systems, this may make TDMFT
impracticable. When, then, is it necessary to apply TDMFT instead of evolving in time
under the ground-state mean-field decoupled Hamiltonian?
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It depends on why MFT is expected to be valid. There are at least two distinct scenarios:
a large coordination number or the mean-fields being approximately conserved quantities.
In the former limit, TDMFT is likely unnecessary because only a small number of mean-
field parameters will change, which will be suppressed by the large coordination number of
unchanged parameters.

To see where the other limit arises, we are, at the highest level, breaking apart interaction
terms in the Hamiltonian into non-interacting ones. In general, we break apart four e.g.
Majorana terms as

c1c2c3c4 − δ̂ = ⟨c1c2⟩c3c4 + ⟨c3c4⟩c1c2 − ⟨c1c2⟩⟨c3c4⟩
+ ⟨c1c4⟩c2c3 + ⟨c2c3⟩c1c4 − ⟨c1c4⟩⟨c2c3⟩
− ⟨c1c3⟩c2c4 − ⟨c2c4⟩c1c3 + ⟨c1c3⟩⟨c2c4⟩

(2.42)

and we ignore δ̂. Notice that ⟨δ̂⟩ = 0 for the resulting self-consistent mean-field ground
state (since it is quadratic in Majorana’s), and MFT would be rigorously valid if |⟨δ̂2⟩| ≪
|⟨c1c2c3c4⟩|2. In the simplest case where one decoupling channel dominates, we can show

⟨δ̂2⟩ = (⟨[ic1c2]2⟩ − ⟨ic1c2⟩2)(⟨[ic3c4]2⟩ − ⟨ic3c4⟩2) (2.43)

implying that the variance of either ic1c2 or ic3c4 is small compared to its mean value, and
the other’s mean-field value is not too close to zero (to ensure ⟨c1c2c3c4⟩ ̸= 0). Without
loss of generality, say that ic1c2 ≈ ⟨ic1c2⟩, but this simultaneously implies that ic1c2 is
an approximately conserved quantity in the ground state of the (full) Hamiltonian since a
constant commutes with the Hamiltonian. The reverse direction is also true–namely, if ic1c2
commutes with the Hamiltonian, ⟨δ̂2⟩ = 0 and MFT is rigorously valid.

The same argument can be made for the low-energy excited states as well, if MFT is
valid for those states. Now when computing a dynamic correlator ⟨O(t)O⟩, TDMFT will be
necessary if and only if O connects excited states with different values of the constants of
motion.

As an explicit example, in the Kiteav model, TDMFT would not be necessary if we com-
pute ⟨ci(t)cj⟩, but it is necessary for ⟨Si(t)Sj⟩ because the fluxes, the conserved quantities,
are changed.

The above calculation additionally points to when TDFMT is rigorously valid. As we
have seen above, TDMFT is able to reproduce key features of the exact solution, and we
expect that a careful application of it will reproduce any feature since ⟨δ̂2⟩ = 0. In the
presence of perturbations, it is not the case that ⟨δ̂2⟩ = 0, but it is possible that for some
perturbations it will be small. Additionally, TDMFT has been compared against density-
matrix renormalization group methods, which can produce exact results, on small systems
and qualitative and semi-quantitative agreement is found [34].

Finally, we are making the mean-field approximation because we cannot solve the model
exactly–whether or not this approximation is a good starting point depends on the model.
However, TDMFT is a consistent mean-field approach, where we always mean-field decouple
the Hamiltonian with respect to the state it is acting on. Any time that mean-field theory
is not applied this way implies that the approach is potentially inconsistent.
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Figure 2.2: We plot |Gb,zz
01 |, where sites 0 and 1 are connected by a z bond, for a variety

of parameters. For small parameters, the asymptotic value as t → ∞ is not substantially
different than the starting value. Only when both J and Γ are large do we see the value
drop, which we can interpret as the fluxes becoming mobile [98]. The dashed line indicates
the exact (J = Γ = 0) result, and the system sizes are the same as in Fig. 2.3.

2.3 Inelastic neutron scattering: exact and

approximate results

As I discuss in the introduction, to determine whether a spin liquid is present, it is helpful to
study the nature of the excitations of the ground state, which requires a probe of dynamic
correlators. Our focus will be the dynamic spin-spin correlator ⟨SSSα

i (t)SSS
β
j ⟩ and its Fourier

transform Sαβ(qqq, ω) as we have already introduced above.
The necessary experimental technique to probe this quantity is inelastic neutron scatter-

ing, which, as its name suggests, involves scattering a beam of neutrons off of a material and
measuring the resulting neutron’s momentum and energy. We can compute the INS signal
with [103]

I(qqq, ω) ∼ f(q)2
∑
α,β

(
δαβ −

qαqβ
q2

)
Sαβ(qqq, ω). (2.44)

where f(q) is the magnetic form factor specified by the atoms around which the spin is
localized.

The neutrons probe integer spin excitations. If the system is ordered, the excitations are
magnons, and Sαβ(qqq, ω) will have sharp features in energy and momentum corresponding to
the magnon bands [83]. If the system is a spin liquid, though, the excitations carry non-
integer spin and there will be broad features in momentum and energy corresponding to
bound states [168].

We will now compute some of the inelastic neutron scattering results for our model
Hamiltonian Eq. (2.17).
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Figure 2.3: (Color online) We plot S(q, ω) for a variety of parameters for an N × N unit
cell system. The exact result (black line) is the result from a N = 100 system and the
other parameters have N as specified in each of the panels. In (a), we consider the effect
of J ̸= 0 and Γ = 0 and see that the primary effect is shifting the features from the exact
case to higher or lower energy. In (b), we plot the same but for J = 0 and Γ ̸= 0. Beyond
some minor adjustments to the peak, the main effect seems to be to smooth out the kink
in the exact result. For (c), we see the combination of both J ̸= 0 and Γ ̸= 0 and, for
small parameters, the two effects seem roughly additive. For larger parameters, as the flux
becomes mobile, there are more substantial changes. In (d), J = Γ = 0 but we consider
the effect of a magnetic field in the z direction and x direction. Due to a smaller time-step,
we are not able to consider as large of systems, and so we multiply S(qqq, t) by a Gaussian
of width σ = 60, equivalent to convolving S(qqq, ω) with a Gaussian of width 1/σ. The main
effect of the magnetic field that we see is a smoothing of the high-energy features, and some
oscillatory features at low-ω. We pick ∆t small enough to ensure convergence.
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Numerical Results

First, we must evaluate S(q, ω). In the exact case, we have expressions Eq. (2.13), which can
be evaluated exactly [97] or numerically using Eq. (2.27). For TDMFT, we must evaluate
all expressions numerically.

One limiting factor in the numerics is finite size determined by how long it takes for the
Majorana’s to travel across the entire system. In the ground state for hhh = 0, the b0 fermions
experience an effective coupling of K̃ = (K+J)⟨ibzi bzj⟩+2J⟨ibxi bxj ⟩+2Γ⟨ibxi b

y
j ⟩ giving a speed

of 3K̃/4 [126]. A system with N × N unit cells will then experience finite size effects at
roughly t = 4N/(3K̃). The only other knob we turn, for a given set of parameters is ∆t,
and we ensure that decreasing ∆t or increasing N has minimal effect on the resulting S(q, ω)
plots. We additionally avoid N that are multiples of 3 to avoid the gapless points in the
Majorana spectrum at the K points [94] as they introduce additional complications to the
numerics. For additional discussion of convergence, see [34]. The finite size effects makes it
most difficult to probe small ω, which are also least accessible for inelastic neutron scattering
experiments.

We are primarily interested in computing the results for parameters that we expect to
be in the Kitaev phase. For varying J and Γ, we use the phase diagrams produced via exact
diagonalization on 24 sites in Ref. [154], however we additionally include points at larger |J |
when Γ = 0 and vice-versa to highlight the effects that each perturbation has individually.
We focus on the ferromagnetic Kitaev model (K = 1) as it has larger parameter space when
J,Γ ̸= 0, but the qualitative results hold true for K = −1.

One of the main differences between our results and those of Ref. [98] is the flux remains
fixed much longer. There are two ways that we can probe this: either by the time evolution of
the mean-field parameter i⟨bαj bαi (t)bαj (t)bαj ⟩ or by the bα component of Eq. (2.39), Gb,αβ

ij (t) =

⟨bαi e−iHα
b (Mb

t)bβj ⟩. We will use the former as a more direct comparison with Ref. [98].
We plot Gzz

b (t) in Fig. 2.2 and see that even for fairly large perturbations, the flux remains
fixed. Only when both J and Γ are substantial does the flux begin to move, consistent with
the finding of Ref. [183]. 3 Though quite different from the result of Ref. [98], if we modify
their approach to be symmetric between the b0 and bα, we find the flux remains fixed as well.

We now plot S(q = 0, ω) in Fig. 2.3 for a variety of parameters. In total, we see that the
perturbations have only a small effect on the exact result. The Heisenberg term, J , primarily
moves the features to higher or lower ω, depending on the sign, but the overall qualitative
features are the same. For Γ, there is more power near the kink in the exact result and less
power at the peak. When combined, we get some of both features, but, overall, the results
are less dramatically different than those found in Ref. [98].

For the magnetic field, we consider the antiferromagnetic model K = −1 as the ferro-
magnetic model changes phase with h = 0.042 [133] when the magnetic field is aligned with
one of the three spin-axes. We additionally find it useful to use a higher order time-evolution

3It is possible very large J or Γ individually would be enough to make the fluxes mobile, by this definition,
but we have checked for J = 0.4 and Γ = −0.3 have not seen this effect
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Figure 2.4: (Color online) We plot the INS intensity (in arbitrary units) at the (a) Γ and (b)
M point. The legend specifies the size of the system, N used for each parameter set, and
when N is not divisible by two, we use the point slightly off of the M point which satisfies
the boundary conditions. For smaller perturbations, the features of the exact result are not
substantially modified.

scheme [193] as the time-step necessary for convergence needs to be smaller. In the presence
of a magnetic field, we can no longer separate the b0 and bα Majorana’s, and therefore cannot
compute Gb.

Due to the smaller time-step, it is difficult to get to as large of system sizes and a well-
converged S(qqq, ω), so we multiply S(qqq, t) by a Gaussian of width σ = 60. In Fig. 2.3(d), we
plot some results for a magnetic field in the z or x direction. We still find only small effects,
such as a smoothing out of high-energy features and oscillatory features at low-ω.

In order to compute the INS results, we will have an eye towards experiments on α-RuCl3,
discussed more in the next chapter. We follow Ref. [103] in averaging over qz (assuming that
Sαβ(qqq, ω) is independent of qz) as is done in the experiment. The exact form of the form factor

is not too important; for concreteness, we will use f(q) = e−q2c with c = (0.25 × 4π)−2 Å
2
,

relevant to α-RuCl3 [41, 34].
4

The large peak in the exact case is not greatly modified by the perturbations, but the
smaller higher energy features are. Our results appear quite far from available INS data
on α-RuCl3 [10, 9] perhaps providing some evidence against the interpretation of its field-
induced phase as a Kitaev spin liquid; in particular, though the signal at the Γ point may
be well-captured by the Kitaev model, the field-induced phase appears to have little signal
at the M point [9], which is inconsistent with our results unless the inclusion of an in-plane
magnetic field leads to substantial changes.

4As we will discuss in the next chapter, since we are envisioning the Jackeli-Khaliulin mechanism [78]
for producing a Kitaev material, the x-, y-, and z-axes for the spins have out-of-plane components, and we
account for that when computing I(qqq, ω).
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2.4 Discussion

In total we have seen numerous approaches for theoretically analyzing the Kitaev spin liquid
phase. There are two exact approaches that work in the absence of perturbations, from
which we can understand the nature and character of the spin liquid phase. TDMFT serves
as a third technique that reproduces the exact results and can be applied in the presence of
arbitrary perturbations. The main interpretation for experiments is succinctly stated: even
in the presence of perturbations, the INS signal should closely match the Kitaev model if
the material is in the Kitaev phase.

As exemplified in Fig. 2.3, though the features of the exact result do change in the
presence of perturbation, the signal looks surprisingly similar. This finding is consistent
with the idea that the Kitaev phase is stable to small perturbations [64], though it appears
inconsistent with the conclusion that the flux gap is fine-tuned [183, 196]. As mentioned
above, the flux gap is expected to persist when hhh = 0 and either J = 0 or Γ = 0 [183],
and when J ̸= 0 and Γ ̸= 0, the fluxes acquire a hopping that scales like J2Γ2/K3. When
J and Γ are small, the corresponding time scale is much longer than what we can achieve
numerically, and we further see that the low-ω features of the S(qqq, ω) are not well-enough
converged to make definitive statements about the gap persisting or not (or whether the
scaling at low-ω matches Ref. [183]). Our results, however, indicate that whether the flux
gap is fine-tuned or not does not imply that the other aspects of the signal are fine-tuned.

TDMFT, as applied to the Kitaev model, still faces several challenges. We used the
second exact approach as the starting point, 2Sα

i = ib0i b
α
i , but we have made no mention of

the projection operator P . In applying mean-field theory, many works handle the projection
by imposing the constraint on average [81, 26, 222, 135, 173, 151, 44], arguing that the
effect is higher-order [49], using a different transformation without a gauge issue [133, 130],
or ignoring the effect altogether [124, 111, 169]. In TDMFT, in zero-field, we automatically
satisfy the constraints, on average, as expressed in [151]. Still, better accounting for the
effect of P may be important in future work.

Furthermore, TDMFT exhibits several “unphysical” features such as Sαα(qqq, ω) < 0.
Though this violation of exact bounds is concerning, it is a product of the approximate
nature of the approach. Given the small fraction of support that violates the exact bounds,
we still believe our conclusions are sound and correct.

In the next chapter we will use TDMFT as well as spin-wave theory, an approach for
computing quantities in a spin “solid” state, to discuss the experimental situation of Kitaev
materials and α-RuCl3, in particular.
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Chapter 3

Thermal transport in Kitaev materials

The Kitaev model, as we discussed in the previous chapter, describes spin-1/2’s on the
honeycomb lattice with a bond-dependent Ising interaction and remarkably has an exact
solution in terms of Majorana fermions [94].1 The ground state has the fascinating property
that in a weak magnetic field the low-energy excitations are anyons [94]; beyond the intrinsic
interest, these anyons could form the basis for a topological quantum memory device [134].

While the Kitaev model was first introduced without a clear path towards material re-
alization, Jackeli and Khaliluin discovered one such route in 4d/5d transition metals [78].
The key ingredients are 1) an octahedral cage around the atom with the localized spin
which shares an edge with adjacent octahedron, 2) strong spin-orbit coupling, and 3) strong
enough interactions to lead to a Mott transition [198]. An alternative pathway involving
the 3d transition metal Co has recently been discovered [116, 115, 165], and there are now
several candidate materials for realizing Kitaev physics [209, 192] such as Na2IrO3 [217, 33,
74, 180, 181, 25, 117], Li2IrO3 [181, 207, 16, 210], H3LiIr2O6 [95, 192], Na2Co2TeO6 [113],
and α-RuCl3 [9, 10, 8, 153, 132].

Due to the convenience of an exact solution, the Kitaev model without additional terms
is often used to compare against experiments, for instance in inelastic neutron scattering
[10, 8] and thermal Hall effect [88] experiments. However, numerous theoretical studies have
proposed effective Hamiltonians for α-RuCl3, which have revealed the Kitaev term [210,
208, 90, 91, 202, 68], but include other terms such as a Heisenberg term and the symmetric
off-diagonal exchange term Γ [154, 89, 210, 208].

In other candidate materials the microscopic spin Hamiltonian contains non-Kitaev terms
[210, 182, 192] such as Heisenberg and “Γ” terms, as we listed above. These terms are
symmetry-allowed and predicted from ab-initio studies [210, 208]. In particular, minimal
models for a variety of materials appear to be satisfied by variations on the following Hamil-

1This chapter, and particularly Sec. 3.1, Sec. 3.2, and Sec. 3.4, are adapted with permission from Tessa
Cookmeyer and Joel E. Moore. “Spin-wave analysis of the low-temperature thermal Hall effect in the
candidate Kitaev spin liquid α − RuCl3”. In: Phys. Rev. B 98 (6 Aug. 2018), p. 060412. doi: 10.1103/

PhysRevB.98.060412. url: https://link.aps.org/doi/10.1103/PhysRevB.98.060412, copyright ©
2018 by the American Physical Society.
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tonian

HKM = J
∑
⟨ij⟩

SSSi ·SSSj +
∑
i

hhh ·SSSi+
∑
⟨ij⟩α

KSα
i S

α
j +Γ

∑
β ̸=β̄ ̸=α

Sβ
i S

β̄
j +Γ′

∑
β ̸=α

(Sβ
i S

α
j +Sα

i S
β
j ). (3.1)

For full generality, we would also allow a Dzyaloshinskii-Moriya (DM) term and further-
ranged Heisenberg, Kiteav, Γ, and Γ′ terms. It is therefore important to have a general
method to compute static and dynamic quantities near the pure-Kitaev model point and to
know how such terms modify the exact results. Standard methods such as (infinite) density-
matrix renormalization group [50, 51, 123], (non-)linear spin-wave theory [24, 123, 35, 214,
80, 211, 220, 8, 153, 84, 100], variational Monte-Carlo [223], quantum Monte-Carlo [219,
167], Monte-Carlo cluster perturbation theory [152], Landau-Lifshitz dynamics [163], and
exact diagonalization [85, 65, 103, 211] have been used to approach this problem. Although
the existence of the exact solution allows some techniques to be more powerful [223, 219,
167], there are numerous challenges in applying them to a two-dimensional (2D) quantum
mechanical system. Instead, one of the most intuitive starting point for taking advantage
of and extending the exact result is mean-field theory (MFT) as the conserved quantities
in the original model can be thought of as mean fields. Many papers have used MFT in
analyzing the Kitaev model with various perturbations [169, 133, 111, 43, 14, 81, 26, 222,
135, 173, 151, 44, 49, 124], but our development of TDMFT in the previous chapter allows
us to compute results that agree with exact results.

In the rest of this chapter, we review the experimental situation for α-RuCl3, and we pro-
vide two theoretical analyses of thermal transport data. The first is spin-wave theory, which
we will derive below and is applicable to ordered spin systems. In the second analysis, we
will apply TDMFT to compute the thermal conductivity of the Kiteav model in a magnetic
field. In some sense, TDMFT is complementary to spin-wave theory where the former allows
for the treatment of perturbations to the Kitaev spin liquid state and the latter allows for
treating fluctuations on top of the classical ordering in ordered spin states.

3.1 Experiments on α-RuCl3

Of the candidate materials listed above, α-RuCl3 has generated significant excitement due
to several experimental results. Although at low temperatures, the spins enter into a zigzag
ordering, in a large in-honeycomb-plane field a putative spin liquid state emerges [7, 10, 153,
104, 87].

Raman scattering results on α-RuCl3 reveal a continuum of excitations that exists above
and below the magnetic transition temperature [164]; after subtracting a bosonic background,
the excitations appear to be fermionic, which suggests fractionalization and proximity to a
spin liquid state [132]. Experiments with terahertz spectroscopy [114, 203, 212] and electron
spin resonance [149] above and below the field induced transition further demonstrate the
existence of interesting features in the excitation spectrum that might also be a sign of the
Kitaev spin liquid. The continuum of excitations is also seen in inelastic neutron scattering
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data and seem to be qualitatively similar to that expected from the pure Kitaev model [8,
10], and linear spin wave theory fits to inelastic neutron scattering data suggest a significant
Kitaev interaction [8, 153].

The “smoking-gun” signature of the Kitaev model is a half-quantized thermal Hall effect
due to the Majorana bands acquiring a non-zero Chern number in a small magnetic field
[94]. Thermal transport on the α-RuCl3 has revealed “unusual” results in both κxx and κxy
[88, 87, 62, 63, 104]. When compared with the theoretical predictions of the thermal Hall
conductivity of a pure Kitaev model at non-zero temperature [131], these results perhaps
suggest the Kitaev-magnet nature of α-RuCl3. Additionally, in the case of a large in-plane
magnetic field, κxy/T reportedly is quantized at πk2B/(12ℏ) [87, 218, 20] as would be expected
from the pure Kitaev model [94]. However, attempts to reproduce the result have run into
considerable sample dependence [215, 39, 107]. Furthermore, recent work has seen intriguing
features of κxx in a magnetic field, which at first appeared to have a quantum oscillation-like
dependence on the magnetic field [38] but further studies suggest the oscillations are due to
a sequence of magnetic field transitions [187, 108, 19].

In total, the experimental situation for α-RuCl3 remains complicated and marred by
sample-dependent quantities. Furthermore, as we mention above, our above TDMFT re-
sults appear inconsistent with α-RuCl3 being in a Kitaev spin liquid phase. It is still worth
investigating what aspects of the thermal transport signatures either are supportive or chal-
lenging of the Kitaev spin-liquid interpretation. In the subsequent sections, we will compute
thermal Hall conductivity in the ordered phase, to be compared with the results of Ref. [88]
to constrain the effective Hamiltonian, and we will set up the computation of the longitudinal
thermal conductivity for the Kitaev model in a magnetic field to be compared, qualitatively,
with Refs. [38, 187, 108, 19].

3.2 Thermal transport from spin-wave theory

As we discussed in the previous section, α-RuCl3 is not, by itself, a spin liquid. Its low-
temperature state has ordered moments. In fact, due to the presence of other terms besides
the Kitaev one in the Hamiltonian, it is not uncommon for the candidate materials to be
ordered. In this regime, we can apply spin-wave theory, a standard technique allowing for a
systematic expansion around the classical ordered state.2.

Spin wave theory: the general approach

Let us consider a general spin Hamiltonian, which for simplicity, we will restrict to involving
two-spin terms only

H =
∑
i,j,α,β

Sα
i T

αβ
ij S

β
j . (3.2)

2For a thorough introductory reference, see Ref. [83]
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where i, j are site indices and α, β ∈ {x, y, z} are direction indices. The only restriction on Tij
is translation invariance Ti+a,j+a = Tij. If we interpret these spins as vectors, we can find the
classical lowest energy state for this Hamiltonian. The classical solution can be determined
e.g. numerically using minimization algorithms and trying many different configurations and
sublattice sizes. The solution will have M sublattices, which form a (potentially) larger unit
cell, and the spins will point in directions that we specify with the polar coordinate angles
ϕm and θm for m ∈ {1, 2, ...,M}.

Spin-wave theory gives us a systematic expansion to compute beyond the classical solu-
tion. We first introduce rotated spin variables

SSSi = R(θi, ϕi)ΩΩΩi

R(θ, ϕ) =

cos(θ) cos(ϕ) − sin(ϕ) sin(θ) cos(ϕ)
cos(θ) sin(ϕ) cos(ϕ) sin(θ) sin(ϕ)
− sin(θ) 0 cos(θ)

 (3.3)

such that ΩΩΩi → (0, 0, S) gives the classical solution. The Hamiltonian can then be written

H =
∑
i,j,α,β

Ωa
iQ

ab
ijΩ

b
j

Qij = BTR(θX (i), ϕX (i))
TTi,jR(θX (j), ϕX (j))B

B =

 1
2

1
2

0
1
2i

− 1
2i

0
0 0 1


(3.4)

where X (i) returns the sublattice label for site i, a, b ∈ {+,−, z}, and the B matrix converts
from the x, y, z spin basis to the +,−, z basis.

Now, we represent ΩΩΩi in terms of Holstein-Primakoff bosons

Ωz
i = S − b†ibi

Ω−
i = b†i

√
2S − b†ibi

Ω+
i =

√
2S − b†ibibi.

(3.5)

This transformation respects the commutation relation of the spins but comes with the added
restriction that b†ibi ≤ 2S.

We can now do an expansion in b†ibi/(2S), whose smallness is a self-consistency check.
Writing out the first few terms, we get

H(0) = S2
∑
i,j

Qzz
ij

H(1) =
√
2S3/2

∑
i,j

b†i (Q
−z
ij +Qz−

ji ) + bi(Q
+z
ij +Qz+

ji )

H(2) = S
∑
i,j

2(bib
†
jQ

+−
ij + b†ibjQ

−+
ij + bibjQ

++
ij + b†ib

†
jQ

−−
ij )− b†ibi(Q

zz
ij +Qzz

ji )

(3.6)
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The O(S2) term will recover the classical energy, and, alternatively, can be considered
a function of the θn and minimized accordingly. The O(S3/2) vanishes as a self-consistent
check that the classical energy is indeed a minimum. Finally, the O(S) term describes free
bosons, termed magnons or spin waves, that describe the low-energy excitations above the
ground state. Cutting off the approximation here is termed linear spin-wave theory. Higher
order terms in this expansion leads to interactions between the bosons.

In order to diagonalize H(2), we introduce sublattice dependent Fourier transforms. That
is, we have M flavors/bands of bosons

bkkk,m =
1√
Nu

∑
i:X (i)=m

e−ikkk·xxxibi (3.7)

where xxxi is the displacement vector to site i, and Nu is the number of unit cells in the system.
We then find

H(2) = 2S
∑
kkk,m,n

bkkkmQ
+−,(kkk)
mn b†kkkn + b†kkkmQ

−+,(−kkk)
mn bkkkn + b−kkkmQ

++,(kkk)
mn bkkk,n + b†kkkmQ

−−,(−kkk)
mn b†−kkkn

− b†kkkm
Q

zz,(000)
mn +Q

zz,(000)
nm

2
bkkkm

(3.8)

where
Qab,(kkk)

mn =
∑
j

e−kkk·(xxxj+rrrn−rrrm)Qab
rrrm,xxxj+rrrn (3.9)

where rrrm is the location of the mth sublattice within the unit cell, and we use the notation
so that Qab

xxxi,xxxj
= Qab

ij .
We now average the kkk and −kkk terms in this expression, and rearrange to be in terms of

ψ†
kkk = (b†kkk,1, b

†
kkk,2, ..., b

†
kkk,M , b−kkk,1, ..., b−kkk,M). The Hamiltonian becomes

H(2) = S
∑
kkk

ψ†
kkk

(
A(kkk) B(kkk)

B(−kkk)∗ A(−kkk)T
)

︸ ︷︷ ︸
M(kkk)

ψkkk + C

Amn(kkk) = Q+−,(kkk)
nm +Q−+,(−kkk)

mn − 1

2
δmn

∑
p

Qzz,(000)
mp +Qzz,(000)

pm

Bmn(kkk) = Q++,(kkk)
mn +Q++,(−kkk)

nm

C = S
∑
kkk,m,n

Q
zz,(000
mn +Q

zz,(000)
nm

2
+Q+−,(kkk)

mn −Q−+,(kkk)
mn

(3.10)

Now we can diagonalize the above matrix for each value of kkk. In order to respect the
boson commutation relations, we cannot diagonalize this matrix by a unitary. Instead, we
must diagonalize it with respect to a paraunitary matrix, ψkkk = Tkkkϕkkk that satisfies

I2M = Tkkkσ3T †
kkk σ3

σ3 =

(
IM 0
0 IM

)
(3.11)
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where IN is the N ×N identity matrix. One approach to numerically completing this task
is noting that

1

2
ψ†
kkkM(kkk)ψkkk =

1

2
ϕkkkσ3T −1

kkk σ3M(kkk)Tkkkϕkkk =
M∑

m=1

ωkkk,m

(
γ†mγm +

1

2

)
(3.12)

where ϕ†
kkk = (γ†kkk,1, ..., γ

†
kkk,M , γ−kkk,1, ..., γ−kkk,M). This calculations implies that Tkkk is the matrix of

eigenvectors of σ3M(kkk).
Up to the H(2) order, we are left with a quadratic Hamiltonian, so any quantity should

be describable in terms of Tkkk and the ωkkk,n. The two important quantities we will focus on
are the spin reduction and the thermal Hall coefficient. The spin reduction on the ith lattice
is given by

∆S0,i = ⟨b†ibi⟩ =
1

V1BZ

∫
1BZ

d2k

(
2M∑
j=1

|Tkkk,ij|2nBE(|ωkkk,j|) +
2M∑
j=M

|Tkkk,ij|2
)
, (3.13)

where we have specialized to (quasi)two-dimensional systems, and nBE(x) is the Bose-
Einstein distribution and V1BZ is the volume of the first Brillouin zone. If the spin reduction
is small, that is ∆S0/S ≪ 1, LSWT is expected to be valid. The thermal Hall coefficient is
given by [122]

κxy
k2BT/ℏ

= − 1/dc
(2π)2

∫
1BZ

d2k
M∑
n=1

(
c2(nBE(ωkkk,n))−

π2

3

)
Ωnn(kkk)

Ωnn(kkk) =

(
iϵµνcσ3

∂T †
k

∂kµ
σ3
∂Tk

∂kν

)
nn

.

(3.14)

Here, ϵijk is the Levi-Civita symbol, dc is the distance between 2D planes (assuming well
separated layers), Ωnn(kkk) is the Berry curvature of the nth magnon band, and, with Li2(z)
being the dilogarithm, c2(x) = (1 + x)(ln(1 + x)− ln(x))2 − (lnx)2 − 2Li2(−x).

Notice how κxy is purely due to the Berry Curvature. None of the bands need to have
non-zero Chern number, but they must have non-zero Berry Curvature.

In the next section, we will evaluate κxy for the model relevant to the α-RuCl3 and other
Kitaev materials.

LSWT for Kitaev materials

We now specify the parameters in Eq. (3.1) to perform the calculation. We consider many
different parameter sets as have been proposed in the literature, which are summarized in
Table 3.1, but we always take Γ′ = 0 even if the model has Γ′ ̸= 0. Though there is some
experimental disagreement in the g-factor [101, 213], susceptibility measurements [198, 172,
120] give the paramagnetic moment to be ≳ 2µB, with S = 1/2. We therefore fix g = 2.3 to
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Name J1 K Γ Γ′ J2 J3 K3 Ref.
HK −4.6 7.0 − − − − − [8]
KΓ − −6.8 9.5 − − − − [153]
1(HKΓJ3) −1.7 −6.7 6.6 − − 2.7 − [210]
2(HKΓJ3) −5.5 7.6 8.4 − − 2.3 − [210]
3(HKΓJ3) −0.5 −5.0 2.5 − − 0.5 − [208]
4(HKΓJ3) 0.1 −5.5 7.6 − − 0.1 − [202]
5(HKΓJ3) −0.3 −10.9 6.1 − − 0.03 − [202]
6(HKΓJ3) −3.5 4.6 6.4 − − 0.8 − [90]
(HKΓΓ’) −1 −8 4 −0.95 − − − [90]
HKΓ −12 17 12 − − − − [91]
HKΓK3 −1.8 −10.6 3.8 − − 1.25 0.65 [68]
HKΓJ2 1.2 −5.6 1.0 − 0.3 0.3 − [213]
7(HKΓJ3) −0.5 −5.0 2.5 − − 0.1125 − this work

Table 3.1: This information is primarily drawn from Table 1 in Ref. [79] with some models
added. All values are in meV. For this analysis, we ignore the K3, J2 values, which are there
for completeness. Some groups propose different models within the same paper depending
on the space group symmetry. For the HK and KΓ model, we add a small Γ and J3 term,
respectively to help the numerics. Copyright © 2018 by the American Physical Society.
Reproduced from Ref. [35] with permission.

get the correct order of magnitude as in Refs. [210, 208, 212, 110], and S = 1/2. According
to Refs. [88, 82], the interplanar distance is dc = 5.72 Å.

The results of our SWT calculation are presented in Figs. 3.1. We have compared our
code with the results of Refs. [123, 138] to verify correctness. We have also plotted the data
from Ref. [88]. We do not plot 5(HKΓJ3) or HKΓJ2 since the spin wave solution is not
stable (i.e. there are complex eigenvalues) above some critical field µ0Hc < 10 T.

We see rather poor agreement between the models and the theory. Although most models
do predict κxy of the correct sign, models HK, KΓ, 4(HKΓJ3) do not. Further notice that
all models with K > 0 predict κxy ≳ 0.

To investigate why there is such a large discrepancy between the theoretical κxy and the
data of Ref. [88], we try to find a large κxy in a minimal J1 −K −Γ− J3 model. It is worth
noting that there is not much freedom. From Curie-Weiss temperature data |K| ∼ 100 K
= 8.6 meV [198, 67], which is similar to the estimate of Ref. [88] and is commonly seen in
almost all of the models in Table 3.1. Furthermore, it has been observed that the magnetic
moments lie in the ac plane and make an angle of approximately 35◦ [21], which requires
a particular Γ/K. Minimizing the classical energy assuming the moments are in the [xxz]
direction, in the J1 −K − Γ − J3 model, we obtain an expression equivalent to one in Ref.
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Figure 3.1: We plot κxy as computed from Eq. (3.14) for the various models in Table 3.1
as a function of (a) temperature and (b) magnetic field. We also plot the data from Ref.
[88] as blue dots. The inset of (a) shows a zoomed-out version of the same graph. In (b),
models with κxy ≳ 0 were removed. Our model, which agrees well with the data in (a),
does not agree with the data in (b). Since the data of Ref. [88] shows κxy > 0 at T > TN
and excitations in the pure Kitaev model contribute to κxy > 0 [131], it is expected that at
T ≈ TN ≈ 7 K the contribution from just the magnons should be below the experimental
data, as is true for our model. We do not plot 5(HKΓJ3) or HKΓJ2 since the zigzag spin
wave solution becomes unstable for some critical magnetic field µ0H < 10 T. Our proposed
model, 7(HKΓJ3) has a large spin reduction ∆S0/S ∼ 0.9 at T = 7 K. Copyright © 2018
by the American Physical Society. Reproduced from Ref. [35] with permission.

[79]:
Γ

K
=

2√
2 tan(θ) + 1−

√
2 cot(θ)

, (3.15)

where z = cos(θ) and we assume x > 0. Two minima of the classical energy can be found
with K < 0; Γ/K ≈ −0.82 and K > 0; Γ/K ≈ 0.0065.

Therefore, for two values of Γ/K with differing signs of K, we have only freedom in J1
and J3. J1 < 0 and J3 > 0 help stabilize the zigzag order, so we place these constraints. In
the K > 0 case with large enough |J1| to stabilize the zigzag order, we always found κxy ≳ 0,
though a more thorough search of the parameter space might be needed.

In the K < 0 case, we instead start with the results of the meta-analysis of ab initio
models from Ref. [208]: Γ/|K| ≈ 0.5 and J1/|K| ≈ 0.1. Fixing K = −5 meV as in their
proposed model, we scan possible values of J3. We find that sufficiently low J3 leads to large
enough κxy to explain all but the lowest temperature point of Ref. [88]. As a representative
model, we find that J3 = 0.1125 does well to reproduce the temperature data, as is shown
in Fig. 3.1. Note that this model is representative not unique. Generically, with −5 meV
≳ K ≳ −8 meV, there is a value of J3 ≳ |K|/200 that provides an order-of-magnitude fit to
the data. For small J3, though, we find a large spin reduction with ∆S0/S ∼ 0.9; similar to
more recent spin-wave approaches to fitting updated inelastic neutron scattering data [163].
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Figure 3.2: We plot the SWT bands, ωn, and the Berry curvature, Ωnn, for the 3(HKΓJ3)
model (solid lines) and the 7(HKΓJ3) model (dashed lines) at µ0H = 12 T for various points
in the first Brillouin zone (1BZ). The latter model has a much larger κxy as seen in Fig. 3.1
due to the fact that a) the gap between the lower two bands around the Y point is smaller
and at lower energy and b) the gap between the green and red band is at a lower energy.
Note that the Berry curvature is largest where the band gap is smallest, and the lower energy
means that the effect of −c2(nBE(ωn)) is more significant. (For Ωnn, the path is changed to
be slightly inside the 1BZ as opposed to being on the boundary, when applicable.) Copyright
© 2018 by the American Physical Society. Reproduced from Ref. [35] with permission.

Further, these models predict much larger κxy at T = 7 K than is measured in Ref. [88] as is
seen in Fig. 3.1(b). Because of the proximity to the temperature at which long range order
is lost, it is perhaps expected that whatever process is creating a large positive κxy above
TN ∼ 7 K is beginning to affect the conductivity at T = 7 K. We are not claiming that our
model explains the considerable existing data from other experiments (e.g. inelastic neutron
scattering, electron spin resonance, etc.); the model is to demonstrate that, theoretically,
the thermal Hall effect data could be described solely through SWT while still satisfying the
conditions from Ref. [208].

To see why the κxy increased, we plot in Fig. 3.2 an example of the linear SWT bands
and Berry curvature for a particular path through the 1BZ for our model 7(HKΓJ3) vs.
the similar model 3(HKΓJ3) on which it is based. It is worth noting that even though the
bands are qualitatively similar, the Berry curvature of the two models is quite different. For
example, there is a large enhancement of the Berry curvature around the Y point.

The difference in magnitude of κxy can be understood as follows. The function f(ωn) =
−(c2(nBE(ωn))− π2/3) scaling the Berry curvature in the κxy integrand essentially serves as
a high-pass filter with frequency ωHi = kBT . That is, if ωn ≪ kBT , f(ωn) ∼ T/ωn and if
ωn ≫ kBT, f(ωn) ∼ π2/3. Since the sum of the Berry curvature integrated over the 1BZ is
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zero [122], then kBT ≳ ωn for κxy to be significant. Furthermore, we can see from Fig. 3.2
that the Berry curvature is largest when there is a small gap between the bands. To make
the largest possible κxy, there must be small gaps in the bands at energies ωn ≲ kBT .

Our analysis tends to favor J3 smaller than has been proposed. As can be seen in plots
in Refs. [210, 213], decreasing J3 tends to move closer to a transition out of the zigzag
order. Since smaller band gaps lead to larger Berry curvature, this result makes sense as
SWT would predict a magnetic ordering phase transition when a gap in two bands close:
assuming the energies of the bands have the form ω± = a±

√
b, a transition occurs at b = 0

since b < 0 leads to instability of the spin wave solution.
These observations, however, call into question whether the magnon thermal Hall effect

is indeed responsible or if the low temperature data is accurate. Denoting x ≡ ωn/T , we see
that f(ωn) = π2/3− e−x(2 + 2x+ x2) +O(e−2x) for x≫ 1. Since the mass of the magnons
has been estimated to be ∼ 2 meV from inelastic neutron scattering [153], κxy, as predicted
from linear SWT, should be exponentially decreasing in 1/T at T ≪ 2 meV ≈ 23 K. All the
predictions of magnon thermal Hall effect shown in Fig. 3.1 show such a dependence but the
data does not.

Another interpretation of our results is that the models in Table 3.1 are consistent with
the data if the magnons are not the dominant source of the κxy at low temperatures. Phonons
could in principle give a larger contribution than ordinarily observed, as has been recently
argued by Ref. [107]. To elaborate, in past experiments, although κxy ≲ 10−4 W/K/m, the
Hall angle was measured at µ0H ∼ 10 T to be κxy/κxx ∼ 1 − 5 × 10−4 [188, 75]. Since
κxx ∼ 2 − 6 W/K/m for α−RuCl3 at T ≲ 10 K [88, 104, 62, 63], we would then estimate
κxy ∼ 3 × 10−4κxx ≈ 1.2 × 10−3 W/K/m, which is of the correct order. Furthermore,
a phonon thermal Hall effect would have a power-law temperature dependence as T → 0
which better matches the data than the expected exponential scaling predicted by SWT.
Regarding contributions in the ordered phase by Kitaev-like excitations from fluctuations,
note that since the pure Kitaev model predicts κxy > 0 [131], and the experimental data
shows that κxy switches sign at T ∼ TN [88], these observations would be inconsistent with
having fluctuations into the Kitaev model explain the discrepancy between the predicted
and observed low temperature κxy.

Finally, we should emphasize that our results focus on linear SWT. Since the condition
∆S0/S ≪ 1 is not met in a rigorous sense, our results should be treated as a first-order esti-
mate. A more detailed calculation using non-linear SWT keeping interaction terms between
the magnons would be an important addition in the future, though such a calculation would
be difficult with known techniques.

3.3 Thermal transport from TDMFT

In this section, we focus on predicting κxx for the Kitaev model in the presence of a magnetic
field. For the pure Kitaev model, κxx has been predicted for both the isotropic and anisotropic
case using Monte Carlo methods [131, 148]. In Ref. [131], the effect of a magnetic field is
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included; however, to maintain exact solvability, only the term third order in the field is
heuristically kept. Perturbatively, the linear term vanishes, but there is a second order term
which does not vanish [94].

Instead of relying on a perturbative Hamiltonian, we can use the methods of TDMFT
which provide an alternative approach to analyzing the system in a magnetic field. In
particular, we are interested in the low-temperature calculation of κxx/T and whether it
reproduces the oscillatory features seen in Ref. [38].

Thermal TDMFT

Before computing in TDMFT, it is useful to review how we would compute a thermal average
for the Kitaev model since TDMFT generalizes the exact solution. Any thermal expectation
can be written

⟨O1(t)O2⟩ =
1

Tr [e−βH ]

∑
m

⟨m|e−βHO1(t)O2|m⟩ (3.16)

where |m⟩ is any complete set of states. In the Kitaev case, as we discuss in Sec. 2.1, there
are an extensive number of conserved quantities which split the spectrum. In the language
of the JW transformation, setting the flux configuration, ηi specifies the value of the ic̄ic̄i+z,
and then we can trace over the ci degrees of freedom. We then can write

⟨O1(t)O2⟩ =
∑
{ηi}

1

Z
Trc
[
e−βHK({ηi})O1(t)O2

]
(3.17)

where HK({ηi}) is the Kitaev Hamiltonian where the conserved quantities are specified, Trc
indicates a trace only over the c degrees of freedom, and Z =

∑
{ηi}Trc

[
e−βHK({ηi})

]
.

For TDMFT to be rigorously valid, as we establish above, there must exist an extensive
set of conserved quantities that are precisely a subset of the mean-field parameters. In this
case, we can do the same division of the Hilbert space into a summation of the different
conserved quantity sectors and a trace over the remaining degrees of freedom. Letting {η′i}
be this set of self-consistent mean-field distributions, we can write the very similar expression

⟨O1(t)O⟩ = 1

Z

∑
{η′i}

∑
|γ{η′

i
}⟩

⟨γ{η′i}|e
(it−β)HO1e

−iHtO2|γ{η′i}⟩

≈ 1

Z

∑
{η′i}

∑
|γ{η′

i
}⟩

e
(it−β)E|γ{η′

i
}⟩⟨γ{η′i}|O1U|O2|γ{η′}i

(t)O2|γ{η′i}⟩
(3.18)

where the |γ{η′i}⟩ are the excitation in the non-approximately conserved quantities with energy
E|γ{η′

i
}⟩, which depend on {η′i}, and UO2|γ{η′

i
}⟩ is the approximate time evolution of the state

O2|γ{η′i}⟩ determined with TDMFT.
This expression is significantly unwieldy in practice as for each state, |γ{η′i}⟩, one must

find the self-consistent mean-field solution energy and use TDMFT to time evolve O2|γ{η′i}⟩.
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However, since we are interested in low-temperature physics, the calculation can be greatly
simplified.

Firstly, due to the flux gap ∆F [94], there is a temperature T ≲ ∆F below which only the
ground state flux sector will contribute. If we are only interested in those low-temperatures,
we can ignore all other flux configurations. Secondly, the introduction of a finite number of
low-energy excitations of the itinerant c Majoranas will not change the mean-field parame-
ters. This feature arises because the excitations have well-defined momentum and therefore
the their effect will be to change the mean-field parameters by a negligible amount in the
thermodynamic limit [34]. Therefore, we can approximately replace the sum over the |γ{η′i}⟩
with a trace over the non-conserved degrees of freedom if we focus on low temperature and
we only need to evaluate the approximate time-evolution operator U(t) using O2|v⟩ for |v⟩
the ground state of the system. Finally, we are most interested in the case of the Kitaev
model in a magnetic field. In this case, the itinerant ci and localized c̄i Majoranas are in-
termixed. However, the excitations in the c̄i are gapped in the mean-field Hamiltonian at
approximately an energy of 4∆F [98]. If we trace over all Majoranas in the ground state,
instead of just the ci, we will incur an error of e−4∆F /T , which is parametrically smaller than
the error from restricting to the ground state sector. Putting all of these pieces together, we
will evaluate thermal correlators at T ≲ ∆F as

⟨O1(t)O⟩ ≈ 1

Tr [e−βHMF,0 ]
Tr
[
e(it−β)HMF,0O1UO2|v⟩(t)O2

]
(3.19)

where the trace is over all Majorana degrees of freedom and HMF,0 is the mean-field Hamil-
tonian decoupled with respect to the ground state.

We should verify numerically the presence of the flux gap and the negligible change in
the mean-field parameters away from the Kitaev point. If we want to account for the scale
between ∆F and 4∆F , we can further include a similar expression for the two-flux sectors,
but the number of approximate time-evolution operators that will need to be evaluated will
then scale with the system size.

Evaluation of thermal transport

From one version of the Kubo formula, we are able to compute κxx via [148]

καα =
β

2ωV
(1− e−βω)

∫ ∞

−∞
dteiωt⟨Jα(t)Jα⟩. (3.20)

In this writing, we only need to compute the time-dependent current-current correlator at
finite temperature, which we can achieve with TDMFT as described above.

An algorithmic way to derive the current operator is to first assume open boundary
conditions, and then

Jα = i[H,Pα] (3.21)
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where Pα is the energy polarization operator given by

PPP =
∑
i,j

rrri + rrrj
2

hij (3.22)

ifH =
∑

i,j hij. In our case, hij = −K
∑

j:j∈⟨ij⟩α S
α
i S

α
j +δij

∑
β hβS

β
i = K

∑
j:j∈⟨ij⟩α icicjb

α
i b

α
j +

iδij
∑

β hβcib
β
i . We therefore get the current operator to be

JJJ =
∑
i,αβγ

σiβββϵαβγ

(
−2K2Sα

i+σiααα
Sβ
i+σiβββ

Sγ
i + hαi S

β
i+σiβββ

Sγ
i

)
(3.23)

where α, β, γ ∈ {x, y, z} and the vectors xxx, yyy, and zzz connect the A sites of the honeycomb to
the B sites along the named bonds. Furthermore σi = ±1 depending on whether i is in the
A sublattice (1) or B sublattice (−1). Notice this has terms that flip the flux configuration
now, meaning we should use [34, 97, 98, 199].

In order to handle an arbitrary field, we substitute Sα
i = ib0i b

α
i into Eq. 3.23 and make

use of Di = b0i b
x
i b

y
i b

z
i = 1 to find

JJJ =
∑

⟨⟨ij⟩⟩αβ

RRRij2ib
0
i b

0
jb

α
i b

α
k b

β
j b

β
k +

∑
i

hzi (σixxxb
0
i+σixxx

b0i b
x
i+σixxx

byi − σiyyyb
0
i+σiyyy

b0i b
y
i+σiyyy

bxi ) (3.24)

where k is the intermediate site connecting i to j and i (j) and k are connected via an α
(β) bond and RRRij is the vector from i to j. Although there appear to be many terms, each
necessitating their own TDMFT computation, we can reduce the number with symmetry.
Due to translation symmetry, A and B sublattice symmetry, and x ↔ y symmetry (if
hx = hy), there are only three prototypical terms:

TTT 1 = (yyy − xxx)2ib0i b
0
jb

x
i b

x
kb

y
j b

y
k; TTT 2 = (yyy − zzz)2ib0i b

0
jb

y
i b

y
kb

z
jb

z
k TTT 3 = hzixxxb

0
i+σixxx

b0i b
x
i+σixxx

byi .
(3.25)

We then have to compute the overlap with all the other terms. Notice that the vector
components of each term will not impact the TDMFT calculation, so we can compute both
κxx and κyy by scaling appropriately. Notice that only the term TTT 3 will require the use of
TDMFT since the other two terms do not change the approximately conserved quantities
[34], though it is likely a more self-consistent approach to apply TDMFT to all three terms.

One major computational hurtle is that in an arbitrary magnetic field, we will need
to contract 14 Majoranas in order to compute the mean-field expectation values and 12
during the TDMFT calculation to compute ⟨Jα(t)Jα⟩. The resulting 13!! = 135135 and
11!! = 10395 terms, respectively, may make numerical calculation infeasible. In Ref. [38],
the most important component of the magnetic field is in the a crystal direction, and there
can be a component of the field in the c direction too. Conveniently, due to the orientation
of the spin axes relative to the crystal axes, we can take a magnetic field hx = hy = 0 and
hz ̸= 0, which will be at a 45◦ angle between the a and c axes. Restricting to only hz ̸= 0
will greatly simplify the number of contractions necessary when carrying out the TDMFT
calculation.
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Evaluation of correlators and parity

Before we are ready to numerically evaluate these expressions, there are two complications.
The first is how we evaluate thermal traces. All of the necessary details are in [199]. We can
rewrite

Tr
[
eH(M)c1 · · · cNeH(N)cN+1 · · · cN+M

]
=
∑

i1,...,iN

(eN)1i1 · · · (eN)N,iNTr
[
eH(M)eH(N)ci1 · · · ciN cN+1 · · · cN+M

]
. (3.26)

We can then use eH(M)eH(N) = elog(e
MeN ) and, using the notation where ⟨eH(M)O⟩Tr =

Tr[eH(M)O]/Tr[eH(M)] [199]

⟨eH(M)c1c2 · · · cN⟩Tr = 2M−1
12 ⟨eH(M)c3 · · · cN⟩Tr

− 2M−1
13 ⟨eH(M)c2c4 · · · cN⟩Tr + ...+ 2M−1

1N⟨e
H(M)c2c3 · · · cN−1⟩Tr

(3.27)

for even N and where M = 1 + eM . Finally, we simply need Tr
[
eH(M)

]
=
√

det(1 + eM).
The second major complication is parity. The projector to the physical sector P =∏

i(1 + Di)/2 takes care of any gauge complications. Since D2
i = 1, we can arrange P =

(1 +D)(
∑′

{i}
∏

j∈{i}Dj) where
∑′

{i} is a restricted sum including only either the set {i} or

{1, 2, ...,N}\{i} (where N is the number of sites). As explained in [199, 34], unphysical
states correspond to when D =

∏2N
i=1 cib

x
i b

y
i b

z
i = −1, which are projected out by P . We can

take this into account by following [199].
For all other terms in P , besides (1 + D), a massive simplification occurs in the case

where hx = hy = 0. We can note that each Di will change the occupation of the x and
y bond fermions making the state orthogonal to the original [12, 34]. The only exception
is if we have a collection of Di along sites that travel all the way around the system and
therefore there are no dangling x or y bonds. In this case, though, there must be ∼

√
N

dangling z bond-fermions since we can’t have the collection of all sites since we have pulled
out D. Although not strictly orthogonal to the original, when we imagine computing the
expectation, we will end up contracting all but a fixed number of these cib

z
i Majoranas with

each other. All of those contractions scale with hz, so if hz < 1, these terms do not contribute
in the thermodynamic limit.3

Numerical implementation

In future work we will numerically evaluate these expressions. If we estimate K ∼ 5 meV, as
is relevant for α-RuCl3, the flux gap will be ∆F = 0.065×K = 0.325 meV corresponding to
T = 4 K. In Ref. [38], they go to temperatures of about T/K ≈ 0.0065, which is well below

3Alternatively, if we use the JW transformation, there are no complications with parity. We are unable
to use periodic boundary conditions, however, but this fact further implies that the effect of the gauge
transformation, besides projecting out unphysical states, must vanish in the thermodynamic limit.
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the gap. Therefore, we will take T = ∆F/10. As we mention above, we will need to verify
that the gap persists even in the presence of a magnetic field.

One of the likely biggest hurdles will be the convergence at low ω. It is important to
remember that the order of limits should be N → ∞ and then ω → 0 [5]. Being at finite
temperature, though, seems like it will help in convergence [199] as compared to the zero-
temperature INS calculations carried out above.

We will carry out the calculation for both a ferromagnetic and antiferromagnetic Kitaev
interaction. If we ignore that we are outside the rigorous range of validity, we can also apply
the same approach to the intermediate spin-liquid state seen in the antiferromagnetic Kitaev
model [130, 225, 65]. In this way, we can probe the behavior of κxx as the system moves
through successive phase transitions, which has been put forth as a non-exotic explanation
for the oscillations in Ref. [38].

3.4 Discussion

Due to the clear experimental implication of the single Majorana edge mode predicted in the
Kitaev spin liquid [94], thermal transport experiments in α-RuCl3 are perhaps the most direct
avenue for confirming the presence of a Kitaev spin-liquid phase. However, the experimental
situation is not so clear cut since some experiments claim to detect a quantized plateau
[87, 218, 20] while others do not [215, 39, 107]. Future experiments might consider other
geometrical set ups such as an interferometry set up [96] or one similar to the set up used to
confirm the non-abelian anyonic nature of the ν = 5/2 fractional quantum Hall state [11].

Nevertheless, even current thermal transport experiments can provide important insights.
In this chapter, we saw that a SWT calculation is able to capture the low-temperature
thermal Hall effect data and provide a candidate approximate Hamiltonian. It is worth noting
that exact diagonalization studies of similar Hamiltonians fail to predict a spin liquid phase
where the experiments purportedly measure one [56, 211], perhaps adding more evidence
against the interpretation of α-RuCl3 as a Kitaev spin liquid. In the future, my TDMFT
approach will allow us to calculate the longitudinal thermal transport predicted from the
Kitaev model in the presence of a magnetic field to be compared with recent experiments
[38].
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Chapter 4

CeCoIn5 and an exotic critical point

Starting in this chapter, we move away from spin liquids and α-RuCl3, and we instead begin
to focus on our second class of quantum materials: heavy fermion materials.1 As we discussed
in the introduction, the properties of heavy fermion materials (HFMs), like their T -linear
resistivity near quantum critical points, have been a continued source of fascination, calling
fundamental concepts of solid state physics into question [178]. CeCoIn5, a HFM, exhibits
remarkably similar properties to high-temperature superconductors [147, 15, 139, 129, 177,
99, 179, 224, 186, 197], including signatures of an underlying quantum critical point (QCP)
and a ‘strange’ metallic phase extending to temperatures well above the superconducting
transition temperature. In many of the high-temperature superconductors, the identity of
the putative QCP is unclear, and their behavior is difficult to reconcile with conventional
theories of quantum criticality. For example, there is often no clear symmetry-breaking phase
in proximity, or no clear evidence for fluctuations of a symmetry-breaking order parameter
as would be expected of a conventional QCP. This has stimulated theoretical studies of
unconventional QCPs that either weakly break symmetry [200, 105], or break no symmetries
at all [175]. In this chapter, we argue that CeCoIn5 is proximate to a QCP where the
density of itinerant electrons (i.e. the Fermi volume) changes discontinuously, and apparently
without symmetry-breaking.

At the microscopic level, HFMs including CeCoIn5, are described by a Kondo lattice
model, where a half filled f -electron valence shell from cerium contributes localized spin-
1/2 moments that coexist with a sea of itinerant conduction electrons. In the conventional
metallic ground state of a HFM, the f -electrons, in spite of being spatially localized, appear
to become an integral part of the itinerant metal. In particular, they contribute their full
share to the total Fermi volume as prescribed by Luttinger’s theorem [137]. This phenomenon
occurs through the formation of Kondo singlet correlations between the local f moments and
the conduction electrons, which effectively hybridize the f level with the conduction sea.

1This chapter is adapted from Nikola Maksimovic et al. “Evidence for a delocalization quantum phase
transition without symmetry breaking in CeCoIn5”. In: Science 375.6576 (2022), pp. 76–81. Reproduced
with permission from AAAS.
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A long-standing challenge has been to characterize a QCP in which the f -electrons re-
cover their localized character and withdraw from the itinerant Fermi volume. Superficially,
the remaining Fermi volume without f -electrons is in apparent violation of Luttinger’s the-
orem. The loss of Fermi volume is therefore conventionally accompanied by a transition to a
(antiferromagnetic) spin-density wave state, whereby Luttinger’s theorem is recovered in the
appropriately folded Brillouin zone associated with translational symmetry breaking [178].
Indeed, in almost all prominent HFMs where such an f -electron delocalization transition
has been observed, it is accompanied by translational symmetry breaking [140, 170, 46, 37].
Without symmetry breaking, the only known way to reconcile Luttinger’s theorem with
localized f -electron charge is to form a fractionalized Fermi liquid [175, 176]. In this theo-
retically predicted phase, the f -electron charge remains localized to the cerium site, while
the spin excitations of the f moments are itinerant and form a neutral Fermi surface [175,
29, 45].

In this chapter, we discuss transport and quantum oscillation measurements of CeCoIn5

with small levels of chemical substitution, and compare the experimental data to the above
fractional fermi surface model. The results provide evidence that CeCoIn5 is near an f -
electron delocalization critical point induced by small levels of electron-doping. Conductivity
calculations in the context of the fractionalized Fermi liquid model are able to qualitatively
capture the remarkable behavior of the experimentally measured electrical Hall coefficient,
providing indirect evidence for an exotic quantum critical point associated with fractional-
ization of f -electrons.

4.1 Recent experiments

My collaborators have recently carried out detailed experiments on CeCoIn5 as a function
of Sn substitution (electron doping) and Cd substitution (hole doping). The first quantity
is the Hall coefficient RH = −ρxy/B. At large fields, ρxy becomes completely linear in B
and measure the total carrier density. Therefore, RH(B → ∞, T → 0) = 1/n where n is the
carrier density. As seen in Fig. 4.1, my colleagues were able to reach the high-field limit and
as CeCoIn5 is doped, n seems to rapidly increase.

At the naivest level, as it has been presented above, it appears that some previously
localized electrons are suddenly contributing to the conductivity once CeCoIn5 has been
slightly electron doped. In such a case, there must be a new feature in the Fermi surface
to account for the change in carrier density. By carrying out angle-resolved photo-emission
spectroscopy (ARPES), the Fermi surface can be directly mapped, and my colleagues indeed
find such a new feature for the electron-doped samples as seen in Fig. 4.2(a)-(b). Remarkably,
this feature appears to disappear at a relatively low temperature (compared to the Fermi
energy) of T = 100K as Fig. 4.2(c) shows.

Beyond ARPES, the new feature is additionally seen in quantum oscillation measure-
ments [121]. Starting from Kondo physics, which is known to be applicable to CeCoIn5, we
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Figure 4.1: (a) Hall resistivity versus magnetic field at 2.5 Kelvin. (b) Net carrier density
(ntot) per unit cell, extracted from the linear slope of the Hall resistance between 11-13 Tesla
at 2.5 K. (c) ntot exhibits a step when the material is electron-doped. The dashed black
line indicates the expected ntot including and excluding the f -electrons, as evaluated from
measurements of LaCoIn5 (see Ref. [121]). In the bottom panel, heat capacity coefficient is
plotted at 2.5 Kelvin. Error bars are derived primarily from uncertainties in the measure-
ments of geometric factors for transport samples, and sample masses for the heat capacity
measurements. Adapted from Ref. [121]. Reproduced with permission from AAAS.

will interpret this data as implying the existence of a Fermi surface reconstruction quantum
critical point without symmetry breaking.

4.2 Kondo physics and small-to-large critical point

Fermi surface reconstruction is not uncommon but is usually associated with an AFM tran-
sition. The increase in the size of the unit cell and hence decrease of size of the Brillouin
zone leads to a restructuring of the Fermi surface to continue to obey Luttinger’s theorem
[160, 178]. In this case, however, there is no apparent symmetry breaking.

The non-symmetry breaking case was first suggested by Ref. [176]. As discussed at the
start of this chapter, the analysis begins with the Kondo lattice model [176, 175, 77, 76]

HKLM =
∑
kkk,α

ϵkkkc
†
kkk,αckkk,α +

JK
2

∑
i,αβ

SSSi · c†iασσσαβciβ + JH
∑
⟨ij⟩

SSSi ·SSSj (4.1)

where α, β ∈ {↑, ↓} and σσσ is the vector of Pauli matrices. We now rewrite the spin degrees
of freedom in terms of Abrikosov fermions

SSSi = f †
iασσσαβfiβ (4.2)
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Figure 4.2: (A) Fermi surface maps in pure and 3% Sn-substituted CeCoIn5 at the Brillouin
zone top (RZA plane). A new Fermi surface sheet appears at the zone top in the Sn-
substituted sample. Each of the four subpanels represents measurements on a different
cleave. (B) A-R-A dispersion cuts. Parabolic α and β bands are labeled by red and blue
dotted lines, respectively. The new Fermi surface in the Sn-substituted sample is observed
as an increase in spectral intensity at the Fermi level at R. The spectral intensity within
the white box has been enhanced by a factor of 10 for clarity. E is the energy, EF is the
Fermi energy, and E −EF denotes the energy relative to the Fermi energy. (C) Comparison
of temperature-dependent intensity at the R point normalized to the average value between
120 and 160 K. Adapted from Ref. [121]. Reproduced with permission from AAAS.

with the constraint of single occupancy [175]. In the standard approach, the spin index α
is taken to sum over a large N number of parameters (formally we are envisioning the spins
as a representation of SU(N) instead of SU(2)) [30]. In that case, we are able to decouple
the four-fermion terms in the Hamiltonian in terms of two auxiliary fields b and χ [175].
Importantly, the Kondo lattice interaction is rewritten as an interaction between the b, c,
and f :

JK
2

∑
i,αβ

SSSi · c†iασσσαβciβ → −
∑
r,α

brc
†
rαfrα +H.c.. (4.3)

In the large N limit, only the mean-field value of b and χ matter. There is then a QCP
where ⟨b⟩ changes from a zero to non-zero expectation value. When ⟨b⟩ = 0 in the FL∗ phase,
the conduction electrons, c, and the f fermions are decoupled and only the c electrons form
the Fermi surface. Once ⟨b⟩ ̸= 0 in the FL phase, the f fermions hybridize with the c
electrons and form a large Fermi surface and, due to the weak dispersion of the f fermions,
the resulting band contains heavy fermions [175].

To analyze this transition in more detail, we move beyond mean-field theory. We allow
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b to be a proper bosonic field and the fluctuations of the phase of χ = ⟨χ⟩eia are controlled
by an emergent internal gauge field, a [175]. By integrating out the c and f degrees of
freedom far from the Fermi surface, the b field will gain a dispersion and will be coupled to
the internal gauge field a. The timelike component of a, which used to enforce the single
occupancy constraint on just the f field, now enforces the constraint

∑
iα f

†
iαfiα + b†ibi = 1.

Our resulting simplified model, then, is

H =
∑

kkk,λ∈{cα,fα,b}

(ϵλ,kkk − µλ)λ
†
kkkλkkk −

∑
r,α

brc
†
rαfrα +H.c. (4.4)

with the internal gauge field connecting b and f and enforcing the constraint. The quantum
critical point is signified by the condensation of the bosonic field, which occurs as its chemical
potential, µb, is tuned [175].

This scenario is similar to an approach used to study the Hubbard or t-J model [77, 76].
One of the key differences is that a transition in those models arises due to the tuning of
the number of bosons and not the tuning of the boson chemical potential [175] However, in
both cases, the b and f species obey the Ioffe-Larkin composition rule [77, 76]

σσσ−1
bf = σσσ−1

f + σσσ−1
b . (4.5)

That is, the conductivity of the b and f add in series and not in parallel. This rule is a
straightforward consequence of the internal gauge field’s enforcement of the constraint since
the b and f currents must be equal and opposite [76].

This model and quantum critical point explains the core features of the experiment. The
total conductivity of the system is given by σσσc+σσσbf . When the bosons are not condensed, only
the c electrons contribute to the conductivity since the bosons are bad conductors. When
the bosons condense, the f fermions start to contribute to the conductivity hence the rapid
increase in the number of carriers seen in Fig. 4.1(c). Additionally, due to the hybridization
of the c and f bands, a new feature should appear in the Fermi surface, exactly as seen
in quantum oscillation and ARPES [Fig. 4.2(a)-(b)]. The relatively low-energy at which
the feature disappears, Fig. 4.2(c), is due to needing to overcome the boson condensation
temperature, which is much lower than the Fermi energy.

4.3 Boltzmann calculation of conductivity

As the discussion in the previous section makes clear, this model captures the key aspects
of the experiment. One observed feature we have not discussed yet, however, is the low-field
RH data. As seen in Fig. 4.3, there is a low-temperature peak in RH for small fields that
disappears rapidly as a function of doping. In this section, we will see that this feature is
naturally explained by the model.

Since we are interested at points near the critical point, we imagine that the bosons are
a bad conductor σb

xx ≪ σc
xx, σ

f
xx, which implies that the longitudinal conductivity is due
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Figure 4.3: (a) Experimentally measured Hall resistivity, divided by the applied magnetic
field, for samples with different compositions. Different traces are taken at different applied
magnetic fields (0.1, 1, 3, 6, 9 T). Each panel is labeled by the substitution level. (b) The
theoretically predicted Hall effect due to bosonic valence fluctuations of the fractionalized
Fermi liquid model. Each panel is labeled by the chemical potential in the theory corre-
sponding to the doping level in the experiment, where µ < 0 corresponds to hole-doping
and µ > 0 corresponds to electron-doping. Curves labeled by the normalized magnetic field
value (B̄ = 0.01, 0.032, 0.1, 0.32, 1, 3.2) and all theory data includes a parametrization of
impurity scattering, C̄ = 4. Adapted from Ref. [121]. Reproduced with permission from
AAAS.
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primarily to the conduction electrons. However, we will assume the bosons can substantial
contribute to σxy due to their critical behavior. We will also take the observed ρxx ∼ T as
an experimental fact, but in the next chapter, we will discuss a similar model where ρxx ∼ T
is predicted from the model.

We consider a semi-classical approximation for the bosonic contribution of the Hall coef-
ficient based on the critical theory of Ref. [175] as described above. Due to the Ioffe-Larkin
composition rule, σσσbf ≈ σσσb and therefore the boson and f -electron contribution is approxi-
mately given by

RH,b = σbf
xyρ

2
xx/(µ0H) ∼ T 2σb

xy/(µ0H), (4.6)

where in the last step we substituted the observed ρxx ∼ T .
Following Ref. [175], we take the bosons to have a mass mb and charge −e < 0, a

dispersion ϵ = k2/(2mb) − µ, and a quartic interaction with strength u. The chemical
potential µ is the tuning parameter in the transition at T = 0 with µ = 0 corresponding
to the critical point. For comparison with the experiment, we expect that µ is proportional
to the doping, x. We will solve a semi-classical Boltzmann equation in the relaxation-time
approximation for the bosons while holding µ fixed. The number of bosons is consequently
not constant, as would be expected since the term in the Lagrangian leading to hybridization
of the f -spinon and c-electron also leads to the exchange of c-electrons, fermionic spinons
and bosons (c↔ f + b).

The scattering time has two contributions: scattering off of impurities (the dominant
source of which is the dopants) and scattering off of low-energy gauge fluctuations. The
impurity scattering relaxation time is given by the usual expression τ−1

i = niv(k)σ(k) for
velocity v(k) scattering cross-section σ(k) and impurity concentration ni = |δ|. We will
assume, for simplicity, that τ−1

i = niK1 = K|µ| for constants K1 and K. The gauge-field
scattering has relaxation time τg = Aβ3/2/

√
βk2/(2mb) as in Ref. [175]. Since the two

scattering mechanisms are independent, the total scattering is given by τ−1 = τ−1
i + τ−1

g .
We now solve the Boltzmann equation in an arbitrary magnetic field. We are imagining

a semi-classical calculation, which implies that we do not consider the effect of quantization
of the orbitals. From Ashcroft and Mermin, we have the general form [4]

σαβ = e2
∫

dkkk

4π2
vα(kkk)

(
−∂nB(ϵkkk)

∂ϵ

)∫ 0

−∞
dtvβ(kkk

′(t))et/τkkk′(t) (4.7)

where ϵkkk is the dispersion relation, nB(ϵ) is the Bose-Einstein distribution, τ is the scattering
time, which can depend on the wave number, kkk. The second wave vector, kkk′(t) has the
boundary condition kkk′(t = 0) = kkk and otherwise satisfies the semi-classical equation of
motion

dkkk′

dt
= e

[
EEE(rrr, t) +

dϵkkk′

dkkk′
×BBB

]
(4.8)

where e is the signed charge.
In this case, we have two massive simplifications. Firstly, the isotropic quadratic disper-

sion allows us to easily solve the classical equation of motion in the presence of an arbitrary
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magnetic field. We have

kkk′(t) = k cos(ωt+ ϕ)x̂+ k sin(ωt+ ϕ)ŷ (4.9)

such that kkk = k cos(ϕ)x̂+ k sin(ϕ).
Secondly, the dependence of τkkk only on the magnituede τk and the fact that |kkk′(t)| = k

allows us to can carry out the internal integral

v̄x =
1

τk

∫ 0

−∞
dtvx(kkk

′(t))et/τk =
1

1 + ω2τ 2k

(
kx
m

+
ky
m
ωτk

)
. (4.10)

We have used the fact that vvv = kkk/m for our dispersion relation.
Plugging in the scattering τk, the expression for the velocity, and changing variables, we

arrive at the boson contribution to the Hall conductivity

σb
xy = −A

2ωce
2(2mb)

3/2

6π2mb

β3/2

∫ ∞

0

y3/2dy

[
ey+a

(ey+a − 1)2
1

(
√
y + C|µ|β3/2)2 + ω2

cA
2β3

]
(4.11)

where y = βk2/(2mb), a = −µβ + βΣb(0, 0), and ωc = eµ0H/mb, and C = AK. The
self-energy, Σb(0, 0) is given by [175]

Σb(0, 0) =
u(2mbT )

3/2

2π2

∫ ∞

0

√
ydy

[
1

ey−βµ − 1
− 1

y − βµ
+

1

y

]
. (4.12)

This calculation will certainly break down at the temperature scale where µ > 0 and
Σb(0, 0) ≤ µ. In a conventional bose liquid this would signal a transition to a superfluid phase
of the bosons, which is precluded in our system if the compact U(1) gauge field fluctuations
are taken into account. Nevertheless the temperature scale at which Σb(0, 0) ≤ µ still
represents a crossover scale below which the boson resistivity is expected to drop sharply,
thus our approximations are not valid below that scale. For the small |µ| we consider below,
that crossover temperature is an order of magnitude below the peak of the graph.

We fix 1 = (ū)−2 = (u(2mb)
3/2/(2π2))−2 as setting our energy scale, and we switch to

dimensionless parameters: T̄ = ū2T, µ̄ = ū2µ, C̄ = ūC, B̄ = ωcAū
3 ∝ µ0H, and σ̄xy =

σb
xy/C with C = Ae2(2mb)

3/2/(6π2mb). We numerically evaluate σ̄xyT̄
2/B̄ vs. T̄ for several

choices of parameters B̄, µ̄, and C̄, and show some plots to compare with the experiment in
Figs. 4.3(b).

We notice that the graphs qualitatively capture the critical curves. The temperature of
the peak increases and the peak decreases with increasing |µ| (i.e. increasing doping) or
increasing H. The asymmetry of the experiment, where the peak height decays faster for
smaller electron doping than hole doping, could be explained by a difference in the value of
C̄ coming from a difference in scattering off of impurities.

For the critical curve, we can easily evaluate the limiting behavior for large and small
T . In the a ≪ 1 limit, the integrand is dominated by y ≪ 1. In the a ≫ 1 limit, we can
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approximate ey+a − 1 ≈ ey+a. We find,

lim
H→0

− σ̄xy(µ = 0)

B̄
=

1

T̄ 3/2

∫ ∞

0

dyy1/2
ey+a

(ey+a − 1)2
∼

{
1√

aT̄ 3/2 if a≪ 1
1

eaT̄ 3/2 if a≫ 1
. (4.13)

Since a(µ = 0) = T̄ 1/2ζ for ζ an order 1 constant, we see that |σ̄xy| ∼ T̄−7/4 at low tem-

peratures and |σ̄xy| ∼ e−ζ
√
T̄ at high temperatures. As we move to µ < 0 and H → 0,

the divergence of σ̄xy at low T̄ will be cut off. Assuming as above that ρxx ∼ T̄ , it then
follows that RH,b ∼ limH→0 σ̄xy(µ = 0)ρ2xx/B̄ does not diverge as T̄ → 0. Instead, the curve
has a peak structure as the RH,b interpolates between the T̄ 1/4 behavior at low T̄ and the

e−ζ
√
T̄ behavior at high T̄ . If on the other hand we assume ρxx = ρ0 +DT with a finite zero

temperature resistivity ρ0, then RH,b will diverge as T → 0 at the critical point µ = 0.

4.4 Discussion

As we argued in this chapter, the phenomenology of a Fermi surface reconstruction transition
without symmetry breaking [175, 176] captures the essential features of recent experiments
on CeCoIn5. We started from a phenomenological description of this transition that, due
to universality, should apply in some vicinity of the quantum critical point. T -linearity in
CeCoIn5 exists only up to 20 K, about 10 times its superconductivity transition temperature
[92]. Due to its absence at large temperatures, it may be the case that the T -linearity is
entirely due to the quantum critical point, as opposed to other materials where criticality
cannot be the sole explanation [57]. However, the small-to-large Fermi surface transition we
have described may be relevant to a recent transition seen in the cuprates, and these two
systems bearing the same QCP may explain their similarities [121].

One consequence of our interpretation of CeCoIn5 bearing this QCP is that when hole-
doped, in the FL∗ phase, the localized spins have been fractionalized. When there is
symmetry-breaking, these spins antiferromagnetically order, but in this case there is an
absence of order. Finding direct evidence for the fractionalization through e.g. INS experi-
ments would further support evidence for this QCP and would also imply that the spins are
forming a spin liquid.

A major caveat to our work in this chapter, though, is that we made a series of approx-
imations in analyzing the Hamiltonian, Eq. (4.4), in order to reproduce the features seen
in RH . Notably, we assumed T -linear resistivity for the total longitudinal conductivity, and
we used a Boltzmann analysis, which captures only a subset of the diagrams relevant to
conductivity. If the f and c Fermi surfaces coincide, T -linearity is expected for this model
[145], a scenario which may be favored energetically [1]. Due to the absence of analytic con-
trol in this model, it remains a question if our Boltzmann analysis is providing the correct
qualitative picture. In the next chapter, we will introduce a similar model where we are able
to exactly solve for the conductivity.
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Chapter 5

An exactly solvable model of a
strongly-coupled critical point

In the introduction, we discussed the ubiquity of strange metal behavior for heavy-fermion
compounds near a quantum critical point.1 Usually, the quantum critical point is related
to an antiferromagnetic transition but the above experiments on CeCoIn5 seem to indicate
criticality without a magnetic ordering transition. In our semiclassical approach above, we
failed to capture the T -linear resitivity and therefore the strange metal phase but instead
assumed the T -linearity was present. Furthermore, the approximations we made above are
not rigorously controlled making our conclusions questionable.

One possibility of producing strange metal physics, as we discuss briefly in the intro-
duction, is the SYK model. In this chapter, we will introduce a model inspired by Kondo
lattice physics that is exactly solvable in the same way as the SYK model. Our model will
reproduce the marginal Fermi liquid (MFL) phenomenology, Eq. (1.4), at the critical point
while still capturing many of the experimental features that CeCoIn5 exhibits.

Although it is easy to get lost in the calculations since many expressions appear unwieldy,
the sketch of the solution is as follows: obtain the Schwinger-Dyson equations, solve them
to obtain the exact Green’s functions, and use the Kubo formula to compute the conductiv-
ity. Due to the large-N limit we consider, there are a finite number of terms for both the
Schwinger-Dyson equations and the Kubo formula, which allows us to obtain exact expres-
sions. We can carry out this procedure analytically in certain limits, but for a generic point,
we need to evaluate the expressions numerically.

1This chapter is adapted with permission from Erik E. Aldape et al. “Solvable theory of a strange
metal at the breakdown of a heavy Fermi liquid”. In: Phys. Rev. B 105 (23 June 2022), p. 235111. doi:
10.1103/PhysRevB.105.235111. url: https://link.aps.org/doi/10.1103/PhysRevB.105.235111,
copyright © 2022 by the American Physical Society.
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5.1 The model and its solution

As we showed above, the Kondo lattice model can be manipulated to include the interaction
between three species of the form

HKL ∼ g
∑
r,σ

c†rσfrσbr +H.c. (5.1)

To make our model reminiscent of SYK physics, we can introduce a large-N number of
flavors and make the couplings random

HSYK,KL =
∑
r,ijk,σ

grijkc
†
rσ,ifrσ,jbr,k +H.c. (5.2)

where grijk are Gaussian distributed complex random variables that are site dependent,

⟨⟨grijkgr
′

ijk⟩⟩; the translationally-invariant site-independent disorder model can additionally
be solved [1] but is more challenging to analyze away from the critical point. Our model is
then described by the following Hamiltonian

H =
∑

λ∈{cσ ,fσ ,b}

Hλ +Hint,

Hy =
N∑
i=1

∑
k

(ϵλ,k − µλ)λ
†
k,iλk,i,

Hint =
1

N

N∑
i,j,l=1

∑
r,σ

(grijlc
†
r,σ,ifr,σ,jbr,l +H.c.),

(5.3)

Importantly, similar to the Kondo lattice constraint of one boson or spinon per site, we have
the constraint

N∑
i=1

(
b†r,ibr,i +

∑
σ

f †
r,i,σfr,i,σ

)
= Nκ. (5.4)

As we will see below, the constraint allows for the tuning across the quantum critical point.
Furthermore, the f and b couple to an internal U(1) gauge field as above, coming from the
constraint, and enforcing the Ioffe-Larkin composition rules. We will discuss this point more
below, but we set the gauge field coupling to be 1/

√
N to ensure that the effect of the gauge

field is controlled.
For simplicity, we will take ϵλ,k = k2/(2mλ). We are imagining that the masses are rele-

vant to heavy fermion physics. Since the f fermions will enhance the mass of the conduction
electrons, mc ≪ mf , and the dispersion of b is a higher-order effect, implying that mf ≪ mb.

In the next section, we will reduce this model to a set of self-consistency equations whose
solution is readily available.



CHAPTER 5. AN EXACTLY SOLVABLE MODEL ... 53

Schwinger-Dyson equations and their solution

We can combine all of this information into the following thermal path integral [30]

Z =

∫
D[c, f, b, α]e−S;

S =
∑

λ∈{cσ ,fσ ,b}

Sλ + Sint + Scon.

Sλ =
N∑
i

1

β

∑
iωn,k

(−iωn + ϵλ,k − µλ)λ
†
k,iλk,i;

Sint =

∫ β

0

dτ
1

N

∑
r,ijk,σ

(grijlc
†
rσ,ifrσ,jbr,l + h.c.)

Scon. =

∫ β

0

dτ
∑
r

iαr

(∑
iσ

f †
rσ,ifrσ,i +

∑
i

b†r,ibr,i − κN

)
(5.5)

where N , the number of flavors, is large. Note that this sets the convention c(τ) =
T
∑

iωn
e−iωnτc(iωn). We have suppressed the τ and iωn dependence of c, b, and f , but

it is clear from context. We will also suppress the r dependence.
To address the random on-site interaction grijk, we want to disorder average the Free

energy. The standard approach is to use the “replica trick” where we replace

ln(Z) = lim
n→0

Zn − 1

n
. (5.6)

When n is an integer, we can compute the average of Zn. As we will argue below, (Zn) =
(Z̄)n where the overline indicates disorder averaging. There is no rigorous justification for
why this approach would extend to non-integer n, but it is the standard assumption made
with the replica trick. With this assumption, we have ln(Z) = ln(Z) as seen in other SYK
models [28, 144].

Since grijk is Gaussian distributed ⟨⟨grijkgr
′

ijk⟩⟩ = g2

2
δrr′ , and letting Arσ

ijk =

c†rσi(τ)frσj(τ)brk(τ), we see the interaction term becomes

∫
D[g]e

−
∑

r,ijk,σ

(
(grijk)2

g2
+
∫ β
0 dτ(grijkA

rσ
ijk+h.c.)

)

= (πg2)NN3

e
g2

2N2

∑
σ,σ′

∫ β
0

∫ β
0 dτdτ ′(Arσ,∗

ijk (τ ′)Arσ′
ijk (τ)+Arσ

ijk(τ)A
rσ′,∗
ijk (τ ′))

= (πg2)NN3

e−
g2

N2

∑
r,σσ′

∫ β
0

∫ β
0 dτdτ ′(ciσ(τ ′)c̄iσ′ (τ)fjσ′ (τ)f̄jσ(τ ′)bk(τ)b̄k(τ

′))

(5.7)

where N is the number of sites. Now we use the definition of the Green’s functions NGr
y(τ−

τ ′) = −
∑

i yi(τ)ȳi(τ
′) and introduce the self-energy fields enforcing the definition of the
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Green’s functions ∫
D[Σy]e

∑
r

∫ β
0 dτdτ ′Σy

r (τ
′−τ)(η(x)NGr

y(τ−τ ′)+
∑

i ȳi(τ
′)yi(τ) (5.8)

with η(y) = ±1 for boson and fermion parity. We are not interested in the case where the
anomalous Green’s functions are non-zero, though future work may consider this. Addition-
ally, if we consider the case where we are averaging (Z)n instead of Z, we will similarly
only see a change to this calculation if the Green’s functions connecting different replicas
are non-zero (i.e. if spontaneous replica-symmetry breaking occurs). The diagrams corre-
sponding to non-replica-symmetric processes are suppressed in the large-N limit, similarly
to Ref. [28]. We therefore will only consider the case where replica symmetry is maintained
and then (Zn) = (Z̄)n.

Stot =
N∑
i

1

β

∑
iωn,k,y

(−iωn + ϵy,k − µy)ȳk,iyk,i

+

∫ β

0

dτ
∑
r

iαr

(∑
i

f †
rσifrσi +

∑
i

b†ribri − κM

)

− g2N
∑
σ

∫ β

0

dτdτ ′Gcσ(τ
′ − τ)Gfσ(τ − τ ′)Gb(τ − τ ′)

+
∑
r

∫ β

0

dτdτ ′

[∑
σ

Σr
cσ

(
−NGr

cσ(τ − τ ′) +
∑
i

c̄rσi(τ
′)crσi(τ)

)

+ Σr
fσ

(
−NGr

fσ(τ − τ ′) +
∑
i

f̄rσi(τ
′)frσi(τ)

)

+ Σr
b

(
NGr

b(τ − τ ′) +
∑
i

b̄i(τ
′)bi(τ)

)]

(5.9)

Everything is extensive in N , so we can replace the path-integral by the value of the
action at the stationary point. Assuming spatial (and spin) uniformity in Σr

x, G
r
x, and αr

we integrate out the f , c, and b fields. Varying the action with respect to Gx, Σx, and α, we
find:
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δS

δiα
=⇒ βM(2Gf (0)−Gb(0)− κ) = 0

δS

δΣx

=⇒ Gx(iωn)N +
∑
k

1

−iωn + ϵx,k − µx + Σx(iωn) + iα
= 0 for x ∈ {f, b}

δS

δΣc

=⇒ Gc(iωn)N +
∑
k

1

−iωn + ϵc,k − µc + Σc(iωn)
= 0

δS

δGc

=⇒ Σc(iωn) + g2
1

β

∑
iω′

m

Gf (iω
′
m)Gb(iωn − iω′

m) = 0

δS

δGb

=⇒ −Σb(iωn) + 2g2
1

β

∑
iω′

m

Gc(iω
′
m)Gf (iω

′
m − iωn) = 0

δS

δGf

=⇒ Σf (iωn) + g2
1

β

∑
iω′

m

Gc(iω
′
m)Gb(iω

′
m − iωn) = 0

(5.10)

where we used the convention

Fx(τ − τ ′) =
1

β

∑
iωn

Fx(iωn)e
−iωn(τ−τ ′) (5.11)

for functions of τ − τ ′ for x Fermionic and the opposite for x Bosonic.
These are exactly the Schwinger-Dyson equations that can be more easily derived dia-

grammatically [1, 28, 144, 27], but with the added influence of the fixed-length constraint.
The mean-field value of ∆b = iα−µb is the boson thermal mass. We assume that the band-
width of the fermions is large, so the small shift in µf from ∆b will be seen to be negligible.
In this limit, we have the result [144]

Gx(iωn) = −iνx
2
sgn(ωn) (5.12)

for x = {c, f} if Im[Σx(iω)] = −sgn(ωn), which we will verify, where νx is the density of
states at the Fermi surface. This simplification will allow us to straightforwardly solve the
Schwinger-Dyson equations.

The boson self-energy becomes

Σb(iωn) = 2g2T
∑
iω′

m

Gc(iω
′
m)Gf (iω

′
m − iωn) = γ|ωn|+ Cb,

γ = g2νcνf/(2π).

(5.13)
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and we absorb the cutoff dependent constant Cb into ∆b. From here, the boson Green’s
function is straightforwardly obtained as

Gb(iωn) =

∫
ddk

(2π)d
1

iωn − k2/2mb − γ|ω| −∆b

≈ −mb

2π
ln

(
Λ

−iωn + γ|ω|+∆b

)
, d = 2,

(5.14)

where have introduced a cutoff Λ = π2/(2mb), and we ensure that Λ ≫ ∆b, |ωn|, γ|ωn|. A
similar expression can be obtained for d = 3, but specializing to d = 2 is necessary to obtain
T -linear resistivity. For now, we will specialize to a fully two-dimensional model, and we will
comment more on this choice in the discussion.

The last step is to evaluate the fermion self-energies. We do so with the Lehmann
representation of the Schwinger-Dyson equations

Σc(iωn, T ) = g2
∫

dϵdϵ′

(2π)2
Af (ϵ)Ab(ϵ

′)
nB(ϵ

′) + nF (−ϵ)
ϵ′ + ϵ− iωn

, (5.15)

where Af (ϵ) = −2Im[GR
f (ϵ)] = νf is the fermion spectral function, and Ab(ϵ) = −2Im[GR

b (ϵ)].
Importantly, we analytically continue iω → ω + iδ to obtain

Im[Σc,R(ω, T )] = g2νf

∫
dϵ

4π
Ab(ϵ)(nB(ϵ) + nF (ϵ− ω)) (5.16)

and a similar expression for Im[Σf,R(ω, T )] with νf ↔ νc and ω ↔ −ω.

Solution in a magnetic field

In principle, once we account for the constraint equation which provides an expression for
∆b, we will have solved the Schwinger-Dyson equations, as we will simply need to carry out
numerous integrals numerically or analytically. Before doing so, though, we are interested in
computing all components of the conductivity tensor, which requires that we perform these
calculations in the presence of a magnetic field, BBB = Bẑ. We can take the B → 0 limit at
any time to recover the proper expressions in the absence of field.

Our choice of quadratic dispersion allows us to switch to the Landau level basis in the
x− y plane given by the wavefunctions

ψn,k(x, y) =
1√
Lxℓ

eikxϕn,k(y/ℓ); (5.17)

ϕn,k(z) =
π−1/4

√
2nn!

Hn(z + kℓ) exp

(
−(z + kℓ)2

2

)
,

where ℓ = 1/
√
eλBλ and Hn(x) are the (physicist’s) Hermite polynomials satisfying the

recursion relation Hn+1(x) = 2xHn(x) − H ′
n(x). The energy of the states is ωcλ(n + 1/2)
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where ωcλ = |eλ|Bλ/mλ, where λ ∈ {c, f, b}. The charge, eλ and (effective) magnetic field,
Bλ, for each of the three species is left unspecified for now.

The change of basis is accomplished by rewriting the operators λr(τ) =
∑

nk ψnk(r)λnk(τ)
for λ ∈ {cσ, fσ, b} where the ψ(nk) for each species is different because each ℓ is different.
Because µc, µf ≫ ωc,c/f , we still have the original result for the fermion Green’s function that
Gc,f (iωn) = −i(νc,f/2)sgn(ωn). That is, the fermions are less affected by the Landau level
quantization than the bosons, and, consequently, the boson self-energy calculation above is
unaffected.

However, the boson’s Green function must be calculated by summing over the Landau
levels instead of integrating over momentum. Instead of the Green’s function, we will evaluate
the spectral function directly with the result being

Ab(ω) = − 1

ℓ22π

∑
m

2γω

(ω − (m+ 1/2)ωcb −∆b)2 + γ2ω2

=
mb

π
Im

[
ψ0

(
1

2
− −∆b + ω + iγω

ωbc

)]
(5.18)

B→0−−−→ −mb

π

[
πΘ(ω −∆b) + tan−1

(
γω

∆b − ω

)]
,

where Θ(x) is the Heaviside step function, ψ0(z) is the digamma function. Note that the
temperature dependence of Ab comes entirely from its dependence on ∆(T ).

Now, with an explicit expression, we return to the self consistency needed above

Im [Σc(iωn)] = ωng
2νf

∫
dϵdϵ′

(2π)2
nB(ϵ

′) + nF (−ϵ)
(ϵ′ + ϵ)2 + ω2

n

Ab(ϵ
′) (5.19)

Note that Ab(ϵ
′) is odd in ϵ′ (as is nB(ϵ

′), so the nF (−ϵ) term vanishes once we integrate
over ϵ′. The rest of the integrand has the same sign as Ab(ϵ

′)nB(ϵ
′) < 0 implying that

Im[Σx(iω)] = −sgn(ωn)

The boson thermal mass

Now we obtain an expression for ∆b(T ), after which we will have solved the Schwinger-Dyson
equations. It can be easily checked that the change in the number of f fermions in response
to a shifting chemical potential is suppressed by ∆µf/Λf where Λf , the f fermion bandwidth,
is assumed to be large. Therefore, the constraint can be written as

κ− κc = (Gb(τ = 0−,∆b(T ))−Gb(τ = 0−,∆b,c(0)), (5.20)

and ∆b depends on both temperature and κ, but we suppress the κ dependence generally.
When we are at criticality, κ = κc, ∆b = ∆b,c, and ∆b,c(T = 0) = 0. This is reminiscent of
the O(N) rotor model [159] and the calculation of the thermal mass in [142].
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Although we can do this calculation carefully in multiple ways, we will recall that Gb(τ =
0−) = −

∑
i⟨b

†
i (τ = 0−)bi(τ = 0−)⟩ ≡ −nb, which is the number density of bosons. For this

number to converge, we choose to regulate it in the usual way (see [119])

nb = − 1

V

∑
nk

∫ ∞

−∞

dω

2π
nB(ω)Abn(ω,∆b), (5.21)

where Abn is the summand seen in (5.18).
Note that∫ ∞

−∞
dωnB(ω)Abn(ω,∆b) =

∫ ∞

0

dωnB(ω)(Abn(ω,∆b)− Abn(−ω,∆b))−
∫ ∞

0

dωAbn(−ω,∆b),

(5.22)
and that the first integral on the right-hand side is 0 when T = 0. Recalling the form of the
boson’s spectral function from (5.18), we will find

−2π(κ− κc) =
ωcbmb

2π

[∫ ∞

0

nB(ω)
(Ab(ω,∆b)− Ab(−ω,∆b))

1/(ℓ22π)

+
2γ

γ2 + 1
ln

(
Γ(N + 3/2)Γ(1/2 + ∆b/ωcb)

Γ(N + 3/2 + ∆b/ωcb)Γ(1/2)

)]
,

(5.23)

where we have cut off the Landau level sum at N = Λ/ωbc and Γ(n) is the Gamma function.
Taking the B → 0 limit of (5.23), we can scale out ∆b = zT and x = ω/T to find

2π2(κ− κc)
1

Tmb

=

∫ ∞

0

dx

ex − 1

[
tan−1

(
γx

z − x

)
+ tan−1

(
γx

z + x

)]
− π ln

(
1− e−z

)
− γ

γ2 + 1
z ln

(
Λe

zT

)
.

(5.24)

As z → 0, the first two terms of the left-hand side dominate and as z → ∞, the rightmost
term dominates, so we see that there is a solution with z, whose value will change logarith-
mically, as T → ∞. As expected, there is always a solution, so the bosons are not truly
condensed as long as their dispersion is strictly 2D. Instead, for κ > κc the gap becomes

exponentially small in (κ− κc)/T , i.e. ∆b ∼ T exp
[
−2π(κ−κc)

Tmb

]
.

Fig. 5.1 summarizes the behavior of ∆b(T ) in the three phases at zero and finite applied
field. The important feature is the T -linear (up to logarithmic corrections) growth in the
critical region. Low T transport is dictated by the limit of z = ∆b/T as T → 0 which shifts
from ∞ to zero across the transition.

5.2 Transport

Now that we have the exact Green’s functions and self-energies, we can proceed to compute
electrical transport.
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Figure 5.1: We plot ∆b vs. T for various ∆κ = κ−κc with the color indicating ∆κ. All curves
become T -linear upon entering the critical region, but are either exponentially suppressed
or approach a constant as T → 0 if ∆κ > 0 or ∆κ < 0 respectively. All other parameters are
the same as in Fig. 5.4. Copyright © 2022 by the American Physical Society. Reproduced
from Ref. [1] with permission.

To do so, we need an expression for the current operator. The locality of the interaction
leads to no net effect on the operator, and it is therefore given by the standard expression

JJJ(r, τ) =
∑

λ∈{cσ ,fσ ,b}

eλ
2mλi

[
λ†r(τ)(∇∇∇− ieλAAAλ)λr(τ)− (∇∇∇+ ieλAAAλ)λ

†
r(τ)λr(τ)

]
=
∑
λ

JJJλ(r, τ).

(5.25)
where we have used eb + ef − ec = 0 due to charge conservation (discussed more below).

With this expression in hand, we can evaluate σαβ through the Kubo formula in the
Landau level basis. The use of the Landau level basis is possible because the self-energies
of all three species are independent of momentum and therefore proportional to the identity
matrix in real space, which implies that they are also proportional to the identity matrix
in the Landau level basis, greatly simplifying the computation. As before, we may obtain
B = 0 expressions by taking the B → 0 limit of our expressions here.

In general, when applying the Kubo formula, we would need to consider correlators of
the total current, ⟨J(r, τ)J(r′, 0)⟩. Due to the large N limit, evaluating these correlators
reduces to a small set of diagrams, as seen in Fig. 5.2. In our model, however, every diagram
except the bubble diagram is zero. In evaluating the bubble diagram, the interspecies Green’s
functions are zero, and we can therefore compute each species conductivity separately.

Now, our starting point is the Kubo formula in momentum space, which we will transform
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Figure 5.2: The diagrams that contribute to the c conductivity. These diagrams are not sup-
pressed by the large N limit, but only the first (bubble) diagram is nonzero. The dotted lines
indicate the averaging over the flavor random couplings grijl, which carry momentum. Conse-
quentially, the momentum integrals in the left and right loops of the correction diagrams are
decoupled. The diagrams that contribute to the f and b conductivities are analogous to the
ones above. The diagrams that contribute to the cross-correlations of currents of different
species are analogous to the vertex diagrams correcting the bubble diagram above, and also
vanish. Copyright © 2022 by the American Physical Society. Reproduced from Ref. [1] with
permission.

to the Landau Level basis. Recall that [119] σλ,αβ(ω, q) = −ImΠR
λ,αβ(ω, q)/ω where

Πλ,αβ = − 1

V

∫
dxdx′dydy′eiqx(x−x′)eiqy(y−y′)

∫ 1/T

0

dτeiωτ ⟨TτJ†
λ,α(r, τ)Jλ,β(r

′, 0)⟩, (5.26)

where τ is imaginary time. With the above identities, a straightforward calculation will yield
the spatially-integrated current as

2mλi

eλ

∫
dxdy

(
Jλ,x(r, τ)
Jλ,y(r, τ)

)
≡
∫
dxdy

(
λ†r(τ)(∇∇∇− ieλAAAλ)λr(τ)− (∇∇∇+ ieλAAAλ)λ

†
r(τ)λr(τ)

)
=

2

ℓ

∑
k,n

((
i
1

)√
n+ 1

2
λ†nk(τ)λn+1,k(τ) +

(
i
−1

)√
n

2
λ†nk(τ)λn−1,k(τ)

)
.

(5.27)
We now evaluate Πλ,xx and Πλ,xy at q = 0 using this expression. Using Gλnk(τ) =

−⟨λnk(τ)λ†nk(0)⟩, we get(
Πλ,xx

Πλ,xy

)
=

−ηe2

V ℓ2m2
λ

∫ 1/T

0

dτeiωτ
∑
nk

(
n+1
2
Gλnk(τ)Gλ,n+1,k(−τ) + n

2
Gλnk(τ)Gλ,n−1,k(−τ)

−in+1
2
Gλnk(τ)Gλ,n+1,k(−τ) + in

2
Gλnk(τ)Gλ,n−1,k(−τ)

)

=
−ηe2ω2

cλ

2π
T
∑
iνn

(∑
n

n+ 1

2

(
1
−i

)
Gλn(iνn)Gλ,n+1(iνn − iω)

+
n

2

(
1
i

)
Gλn(iνn)Gλ,n−1(iνn − iω)

)
.

(5.28)
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where η = ± for bosons and fermions, respectively, because of time-ordering. In the second
step, we switched to Matsubara frequencies, used the fact that Gnk(τ) ≡ Gn(τ) is indepen-
dent of k, and there are LxLy/ℓ

2/(2π) terms in the k sum.
In the calculation, we have neglected the vertex corrections to the conductivity, as de-

picted in Fig. 5.2, which can be shown to vanish even at B ̸= 0. Since the disordered
interactions grijk are uncorrelated between different sites, such corrections can be written as

δΠλ =

〈∫
dxdyJJJλ(r, τ)

∫
dx1,2dy1,2dτ1,2,3,4λ

†
r1
(τ1)λr1(τ2)K(τ1, τ2, τ3, τ4)λ

†
r2
(τ3)λr2(τ4)∫

dx′dy′JJJλ(r
′, τ ′)

〉
.

(5.29)
Since λr(τ) =

∑
n,k ψn,k(r)λnk(τ), and Gλnk(τ) are independent of k, the identity∫

dkHn(z + kl)Hn±1(z + kl)exp
(
−(z + kl)2

)
= 0, (5.30)

ensures that these corrections vanish.
Proceeding similarly as to [119], we next switch to the Lehmann representation, analyti-

cally continue, take the imaginary part, and expand for small ω. We find

σλ,xx = −sλ lim
ω→0

Im[Πλ,xx(ω)]

ω
= −sλe

2ω2
cλ

4π

∑
n

(n+ 1)

∫
dϵ

(2π)
Aλn(ϵ)Aλ,n+1(ϵ)

(
∂nη(ϵ)

∂ϵ

)

= −sλe
2

4π

∫
dϵ

2π

4Σ′′
λ(ϵ)

∂nη(ϵ)

∂ϵ

4[Σ′′
λ(ϵ)]

2 + ω2
cλ

(
2Σ′′

λ(ϵ) + 2(ϵ+ µ̃λ)Im

[
ψ0

(
1

2
+

−ϵ+ iΣ′′
λ(ϵ)− µ̃λ

ωcλ

)])
,

(5.31)
where sλ is the spin degeneracy of the species λ. We performed the Landau level sum in
terms of the digamma function, ψ0, and we used ψ0(z) = ψ0(1 + z)− 1/z and

Aλn(ϵ) =
2ηΣ′′

λ(ϵ)

(ϵ+ µ̃λ − (n+ 1/2)ωcλ)2 + [Σ′′
λ(ϵ)]

2
, (5.32)

so that Σ′′
λ(ϵ) = Im[Σλ,R(ϵ)] and µ̃λ = µλ − Re[Σλ,R(ϵ)].

For σλ,xy, we convert to relative and center of mass coordinates ϵc = (ϵ + ϵ′)/2 and
ϵr = ϵ− ϵ′. We then symmetrize with respect to ϵr in order to get an integral from 0 to ∞.
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We find

Πλ,xy(ω → 0) = −ie
2
λω

2
cλ

4π

∑
n

(n+ 1)

∫
dϵdϵ′

(2π)2
Aλn(ϵ)Aλ,n+1(ϵ

′)(nη(ϵ)− nη(ϵ
′))

[
2(ω + iδ)

(ϵ− ϵ′)2

]
,

σλ,xy = −sλe
2
λω

2
cλ

2π

∑
n

(n+ 1)

∫ ∞

0

dϵr
2π

∫ ∞

−∞

dϵc
2π

sinh
(

ϵr
2T

)
cosh

(
ϵc
T

)
− η cosh

(
ϵr
2T

) 1
ϵ2r

×
[
Aλn

(
ϵc +

ϵr
2

)
Aλ,n+1

(
ϵc −

ϵr
2

)
− Aλn

(
ϵc −

ϵr
2

)
Aλ,n+1

(
ϵc +

ϵr
2

)]
= − sλe

2
λ

(2π)3

∫ ∞

0

dϵr

∫ ∞

−∞
dϵc (Fλ(ϵc, ϵr)− Fλ(ϵc,−ϵr))

sinh
(

ϵr
2T

)
cosh

(
ϵc
T

)
− η cosh

(
ϵr
2T

) 1
ϵ2r
,

(5.33)
The sum can be done to give an explicit expression for Fλ(ϵc, ϵr) as

Fλ

(
ϵ+ϵ′

2
, ϵ− ϵ′

)
2Σ′′

λ(ϵ)Σ
′′
λ(ϵ

′)
= Im

 ψ0

(
2ϵ−2iΣ′′

λ(ϵ)−2µ̃λ(ϵ)

2ωcλ
− 1

2

)
(2ϵ− ωcλ − 2iΣ′′

λ(ϵ)− 2µ̃λ(ϵ))

Σ′′
λ(ϵ)(Σ

′′
λ(ϵ

′)2 + (ϵ′ − ϵ+ ωcλ + iΣ′′
λ(ϵ)− µ̃λ(ϵ′) + µ̃λ(ϵ))2)

 (5.34)

+ Im

[
ψ0

(
2ϵ′+2iΣ′′

λ(ϵ′)−2µ̃λ(ϵ′)
2ωcλ

+ 1
2

)
(2ϵ′ + ωcλ + 2iΣ′′

λ(ϵ
′)− 2µ̃λ(ϵ

′))

Σ′′
λ(ϵ

′)(Σ′′
λ(ϵ

′)2 − Σ′′
λ(ϵ)

2 + 2iΣ′′
λ(ϵ

′)(ϵ− ϵ′ − ωcλ + µ̃λ(ϵ′)− µ̃λ(ϵ))− (ϵ− ϵ′ − ωcλ + µλ(ϵ′)− µλ(ϵ))2)

]
.

For the fermions, for small magnetic fields, these expressions give the same result as the
expressions derived from the Boltzmann equations in [144] with the identification v2Fν/(4π) →
n/m where vF is the Fermi velocity, n is the density, and m is the mass. However, for large
magnetic fields, our expressions will have quantum oscillations that are absent in the Boltz-
mann treatment.

Ioffe-Larkin composition rule and the effective charge and
magnetic field

We left ef , eb, ec, Bb, Bf , and Bc unspecified above. For the conduction electrons, c, ec = −1
is the charge of the electron and Bc = B is the applied field. In order for the interaction
term, c†fb, to conserve charge, we must have ef + eb = −1 as well. How the charge is
distributed is a gauge choice, with the emergent gauge field ensuring the physical results are
independent of this choice.

We see in Fig. 5.3 that there are three diagrams that contribute to the renormalization
of the charge. In the diagrams, the polarization bubbles, ΠΠΠ, 2 and propagators are fully
renormalized (with the fermionic spin degeneracy included). Any other diagram is either
zero because of the locality of the SYK-type interaction or suppressed by 1/N . We note that

2The polarization bubbles ΠΠΠf,b involve the subtraction of diamagnetic terms not explicitly shown in
Fig. 5.3, which render ΠΠΠf,b(ω, q) = ΠΠΠf,b(ω, q) − ΠΠΠf,b(ω = 0, q = 0). Additionally, they differ from the
polarization bubble used in computing the conductivity as we have pulled out the factor of the bare charges.
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Figure 5.3: The diagrams that contribute to the renormalized charge. The propagators and
polarization bubbles are all fully dressed. Aµ is the external gauge field, aµ is the emergent
gauge field, and the lines to the right of the diagrams are either b or f propagators depending
on whether the renormalized b charge or renormalized f charge is being computed. Copyright
© 2022 by the American Physical Society. Reproduced from Ref. [1] with permission.

the propagator for the emergent U(1) gauge field is [106]

DDD(τ − τ ′) = −⟨a(τ)a(τ ′)⟩ = −(ΠΠΠf +ΠΠΠb)
−1, (5.35)

and the boldface is indicating tensors, which follows if the inverse bare propagator is taken
to be infinitesimal.

Summing these diagrams for, e.g. the f fermions gives

eeerf = ef − efΠΠΠf (ΠΠΠf +ΠΠΠb)
−1 + ebΠΠΠb(ΠΠΠf +ΠΠΠb)

−1 (5.36)

= (ef + eb)ΠΠΠb(ΠΠΠf +ΠΠΠb)
−1 = −ΠΠΠb(ΠΠΠf +ΠΠΠb)

−1,

where the extra minus sign for ΠΠΠb comes because f and b are oppositely charged under the
emergent gauge field, and all polarization bubbles are evaluated at (ω, q). Switching f ↔ b
will give the boson result. Therefore, the charge renormalizes to become a tensor. It is worth
noting that ΠΠΠb, ΠΠΠf , and ΠΠΠb +ΠΠΠf are 2 × 2 antisymmetric matrices and therefore commute
with each other. When we compute the total current-current correlator due to the f and b
sub-systems after renormalizing the currents using the respective charge renormalizations,
we find,

ΠΠΠtot = ΠΠΠbΠΠΠ
2
f [(ΠΠΠb +ΠΠΠf )

−1]2 +ΠΠΠfΠΠΠ
2
b [(ΠΠΠb +ΠΠΠf )

−1]2

= (ΠΠΠ−1
b +ΠΠΠ−1

f )−1. (5.37)

This expression implies that the f and b resistivity are added in series.
One important point that is glossed over in the above is that the electric and magnetic

field are renormalized differently, and ΠΠΠb and ΠΠΠf are evaluated for different effective magnetic
fields. In our notation, ΠΠΠ(ω, q) ≈ −iσσσω +χχχq2, so the renormalization changes depending on
whether the vertex is magnetic Aµ(ω = 0, q → 0), or electric, Aµ(ω → 0, q = 0). We find,
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for instance for the f fermions

Ef
eff = σσσb(σσσf + σσσb)

−1E, Bf
eff =

χb

χb + χf

B, (5.38)

for a weak magnetic field B. In the magnetic field case, we additionally average over q, which
replaces χχχ with half its trace χ = (χxx + χyy)/2.

In our derivation, we have neglected contributions to σσσ and χχχ from potential cross-
correlations Πfb ∼ ⟨JfJb⟩. Doing so is valid, as the site-uncorrelated grijk render them of the
form

Πfb(iω, q) ∼
∫
d2kd2k′dΩdΩ′vf,kvb,kGf,k+q/2(iΩ + iω/2)Gf,k−q/2(iΩ− iω/2)Kfb(iΩ, iΩ

′, ω, q)

×Gb,k′+q/2(iΩ
′ + iω/2)Gb,k′−q/2(iΩ

′ − iω/2), (5.39)

where vx,k = ∇kϵx,k. Since Gx,k = Gx,−k, Gx,k+q/2(iΩ+ iω/2)Gx,k−q/2(iΩ− iω/2) = Gx,k(iΩ+
iω/2)Gx,k(iΩ − iω/2) + Ξx,k(iΩ, iω)|q|2, with Ξx,k = Ξx,−k, and vx,k = −vx,−k, the O(ω)
and O(q2) terms in the expansion of Πfb(ω, q) vanish and we can thus neglect these cross-
correlations.

Because of the renormalization of the magnetic field from the internal gauge field, we
must find expressions for χf and χb. To find them, we evaluate χλq

2 = Πλ(ω = 0, q →
0)−Πλ(ω = 0, q = 0), averaging over the two possible directions. Then, we have the bubble
contributions

Πλ(q → 0) =
Πλ,xx +Πλ,yy

2
= −η 1

V

∑
k

k2

2m2
λ

T
∑
iν

(Gλ(k − q/2, iν)Gλ(k + q/2, iν))

= −2ηT

∫ k̃max

0

dk̃

(2π)2

∫ 2π

0

dθk̃3
(∑

iν
1

(iν/T−k̃2+k̃q̃ cos(θ)−q̃2/4+µλ/T−Σλ/T )
1

(q̃→−q̃)

)
χλ = −η 1

2mλ

∫ kmax

0

k3
dk

2π

(∑
iν

(iνλ/T + µ/T − Σλ/T )

(iν/T − k2 + µλ/T − Σλ/T )4

)
,

(5.40)
where in the second line of the above, we re-scaled the momenta by a factor of k̃ = k/

√
2mλT ,

and we relabeled k̃ → k in line 3.
We can do the Matsubara sums exactly in the bosonic case since Σb(iω) = γ|ω|. We

carry them out to find (z = −µ/T = ∆b/T ):

χb = − 1

2mb

∫ √
Λ/T

0

dk

2π
k3

 z

(k2 + z)4
+Re

ψ2

(
k2+z

2πγ−2πi

)
(2πγ − 2πi)3

+
k2

3

ψ3

(
k2+z

2πγ−2πi

)
(2πγ − 2πi)4

 , (5.41)

with ψn(z) the polygamma function and Λ is the boson bandwidth. This expression diverges
as χb ∼ (1/mb) ln(Λ/∆b) when ∆b → 0.
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For the f fermions, we can transform (5.40) to

χf =
1

2mf

∫ Λf

−µf

dϵ

2π
(ϵ+ µf )T

∑
iν

(
(iν + µf − Σf (iν))

(iν − ϵ− Σf (iν))4

)
= T

∑
iν

(Λf + µf )
2(Λf − 2µf + 3Σf (iν)− 3iν)

24πmf (Λf + Σf (iν)− iν)3(µf − Σf (iν) + iν)
.

(5.42)

We note that T and |Σf (iν)| are always much smaller than the f bandwidth Λf and Fermi
energy µf , for any value of ν, since |Σf (iν)| is bounded by a scale controlled by the boson
bandwidth Λ ≪ Λf , µf . Therefore we can expand the summand of (5.42) in powers of Σf

and take the T → 0 limit. It may then be seen that the sum of the absolute values of the
contributions from all these terms in the expansion is bounded by a quantity that vanishes
in the limit of Λf , µf → ∞, leaving χf to take its free fermion value of 1/(24πmf ), which
can be easily verified by inserting the result for Σf (iν) and then numerically integrating over
ν in this limit.

5.3 Results

With the above expressions in hand, we are able to now discuss the resulting conductivity.
We will first specialize to certain limits to provide analytic results, and then we will consider
the general case numerically.

Analytic results: T -linearity, etc.

The QCP is defined by ∆b = 0; when inserted into (5.14) and (5.10), we obtain MFL
self-energies:

Σc(iω, T = 0) = g2
∫
dω′

2π
Gf (iω

′)Gb(iω − iω′)

=
γmb

2πνc

[
iω ln

(√
1 + γ2

eΛ/|ω|

)
+ cot−1(γ)|ω|

]
+ Cc, (5.43)

and a similar expression for Σf (iω, T = 0). The constant Cc can be absorbed into µc.
The parameter γ, related to the strength of damping of the b bosons, allows us to tune

between different physical regimes. In general we expect γ to increase with the strength of
the Kondo coupling g. In the limit of γ ≫ 1, the analytic continuation of (5.43) to real
frequency gives

Im[Σc,f,R](ω, T = 0) = − γmb

4νc,f
|ω|, (5.44)
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which is the traditional MFL form [201]. On the other hand, when γ ≪ 1, the fermion
self-energies (5.43) are asymmetric about ω = 0:

Im[Σc,R](ω, T = 0) =
γmb

2πνc
|ω|
(
−π
2
− cot−1(γ)sgn(ω)

)
. (5.45)

Thus, in this regime, our model provides a concrete example of a “skewed” MFL [47]. This
skewed MFL is expected to have a nonvanishing Seebeck coefficient in the T → 0 limit due
to the asymmetric inelastic scattering rate in (5.45) [47, 48]. The nonvanishing Seebeck
coefficient as T → 0, and the asymmetric frequency dependence of the electron spectral
function, provide experimentally detectable signatures of the small γ regime 3.

In the FL⋆ phase, where ∆b(T = 0) > 0, we obtain, in a similar fashion to (5.43),

Σc,f (iω, T = 0) = −γmb ln(Λ/∆b(T = 0))

πνc,f
iω + i

γ2mb

2πνc,f∆b(T = 0)
ω2. (5.46)

The O(ω2) term leads to a Fermi liquid ω2 scattering rate on the real frequency axis, and
hence a scattering rate ∝ ω2 + π2T 2 upon analytic continuation to the thermal circle for
T > 0. The O(ω) term leads to a renormalization of the Fermi liquid quasiparticle weights,
and hence an enhancement of the conduction electron effective mass, given by

m∗
c = mc

(
1 +

γmb

πνc
ln

(
Λ

∆b(T )

))
. (5.47)

Here, we extended the result to small nonvanishing temperatures by replacing ∆b(0) →
∆b(T ). Since ∆b(T = 0) ∼ κc − κ vanishes on approach to the QCP, the zero temperature
effective mass diverges, consistent with experimental findings in HFMs [185, 37]. In the
critical region ∆b ∝ T up to logarithmic corrections. Thus, the divergence of m∗

c is cut-off
logarithmically by the temperature at criticality.

Moving to non-zero temperature, in the two limits γ ≫ max(1,∆b/T ) and γ ≪ 1 we
obtain explicit expressions for the imaginary parts of the self-energy in the critical region
[1]. For large γ we have

Im[Σc,R(ω, T )] ≈ − γmb

2πνc
T

[
∆b

γT
ln

(
Λe

∆b

)
+ π ln

(
2 cosh

( ω
2T

))]
; ∆b/(γT ) < 1,

∆b ≈
πγT

ln
(

Λ
Tγe

)W0

(
2
√
e

π2
ln

(
Λ

Tγe

))
, (5.48)

where W0(z) is the Lambert W function. For γ ≪ 1, (5.43) is well approximated by:

Im[Σc,R(ω, T )] ≈ −γ
2mb

2πνc
T
(
1 + eω/T

)
, |ω| ≲ T. (5.49)

3The magnitude of the low-temperature Seebeck coefficient is ∼ kB/e when γ ≪ 1, declining to zero as
γ is increased to γ ≫ 1.
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Like at T = 0 (5.45), this self-energy is asymmetric between positive and negative frequencies,
and is therefore skewed.

Taking the B → 0 limit of our expression for σxx above, Eq. (5.31), gives [144] :

ρc,xx = T

(
nc

8mc

∫ ∞

−∞
dω

sech2(ω/(2T ))

|Im[Σc,R(ω, T )]|

)−1

. (5.50)

In the critical region Im[Σc,R(ω, T )] ∼ T for |ω| ≲ T , so that the integral in (5.50) is
independent of T at leading order. Thus we get nearly T -linear resistivity in the critical
strange metal.

In the FL⋆ phase we found in (5.46) that |Im[Σc,R(ω, T )]| ∝ ω2 + π2T 2. Plugging this
into (5.46) gives ρxx ∝ T 2 as in a normal Fermi liquid.

Planckian dissipation

As we discussed in Chapter 1, It has been proposed that inelastic relaxation times, in most
if not all situations, cannot be much smaller than the quantum mechanical “Planckian” time
scale τP = ℏ/(kBT ) (see [57] and references therein). There is a growing list of materials,
showing strange metal behavior at low temperatures, which seem to be close to this limit,
namely they relax on the Planckian time scale up to a constant of order one [18, 109, 128,
22, 143]. Since the self-energies calculated above imply relaxation times proportional to
1/T , it is interesting to ask how systems described by this model line up with the proposed
Planckian bound.

Note however, that the correct quasiparticle relaxation time cannot be extracted directly
as the inverse ImΣR. Rather it is renormalized by the same factor as the mass. To see this,
we eliminate the prefactor of the ω term to obtain the standard Fermi liquid form of the
Green’s function

Gc,R(ω, k) =
Z

ω − Zξk − iZIm [Σc,R(ω)]
(5.51)

with Z = m/m∗
c . From this we can immediately obtain 1/τc = Z Im (Σc,R(ω = 0)). This

is the same timescale extracted from analysis of transport data pertaining to strange metal
QCPs [18, 109, 128, 22, 143] using the Drude formula for quasi particle transport τ =
m∗σxx/(ne

2). In the experiments the effective quasiparticle mass is measured slightly away
from the critical point. Note that we focus here on the relaxation rates of the conduction
electrons because they dominate the transport.

In the strongly damped regime, where γ ≫ 1,∆b/T , equations (5.47) and (5.48) give

τc =

(
πνc
γmb

+ ln

(
Λ

γT

))
ℏ

kBT

≈ ln

(
Λ

γT

)
ℏ

kBT
, (5.52)
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At realistic temperatures τc can be viewed as Planckian relaxation modified only by a slowly
varying logarithmic function of temperature and nearly independent of the microscopic cou-
plings. The result provides an appealing potential explanation for observation of near Planck-
ian relaxation across different materials, with O(1) proportionality constants that vary only
slightly between materials [18].

In the weakly damped regime γ ≪ 1 equations (5.47) and (5.49) give

τc =
1

γ

(
πνc
γmb

+ ln

(
Λ

T ln(π/γ)

))
ℏ

kBT
, (5.53)

which is manifestly nonuniversal. The proposed Planckian lower bound is still obeyed, but
exceeded by a large factor of at least 1/γ. Thus we do not expect Planckian transport in the
weak damping regime. Such “sub-Planckian” behavior has in fact recently been reported in
experiments on HFMs [194].

Numerical approach

In this model, we have the following parameters: mλ, γ, and nc/f . We have already discussed
how the various limits of γ can effect the results above, and we take the masses in the scale
mb ≫ mf ≫ mc. We can vary the densities nc, nf , which implicitly set the µf and µc, but
we fix them to be nc = nf = 1. We were considering a fully 2D system above, but we
have the flexibility to make the conduction electrons c three-dimensional to yield a more
physically relevant model in which case the f and b occupy disconnected 2D planes. We use
this interpretation below; the only difference is the relationship between νc and nc.

For a given temperature, T , magnetic field, B, and ∆κ = κ − κc, in order to evaluate
the conductivity, we first need to self-consistently solve for the effective magnetic field B

b/f
eff

using

Bf
eff =

χb

χb + χf

B; Bb
eff =

χf

χb + χf

B. (5.54)

The value of χf = 1/(24πmf ) is set, but χb, as determined from Eq. (5.41) depends on
z = ∆b/T . In turn, the value of ∆b is determined by Eq. (5.23), which requires the effective
field as input. Note that the effective field is strongly renormalized when χb/χf ≫ 1, such
as when ∆κ > 0, and it is worth using the B → 0 expression for ∆b in this regime.

Once we have found a self-consistent solution, we will know the effective fields and ∆b.
By inserting Eq. (5.18) into Eq. (5.16) (and an equivalent expression for Im [Σf,R] with
ω ↔ −ω and νf ↔ νc) and noting Σb,R(ω) = −iγω, we will have evaluated all of the self-
energy expressions. With γ ≪ 1, we ensure that the real part of the self-energy (derivable
via the Kramers-Kronig relation) does not meaningfully renormalize the fermion chemical
potentials, but this limit can also be checked numerically. Finally, inserting the self-energies
into Eq. (5.31) and Eq. (5.33) (with e2λ = 1 for all species), we then combine the conductivities
via the Ioffe-Larkin composition rule σσσtot = σσσc + (σσσ−1

f + σσσ−1
b ).
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As a representative point, we set γ = 0.02 ≪ 1, Λmb = π2/2, and mb = 5mf = 50mc. As
we can see in Fig. 5.4, we have FL like behavior when κ < κc and T -linear (up to logarithmic
corrections) behavior in the critical fan.

We also plot RH vs. κ. We find that there is a small peak at κ = κc with a value of 4/3
[1]. As we move to larger κ, there is an increase in RH .

We can see this increase more clearly in Fig. 5.5. The enhancement is dominated by
the contribution of the boson conductivity σσσb to the total conductivity σσσ . The strong non-
monotonic behavior stems from a competition between two effects. On the one hand the
boson gap decreases rapidly with decreasing temperature and becomes exponentially sup-

pressed below the grayed out crossover regime, ∆b ∼ T exp
[
−2π(κ−κc)

Tmb

]
. This leads to a

large σb,xy due to bosons excited above the small gap. On the other hand, the susceptibility
χb diverges rapidly ultimately leading to vanishing of Bb and hence also of σσσb at zero tem-
perature. The interplay between these two effects leads to the sharp peak in |RH | versus
temperature seen in Fig. 5.5.

Figure 5.4: (a) The phase diagram for our 2D model. The resistivity is given by ρxx−ρxx(T =
0) ∼ Tα ln(Λ/T ), and the color indicates the value of α = d ln(ρxx/ ln(Λ/T ))/d ln(T ). (b)
The plot of the weak-field RH vs. κ−κc. RH has a peak near the crossover from Fermi-liquid
behavior to T -linear resistivity and approaches a constant to either side signaling the change
in carrier density. The large peak of RH seen at low temperatures is occurring as the boson
is condensing, as discussed in Fig. 5.5. Here, γ = 0.02, nc = nf = 1, Λmb = π2/2, and
mb = 5mf = 50mc. Copyright © 2022 by the American Physical Society. Reproduced from
Ref. [1] with permission.
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Figure 5.5: RH vs. T for various B and ∆κ = κ − κc, computed numerically without
any approximations. RH is roughly constant within the critical region and is higher than
the expected RH ≈ −1/nc seen in the FL⋆ region (blue and orange curves). A larger B
suppresses RH slightly. There is a large enhancement in the crossover region between the
condensed bosons and the quantum critical region, when we ignore inter-layer instabilities
for κ > κc (green curve). (Inset) ∆ρxx ≡ ρxx − ρxx(T = 0) vs. T for different values of
∆κ. The other parameters are the same as in Fig. 5.4. Copyright © 2022 by the American
Physical Society. Reproduced from Ref. [1] with permission.

3D modification

Using the expressions from the previous sections, we have evaluated ρxx and RH for a 2D
model (or a 3D model without inter-layer couplings for the f and b fields) for all values
of parameters at small B. We have devised this model in thinking about experiments on
CeCoIn5, which shows some aspects of 2D physics even as a 3D material (i.e. there is strong
anisotropy in the c direction) [147]. Therefore our 2D stacked layers model may be more
relevant than a fully 3D model.

However, we must analyze possible instabilities that will take us away from our fully 2D
solution. When there is a third spatial dimension present, we should therefore ask what
relevant inter-layer interactions are allowed and what their impact on the physics will be.

An important feature of our model is that the b and f partons are deconfined in a stack
of independent 2D layers. We can therefore write down the following large N , instability
inducing [141], local, gauge-invariant, quartic interactions between adjacent layers l and l′,
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where r denotes the 2D coordinate of a site within a layer:

Hbb = −Jb
N

N∑
i,j=1

∑
r

b†r(l),ibr(l′),ib
†
r(l′),jbr(l),j,

H ′
bb = −J

′
b

N

N∑
i,j=1

∑
r

b†r(l),ib
†
r(l′),ibr(l′),jbr(l),j, (5.55)

Hff = −Jf
N

N∑
i,j=1

∑
r,σ,σ′,
τ,τ ′

f †
r(l),i,σf

†
r(l′),i,σ′fr(l′),j,τfr(l),j,τ ′ ,

Hbf = −Jbf
N

N∑
i,j=1

∑
r,σ

[
b†r(l),ibr(l′),if

†
r(l),j,σfr(l′),j,σ +H.c

]
.

None of these terms contribute directly to the parton self-energies or transport at large N .
Hff induces BCS-like inter-layer f fermion pairing instabilities, which occur at exponentially
small energy scales, and are therefore not of concern to us. The terms inHbb create inter-layer
boson instabilities driven by susceptibilities that scale as ∼ mbJ

′
b ln(Λ/∆b). In the gapped

phase of the boson, and in the quantum critical region, these susceptibilities are thus small at
the temperature scales of interest, hence we ignore them. However, for κ > κc, ∆b(T ) starts
decreasing rapidly below some temperature scale (Fig. 5.1), which makes these susceptibilities
large, causing the onset of instabilities that lead to the condensation of inter-layer boson
bilinears. The resulting 3D boson phase will then further have single-boson condensation as
temperature is lowered [159]. Once this happens, both the partons will have 3D dispersions
as these boson interaction terms will appear like inter-layer hoppings, b†l b

†
l′blbl′ ∼ cbb

†
l bl′ ,

and Hbf will similarly generate inter-layer hopping for the f fermions 4. This leads to
two important changes to the model; first the partons develop an anisotropic dispersion
with hopping proportional to the single-boson condensate strength at low temperatures, and
second the fermions now scatter off both the N − 1 critical bosons b2,..,N as well as the
condensed mode ⟨b1⟩.

To model these effects, the dispersion of the partons is changed to be

ϵb/f,k =
1

2mb/f

(k2x + k2y + Yb/fk
2
z), Yb/f = 4π2Jb/bfr

2
0, (5.56)

where r0 is the size of the condensate. Rewriting the Schwinger-Dyson equations within the
condensed phase, the only changes are to the fermion self-energy and the constraint. The
constraint equation becomes

κ− κc = r20 + (nb − nc
b), (5.57)

4H ′
bb will also generate inter-layer boson pairing terms ∼ c′bb

†
l b

†
l′ , but the Hugenholtz-Pines theorem [73]

nevertheless ensures a 3D gapless boson phase, with the same effects on the fermions.
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where, in this equation, nb is the number of bosons not participating in the condensate with
∆b = 0, and using the self-consistently determined dispersion. The self-energy expression is
changed to be

Im[Σc,R] = −r20g2
νf
2

− g2
νf
4π

∫ ∞

−∞
dϵĀb(ϵ)(nB(ϵ) + nF (ϵ− ω)),

with Ãb the spectral function of the uncondensed modes.
To keep the number of f fermions fixed, as the dispersion changes, the Fermi energy

shifts which in turn modifies the density of states. In order to connect with the 2D model,
we introduce a maximum momentum in the z direction, K. The spinless density of states is
then given by

νf =


Kmf

π
ϵ0F >

YfK
2

3mf

mf

π

(
3ϵ0FKmf

cf

)1/3
ϵ0F <

YfK
2

3mf

, (5.58)

where ϵF,0 is the Fermi energy with Yf = 0. Note that we take K = π so the density of
states in the small condensate regime is νf = mf , the same as in the purely 2D case. We will
work in the regime where the second condition of (5.58) is never reached; this is achieved by
taking Jbf sufficiently small. If the second condition was achieved, γ = g2νcνf/(2π) would
change.

The spectral function for the uncondensed modes can be evaluated utilizing the 2D results
by replacing ∆b → ∆b + Ybk

2
z/(2mb) in (5.18) to find

2π

mb

Ãb(ω, 0) = Ksgn(ω)− 2K

π
tan−1

(
YbK

2

4γmbω
− 1

γ

)
(5.59)

− 4

πYb
Im

[√
2(1 + iγ)ωmb tanh

−1

(
YbK√

2mb(1 + iγ)ω

)]
.

Unlike the O(N) rotor model, the dispersion is also modified as the condensate grows. This
changing dispersion results in a different temperature dependence when Tmb ≫ κ− κc and
also results in multiple self-consistent values of the condensate size r0 at fixed κ and T . If
we assume interactions which generate a 3D instability at T = 0, the physical solution for
r0 is the one that approaches a non-zero constant at low temperatures, which is the one we
use in our numerical calculations.

Deep in the condensed phase at low temperatures, r0 will be roughly constant and large.
In this regime, the frequency dependence of the spectral function for the uncondensed boson
modes then goes as as

√
ω, leading directly to Im[Σc,R(ω = 0, T )] ∼ T 3/2 + const. behavior.

Therefore, in the 3D version of our model, we will recover power-law scaling with temperature
when κ > κc as well.
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5.4 Discussion

The new large N approach formulated in this chapter captures a strongly coupled QCP,
showing linear in T resistivity at a Kondo breakdown transition involving a change of the
Fermi surface volume. Such MFL phenomenology, seen ubiquitously in experiments with
heavy fermion materials, could not be obtained in a controlled way within previous large N
theories [155, 31, 6, 175]. The essential new element in our formulation is that the number
of fermions and critical boson species are both scaled with N .

The MFL with linear in T resistivity is obtained for a 3D system only if the QCP and
adjacent FL⋆ phase are deconfined in layers, that is deconfined inside 2D planes, yet confined
between planes.5 This model can be tuned between two regimes by a coupling constant γ. In
the strong damping limit γ ≫ 1 the system exhibits Planckian dissipation, with a universal
electron relaxation time τtr ≈ ℏ/(kBT ). The strong damping also prevents any significant
enhancement of the Hall coefficient RH in the critical regime. In the weak damping regime,
γ ≪ 1, the transport relaxation time is much larger than the Planckian time (by a factor
1/γ), and the Hall coefficient RH is enhanced in the critical regime. Furthermore, the electron
self-energy in this regime is “skewed”, with an asymmetry in the damping of particle vs. hole
excitations (5.49). We note that strange metallic behavior with a transport relaxation time
much larger than the Planckian time has been observed experimentally in HFMs [194].

A testable prediction, which follows is that Planckian dissipation at the QCP cannot be
accompanied by enhancement of the Hall coefficient RH . Enhancement of RH at the QCP,
as has been observed in recent experiments with CeCoIn5 [121], can occur only in the weakly
damped regime of our model, where a set of additional features are predicted: first, the
QCP and the nearby FL⋆ phase are deconfined only within 2D planes, which would have
observable implications on transport. For example, the thermal conductivity is expected
to be strongly anisotropic, because in this phase spinons contribute to the in-plane, but
not to the out-of-plane thermal transport. The charge conductivity, on the other hand, is
dominated by the conduction electrons, which can hop between planes, and would therefore
be much more isotropic. Consequently, only the in-plane Lorenz ratio is expected to be
significantly enhanced. Another unique property of the weakly damped (γ ≪ 1) MFL, is a
skewed fermion spectral function, which is expected to generate a low temperature Seebeck
coefficient in the critical regime [47, 144]. Sizeable T → 0 Seebeck coefficients have recently
been reported experimentally in 2D strange metals [48, 32], and it would be interesting to
investigate whether these arise due to skewed electron self-energies.

Finally, let us return to how well our model captures the QCP in CeCoIn5. The four main
experimental signatures are: 1) 1/RH at low temperatures and high fields exhibits a sharp
increase, 2) at low fields and low temperatures RH has a peak in temperature, 3) ARPES
and quantum oscillations see new features of the Fermi surface, and 4) T -linear resistivity
above the QCP. Just as our model in the previous chapter, we capture points 1 and 3 by the

5We can consider a fully 3D model that captures similar effects without the need for deconfined layers if
the grijk are site-correlated [1]; however, in that case, the Fermi surfaces of the c and f must be matched.
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nature of having a small-to-large Fermi surface transition. The hybridization of the f and c
fields by the (nearly) condensed b field when κ > κc and f ’s non-contribution to σσσ when the
bosons are not condensed explains both of these features. Unlike the previous chapter, we
are able to address point 4 and describe MFL physics in the critical fan. For point 2, we saw
that the boson condensing can lead to a large increase in RH , which qualitatively matches
what is seen in the experiment. In order for the peak height of RH to decrease as κ > κc
(currently it only increases as κ increases), we may need to add an impurity scattering of
the bosons as we did in the previous chapter.

In total, this model captures much of the necessary ingredients to understand the QCP
of CeCoIn5. Although the model is not the most physical starting point, it does succeed in
providing a solvable model that captures much of the phenomenology including the MFL
physics. The new large N approach we have introduced to study the Kondo breakdown
transition in HFM can also be useful in formulating a controlled theory of other quantum
critical states. The high Tc cuprate superconductors, for example, exhibit similar signatures
of FS reconstruction near optimal doping [150], accompanied by T -linear resistivity [191].
While there are no local moments to be subsumed in the Fermi sea, a parton model describing
a change in FS volume has recently been proposed [221]. Investigating this QCP using the
new large N scheme is an interesting problem for future work. Our approach can also be used
to address the interplay of these critical fluctuations with superconductivity and magnetism,
which appear to be crucial to cuprate phenomenology.
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Chapter 6

Conclusion

In this dissertation, I have focused on two materials α-RuCl3 and CeCoIn5. Both compounds
are examples of quantum materials, and I analyzed them with a combination of exact and
approximate techniques.

α-RuCl3 is a prime candidate for a material realization of the Kitaev spin liquid, which
could make it the first definitively identified spin liquid. My analysis of the thermal Hall
effect data is consistent with a large Kitaev interaction term in the material’s approximate
Hamiltonian. However, the INS spectrum seen in experiments on α-RuCl3 is not consistent
with my predictions using TDMFT. My results, in combination with the inability for the
candidate model Hamiltonians for this material to predict a Kitaev spin liquid phase [56,
211] and the inconsistency of experimental evidence for a quantized thermal Hall plateau [87,
218, 20, 215, 39, 107], do not present a compelling argument that α-RuCl3 will yield a Kitaev
spin liquid platform. The main challenge, at this stage, appears to be in achieving consistent
experimental results; without them, it is not clear whether we theorists are analyzing signal
or noise.

As I discuss, TDMFT is not just applicable to α-RuCl3. My approach can be used to
analyze any Kitaev spin liquid candidate. Several other candidates have been put forth
over the years, such as Na2IrO3 [217, 33, 74, 180, 181, 25, 117], Li2IrO3 [181, 207, 16,
210], H3LiIr2O6 [95, 192], and Na2Co2TeO6 [113]. It has been difficult to grow large enough
single-crystal samples of the iridate compounds for INS experiments, but, as that obstacle is
overcome, these other candidate materials may provide a more straight-forward avenue to a
Kitaev spin liquid. As my analysis shows, the key signature would be an INS signal closely
matching that of the pure Kitaev model across the 1BZ.

In CeCoIn5, my experimental colleagues find direct evidence for a Fermi surface recon-
struction transition without symmetry breaking. In the context of that theory, I was able
to heuristically explain the low-temperature peak of the Hall coefficient, and I developed a
model based reminiscent of the SYK model that is exactly solvable and captures much of
the qualitative aspects of the experiment. Taken together, my analysis suggests that the
strange metallicity of CeCoIn5 is likely due to a quantum critical point (QCP). The presence
of a QCP, which may bear some similarity to a QCP found in the cuprates [121], may help
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explain why CeCoIn5 bears similarities to the high-temperature superconductors.
A QCP explanation for strange metallicity, however, is not sufficient to explain T -linear

resistance in all materials [57]. The SYK model has provided more analytic control in
analyzing certain scenarios [27], but new ideas continue to appear. Recent work proposes
the idea of an Ersatz Fermi liquid [42], which shares many of the properties of Fermi liquids
and may explain why strange metals seem to still possess Fermi liquid-like properties but
different dynamics. Despite much progress, connecting recent ideas like the SYK model
to material properties in order to guide the search for higher temperature superconductors
remains a key theoretical challenge.
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